WO2003001268A1 - Autofocus system, method and device for optically testing parts in said system - Google Patents

Autofocus system, method and device for optically testing parts in said system Download PDF

Info

Publication number
WO2003001268A1
WO2003001268A1 PCT/FR2002/002038 FR0202038W WO03001268A1 WO 2003001268 A1 WO2003001268 A1 WO 2003001268A1 FR 0202038 W FR0202038 W FR 0202038W WO 03001268 A1 WO03001268 A1 WO 03001268A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
radiation
objective
wavelength
autofocus
Prior art date
Application number
PCT/FR2002/002038
Other languages
French (fr)
Inventor
Joseph Cohen-Sabban
Original Assignee
Sciences Et Techniques Industrielles De La Lumiere (Sa)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sciences Et Techniques Industrielles De La Lumiere (Sa) filed Critical Sciences Et Techniques Industrielles De La Lumiere (Sa)
Publication of WO2003001268A1 publication Critical patent/WO2003001268A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0072Optical details of the image generation details concerning resolution or correction, including general design of CSOM objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/006Optical details of the image generation focusing arrangements; selection of the plane to be imaged
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals

Definitions

  • the present invention relates to a device or system for automatic focusing of a lens, and to its application to methods and devices for optical inspection of parts.
  • the technical field of the invention is that of manufacturing high precision optical control devices.
  • the present invention is particularly applicable to the automatic focusing of an objective for observing the surface of a substrate, such as a silicon disc ("wafer") or a mask for producing such a disk, said objective forming part of an automated optical device for monitoring the surface of the substrate.
  • a substrate such as a silicon disc (“wafer") or a mask for producing such a disk
  • control of the geometry of such substrates is to date carried out by high precision devices allowing the detection of defects and the presence of impurities on the surface of these substrates.
  • Such optical monitoring devices usually include a source of illumination of the substrate by monitoring radiation, an objective for observing the surface of the substrate, a photoelectric sensor sensitive to the monitoring radiation transmitted, reflected or backscattered by the surface of the substrate. substrate and transmitted by the observation objective, as well as means for processing the signals delivered by the sensor; these control devices frequently include a source of monochromatic illumination such as an Argon laser, a charge-coupled matrix sensor (matrix CCD), an observation objective of the microscope objective type, and a computer processing the images resulting from the conversion of the signals delivered by the matrix sensor.
  • a source of monochromatic illumination such as an Argon laser, a charge-coupled matrix sensor (matrix CCD), an observation objective of the microscope objective type, and a computer processing the images resulting from the conversion of the signals delivered by the matrix sensor.
  • an automatic focusing device of this lens is used, which generally comprises a sensor sensitive to part of the control radiation reflected by the substrate, and which usually operates by triangulation.
  • the substrate to be checked is generally placed on a device for positioning the substrate by displacement in translation along three axes (X, Y, Z), one axis of which (called Z) corresponds to the optical axis of the observation objective of the substrate; to control the entire surface of the substrate, it is moved by this device along two axes (X and Y) orthogonal to the optical axis Z; the objective is brought into focus on the plane of the surface to be checked by displacement of the substrate along the Z axis, as a function of a signal delivered by the autofocus device.
  • An objective of the invention is to propose an improved autofocus device which is adapted to allow precise and rapid focusing of the observation objective of such optical control devices of such substrates.
  • An objective of the invention is to propose a method and a device for automatic development of this objective which are simple and efficient.
  • the substrate is illuminated by a source emitting additional polychromatic radiation, called autofocus, which is directed so that this radiation, as well as its part which is reflected by the substrate, pass through said observation objective as well as an additional objective adapted to form, with the observation objective and a substantially punctual or linear spatial filter, a confocal optical system;
  • the chromatic dispersion of the autofocus radiation reflected and transmitted by the confocal optical system is caused by passing through a disperser so as to obtain a spectrum of this radiation; the spectrum thus obtained is analyzed in order to determine the central wavelength of a line of maximum intensity of the spectrum; we then deduce from the value of said central wavelength, the value of a relative displacement (along said Z axis) of the substrate relative to the perfect focusing position of the observation objective, and if necessary causes a relative displacement of said value between the substrate and this goal.
  • the invention is based on the use of the longitudinal chromatic aberration of the optical system constituted by the additional objective and by the observation objective of the substrate. It follows from this aberration that the position along the Z axis - which is the optical axis of the observation objective - of the confocal image varies, between two extreme positions, as a function of the wavelength considered polychromatic autofocus radiation; the use of this property of these objectives combined with the spatial filtering of the autofocus radiation reflected by the substrate caused by the confocal system allows, when a point on the surface to be checked is located on the Z axis, between said extreme positions delimiting a chromatic range, to observe a line of maximum intensity in the spectrum of the autofocus radiation reflected by said point of the surface of the substrate, the central wavelength of this line characterizing the position on the Z axis of said point of the surface to be checked, this position being able to be determined very precisely and very simply as a function of said central wavelength.
  • the additional polychromatic autofocus radiation has a continuous spectrum in a determined range of wavelength; this range preferably extends in the range (400 nm to 800 nm) of visible light, which in particular facilitates the installation and adjustment of the autofocus system; said additional objective is designed (calculated) so that, for a wavelength of said range which is called reference wavelength and which is preferably the median wavelength of this range, the confocal image of the filter by the autofocus optical system - including the viewing lens - is confused with the focus of the optical control system at the control wavelength; therefore, when the central wavelength of the maximum intensity line of the spectrum of the reflected autofocus radiation coincides with this wavelength of reference, this means that the focus of the optical control system at the control wavelength coincides with the surface to be controlled which caused the monochromatic reflection at said central wavelength; therefore, in this situation, the viewing objective is well focused.
  • This focusing is controlled as a function of the difference between said different values, and preferably achieved by a displacement along the Z axis of the viewing objective of the control system, this displacement being generally proportional to this difference.
  • the invention makes it possible to control the development of the viewing objective on the surface to be checked with an accuracy which is of the order of a few nanometers or tens of nanometers; the measurement range of the autofocus system is generally of the order of a few microns to a few tens of microns around the position of perfect focus.
  • a filter preferably a dichroic filter; this chromatic separation of the two beams allows their respective simultaneous processing without mutual influence.
  • the device for spatial filtering of autofocus radiation can be materialized by a slot, it is preferably substantially punctual and formed by the heart of one end of a section of optical fiber used to transport this radiation from its physical source (halogen lamp for example) up to said additional objective (incident path), as well as said additional objective to said chromatic disperser - or spectrograph (with prism for example) -
  • the point spatial filter forming the point source of the confocal system at a distance from the focal point of the additional objective, on the optical axis thereof, and so that the image - called confocal - from this point source, by said additional and observation objectives, is located on the optical axis Z of the latter.
  • FIG. 1 schematically illustrates the main elements constituting an optical control device according to the invention and their arrangement for the automatic focusing of the observation objective of the substrate to be checked.
  • FIG. 2 schematically illustrates on an enlarged scale the paths traveled between the objective of observation of the substrate and the substrate, by the control radiation on the one hand, and by the chromatic components of the autofocus radiation on the other hand; in this figure, there is illustrated in a shifted manner on the left a substrate in a position of perfect focusing of the control radiation, and there is illustrated in a shifted position on the right a substrate in a position requiring a lens development; the offset illustration is only intended to improve the clarity of the figure and to avoid providing two separate figures; of course the actual position of the substrate is that illustrated in Figure t.
  • FIGS. 3 and 4 are two spectrograms of the reflected and dispersed autofocus radiation, corresponding respectively to the situations of perfect focus and faulty focus which are illustrated in the left and right part of FIG. 2; in these figures we have also identified the central wavelength of the control radiation which is identified ⁇ C ⁇ RL-
  • control device 1 comprises, in a known manner, an objective 2 for observing the surface 3, 103, 203 of a substrate 4, 104, 204 to be checked.
  • the substrate is placed on a table 5, 105, 205, provided with guide means (such as slides) and actuation means (such as jacks) for moving the substrate, under the control of a computer (6 Figure 1), along two orthogonal axes X and Y, which are perpendicular to the optical axis Z of the lens 2; these displacements of the substrate along the axes X and Y make it possible to successively observe the elementary (punctual) regions forming the surface 3, 103, 203 of the substrate, by successively centering these said regions on the optical axis of the objective.
  • guide means such as slides
  • actuation means such as jacks
  • the control device further comprises a sighting objective 7 whose optical axis coincides with that of objective 2 and which makes it possible, with the latter, to form on an array sensor 8 an image of the elementary region of the surface. of the substrate which is observed by objective 2; the signals delivered by the sensor 8 are transmitted to the computer 6 by a link 9 for conversion into images and processing of these images in order to determine whether the geometry of the patterns inscribed or engraved on the surface of the substrate conforms to a predefined model; this optical control system can also make it possible to detect the presence of foreign bodies on the surface of the substrate.
  • the surface of the substrate is illuminated by incident control radiation C1 emitted by a first light source 1 0; this radiation is generally monochromatic, for example at a wavelength ⁇ c TR L of 365 nm in the case of a source of the ARGON laser type.
  • the surface 3, 1 03, 203 reflects, backscatter or transmits the CI radiation to form a control CR radiation called reflected which is transmitted to the sensor 8 by the objectives 2 and 7 of the control device to form on this sensor the image of the substrate.
  • the source emitting the control radiation can, as illustrated in FIG. 1, be placed on the same side of the substrate as the objective 2 d J observation; for this purpose - a semi-reflecting plate 1 1 reflects the radiation Cl emitted by the source 1 0 towards the objective 2 and transmits the radiation CR reflected by the surface of the substrate and transmitted by the objective 2, towards the objective 7 and sensor 8.
  • the source 1 0 and the objective 2 can be arranged on either side of the substrate, for example aligned along the Z axis; in this case, the blade 1 1 can be deleted.
  • the control device comprises an autofocus device comprising a source 12 of white light - called autofocus radiation - and / or of continuous polychromatic spectrum, means for illuminating the surface of the substrate by this radiation which comprise a confocal optical system 1 3 incorporating said observation objective 2, and a spectrograph 14 adapted to the chromatism of the confocal optical system.
  • the optical system 1 3 comprises, in addition to the observation objective 2, an additional objective 1 5, and a point spatial filter constituted by an end 16 of the heart of a section 1 7 of an optical fiber which is disposed at a distance from the focus of objective 15 so as to form a point source for the confocal system; Al radiation emitted by the source 1 2 is transported by the fiber 17 to this confocal point source; this radiation Al transmitted by this objective is reflected by a dichroic blade 1 8 towards objective 2; the combined chromatism of objectives 15 and 2 causes, at the output of objective 2, a dispersion along the Z axis of the position of the image of this point source, according to the wavelength considered of the monochromatic components of the polychromatic radiation incident Al from source 12, as illustrated in FIG. 2.
  • the spectrograph comprises a spatial dispersing element 20 - such as a prism - which selectively deflects the monochromatic components ARD of the incoming radiation AR as an output; a plurality of photoelectric sensors, for example the sensors of a CCD strip
  • the computer 23 controls the displacement in translation 25 along the Z axis of a support 26 of the objective 2 which is movable along this axis, by means of conventional means of guidance and actuation not shown and by means of a link 27 connecting the support 26 to the computer 23.
  • the method and the device according to the invention require, during the installation of the autofocus device, to determine the value of the reference wavelength ⁇ REF forming part of the useful band [ ⁇ ⁇ 2 ] of wavelength , for which the image of the point source 1 6 by the autofocus system - including the objective 2 of observation - is confused with the focal point F of the optical system 2, 7 of control.
  • the confocal image point of the objective 2 for the minimum wavelength ⁇ i d the useful band [ ⁇ -i, ⁇ 2 ] of the incident autofocus radiation Al is marked F1; similarly, the confocal image point for the maximum wavelength ⁇ 2 of this useful band, is marked F 2; these two image points surround the focal point F of the objective 2 for the control wavelength ⁇ c TR which is located outside this useful band (see FIGS.
  • the distance measured along the Z axis and separating the focal points F1 and F2 constitutes the "measuring range" of the focusing system; if the point of intersection 28 of the Z axis and of the surface 1 03, 203 was outside this "measurement range", this surface would be "lost to view” by the autofocus device; this possibility can be easily avoided (after initial adjustment) thanks to the very short response time of the device according to the invention.
  • the confocal system does not effectively return a luminous flux AR in return that in a narrow spectral band (or line of maximum intensity) centered on the wavelength ⁇ MA X > which corresponds to a spectrum as represented in FIG. 4, which results from the analysis of the AR flux by the spectrograph 14, and which allows the computer 23 to determine the difference between this wavelength ⁇ MA ⁇ and the reference wavelength ⁇ REF which is generally the median value of the useful interval [ ⁇ -i, ⁇ 2 ], then to control the displacement along Z of objective 2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The invention relates to a device or system that is used to focus a lens automatically and to the application thereof in relation to methods and devices for optically testing parts. The device for focusing a lens (2) that is used to observe a substrate (4, 104, 204) comprises: a confocal optical system (13) which incorporates said observation lens and which has a longitudinal chromatic aberration in a wavelength interval; a source (12) which is adapted to emit polychromatic incident radiation (AI) having a continuous spectrum in a useful band [λ1, λ2] the wavelength of which is included in said interval; a spectrograph (14) which is adapted to deliver a spectrum of autofocus radiation (AR) reflected by the substrate and transported, in addition to said incident radiation (AI), by the confocal optical system; and movement control means (23, 26) which are used to control a relative movement (25) of the substrate and the observation lens along the optical axis (Z) of the latter, according to the difference between a central wavelength (λMAX) of a line (24) of said spectrum with maximum intensity and a reference wavelength (λREF).

Description

Système autofocus, procédé et dispositif de contrôle optique de pièces incorporant ce système Autofocus system, method and device for optical control of parts incorporating this system
La présente invention est relative à un dispositif ou système de mise au point automatique d'un objectif, et à son application à des procédés et dispositifs de contrôle optique de pièces.The present invention relates to a device or system for automatic focusing of a lens, and to its application to methods and devices for optical inspection of parts.
Le domaine technique de l'invention est celui de la fabrication de dispositifs de contrôle optique de grande précision.The technical field of the invention is that of manufacturing high precision optical control devices.
La présente invention s'applique particulièrement à la mise au point automatique d'un objectif d'observation de la surface d'un substrat, tel qu'un disque de silicium ("wafer") ou un masque pour la réalisation d'un tel disque, ledit objectif faisant partie d'un dispositif de contrôle optique automatisé de la surface du substrat.The present invention is particularly applicable to the automatic focusing of an objective for observing the surface of a substrate, such as a silicon disc ("wafer") or a mask for producing such a disk, said objective forming part of an automated optical device for monitoring the surface of the substrate.
Le contrôle de la géométrie de tels substrats est à ce jour réalisé par des dispositifs de grande précision permettant la détection de défauts et la présence d'impuretés sur la surface de ces substrats.The control of the geometry of such substrates is to date carried out by high precision devices allowing the detection of defects and the presence of impurities on the surface of these substrates.
De tels dispositifs de contrôle optique comportent habituellement une source d'illum ination du substrat par un rayonnement de contrôle, un objectif d'observation de la surface du substrat, un capteur photoélectrique sensible au rayonnement de contrôle transmis, réfléchi ou rétrodiffusé par la surface du substrat et transmis par l'objectif d'observation, ainsi que des moyens de traitement des signaux délivrés par le capteur ; ces dispositifs de contrôle comportent fréquemment une source d'illumination monochromatique telle qu'un laser Argon, un capteur matriciel à couplage de charge (CCD matriciel) , un objectif d'observation de type objectif de microscope, et un calculateur traitant les images résultant de la conversion des signaux délivrés par le capteur matriciel.Such optical monitoring devices usually include a source of illumination of the substrate by monitoring radiation, an objective for observing the surface of the substrate, a photoelectric sensor sensitive to the monitoring radiation transmitted, reflected or backscattered by the surface of the substrate. substrate and transmitted by the observation objective, as well as means for processing the signals delivered by the sensor; these control devices frequently include a source of monochromatic illumination such as an Argon laser, a charge-coupled matrix sensor (matrix CCD), an observation objective of the microscope objective type, and a computer processing the images resulting from the conversion of the signals delivered by the matrix sensor.
Afin que le capteur délivre des images de la surface du substrat de qualité suffisante, il est nécessaire de maintenir le plan focal de l'objectif d'observation de la surface du substrat sensiblement confondu avec le plan selon lequel s'étend cette surface ; à cet effet, on utilise un dispositif de mise au point automatique (autofocus) de cet objectif qui comporte généralement un capteur sensible à une partie du rayonnement de contrôle réfléchi par le substrat, et qui opère habituellement par triangulation .In order for the sensor to deliver images of the surface of the substrate of sufficient quality, it is necessary to maintain the focal plane of the objective for observing the surface of the substrate substantially coincident. with the plane along which this surface extends; for this purpose, an automatic focusing device (autofocus) of this lens is used, which generally comprises a sensor sensitive to part of the control radiation reflected by the substrate, and which usually operates by triangulation.
Le substrat à contrôler est généralement posé sur un dispositif de positionnement du substrat par déplacement en translation selon trois axes (X, Y, Z), dont un axe (nommé Z) correspond à l'axe optique de l'objectif d'observation du substrat ; pour contrôler toute la surface du substrat, on le déplace par ce dispositif selon deux axes (X et Y) orthogonaux à l'axe optique Z ; on assure la mise au point de l'objectif sur le plan de la surface à contrôler par déplacement du substrat selon l'axe Z, en fonction d'un signal délivré par le dispositif autofocus.The substrate to be checked is generally placed on a device for positioning the substrate by displacement in translation along three axes (X, Y, Z), one axis of which (called Z) corresponds to the optical axis of the observation objective of the substrate; to control the entire surface of the substrate, it is moved by this device along two axes (X and Y) orthogonal to the optical axis Z; the objective is brought into focus on the plane of the surface to be checked by displacement of the substrate along the Z axis, as a function of a signal delivered by the autofocus device.
Un objectif de l'invention est de proposer un dispositif autofocus amélioré et adapté pour permettre une mise au point précise et rapide de l'objectif d'observation de tels dispositifs de contrôle optique de tels substrats.An objective of the invention is to propose an improved autofocus device which is adapted to allow precise and rapid focusing of the observation objective of such optical control devices of such substrates.
Un objectif de l'invention est de proposer un procédé et un dispositif de mise au point automatique de cet objectif qui soient simples et performants.An objective of the invention is to propose a method and a device for automatic development of this objective which are simple and efficient.
Selon un premier aspect de l'invention, on illumine le substrat par une source émettant un rayonnement polychromatique additionnel, dit d'autofocus, que l'on dirige pour que ce rayonnement, ainsi que sa partie qui est réfléchie par le substrat, traversent ledit objectif d'observation ainsi qu'un objectif additionnel adapté pour former, avec l'objectif d'observation et un filtre spatial sensiblement ponctuel ou linéaire, un système optique confocal ; on provoque une dispersion chromatique du rayonnement autofocus réfléchi et transmis par le système optique confocal, par passage dans un disperseur de manière à obtenir un spectre de ce rayonnement ; on analyse le spectre ainsi obtenu afin de déterminer la longueur d'onde centrale d'une raie d'intensité maximale du spectre ; on déduit alors de la valeur de ladite longueur d'onde centrale, la valeur d'un déplacement relatif (selon ledit axe Z) du substrat par rapport à la position de mise au point parfaite de l'objectif d' observation, et on provoque le cas échéant un déplacement relatif de ladite valeur entre le substrat et cet objectif.According to a first aspect of the invention, the substrate is illuminated by a source emitting additional polychromatic radiation, called autofocus, which is directed so that this radiation, as well as its part which is reflected by the substrate, pass through said observation objective as well as an additional objective adapted to form, with the observation objective and a substantially punctual or linear spatial filter, a confocal optical system; the chromatic dispersion of the autofocus radiation reflected and transmitted by the confocal optical system is caused by passing through a disperser so as to obtain a spectrum of this radiation; the spectrum thus obtained is analyzed in order to determine the central wavelength of a line of maximum intensity of the spectrum; we then deduce from the value of said central wavelength, the value of a relative displacement (along said Z axis) of the substrate relative to the perfect focusing position of the observation objective, and if necessary causes a relative displacement of said value between the substrate and this goal.
L'invention repose sur l'utilisation de l'aberration chromatique longitudinale du système optique constitué par l'objectif additionnel et par l'objectif d'observation du substrat. Il résulte dé cette aberration que la position le long de l'axe Z - qui est l'axe optique de l'objectif d'observation - de l' image confocale varie, entre deux positions extrêmes, en fonction de la longueur d'onde considérée du rayonnement polychromatique d'autofocus ; l'utilisation de cette propriété de ces objectifs combinée au filtrage spatial du rayonnement autofocus réfléchi par le substrat provoqué par le système confocal permet, lorsqu'un point de la surface à contrôler est situé sur l'axe Z, entre lesdites positions extrêmes délimitant une plage chromatique, d'observer une raie d'intensité maximale dans le spectre du rayonnement autofocus réfléchi par ledit point de la surface du substrat, la longueur d'onde centrale de cette raie caractérisant la position sur l'axe Z dudit point de la surface à contrôler, cette position pouvant être déterminée très précisément et très simplement en fonction de ladite longueur d'onde centrale.The invention is based on the use of the longitudinal chromatic aberration of the optical system constituted by the additional objective and by the observation objective of the substrate. It follows from this aberration that the position along the Z axis - which is the optical axis of the observation objective - of the confocal image varies, between two extreme positions, as a function of the wavelength considered polychromatic autofocus radiation; the use of this property of these objectives combined with the spatial filtering of the autofocus radiation reflected by the substrate caused by the confocal system allows, when a point on the surface to be checked is located on the Z axis, between said extreme positions delimiting a chromatic range, to observe a line of maximum intensity in the spectrum of the autofocus radiation reflected by said point of the surface of the substrate, the central wavelength of this line characterizing the position on the Z axis of said point of the surface to be checked, this position being able to be determined very precisely and very simply as a function of said central wavelength.
De préférence, le rayonnement polychromatique additionnel d'autofocus présente un spectre continu dans une plage déterminée de longueur d'onde ; cette plage s'étend de préférence dans le domaine (400 nm à 800 nm) de la lumière visible, ce qui facilite notamment l'installation et le réglage du système autofocus ; ledit objectif additionnel est conçu (calculé) pour que, pour une longueur d'onde de ladite plage qui est dite longueur d'onde de référence et qui est de préférence la longueur d'onde médiane de cette plage, l'image confocale du filtre par le système optique d'autofocus - incluant l'objectif de visualisation - soit confondu avec le foyer du système optique de contrôle à la longueur d'onde de contrôle ; par conséquent, lorsque la longueur d'onde centrale de la raie d'intensité maximale du spectre du rayonnement autofocus réfléchi coïncide avec cette longueur d'onde de référence, cela signifie que le foyer du système optique de contrôle à la longueur d'onde de contrôle coïncide avec la surface à contrôler qui a provoqué la réflexion monochromatique à ladite longueur d'onde centrale ; par conséquent, dans cette situation, l'objectif de visualisation est bien focalisé.Preferably, the additional polychromatic autofocus radiation has a continuous spectrum in a determined range of wavelength; this range preferably extends in the range (400 nm to 800 nm) of visible light, which in particular facilitates the installation and adjustment of the autofocus system; said additional objective is designed (calculated) so that, for a wavelength of said range which is called reference wavelength and which is preferably the median wavelength of this range, the confocal image of the filter by the autofocus optical system - including the viewing lens - is confused with the focus of the optical control system at the control wavelength; therefore, when the central wavelength of the maximum intensity line of the spectrum of the reflected autofocus radiation coincides with this wavelength of reference, this means that the focus of the optical control system at the control wavelength coincides with the surface to be controlled which caused the monochromatic reflection at said central wavelength; therefore, in this situation, the viewing objective is well focused.
A contrario, lorque la valeur de ladite longueur d'onde centrale de la raie d'intensité maximale est différente de la valeur de ladite longueur d'onde de référence, cela signifie que le foyer du système optique de contrôle n'est pas situé dans le plan de la surface du substrat à contrôler et qu'une mise au point est nécessaire.Conversely, when the value of said central wavelength of the maximum intensity line is different from the value of said reference wavelength, this means that the focus of the optical control system is not located in the plane of the surface of the substrate to be checked and that an adjustment is necessary.
Cette mise au point est commandée en fonction de la différence entre lesdites valeurs différentes, et de préférence réalisée par un déplacement selon l'axe Z de l'objectif de visualisation du système de contrôle, ce déplacement étant généralement proportionnel à cette différence.This focusing is controlled as a function of the difference between said different values, and preferably achieved by a displacement along the Z axis of the viewing objective of the control system, this displacement being generally proportional to this difference.
L'invention permet de maîtriser la mise au point de l'objectif de visualisation sur la surface à contrôler avec une précision qui est de l'ordre de quelques nanomètres ou dizaines de nanomètres ; la plage de mesure du système d'autofocus est généralement de l'ordre de quelques microns à quelques dizaines de microns autour de la position de parfaite focalisation.The invention makes it possible to control the development of the viewing objective on the surface to be checked with an accuracy which is of the order of a few nanometers or tens of nanometers; the measurement range of the autofocus system is generally of the order of a few microns to a few tens of microns around the position of perfect focus.
La simplicité des traitements à effectuer sur les signaux (analyse du spectre du rayonnement autofocus réfléchi et calcul d'une différence de longueur d'onde) et l'action mécanique sur l'objectif de visualisation permettent d'assurer un temps de réponse très faible pour l'autofocus, la valeur de ce temps de réponse étant par exemple de. l'ordre de 1 à 1 0 millisecondes.The simplicity of the processing to be carried out on the signals (analysis of the spectrum of the reflected autofocus radiation and calculation of a difference in wavelength) and the mechanical action on the viewing lens make it possible to ensure a very short response time. for autofocus, the value of this response time being for example. in the range of 1 to 10 milliseconds.
De préférence, on utilise un rayonnement d'autofocus s'étendant dans une plage de longueur d'onde à l'extérieur de laquelle est située la longueur d'onde de contrôle ; ceci facilite la séparation des faisceaux lumineux délivrés par l'objectif de visualisation ; à cet effet, on dispose sur le trajet de ces faisceaux un filtre, de préférence un filtre dichroïque ; cette séparation chromatique des deux faisceaux permet leur traitement respectif simultané sans influence mutuelle.Preferably, use is made of autofocus radiation extending over a wavelength range outside which the control wavelength is situated; this facilitates the separation of the light beams delivered by the viewing objective; for this purpose, we have on the path of these beams a filter, preferably a dichroic filter; this chromatic separation of the two beams allows their respective simultaneous processing without mutual influence.
Bien que le dispositif de filtrage spatial du rayonnement d'autofocus puisse être matérialisé par une fente, celui-ci est de préférence sensiblement ponctuel et formé par le cœur d'une extrémité d'un tronçon de fibre optique servant à transporter ce rayonnement de sa source physique (lampe halogène par exemple) jusqu'audit objectif additionnel (trajet incident), ainsi que dudit objectif additionnel audit disperseur chromatique - ou spectrographe (à prisme par exemple) -Although the device for spatial filtering of autofocus radiation can be materialized by a slot, it is preferably substantially punctual and formed by the heart of one end of a section of optical fiber used to transport this radiation from its physical source (halogen lamp for example) up to said additional objective (incident path), as well as said additional objective to said chromatic disperser - or spectrograph (with prism for example) -
Par ailleurs, on dispose de préférence le filtre spatial ponctuel formant la source ponctuelle du système confocal, à distance du foyer de l'objectif additionnel, sur l'axe optique de celui-ci, et de sorte que l'image - dite confocale - de cette source ponctuelle, par lesdits objectifs additionnel et d'observation, soit située sur l'axe optique Z de ce dernier.Furthermore, there is preferably the point spatial filter forming the point source of the confocal system, at a distance from the focal point of the additional objective, on the optical axis thereof, and so that the image - called confocal - from this point source, by said additional and observation objectives, is located on the optical axis Z of the latter.
D'autres caractéristiques et avantages de l'invention apparaissent dans la description suivante qui se réfère aux dessins annexés, qui illustrent sans aucun caractère limitatif des modes préférentiels de réalisation de l' invention.Other characteristics and advantages of the invention appear in the following description which refers to the appended drawings, which illustrate without any limiting character the preferred embodiments of the invention.
La figure 1 illustre schématiquement les principaux éléments constituant un dispositif de contrôle optique selon l'invention et leur arrangement pour la mise au point automatique de l'objectif d'observation du substrat à contrôler.FIG. 1 schematically illustrates the main elements constituting an optical control device according to the invention and their arrangement for the automatic focusing of the observation objective of the substrate to be checked.
La figure 2 illustre schématiquement à échelle agrandie les trajets parcourus entre l'objectif d'observation du substrat et le substrat, par le rayonnement de contrôle d'une part, et par les composantes chromatiques du rayonnement autofocus d'autre part ; sur cette figure, on a illustré de façon décalée à gauche un substrat dans une position de parfaite focalisation du rayonnement de contrôle, et on a illustré de façon décalée à droite un substrat dans une position nécessitant une mise au point de l'objectif ; l'illustration décalée a uniquement pour but d'améliorer la clarté de la figure et d'éviter de prévoir deux figures distinctes ; bien entendu la position réelle du substrat est celle illustrée figure t.FIG. 2 schematically illustrates on an enlarged scale the paths traveled between the objective of observation of the substrate and the substrate, by the control radiation on the one hand, and by the chromatic components of the autofocus radiation on the other hand; in this figure, there is illustrated in a shifted manner on the left a substrate in a position of perfect focusing of the control radiation, and there is illustrated in a shifted position on the right a substrate in a position requiring a lens development; the offset illustration is only intended to improve the clarity of the figure and to avoid providing two separate figures; of course the actual position of the substrate is that illustrated in Figure t.
Les figures 3 et 4 sont deux spectrogrammes du rayonnement autofocus réfléchi et dispersé, correspondant respectivement aux situations de mise au point parfaite et mise au point défaillante qui sont illustrées en partie gauche et droite de la figure 2 ; sur ces figures on a également repéré la longueur d'onde centrale du rayonnement de contrôle qui est repérée λCτRL-FIGS. 3 and 4 are two spectrograms of the reflected and dispersed autofocus radiation, corresponding respectively to the situations of perfect focus and faulty focus which are illustrated in the left and right part of FIG. 2; in these figures we have also identified the central wavelength of the control radiation which is identified λ C τRL-
Par référence aux figures 1 et 2, le dispositif 1 de contrôle comporte de façon connue, un objectif 2 d'observation de la surface 3, 103, 203 d'un substrat 4, 104, 204 à contrôler.With reference to FIGS. 1 and 2, the control device 1 comprises, in a known manner, an objective 2 for observing the surface 3, 103, 203 of a substrate 4, 104, 204 to be checked.
Le substrat est posé sur une table 5, 105, 205, munie de moyens de guidage (tels que des glissières) et de moyens d'actionnement (tels que des vérins) pour déplacer le substrat, sous la commande d'un ordinateur (6 figure 1 ) , selon deux axes orthogonaux X et Y, qui sont perpendiculaires à l'axe optique Z de l'objectif 2 ; ces déplacements du substrat selon les axes X et Y permettent d'observer successivement les régions élémentaires (ponctuelles) formant la surface 3, 103, 203 du substrat, en centrant successivement ces dites régions sur l'axe optique de l'objectif.The substrate is placed on a table 5, 105, 205, provided with guide means (such as slides) and actuation means (such as jacks) for moving the substrate, under the control of a computer (6 Figure 1), along two orthogonal axes X and Y, which are perpendicular to the optical axis Z of the lens 2; these displacements of the substrate along the axes X and Y make it possible to successively observe the elementary (punctual) regions forming the surface 3, 103, 203 of the substrate, by successively centering these said regions on the optical axis of the objective.
Le dispositif de contrôle comporte en outre un objectif de visée 7 dont l'axe optique est confondu avec celui de l'objectif 2 et qui permet, avec ce dernier, de former sur un capteur matriciel 8 une image de la région élémentaire de la surface du substrat qui est observé par l'objectif 2 ; les signaux délivrés par le capteur 8 sont transmis au calculateur 6 par une liaison 9 pour conversion en images et traitement de ces images afin de déterminer si la géométrie des motifs inscrits ou gravés à la surface du substrat est conforme à un modèle prédéfini ; ce système de contrôle optique peut permettre en outre de détecter la présence de corps étrangers à la surface du substrat. Afin de réaliser ce contrôle optique, la surface du substrat est éclairée par un rayonnement de contrôle incident Cl émis par une première source lumineuse 1 0 ; ce rayonnement est généralement monochromatique, par exemple à une longueur d'onde λcTRL de 365 nm dans le cas d'une source du type laser ARGON.The control device further comprises a sighting objective 7 whose optical axis coincides with that of objective 2 and which makes it possible, with the latter, to form on an array sensor 8 an image of the elementary region of the surface. of the substrate which is observed by objective 2; the signals delivered by the sensor 8 are transmitted to the computer 6 by a link 9 for conversion into images and processing of these images in order to determine whether the geometry of the patterns inscribed or engraved on the surface of the substrate conforms to a predefined model; this optical control system can also make it possible to detect the presence of foreign bodies on the surface of the substrate. In order to carry out this optical control, the surface of the substrate is illuminated by incident control radiation C1 emitted by a first light source 1 0; this radiation is generally monochromatic, for example at a wavelength λc TR L of 365 nm in the case of a source of the ARGON laser type.
La surface 3, 1 03, 203 réfléchit, rétrodiffuse ou transmet le rayonnement CI pour former un rayonnement CR de contrôle dit réfléchi qui est transmis au capteur 8 par les objectifs 2 et 7 du dispositif de contrôle pour former sur ce capteur l'image du substrat.The surface 3, 1 03, 203 reflects, backscatter or transmits the CI radiation to form a control CR radiation called reflected which is transmitted to the sensor 8 by the objectives 2 and 7 of the control device to form on this sensor the image of the substrate.
La source émettant le rayonnement de contrôle peut, comme illustré figure 1 , être disposée du même côté du substrat que l'objectif 2 dJobservation ; à cet effet-une lame semi-réfléchissante 1 1 réfléchit le rayonnement Cl émis par la source 1 0 vers l'objectif 2 et transmet le rayonnement CR réfléchi par la surface du substrat et transmis par l'objectif 2, vers l'objectif 7 et le capteur 8.The source emitting the control radiation can, as illustrated in FIG. 1, be placed on the same side of the substrate as the objective 2 d J observation; for this purpose - a semi-reflecting plate 1 1 reflects the radiation Cl emitted by the source 1 0 towards the objective 2 and transmits the radiation CR reflected by the surface of the substrate and transmitted by the objective 2, towards the objective 7 and sensor 8.
Alternativement, dans le cas où le substrat est transparent pour la longueur d'onde λCτRL de contrôle, la source 1 0 et l'objectif 2 peuvent être disposés de part et d'autre du substrat, par exemple alignés selon l'axe Z ; dans ce cas, la lame 1 1 peut être supprimée.Alternatively, in the case where the substrate is transparent for the control wavelength λ C τ RL , the source 1 0 and the objective 2 can be arranged on either side of the substrate, for example aligned along the Z axis; in this case, the blade 1 1 can be deleted.
Conformément à l'invention, le dispositif de contrôle comporte un dispositif autofocus comportant une source 12 de lumière blanche - dit rayonnement d'autofocus - et/ou de spectre polychromatique continu, des moyens pour éclairer la surface du substrat par ce rayonnement qui comportent un système optique confocal 1 3 incorporant ledit objectif 2 d'observation, et un spectrographe 14 adapté au chromatisme du système optique confocal.According to the invention, the control device comprises an autofocus device comprising a source 12 of white light - called autofocus radiation - and / or of continuous polychromatic spectrum, means for illuminating the surface of the substrate by this radiation which comprise a confocal optical system 1 3 incorporating said observation objective 2, and a spectrograph 14 adapted to the chromatism of the confocal optical system.
Le système optique 1 3 comporte, outre l'objectif 2 d'observation, un objectif 1 5 additionnel, et un filtre spatial ponctuel constitué par une extrémité 16 du cœur d'un tronçon 1 7 d' une fibre optique qui est disposée à distance du foyer de l'objectif 15 de façon à former une source ponctuelle pour le système confocal ; le rayonnement Al émis par la source 1 2 est transporté par la fibre 17 jusqu'à cette source ponctuelle confocale ; ce rayonnement Al transmis par cet objectif est réfléchi par une lame dichroïque 1 8 vers l'objectif 2 ; le chromatisme combiné des objectifs 15 et 2 provoque en sortie de l'objectif 2 une dispersion le long de l'axe Z de la position de l' image de cette source ponctuelle, selon la longueur d'onde considérée des composantes monochromatiques du rayonnement polychromatique incident Al provenant de la source 12, comme illustré figure 2.The optical system 1 3 comprises, in addition to the observation objective 2, an additional objective 1 5, and a point spatial filter constituted by an end 16 of the heart of a section 1 7 of an optical fiber which is disposed at a distance from the focus of objective 15 so as to form a point source for the confocal system; Al radiation emitted by the source 1 2 is transported by the fiber 17 to this confocal point source; this radiation Al transmitted by this objective is reflected by a dichroic blade 1 8 towards objective 2; the combined chromatism of objectives 15 and 2 causes, at the output of objective 2, a dispersion along the Z axis of the position of the image of this point source, according to the wavelength considered of the monochromatic components of the polychromatic radiation incident Al from source 12, as illustrated in FIG. 2.
Lorsqu'un point d'une surface réfléchissante ou rétrodiffusante telle que la surface 3, 1 03, 203 du substrat, est situé sur l'axe Z entre les deux images confocales ponctuelles F1 et F2 correspondant respectivement à la longueur d'onde minimale λ1 de la bande utile de longueur d'onde du rayonnement Al, et à la longueur d'onde maximale λ2 de ladite bande utile de longueur d'onde, il en résulte un rayonnement autofocus réfléchi AR qui est transmis en retour par les objectifs 2 et 15 et le filtre spatial 1 6 ; ce rayonnement est dévié en sortie du tronçon 17 par une lame 1 9 semi-réfléchissante, vers l'entrée du spectrographe 1 4.When a point on a reflecting or backscattering surface such as the surface 3, 1 03, 203 of the substrate, is located on the Z axis between the two point confocal images F1 and F2 corresponding respectively to the minimum wavelength λ 1 of the useful wavelength band of radiation Al, and at the maximum wavelength λ 2 of said useful wavelength band, this results in reflected autofocus radiation AR which is transmitted back by the objectives 2 and 15 and the spatial filter 1 6; this radiation is deflected at the outlet of the section 17 by a semi-reflecting plate 1 9, towards the entry of the spectrograph 1 4.
Le spectrographe comporte un élément disperseur spatial 20 - tel qu'un prisme - qui dévie sélectivement en sortie les composantes monoch romatiques ARD du rayonnement rentrant AR ; une pluralité de capteurs photoélectriques, par exemple les capteurs d'une barrette CCDThe spectrograph comprises a spatial dispersing element 20 - such as a prism - which selectively deflects the monochromatic components ARD of the incoming radiation AR as an output; a plurality of photoelectric sensors, for example the sensors of a CCD strip
21 , délivre une pluralité de signaux représentatifs respectivement de l'intensité lumineuse du rayonnement AR dans des bandes spectrales étroites consécutives de ladite bande utile de longueur d'onde ; ces signaux sont délivrés à l'entrée d'un calculateur 23 relié au capteur 21 par une liaison 22 ; ce calculateur reconstitue à partir de ces signaux un spectre du rayonnement autofocus réfléchi AR, puis détermine la longueur d'onde centrale λ Ax de la raie (24, figures 3 et 4) d'intensité maximale de ce spectre.21, delivers a plurality of signals respectively representative of the light intensity of the AR radiation in consecutive narrow spectral bands of said useful wavelength band; these signals are delivered to the input of a computer 23 connected to the sensor 21 by a link 22; this computer reconstructs from these signals a spectrum of the reflected autofocus radiation AR, then determines the central wavelength λ A x of the line (24, FIGS. 3 and 4) of maximum intensity of this spectrum.
En fonction de la position de cette longueur d'onde centrale ÀMAX par rapport à une longueur d'onde λREF de référence, le calculateur 23 commande le déplacement en translation 25 selon l'axe Z d'un support 26 de l'objectif 2 qui est mobile selon cet axe, grâce à des moyens usuels de guidage et d'actionnement non représentés et grâce à une liaison 27 reliant le support 26 au calculateur 23.As a function of the position of this central wavelength λMAX with respect to a reference wavelength λ REF , the computer 23 controls the displacement in translation 25 along the Z axis of a support 26 of the objective 2 which is movable along this axis, by means of conventional means of guidance and actuation not shown and by means of a link 27 connecting the support 26 to the computer 23.
Le procédé et le dispositif selon l'invention nécessitent, lors de l'installation du dispositif autofocus, de déterminer la valeur de la longueur d'onde de référence λREF faisant partie de la bande utile [λ λ2] de longueur d'onde, pour laquelle l' image de la source ponctuelle 1 6 par le système autofocus - incluant l'objectif 2 d'observation - est confondue avec le foyer F du système optique 2, 7 de contrôle.The method and the device according to the invention require, during the installation of the autofocus device, to determine the value of the reference wavelength λ REF forming part of the useful band [λ λ 2 ] of wavelength , for which the image of the point source 1 6 by the autofocus system - including the objective 2 of observation - is confused with the focal point F of the optical system 2, 7 of control.
Par référence à la figure 2, le point image confocale de l'objectif 2 pour la longueur d'onde minimale λi d la bande utile [λ-i , λ2] du rayonnement d'autofocus incident Al , est repéré F1 ; de façon similaire, le point image confocale pour la longueur d'onde maximale λ2 de cette bande utile, est repéré F 2 ; ces deux points images entourent le foyer F de l'objectif 2 pour la longueur d'onde de contrôle λcTR qui est située en dehors de cette bande utile (voir figures 3 et 4) ; la distance mesurée selon l'axe Z et séparant les foyers F1 et F2 constitue la "plage de mesure" du système de mise au point ; si le point d'intersection 28 de l'axe Z et de la surface 1 03, 203 se trouvait à l'extérieur de cette "plage de mesure", cette surface serait "perdue de vue" par le dispositif autofocus ; cette éventualité peut être facilement évitée (après réglage initial) grâce au temps de réponse très faible du dispositif selon l'invention.With reference to FIG. 2, the confocal image point of the objective 2 for the minimum wavelength λi d the useful band [λ-i, λ 2 ] of the incident autofocus radiation Al, is marked F1; similarly, the confocal image point for the maximum wavelength λ 2 of this useful band, is marked F 2; these two image points surround the focal point F of the objective 2 for the control wavelength λc TR which is located outside this useful band (see FIGS. 3 and 4); the distance measured along the Z axis and separating the focal points F1 and F2 constitutes the "measuring range" of the focusing system; if the point of intersection 28 of the Z axis and of the surface 1 03, 203 was outside this "measurement range", this surface would be "lost to view" by the autofocus device; this possibility can be easily avoided (after initial adjustment) thanks to the very short response time of the device according to the invention.
Lorsque le point 28 est situé dans l'intervalle [F1 , F2] sans être confondu avec le foyer F, ce qui correspond à la position de la surface 203 du substrat 204, figure 2, le système confocal ne renvoie efficacement un flux lumineux AR en retour que dans une bande spectrale étroite (ou raie d'intensité maximale) centrée sur la longueur d'onde λMAX> ce qui correspond à un spectre tel que représenté figure 4, qui résulte de l'analyse du flux AR par le spectrographe 14, et qui permet au calculateur 23 de déterminer la différence entre cette longueur d'onde λMAχ et la longueur d'onde de référence λREF qui est généralement la valeur médiane de l'intervalle utile [λ-i , λ2], puis de commander le déplacement selon Z de l'objectif 2.When the point 28 is located in the interval [F1, F2] without being confused with the focal point F, which corresponds to the position of the surface 203 of the substrate 204, FIG. 2, the confocal system does not effectively return a luminous flux AR in return that in a narrow spectral band (or line of maximum intensity) centered on the wavelength λ MA X > which corresponds to a spectrum as represented in FIG. 4, which results from the analysis of the AR flux by the spectrograph 14, and which allows the computer 23 to determine the difference between this wavelength λ MA χ and the reference wavelength λ REF which is generally the median value of the useful interval [λ-i, λ 2 ], then to control the displacement along Z of objective 2.
A contrario, lorsque le point 28 est confondu avec le foyer F, le spectre obtenu en sortie du spectrographe d'analyse du flux AR renvoyé par le système confocal est tel que représenté figure 3, où la longueur d'onde centrale λ Ax de la raie 24 de ce spectre est confondue avec la longueur d'onde de référence, ce qui correspond à une bonne mise au point. Conversely, when point 28 is confused with focus F, the spectrum obtained at the output of the AR flow analysis spectrograph returned by the confocal system is as shown in FIG. 3, where the central wavelength λ Ax of the line 24 of this spectrum coincides with the reference wavelength, which corresponds to good focusing.

Claims

REVENDICATIONS
1 . Procédé de mise au point d'un objectif (2) d'observation d'un substrat (4, 104, 204), caractérisé en ce qu'il comporte les opérations suivantes :1. Method for developing an objective (2) for observing a substrate (4, 104, 204), characterized in that it comprises the following operations:
- disposer un objectif additionnel (15) et un filtre spatial quasi- ponctuel (1 6) pour former avec l'objectif d'observation un système optique confocal (13) présentant une aberration chromatique longitudinale dans un intervalle de longueur d'onde,- having an additional objective (15) and a quasi-point spatial filter (1 6) to form with the observation objective a confocal optical system (13) having a longitudinal chromatic aberration in a wavelength interval,
- illuminer le substrat par un rayonnement (Al) polychromatique d'autofocus incident dont le spectre est continu dans une bande utile- illuminate the substrate with polychromatic (Al) incident autofocus radiation whose spectrum is continuous in a useful band
[λi , λ2] de longueur d'onde incluse dans ledit intervalle de longueur d'onde, en plaçant un point du substrat dans une plage [F1 , F2] chromatique de l'axe optique (Z) de l'objectif d'observation ;[λi, λ 2 ] of wavelength included in said wavelength interval, by placing a point of the substrate in a chromatic range [F1, F2] of the optical axis (Z) of the objective of observation;
- faire transporter par ledit système optique confocal ledit rayonnement (Al) d'autofocus incident ainsi qu'un rayonnement (AR) d'autofocus réfléchi essentiellement monochroma'tique correspondant à la réflexion ou rétrodiffusion dudit rayonnement d'autofocus incident par ledit point du substrat ;- cause said confocal optical system to transport said incident autofocus radiation (A1) as well as an essentially monochromatic reflected autofocus radiation (AR) corresponding to the reflection or backscattering of said incident autofocus radiation by said point on the substrate ;
- provoquer une dispersion chromatique dudit rayonnement d'autofocus réfléchi pour obtenir un spectre de celui-ci ;- causing a chromatic dispersion of said reflected autofocus radiation to obtain a spectrum thereof;
- déterminer une longueur d'onde centrale ( AX) d'une raie d'intensité maximale (24) dudit spectre et déterminer une différence entre ladite longueur d'onde centrale et une longueur d'onde de référence (λREF) , et provoquer un déplacement (25) relatif, selon l'axe (Z) , du substrat et de l'objectif d'observation, en fonction de ladite différence, pour obtenir la mise au point.determining a central wavelength (AX) of a maximum intensity line (24) of said spectrum and determining a difference between said central wavelength and a reference wavelength (λ REF ), and causing a relative displacement (25), along the axis (Z), of the substrate and the observation objective, as a function of said difference, in order to obtain the focusing.
2. Procédé selon la revendication 1 , dans lequel on illumine en outre le substrat par un rayonnement (Cl) de contrôle dont la (ou les) longueur(s) d'onde (λCτRi_) est (sont) située(s) à l'extérieur de ladite bande utile [λi , λ2]. 2. Method according to claim 1, in which the substrate is further illuminated by a control radiation (Cl) whose wavelength (s) (λ C τRi_) is (are) located (s) outside said useful band [λi, λ 2 ].
3. Procédé selon la revendication 1 ou 2, dans lequel ladite bande utile est située dans le domaine de la lumière visible.3. Method according to claim 1 or 2, wherein said useful band is located in the visible light range.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel ledit déplacement (25) est un déplacement dudit objectif (2) d'observation.4. Method according to any one of claims 1 to 3, wherein said displacement (25) is a displacement of said objective (2) of observation.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel on transporte ledit rayonnement (Al) d'autofocus incident et ledit rayonnement (AR) d'autofocus réfléchi par un tronçon (17) de fibre optique dont une extrémité (1 6) forme ledit filtre spatial quasi-ponctuel du système optique confocal.5. Method according to any one of claims 1 to 4, in which one transports said radiation (Al) of incident autofocus and said radiation (AR) of autofocus reflected by a section (17) of optical fiber of which one end ( 1 6) forms said quasi-point spatial filter of the confocal optical system.
6. Dispositif de mise au point d'un objectif (2) d'observation d'un substrat (4, 1 04, 204), caractérisé en ce qu'il comporte :6. Device for developing an objective (2) for observing a substrate (4, 1 04, 204), characterized in that it comprises:
- un système optique confocal (1 3) incluant ledit objectif d'observation et présentant une aberration chromatique longitudinale dans un intervalle de longueur d'onde ;- a confocal optical system (1 3) including said observation objective and having a longitudinal chromatic aberration in a wavelength interval;
- une source (1 2) adaptée pour émettre un rayonnement (Al) incident polychromatique et de spectre continu dans une bande utile [λi , λ2] de longueur d'onde incluse dans ledit intervalle ;- A source (1 2) adapted to emit polychromatic incident radiation (Al) and of continuous spectrum in a useful band [λi, λ 2 ] of wavelength included in said interval;
- un spectrographe (1 4) adapté pour délivrer un spectre d'un rayonnement (AR) d'autofocus réfléchi par le substrat et transporté - ainsi que ledit rayonnement incident (Al) - par ledit système optique confocal,- a spectrograph (1 4) adapted to deliver a spectrum of autofocus radiation (AR) reflected by the substrate and transported - as well as said incident radiation (Al) - by said confocal optical system,
- des moyens de commande de déplacement (23, 26) pour commander un déplacement relatif (25) du substrat et de l'objectif d'observation selon l'axe optique (Z) de celui-ci, en fonction d'une différence entre une longueur d'onde centrale (λMAx) d'une raie (24) d'intensité maximale dudit spectre et une longueur d'onde de référence- displacement control means (23, 26) for controlling a relative displacement (25) of the substrate and the observation objective along the optical axis (Z) thereof, as a function of a difference between a central wavelength (λ MA x) of a line (24) of maximum intensity of said spectrum and a reference wavelength
(λ F) .(λ F).
7. Dispositif selon la revendication 6, qui comporte en outre une source (1 0) adaptée pour émettre un rayonnement (Cl) de contrôle dont la (ou les) longueur(s) d'onde (λCτRi.) est (sont) située(s) à l'extérieur de ladite bande utile [λi , λ ].7. Device according to claim 6, which further comprises a source (1 0) adapted to emit a radiation (Cl) control whose wavelength (s) (λ C τ R i.) is (are) located outside of said useful band [λi, λ].
8. Dispositif selon la revendication 6 ou 7, qui comporte un support mobile (26) pour l'objectif d'observation qui est relié à un calculateur (23) commandant son déplacement en translation selon l'axe optique (Z).8. Device according to claim 6 or 7, which comprises a movable support (26) for the observation objective which is connected to a computer (23) controlling its displacement in translation along the optical axis (Z).
9. Dispositif selon l'une quelconque des revendications 6 à 8, qui comporte au moins un tronçon (7) de fibre optique permettant le transport desdits rayonnements d'autofocus incident (Al) et réfléchi (AR) entre ladite source (12) et ledit système confocal (13) d'une part, et entre ledit système confocal (13) et ledit spectrographe (14) d'autre part.9. Device according to any one of claims 6 to 8, which comprises at least one section (7) of optical fiber allowing the transport of said incident (Al) and reflected (AR) autofocus radiation between said source (12) and said confocal system (13) on the one hand, and between said confocal system (13) and said spectrograph (14) on the other hand.
10. Dispositif selon la revendication 9, dans lequel une extrémité (1 6) d'un tronçon de fibre forme un filtre spatial quasi- ponctuel pour ledit système confocal (13).10. Device according to claim 9, wherein one end (1 6) of a fiber section forms a quasi-point spatial filter for said confocal system (13).
1 1 . Dispositif selon l'une quelconque des revendications 6 à 10, q ui comporte en outre des moyens (1 8) de séparation du rayonnement de contrôle (Cl , CR) et des rayonnements d'autofocus (Al , AR), ces moyens comportant de préférence un filtre dichroïque.1 1. Device according to any one of Claims 6 to 10, which further comprises means (1 8) for separating the control radiation (Cl, CR) and the autofocus rays (Al, AR), these means comprising preferably a dichroic filter.
12. Dispositif (1 ) de contrôle optique d'un substrat (4, 104, 204) comportant :12. Device (1) for optical control of a substrate (4, 104, 204) comprising:
- un objectif (2) d'observation du substrat,- an objective (2) for observing the substrate,
- une source (1 0) adaptée pour émettre un rayonnement (Cl) de contrôle pour illuminer le substrat,- a source (10) adapted to emit a control radiation (Cl) to illuminate the substrate,
- un capteur (8) sensible au rayonnement (CR) de contrôle émis par le substrat sous l'effet de l'illumination par la source ;- a sensor (8) sensitive to the control radiation (CR) emitted by the substrate under the effect of illumination by the source;
- un calculateur (6) connecté au capteur pour traiter des images du substrat résultant de la conversion de signaux délivrés par le capteur, - un dispositif selon l'une quelconque des revendications 6 à 11. - a computer (6) connected to the sensor for processing images of the substrate resulting from the conversion of signals delivered by the sensor, - a device according to any one of claims 6 to 11.
PCT/FR2002/002038 2001-06-25 2002-06-14 Autofocus system, method and device for optically testing parts in said system WO2003001268A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/08315 2001-06-25
FR0108315A FR2826461B1 (en) 2001-06-25 2001-06-25 AUTOFOCUS SYSTEM, METHOD AND DEVICE FOR OPTICAL CHECKING OF PARTS INCORPORATING THE SAME

Publications (1)

Publication Number Publication Date
WO2003001268A1 true WO2003001268A1 (en) 2003-01-03

Family

ID=8864705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/002038 WO2003001268A1 (en) 2001-06-25 2002-06-14 Autofocus system, method and device for optically testing parts in said system

Country Status (2)

Country Link
FR (1) FR2826461B1 (en)
WO (1) WO2003001268A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049249A1 (en) 2005-10-28 2007-05-03 The Procter & Gamble Company Compositions containing anionically modified catechol and soil suspending polymers
WO2012120304A1 (en) 2011-03-09 2012-09-13 Reckitt Benckiser N.V. Carpet cleaning composition
CN109061863A (en) * 2018-09-11 2018-12-21 深圳立仪科技有限公司 A kind of confocal camera lens of lateral illumination spectra
WO2019149393A1 (en) 2018-02-01 2019-08-08 Ecole Centrale De Lyon Non invasive process for the evaluation of the quality of internal dense connective tissues
US11006828B2 (en) 2014-07-17 2021-05-18 1 Sonic Medical Corporation, S.A.S. Measurement of ocular parameters using vibrations induced in the eye

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006019384B4 (en) 2006-04-26 2015-10-22 Carl Zeiss Microscopy Gmbh Microscope and microscopy method for measuring the surface profile of an object
WO2019111331A1 (en) * 2017-12-05 2019-06-13 株式会社Fuji Imaging unit and component mounting machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725721A (en) * 1984-08-17 1988-02-16 Hitachi, Ltd. Autofocusing control system
US4844617A (en) * 1988-01-20 1989-07-04 Tencor Instruments Confocal measuring microscope with automatic focusing
JPH06138362A (en) * 1991-02-06 1994-05-20 Sony Corp Autofocusing device
US6208465B1 (en) * 1997-04-25 2001-03-27 Galore Scantec Ltd. Method and apparatus for imaging an object by diffractive autofocus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725721A (en) * 1984-08-17 1988-02-16 Hitachi, Ltd. Autofocusing control system
US4844617A (en) * 1988-01-20 1989-07-04 Tencor Instruments Confocal measuring microscope with automatic focusing
JPH06138362A (en) * 1991-02-06 1994-05-20 Sony Corp Autofocusing device
US6208465B1 (en) * 1997-04-25 2001-03-27 Galore Scantec Ltd. Method and apparatus for imaging an object by diffractive autofocus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 439 (P - 1787) 16 August 1994 (1994-08-16) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049249A1 (en) 2005-10-28 2007-05-03 The Procter & Gamble Company Compositions containing anionically modified catechol and soil suspending polymers
WO2012120304A1 (en) 2011-03-09 2012-09-13 Reckitt Benckiser N.V. Carpet cleaning composition
US11006828B2 (en) 2014-07-17 2021-05-18 1 Sonic Medical Corporation, S.A.S. Measurement of ocular parameters using vibrations induced in the eye
WO2019149393A1 (en) 2018-02-01 2019-08-08 Ecole Centrale De Lyon Non invasive process for the evaluation of the quality of internal dense connective tissues
CN109061863A (en) * 2018-09-11 2018-12-21 深圳立仪科技有限公司 A kind of confocal camera lens of lateral illumination spectra
CN109061863B (en) * 2018-09-11 2021-02-26 深圳立仪科技有限公司 Side direction illumination spectrum confocal lens

Also Published As

Publication number Publication date
FR2826461B1 (en) 2003-09-05
FR2826461A1 (en) 2002-12-27

Similar Documents

Publication Publication Date Title
EP0142464A1 (en) Process and device to determine the position of an object with respect to a reference
FR2738343A1 (en) Optical microstratigraphy equipment
US7295330B2 (en) Film mapping system
US4844617A (en) Confocal measuring microscope with automatic focusing
EP3069185B1 (en) Three-dimensional focusing device and method for a microscope
FR2652166A1 (en) AUTOMATIC HARMONIZATION DEVICE FOR AN OPTRONIC SYSTEM.
FR2990524A1 (en) DEVICE FOR TRANSMITTING A CONTROLLED SPECTRUM LIGHT BEAM.
JPH01308930A (en) Microspectroscopic apparatus
FR2969282A1 (en) DEVICE AND METHOD FOR VISUALIZING AND MEASURING RAMAN DIFFUSION
EP1084379B1 (en) Optoelectric acqusition of shapes by chromatic coding with illumination planes
CN107710046B (en) Method for determining spatially resolved height information of a sample using a wide-field microscope and wide-field microscope
TW201923305A (en) Assembly for detecting the surface profile of an object surface by means of interferometric distance measurement
WO2003001268A1 (en) Autofocus system, method and device for optically testing parts in said system
US20050024721A1 (en) Scanning microscope
EP0493169B1 (en) Analysis device for interferometric microdisplacement sensors
JP7370326B2 (en) Large field 3D spectroscopic microscopy
FR2880945A1 (en) OPTICAL PROBE AS WELL AS DEVICE AND METHOD IMPLEMENTING THE SAME.
FR2848664A1 (en) Position and reflectivity meter for use in photometry and metrology has a light source with at least two different wavelengths that are processed separately by a measurement system
FR2679646A1 (en) NON-CONTACT MEASURING DEVICE OF THE DIAMETER OF A SUBSTANTIALLY CYLINDRICAL OBJECT, FOR EXAMPLE AN OPTICAL FIBER.
US8108942B2 (en) Probe microscope
JPH05149708A (en) Method and device for deciding reference position for double-beam interferometer
JPH11230829A (en) Microspectroscope and method for measuring spectral data using the same
CN214011030U (en) Multi-mode microscopic hyperspectral imager
JPH1090589A (en) Method and device for inspecting focusing and method and device for focusing
NL2028497B1 (en) Method and apparatus for micromachining a sample using a Focused Ion Beam

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG US

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP