WO1999016078A1 - Synchronous integrated circuit device - Google Patents

Synchronous integrated circuit device Download PDF

Info

Publication number
WO1999016078A1
WO1999016078A1 PCT/JP1997/003327 JP9703327W WO9916078A1 WO 1999016078 A1 WO1999016078 A1 WO 1999016078A1 JP 9703327 W JP9703327 W JP 9703327W WO 9916078 A1 WO9916078 A1 WO 9916078A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
signal
circuit
sense amplifier
clock
Prior art date
Application number
PCT/JP1997/003327
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Akioka
Seigo Yukutake
Hiroshi Toyoshima
Original Assignee
Hitachi, Ltd.
Hitachi Ulsi Enginnering Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Ulsi Enginnering Corp. filed Critical Hitachi, Ltd.
Priority to AU42221/97A priority Critical patent/AU4222197A/en
Priority to PCT/JP1997/003327 priority patent/WO1999016078A1/en
Priority to TW086116206A priority patent/TW363186B/en
Publication of WO1999016078A1 publication Critical patent/WO1999016078A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1072Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers for memories with random access ports synchronised on clock signal pulse trains, e.g. synchronous memories, self timed memories
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/135Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals by the use of time reference signals, e.g. clock signals

Definitions

  • the present invention relates to an integrated circuit device, and more particularly to a technique for improving the performance of a synchronous integrated circuit device whose operation timing is controlled by a clock signal.
  • a positive feedback sense amplifier is generally used for a sense amplifier circuit of a memory included in an integrated circuit such as an SRAM, a DRAM, and a microcomputer.
  • the positive feedback sense amplifier uses a positive feedback circuit to amplify small amplitude data. Once a positive feedback sense amplifier starts amplification, it is faster and requires less power than other types of circuits, and requires a signal to activate it.
  • the signal for activation is a signal for specifying a time at which the positive feedback starts. If the signal for activation is slow, the delay time of the sense amplifier increases. However, if it is too fast, there is a danger that erroneous data will be amplified and the delay time will increase significantly. Positive feedback sense amplifiers do not have a means to restore erroneous data once it has begun to amplify, so amplifying erroneous data can quickly lead to malfunction.
  • the characteristics of integrated circuit devices in product specifications are based on a certain range of environmental conditions. Therefore, when designing an integrated circuit device, it is necessary to design such that the characteristics always fall within the product specifications under the environmental conditions within this range. To do so, it is necessary to design with a sufficient margin so that the characteristics can be satisfied even under the worst operating environment conditions for the characteristics of the integrated circuit or even under the worst manufacturing process conditions .
  • a positive feedback circuit In a high-speed sense amplifier circuit, a positive feedback circuit is generally used to keep current consumption small. The power consumption of the positive feedback circuit is small because the current can be cut off until the activation signal arrives. However, in order to avoid malfunction of the sense amplifier, its activation signal must always be sufficiently delayed from the input signal to the sense amplifier, which has hindered the speeding up of the sense amplifier circuit.
  • An object of the present invention is to provide a high-speed positive feedback type sense amplifier activation method which does not require a magazine to be set at the time of design.
  • the activation time of the sense amplifier is, the shorter the delay time when it operates is. Therefore, to obtain a high-speed sense amplifier, the activation time may be set earlier. However, if the speed is too fast, the device will malfunction. If the device characteristics of individual transistors, etc., do not vary to the better side, a good product that will operate normally can be obtained. Therefore, in high-performance products that must be designed with the highest device performance among the variations in device conditions, many failures may occur. Therefore, there was a problem that the price of high-speed products became very expensive.
  • Another object of the present invention is to eliminate a defective product that malfunctions due to device variation even in a design using a positive feedback type sense amplifier circuit for the highest speed.
  • a defective product that malfunctions due to device variation even in a design using a positive feedback type sense amplifier circuit for the highest speed.
  • the margin of the activation signal is fixed at the time of design, so it is necessary to increase the margin to cope with unknown device characteristics. There is a problem that the circuit speed cannot be increased.
  • Another object of the present invention is to provide a circuit system which can obtain the highest performance of a device even when the boundary conditions of the design change as described above in the design of a synchronous integrated circuit device.
  • each synchronization signal is referred to a different time point (timing).
  • Timing The time between these signals is changed according to the frequency of the synchronization signal.
  • the clock frequency is improved.
  • the time between these edges decreases, the time between the data to be amplified by the sense amplifier and the sense amplifier activation signal automatically becomes shorter, and a magazine corresponding to the increase in the clock frequency can be obtained. it can.
  • the above means it is not necessary to set a magazine at the time of designing, and a high-speed positive feedback sense amplifier activation method can be obtained. Further, the above-described means makes it possible to design the sense amplifier circuit for the highest high-speed performance even if the devices vary, and the number of malfunctioning defective products does not increase.
  • the highest performance of the device can be obtained because the margin changes as the device speed increases.
  • a circuit system can be obtained.
  • One embodiment of the present invention includes a clock terminal to which a clock signal is input, and an internal circuit to which a signal to be processed is input.
  • a signal to be processed on the basis of the rising edge of the pulse is input to the internal circuit, and the synchronous integrated circuit operates the internal circuit on the basis of the second time of the clock signal (eg, the rising edge of the second pulse). is there.
  • the input timing of the signal to be processed and the operation timing of the internal circuit can be set independently, and the timing interval can be easily changed.
  • these evenings can be set from the clock.
  • a first delay circuit whose delay time changes according to the frequency of the clock signal and a second delay circuit whose delay time is constant regardless of the frequency of the clock signal are included in the loop.
  • the present invention is also suitable for use in a semiconductor memory device.
  • the semiconductor memory device operates based on a clock signal, and includes a plurality of memory cells for storing information, and at least a memory cell.
  • a decoder that decodes an address signal for specifying one and an output signal that reflects information stored in the memory cell specified by the address signal
  • An output line and an amplifier for amplifying the output signal, wherein the decoder decodes an address signal of the first time of the clock signal, and the output line is a second time after a predetermined time of the first time.
  • An output signal is output at the time, and the amplifier is activated at a fourth time shifted by a predetermined time from a third time different from the first time.
  • the first time is the rising or falling of the first pulse of the close signal
  • the third time is the second time after the first pulse of the clock signal. The rising or falling edge of the pulse.
  • the amplifier may be activated at a fourth time that is a predetermined time before a third time different from the first time, and the amplifier may be activated at a fourth time different from the first time. It may be activated at a fourth time which is a predetermined time after the time of 3.
  • a plurality of memory cells are respectively connected to a lead line, and the lead line can be unselected on the basis of the third time.
  • the reference time is based on the input time of a signal to be amplified by the sense amplifier. Activating the sense amplifier based on another time.
  • the amount of change in the clock cycle of the clock signal is reduced.
  • the absolute value, the time interval between the activation time of the sense amplifier and the input time of the signal to be amplified to the sense amplifier, change correspondingly. That is, the frequency of the input clock signal The machine's magazine changes automatically depending on the situation.
  • an input signal of the phase comparator includes a synchronous mirror delay circuit.
  • the input and output signals are used, and a variable delay circuit controlled by the output of the phase comparator is used as a part of the delay circuit in the synchronous mirror delay circuit.
  • the present invention also relates to a semiconductor memory device that operates based on a clock signal, comprising a plurality of memory cells for storing information, a data line and a pad line connected to the memory cells, and an output signal of the data line. When reading information from the memory cell, the data line outputs an output signal at a second time which is a predetermined time after the first time of the clock signal.
  • the semiconductor memory device may be configured to be activated at a fourth time shifted by a predetermined time from a third time different from the first time.
  • the data line is started at a fifth time which is different from the first time of the clock signal by a predetermined time, and the second line of the clock signal is raised.
  • the lead line is raised at a seventh time which is different from the first time of the above-mentioned mouth signal by a predetermined time, and It falls at the eighth time, which is different from the second time by a predetermined time.
  • FIG. 1 is an activation timing diagram of a sense amplifier according to the present invention.
  • Figure 2 is a block diagram of a synchronous SRAM according to the present invention.
  • Fig. 3 is a timing diagram showing an example of conventional activation timing.
  • Figure 4 is a circuit diagram of the positive feedback type sense amplifier.
  • FIG. 5 is a circuit diagram of a clock synchronous circuit for a synchronous integrated circuit of the present invention.
  • FIG. 6 is a timing diagram of the clock synchronous circuit for the synchronous integrated circuit of the present invention.
  • FIG. 7 is another circuit diagram of the clock synchronization circuit for the synchronous integrated circuit of the present invention.
  • Figure FIG. 8 is a sunset view of another circuit of the clock synchronous circuit for the synchronous integrated circuit of the present invention.
  • FIG. 1 is an activation timing diagram of a sense amplifier according to the present invention.
  • Figure 2 is a block diagram of a synchronous SRAM according to the present invention.
  • Fig. 3 is a timing diagram showing an example of conventional activ
  • FIG. 9 is another activation timing diagram of the sense amplifier according to the present invention.
  • FIG. 10 is another activation timing diagram of the sense amplifier according to the present invention.
  • Figure 11 shows another block diagram of a synchronous SRAM.
  • FIG. 12 is a timing diagram of a synchronous DRAM to which the present invention is applied.
  • FIG. 13 is another timing diagram of the synchronous DRAM to which the present invention is applied.
  • FIG. 14 is another timing diagram of the synchronous DRAM to which the present invention is applied.
  • FIG. 15 is another timing diagram of the synchronous DRA to which the present invention is applied.
  • FIG. 16 is another timing diagram of the synchronous DRAM to which the present invention is applied.
  • FIG. 17 is a circuit layout diagram in a chip using the present invention.
  • Figure 18 is a timing diagram showing an example of application to a Register-Latch (R / L) type synchronous DRAM.
  • Figure 19 is a timing diagram showing an example of application to Register-Through (R / T) type synchronous memory.
  • FIG. 20 is a timing diagram showing the relationship between a lead line and a bit line during writing to a synchronous memory.
  • Figure 21 is a block diagram showing a typical SMD circuit. 2 2 is a block diagram showing the improved circuit of SMD
  • FIG. 1 shows the timing of the operation of the memory circuit to which the present invention is applied.
  • Each row is a schematic diagram of the signal voltage waveform of the circuit section showing its name.
  • CLK is a clock signal input to the sense amplifier and the activation signal generation circuit from outside the integrated circuit or from another circuit in the integrated circuit.
  • Address is the voltage waveform of the address signal input from outside the memory circuit to this memory circuit
  • Word line is the voltage waveform of the signal on the first line of the memory cell
  • SACK is the memory circuit.
  • Activation of positive feedback type sense amplifier The voltage waveform of the signal, the SA output shows the voltage waveform of a node that latches the signal of the positive feedback type sense amplifier, and the Data output shows the voltage waveform of the output signal of the data read out from the memory circuit of this embodiment.
  • the memory that realizes such operation has a register for address input, and reads out memory cell data corresponding to the address information at the rising edge of the clock CLK of the input address signal (time A in this case).
  • time A in this case
  • the data corresponding to address A is taken into the input register at time A, the data corresponding to this address is output to the output node within a certain time from time B, and the output signal is output after time C is input. There is a need to hold for a certain period of time.
  • the address information A of the memory cell from outside the memory circuit is decoded by the decoder.
  • a Word line corresponding to the decoded address is set up.
  • the data from the selected memory cell reaches the sense amplifier and generates a small voltage amplitude at the SA output node in Fig. 1.
  • the timing is determined from the rising time A of the CLK.
  • the SACK signal rises. That is, the sense amplifier is activated to amplify the signal having the small voltage amplitude, and the output register circuit at the subsequent stage of the sense amplifier circuit converts the data into a voltage that can latch data.
  • the rise of the SACK that is, the activation timing of the sense amplifier is determined based on the rise of the clock at time B. This meaning will be described more specifically below.
  • the rising time of the SACK measured based on the time A is also delayed by the same amount. For example, based on time A, If the measured time B is delayed by Ins, the SACK will also be delayed by Ins.
  • the margin 1 shown in the figure changes depending on the frequency of the clock, and the SACK can be advanced to the limit value determined by this device.
  • this margin 1 is used to prevent the positive feedback type sense amplifier from malfunctioning even under the worst conditions such as environmental conditions (temperature, power supply voltage) and device conditions (variation in the characteristics of the M0S transistor). It had to be set. That is, when environmental conditions such as device conditions change, a very large margin may be wasted too much.
  • the number of memory cells is large, and the worst condition is determined by the worst memory cell among many memory cells. Therefore, it is inevitable to take a large margin to secure a normally operating product. According to the present embodiment, it is possible to set the minimum margin required according to the manufacturing process of the memory cell and the operating environment.
  • FIG. 2 shows an example of a memory block configuration for realizing the timing shown in Fig. 1.
  • FIG. 2 shows an example of the configuration of an 8 Mbit synchronous SRAM circuit to which the present invention is applied, and accesses a memory cell array 200.
  • AO- ⁇ is address input
  • / SS is synchronous select signal input
  • / SWE is synchronous write signal
  • / SWEx is synchronous bit line signal input
  • / G is asynchronous output control signal
  • VREF is a reference voltage input terminal for an I / O interface
  • ZQ is an output impedance programming terminal
  • DQ0-DQ35 are data input / output terminals.
  • the address, / SS, / SWE, and / SWEx are registered in each of the registers 21 to 24 after the input buffer when the clock signal is switched. If it is a write cycle, the address is registered in W-Add register 25. In the case of a write cycle, the previous write address is selected and MUX 26 It is output, and in the case of reading, the input address is directly input from MUX 26 to Row deocder 27 or Column decoder 28.
  • WRC 29 is a circuit that controls switching between a read state and a write state, and controls WA (write circuit) 30, SA (sense amplifier) 31, and the like.
  • the EXN0R circuit 32 at the MUX input of the address always checks whether the input address is the same as the previous write address, and if they match, the MUX 33 output by the Match signal outputs the write data as it is. You. After that, the output data is temporarily stored in the Dout register 34, and this data is output from the output buffer 0B35. Input data! ) -In register 36, passed to WA 30.
  • a Data Output Control (DOC) circuit 37 controls the high impedance state of the output buffer.
  • CLK Ctrl 38 is a clock control circuit, and a clock control circuit such as a DLL is included therein.
  • the reference time of the falling edge of the Word line which is another point shown in Fig. 1, will be described.
  • the word line was turned off after a certain delay time from time A.
  • the cycle time (the interval between time A and time B) becomes longer. After the word line falls, the sense amplifier is activated, and the data of the sense amplifier cannot be correctly captured.
  • the sense amplifier activation control is returned to be determined from time A as before.
  • the sense amplifier activation control is returned to be determined from time A as before.
  • the fall time of the Word line is also determined from the clock edge at time B. This will increase the cycle time Even so, the time at which the word line falls will never be earlier than the sense amplifier activation time, and it will operate normally.
  • clock edge it refers to a time that is generally called a switching time of the clock in the specifications of the integrated circuit.
  • the definition may change depending on the specifications of the integrated circuit, such as indicating the time at which the differential signal is crossed.
  • the timing shown in FIG. 3 is different from that of the present invention in that the SACK, that is, the timing of the activation of the sense amplifier is determined based on time B in the case of FIG. 1, whereas the timing in FIG. It is determined based on A.
  • the sense amplifier is started after a certain delay time from when the far-end lead line rises.
  • the margin 1 in the figure is always fixed because it is determined at the time of circuit design, and the best sense amplifier performance that matches the device performance cannot be obtained.
  • this margin 1 is not fixed at the time of design, a high-speed sense amplifier can be obtained.
  • the margin 1 in Fig. 3 must be reduced as much as possible.However, if a malfunction occurs in the sense amplifier, it becomes a defective product. Become. This is due to the characteristics of the positive feedback sense amplifier. That is, according to this embodiment, it can be said that there is an advantage that it is possible to manufacture at low cost without increasing the ratio of defective products even in the case of the design aiming for the highest performance.
  • Figure 4 shows an example of a positive feedback type sense amplifier used in SRAM.
  • Bit line 40 is directly connected to memory cell 41.
  • Multiple bit line pairs are connected to one set of common bit lines using Y switches (MOS M13 and MOS M14). Connected to CDT and CDB. At the same time, when only one of these Y switches is turned ON, this sense amplifier amplifies the data of the selected bit line.
  • Y switches MOS M13 and MOS M14
  • M0S transistor amplifiers have offsets due to VTH device variation.To avoid malfunction, turn on the SACM after this voltage amplitude becomes as large as possible to prevent malfunction. There is a need.
  • the amplitude voltage of the common bit line is determined by the current of the memory cell and the common bit line load circuit 43.
  • FIG. 5 shows a block diagram when a DLL circuit is used.
  • a first delay circuit 51 whose delay time varies according to the clock frequency;
  • a constant second delay circuit 52 is used regardless of the frequency.
  • CLK2 is output in phase with CLK1.
  • the phase is adjusted by the delay circuit dl whose delay time changes according to the information on the phase difference represented by VF output from the phase comparator 53, that is, the delay time changes according to the clock frequency. If the phase of clock CLK2 lags behind clock CLK1, the delay time of dl decreases, and vice versa.
  • the output time of CLK1 is always ahead of CLK2 by the amount corresponding to the delay time dl, and therefore, as shown in Fig. 1, the clock that is earlier than the given clock signal by a fixed time is used. A signal can be obtained.
  • Fig. 6 shows the operation timing of the configuration in Fig. 5.
  • the phases of the clock input CLK and the clock signal CLK2 coincide with each other by the phase comparator and the delay circuit dl. It can be seen that the delay dl to CLK1 changes, but the delay time d2 from CLK1 to CLK2 is kept constant, and a signal CLK2 earlier than CLK by the delay time of d2 is obtained.
  • FIGS. 7 and 8 show examples in which the delay of the circuit 70 between the external clock CLK and the phase comparator in the circuit of FIG. 5 is considered. This delay time is denoted by dl in FIG. Other circuit configurations are denoted by the same reference numerals as in FIG. 5 and description thereof is omitted.
  • the delay time changed by the phase information is d2
  • the constant delay time included in the loop is d3.
  • the time going back from the external clock is d3-1 dl as shown in the timing diagram of Fig. 8.
  • Figure 9 illustrates an example of SRAM timing without using a DLL.
  • the example of Figure 1 It is necessary to activate the sense amplifier retroactively from the reference clock time of DLL, SMD, etc., but the example in FIG. 9 is an example where such a special circuit is not required.
  • the SACK since the rising edge of SACK for activating the sense amplifier is later than the reference clock edge, the SACK can be generated from the rising edge of the clock by a normal delay element.
  • the cycle time may be faster than or equal to the case of Fig. 1 and so on.
  • the subsequent processing of the SA output starts after the time B, the time from the time B to the data output is longer than in the example of FIG.
  • this defect can be compensated for by using a circuit such as a DLL.
  • the magazine 1 is variable depending on the clock cycle time.
  • FIG. 10 shows an embodiment in which the present invention is applied to an SRAM having the functions of Double Data Rate (DDR) and Echo Clock.
  • DDR is a memory that outputs Data at each rising edge and falling edge of the clock input, that is, a memory that outputs data at twice the frequency of inputs such as addresses.
  • the Echo Clock is used to suppress the skew of data and clock when the speed becomes high. Echo Clock aims to reduce the skew between the data itself and the reference clock for the data receiver by simultaneously outputting the reference signal that is the reference signal from the data output side.
  • the operation of the SRAM using DDR and Echo Clock is basically the same as the SRAM in Fig. 1.
  • the activation signal of the sense amplifier is determined based on the rising edge of the clock following time 1 (time 3). If time 2 is used for this, the activation of the sense amplifier will affect not only the frequency but also the duty of the input clock. It is better to use the time 3 or another start-up edge, as in this example, because the number of power parameters increases.
  • CLK0UT represents the output of the Echo Clock from the SRAM, and the rise time and fall time of each clock are determined by the rise time and fall time of the input clock CLK.
  • the output is output in synchronization with each edge (Data output).
  • FIG. 11 shows an example of a block configuration for realizing the operation of the DDR SRAM of FIG. 10 described above. This is almost the same as the normal SRAM shown in Fig. 2, but the explanation focuses on the parts that have changed.
  • B1, B2, and B3 indicate Burst Control signal input terminals. Functions such as writing and chip selection are controlled by a combination of these signals. These signals are input to buffers 111 to 113.
  • BC110 indicates a burst control circuit.
  • Burst refers to the function of internally generating multiple (for example, four) addresses for a single address received from the outside and accessing each address.
  • the function of the BC is to generate an internal address for this purpose.
  • the burst addresses are two bits, AO and A1, so four addresses are accessed.
  • FIG. 12 shows an embodiment in which the present invention is applied to a synchronous DRAM.
  • the timing of input / output is determined according to the edge of CLK input from the outside as in the case of SRAM.
  • Synchronous DRAM generally has multiple banks, When data is alternately read from banks, the switching time between banks is very short.
  • the RAS signal falls at time 1 in the figure, and the word line address (Address) is input in synchronization with this. Therefore, it is determined based on time 1 as shown in the figure until the memory cell reaches the rising edge of the ⁇ -line and the sense amplifier (SA output).
  • CAS input from the outside is input in the third cycle counting from time 1.
  • the SACK signal should be raised before this CAS input.
  • the reference clock edge is the rising edge of CLK at time 4; however, this time may be set in consideration of the following restrictions.
  • the data output corresponding to the address input is output based on the clock at time 5.
  • the SACK is too slow, that is, if the SA output is too slow, subsequent processing may not be able to keep up with this Data output.
  • this timing is delayed with respect to time 4 (clock time of the reference clock edge)
  • the ability of the cycle time up to this point that is, the cycle time up to the latch of the sense amplifier, is improved. Therefore, the value of this delay time is a delay time that determines the trade-off between the access time from the clock to the data output and the cycle time.
  • the Word line is set to fall upon receiving the next bank selection signal (RAS goes low). In other words, normal operation can be assured by setting the falling timing of the Word line to a different edge from the rising edge of the clock that determines the timing of the rising edge.
  • FIG. 13 shows the operation timing of the SDRAM using the present invention.
  • FIG. 13 is also substantially the same as FIG. 12 except that the activation timing of the sense amplifier uses one cycle earlier than the case of FIG. As a result, the cycle time is faster than in the case of Fig. 12. Can respond.
  • minimum time is specified as the interval between RAS and CAS input.
  • the absolute value of the time is not specified, but the number of cycles, that is, the minimum number of cycles after the RAS input before the CAS can be input and the specification. do it.
  • An advantage of the present embodiment is that it is possible to obtain an SDRAM having a short delay time from the access from the RAS, that is, the supply of bank information to the output of data.
  • FIGS. 12 and 13 show another example.
  • This timing example shows a timing example when the number of cycles from RAS to CAS is further reduced. According to this example, an SDRAM having a smaller number of access cycles than in FIGS. 12 and 13 can be obtained.
  • FIG. 15 shows an example in which the sense amplifier is activated after the reference clock. Even with such a configuration, if the peak frequency increases, the illustrated margins are automatically reduced, and the highest cycle performance determined by memory cell characteristics, decoder characteristics, sense amplifier characteristics, etc. There is an advantage that can be obtained. In addition, in this example, there is an advantage that it is not necessary to incorporate a somewhat complicated clock circuit such as a DLL or a PLL.
  • FIG. 16 shows another SDRAM timing example. This figure shows the timing of the internal operation when there is a switch between two banks. An example is shown in which the clock access, time, and switching time between banks have the minimum number of cycles under the condition that no data collision occurs at the output pin.
  • a microcomputer In a microcomputer, it is generally controlled by a PLL, and is controlled by a signal with a fixed phase.
  • a PLL including both a delay circuit whose delay time varies depending on the frequency in the loop and a delay circuit having a constant delay time without changing the delay time is required. .
  • a microcomputer incorporating such a PLL can incorporate the cache memory of the present invention.
  • the cache memory according to the present invention By incorporating the cache memory according to the present invention into a microcomputer, the high-speed cycle performance of the cache memory, which is determined only by the limitations of the device, can be obtained.
  • a DRAM with built-in logic can be configured. That is, the present invention can be applied to a microcomputer or a DRAM integrated with a logic circuit such as a graphic circuit.
  • the cycle time of the microcomputer is limited, and the cycle time of the cache memory is improved. As a result, the operation time of the microcomputer can be improved.
  • FIG. 17 shows an example of a chip layout in an SRAM.
  • the input of address and control signals is mainly from the center pad row, data output, and Echo Clock output. Pad rows.
  • the signal propagation distance from the data input to the output is shortened, and the cycle time can be shortened.
  • Clock synchronization circuits such as DLL and SMD are located at the center of the pad on both sides. Provide. This reduces the distance to the output pad and reduces the skew between clock and data.
  • Figure 18 shows an example of application to Register-Latch (R / I type synchronous DRAM).
  • An RZL type synchronous DRAM is a type in which the input to the memory is a register type, that is, the value at the edge of the rising or falling edge of the clock input is fetched, and the output from the memory is the data when the clock signal is high.
  • This type of synchronous memory is fixed to the output color and the output color is in a through state when the clock signal is low.
  • the sense amplifier makes the output pin undefined based on the time 2, that is, the falling edge of the clock signal in Fig. 18. Unlike this, the operation may be performed based on the falling time 2 of the clock signal. As a result, as in the other embodiments of the present invention, the time between time 1 and time 2 in FIG. 18 fluctuates, and this causes the SACK to go back and forth as it is. The time from the activation of the line to the activation of the sense amplifier can be controlled in proportion. For this reason, the sense amplifier activation time shifts forward with an increase in the cycle time, so that the sense amplifier activation margin can be increased or decreased with an increase in the clock speed.
  • Figure 19 shows an example of application to Register-Through (R / T) type synchronous memory.
  • R / T type synchronous memory is a type of memory that uses registers for signal input but does not use registers or latches for output.
  • the output data holding time is shorter, but the absolute time from address to data output can be shortened.
  • the activation time of the sense amplifier that is, the reference time of SACK is the edge of the clock signal, but the input signal is fetched and the next edge occurs, during which the clock signal is high.
  • the shorter the time the shorter the time from the rise of the lead line to SACK.
  • FIG. 20 shows the relationship between the lead line and the bit line when writing to the synchronous memory.
  • the bit line when the gate line rises based on time 1 and falls based on time 3, according to the present invention, the bit line also falls based on the same time as the word line. .
  • the time of the word line and the bit line can be relatively synchronized, and the time between the word line and the bit line can be changed due to process changes, power supply voltage changes, temperature changes, and other conditions. This enables a design in which a change in relative time is small. This has the effect that the circuit operates at higher speed and malfunctions are less likely to occur due to variations in characteristics of the MOS device and the like.
  • FIG. 21 shows another embodiment of the present invention in which a synchronous mirror delay (SMD) circuit is used.
  • SMD is a circuit for generating an internal clock signal synchronized with a supplied external clock signal, and has been announced at conferences such as ISSCC'96.
  • ISSCC'96 conferences such as ISSCC'96.
  • PLL and DLL synchronous clock signal generation circuits
  • it has the feature that a synchronized internal circuit can be obtained with as few as two cycles.
  • Figure 21 shows a typical SMD circuit.
  • Internal clock signal whose phase is synchronized with the external clock two cycles (2tCK) later than the external input clock Occurs.
  • One of the problems of this method is its accuracy.
  • the delay time per stage of the delay circuit constituting the foward delay 2 12 and backward delay 2 14 shown in Fig. 21 must be shortened. This requires a very short delay circuit. That is, it is difficult to synchronize the output clock signal with the input clock signal with an accuracy equal to or less than the minimum unit delay time that can be generated by the gate circuit.
  • the SMD and the DLL are combined, and a clock signal with a roughly accurate combination is generated by the SMD, and this is further improved by the DLL.
  • the accuracy of the internal clock signal which is limited by the minimum delay per stage, which is a problem in SMD, can be dramatically improved.
  • Fig. 22 shows a specific example.
  • the external input and the output signal of the SMD are input to the phase comparator 222, and the output controls the output signal of the SMD with the voltage control delay circuit 220 to more accurately match the external clock signal.
  • the delay time in delay b2 15 is set not d2 but to a shorter time (d2 d3). The total sum at this time is
  • d indicates a delay time by the voltage control delay circuit 220. Therefore, if d (VCD) can be adjusted to d3, the internal clock is synchronized with the external clock.
  • the delay time assigned to the VCO (Voltage Controlled Delay) part in which the delay time is changed by voltage using the DLL, is smaller than that of a normal DLL only.
  • the output accuracy can be improved.
  • a sense amplifier circuit with the highest performance determined by the performance of the device can be realized without the side effect of decreasing the yield.
  • Another advantage of the present application is that even if the device performance is changed after the design is completed, the best characteristics of each device performance can be obtained, that is, there is no need to determine the operation margin of the sense amplifier at the design stage.

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)
  • Dram (AREA)

Abstract

A synchronous semiconductor circuit device is constituted so that the time margin of a sense amplifier section can be reduced correspondingly to the reduction of cycle time by determining the activating timing of a positive feedback sense amplifier by using a clock edge which is different from a clock edge used for determining timing required for data to be input to the sense amplifier after the data has been transmitted to a bit line from a word line.

Description

明 細 書  Specification
同期型集積回路装置  Synchronous integrated circuit device
技術分野  Technical field
本発明は集積回路装置に係わり、 特にクロック信号により動作タイミ ングが制御される同期型集積回路装置の性能を向上させる技術に関する。  The present invention relates to an integrated circuit device, and more particularly to a technique for improving the performance of a synchronous integrated circuit device whose operation timing is controlled by a clock signal.
背景技術  Background art
SRAM, DRAM,マイコン等の集積回路中に含まれるメモリのセンスアン プ回路には、 一般に正帰還センスアンプが用いられている。 正帰還セン スアンプは、小振幅のデータを増幅するために正帰還回路を用いている。 正帰還センスアンプは一度増幅を開始すれば他の方式の回路に比べて高 速でありしかも低電力である力 その活性化のための信号が必要である。  A positive feedback sense amplifier is generally used for a sense amplifier circuit of a memory included in an integrated circuit such as an SRAM, a DRAM, and a microcomputer. The positive feedback sense amplifier uses a positive feedback circuit to amplify small amplitude data. Once a positive feedback sense amplifier starts amplification, it is faster and requires less power than other types of circuits, and requires a signal to activate it.
この活性化のための信号とは、 正帰還を開始する時刻を指定する信号 である。 活性化のための信号が遅いとセンスアンプの遅延時間は大きく なる。 しかし、 早く しすぎると誤データを増幅したり、 遅延時間が大き く増大するという危険性がある。 正帰還センスアンプは一度誤データを 増幅し始めるとこれを元に戻す手段を持たないため、 誤データの増幅は 直ちに誤動作につながる場合がある。  The signal for activation is a signal for specifying a time at which the positive feedback starts. If the signal for activation is slow, the delay time of the sense amplifier increases. However, if it is too fast, there is a danger that erroneous data will be amplified and the delay time will increase significantly. Positive feedback sense amplifiers do not have a means to restore erroneous data once it has begun to amplify, so amplifying erroneous data can quickly lead to malfunction.
集積回路装置の製品仕様上の特性は、 ある一定範囲の環境条件を前提 としている。 したがって、 集積回路装置を設計する場合、 この範囲内の 環境条件において、 特性が常に製品仕様の中に収まる様に設計する必要 がある。 そのためには、 集積回路の特性にとって最も悪い動作環境条件 下においても、 あるいは、 最も悪い製造プロセス条件においても、 特性 を満たすことができるように、 充分なマージンを持って設計することが 必要となる。  The characteristics of integrated circuit devices in product specifications are based on a certain range of environmental conditions. Therefore, when designing an integrated circuit device, it is necessary to design such that the characteristics always fall within the product specifications under the environmental conditions within this range. To do so, it is necessary to design with a sufficient margin so that the characteristics can be satisfied even under the worst operating environment conditions for the characteristics of the integrated circuit or even under the worst manufacturing process conditions .
以上から明らかなことは、 集積回路装置の製品仕様に対する特性が、 その設計段階における、 製品仕様、 製造プロセス、 及びマージンによつ て固定的に定まるということである。 すなわち、 設計が完了した後には 変更が不可能となる。 It is clear from the above that the characteristics of integrated circuit devices with respect to product specifications depend on the product specifications, manufacturing processes, and margins at the design stage. Is fixedly determined. That is, no changes are possible after the design is complete.
従って、 集積回路装置のクロック制御回路においては、 その正常な動 作のためにはクロック信号の発生側と受け手側の間で十分なタイミング のマージンが必要であり、 最悪の条件においてもこのマージンが確保さ れるように設計される。  Therefore, in the clock control circuit of the integrated circuit device, a sufficient timing margin is required between the clock signal generating side and the receiving side for normal operation, and even under the worst condition, this margin is required. It is designed to be secured.
発明の開示  Disclosure of the invention
高速センスアンプ回路では消費電流を小さく保っために、 一般に正帰 還回路が用いられている。 正帰還型回路は活性化信号が到着するまでの 時間は電流を切っておけるため消費電力が小さい。 しかしセンスアンプ の誤動作を避けるために、 その活性化信号をセンスァンプへの入力信号 よりも必ず十分に遅らせる必要があり、 これがセンスアンプ回路の高速 化を妨げていた。  In a high-speed sense amplifier circuit, a positive feedback circuit is generally used to keep current consumption small. The power consumption of the positive feedback circuit is small because the current can be cut off until the activation signal arrives. However, in order to avoid malfunction of the sense amplifier, its activation signal must always be sufficiently delayed from the input signal to the sense amplifier, which has hindered the speeding up of the sense amplifier circuit.
本発明の一つの目的はマ一ジンを設計時に設定する必要が無い、 高速 な正帰還型センスアンプの活性化方式を提供することである。  An object of the present invention is to provide a high-speed positive feedback type sense amplifier activation method which does not require a magazine to be set at the time of design.
センスアンプの活性化時刻が早ければ早いほど動作した場合の遅延時 間は短くなるため、 高速なセンスアンプを得ようとすれば、 活性化時刻 を早く設定すればよい。 しカヽし、 早く しすぎると誤動作するため、 個々 のトランジスタ等のデバイス特性が良い方にばらついた場合でないと正 常動作する良品が得られす、 少数の正常動作品以外は不良品になる。 よ つて、 デバイス条件のばらつきの中の最高のデバイス性能で設計せざる を得ない高性能品においては、 不良が多数起こる可能性がある。 そのた め高速品の価格が非常に高価になると言う問題があった。  The earlier the activation time of the sense amplifier is, the shorter the delay time when it operates is. Therefore, to obtain a high-speed sense amplifier, the activation time may be set earlier. However, if the speed is too fast, the device will malfunction. If the device characteristics of individual transistors, etc., do not vary to the better side, a good product that will operate normally can be obtained. Therefore, in high-performance products that must be designed with the highest device performance among the variations in device conditions, many failures may occur. Therefore, there was a problem that the price of high-speed products became very expensive.
本発明の他の目的は、 正帰還型センスアンプ回路を用い最高の高速性 を狙った設計においても、 デバイスばらつきにより誤動作する不良品を 無くすことである。 一般的には集積回路装置の設計段階において、 動作を保証すべき環境 条件や製造プロセス条件がある幅を持っため、 その中の最悪の条件でも 動作するように動作マージンを設定する必要がある。 そのためには集積 回路装置の個々の特性がそれぞれ最悪となる製造プロセス条件の情報が 必要である。 し力、し、 設計当初はこれら情報は明らかでない。 回路設計 と素子 (デバイス) 設計はしばしば並行して進む場合があるが、 この場 合は設計開始当初において正確なデバイス条件は判らない。 Another object of the present invention is to eliminate a defective product that malfunctions due to device variation even in a design using a positive feedback type sense amplifier circuit for the highest speed. In general, in the design stage of an integrated circuit device, since there is a certain range of environmental conditions and manufacturing process conditions for which operation must be guaranteed, it is necessary to set an operation margin so that operation can be performed even under the worst conditions. For that purpose, information on the manufacturing process conditions at which the individual characteristics of the integrated circuit device become the worst is required. This information is not clear at the beginning of the design. Circuit design and element (device) design often proceed in parallel, in which case the exact device conditions are not known at the beginning of the design.
しかし、 正帰還型センスアンプの活性化信号の設計においては、 活性 化信号のマージンは設計時に固定されるため、 不明なデバイス特性にも 対応するためにはマージンを大きく取る必要があり、 結果として回路の 高速化が得られないと言う問題点がある。  However, in the design of the activation signal of the positive feedback type sense amplifier, the margin of the activation signal is fixed at the time of design, so it is necessary to increase the margin to cope with unknown device characteristics. There is a problem that the circuit speed cannot be increased.
本発明の他の目的は、 同期型集積回路装置の設計において上記のよう に設計の境界条件が変化した場合でも、 デバイスの持つ最高の性能が得 られる回路方式を提供することにある。  Another object of the present invention is to provide a circuit system which can obtain the highest performance of a device even when the boundary conditions of the design change as described above in the design of a synchronous integrated circuit device.
上記の目的を達成するために本発明では、 同期型集積回路装置の中の 2つの同期信号が同期を取る場合には、 それぞれの同期信号を別の時間 的な点 (タイ ミ ング) を基準として生成することにより、 これらの信号 間の時間を同期信号の周波数に応じて変化させる。  In order to achieve the above object, according to the present invention, when two synchronization signals in a synchronous integrated circuit device are synchronized, each synchronization signal is referred to a different time point (timing). , The time between these signals is changed according to the frequency of the synchronization signal.
より具体的には、 センスアンプ活性化信号の発生に用いるクロックェ ッジを、 センスアンプが増幅すべきデータが決まるクロックエッジとは 別に形成することにより、 クロック周波数が向上する。 すなわちこれら ェッジ間の時間が減少すると自動的にセンスアンプが増幅すベきデータ とセンスアンプ活性化信号の間の時間も詰まり、 ク口ック周波数の増大 に応じたマ一ジンを得ることができる。  More specifically, by forming a clock edge used for generating the sense amplifier activation signal separately from a clock edge that determines data to be amplified by the sense amplifier, the clock frequency is improved. In other words, when the time between these edges decreases, the time between the data to be amplified by the sense amplifier and the sense amplifier activation signal automatically becomes shorter, and a magazine corresponding to the increase in the clock frequency can be obtained. it can.
上記手段により、 設計時にマ一ジンを設定する必要が無く、 高速な正 帰還型センスアンプの活性化方式を得ることができる。 また、 上記手段によりデバイスがばらついてもセンスアンプ回路の最 高の高速性能を目指す設計をすることが可能となり、 誤動作する不良品 がそのために増加することがない。 By the above means, it is not necessary to set a magazine at the time of designing, and a high-speed positive feedback sense amplifier activation method can be obtained. Further, the above-described means makes it possible to design the sense amplifier circuit for the highest high-speed performance even if the devices vary, and the number of malfunctioning defective products does not increase.
また、 上記手段により同期型集積回路の設計時に想定したものとはデ バイス特性が変化した場合でも、 デバイスの高速化に応じてマージンが 変化するためデバイスの持つ最高の性能を得ることが可能な回路方式を 得ることが出来る。  In addition, even if the device characteristics change from those assumed when designing a synchronous integrated circuit by the above-described means, the highest performance of the device can be obtained because the margin changes as the device speed increases. A circuit system can be obtained.
本願発明の一つの形態は、ク口ック信号が入力されるクロック端子と、 処理すべき信号が入力される内部回路とを有し、 ク口ック信号の第丄の 時刻 (例えば第 1のパルスの立ち上がり) を基準として処理すべき信号 を上記内部回路に入力し、 クロック信号の第 2の時刻 (例えば第 2のパ ルスの立ち上がり) を基準として内部回路を動作させる同期型集積回路 である。 このように構成することで、 処理すべき信号の入力タイ ミ ング と内部回路の動作タイ ミ ングを独立に設定することができ、 タイ ミ ング の間隔を可変とすることが容易となる。  One embodiment of the present invention includes a clock terminal to which a clock signal is input, and an internal circuit to which a signal to be processed is input. A signal to be processed on the basis of the rising edge of the pulse is input to the internal circuit, and the synchronous integrated circuit operates the internal circuit on the basis of the second time of the clock signal (eg, the rising edge of the second pulse). is there. With such a configuration, the input timing of the signal to be processed and the operation timing of the internal circuit can be set independently, and the timing interval can be easily changed.
ク口ック信号を DLL回路、 SMD回路、 もしくは PLL回路で処理するこ とにより、 クロックからこれらの夕イ ミ ングを設定することができる。 これらの DLL回路または PLL回路は、 そのループの中に、 クロック信 号の周波数によって遅延時間が変化する第 1の遅延回路と、 ク口ック信 号の周波数によらず遅延時間が一定な第 2の遅延回路と有することによ つて、 簡易に構成することができる。  By processing the clock signal with a DLL circuit, SMD circuit, or PLL circuit, these evenings can be set from the clock. In these DLL circuits or PLL circuits, a first delay circuit whose delay time changes according to the frequency of the clock signal and a second delay circuit whose delay time is constant regardless of the frequency of the clock signal are included in the loop. By having two delay circuits, a simple configuration can be achieved.
また、 本願発明は半導体記憶装置に用いても好適であり、 その場合に は、 クロック信号に基づいて動作する半導体記憶装置であって、 情報を 蓄積する複数のメモリセルと、 メモリセルの少なく とも一つを指定する ためのアドレス信号をデコードするデコーダと、 アドレス信号によって 指定されたメモリセルに蓄積された情報を反映した出力信号を出力する 出力線と、 出力信号を増幅する増幅器とを有し、 デコーダはクロック信 号の第 1の時刻のァドレス信号をデコ一ドし、 出力線は第 1の時刻の所 定時間後である第 2の時刻に出力信号を出力し、 増幅器は第 1の時刻と は異なる第 3の時刻から所定時間ずれた第 4の時刻に活性化される。 こ のような構成により装置の動作マージンを柔軟に変化させることが可能 となる。 The present invention is also suitable for use in a semiconductor memory device. In this case, the semiconductor memory device operates based on a clock signal, and includes a plurality of memory cells for storing information, and at least a memory cell. A decoder that decodes an address signal for specifying one and an output signal that reflects information stored in the memory cell specified by the address signal An output line, and an amplifier for amplifying the output signal, wherein the decoder decodes an address signal of the first time of the clock signal, and the output line is a second time after a predetermined time of the first time. An output signal is output at the time, and the amplifier is activated at a fourth time shifted by a predetermined time from a third time different from the first time. With such a configuration, the operation margin of the device can be flexibly changed.
ここで、 例えば上記第 1の時刻は上記ク口ック信号の第 1のパルスの 立ち上がりまたは立ち下がりであり、 上記第 3の時刻は上記クロック信 号の第 1のパルスの後に来る第 2のパルスの立ち上がりまたは立ち下が りである。  Here, for example, the first time is the rising or falling of the first pulse of the close signal, and the third time is the second time after the first pulse of the clock signal. The rising or falling edge of the pulse.
また、 上記増幅器は上記第 1の時刻とは異なる第 3の時刻の所定時間 前である第 4の時刻に活性化されることとしてもよいし、 上記増幅器は 上記第 1の時刻とは異なる第 3の時刻の所定時間後である第 4の時刻に 活性化されることとしてもよい。  Further, the amplifier may be activated at a fourth time that is a predetermined time before a third time different from the first time, and the amplifier may be activated at a fourth time different from the first time. It may be activated at a fourth time which is a predetermined time after the time of 3.
このような半導体記憶装置においては、 複数のメモリセルにはそれぞ れヮード線が接続されており、 ヮ一ド線は上記の第 3の時刻を基準とし て非選択とすることができる。  In such a semiconductor memory device, a plurality of memory cells are respectively connected to a lead line, and the lead line can be unselected on the basis of the third time.
本発明の同期型集積回路の他の形態では、 外部から活性化時刻が入力 されるセンスアンプを備えた同期型集積回路において、 センスアンプが 増幅すべき信号の入力時刻が基準とする時刻とは別の時刻を基準として、 センスアンプを活性化させることを特徴とする。  In another embodiment of the synchronous integrated circuit of the present invention, in a synchronous integrated circuit including a sense amplifier to which an activation time is input from the outside, the reference time is based on the input time of a signal to be amplified by the sense amplifier. Activating the sense amplifier based on another time.
また、 本発明の同期型集積回路の他の形態では、 外部からのクロック 信号で活性化時刻が指定されるセンスアンプを備えた同期型集積回路に おいて、 クロック信号のクロック周期の変化量の絶対値と、 センスアン プの活性化時刻と増幅すべき信号のセンスアンプへの入力時刻の時間間 隔が、 対応して変化する。 すなわち、 入力されるクロック信号の周波数 に応じて、 装置のマ一ジンが自動的に変化するものである。 According to another embodiment of the synchronous integrated circuit of the present invention, in a synchronous integrated circuit having a sense amplifier whose activation time is designated by an external clock signal, the amount of change in the clock cycle of the clock signal is reduced. The absolute value, the time interval between the activation time of the sense amplifier and the input time of the signal to be amplified to the sense amplifier, change correspondingly. That is, the frequency of the input clock signal The machine's magazine changes automatically depending on the situation.
本発明の他の大洋では、 位相比較器と該位相比較器により制御される 可変遅延回路とを有する同期ク口ック信号発生回路において、 位相比較 器の入力信号にシンクロナスミラーディ レイ回路の入力および出力信号 を用い、 シンクロナスミラ一ディ レイ回路中の遅延回路の一部に上記位 相比較器出力により制御する可変遅延回路を用いたことを特徴とする。 また、 本願発明はクロック信号に基づいて動作する半導体記憶装置で あって、 情報を蓄積する複数のメモリセルと、 メモリセルに接続される データ線及びヮ一 ド線と、 データ線の出力信号を増幅するセンスアンプ とを有し、 メモリセルからの情報の読み出し時には、 データ線はクロッ ク信号の第 1の時刻の所定時間後である第 2の時刻に出力信号を出力し、 センスアンプは第 1の時刻とは異なる第 3の時刻から所定時間ずれた第 4の時刻に活性化される半導体記憶装置としても構成できる。  In another ocean of the present invention, in a synchronous cook signal generating circuit having a phase comparator and a variable delay circuit controlled by the phase comparator, an input signal of the phase comparator includes a synchronous mirror delay circuit. The input and output signals are used, and a variable delay circuit controlled by the output of the phase comparator is used as a part of the delay circuit in the synchronous mirror delay circuit. The present invention also relates to a semiconductor memory device that operates based on a clock signal, comprising a plurality of memory cells for storing information, a data line and a pad line connected to the memory cells, and an output signal of the data line. When reading information from the memory cell, the data line outputs an output signal at a second time which is a predetermined time after the first time of the clock signal. The semiconductor memory device may be configured to be activated at a fourth time shifted by a predetermined time from a third time different from the first time.
この装置の動作タイ ミ ングとしては、 例えば、 メモリセルへの情報の 書込み時には、 データ線はクロック信号の第 1の時刻と所定時間ずれた 第 5の時刻に立ち上げられ、 クロック信号の第 2の時刻と所定時間ずれ た第 6の時刻に立ち下げられ、 ヮ一ド線は上記ク口ック信号の第 1の時 刻と所定時間ずれた第 7の時刻に立ち上げられ、 クロック信号の第 2の 時刻と所定時間ずれた第 8の時刻に立ち下げられる。  As an operation timing of this device, for example, when information is written to a memory cell, the data line is started at a fifth time which is different from the first time of the clock signal by a predetermined time, and the second line of the clock signal is raised. At a sixth time which is different from the time of the clock signal by a predetermined time, and the lead line is raised at a seventh time which is different from the first time of the above-mentioned mouth signal by a predetermined time, and It falls at the eighth time, which is different from the second time by a predetermined time.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明によるセンスアンプの活性化タイ ミ ング図。 図 2は本発 明による同期型 SRAM のブロック図。 図 3は従来の活性化タイ ミ ングの 例を示すタイ ミ ング図。 図 4は正帰還型センスアンプの回路図。 図 5は 本発明の同期型集積回路のためのクロック同期回路の回路図。 図 6は本 発明の同期型集積回路のためのクロック同期回路のタイ ミ ング図。 図 7 は本発明の同期型集積回路のためのクロック同期回路の他の回路図。 図 8は本発明の同期型集積回路のためのクロック同期回路の他の回路の夕 ィ ミ ング図。 図 9は本発明によるセンスアンプの他の活性化タイ ミ ング 図。 図 1 0は本発明によるセンスアンプの他の活性化タイ ミ ング図。 図 1 1は同期型 SRAM の他のプロック図。 図 1 2は本発明を適用したシン クロナス DRAM のタイ ミ ング図。 図 1 3は本発明を適用したシンクロナ ス DRAM の他のタイ ミ ング図。 図 1 4は本発明を適用したシンクロナス DRAM の他のタイ ミ ング図。 図 1 5は本発明を適用したシンクロナス DRA の他のタイ ミ ング図。 図 1 6は本発明を適用したシンクロナス DRAM の他のタイ ミ ング図。図 1 7は本発明を用いたチップ中の回路配置 図。 図 1 8は Register- Latch (R/L)タイプのシンクロナス D R A Mへの 応用例を示すタイ ミ ング図。 図 1 9は Register-Through (R/T)タイプの シンクロナスメモリへの応用例を示すタイ ミ ング図。 図 2 0はシンクロ ナスメモリへの書込み時のヮ一 ド線とビッ 卜線の関係を示すタイ ミ ング 図。 図 2 1は SMDの典型的な回路を示すプロック図。 2 2は SMDの改良 された回路を示すブロック図 FIG. 1 is an activation timing diagram of a sense amplifier according to the present invention. Figure 2 is a block diagram of a synchronous SRAM according to the present invention. Fig. 3 is a timing diagram showing an example of conventional activation timing. Figure 4 is a circuit diagram of the positive feedback type sense amplifier. FIG. 5 is a circuit diagram of a clock synchronous circuit for a synchronous integrated circuit of the present invention. FIG. 6 is a timing diagram of the clock synchronous circuit for the synchronous integrated circuit of the present invention. FIG. 7 is another circuit diagram of the clock synchronization circuit for the synchronous integrated circuit of the present invention. Figure FIG. 8 is a sunset view of another circuit of the clock synchronous circuit for the synchronous integrated circuit of the present invention. FIG. 9 is another activation timing diagram of the sense amplifier according to the present invention. FIG. 10 is another activation timing diagram of the sense amplifier according to the present invention. Figure 11 shows another block diagram of a synchronous SRAM. FIG. 12 is a timing diagram of a synchronous DRAM to which the present invention is applied. FIG. 13 is another timing diagram of the synchronous DRAM to which the present invention is applied. FIG. 14 is another timing diagram of the synchronous DRAM to which the present invention is applied. FIG. 15 is another timing diagram of the synchronous DRA to which the present invention is applied. FIG. 16 is another timing diagram of the synchronous DRAM to which the present invention is applied. FIG. 17 is a circuit layout diagram in a chip using the present invention. Figure 18 is a timing diagram showing an example of application to a Register-Latch (R / L) type synchronous DRAM. Figure 19 is a timing diagram showing an example of application to Register-Through (R / T) type synchronous memory. FIG. 20 is a timing diagram showing the relationship between a lead line and a bit line during writing to a synchronous memory. Figure 21 is a block diagram showing a typical SMD circuit. 2 2 is a block diagram showing the improved circuit of SMD
発明を実施するための最良の形態 以下、 本発明を SRAM に適用した場合の実施例のタイ ミ ングを図 1に より説明する。 回路構成については後に図 2で説明する。  BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the timing of an embodiment when the present invention is applied to an SRAM will be described with reference to FIG. The circuit configuration will be described later with reference to FIG.
図 1は本発明を適用したメモリ回路の動作のタイ ミ ングを示したもの である。 各行はそれぞれ名前を示した回路部の信号電圧波形の模式図で あ o  FIG. 1 shows the timing of the operation of the memory circuit to which the present invention is applied. Each row is a schematic diagram of the signal voltage waveform of the circuit section showing its name.
CLK はセンスアンプ及び活性化信号発生回路に集積回路外部あるいは 集積回路内の他の回路から入力されるク口ック信号を示す。 同様に、 Address はメモリ回路外部からこのメモリ回路に入力されるァドレス信 号の電圧波形を、 Word 線はメモリセルのヮ一ド線の信号の電圧波形を、 SACK はこのメモリ回路が用いている正帰還型のセンスアンプの活性化 信号の電圧波形を、 SA 出力は正帰還型センスアンプの信号をラツチする ノ一ドの電圧波形を、 Data 出力は本実施例のメモリ回路からの読み出し データの出力信号の電圧波形をそれぞれ示す。 CLK is a clock signal input to the sense amplifier and the activation signal generation circuit from outside the integrated circuit or from another circuit in the integrated circuit. Similarly, Address is the voltage waveform of the address signal input from outside the memory circuit to this memory circuit, Word line is the voltage waveform of the signal on the first line of the memory cell, and SACK is the memory circuit. Activation of positive feedback type sense amplifier The voltage waveform of the signal, the SA output shows the voltage waveform of a node that latches the signal of the positive feedback type sense amplifier, and the Data output shows the voltage waveform of the output signal of the data read out from the memory circuit of this embodiment.
このような動作を実現するメモリはァドレス入力用のレジスタを備え ており、 入力されたアドレス信号のクロック CLKの立ち上がり時 (ここ では時刻 A) におけるア ドレス情報に対応したメモリセルデータを読み 出す様に動作する。 すなわちア ドレス A に対応したデータを時刻 A に 入力レジス夕に取り込み、このァドレスに対応したデータを時刻 B から 一定の時間内に出力ノードに出力し、その出力信号を時刻 C が入力され てから一定時間保持することが必要とされている。  The memory that realizes such operation has a register for address input, and reads out memory cell data corresponding to the address information at the rising edge of the clock CLK of the input address signal (time A in this case). Works. That is, the data corresponding to address A is taken into the input register at time A, the data corresponding to this address is output to the output node within a certain time from time B, and the output signal is output after time C is input. There is a need to hold for a certain period of time.
CLK 信号が立ち上がる時刻 A における、メモリ回路の外部からのメモ リセルのァドレス情報 A がデコーダによりデコ一ドされる。次にデコ一 ドされたァドレスに対応する Word 線を立ち上げる。 Word 線が立ち上が るとそれにより選択されたメモリセルからのデ一夕がセンスアンプに到 達し、 図 1中の SA 出力のノードに微小な電圧振幅を発生する。 すなわ ちここまでの一連のィベントは、 CLK の立ち上がり時刻 A からその夕 ィ ミングが決定されている。  At the time A when the CLK signal rises, the address information A of the memory cell from outside the memory circuit is decoded by the decoder. Next, a Word line corresponding to the decoded address is set up. When the word line rises, the data from the selected memory cell reaches the sense amplifier and generates a small voltage amplitude at the SA output node in Fig. 1. In other words, in the series of events up to this point, the timing is determined from the rising time A of the CLK.
その後 SACK 信号が立ち上がる。 すなわちセンスアンプが活性化され て上記の微小な電圧振幅の信号を増幅し、 センスアンプ回路の後段の出 力レジスタ回路がデータをラツチできる電圧に変換する。  After that, the SACK signal rises. That is, the sense amplifier is activated to amplify the signal having the small voltage amplitude, and the output register circuit at the subsequent stage of the sense amplifier circuit converts the data into a voltage that can latch data.
本実施例では図示する様に、時刻 B のクロックの立ち上がりを基準と して SACK の立ち上がりすなわちセンスアンプの活性化タイ ミングを決 める。 この意味を以下により具体的に述べる。  In this embodiment, as shown in the figure, the rise of the SACK, that is, the activation timing of the sense amplifier is determined based on the rise of the clock at time B. This meaning will be described more specifically below.
クロック周波数が低下する、すなわち、時刻 A から測定した時刻 B が 遅くなると、本実施例では、時刻 A を基準として測定した SACK の立ち 上がり時刻もこれに連動して同じだけ遅れる。例えば時刻 A を基準にし て測定した時刻 B が Ins 遅くなると SACK も Ins 遅くなる。 When the clock frequency decreases, that is, when the time B measured from the time A is delayed, in the present embodiment, the rising time of the SACK measured based on the time A is also delayed by the same amount. For example, based on time A, If the measured time B is delayed by Ins, the SACK will also be delayed by Ins.
この設定によれば図示したマージン 1がク口ックの周波数により変化 することになり、 このデバイスで決まる限界の値まで SACK を早めるこ とが出来る。  With this setting, the margin 1 shown in the figure changes depending on the frequency of the clock, and the SACK can be advanced to the limit value determined by this device.
従来は、 このマージン 1は、 環境条件 (温度、 電源電圧)、 デバイス条 件 (M0S トランジスタの特性ばらつき) 等が最悪の条件の場合でも、 正 帰還型のセンスアンプが誤動作することのないように設定する必要があ つた。 すなわちデバイス条件等の環境条件が変化した場合には非常に大 きなマージンを無駄に取りすぎることになる場合がある。  Conventionally, this margin 1 is used to prevent the positive feedback type sense amplifier from malfunctioning even under the worst conditions such as environmental conditions (temperature, power supply voltage) and device conditions (variation in the characteristics of the M0S transistor). It had to be set. That is, when environmental conditions such as device conditions change, a very large margin may be wasted too much.
メモリ回路の場合はメモリセルの数が多く、 数多くのメモリセルの中 の最悪のメモリセルによって最悪条件が決まるため、 正常動作品を確保 するためにはマージンを大きく取ることは避けられない。 本実施例によ れば、 メモリセルの製造プロセスや、 動作環境に応じた必要最小限度の マージンを設定することが可能となる。  In the case of a memory circuit, the number of memory cells is large, and the worst condition is determined by the worst memory cell among many memory cells. Therefore, it is inevitable to take a large margin to secure a normally operating product. According to the present embodiment, it is possible to set the minimum margin required according to the manufacturing process of the memory cell and the operating environment.
図 2により図 1 のタイ ミ ングを実現するためのメモリのブロック構 成例を説明する。 図 2は本発明を適用した 8M Bitのシンクロナス SRAM 回路の構成例を示したものであり、 メモリセルアレイ 2 0 0をアクセス する。 AO- ΑΠはァ ドレス入力、 /SSはシンクロナスセレク ト信号入力、 /SWEはシンクロナス書込み信号、 /SWExはシンクロナスバイ トライ 卜信 号入力、 /Gは非同期出力制御信号、 CK、 /CKはクロック信号入力、 VREF は I /Oィンタ一フェイス用の基準電圧入力端子、 ZQは出カインピ一ダン スのプログラム用端子、 DQ0-DQ35はデータの入出力端子である。  Fig. 2 shows an example of a memory block configuration for realizing the timing shown in Fig. 1. FIG. 2 shows an example of the configuration of an 8 Mbit synchronous SRAM circuit to which the present invention is applied, and accesses a memory cell array 200. AO-ΑΠ is address input, / SS is synchronous select signal input, / SWE is synchronous write signal, / SWEx is synchronous bit line signal input, / G is asynchronous output control signal, CK, / CK Is a clock signal input, VREF is a reference voltage input terminal for an I / O interface, ZQ is an output impedance programming terminal, and DQ0-DQ35 are data input / output terminals.
アドレス、 /SS、 /SWE, /SWExは、 入力バッファの後の各レジスタ 2 1 〜2 4でクロック信号の切り替わり時点でレジスタされる。 書込みサイ クルで有れば、 アドレスは W- Add register 2 5にレジスタされる。 書 込みサイクルの場合だと前回の書込みァドレスが選ばれて MUX 2 6から 出力されるし、 読み出しの場合には入力されたァ ドレスがそのまま MUX 2 6から Row deocder 2 7または Column decoder 2 8 へ入力される。 The address, / SS, / SWE, and / SWEx are registered in each of the registers 21 to 24 after the input buffer when the clock signal is switched. If it is a write cycle, the address is registered in W-Add register 25. In the case of a write cycle, the previous write address is selected and MUX 26 It is output, and in the case of reading, the input address is directly input from MUX 26 to Row deocder 27 or Column decoder 28.
WRC 2 9は読み出し状態と書込み状態の切り替わりを制御する回路で あり、 WA (書込み回路) 3 0、 SA (センスアンプ) 3 1などを制御する。 アドレスの MUX入力にある EXN0R回路 3 2は入力されたァドレスが前回 の書込みァドレスと同じかどうかを常にチェックしており、 もし一致す れば Match信号により出力の MUX 3 3が書込みデータをそのまま出力す る。 その後、 Dout register 3 4に出力データがいったん蓄えられ、 こ のデータが出力バッファ 0B 3 5から出力される。 入力データは!) -in register 3 6をとおり、 WA 3 0に伝えられる。  WRC 29 is a circuit that controls switching between a read state and a write state, and controls WA (write circuit) 30, SA (sense amplifier) 31, and the like. The EXN0R circuit 32 at the MUX input of the address always checks whether the input address is the same as the previous write address, and if they match, the MUX 33 output by the Match signal outputs the write data as it is. You. After that, the output data is temporarily stored in the Dout register 34, and this data is output from the output buffer 0B35. Input data! ) -In register 36, passed to WA 30.
Data Output Control (DOC)回路 3 7は出カノくッファのハイインピーダ ンス状態を制御する。 CLK Ctrl 3 8はクロック制御回路であるが、 DLL 等のクロック制御回路はこの中に入っている。  A Data Output Control (DOC) circuit 37 controls the high impedance state of the output buffer. CLK Ctrl 38 is a clock control circuit, and a clock control circuit such as a DLL is included therein.
図 1 のタイ ミ ング図に戻り、図 1に示したもう一つのポィントである Word 線の立ち下がりの基準時刻について説明する。後に図 3で示すよう に、 従来は時刻 A から一定な遅延時間の後に Word 線を立ち下げる方法 が取られていた。 しかし、 従来の方法の様に Word 線を立ち下げると、 本発明のタイ ミ ングでセンスアンプを活性化する場合には、 サイクル時 間 (時刻 Aと時刻 Bの間隔) が長くなつた場合にワー ド線が立ち下がつ てから、 センスアンプが活性化することになり、 センスアンプのデータ が正しく取り込めなくなる。  Returning to the timing diagram of Fig. 1, the reference time of the falling edge of the Word line, which is another point shown in Fig. 1, will be described. Conventionally, as shown in Fig. 3, the word line was turned off after a certain delay time from time A. However, when the Word line is dropped as in the conventional method, when the sense amplifier is activated at the timing of the present invention, the cycle time (the interval between time A and time B) becomes longer. After the word line falls, the sense amplifier is activated, and the data of the sense amplifier cannot be correctly captured.
そこで本発明を用いてセンスアンプを高速化する場合で、 しかも長い サイクル時間でも正常動作する必要がある場合には、 (1 ) センスアンプ 活性化の制御を従来通りに時刻 A から決まるように戻すか、 あるいは (2) 図 1 の様に Word 線の立ち下がり時刻も時刻 B のクロックエツヂ から決めるようにする方法がある。 こうすれば、 サイクル時間が長くな つてもワー ド線が立ち下がる時刻は絶対にセンスアンプ活性化時刻より も早くなることはなく、 正常動作する。 Therefore, when the sense amplifier is to be operated at high speed using the present invention and it is necessary to operate normally even with a long cycle time, (1) the sense amplifier activation control is returned to be determined from time A as before. Or (2) As shown in Fig. 1, there is a method in which the fall time of the Word line is also determined from the clock edge at time B. This will increase the cycle time Even so, the time at which the word line falls will never be earlier than the sense amplifier activation time, and it will operate normally.
なお、 本明細書中でクロックのエツヂと呼んだ場合、 これは集積回路 のスペックでク口ックの切り換わり時刻と通常呼ばれている時刻を指す ものである。 例えばクロック入力が差動のメモリではその差動信号のク ロスする時刻を指す等、 その集積回路のスペックにより定義は変化する 場合がある。  In this specification, when it is referred to as clock edge, it refers to a time that is generally called a switching time of the clock in the specifications of the integrated circuit. For example, in the case of a memory whose clock input is differential, the definition may change depending on the specifications of the integrated circuit, such as indicating the time at which the differential signal is crossed.
図 3で比較例でのマージン設定方法を説明した後、 本実施例により得 られる効果を述べる。 図 3に示すタイ ミ ングが本発明の場合と異なるの は SACK すなわちセンスアンプの活性化のタイ ミ ングが図 1 の場合で は時刻 B を基準として決まるのに対し、 図 3の場合では時刻 A を基準 として決まる点である。 SRAM の場合は例えば遠端のヮ一 ド線が立ち上が つてから一定の遅延時間の後にセンスアンプを立ち上げることになる。 図 2の方法では図中のマージン 1を回路設計時に決めるために、 常に固 定されてしまい、 デバイスの性能に見合った最高のセンスアンプの性能 を得ることができない。 逆にいえば、 本発明によれば、 このマージン 1 が設計時に固定されないため高速なセンスアンプを得ることができる。 また、 従来の設計でそのデバイスにより選られる最高性能を得よう と するためには図 3中のマージン 1を極力削ることになるが、 これにより センスアンプが誤動作する場合が発生するとそれは不良品になる。 これ は正帰還センスアンプの特性による。 すなわち、 本実施例によればこの 様に最高性能ねらう設計の場合でも不良品の割合を増やすことがなく、 低コス卜で製造することが可能となるという利点があると言える。  After explaining the margin setting method in the comparative example with reference to FIG. 3, the effect obtained by the present embodiment will be described. The timing shown in FIG. 3 is different from that of the present invention in that the SACK, that is, the timing of the activation of the sense amplifier is determined based on time B in the case of FIG. 1, whereas the timing in FIG. It is determined based on A. In the case of SRAM, for example, the sense amplifier is started after a certain delay time from when the far-end lead line rises. In the method of Fig. 2, the margin 1 in the figure is always fixed because it is determined at the time of circuit design, and the best sense amplifier performance that matches the device performance cannot be obtained. Conversely, according to the present invention, since this margin 1 is not fixed at the time of design, a high-speed sense amplifier can be obtained. In addition, in order to obtain the highest performance that can be selected by the device in the conventional design, the margin 1 in Fig. 3 must be reduced as much as possible.However, if a malfunction occurs in the sense amplifier, it becomes a defective product. Become. This is due to the characteristics of the positive feedback sense amplifier. That is, according to this embodiment, it can be said that there is an advantage that it is possible to manufacture at low cost without increasing the ratio of defective products even in the case of the design aiming for the highest performance.
図 4に SRAM で用いられる正帰還型のセンスアンプの例を示す。 ビッ ト線 4 0はメモリセル 4 1に直接接続される。複数のビッ ト線対が Y ス イッチ (MOS M13 及び MOS M14 ) を用いて 1 組のコモンビッ ト線 CDT, CDBに接続している。同時にはこの中の 1つの Y スィッチのみが ON することにより、 選ばれたビッ ト線のデータを、 このセンスアンプは増 幅する。 Figure 4 shows an example of a positive feedback type sense amplifier used in SRAM. Bit line 40 is directly connected to memory cell 41. Multiple bit line pairs are connected to one set of common bit lines using Y switches (MOS M13 and MOS M14). Connected to CDT and CDB. At the same time, when only one of these Y switches is turned ON, this sense amplifier amplifies the data of the selected bit line.
以下にこの回路の動作を説明する。 SACM 力 Low の時は MOS M10 力 OFF しており、 MOS Ml, M2, M3 ON するため、 このセンスアンプの出 力端子 0UT1、 0UT2 が共に Highレベルになる。 次にメモリセルからの データが M0S M8、 MOS M9 のゲー トに入力されると、 ゲート端子が High 側の M0S (例えば MOS M9) ON する。 MOS M9 のソースと ドレインの 寄生容量によるチャージシヱァにより 0UT1 の電位が少し低下し、 0UT2 との間に微小な電位差ができる。 0UT1 と 0UT2 間の電位差は MOS M8、 M0S 9 の間のゲー ト電位の差が広がれば広がるほど大きくなる。 M0S 卜 ランジス夕の増幅器には VTH のデバイスばらつきに伴うオフセッ 卜カ 存在するため、 誤動作を避けるためには、 この電圧振幅が出来るだけ大 きくなつてから SACM をオンさせる事により、 誤動作を防止する必要が ある。 コモンビッ ト線の振幅電圧はメモリセルの電流とコモンビッ ト線 負荷回路 4 3により決まる。  The operation of this circuit will be described below. When the SACM power is low, the MOS M10 power is off and the MOS Ml, M2, M3 are turned on, so that the output terminals 0UT1 and 0UT2 of this sense amplifier both go high. Next, when data from the memory cell is input to the gates of M0S M8 and MOS M9, the gate terminal turns on the M0S (eg, MOS M9) on the high side. The charge shear due to the parasitic capacitance of the source and drain of the MOS M9 causes the potential of 0UT1 to drop slightly, resulting in a small potential difference with 0UT2. The potential difference between 0UT1 and 0UT2 increases as the difference in gate potential between MOS M8 and M0S9 increases. M0S transistor amplifiers have offsets due to VTH device variation.To avoid malfunction, turn on the SACM after this voltage amplitude becomes as large as possible to prevent malfunction. There is a need. The amplitude voltage of the common bit line is determined by the current of the memory cell and the common bit line load circuit 43.
通常、 図 1に示すように基準とする時刻よりも遡った信号を発生する のは不可能であるが、 同期型メモリ等では通常動作での周波数が一定で あるという特徴を利用して、 例えば DLL (Delay Locked Loop ) 回路、 PLL (Phase Locked Loop) 回路、 あるいは S D (Synchronous Mirror Delay ) 回路等を用いて、 基準とする時刻よりも遡った信号を発生する ことが可能である。  Normally, as shown in Fig. 1, it is impossible to generate a signal that precedes the reference time.However, in the case of a synchronous memory or the like, by taking advantage of the feature that the frequency in normal operation is constant, for example, Using a DLL (Delay Locked Loop) circuit, a PLL (Phase Locked Loop) circuit, or an SD (Synchronous Mirror Delay) circuit, it is possible to generate a signal that goes back from the reference time.
図 5と図 6を用いて本発明のクロック信号のタイ ミ ング発生の一例を 説明する。  An example of clock signal generation according to the present invention will be described with reference to FIGS.
図 5は DLL 回路を用いた場合のブロック図を示す。遅延時間がクロッ ク周波数によって変化する第 1の遅延回路 5 1 と、 遅延時間がクロック 周波数によらず一定な第 2の遅延回路 5 2を用いる。 クロック入力信号 から、 第 1の遅延回路による遅延時間 dl と、 第 2の遅延回路による遅延 時間 d2 で決まる遅延時間だけ遅延させた信号と、 もとのクロック信号 を位相比較器に比較することにより、 CLK1 と位相の合った CLK2 が出 力される。 ここで、位相を合わせるのは位相比較器 5 3から出力する VF が表す位相の差分に関する情報により遅延時間が変化する、 すなわち遅 延時間がクロック周波数によって変化する遅延回路 dl である。 クロッ ク CLK2 の位相が クロック CLK1 よりも遅れると dl の遅延時間を小 さくなり、 その逆の場合には dl が大きくなる。 ここで CLK1 の出力時 刻は CLK2 よりも遅延時間 dl に相当する分は必ず進んでいるため図 1 示したような、 与えられたク口ック信号よりも一定の時間だけ早いク口 ック信号を得ることが可能となる。 Figure 5 shows a block diagram when a DLL circuit is used. A first delay circuit 51 whose delay time varies according to the clock frequency; A constant second delay circuit 52 is used regardless of the frequency. From the clock input signal, the signal delayed by the delay time dl by the first delay circuit and the delay time determined by the delay time d2 by the second delay circuit is compared with the original clock signal by the phase comparator. CLK2 is output in phase with CLK1. Here, the phase is adjusted by the delay circuit dl whose delay time changes according to the information on the phase difference represented by VF output from the phase comparator 53, that is, the delay time changes according to the clock frequency. If the phase of clock CLK2 lags behind clock CLK1, the delay time of dl decreases, and vice versa. Here, the output time of CLK1 is always ahead of CLK2 by the amount corresponding to the delay time dl, and therefore, as shown in Fig. 1, the clock that is earlier than the given clock signal by a fixed time is used. A signal can be obtained.
図 6に図 5の構成の動作タイ ミ ングを示す。 位相比較器及び遅延回路 dl により クロック入力 CLK とクロック信号 CLK2 の位相が一致する。 CLK1 までの遅延 dl は変化するが CLK1 から CLK2 までの遅延時間 d2 が一定に保たれ、 CLK よりも d2 の遅延時間分だけ早い信号 CLK2 が得 られることが判る。実際には図 5の回路の外部クロック CLK から位相比 較器の間には遅延が入ることが普通であり、 この場合の例を図 7 と図 8 に示す。  Fig. 6 shows the operation timing of the configuration in Fig. 5. The phases of the clock input CLK and the clock signal CLK2 coincide with each other by the phase comparator and the delay circuit dl. It can be seen that the delay dl to CLK1 changes, but the delay time d2 from CLK1 to CLK2 is kept constant, and a signal CLK2 earlier than CLK by the delay time of d2 is obtained. In practice, it is common for a delay to be introduced between the external clock CLK and the phase comparator in the circuit of Fig. 5, and examples of this case are shown in Figs.
図 7及び図 8は図 5の回路において外部クロック CLK から位相比較 器の間の回路 7 0による遅延を考慮した例である。この遅延時間を図 7 で dl と示す。 他の回路構成は図 5と同様の符号を付して説明を省略し た。 図 7では位相情報により変化する遅延時間は d2、ループに含まれる 一定の遅延時間を d3 とする。 この場合、 図 8のタイ ミ ング図に示す様 に外部クロックから遡る時間は d3 一 dl となる。  FIGS. 7 and 8 show examples in which the delay of the circuit 70 between the external clock CLK and the phase comparator in the circuit of FIG. 5 is considered. This delay time is denoted by dl in FIG. Other circuit configurations are denoted by the same reference numerals as in FIG. 5 and description thereof is omitted. In FIG. 7, the delay time changed by the phase information is d2, and the constant delay time included in the loop is d3. In this case, the time going back from the external clock is d3-1 dl as shown in the timing diagram of Fig. 8.
図 9で DLL を用いない SRAMのタイミ ング例を説明する。 図 1の例で は DLL 、SMD 等の基準クロックの時刻からさかのぼってセンスアンプを 活性化する必要があるが、 図 9の例はこの様な特別な回路を必要としな い場合の例である。 Figure 9 illustrates an example of SRAM timing without using a DLL. In the example of Figure 1 It is necessary to activate the sense amplifier retroactively from the reference clock time of DLL, SMD, etc., but the example in FIG. 9 is an example where such a special circuit is not required.
すなわち、 センスアンプを活性化する SACK の立ち上がりがその基準 となるクロックのエツヂよりも後になるため、 通常の遅延素子によりク ロック立ち上がりから SACK が作れる。 しかもサイクル時間は図 1等の 場合と同等以上に高速化できる可能性がある、 と言う利点がある。但し、 本実施例の場合は SA 出力の後段の処理が時刻 B 以降に開始するため、 図 1の例に比較して時刻 B から Data 出力までの時間が長くなる。逆に 言えば図 1の例は DLL 等の回路を用いることによりこの欠点を補うこ とが出来ていると言える。 図 9の例においてもマ一ジン 1がクロックの サイクル時間によって可変となっていることがわかる。  That is, since the rising edge of SACK for activating the sense amplifier is later than the reference clock edge, the SACK can be generated from the rising edge of the clock by a normal delay element. In addition, there is an advantage that the cycle time may be faster than or equal to the case of Fig. 1 and so on. However, in the case of the present embodiment, since the subsequent processing of the SA output starts after the time B, the time from the time B to the data output is longer than in the example of FIG. Conversely, in the example of Fig. 1, it can be said that this defect can be compensated for by using a circuit such as a DLL. Also in the example of FIG. 9, it can be seen that the magazine 1 is variable depending on the clock cycle time.
図 1 0は Double Data Rate (DDR) 、 Echo Clock の機能を持つ SRAM に 本発明を適用した場合の実施例を示す。 DDR とはクロック入力の立ち上 がりと立ち下がりのそれぞれのエツヂで Data を出力する、 すなわちァ ドレス等の入力に比べ倍の周波数でデータを出力するメモリを指す。 さ らに図 1 0の例では高速になった場合のデータとクロックのスキューを 抑えるために Echo Clock を用いている。 Echo Clock とは Data を出す 側から、 それの基準となるク口ック信号も同時に出力してやることで、 データの受け手にとってデータ自体と基準ク口ックの間のスキューを小 さく抑えることを目的とする。  FIG. 10 shows an embodiment in which the present invention is applied to an SRAM having the functions of Double Data Rate (DDR) and Echo Clock. DDR is a memory that outputs Data at each rising edge and falling edge of the clock input, that is, a memory that outputs data at twice the frequency of inputs such as addresses. Furthermore, in the example of Fig. 10, the Echo Clock is used to suppress the skew of data and clock when the speed becomes high. Echo Clock aims to reduce the skew between the data itself and the reference clock for the data receiver by simultaneously outputting the reference signal that is the reference signal from the data output side. And
DDR、 Echo Clock を用いた SRAM の動作も、 図 1の SRAM と基本的に は同じである。センスアンプの活性化信号は時刻 1 の次のクロックの立 ち上がりエツヂ (時刻 3) を基準として決められる。 もし、 時刻 2 をこ れに用いると、 周波数以外に入力のクロックのデューティにもセンスァ ンプの活性化が影響することになり、 メモリを使う側から見ると制御す べきパラメ一夕が増えてしまうため、本例のように時刻 3 あるいは他の ク口ックの立ち上がりのエツヂを用いる方がよい。 The operation of the SRAM using DDR and Echo Clock is basically the same as the SRAM in Fig. 1. The activation signal of the sense amplifier is determined based on the rising edge of the clock following time 1 (time 3). If time 2 is used for this, the activation of the sense amplifier will affect not only the frequency but also the duty of the input clock. It is better to use the time 3 or another start-up edge, as in this example, because the number of power parameters increases.
CLK0UT は SRAM からの Echo Clock の出力を表しており、 それぞれの クロックの立ち上がり時刻と立ち下がり時刻は入力クロック CLK の立 ち上がり時刻及び立ち下がり時刻から決まる。 出力はこのそれぞれのェ ッヂに同期して出力される (Data 出力)。  CLK0UT represents the output of the Echo Clock from the SRAM, and the rise time and fall time of each clock are determined by the rise time and fall time of the input clock CLK. The output is output in synchronization with each edge (Data output).
図 1 1 は上記 図 1 0の DDR SRAM の動作を実現するプロック構成例 を示したものである。 図 2に示した通常の SRAM の場合とほぼ同等であ るが、 変更のある部分を中心に説明する。  FIG. 11 shows an example of a block configuration for realizing the operation of the DDR SRAM of FIG. 10 described above. This is almost the same as the normal SRAM shown in Fig. 2, but the explanation focuses on the parts that have changed.
B1,B2,B3は Burst Control信号入力端子を示す。 これらの信号の組み 合わせにより書き込み、 チップ選択などの機能を制御する。 これらの信 号はバッファ 1 1 1〜 1 1 3に入力される。  B1, B2, and B3 indicate Burst Control signal input terminals. Functions such as writing and chip selection are controlled by a combination of these signals. These signals are input to buffers 111 to 113.
BC 1 1 0はバーストコン トロール回路を示す。 外部から受け取る一つ のアドレスに対して内部で複数 (例えば 4つ) のアドレスを生成してそ れぞれのアドレスにアクセスする機能をバーストという。 このための内 部ァドレスを生成するのが BCの機能である。図 1 1ではバース卜するァ ドレスは AOおよび A1の 2ビッ 卜であるために、 4つのアドレスにァク セスすることになる。  BC110 indicates a burst control circuit. Burst refers to the function of internally generating multiple (for example, four) addresses for a single address received from the outside and accessing each address. The function of the BC is to generate an internal address for this purpose. In FIG. 11, the burst addresses are two bits, AO and A1, so four addresses are accessed.
図 1 1の例では図 2に比べて、 同時に倍のメモリセルをアクセスし、 読み出したデータを連続して 2回出力する。 図 1 1のように最下位のァ ドレス AOに対してそれぞれ MUXを設ければ、 DDRの場合にも正常に機能 する回路が得られる。  In the example of Fig. 11, twice as many memory cells are accessed at the same time as in Fig. 2, and the read data is output twice consecutively. If a MUX is provided for each of the lowest addresses AO as shown in Fig. 11, a circuit that can function normally even in the case of DDR can be obtained.
図 1 2で、 本発明を同期型 (Synchronous) DRAM に適用した場合の実 施例を説明する。外部から入力された CLK のエツヂに対応して入出力の タイミ ングが決まることは SRAM の場合と同様である。  FIG. 12 shows an embodiment in which the present invention is applied to a synchronous DRAM. The timing of input / output is determined according to the edge of CLK input from the outside as in the case of SRAM.
同期型 DRAM (SDRAM) は一般に複数のバンクを持っており、 これらの バンクから交互にデータを読み出す場合にはバンク間の切り換え時間が 非常に短いという特徴がある。 RAS 信号が 図の時刻 1 の時に下がり、 これに同期してワード線のアドレス (Address ) が入力される。従ってヮ — ド線の立ち上がり、及びセンスアンプ (SA 出力) にメモリセルが到達 するまでは時刻 1 を基準として図示したように決まる。 Synchronous DRAM (SDRAM) generally has multiple banks, When data is alternately read from banks, the switching time between banks is very short. The RAS signal falls at time 1 in the figure, and the word line address (Address) is input in synchronization with this. Therefore, it is determined based on time 1 as shown in the figure until the memory cell reaches the rising edge of the ド -line and the sense amplifier (SA output).
図 1 2の例では外部からの CAS 入力が時刻 1 から数えて 3 サイクル 目に入力されている。この CAS 入力より前に SACK 信号を立ち上げれば 良い。 基準となるクロックエッジはこの例では時刻 4 における CLK の 立ち上がり時刻としているが、 この時刻は以下の様な制限を考慮して設 定すればよい。  In the example in Figure 12, CAS input from the outside is input in the third cycle counting from time 1. The SACK signal should be raised before this CAS input. In this example, the reference clock edge is the rising edge of CLK at time 4; however, this time may be set in consideration of the following restrictions.
図 1 2の例では アドレス入力に対する Data 出力が時刻 5 のクロッ クを基準として出力される。 すなわち、 SACK を遅く しすぎる、 すなわち SA 出力が遅くなりすぎると、その後段の処理がこの Data 出力に間に合 わない場合がある。 ただし、 このタイ ミ ングは時刻 4 (基準とするクロ ックエツヂの時刻) に対して遅く した方が、 ここまでのサイクル時間つ まりセンスアンプのラツチまでのサイクル時間の実力は向上する。 従つ て、 この遅延時間の値はクロックからデータ出力までのアクセス時間と サイクル時間の間のトレ一 ドオフを決める遅延時間となる。  In the example shown in Fig. 12, the data output corresponding to the address input is output based on the clock at time 5. In other words, if the SACK is too slow, that is, if the SA output is too slow, subsequent processing may not be able to keep up with this Data output. However, if this timing is delayed with respect to time 4 (clock time of the reference clock edge), the ability of the cycle time up to this point, that is, the cycle time up to the latch of the sense amplifier, is improved. Therefore, the value of this delay time is a delay time that determines the trade-off between the access time from the clock to the data output and the cycle time.
なお、 Word 線は次回のバンク選択信号 (RAS が Low になる) を受け て立ち下がる様に設定する。 すなわち、 Word 線の立ち下がりタイ ミ ング もその立ち上がりのタイ ミ ングを決めるクロックの立ち上がりエツヂと は別のエツヂを基準とすることで、 正常動作が保証できる。  The Word line is set to fall upon receiving the next bank selection signal (RAS goes low). In other words, normal operation can be assured by setting the falling timing of the Word line to a different edge from the rising edge of the clock that determines the timing of the rising edge.
図 1 3に本発明を用いた SDRAM の動作タイ ミ ングを示す。図 1 3も図 1 2の場合とほぼ同様である力く、 異なるのはセンスアンプの活性化タイ ミ ングが、 図 1 2の場合よりも 1サイクル早いク口ックエツヂを用いる 点である。 そのため、 図 1 2の場合よりもさらに高速なサイクル時間に 対応することが出来る。 Figure 13 shows the operation timing of the SDRAM using the present invention. FIG. 13 is also substantially the same as FIG. 12 except that the activation timing of the sense amplifier uses one cycle earlier than the case of FIG. As a result, the cycle time is faster than in the case of Fig. 12. Can respond.
現在の SDRAM では、 RAS から CAS までの入力の間隔は minimum 時間 が仕様として規定されている。 しかし、 本発明の様な構成を取るセンス アンプの場合には、 時間の絶対値を規定するのではなく、 サイクル数す なわち RAS 入力から最低何サイクル後に CAS を入力して良いかと言う 仕様とすればよい。  In the current SDRAM, minimum time is specified as the interval between RAS and CAS input. However, in the case of the sense amplifier having the configuration according to the present invention, the absolute value of the time is not specified, but the number of cycles, that is, the minimum number of cycles after the RAS input before the CAS can be input and the specification. do it.
本実施例による利点は、 RAS からのアクセスすなわちバンク情報が与 えられてからデータを出力するまでの遅延時間が短い SDRAM を得るこ とが出来る点にある。  An advantage of the present embodiment is that it is possible to obtain an SDRAM having a short delay time from the access from the RAS, that is, the supply of bank information to the output of data.
図 1 4に他の例を示す。 本タイ ミ ング例では更に RAS から CAS まで のサイクル数が減少した場合のタイ ミ ング例を示す。 本例によれば図 1 2、図 1 3よりもアクセスサイクル数の小さい SDRAM を得ることが出来 る。  Figure 14 shows another example. This timing example shows a timing example when the number of cycles from RAS to CAS is further reduced. According to this example, an SDRAM having a smaller number of access cycles than in FIGS. 12 and 13 can be obtained.
図 1 2、 図 1 3、 図 1 4の場合には DLL 等のクロック回路によって、 センスアンプの活性化時刻を基準時刻よりもさかのぼらせる必要があつ たが、 基準クロックよりも後にセンスアンプの活性化しても良い。  In the case of Fig. 12, Fig. 13, and Fig. 14, it is necessary to make the activation time of the sense amplifier backward from the reference time by the clock circuit such as DLL. It may be activated.
図 1 5に基準クロックよりも後にセンスアンプの活性化する例を示す。 この様な構成をとつても、 ク口ック周波数が増大すれば自動的に図示し たマ一ジンが低減し、 メモリセル特性、 デコーダ特性、 センスアンプ特 性等により決まる最高のサイクルの性能を得ることが出来ると言う利点 がある。 しかも、 本例では DLL 、 PLL 等の多少複雑なクロック回路を組 み込む必要がない、 と言う利点もある。  FIG. 15 shows an example in which the sense amplifier is activated after the reference clock. Even with such a configuration, if the peak frequency increases, the illustrated margins are automatically reduced, and the highest cycle performance determined by memory cell characteristics, decoder characteristics, sense amplifier characteristics, etc. There is an advantage that can be obtained. In addition, in this example, there is an advantage that it is not necessary to incorporate a somewhat complicated clock circuit such as a DLL or a PLL.
図 1 6に他の SDRAM のタイ ミ ング例を示す。 この図は 2 つあるバン ク間の切り換えがある場合の内部動作のタイ ミ ングを示す。 クロックァ クセス、 時間及びバンク間の切り換え時間とも出力ピンでのデータの衝 突が起こらない条件で最小のサイクル数となる場合の例を示している。 次に、 マイクロコンピュー夕に内蔵されるキヤッシュメモリに本発明 を用いた例を考える。マイクロコンピュータ中は一般に PLL で制御され ており、一定の位相の信号で制御されている。本発明で用いる PLL では そのループ中に周波数によって遅延時間の変化する遅延回路と、 これに よっては遅延時間が変化せず一定な遅延時間を持つ遅延回路の両方を含 んだ PLL が必要となる。 Figure 16 shows another SDRAM timing example. This figure shows the timing of the internal operation when there is a switch between two banks. An example is shown in which the clock access, time, and switching time between banks have the minimum number of cycles under the condition that no data collision occurs at the output pin. Next, an example in which the present invention is applied to a cache memory built in a microcomputer will be considered. In a microcomputer, it is generally controlled by a PLL, and is controlled by a signal with a fixed phase. In the PLL used in the present invention, a PLL including both a delay circuit whose delay time varies depending on the frequency in the loop and a delay circuit having a constant delay time without changing the delay time is required. .
この様な PLL 組み込んだマイクロコンピュー夕には本発明のキヤッ シュメモリを内臓可能となる  A microcomputer incorporating such a PLL can incorporate the cache memory of the present invention.
マイクロコンピュータに本発明によるキヤッシュメモリに組み込めば、 デバイスの限界のみから決まるキヤッシュメモリの高速サイクル性能が 得られる  By incorporating the cache memory according to the present invention into a microcomputer, the high-speed cycle performance of the cache memory, which is determined only by the limitations of the device, can be obtained.
本発明の他の実施例として、 ロジック内蔵 DRAM を構成することがで きる。 すなわち、 マイクロコンピュータ、 あるいはグラフィ ック回路等 の論理回路と共に集積された DRAM にも本発明を適用することが可能で ある。  As another embodiment of the present invention, a DRAM with built-in logic can be configured. That is, the present invention can be applied to a microcomputer or a DRAM integrated with a logic circuit such as a graphic circuit.
この例によれば、 マイクロコンピュー夕のサイクル時間を律速する、 キャッシュメモリのサイクル時間が向上する結果、 マイクロコンピュー 夕の動作時間を向上させることが出来る。  According to this example, the cycle time of the microcomputer is limited, and the cycle time of the cache memory is improved. As a result, the operation time of the microcomputer can be improved.
次にクロック同期回路の配置についての他の例を示す。  Next, another example of the arrangement of the clock synchronization circuit will be described.
図 1 7は、 SRAM におけるチップレイァゥ 卜の例を示す。 チップ中心部 と両脇に 3列の入出力パッ ドの列が有り、 アドレス信号、 制御系信号の 入力は主に中心のパッ ド列から、 データ出力、 および Echo Clock 出力 当の出力は両脇のパッ ド列に割り振ってある。 これによりデータの入力 から出力までの信号伝播距離が短くなり、 サイクル時間の高速化が可能 となっている。  FIG. 17 shows an example of a chip layout in an SRAM. There are three rows of input / output pads on the center and on both sides of the chip. The input of address and control signals is mainly from the center pad row, data output, and Echo Clock output. Pad rows. As a result, the signal propagation distance from the data input to the output is shortened, and the cycle time can be shortened.
DLL, SMD 等のクロック同期化回路は両脇のパッ ドの中央の 2個所に 設ける。 これにより出力パッ ドまでの距離が短くなりクロックとデータ のスキュ一を小さくすることが出来る。 Clock synchronization circuits such as DLL and SMD are located at the center of the pad on both sides. Provide. This reduces the distance to the output pad and reduces the skew between clock and data.
図 1 8は、 Register- Latch (R/いタイプのシンクロナス D R A Mへの 応用例を示す。  Figure 18 shows an example of application to Register-Latch (R / I type synchronous DRAM).
R Z Lタイプのシンクロナス D R A Mとは、 メモリに対する入力はレ ジス夕タイプすなわちクロック入力の立ち上がり、 あるいは立ち下がり のエツジの時刻における値を取り込み、 メモリからの出力はクロック信 号が Highの場合にデータが出カラツチに固定され、 クロック信号が Low の場合には出カラツチがスルー状態となるタイプのシンクロナスメモリ である。  An RZL type synchronous DRAM is a type in which the input to the memory is a register type, that is, the value at the edge of the rising or falling edge of the clock input is fetched, and the output from the memory is the data when the clock signal is high. This type of synchronous memory is fixed to the output color and the output color is in a through state when the clock signal is low.
この場合、 図 1の場合と異なり、 センスアンプは時刻 2すなわち、 図 1 8のクロック信号の立ち下がりを基準として出力ピンを不定とするた め、 センスアンプの活性化信号 SACKは図 1の場合とは異なり、 クロック 信号の立ち下がり時刻 2を基準として動作するようにすればよい。 これ により、 本発明の他の実施例と同様に、 図 1 8における時刻 1 と時刻 2 の間の時間が変動し、 これがそのまま SACKを前後させるため、 時刻 1及 び時刻 2の間の時間に比例してヮー ド線の活性化からセンスアンプの活 性化までの時間を制御することができる。 このため、 サイクル時間の高 速化に伴ってセンスアンプ活性化時間が前へずれるため、 クロックの高 速化に伴ってセンスアンプの活性化のマージンを増減させることができ る。  In this case, unlike the case of Fig. 1, the sense amplifier makes the output pin undefined based on the time 2, that is, the falling edge of the clock signal in Fig. 18. Unlike this, the operation may be performed based on the falling time 2 of the clock signal. As a result, as in the other embodiments of the present invention, the time between time 1 and time 2 in FIG. 18 fluctuates, and this causes the SACK to go back and forth as it is. The time from the activation of the line to the activation of the sense amplifier can be controlled in proportion. For this reason, the sense amplifier activation time shifts forward with an increase in the cycle time, so that the sense amplifier activation margin can be increased or decreased with an increase in the clock speed.
図 1 9に Register- Through (R/T)タイプのシンクロナスメモリへの応 用例を示す。  Figure 19 shows an example of application to Register-Through (R / T) type synchronous memory.
R/Tタイプのシンクロナスメモリ とは、 信号入力にはレジスタを用い るが出力にはレジスタやラッチを用いないタイプのメモリである。 この場合、 図 1 9に示すように、 入力のレジスタで決まる時間のみ、 すなわちヮ一ド線に有効なデータが保持されている時間のみ有効な出力 データが保持される。 従って、 R/Lタイプ、 R/Rタイプと比較すると、 出 力データの保持時間は短くなるが、 ァドレスからデータ出力までの絶対 時間を短縮することができる。 R / T type synchronous memory is a type of memory that uses registers for signal input but does not use registers or latches for output. In this case, as shown in Figure 19, only the time determined by the input register That is, valid output data is held only while valid data is held on the lead line. Therefore, compared with the R / L type and R / R type, the output data holding time is shorter, but the absolute time from address to data output can be shortened.
図 1 9に見られるように、 センスアンプの活性化時刻すなわち、 SACK の基準時刻はクロック信号のエッジであるが、 入力信号を取り込み、 次 のエツジとなっており、この間すなわちクロック信号が Highの時間が短 くなれば、それに伴ってヮ一ド線立ち上がりから SACKまでの時間も短く なる。  As shown in Fig. 19, the activation time of the sense amplifier, that is, the reference time of SACK is the edge of the clock signal, but the input signal is fetched and the next edge occurs, during which the clock signal is high. The shorter the time, the shorter the time from the rise of the lead line to SACK.
図 2 0はシンクロナスメモリへの書込み時のヮ一ド線とビッ ト線の関 係を示す。 図 2 0に示したように、 ヮ一ド線を時刻 1を基準として立ち 上げ、 時刻 3を基準として立ち下げる場合、 本発明によればビッ 卜線も ワード線と同じ時刻を基準として立ち下げる。 この方式によれば、 ヮー ド線とビッ ト線の時刻を相対的に合わせることが可能となり、 プロセス 変動、 電源電圧変動、 温度変動などの条件変化によってもワード線とビ ッ ト線の間の相対的な時間の変化が小さくなる設計を可能とする。 これ により、 回路がより高速で動作し、 M O Sデバイスなどの特性のばらつ きによっても誤動作することが少ないという効果がある。  FIG. 20 shows the relationship between the lead line and the bit line when writing to the synchronous memory. As shown in FIG. 20, according to the present invention, when the gate line rises based on time 1 and falls based on time 3, according to the present invention, the bit line also falls based on the same time as the word line. . According to this method, the time of the word line and the bit line can be relatively synchronized, and the time between the word line and the bit line can be changed due to process changes, power supply voltage changes, temperature changes, and other conditions. This enables a design in which a change in relative time is small. This has the effect that the circuit operates at higher speed and malfunctions are less likely to occur due to variations in characteristics of the MOS device and the like.
図 2 1は本願発明の他の実施例として、 Synchronous Mirror Delay (SMD)回路を用いた例を示す。 SMDは供給される外部クロック信号に対し て同期した内部ク口ック信号を生成するための回路であり、 ISSCC'96等 の学会で発表されている。 PLL,DLL等の他の同期ク口ック信号発生回路 と比較すると、 2サイクルという少ないサイクル数で同期した内部回路 が得られると言う特徴を持っている。  FIG. 21 shows another embodiment of the present invention in which a synchronous mirror delay (SMD) circuit is used. SMD is a circuit for generating an internal clock signal synchronized with a supplied external clock signal, and has been announced at conferences such as ISSCC'96. Compared to other synchronous clock signal generation circuits such as PLL and DLL, it has the feature that a synchronized internal circuit can be obtained with as few as two cycles.
図 2 1は、 SMDの典型的な回路を示す。 外部入力クロックから 2サイ クル(2tCK)遅れて外部ク口ックにその位相が同期した内部ク口ック信号 を発生する。 本方式の課題の一つはその精度にある。 内部クロック信号 の外部クロック信号に対する同期の精度を向上させようとすると、 図 2 1に示す foward delay 2 1 2 , backward delay 2 1 4を構成する遅延回 路の一段あたりの遅延時間を短く しなければならず、 そのためには非常 に短い遅延回路が必要になる。 すなわち、 ゲート回路で発生可能な最小 の単位遅延時間以下の精度で出力クロック信号を入力クロック信号に同 期させることは困難である。 Figure 21 shows a typical SMD circuit. Internal clock signal whose phase is synchronized with the external clock two cycles (2tCK) later than the external input clock Occurs. One of the problems of this method is its accuracy. In order to improve the accuracy of the synchronization of the internal clock signal with the external clock signal, the delay time per stage of the delay circuit constituting the foward delay 2 12 and backward delay 2 14 shown in Fig. 21 must be shortened. This requires a very short delay circuit. That is, it is difficult to synchronize the output clock signal with the input clock signal with an accuracy equal to or less than the minimum unit delay time that can be generated by the gate circuit.
本実施例では SMDと DLLを組み合わせ、 SMDで大まかな精度が合つたク ロック信号を発生し、 これを更に DLLにより高精度化する。 これにより、 SMDで問題となる一段あたりの最小の delayに律速されていた内部クロ ック信号の精度を飛躍的に向上させることができる。  In this embodiment, the SMD and the DLL are combined, and a clock signal with a roughly accurate combination is generated by the SMD, and this is further improved by the DLL. As a result, the accuracy of the internal clock signal, which is limited by the minimum delay per stage, which is a problem in SMD, can be dramatically improved.
図 2 2に具体例を示す。 外部入力と SMDの出力信号を位相比較器 2 2 1に入力し、 その出力によって電圧制御遅延回路 2 2 0で SMDの出力信 号を制御することにより、 外部ク口ック信号により精度良く合った内部 クロック信号を発生することができる。 図 2 1 と比較すると、 delay b 2 1 5における遅延時間を d2ではなく、 これよりも短い時間(d2 d3)に 設定する。 このときの全体の和は、  Fig. 22 shows a specific example. The external input and the output signal of the SMD are input to the phase comparator 222, and the output controls the output signal of the SMD with the voltage control delay circuit 220 to more accurately match the external clock signal. Can generate an internal clock signal. Compared to Fig. 21, the delay time in delay b2 15 is set not d2 but to a shorter time (d2 d3). The total sum at this time is
dl ltCK+ (tCK-dl -d2) +d2-d3}d(VCD)=2tCK-d3+d(VCD)  dl ltCK + (tCK-dl -d2) + d2-d3} d (VCD) = 2tCK-d3 + d (VCD)
となる。 ここで、 d(VCD)は電圧制御遅延回路 2 2 0による遅延時間を示 す。 従って d(VCD)を d3にあわせることができれば、 内部クロックは外 部クロックに同期する。  Becomes Here, d (VCD) indicates a delay time by the voltage control delay circuit 220. Therefore, if d (VCD) can be adjusted to d3, the internal clock is synchronized with the external clock.
この実施例によれば、 DLLのみを用いる場合と比較して、 クロック入 力信号に同期した内部ク口ック信号を発生するまでの時間を短くできる という効果がある。 また、 本実施例によれば、 SMD回路により大体の位 相が合ったクロック信号を微調整するため、 DLLの欠点であった内部ク 口ックを生成するのに比較的多いサイクルが必要である問題を解決でき る。 According to this embodiment, there is an effect that the time until an internal clock signal synchronized with the clock input signal is generated can be shortened as compared with the case where only the DLL is used. In addition, according to the present embodiment, since the SMD circuit finely adjusts the clock signal having almost the same phase, a relatively large number of cycles are required to generate the internal clock, which is a disadvantage of the DLL. Can solve a certain problem You.
また、 DLLにより遅延時間を電圧で変化させる VCO(Voltage Controlled Delay)部の受け持つ遅延時間は、通常の DLLのみで構成したときに比べ て遅延時間の調整可能な幅を小さくとることができ、 これによつて出力 の精度を向上することができる。  In addition, the delay time assigned to the VCO (Voltage Controlled Delay) part, in which the delay time is changed by voltage using the DLL, is smaller than that of a normal DLL only. Thus, the output accuracy can be improved.
産業上の利用可能性  Industrial applicability
本願において開示される発明のうち代表的なものによって得られる効 果を簡単に説明すれば下記のとおりである。  The effects obtained by typical aspects of the invention disclosed in the present application will be briefly described as follows.
すなわち、デバイスの性能で決まる最高の性能のセンスアンプ回路が、 歩留まりの低下という副作用なしに実現可能である。 また、 本願の他の 効果は、 設計終了後にデバイス性能が変更されてもそれぞれのデバイス 性能最高の特性を得ることが出来る、 すなわち設計段階でセンスアンプ の動作マージンを決める必要がないという効果が選られる  That is, a sense amplifier circuit with the highest performance determined by the performance of the device can be realized without the side effect of decreasing the yield. Another advantage of the present application is that even if the device performance is changed after the design is completed, the best characteristics of each device performance can be obtained, that is, there is no need to determine the operation margin of the sense amplifier at the design stage. Be

Claims

請 求 の 範 囲 The scope of the claims
1 . クロック信号が入力されるクロック端子と、 処理すべき信号が入力 される内部回路とを有し、 上記ク口ック信号の第 1の時刻を基準として 上記処理すべき信号を上記内部回路に入力し、 上記ク口ック信号の第 2 の時刻を基準として上記内部回路を動作させる同期型集積回路。  1. A clock terminal to which a clock signal is input, and an internal circuit to which a signal to be processed is input, wherein the signal to be processed is referred to as the internal circuit based on a first time of the click signal. And a synchronous integrated circuit that operates the internal circuit based on a second time of the quick signal.
2 . 上記処理すべき信号を第 3の時刻に上記内部回路に入力し、 上記内 部回路を第 4の時刻に動作させる際に、 上記第 1の時刻と第 3の時刻の 時間間隔が一定であり、 上記第 2の時刻と第 4の時刻の時間間隔が一定 である請求項 1記載の同期型集積回路。  2. When the signal to be processed is input to the internal circuit at the third time and the internal circuit is operated at the fourth time, the time interval between the first time and the third time is constant. 2. The synchronous integrated circuit according to claim 1, wherein a time interval between the second time and the fourth time is constant.
3 . 上記同期型集積回路はアドレス信号で読み出しが指定される複数の メモリセルを含むメモリアレイと、 上記ァドレス信号で指定されたメモ リセルから読み出された信号を増幅するセンスアンプとを含み、 上記処 理すべき信号が上記メモリセルから読み出された信号であり、 上記内部 回路が上記センスアンプであり、 上記第 1の時刻を基準として上記ァド レス信号で上記メモリセルを指定し、 上記第 2の時刻を基準として上記 センスアンプの増幅動作を開始する請求項 1記載の同期型集積回路。 3. The synchronous integrated circuit includes a memory array including a plurality of memory cells specified to be read by an address signal, and a sense amplifier that amplifies a signal read from the memory cell specified by the address signal, The signal to be processed is a signal read from the memory cell; the internal circuit is the sense amplifier; and the address signal specifies the memory cell based on the first time. 2. The synchronous integrated circuit according to claim 1, wherein an amplification operation of said sense amplifier is started based on said second time.
4 . 上記第 1の時刻における上記ァドレスを信号デコードするデコーダ を有し、 該デコ一ドされたァドレスで指定されたメモリセルから読み出 された信号を、 上記第 2の時刻を基準として増幅動作を開始した上記セ ンスアンプで増幅する請求項 3記載の同期型集積回路。 4. A decoder which decodes the address at the first time and decodes a signal read from a memory cell designated by the decoded address with reference to the second time. 4. The synchronous integrated circuit according to claim 3, wherein the amplification is performed by the sense amplifier that has started the operation.
5 . 上記デコ一ドされたァドレスで指定されたメモリセルから信号が読 み出される時刻と、 上記センスアンプの増幅が開始される時刻が、 上記 ク口ック信号のサイクル時間により変化する請求項 4記載の同期型集積 回路。  5. The time at which a signal is read from the memory cell designated by the decoded address and the time at which amplification of the sense amplifier is started are changed by the cycle time of the clock signal. Item 4. The synchronous integrated circuit according to item 4.
6 . 上記第 1の時刻が上記クロック信号のパルスの第 1の立ち上がりの 時刻であり、 上記第 2の時刻が上記ク口ック信号のパルスの第 2の立ち  6. The first time is the first rising time of the clock signal pulse, and the second time is the second rising time of the clock signal pulse.
23 twenty three
盯正された用紙 (規則 91) 上がりの時刻であり、 上記第 2の立ち上がりは上記第 1の立ち上がりの 次のパルスの立ち上がりである請求項 1乃至 5のうちいずれかに記載の 同期型集積回路。 盯 Corrected paper (Rule 91) The synchronous integrated circuit according to any one of claims 1 to 5, wherein the rising time is a rising time, and the second rising is a rising of a pulse next to the first rising.
7 . クロック信号に基づいて動作する半導体記憶装置であって、 情報を 蓄積する複数のメモリセルと、 該メモリセルの少なくとも一つを指定す るためのァドレス信号をデコ一ドするデコーダと、 該ァドレス信号によ つて指定されたメモリセルに蓄積された情報を反映した出力信号を出力 する出力線と、 該出力信号を増幅する増幅器とを有し、 上記デコーダは 上記ク口ック信号の第 1の時刻のァドレス信号をデコードし、 上記出力 線は上記第 1の時刻の所定時間後である第 2の時刻に上記出力信号を出 力し、 上記増幅器は上記第 1の時刻とは異なる第 3の時刻から所定時間 ずれた第 4の時刻に活性化される半導体記憶装置。  7. A semiconductor memory device operating based on a clock signal, comprising: a plurality of memory cells for storing information; a decoder for decoding an address signal for designating at least one of the memory cells; An output line for outputting an output signal reflecting information stored in a memory cell designated by the address signal; and an amplifier for amplifying the output signal. Decoding the address signal at time 1, the output line outputs the output signal at a second time that is a predetermined time after the first time, and the amplifier outputs a second signal different from the first time. A semiconductor memory device that is activated at a fourth time that is shifted by a predetermined time from the time of 3.
8 . 上記第 1の時刻は上記ク口ック信号の第 1のパルスの立ち上がりま たは立ち下がりであり、 上記第 3の時刻は上記ク口ック信号の第 1のパ ルスの後に来る第 2のパルスの立ち上がりまたは立ち下がりである請求 項 7記載の半導体記憶装置。  8. The first time is the rising or falling edge of the first pulse of the close signal, and the third time is after the first pulse of the close signal. 8. The semiconductor memory device according to claim 7, wherein the rising edge or the falling edge of the second pulse.
9 . 上記増幅器は上記第 1の時刻とは異なる第 3の時刻の所定時間前で ある第 4の時刻に活性化される請求項 7または 8の半導体記憶装置。 9. The semiconductor memory device according to claim 7, wherein the amplifier is activated at a fourth time which is a predetermined time before a third time different from the first time.
1 0 . 上記増幅器は上記第 1の時刻とは異なる第 3の時刻の所定時間後 である第 4の時刻に活性化される請求項 7または 8の半導体記憶装置。10. The semiconductor memory device according to claim 7, wherein the amplifier is activated at a fourth time, which is a predetermined time after a third time different from the first time.
1 1 . 上記第 1のパルスと第 2のパルスは連続したパルスである請求項 8乃至 1 0のうちいずれかに記載の半導体記憶装置。 11. The semiconductor memory device according to claim 8, wherein the first pulse and the second pulse are continuous pulses.
1 2 . 上記増幅器が正帰還をかけて増幅する請求項 7乃至 1 1のうちい ずれかに記載の半導体記憶装置。  12. The semiconductor memory device according to claim 7, wherein the amplifier amplifies by applying positive feedback.
1 3 . 上記クロック信号を]) LL回路、 SMD回路、 もしくは PLL回路で処 理することにより、 上記第 4の時刻のタイミングを形成する請求項 7乃  13. The timing of the fourth time is formed by processing the clock signal by an LL circuit, an SMD circuit, or a PLL circuit.
24 twenty four
Π*正された用紙 (規則 91) 至 1 2のうちいずれかに記載の半導体記憶装置。 Π * Correct paper (Rule 91) 13. The semiconductor memory device according to any one of to 12.
1 4 . 上記 DLL回路または PLL回路は、 そのループの中に、 上記クロッ ク信号の周波数によって遅延時間が変化する第 1の遅延回路と、 上記ク 口ック信号の周波数によらず遅延時間が一定な第 2の遅延回路と有する 請求項 1 3記載の半導体記憶装置。  14. The DLL circuit or the PLL circuit includes a first delay circuit whose delay time varies depending on the frequency of the clock signal, and a delay time independent of the frequency of the clock signal. 14. The semiconductor memory device according to claim 13, further comprising a fixed second delay circuit.
1 5 . 前記複数のメモリセルにはそれぞれヮ一 ド線が接続されており、 該ヮー ド線は前記第 3の時刻を基準として非選択とされる請求項 7乃至 1 4のうちのいずれかに記載の半導体記憶装置。  15. A plurality of memory cells each having a lead line connected thereto, and the lead lines are not selected on the basis of the third time. 3. The semiconductor memory device according to claim 1.
1 6 . 外部から活性化時刻が入力されるセンスアンプを備えた同期型集 積回路において、 上記センスアンプが増幅すべき信号の入力時刻が基準 とする時刻とは別の時刻を基準として、 上記センスアンプを活性化させ ることを特徴とする同期型集積回路。  16. In a synchronous integrated circuit having a sense amplifier to which an activation time is inputted from the outside, a time different from the time based on the input time of a signal to be amplified by the sense amplifier is used as a reference. A synchronous integrated circuit characterized by activating a sense amplifier.
1 7 . 前記センスアンプの活性化時刻の基準となるのが、 増幅すべき信 号の入力時刻が基準とするク口ックエツヂの次のク口ックエツヂである ことを特徴とする請求項 1 6の同期型集積回路  17. The reference of the activation time of the sense amplifier is a reference next to a reference which is based on an input time of a signal to be amplified. Synchronous integrated circuit
1 8 . 外部からのクロック信号で活性化時刻が指定されるセンスアンプ を備えた同期型集積回路において、 上記ク口ック信号のクロック周期の 変化量の絶対値と、 上記のセンスアンプの活性化時刻と増幅すべき信号 のセンスアンプへの入力時刻の時間間隔が、 対応して変化する同期型集 積回路。  18. In a synchronous integrated circuit having a sense amplifier whose activation time is designated by an external clock signal, the absolute value of the amount of change in the clock cycle of the clock signal and the activation of the sense amplifier A synchronous integrated circuit in which the time interval between the activation time and the input time of the signal to be amplified to the sense amplifier changes correspondingly.
1 9 . 位相比較器と該位相比較器により制御される可変遅延回路とを有 する同期ク口ック信号発生回路において、 上記位相比較器の入力信号に シンクロナスミラーディ レイ回路の入力および出力信号を用い、 上記シ ンクロナスミラーディ レイ回路中の遅延回路の一部に上記位相比較器出 力により制御する可変遅延回路を用いたことを特徴とする同期クロック 信号発生回路。 19. Synchronous cook signal generating circuit having a phase comparator and a variable delay circuit controlled by the phase comparator, wherein an input signal and an output of a synchronous mirror delay circuit are applied to the input signal of the phase comparator. A synchronous clock signal generating circuit using a signal and using a variable delay circuit controlled by the output of the phase comparator as a part of the delay circuit in the synchronous mirror delay circuit.
2 0 . クロック信号に基づいて動作する半導体記憶装置であって、 情報 を蓄積する複数のメモリセルと、 該メモリセルに接続されるデータ線及 びヮード線と、 上記データ線の出力信号を増幅するセンスアンプとを有 し、 20. A semiconductor memory device which operates based on a clock signal, comprising a plurality of memory cells for storing information, data lines and read lines connected to the memory cells, and an output signal of the data line. With a sense amplifier
上記メモリセルからの情報の読み出し時には、 上記データ線は上記ク 口ック信号の第 1の時刻の所定時間後である第 2の時刻に上記出力信号 を出力し、 上記センスアンプは上記第 1の時刻とは異なる第 3の時刻か ら所定時間ずれた第 4の時刻に活性化される半導体記憶装置。  When reading information from the memory cell, the data line outputs the output signal at a second time that is a predetermined time after the first time of the quick signal, and the sense amplifier outputs the first signal. A semiconductor memory device that is activated at a fourth time shifted by a predetermined time from a third time different from the third time.
2 1 . 上記メモリ ルへの情報の書込み時には、 上記データ線は上記ク 口ック信号の第 1の時刻と所定時間ずれた第 5の時刻に立ち上げられ、 上記ク口ック信号の第 2の時刻と所定時間ずれた第 6の時刻に立ち下げ られ、 上記ヮ一ド線は上記ク口ック信号の第 1の時刻と所定時間ずれた 第 Ίの時刻に立ち上げられ、 上記クロック信号の第 2の時刻と所定時間 ずれた第 8の時刻に立ち下げられる請求項 2 0の半導体記憶装置。  21. At the time of writing information to the memory, the data line rises at a fifth time which is different from the first time of the close signal by a predetermined time, and The second line is dropped at a sixth time that is different from the second time by a predetermined time, and the lead line is raised at a second time that is different from the first time of the click signal by a predetermined time. 20. The semiconductor memory device according to claim 19, wherein the signal falls at an eighth time that is different from the second time of the signal by a predetermined time.
2 2 . 前記メモリセルは SRAMまたは DRAMである請求項 2 0または 2 1 記載の半導体記憶装置。 22. The semiconductor memory device according to claim 20, wherein the memory cell is an SRAM or a DRAM.
PCT/JP1997/003327 1997-09-19 1997-09-19 Synchronous integrated circuit device WO1999016078A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU42221/97A AU4222197A (en) 1997-09-19 1997-09-19 Synchronous integrated circuit device
PCT/JP1997/003327 WO1999016078A1 (en) 1997-09-19 1997-09-19 Synchronous integrated circuit device
TW086116206A TW363186B (en) 1997-09-19 1997-10-30 Synchronized integrated circuit apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/003327 WO1999016078A1 (en) 1997-09-19 1997-09-19 Synchronous integrated circuit device

Publications (1)

Publication Number Publication Date
WO1999016078A1 true WO1999016078A1 (en) 1999-04-01

Family

ID=14181157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003327 WO1999016078A1 (en) 1997-09-19 1997-09-19 Synchronous integrated circuit device

Country Status (3)

Country Link
AU (1) AU4222197A (en)
TW (1) TW363186B (en)
WO (1) WO1999016078A1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US8565920B2 (en) 2000-01-24 2013-10-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8606401B2 (en) 2005-12-02 2013-12-10 Irobot Corporation Autonomous coverage robot navigation system
US8656550B2 (en) 2002-01-03 2014-02-25 Irobot Corporation Autonomous floor-cleaning robot
US8661605B2 (en) 2005-12-02 2014-03-04 Irobot Corporation Coverage robot mobility
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8761931B2 (en) 2005-12-02 2014-06-24 Irobot Corporation Robot system
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8868237B2 (en) 2006-03-17 2014-10-21 Irobot Corporation Robot confinement
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9420741B2 (en) 2014-12-15 2016-08-23 Irobot Corporation Robot lawnmower mapping
US9510505B2 (en) 2014-10-10 2016-12-06 Irobot Corporation Autonomous robot localization
US9516806B2 (en) 2014-10-10 2016-12-13 Irobot Corporation Robotic lawn mowing boundary determination
US9538702B2 (en) 2014-12-22 2017-01-10 Irobot Corporation Robotic mowing of separated lawn areas
US9554508B2 (en) 2014-03-31 2017-01-31 Irobot Corporation Autonomous mobile robot
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US10021830B2 (en) 2016-02-02 2018-07-17 Irobot Corporation Blade assembly for a grass cutting mobile robot
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US10459063B2 (en) 2016-02-16 2019-10-29 Irobot Corporation Ranging and angle of arrival antenna system for a mobile robot
US11115798B2 (en) 2015-07-23 2021-09-07 Irobot Corporation Pairing a beacon with a mobile robot
US11470774B2 (en) 2017-07-14 2022-10-18 Irobot Corporation Blade assembly for a grass cutting mobile robot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02166696A (en) * 1988-12-21 1990-06-27 Hitachi Ltd Memory
JPH04364609A (en) * 1990-12-26 1992-12-17 Xerox Corp Delay lock loop circuit for clock synchronism
JPH0831180A (en) * 1994-07-08 1996-02-02 Hitachi Ltd Semiconductor memory
JPH08237091A (en) * 1994-12-20 1996-09-13 Nec Corp Delay circuit device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02166696A (en) * 1988-12-21 1990-06-27 Hitachi Ltd Memory
JPH04364609A (en) * 1990-12-26 1992-12-17 Xerox Corp Delay lock loop circuit for clock synchronism
JPH0831180A (en) * 1994-07-08 1996-02-02 Hitachi Ltd Semiconductor memory
JPH08237091A (en) * 1994-12-20 1996-09-13 Nec Corp Delay circuit device

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8565920B2 (en) 2000-01-24 2013-10-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US9167946B2 (en) 2001-01-24 2015-10-27 Irobot Corporation Autonomous floor cleaning robot
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8656550B2 (en) 2002-01-03 2014-02-25 Irobot Corporation Autonomous floor-cleaning robot
US8671507B2 (en) 2002-01-03 2014-03-18 Irobot Corporation Autonomous floor-cleaning robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8781626B2 (en) 2002-09-13 2014-07-15 Irobot Corporation Navigational control system for a robotic device
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8456125B2 (en) 2004-01-28 2013-06-04 Irobot Corporation Debris sensor for cleaning apparatus
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US9360300B2 (en) 2004-03-29 2016-06-07 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US10470629B2 (en) 2005-02-18 2019-11-12 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8966707B2 (en) 2005-02-18 2015-03-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8782848B2 (en) 2005-02-18 2014-07-22 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8954192B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Navigating autonomous coverage robots
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US8761931B2 (en) 2005-12-02 2014-06-24 Irobot Corporation Robot system
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
US8606401B2 (en) 2005-12-02 2013-12-10 Irobot Corporation Autonomous coverage robot navigation system
US9149170B2 (en) 2005-12-02 2015-10-06 Irobot Corporation Navigating autonomous coverage robots
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US9599990B2 (en) 2005-12-02 2017-03-21 Irobot Corporation Robot system
US8950038B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Modular robot
US10524629B2 (en) 2005-12-02 2020-01-07 Irobot Corporation Modular Robot
US8661605B2 (en) 2005-12-02 2014-03-04 Irobot Corporation Coverage robot mobility
US9043952B2 (en) 2006-03-17 2015-06-02 Irobot Corporation Lawn care robot
US11194342B2 (en) 2006-03-17 2021-12-07 Irobot Corporation Lawn care robot
US9713302B2 (en) 2006-03-17 2017-07-25 Irobot Corporation Robot confinement
US8954193B2 (en) 2006-03-17 2015-02-10 Irobot Corporation Lawn care robot
US10037038B2 (en) 2006-03-17 2018-07-31 Irobot Corporation Lawn care robot
US9043953B2 (en) 2006-03-17 2015-06-02 Irobot Corporation Lawn care robot
US8868237B2 (en) 2006-03-17 2014-10-21 Irobot Corporation Robot confinement
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US8528157B2 (en) 2006-05-19 2013-09-10 Irobot Corporation Coverage robots and associated cleaning bins
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US9554508B2 (en) 2014-03-31 2017-01-31 Irobot Corporation Autonomous mobile robot
US11452257B2 (en) 2014-10-10 2022-09-27 Irobot Corporation Robotic lawn mowing boundary determination
US10067232B2 (en) 2014-10-10 2018-09-04 Irobot Corporation Autonomous robot localization
US10750667B2 (en) 2014-10-10 2020-08-25 Irobot Corporation Robotic lawn mowing boundary determination
US9516806B2 (en) 2014-10-10 2016-12-13 Irobot Corporation Robotic lawn mowing boundary determination
US9510505B2 (en) 2014-10-10 2016-12-06 Irobot Corporation Autonomous robot localization
US9854737B2 (en) 2014-10-10 2018-01-02 Irobot Corporation Robotic lawn mowing boundary determination
US10274954B2 (en) 2014-12-15 2019-04-30 Irobot Corporation Robot lawnmower mapping
US11231707B2 (en) 2014-12-15 2022-01-25 Irobot Corporation Robot lawnmower mapping
US9420741B2 (en) 2014-12-15 2016-08-23 Irobot Corporation Robot lawnmower mapping
US10159180B2 (en) 2014-12-22 2018-12-25 Irobot Corporation Robotic mowing of separated lawn areas
US10874045B2 (en) 2014-12-22 2020-12-29 Irobot Corporation Robotic mowing of separated lawn areas
US9826678B2 (en) 2014-12-22 2017-11-28 Irobot Corporation Robotic mowing of separated lawn areas
US20190141888A1 (en) 2014-12-22 2019-05-16 Irobot Corporation Robotic Mowing of Separated Lawn Areas
US9538702B2 (en) 2014-12-22 2017-01-10 Irobot Corporation Robotic mowing of separated lawn areas
US11589503B2 (en) 2014-12-22 2023-02-28 Irobot Corporation Robotic mowing of separated lawn areas
US11115798B2 (en) 2015-07-23 2021-09-07 Irobot Corporation Pairing a beacon with a mobile robot
US10021830B2 (en) 2016-02-02 2018-07-17 Irobot Corporation Blade assembly for a grass cutting mobile robot
US10426083B2 (en) 2016-02-02 2019-10-01 Irobot Corporation Blade assembly for a grass cutting mobile robot
US10459063B2 (en) 2016-02-16 2019-10-29 Irobot Corporation Ranging and angle of arrival antenna system for a mobile robot
US11470774B2 (en) 2017-07-14 2022-10-18 Irobot Corporation Blade assembly for a grass cutting mobile robot

Also Published As

Publication number Publication date
AU4222197A (en) 1999-04-12
TW363186B (en) 1999-07-01

Similar Documents

Publication Publication Date Title
WO1999016078A1 (en) Synchronous integrated circuit device
US7404018B2 (en) Read latency control circuit
JP4345204B2 (en) Semiconductor memory device
US7675791B2 (en) Synchronous memory device
US6477107B1 (en) Integrated circuit memory devices having data selection circuits therein which are compatible with single and dual data rate mode operation and methods of operating same
JP4936421B2 (en) DRAM, input control circuit, and input control method
US6982924B2 (en) Data output control circuit
US6351166B2 (en) Semiconductor device with stable and appropriate data output timing
US8867301B2 (en) Semiconductor device having latency counter to control output timing of data and data processing system including the same
JP4031859B2 (en) Semiconductor device
US6977848B2 (en) Data output control circuit
US20120008437A1 (en) Counter circuit, latency counter, semiconductor memory device including the same, and data processing system
US9036448B2 (en) Semiconductor device
US7450446B2 (en) Semiconductor memory device having delay circuit
US20230298645A1 (en) Memory device, operating method of the memory device and memory system comprising the memory device
US6717886B2 (en) Control circuit for an S-DRAM
JP3945897B2 (en) Semiconductor device
US7181638B2 (en) Method and apparatus for skewing data with respect to command on a DDR interface
JP2012226800A (en) Semiconductor device, control method thereof and information processing system
JP2002358782A (en) Semiconductor memory
US7791963B2 (en) Semiconductor memory device and operation method thereof
US7848178B2 (en) Semiconductor memory device and method for operating the same
US6407962B1 (en) Memory module having data switcher in high speed memory device
US6948014B2 (en) Register for the parallel-serial conversion of data
US6970395B2 (en) Memory device and method of reading data from a memory device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU BB BG BR CA CN CZ EE FI GE GH HU IL IS JP KG KR LK LR LT LV MD MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA