US5608567A - Variable transparency electro-optical device - Google Patents

Variable transparency electro-optical device Download PDF

Info

Publication number
US5608567A
US5608567A US08/500,642 US50064295A US5608567A US 5608567 A US5608567 A US 5608567A US 50064295 A US50064295 A US 50064295A US 5608567 A US5608567 A US 5608567A
Authority
US
United States
Prior art keywords
electro
cell
optical
plate
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/500,642
Inventor
Joachim Grupp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asulab AG
Original Assignee
Asulab AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH321891A external-priority patent/CH685176A5/en
Priority claimed from FR9115768A external-priority patent/FR2685102B1/en
Application filed by Asulab AG filed Critical Asulab AG
Priority to US08/500,642 priority Critical patent/US5608567A/en
Application granted granted Critical
Publication of US5608567A publication Critical patent/US5608567A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/04Eye-masks ; Devices to be worn on the face, not intended for looking through; Eye-pads for sunbathing
    • A61F9/06Masks, shields or hoods for welders
    • A61F9/065Masks, shields or hoods for welders use of particular optical filters
    • A61F9/067Masks, shields or hoods for welders use of particular optical filters with variable transmission
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/101Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having an electro-optical light valve
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks

Definitions

  • the invention relates to a variable transparency electro-optical device and more particularly to a device of this type applied to devices for protecting the eyes such as glasses comprising lenses composed of electro-optical cells which possess particularly high light absorption characteristics.
  • the field of application of the invention also comprises conventional sun glasses or medical glasses, as well as devices for protecting the eyes, such as welding goggles or the like.
  • Variable transparency glasses are currently known and are used notably as sun glasses and are of two types.
  • the first type comprises glasses provided with lenses termed photochromic lenses. These latter include a photochromic substance such as a silver salt and have the property of passing, automatically and reversibly, from an almost transparent state in the absence of sunlight to an absorbent state in the presence of sunlight.
  • a photochromic substance such as a silver salt
  • these glasses generally only permit absorption of a maximum amount of light of the order of 70 to 80% of the ambient light and then only after a reaction time of about ten minutes.
  • the regeneration time after the lenses are no longer irradiated is about 10 to 20 minutes and the transmission of these lenses in the transparent state is only about 80%, these lenses permanently retaining a slightly coloured appearance.
  • these glasses are virtually ineffective when used behind a glass surface since these polychromic lenses are substantially sensitive to ultraviolet light. These lenses are also very sensitive to temperature and will be more absorbent at low temperature than at high temperature to a similar quantity of ambient light.
  • the second type comprises glasses, the lenses of which are formed of electro-optical cells such as liquid crystal cells, such as the glasses described in the patent specification NO. PCT/IT87/00024.
  • This document relates to positive contrast liquid crystal cells of the dichroic type associated with an automatic or manual control circuit which makes it possible to change the cells from a transparent state to an absorbent state.
  • these cells transmit about 80% of the ambient light whereas they transmit about 40% in the absorbent state.
  • these glasses constitute a major advantage over photochromic glasses because they are active and their reaction time is virtually zero after the control circuit has been activated, it notably being possible to activate the latter by ambient light detection means or by a simple cut-out switch, they still present some disadvantages.
  • the object of the invention is thus a variable transparency electro-optical device comprising:
  • At least one lens composed of an electro-optical cell comprising a first plate and a second plate each provided with a control electrode and a sealing frame interposed between the two plates to form a sealed volume enclosing an electro-optical material
  • the cell comprises at least one element charged with a photochromic substance having a transmission which varies in reversible manner as a function of the intensity of the light impinging on said cell.
  • the element charged with a photochromic substance advantageously forms a screen against ultraviolet radiation so that the electro-optical material is protected thereagainst.
  • the absorptive effect of the electro-optical cells and the photochromic effect are complementary in numerous common situations.
  • the absorptive effect of the electro-optical cells and the photochromic effect are complementary in numerous common situations.
  • the absorption of the photochromic lenses is almost zero whereas that of the electro-optical cells is normally effective.
  • the wearer passes outdoors from a sunny area to a partially shaded area in which he wishes to be protected, the electro-optical cells are easily deactivated, the wearer then only benefiting from the absorptive effect of the photochromic lenses.
  • the element charged with a photochromic substance is formed by one of the plates of the electro-optical cell.
  • FIG. 1 is a partially exploded perspective view of an electro-optical device of the invention applied to a pair of glasses;
  • FIG. 2 is a diagrammatic section of an electro-optical device of the invention associated with an automatic circuit for controlling its transparency, equipping the glasses of FIG. 1.
  • electro-optical device according to the invention will be made in the context of its application in variable transparency glasses, but it is understood that a device of this kind can have other interesting applications, for example in welding goggles or the like or also to produce glass for windows.
  • electro-optical material used in the cell of the device of the invention described hereinafter is a mixture of liquid crystals
  • other types of electro-optical materials such as notably electrochromic materials may of course also be used.
  • FIG. 1 shows a pair of variable transparency liquid crystal glasses according to the invention and having the general reference 1.
  • These glasses are generally designed to protect the sight of their wearer against ambient light of strong intensity. More specifically, these glasses comprise a frame 2 into which are fitted in conventional manner lenses 4, the absorption characteristics of which vary reversibly as a function of the intensity of the light impinging on the lenses.
  • These lenses 4 are formed of liquid crystal cells which, as may be seen in particular from FIG. 2, each comprise a transparent front plate 6 and a transparent back plate 8 connected together by a sealing frame 10. These two plates 6, 8 and the frame 10 define a sealed volume enclosing a mixture 12 of liquid crystals and dichroic dyestuffs doped with a chiral agent.
  • the plates 6 and 8 are convex and each have on their inside face a transparent electrode 14, 16 covered by an alignment layer (not shown) which extends over the entirety of each plate.
  • the electrodes 14, 16 are composed for example of a mixture of indium oxides and tin oxides and the alignment layer is formed of silicon dioxide with a surfactant agent of the octadecyltrialkoxysilane type fixed thereto.
  • FIG. 2 also shows that the cells 4 are associated with an electrical control circuit 18 fed for example by a battery or by solar cells integrated in the frame 2 (not shown).
  • This circuit is connected to ambient light detection means 22 formed by one or several photosensitive sensors which deliver an electrical control signal representing the intensity of light which they receive.
  • This circuit also comprises two outputs connected to electrodes 14 and 16 respectively in order to control the degree of absorption of the cells.
  • the signal produced by the control circuit 18 is applied to the electrodes of the cells to vary the electrical field applied to the mixture 12 which they contain.
  • the effect of this variation is to modify the transmission of the cell which results in variation in its degree of light absorption.
  • the electro-optical cells 4 and the sensor 22 are disposed in relation to one another in such a way that incident light or ambient light reaches said cells first.
  • An arrangement of this type of the sensor or sensors notably makes it possible, as will be explained below, to obtain constant transmission in a range of the level of light.
  • the detection means can be disposed so as to be directly irradiated by the light rays which the device of the invention is designed to absorb.
  • each cell comprises at least one element charged with a photochromic substance, said element being disposed on the cell in such a manner that the ambient light reaches this element first when the glasses are worn by a user.
  • said element is formed by the plate 6 of the cell 4.
  • This plate is charged with a photochromic substance such as a silver salt and can be either a glass plate or of a synthetic material with optical properties equivalent to those of the glass.
  • a plate of synthetic material made of polyvinyl pyrolidine doped with microcrystals of AgCl is perfectly suitable.
  • This plate of synthetic material can also be made using films of laminated polyester on a synthetic plate, for example a plate sold under the reference CR 39 by ESSILOR, by means of an adhesive doped with polychromic spirooxazines.
  • the concentration of photochromic substance should preferably not exceed 3% by weight and the thickness of said element 6 is of the order of 1 mm.
  • said element can be formed of a supplementary plate directly applied to the plate 6 of the cells, for example by adhesion.
  • the lenses 4 formed by an electro-optical cell can be associated with a second electro-optical cell in the same support structure to reinforce the absorptive effect of the device for protecting the eyes such as welding goggles.
  • the second cell is placed behind the lenses 4 in relation to the ambient light and this cell can be an electro-optical cell of conventional variable transparency.
  • the applicant has conducted comparative measurements of the transmission (in % of light received) of a single electro-optical cell in a switched and a non-switched state, of a single photochromic lens and of the electro-optical device of the invention in a switched and non-switched state in the presence of and in the absence of light comprising UV radiation for purposes of illustration and to better demonstrate the advantageous results of combining the photochromic and electro-optical effects of the invention.
  • the measurements in the presence of light were made in the presence of a light source of 40 mW/cm 2 .
  • the electro-optical cell used is a liquid crystal cell comprising a dichroic mixture sold by MERCK under reference ZLI 4282, this mixture being doped with 0.85% by weight of a chiral agent sold by MERCK under reference S811.
  • the substrates of this cell are of glass.
  • the photochromic lenses used are standard photochromic lenses which can for example be obtained from Desag (Schott). It will also be noted that the results of the transmission measurements of the device of the invention were obtained with a device in which the charged element of a photochromic substance is applied to the electro-optical cell by adhesion.
  • This table shows that the device of the invention presents a degree of absorption that can vary over a large range as a function of the intensity of the ambient light.
  • the device of the invention can become very absorbent in the event of great luminosity and only transmit 9% of the ambient light compared to 20 and 40% with a photochromic lens alone and respectively a variable transparency electro-optical cell alone (in its switched state).
  • the device of the invention can also become very transmissive in the event of total interruption of the luminosity and transmit 70% of the ambient light (in the switched state of the electro-optical cell).
  • Such a level of transmission is substantially equal to the level of transmission of the photochromic lenses and electro-optical cells used on their own.
  • the transparency of the device can regulate itself so as to be substantially constant for periods of transition notably corresponding to the transition of a dark or poorly luminous medium to a clear or luminous medium.
  • the detection means initially receive almost all the light in such a way that they immediately control the darkening of the electro-optical cell when the photochromic substance has not yet reacted.
  • the wearer thus has immediate protection.
  • the photochromic element for example the photochromic substrate of the cell, begins to react progressively and in turn absorbs part of the ambient light.
  • the illumination of the detection means situated behind the cell is then diminished while the latter trigger a control signal which increases the transmission of the cell while the photochromic element darkens.
  • the cell deactivates immediately with the result that the device rapidly becomes less absorbent, the photochromic element then progressively loses its ability to absorb until it reaches a completely clear or sufficiently clear state for the device to be able to readjust itself once again as has been described above.

Abstract

The invention relates to a variable transparency electro-optical device comprising: at least one lens formed by an electro-optical cell (4) comprising a first plate (6) and a second plate (8) each provided with a control electrode (14, 16) and a sealing frame (10) interposed between the two plates to form a sealed volume enclosing an electro-optical material (12), voltage generating means (18) connected to said electrodes to apply a variable voltage to said material in order to automatically or manually vary the transmission of the cell (4) as a function of the ambient light. According to the invention the cell (4) comprises at least one element (6) charged with a photochromic substance having an absorption that varies in reversible manner as a function of the intensity of the light impinging on said cell. The invention has particular applications in devices for protecting the eyes.

Description

This is a continuation of application Ser. No. 08/084,223, filed on Jul. 5, 1993, now abandoned.
The invention relates to a variable transparency electro-optical device and more particularly to a device of this type applied to devices for protecting the eyes such as glasses comprising lenses composed of electro-optical cells which possess particularly high light absorption characteristics.
The field of application of the invention also comprises conventional sun glasses or medical glasses, as well as devices for protecting the eyes, such as welding goggles or the like.
Variable transparency glasses are currently known and are used notably as sun glasses and are of two types.
The first type comprises glasses provided with lenses termed photochromic lenses. These latter include a photochromic substance such as a silver salt and have the property of passing, automatically and reversibly, from an almost transparent state in the absence of sunlight to an absorbent state in the presence of sunlight.
By virtue of their nature, these glasses generally only permit absorption of a maximum amount of light of the order of 70 to 80% of the ambient light and then only after a reaction time of about ten minutes.
Moreover the regeneration time after the lenses are no longer irradiated is about 10 to 20 minutes and the transmission of these lenses in the transparent state is only about 80%, these lenses permanently retaining a slightly coloured appearance.
In addition, these glasses are virtually ineffective when used behind a glass surface since these polychromic lenses are substantially sensitive to ultraviolet light. These lenses are also very sensitive to temperature and will be more absorbent at low temperature than at high temperature to a similar quantity of ambient light.
Finally, it is difficult, for the same degree of absorption, to provide glasses of this kind having lenses less than several mm in thickness without the risk of reaching the limit of solubility of the photochromic substances and thus without the risk of causing the precipitation thereof.
This results in glasses which react passively and which are only relatively user-friendly if it is desired to obtain sun glasses that react immediately and efficiently in a large number of situations and notably behind a glass surface such as a windscreen of a motor vehicle.
The second type comprises glasses, the lenses of which are formed of electro-optical cells such as liquid crystal cells, such as the glasses described in the patent specification NO. PCT/IT87/00024.
This document relates to positive contrast liquid crystal cells of the dichroic type associated with an automatic or manual control circuit which makes it possible to change the cells from a transparent state to an absorbent state. In the transparent state, these cells transmit about 80% of the ambient light whereas they transmit about 40% in the absorbent state. Although these glasses constitute a major advantage over photochromic glasses because they are active and their reaction time is virtually zero after the control circuit has been activated, it notably being possible to activate the latter by ambient light detection means or by a simple cut-out switch, they still present some disadvantages.
These glasses have on the one hand a rather low coefficient of absorption with the result that the user is poorly protected in the present of strong light and may be inconvenienced. On the other hand, the plates of these cells have to be subjected to an anti-ultraviolet treatment to prevent premature degradation of the liquid crystal which, apart from the fact that it is costly, gives a yellowish and not very aesthetic appearance to the plates of the cells in their transparent state.
It is thus a main object of the invention to overcome the disadvantages of the above-mentioned prior art by providing a variable transparency electro-optical device which combines the advantageous features of the use of photochromic cells and of electro-optical cells.
The object of the invention is thus a variable transparency electro-optical device comprising:
at least one lens composed of an electro-optical cell comprising a first plate and a second plate each provided with a control electrode and a sealing frame interposed between the two plates to form a sealed volume enclosing an electro-optical material,
voltage generating means connected to said electrodes to apply a variable voltage to said material in order to vary the transmission of the cell automatically or manually as a function of the ambient light, this device being characterized in that the cell comprises at least one element charged with a photochromic substance having a transmission which varies in reversible manner as a function of the intensity of the light impinging on said cell.
These characteristics make it possible to produce a variable transparency electro-optical device having two successive absorption levels with two different reaction speeds which permit immediate and effective reaction to every light source and which, in addition, have a high coefficient of absorption to ambient light.
It will also be noted that the element charged with a photochromic substance advantageously forms a screen against ultraviolet radiation so that the electro-optical material is protected thereagainst.
In addition, dividing the absorption of the ambient light between the electro-optical material and an element charged with a photochromic substance makes it possible for the latter to be charged either with a lesser amount of said substance than that normally needed or to provide lenses of very low thickness which advantageously reduces the weight of the entire device.
It will be noted that especially in the application of a device of this kind to means for protecting the eyes such as glasses, the absorptive effect of the electro-optical cells and the photochromic effect are complementary in numerous common situations. Thus for example, in a motor vehicle in which the absorption of the photochromic lenses is almost zero whereas that of the electro-optical cells is normally effective. Moreover, when the wearer passes outdoors from a sunny area to a partially shaded area in which he wishes to be protected, the electro-optical cells are easily deactivated, the wearer then only benefiting from the absorptive effect of the photochromic lenses.
According to a preferred embodiment, the element charged with a photochromic substance is formed by one of the plates of the electro-optical cell.
It is also an object of the invention to provide a device of this type disposed in a supporting structure to form therewith a device for protecting the eyes.
Other advantages and features of the invention will emerge from study of the following detailed description of embodiments of the invention, given as non-limiting example, in connection with the appended drawings, in which:
FIG. 1 is a partially exploded perspective view of an electro-optical device of the invention applied to a pair of glasses; and
FIG. 2 is a diagrammatic section of an electro-optical device of the invention associated with an automatic circuit for controlling its transparency, equipping the glasses of FIG. 1.
The following description of the electro-optical device according to the invention will be made in the context of its application in variable transparency glasses, but it is understood that a device of this kind can have other interesting applications, for example in welding goggles or the like or also to produce glass for windows.
Whereas the electro-optical material used in the cell of the device of the invention described hereinafter is a mixture of liquid crystals, other types of electro-optical materials such as notably electrochromic materials may of course also be used.
FIG. 1 shows a pair of variable transparency liquid crystal glasses according to the invention and having the general reference 1. These glasses are generally designed to protect the sight of their wearer against ambient light of strong intensity. More specifically, these glasses comprise a frame 2 into which are fitted in conventional manner lenses 4, the absorption characteristics of which vary reversibly as a function of the intensity of the light impinging on the lenses.
These lenses 4 are formed of liquid crystal cells which, as may be seen in particular from FIG. 2, each comprise a transparent front plate 6 and a transparent back plate 8 connected together by a sealing frame 10. These two plates 6, 8 and the frame 10 define a sealed volume enclosing a mixture 12 of liquid crystals and dichroic dyestuffs doped with a chiral agent.
In the embodiment described the plates 6 and 8 are convex and each have on their inside face a transparent electrode 14, 16 covered by an alignment layer (not shown) which extends over the entirety of each plate. The electrodes 14, 16 are composed for example of a mixture of indium oxides and tin oxides and the alignment layer is formed of silicon dioxide with a surfactant agent of the octadecyltrialkoxysilane type fixed thereto.
It should be noted that the drawings do not represent the exact thickness of the assembly formed in this manner, this thickness being greatly exaggerated for sake of clarity. More specifically, the distance between the two electrodes is of the order of 5 to 9 μm.
FIG. 2 also shows that the cells 4 are associated with an electrical control circuit 18 fed for example by a battery or by solar cells integrated in the frame 2 (not shown). This circuit is connected to ambient light detection means 22 formed by one or several photosensitive sensors which deliver an electrical control signal representing the intensity of light which they receive. This circuit also comprises two outputs connected to electrodes 14 and 16 respectively in order to control the degree of absorption of the cells.
In other words, the signal produced by the control circuit 18 is applied to the electrodes of the cells to vary the electrical field applied to the mixture 12 which they contain. The effect of this variation is to modify the transmission of the cell which results in variation in its degree of light absorption.
In the embodiment shown, the electro-optical cells 4 and the sensor 22 are disposed in relation to one another in such a way that incident light or ambient light reaches said cells first. An arrangement of this type of the sensor or sensors notably makes it possible, as will be explained below, to obtain constant transmission in a range of the level of light. It goes without saying that in a different embodiment the detection means can be disposed so as to be directly irradiated by the light rays which the device of the invention is designed to absorb.
According to the invention each cell comprises at least one element charged with a photochromic substance, said element being disposed on the cell in such a manner that the ambient light reaches this element first when the glasses are worn by a user.
In the example described, said element is formed by the plate 6 of the cell 4. This plate is charged with a photochromic substance such as a silver salt and can be either a glass plate or of a synthetic material with optical properties equivalent to those of the glass. A plate of synthetic material made of polyvinyl pyrolidine doped with microcrystals of AgCl is perfectly suitable. This plate of synthetic material can also be made using films of laminated polyester on a synthetic plate, for example a plate sold under the reference CR 39 by ESSILOR, by means of an adhesive doped with polychromic spirooxazines.
The concentration of photochromic substance should preferably not exceed 3% by weight and the thickness of said element 6 is of the order of 1 mm.
In another embodiment of the invention, not shown, said element can be formed of a supplementary plate directly applied to the plate 6 of the cells, for example by adhesion.
According to another embodiment (not shown) of the invention, the lenses 4 formed by an electro-optical cell can be associated with a second electro-optical cell in the same support structure to reinforce the absorptive effect of the device for protecting the eyes such as welding goggles. In this case the second cell is placed behind the lenses 4 in relation to the ambient light and this cell can be an electro-optical cell of conventional variable transparency.
The applicant has conducted comparative measurements of the transmission (in % of light received) of a single electro-optical cell in a switched and a non-switched state, of a single photochromic lens and of the electro-optical device of the invention in a switched and non-switched state in the presence of and in the absence of light comprising UV radiation for purposes of illustration and to better demonstrate the advantageous results of combining the photochromic and electro-optical effects of the invention.
The measurements in the presence of light were made in the presence of a light source of 40 mW/cm2. The electro-optical cell used is a liquid crystal cell comprising a dichroic mixture sold by MERCK under reference ZLI 4282, this mixture being doped with 0.85% by weight of a chiral agent sold by MERCK under reference S811.
The substrates of this cell are of glass. The photochromic lenses used are standard photochromic lenses which can for example be obtained from Desag (Schott). It will also be noted that the results of the transmission measurements of the device of the invention were obtained with a device in which the charged element of a photochromic substance is applied to the electro-optical cell by adhesion.
The results obtained are set out in the following table:
______________________________________                                    
              TRANSMISSION (%)                                            
              without light                                               
                       with light                                         
______________________________________                                    
Photochromic    75 to 85%  20 to 30%                                      
lenses                                                                    
Electro-optical cell                                                      
non-switched    80%                                                       
switched        40%                                                       
Electro-optical                                                           
device of the                                                             
invention                                                                 
non-switched    70%        19%                                            
switched        27%         9%                                            
______________________________________                                    
This table shows that the device of the invention presents a degree of absorption that can vary over a large range as a function of the intensity of the ambient light.
In other words, the device of the invention can become very absorbent in the event of great luminosity and only transmit 9% of the ambient light compared to 20 and 40% with a photochromic lens alone and respectively a variable transparency electro-optical cell alone (in its switched state).
The device of the invention can also become very transmissive in the event of total interruption of the luminosity and transmit 70% of the ambient light (in the switched state of the electro-optical cell). Such a level of transmission is substantially equal to the level of transmission of the photochromic lenses and electro-optical cells used on their own.
If the electro-optical device of the invention is interposed between detection means 22 and the light source, the transparency of the device can regulate itself so as to be substantially constant for periods of transition notably corresponding to the transition of a dark or poorly luminous medium to a clear or luminous medium.
During transition of this type, the detection means initially receive almost all the light in such a way that they immediately control the darkening of the electro-optical cell when the photochromic substance has not yet reacted. The wearer thus has immediate protection.
In a second phase, that is a few minutes later, the photochromic element, for example the photochromic substrate of the cell, begins to react progressively and in turn absorbs part of the ambient light. The illumination of the detection means situated behind the cell is then diminished while the latter trigger a control signal which increases the transmission of the cell while the photochromic element darkens.
It is thus possible to maintain a degree of constant transmission of the device of the invention both during the transition of a dark medium to a luminous medium and during slight variations in the luminosity of the medium.
In the opposite situation, i.e. in the case of transition from a luminous medium towards a darker medium, the cell deactivates immediately with the result that the device rapidly becomes less absorbent, the photochromic element then progressively loses its ability to absorb until it reaches a completely clear or sufficiently clear state for the device to be able to readjust itself once again as has been described above.

Claims (13)

I claim:
1. A variable transparency electro-optical device comprising:
at least one lens formed by an electro-optical cell comprising a first plate and a second plate each provided with a control electrode and a sealing frame interposed between the two plates to form a sealed volume;
an electro-optical material filling said sealed volume; and,
voltage generating means connected to said electrodes to apply a variable voltage to said material in order to automatically or manually vary the transmission of the cell as a function of the ambient light, wherein the cell comprises at least one element other than said electro-optical material charged with a photochromic substance having an absorption that varies in reversible manner as a function of the intensity of the light impinging on said cell.
2. A device according to claim 1, wherein said element is formed by one of the plates of said cell.
3. A device according to claim 1, wherein it comprises two elements formed by the first and second plate respectively of said cell.
4. A device according to claim 1, wherein said element is formed by an additional layer directly applied to a plate of said cell.
5. A device according to claim 1 wherein said electro-optical material is a mixture of dichroic liquid crystals and dichroic dyestuffs.
6. A device according to claim 5, wherein said mixture of liquid crystals is doped with a chiral agent.
7. A device according to claim 1 wherein said electro-optical material is an electrochromic material.
8. A device according to claim 1 wherein said plates are made of a synthetic material.
9. A device according to claim 1 wherein it also comprises detection means capable of delivering a control signal dependant on the intensity of the light impinging on these detection means, said voltage generating means acting on the transparency of the cell in response to said control signal.
10. A device according to claim 9, wherein the electro-optical cell and said detection means are disposed in relation to one another in such a manner that ambient light sensed by said detection means reaches said detection means after passing through said cell.
11. A device for protecting the eyes comprising a support structure in which is mounted a variable transparency electro-optical device, wherein said electro-optical device is according to claim 1.
12. A device for protecting the eyes according to claim 11, wherein it also comprises a second electro-optical cell mounted in said support structure.
13. A device for protecting the eyes according to claim 11 wherein the voltage generating means are composed of solar cells.
US08/500,642 1991-11-05 1995-07-11 Variable transparency electro-optical device Expired - Fee Related US5608567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/500,642 US5608567A (en) 1991-11-05 1995-07-11 Variable transparency electro-optical device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CH03218/91 1991-11-05
CH321891A CH685176A5 (en) 1991-11-05 1991-11-05 Variable light transmitting electro-optical device for eye protection
FR9115768 1991-12-17
FR9115768A FR2685102B1 (en) 1991-12-17 1991-12-17 ELECTRO-OPTICAL DEVICE WITH VARIABLE TRANSPARENCY.
US8422393A 1993-07-05 1993-07-05
US08/500,642 US5608567A (en) 1991-11-05 1995-07-11 Variable transparency electro-optical device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US8422393A Continuation 1991-11-05 1993-07-05

Publications (1)

Publication Number Publication Date
US5608567A true US5608567A (en) 1997-03-04

Family

ID=27174199

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/500,642 Expired - Fee Related US5608567A (en) 1991-11-05 1995-07-11 Variable transparency electro-optical device

Country Status (1)

Country Link
US (1) US5608567A (en)

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724238A (en) * 1995-12-01 1998-03-03 Daimler-Benz Aerospace Airbus Gmbh Circuit arrangement for producing an A.C. voltage for driving a pane or panel having a variable light transparency
DE19714434A1 (en) * 1997-04-08 1998-10-15 Armin Schaeuble Selective electronic photo-protective spectacles
US5825550A (en) * 1996-01-10 1998-10-20 TZN-Forschungs-und Entwicklungszentrum Unterluss GmbH Device for protecting an optical component from laser beam damage
US5973819A (en) * 1998-09-21 1999-10-26 Ppg Industries Ohio, Inc. Method and apparatus for controlling an electrochromic device
US5973818A (en) * 1998-09-21 1999-10-26 Ppg Industries Ohio, Inc. Method and apparatus for controlling an electrochromic device
US5978126A (en) * 1998-09-21 1999-11-02 Ppg Industries Ohio, Inc. Apparatus for controlling an electrochromic device
US6031588A (en) * 1996-04-24 2000-02-29 Deutsche Telekom Ag Ferroelectric liquid crystal device for local reduction of light intensity in the visual field
WO2000077559A1 (en) * 1999-06-11 2000-12-21 Ppg Industries Ohio, Inc. Electro-optical device and variable transparent article with such device
US6239778B1 (en) 1998-06-24 2001-05-29 Alphamicron, Inc. Variable light attentuating dichroic dye guest-host device
US20020140899A1 (en) * 2000-06-23 2002-10-03 Blum Ronald D. Electro-optic lens with integrated components
US6491391B1 (en) 1999-07-02 2002-12-10 E-Vision Llc System, apparatus, and method for reducing birefringence
US6491394B1 (en) 1999-07-02 2002-12-10 E-Vision, Llc Method for refracting and dispensing electro-active spectacles
US6511175B2 (en) * 2000-01-10 2003-01-28 Sam H. Hay Apparatus and method for treatment of amblyopia
US6517203B1 (en) 1999-07-02 2003-02-11 E-Vision, Llc System, apparatus, and method for correcting vision using electro-active spectacles
US20030052838A1 (en) * 2001-09-18 2003-03-20 Alphamicron, Inc Doubly curved optical device for eyewear and method for making the same
US6619799B1 (en) 1999-07-02 2003-09-16 E-Vision, Llc Optical lens system with electro-active lens having alterably different focal lengths
US20030210377A1 (en) * 2001-10-05 2003-11-13 Blum Ronald D. Hybrid electro-active lens
US20030231293A1 (en) * 2000-06-23 2003-12-18 E-Vision L.L.C. Electro-optic lens with integrated components
US6690495B1 (en) * 2000-10-03 2004-02-10 Alphamicron, Inc. Device exhibiting photo-induced dichroism for adaptive anti-glare vision protection
US20040027536A1 (en) * 1999-07-02 2004-02-12 Blum Ronald D. Electro-active contact lens system
US20040027501A1 (en) * 2002-01-16 2004-02-12 Blum Ronald D. Electro-active multi-focal spectacle lens
US20040084790A1 (en) * 1999-07-02 2004-05-06 Blum Ronald D. Method of manufacturing an electro-active lens
US6733130B2 (en) 1999-07-02 2004-05-11 E-Vision, Llc Method for refracting and dispensing electro-active spectacles
US6760080B1 (en) * 1999-08-19 2004-07-06 Garret R. Moddel Light modulating eyewear assembly
US20040246437A1 (en) * 2003-06-06 2004-12-09 Ambler David M. Eyewear lens having selective spectral response
US20050004361A1 (en) * 2003-07-01 2005-01-06 Anil Kumar Photochromic compounds
US20050003107A1 (en) * 2003-07-01 2005-01-06 Anil Kumar Alignment facilities for optical dyes
US20050007667A1 (en) * 2003-07-10 2005-01-13 Fergason John D. Light sensor arrangement for auto-darkening lenses and method
US20050012998A1 (en) * 2003-07-01 2005-01-20 Anil Kumar Polarizing, photochromic devices and methods of making the same
WO2005043224A2 (en) 2003-11-03 2005-05-12 Ophthocare Ltd Liquid-crystal eyeglass system
US20050151926A1 (en) * 2004-01-14 2005-07-14 Anil Kumar Polarizing devices and methods of making the same
US20050185135A1 (en) * 1999-07-02 2005-08-25 Blum Ronald D. Electro-active spectacle employing modal liquid crystal lenses
US20060092340A1 (en) * 2004-11-02 2006-05-04 Blum Ronald D Electro-active spectacles and method of fabricating same
WO2006105209A2 (en) * 2005-03-31 2006-10-05 Zhan Chen Anti-glare reflective and transmissive devices
US20070041073A1 (en) * 2004-05-17 2007-02-22 Anil Kumar Polarizing, photochromic devices and methods of making the same
US20070052920A1 (en) * 1999-07-02 2007-03-08 Stewart Wilber C Electro-active ophthalmic lens having an optical power blending region
US20070159562A1 (en) * 2006-01-10 2007-07-12 Haddock Joshua N Device and method for manufacturing an electro-active spectacle lens involving a mechanically flexible integration insert
US7264354B2 (en) 1999-07-02 2007-09-04 E-Vision, Llc Method and apparatus for correcting vision using an electro-active phoropter
US20070209393A1 (en) * 2001-09-18 2007-09-13 Roy Miller Curved optical device and method for making the same
US20070216864A1 (en) * 2003-08-15 2007-09-20 Ronald Blum Enhanced electro-active lens system
US20070242173A1 (en) * 2004-11-02 2007-10-18 Blum Ronald D Electro-active spectacles and method of fabricating same
US20070258039A1 (en) * 1999-07-02 2007-11-08 Duston Dwight P Spectacle frame bridge housing electronics for electro-active spectacle lenses
US20080002150A1 (en) * 1999-07-02 2008-01-03 Blum Ronald D Static progressive surface region in optical communication with a dynamic optic
US20080055541A1 (en) * 2006-08-31 2008-03-06 Nike Inc. Zone switched sports training eyewear
US20080100792A1 (en) * 2006-10-27 2008-05-01 Blum Ronald D Universal endpiece for spectacle temples
US20080273166A1 (en) * 2007-05-04 2008-11-06 William Kokonaski Electronic eyeglass frame
WO2008148240A1 (en) * 2007-06-08 2008-12-11 Werthmueller Rene Self-clearing light-protective device
US20090033863A1 (en) * 2007-02-23 2009-02-05 Blum Ronald D Ophthalmic dynamic aperture
US20090046349A1 (en) * 2007-07-03 2009-02-19 Haddock Joshua N Multifocal lens with a diffractive optical power region
US20090091818A1 (en) * 2007-10-05 2009-04-09 Haddock Joshua N Electro-active insert
US20090103044A1 (en) * 1999-07-02 2009-04-23 Duston Dwight P Spectacle frame bridge housing electronics for electro-active spectacle lenses
US20090115961A1 (en) * 2006-06-23 2009-05-07 Pixeloptics Inc. Electronic adapter for electro-active spectacle lenses
US20090135462A1 (en) * 2003-07-01 2009-05-28 Transitions Optical, Inc. Clear to circular polarizing photochromic devices and methods of making the same
US20090153794A1 (en) * 2007-12-14 2009-06-18 Iyer Venkatramani S Refractive-diffractive multifocal lens
US20090279050A1 (en) * 2008-03-25 2009-11-12 Mcginn Joseph Thomas Electro-optic lenses for correction of higher order aberrations
WO2009135674A1 (en) * 2008-05-08 2009-11-12 Rory O'loughlin Combined eye and ear protection device
US7656509B2 (en) 2006-05-24 2010-02-02 Pixeloptics, Inc. Optical rangefinder for an electro-active lens
US20110007266A1 (en) * 2007-03-29 2011-01-13 Pixeloptics, Inc. Multifocal lens having a progressive optical power region and a discontinuity
US7883206B2 (en) 2007-03-07 2011-02-08 Pixeloptics, Inc. Multifocal lens having a progressive optical power region and a discontinuity
US20110032476A1 (en) * 2006-08-31 2011-02-10 Nike, Inc. Adjustable Spectral Transmittance Curved Lens Eyewear
US7926940B2 (en) 2007-02-23 2011-04-19 Pixeloptics, Inc. Advanced electro-active optic device
US20110129678A1 (en) * 2003-07-01 2011-06-02 Transitions Optical, Inc. Photochromic compounds and compositions
US20110140056A1 (en) * 2003-07-01 2011-06-16 Transitions Optical, Inc. Indeno-fused ring compounds
US20110143141A1 (en) * 2003-07-01 2011-06-16 Transitions Optical, Inc. Photochromic compounds and compositions
US7988286B2 (en) 1999-07-02 2011-08-02 E-Vision Llc Static progressive surface region in optical communication with a dynamic optic
US8211338B2 (en) 2003-07-01 2012-07-03 Transitions Optical, Inc Photochromic compounds
US8545015B2 (en) 2003-07-01 2013-10-01 Transitions Optical, Inc. Polarizing photochromic articles
US8582192B2 (en) 2003-07-01 2013-11-12 Transitions Optical, Inc. Polarizing photochromic articles
DE102012217326A1 (en) * 2012-09-25 2014-03-27 Carl Zeiss Ag Sun protective goggles i.e. skiing goggles, for protecting eyes against glare, have optical sensors provided with four optical sensitive surfaces, where two of surfaces face front and back surfaces, and remaining surfaces face edges
US8698117B2 (en) 2003-07-01 2014-04-15 Transitions Optical, Inc. Indeno-fused ring compounds
US8708484B2 (en) 2006-08-31 2014-04-29 Nike, Inc. Adjustable spectral transmittance eyewear
US8778022B2 (en) 2004-11-02 2014-07-15 E-Vision Smart Optics Inc. Electro-active intraocular lenses
US8915588B2 (en) 2004-11-02 2014-12-23 E-Vision Smart Optics, Inc. Eyewear including a heads up display
EP2753673A4 (en) * 2011-09-09 2015-05-06 Univ Connecticut Electrochromic devices prepared from the in situ formation of conjugated polymers
US9096014B2 (en) 2003-07-01 2015-08-04 Transitions Optical, Inc. Oriented polymeric sheets exhibiting dichroism and articles containing the same
US9122083B2 (en) 2005-10-28 2015-09-01 E-Vision Smart Optics, Inc. Eyewear docking station and electronic module
US9134551B2 (en) 2010-10-04 2015-09-15 Alphamicron Incorporated Wide band variable transmittance optical device and mixture
US9207515B2 (en) 2013-03-15 2015-12-08 Ashwin-Ushas Corporation, Inc. Variable-emittance electrochromic devices and methods of preparing the same
US9274395B2 (en) 2011-11-15 2016-03-01 Ashwin-Ushas Corporation, Inc. Complimentary polymer electrochromic device
US9387648B2 (en) 2008-05-30 2016-07-12 Corning Incorporated Glass laminated articles and layered articles
US9482880B1 (en) 2015-09-15 2016-11-01 Ashwin-Ushas Corporation, Inc. Electrochromic eyewear
US9513524B2 (en) 2010-10-04 2016-12-06 Alphamicron Incorporated Wide band variable transmittance optical device
RU2607822C1 (en) * 2016-04-15 2017-01-20 Владимир Леонтьевич Крапивин Controlled antiglare scattering filter-1 (uprf-1)
US9632059B2 (en) 2015-09-03 2017-04-25 Ashwin-Ushas Corporation, Inc. Potentiostat/galvanostat with digital interface
US9680102B2 (en) 2010-03-25 2017-06-13 University Of Connecticut Formation of conjugated polymers for solid-state devices
US20170235202A1 (en) * 2016-02-17 2017-08-17 Canon Kabushiki Kaisha Electrochromic element, optical filter, lens unit, and image pick-up apparatus
US20180024407A1 (en) * 2015-06-03 2018-01-25 Canon Kabushiki Kaisha Electrochromic element, method of driving the same, optical filter, lens unit, image pick-up apparatus, and window
US9944757B2 (en) 2012-07-23 2018-04-17 The University Of Connecticut Electrochromic copolymers from precursors, method of making, and use thereof
RU2685555C1 (en) * 2018-02-01 2019-04-22 Владимир Леонтьевич Крапивин Controlled anti-glare diffusing filter (cagdf)
US10323178B2 (en) 2014-05-16 2019-06-18 The University Of Connecticut Color tuning of electrochromic devices using an organic dye
US10361328B2 (en) 2015-04-30 2019-07-23 Hewlett-Packard Development Company, L.P. Color changing apparatuses with solar cells
CN110573944A (en) * 2017-04-28 2019-12-13 株式会社Lg化学 Light modulation device
US10599006B2 (en) 2016-04-12 2020-03-24 E-Vision Smart Optics, Inc. Electro-active lenses with raised resistive bridges
US10613355B2 (en) 2007-05-04 2020-04-07 E-Vision, Llc Moisture-resistant eye wear
US10866455B2 (en) 2017-10-19 2020-12-15 Ppg Industries Ohio, Inc. Display devices including photochromic-dichroic compounds and dichroic compounds
US10971027B2 (en) * 2016-12-02 2021-04-06 AT Systems, LLC System and method for improving safety when operating aircraft in reduced- or modified-visibility conditions
US11022818B2 (en) 2017-10-10 2021-06-01 Verily Life Sciences Llc Ophthalmic device including dynamic visual field modulation
US11061252B2 (en) 2007-05-04 2021-07-13 E-Vision, Llc Hinge for electronic spectacles
US11160687B2 (en) 2017-06-15 2021-11-02 3M Innovative Properties Company Vision-protective headgear with automatic darkening filter comprising an array of switchable shutters
EP3958046A1 (en) * 2020-08-21 2022-02-23 Optrel Holding AG Sun protection device
US11397367B2 (en) 2016-04-12 2022-07-26 E-Vision Smart Optics, Inc. Electro-active lenses with raised resistive bridges

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2293188A1 (en) * 1974-12-02 1976-07-02 Budmiger Hermann PROTECTIVE FILTER AGAINST LIGHT ESPECIALLY FOR WELDING
FR2416519A1 (en) * 1978-02-06 1979-08-31 Ebauches Sa PASSIVE ELECTRO-OPTICAL DISPLAY CELL
EP0091514A2 (en) * 1982-04-14 1983-10-19 André M. Eggenschwiler Protective light filter, in particular for protective shields or welding glasses
EP0157744A1 (en) * 1984-02-24 1985-10-09 Peter Toth Optical filter for protective welding lens assemblies
GB2169417A (en) * 1984-12-28 1986-07-09 Olympus Optical Co Liquid crystal lens having a variable focal length
WO1987006018A1 (en) * 1986-03-24 1987-10-08 Daniele Senatore Adjustable transparency spectacles
US4756605A (en) * 1985-02-01 1988-07-12 Olympus Optical Co., Ltd. Liquid crystal spectacles
US4968127A (en) * 1988-11-23 1990-11-06 Russell James P Controllable, variable transmissivity eyewear
US4986639A (en) * 1989-01-13 1991-01-22 Hughes Aircraft Company Eye protection device against broadband high intensity light
US5015086A (en) * 1989-04-17 1991-05-14 Seiko Epson Corporation Electronic sunglasses
US5114218A (en) * 1991-01-11 1992-05-19 Reliant Laser Corp. Liquid crystal sunglasses with selectively color adjustable lenses
US5128799A (en) * 1986-03-31 1992-07-07 Gentex Corporation Variable reflectance motor vehicle mirror
US5172256A (en) * 1988-01-19 1992-12-15 Sethofer Nicholas L Liquid crystal variable color density lens and eye protective devices incorporating the same
US5184156A (en) * 1991-11-12 1993-02-02 Reliant Laser Corporation Glasses with color-switchable, multi-layered lenses
US5382986A (en) * 1992-11-04 1995-01-17 Reliant Laser Corporation Liquid-crystal sunglasses indicating overexposure to UV-radiation
US5412439A (en) * 1993-02-17 1995-05-02 Northrop Grumman Corporation Laser visor having overlying photosensors
US5455638A (en) * 1993-09-10 1995-10-03 Comdisco, Inc. Electrochromic eyewear
US5552841A (en) * 1993-10-06 1996-09-03 A B G S.R.L. Liquid crystal eyeglasses

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2293188A1 (en) * 1974-12-02 1976-07-02 Budmiger Hermann PROTECTIVE FILTER AGAINST LIGHT ESPECIALLY FOR WELDING
FR2416519A1 (en) * 1978-02-06 1979-08-31 Ebauches Sa PASSIVE ELECTRO-OPTICAL DISPLAY CELL
EP0091514A2 (en) * 1982-04-14 1983-10-19 André M. Eggenschwiler Protective light filter, in particular for protective shields or welding glasses
EP0157744A1 (en) * 1984-02-24 1985-10-09 Peter Toth Optical filter for protective welding lens assemblies
GB2169417A (en) * 1984-12-28 1986-07-09 Olympus Optical Co Liquid crystal lens having a variable focal length
US4756605A (en) * 1985-02-01 1988-07-12 Olympus Optical Co., Ltd. Liquid crystal spectacles
WO1987006018A1 (en) * 1986-03-24 1987-10-08 Daniele Senatore Adjustable transparency spectacles
US5128799A (en) * 1986-03-31 1992-07-07 Gentex Corporation Variable reflectance motor vehicle mirror
US5128799B1 (en) * 1986-03-31 1996-11-05 Gentex Corp Variable reflectance motor vehicle mirror
US5172256A (en) * 1988-01-19 1992-12-15 Sethofer Nicholas L Liquid crystal variable color density lens and eye protective devices incorporating the same
US4968127A (en) * 1988-11-23 1990-11-06 Russell James P Controllable, variable transmissivity eyewear
US4986639A (en) * 1989-01-13 1991-01-22 Hughes Aircraft Company Eye protection device against broadband high intensity light
US5015086A (en) * 1989-04-17 1991-05-14 Seiko Epson Corporation Electronic sunglasses
US5114218A (en) * 1991-01-11 1992-05-19 Reliant Laser Corp. Liquid crystal sunglasses with selectively color adjustable lenses
US5184156A (en) * 1991-11-12 1993-02-02 Reliant Laser Corporation Glasses with color-switchable, multi-layered lenses
US5382986A (en) * 1992-11-04 1995-01-17 Reliant Laser Corporation Liquid-crystal sunglasses indicating overexposure to UV-radiation
US5412439A (en) * 1993-02-17 1995-05-02 Northrop Grumman Corporation Laser visor having overlying photosensors
US5455638A (en) * 1993-09-10 1995-10-03 Comdisco, Inc. Electrochromic eyewear
US5552841A (en) * 1993-10-06 1996-09-03 A B G S.R.L. Liquid crystal eyeglasses

Cited By (271)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724238A (en) * 1995-12-01 1998-03-03 Daimler-Benz Aerospace Airbus Gmbh Circuit arrangement for producing an A.C. voltage for driving a pane or panel having a variable light transparency
US5825550A (en) * 1996-01-10 1998-10-20 TZN-Forschungs-und Entwicklungszentrum Unterluss GmbH Device for protecting an optical component from laser beam damage
US6031588A (en) * 1996-04-24 2000-02-29 Deutsche Telekom Ag Ferroelectric liquid crystal device for local reduction of light intensity in the visual field
DE19714434A1 (en) * 1997-04-08 1998-10-15 Armin Schaeuble Selective electronic photo-protective spectacles
US6239778B1 (en) 1998-06-24 2001-05-29 Alphamicron, Inc. Variable light attentuating dichroic dye guest-host device
US5973819A (en) * 1998-09-21 1999-10-26 Ppg Industries Ohio, Inc. Method and apparatus for controlling an electrochromic device
US5973818A (en) * 1998-09-21 1999-10-26 Ppg Industries Ohio, Inc. Method and apparatus for controlling an electrochromic device
US5978126A (en) * 1998-09-21 1999-11-02 Ppg Industries Ohio, Inc. Apparatus for controlling an electrochromic device
AU766183B2 (en) * 1999-06-11 2003-10-09 Ppg Industries Ohio, Inc. Electro-optical device and variable transparent article with such device
WO2000077559A1 (en) * 1999-06-11 2000-12-21 Ppg Industries Ohio, Inc. Electro-optical device and variable transparent article with such device
US7393101B2 (en) 1999-06-11 2008-07-01 E-Vision, Llc Method of manufacturing an electro-active lens
US20060126698A1 (en) * 1999-06-11 2006-06-15 E-Vision, Llc Method of manufacturing an electro-active lens
US20080002150A1 (en) * 1999-07-02 2008-01-03 Blum Ronald D Static progressive surface region in optical communication with a dynamic optic
US6491394B1 (en) 1999-07-02 2002-12-10 E-Vision, Llc Method for refracting and dispensing electro-active spectacles
US8641191B2 (en) 1999-07-02 2014-02-04 E-Vision, Llc Static progressive surface region in optical communication with a dynamic optic
US6619799B1 (en) 1999-07-02 2003-09-16 E-Vision, Llc Optical lens system with electro-active lens having alterably different focal lengths
US20070081126A1 (en) * 1999-07-02 2007-04-12 E-Vision, Llc System, apparatus and method for correcting vision with an adaptive optic
US8727531B2 (en) 1999-07-02 2014-05-20 E-Vision, Llc Electro-active opthalmic lens having an optical power blending region
US20070091258A1 (en) * 1999-07-02 2007-04-26 E-Vision, Llc System, apparatus and method for correcting vision with an adaptive optic
US7234809B2 (en) 1999-07-02 2007-06-26 E-Vision, Llc Ophthalmic spectacle lens for correcting non-conventional refractive error
US20040027536A1 (en) * 1999-07-02 2004-02-12 Blum Ronald D. Electro-active contact lens system
US8333470B2 (en) 1999-07-02 2012-12-18 E-Vision Llc Electro-active opthalmic lens having an optical power blending region
US20040051846A1 (en) * 1999-07-02 2004-03-18 E-Vision, Llc System, apparatus, and method for correcting vision using an electro-active lens
US20040056986A1 (en) * 1999-07-02 2004-03-25 E-Vision, Llc System, apparatus, and method for correcting vision using an electro-active lens
US20040084790A1 (en) * 1999-07-02 2004-05-06 Blum Ronald D. Method of manufacturing an electro-active lens
US6733130B2 (en) 1999-07-02 2004-05-11 E-Vision, Llc Method for refracting and dispensing electro-active spectacles
US20070146627A1 (en) * 1999-07-02 2007-06-28 E-Vision, Llc System, apparatus and method for correcting vision using an electro-active lens
US7264354B2 (en) 1999-07-02 2007-09-04 E-Vision, Llc Method and apparatus for correcting vision using an electro-active phoropter
US8047651B2 (en) 1999-07-02 2011-11-01 E-Vision Inc. Electro-active opthalmic lens having an optical power blending region
US8029134B2 (en) 1999-07-02 2011-10-04 E-Vision, Llc System, apparatus, and method for correcting vision using an electro-active lens
US9323101B2 (en) 1999-07-02 2016-04-26 E-Vision Smart Optics, Inc. Electro-active opthalmic lens having an optical power blending region
US7997733B2 (en) 1999-07-02 2011-08-16 E-Vision, Llc System, apparatus and method for correcting vision with an adaptive optic
US9411173B1 (en) 1999-07-02 2016-08-09 E-Vision Smart Optics, Inc. Electro-active opthalmic lens having an optical power blending region
US7988286B2 (en) 1999-07-02 2011-08-02 E-Vision Llc Static progressive surface region in optical communication with a dynamic optic
US6851805B2 (en) 1999-07-02 2005-02-08 E-Vision, Llc Stabilized electro-active contact lens
US9500883B2 (en) 1999-07-02 2016-11-22 E-Vision Smart Optics, Inc. Electro-active opthalmic lens having an optical power blending region
US20070216862A1 (en) * 1999-07-02 2007-09-20 Blum Ronald D System, apparatus, and method for correcting vision using an electro-active lens
US20070258039A1 (en) * 1999-07-02 2007-11-08 Duston Dwight P Spectacle frame bridge housing electronics for electro-active spectacle lenses
US20050140924A1 (en) * 1999-07-02 2005-06-30 E-Vision, Llc Electro-active multi-focal spectacle lens
US6517203B1 (en) 1999-07-02 2003-02-11 E-Vision, Llc System, apparatus, and method for correcting vision using electro-active spectacles
US6918670B2 (en) 1999-07-02 2005-07-19 E-Vision, Llc System, apparatus, and method for correcting vision using an electro-active lens
US7775660B2 (en) 1999-07-02 2010-08-17 E-Vision Llc Electro-active ophthalmic lens having an optical power blending region
US20050185135A1 (en) * 1999-07-02 2005-08-25 Blum Ronald D. Electro-active spectacle employing modal liquid crystal lenses
US20050206844A1 (en) * 1999-07-02 2005-09-22 E-Vision, Llc System, apparatus, and method for correcting vision using an electro-active lens
US6986579B2 (en) 1999-07-02 2006-01-17 E-Vision, Llc Method of manufacturing an electro-active lens
US7744214B2 (en) 1999-07-02 2010-06-29 E-Vision Llc System, apparatus and method for correcting vision with an adaptive optic
US7731358B2 (en) 1999-07-02 2010-06-08 E-Vision Llc System, apparatus, and method for correcting vision using an electro-active lens
US6491391B1 (en) 1999-07-02 2002-12-10 E-Vision Llc System, apparatus, and method for reducing birefringence
US7396126B2 (en) 1999-07-02 2008-07-08 E-Vision, Llc Electro-active multi-focal spectacle lens
US20090195749A1 (en) * 1999-07-02 2009-08-06 Blum Ronald D Electro-optic lens with integrated components for varying refractive properties
US20060098164A1 (en) * 1999-07-02 2006-05-11 E-Vision, Llc Electro-optic lens with integrated components for varying refractive properties
US20090103044A1 (en) * 1999-07-02 2009-04-23 Duston Dwight P Spectacle frame bridge housing electronics for electro-active spectacle lenses
US20070052920A1 (en) * 1999-07-02 2007-03-08 Stewart Wilber C Electro-active ophthalmic lens having an optical power blending region
US20060139570A1 (en) * 1999-07-02 2006-06-29 E-Vision, Llc Ophthalmic spectacle lens for correcting non-conventional refractive error
US7077519B2 (en) 1999-07-02 2006-07-18 E-Vision, Llc System, apparatus, and method for correcting vision using an electro-active lens
US7404636B2 (en) * 1999-07-02 2008-07-29 E-Vision, Llc Electro-active spectacle employing modal liquid crystal lenses
US20080316425A1 (en) * 1999-07-02 2008-12-25 Blum Ronald D System, apparatus, and method for correcting vision using an electro-active lens
US6760080B1 (en) * 1999-08-19 2004-07-06 Garret R. Moddel Light modulating eyewear assembly
US6511175B2 (en) * 2000-01-10 2003-01-28 Sam H. Hay Apparatus and method for treatment of amblyopia
US7475984B2 (en) 2000-06-23 2009-01-13 Pixeloptics Inc. Electro-optic lens with integrated components
US7023594B2 (en) 2000-06-23 2006-04-04 E-Vision, Llc Electro-optic lens with integrated components
US20020140899A1 (en) * 2000-06-23 2002-10-03 Blum Ronald D. Electro-optic lens with integrated components
US6871951B2 (en) 2000-06-23 2005-03-29 E-Vision, Llc Electro-optic lens with integrated components
US20030231293A1 (en) * 2000-06-23 2003-12-18 E-Vision L.L.C. Electro-optic lens with integrated components
US6999220B2 (en) 2000-10-03 2006-02-14 Alphamicron, Inc. Device exhibiting photo-induced dichroism for adaptive anti-glare vision protection
US20040090570A1 (en) * 2000-10-03 2004-05-13 Tamas Kosa Device exhibiting photo-induced dichroism for adaptive anti-glare vision protection
US6690495B1 (en) * 2000-10-03 2004-02-10 Alphamicron, Inc. Device exhibiting photo-induced dichroism for adaptive anti-glare vision protection
US7811482B2 (en) 2001-09-18 2010-10-12 Alphamicron, Inc. Curved optical device and method for making the same
US20030052838A1 (en) * 2001-09-18 2003-03-20 Alphamicron, Inc Doubly curved optical device for eyewear and method for making the same
US7705959B2 (en) 2001-09-18 2010-04-27 Alphamicron, Inc. Curved optical device and method having a pair of opposed thermoplastic substrates with spacers therebetween to permanently retain a curved shape
US7102602B2 (en) * 2001-09-18 2006-09-05 Alphamicron, Inc. Doubly curved optical device for eyewear and method for making the same
US20060256071A1 (en) * 2001-09-18 2006-11-16 Yoan Kim Curved optical device and method for making the same
US20070209393A1 (en) * 2001-09-18 2007-09-13 Roy Miller Curved optical device and method for making the same
US20040223113A1 (en) * 2001-10-05 2004-11-11 Blum Ronald D. Hybrid electro-active lens
US20030210377A1 (en) * 2001-10-05 2003-11-13 Blum Ronald D. Hybrid electro-active lens
US6857741B2 (en) 2002-01-16 2005-02-22 E-Vision, Llc Electro-active multi-focal spectacle lens
US20040027501A1 (en) * 2002-01-16 2004-02-12 Blum Ronald D. Electro-active multi-focal spectacle lens
US20040246437A1 (en) * 2003-06-06 2004-12-09 Ambler David M. Eyewear lens having selective spectral response
US6926405B2 (en) 2003-06-06 2005-08-09 Younger Mfg. Co. Eyewear lens having selective spectral response
US7394585B2 (en) 2003-07-01 2008-07-01 Ppg Industries Ohio, Inc. Polarizing, photochromic devices and methods of making the same
US20070053047A1 (en) * 2003-07-01 2007-03-08 Anil Kumar Polarizing, photochromic devices and methods of making the same
US8582192B2 (en) 2003-07-01 2013-11-12 Transitions Optical, Inc. Polarizing photochromic articles
US8545015B2 (en) 2003-07-01 2013-10-01 Transitions Optical, Inc. Polarizing photochromic articles
US7286275B2 (en) 2003-07-01 2007-10-23 Transitions Optical, Inc. Polarizing, photochromic devices and methods of making the same
US8545984B2 (en) 2003-07-01 2013-10-01 Transitions Optical, Inc. Photochromic compounds and compositions
US20070041071A1 (en) * 2003-07-01 2007-02-22 Anil Kumar Polarizing, photochromic devices and methods of making the same
US8698117B2 (en) 2003-07-01 2014-04-15 Transitions Optical, Inc. Indeno-fused ring compounds
US7349137B2 (en) 2003-07-01 2008-03-25 Ppg Industries Ohio, Inc. Polarizing, photochromic devices and methods of making the same
US8518546B2 (en) 2003-07-01 2013-08-27 Transitions Optical, Inc. Photochromic compounds and compositions
US7342112B2 (en) 2003-07-01 2008-03-11 Ppg Industries Ohio, Inc. Photochromic compounds
US7256921B2 (en) 2003-07-01 2007-08-14 Transitions Optical, Inc. Polarizing, photochromic devices and methods of making the same
US7349138B2 (en) 2003-07-01 2008-03-25 Ppg Industries Ohio, Inc. Polarizing, photochromic devices and methods of making the same
US7359104B2 (en) 2003-07-01 2008-04-15 Ppg Industries Ohio, Inc. Polarizing, photochromic devices and methods of making the same
US8926091B2 (en) 2003-07-01 2015-01-06 Transitions Optical, Inc. Optical elements with alignment facilities for optical dyes
US20070047055A1 (en) * 2003-07-01 2007-03-01 Anil Kumar Polarizing, photochromic devices and methods of making the same
US9096014B2 (en) 2003-07-01 2015-08-04 Transitions Optical, Inc. Oriented polymeric sheets exhibiting dichroism and articles containing the same
US20080123172A1 (en) * 2003-07-01 2008-05-29 Anil Kumar Polarizing, photochromic devices and methods of making the same
US8211338B2 (en) 2003-07-01 2012-07-03 Transitions Optical, Inc Photochromic compounds
US7847998B2 (en) 2003-07-01 2010-12-07 Transitions Optical, Inc. Polarizing, photochromic devices and methods of making the same
US9309455B2 (en) 2003-07-01 2016-04-12 Transitions Optical, Inc. Indeno-fused ring compounds
US8089678B2 (en) 2003-07-01 2012-01-03 Transitions Optical, Inc Clear to circular polarizing photochromic devices and methods of making the same
US20070047054A1 (en) * 2003-07-01 2007-03-01 Anil Kumar Polarizing, photochromic devices and methods of making the same
US8077373B2 (en) 2003-07-01 2011-12-13 Transitions Optical, Inc. Clear to circular polarizing photochromic devices
US7429105B2 (en) 2003-07-01 2008-09-30 Ppg Industries Ohio, Inc. Polarizing, photochromic devices and methods of making the same
US8705160B2 (en) 2003-07-01 2014-04-22 Transitions Optical, Inc. Photochromic compounds
US7457025B2 (en) 2003-07-01 2008-11-25 Transitions Optical, Inc. Polarizing, photochromic devices and methods of making the same
US20070053050A1 (en) * 2003-07-01 2007-03-08 Anil Kumar Polarizing, photochromic devices and methods of making the same
US7466469B2 (en) 2003-07-01 2008-12-16 Ppg Industries Ohio, Inc. Polarizing, photochromic devices and methods of making the same
US20050004361A1 (en) * 2003-07-01 2005-01-06 Anil Kumar Photochromic compounds
US7471436B2 (en) 2003-07-01 2008-12-30 Transitions Optical, Inc. Polarizing, photochromic devices and methods of making the same
US8003005B2 (en) 2003-07-01 2011-08-23 Transitions Optical, Inc. Alignment facilities for optical dyes
US20050003107A1 (en) * 2003-07-01 2005-01-06 Anil Kumar Alignment facilities for optical dyes
US20050012998A1 (en) * 2003-07-01 2005-01-20 Anil Kumar Polarizing, photochromic devices and methods of making the same
US10619018B2 (en) 2003-07-01 2020-04-14 Transitions Optical, Inc. Oriented polymeric sheets exhibiting dichroism and articles containing the same
US7505189B2 (en) 2003-07-01 2009-03-17 Transitions Optical, Inc. Polarizing, photochromic devices and methods of making the same
US10532998B2 (en) 2003-07-01 2020-01-14 Transitions Optical, Inc. Photochromic compounds
US20070075388A1 (en) * 2003-07-01 2007-04-05 Anil Kumar Polarizing, photochromic devices and methods of making the same
US10532997B2 (en) 2003-07-01 2020-01-14 Transitions Optical, Inc. Photochromic compounds
US20090135462A1 (en) * 2003-07-01 2009-05-28 Transitions Optical, Inc. Clear to circular polarizing photochromic devices and methods of making the same
US10501446B2 (en) 2003-07-01 2019-12-10 Transitions Optical, Inc. Photochromic compounds
US20070053049A1 (en) * 2003-07-01 2007-03-08 Anil Kumar Polarizing, photochromic devices and methods of making the same
US20110143141A1 (en) * 2003-07-01 2011-06-16 Transitions Optical, Inc. Photochromic compounds and compositions
US20110140056A1 (en) * 2003-07-01 2011-06-16 Transitions Optical, Inc. Indeno-fused ring compounds
US20110129678A1 (en) * 2003-07-01 2011-06-02 Transitions Optical, Inc. Photochromic compounds and compositions
US10000472B2 (en) 2003-07-01 2018-06-19 Transitions Optical, Inc. Photochromic compounds
US20110080628A1 (en) * 2003-07-01 2011-04-07 Transitions Optical, Inc. Clear to circular polarizing photochromic devices
US7632540B2 (en) 2003-07-01 2009-12-15 Transitions Optical, Inc. Alignment facilities for optical dyes
US10007038B2 (en) 2003-07-01 2018-06-26 Transitions Optical, Inc. Optical elements with alignment facilities for optical dyes
US20070053048A1 (en) * 2003-07-01 2007-03-08 Anil Kumar Polirizing, photochromic devices and methods of making the same
US10005763B2 (en) 2003-07-01 2018-06-26 Transitions Optical, Inc. Photochromic compounds
US7550698B2 (en) 2003-07-10 2009-06-23 Lightswitch Safety Systems, Inc. Light sensor arrangement for auto-darkening lenses and method
US20050007667A1 (en) * 2003-07-10 2005-01-13 Fergason John D. Light sensor arrangement for auto-darkening lenses and method
US20080024718A1 (en) * 2003-08-15 2008-01-31 Ronald Blum Enhanced electro-active lens system
US7490936B2 (en) 2003-08-15 2009-02-17 E-Vision Llc Enhanced electro-active lens system
US20070216864A1 (en) * 2003-08-15 2007-09-20 Ronald Blum Enhanced electro-active lens system
US7588332B2 (en) 2003-08-15 2009-09-15 Pixel Optics Enhanced electro-active lens system
US7374283B2 (en) 2003-08-15 2008-05-20 E-Vision, Llc Enhanced electro-active lens system
WO2005043224A3 (en) * 2003-11-03 2009-08-27 Ophthocare Ltd Liquid-crystal eyeglass system
US20080062338A1 (en) * 2003-11-03 2008-03-13 Ophthocare Ltd. Liquid-Crystal Eyeglass System
WO2005043224A2 (en) 2003-11-03 2005-05-12 Ophthocare Ltd Liquid-crystal eyeglass system
US20060028615A1 (en) * 2004-01-14 2006-02-09 Anil Kumar Polarizing devices and methods of making the same
US7097303B2 (en) 2004-01-14 2006-08-29 Ppg Industries Ohio, Inc. Polarizing devices and methods of making the same
US20060028614A1 (en) * 2004-01-14 2006-02-09 Anil Kumar Polarizing devices and methods of making the same
US7097304B2 (en) 2004-01-14 2006-08-29 Transitions Optical Inc. Polarizing devices and methods of making the same
US7044600B2 (en) 2004-01-14 2006-05-16 Ppg Industries Ohio, Inc. Polarizing devices and methods of making the same
US20050151926A1 (en) * 2004-01-14 2005-07-14 Anil Kumar Polarizing devices and methods of making the same
US20070041073A1 (en) * 2004-05-17 2007-02-22 Anil Kumar Polarizing, photochromic devices and methods of making the same
US7978391B2 (en) 2004-05-17 2011-07-12 Transitions Optical, Inc. Polarizing, photochromic devices and methods of making the same
US20190317551A1 (en) * 2004-11-02 2019-10-17 E-Vision Smart Optics, Inc. Eyewear including a remote control camera and a docking station
US11822155B2 (en) 2004-11-02 2023-11-21 E-Vision Smart Optics, Inc. Eyewear including a remote control camera
US20060092340A1 (en) * 2004-11-02 2006-05-04 Blum Ronald D Electro-active spectacles and method of fabricating same
US11422389B2 (en) 2004-11-02 2022-08-23 E-Vision Smart Optics, Inc. Eyewear including a remote control camera
US10852766B2 (en) 2004-11-02 2020-12-01 E-Vision Smart Optics, Inc. Electro-active elements with crossed linear electrodes
US11144090B2 (en) 2004-11-02 2021-10-12 E-Vision Smart Optics, Inc. Eyewear including a camera or display
US7425066B2 (en) 2004-11-02 2008-09-16 E-Vision, Llc Electro-active spectacles and method of fabricating same
US10159563B2 (en) 2004-11-02 2018-12-25 E-Vision Smart Optics, Inc. Eyewear including a detachable power supply and a display
US20070242173A1 (en) * 2004-11-02 2007-10-18 Blum Ronald D Electro-active spectacles and method of fabricating same
US7290875B2 (en) 2004-11-02 2007-11-06 Blum Ronald D Electro-active spectacles and method of fabricating same
US9124796B2 (en) 2004-11-02 2015-09-01 E-Vision Smart Optics, Inc. Eyewear including a remote control camera
US11262796B2 (en) 2004-11-02 2022-03-01 E-Vision Smart Optics, Inc. Eyewear including a detachable power supply and display
US10379575B2 (en) 2004-11-02 2019-08-13 E-Vision Smart Optics, Inc. Eyewear including a remote control camera and a docking station
US8931896B2 (en) 2004-11-02 2015-01-13 E-Vision Smart Optics Inc. Eyewear including a docking station
US10795411B2 (en) * 2004-11-02 2020-10-06 E-Vision Smart Optics, Inc. Eyewear including a remote control camera and a docking station
US10172704B2 (en) 2004-11-02 2019-01-08 E-Vision Smart Optics, Inc. Methods and apparatus for actuating an ophthalmic lens in response to ciliary muscle motion
US8915588B2 (en) 2004-11-02 2014-12-23 E-Vision Smart Optics, Inc. Eyewear including a heads up display
US8778022B2 (en) 2004-11-02 2014-07-15 E-Vision Smart Optics Inc. Electro-active intraocular lenses
US10092395B2 (en) 2004-11-02 2018-10-09 E-Vision Smart Optics, Inc. Electro-active lens with crossed linear electrodes
US20060221452A1 (en) * 2005-03-31 2006-10-05 Zhan Chen Anti-glare reflective and transmissive devices
WO2006105209A3 (en) * 2005-03-31 2007-10-11 Zhan Chen Anti-glare reflective and transmissive devices
WO2006105209A2 (en) * 2005-03-31 2006-10-05 Zhan Chen Anti-glare reflective and transmissive devices
US9122083B2 (en) 2005-10-28 2015-09-01 E-Vision Smart Optics, Inc. Eyewear docking station and electronic module
US10114235B2 (en) 2005-10-28 2018-10-30 E-Vision Smart Optics, Inc. Eyewear docking station and electronic module
US20070159562A1 (en) * 2006-01-10 2007-07-12 Haddock Joshua N Device and method for manufacturing an electro-active spectacle lens involving a mechanically flexible integration insert
US20100271588A1 (en) * 2006-05-03 2010-10-28 Pixeloptics, Inc. Electronic eyeglass frame
US8337014B2 (en) 2006-05-03 2012-12-25 Pixeloptics, Inc. Electronic eyeglass frame
US7656509B2 (en) 2006-05-24 2010-02-02 Pixeloptics, Inc. Optical rangefinder for an electro-active lens
US20110228212A1 (en) * 2006-06-23 2011-09-22 Pixeloptics, Inc. Electro-Active Spectacle Lenses
US8408699B2 (en) 2006-06-23 2013-04-02 Pixeloptics, Inc. Electro-active spectacle lenses
US20090115961A1 (en) * 2006-06-23 2009-05-07 Pixeloptics Inc. Electronic adapter for electro-active spectacle lenses
US7971994B2 (en) 2006-06-23 2011-07-05 Pixeloptics, Inc. Electro-active spectacle lenses
US20110032476A1 (en) * 2006-08-31 2011-02-10 Nike, Inc. Adjustable Spectral Transmittance Curved Lens Eyewear
US8622544B2 (en) 2006-08-31 2014-01-07 Nike, Inc. Adjustable spectral transmittance curved lens eyewear
US7828434B2 (en) * 2006-08-31 2010-11-09 Nike, Inc. Zone switched sports training eyewear
US8708484B2 (en) 2006-08-31 2014-04-29 Nike, Inc. Adjustable spectral transmittance eyewear
US20080055541A1 (en) * 2006-08-31 2008-03-06 Nike Inc. Zone switched sports training eyewear
US20080129953A1 (en) * 2006-10-27 2008-06-05 Blum Ronald D Break away hinge for spectacles
US20080100792A1 (en) * 2006-10-27 2008-05-01 Blum Ronald D Universal endpiece for spectacle temples
US7926940B2 (en) 2007-02-23 2011-04-19 Pixeloptics, Inc. Advanced electro-active optic device
US8215770B2 (en) 2007-02-23 2012-07-10 E-A Ophthalmics Ophthalmic dynamic aperture
US20090033863A1 (en) * 2007-02-23 2009-02-05 Blum Ronald D Ophthalmic dynamic aperture
US8434865B2 (en) 2007-03-07 2013-05-07 Pixeloptics, Inc. Multifocal lens having a progressive optical power region and a discontinuity
US8308295B2 (en) 2007-03-07 2012-11-13 Pixeloptics, Inc. Multifocal lens having a progressive optical power region and discontinuity
US8662665B2 (en) 2007-03-07 2014-03-04 Pixeloptics, Inc. Refractive-diffractive multifocal lens
US7883206B2 (en) 2007-03-07 2011-02-08 Pixeloptics, Inc. Multifocal lens having a progressive optical power region and a discontinuity
US8197063B2 (en) 2007-03-07 2012-06-12 Pixeloptics, Inc. Refractive-diffractive multifocal lens
US20110194069A1 (en) * 2007-03-07 2011-08-11 Pixeloptics, Inc. Multifocal Lens Having a Progressive Optical Power Region and Discontinuity
US9033494B2 (en) 2007-03-29 2015-05-19 Mitsui Chemicals, Inc. Multifocal lens having a progressive optical power region and a discontinuity
US20110007266A1 (en) * 2007-03-29 2011-01-13 Pixeloptics, Inc. Multifocal lens having a progressive optical power region and a discontinuity
US8092016B2 (en) 2007-03-29 2012-01-10 Pixeloptics, Inc. Multifocal lens having a progressive optical power region and a discontinuity
US9028062B2 (en) 2007-05-04 2015-05-12 Mitsui Chemicals, Inc. Electronic eyeglass frame
US10613355B2 (en) 2007-05-04 2020-04-07 E-Vision, Llc Moisture-resistant eye wear
US11586057B2 (en) 2007-05-04 2023-02-21 E-Vision, Llc Moisture-resistant eye wear
US20080273166A1 (en) * 2007-05-04 2008-11-06 William Kokonaski Electronic eyeglass frame
US8708483B2 (en) 2007-05-04 2014-04-29 Pixeloptics, Inc. Electronic eyeglass frame
US11061252B2 (en) 2007-05-04 2021-07-13 E-Vision, Llc Hinge for electronic spectacles
WO2008148240A1 (en) * 2007-06-08 2008-12-11 Werthmueller Rene Self-clearing light-protective device
US9411172B2 (en) 2007-07-03 2016-08-09 Mitsui Chemicals, Inc. Multifocal lens with a diffractive optical power region
US20090046349A1 (en) * 2007-07-03 2009-02-19 Haddock Joshua N Multifocal lens with a diffractive optical power region
US8317321B2 (en) 2007-07-03 2012-11-27 Pixeloptics, Inc. Multifocal lens with a diffractive optical power region
US20090091818A1 (en) * 2007-10-05 2009-04-09 Haddock Joshua N Electro-active insert
US7883207B2 (en) 2007-12-14 2011-02-08 Pixeloptics, Inc. Refractive-diffractive multifocal lens
US20090153794A1 (en) * 2007-12-14 2009-06-18 Iyer Venkatramani S Refractive-diffractive multifocal lens
US8154804B2 (en) 2008-03-25 2012-04-10 E-Vision Smart Optics, Inc. Electro-optic lenses for correction of higher order aberrations
US20090279050A1 (en) * 2008-03-25 2009-11-12 Mcginn Joseph Thomas Electro-optic lenses for correction of higher order aberrations
WO2009135674A1 (en) * 2008-05-08 2009-11-12 Rory O'loughlin Combined eye and ear protection device
US9387648B2 (en) 2008-05-30 2016-07-12 Corning Incorporated Glass laminated articles and layered articles
US9782949B2 (en) 2008-05-30 2017-10-10 Corning Incorporated Glass laminated articles and layered articles
US9680102B2 (en) 2010-03-25 2017-06-13 University Of Connecticut Formation of conjugated polymers for solid-state devices
US9513524B2 (en) 2010-10-04 2016-12-06 Alphamicron Incorporated Wide band variable transmittance optical device
US9134551B2 (en) 2010-10-04 2015-09-15 Alphamicron Incorporated Wide band variable transmittance optical device and mixture
EP2753673A4 (en) * 2011-09-09 2015-05-06 Univ Connecticut Electrochromic devices prepared from the in situ formation of conjugated polymers
US9594284B2 (en) 2011-11-15 2017-03-14 Ashwin-Ushas Corporation, Inc. Complimentary polymer electrochromic device
US10197881B2 (en) 2011-11-15 2019-02-05 Ashwin-Ushas Corporation, Inc. Complimentary polymer electrochromic device
US9274395B2 (en) 2011-11-15 2016-03-01 Ashwin-Ushas Corporation, Inc. Complimentary polymer electrochromic device
US10598960B2 (en) 2012-01-06 2020-03-24 E-Vision Smart Optics, Inc. Eyewear docking station and electronic module
US11487138B2 (en) 2012-01-06 2022-11-01 E-Vision Smart Optics, Inc. Eyewear docking station and electronic module
US9944757B2 (en) 2012-07-23 2018-04-17 The University Of Connecticut Electrochromic copolymers from precursors, method of making, and use thereof
DE102012217326B4 (en) 2012-09-25 2019-08-22 Carl Zeiss Ag Sun protection goggles with controlled transmission and method for controlling the transmission of sun protection goggles
DE102012217326A1 (en) * 2012-09-25 2014-03-27 Carl Zeiss Ag Sun protective goggles i.e. skiing goggles, for protecting eyes against glare, have optical sensors provided with four optical sensitive surfaces, where two of surfaces face front and back surfaces, and remaining surfaces face edges
US9207515B2 (en) 2013-03-15 2015-12-08 Ashwin-Ushas Corporation, Inc. Variable-emittance electrochromic devices and methods of preparing the same
US10323178B2 (en) 2014-05-16 2019-06-18 The University Of Connecticut Color tuning of electrochromic devices using an organic dye
US10361328B2 (en) 2015-04-30 2019-07-23 Hewlett-Packard Development Company, L.P. Color changing apparatuses with solar cells
US10353263B2 (en) * 2015-06-03 2019-07-16 Canon Kabushiki Kaisha Electrochromic element, method of driving the same, optical filter, lens unit, image pick-up apparatus, and window
US20180024407A1 (en) * 2015-06-03 2018-01-25 Canon Kabushiki Kaisha Electrochromic element, method of driving the same, optical filter, lens unit, image pick-up apparatus, and window
US9632059B2 (en) 2015-09-03 2017-04-25 Ashwin-Ushas Corporation, Inc. Potentiostat/galvanostat with digital interface
US9482880B1 (en) 2015-09-15 2016-11-01 Ashwin-Ushas Corporation, Inc. Electrochromic eyewear
US10444544B2 (en) 2015-09-15 2019-10-15 Ashwin-Ushas Corporation Electrochromic eyewear
US20170235202A1 (en) * 2016-02-17 2017-08-17 Canon Kabushiki Kaisha Electrochromic element, optical filter, lens unit, and image pick-up apparatus
US10303033B2 (en) * 2016-02-17 2019-05-28 Canon Kabushiki Kaisha Electrochromic element, optical filter, lens unit, and image pick-up apparatus
US11662642B2 (en) 2016-04-12 2023-05-30 E-Vision Smart Optics, Inc. Electro-active lenses with raised resistive bridges
US10599006B2 (en) 2016-04-12 2020-03-24 E-Vision Smart Optics, Inc. Electro-active lenses with raised resistive bridges
US11397367B2 (en) 2016-04-12 2022-07-26 E-Vision Smart Optics, Inc. Electro-active lenses with raised resistive bridges
US11054714B2 (en) 2016-04-12 2021-07-06 E-Vision Smart Optics, Inc. Electro-active lenses with raised resistive bridges
WO2017180023A1 (en) * 2016-04-15 2017-10-19 Владимир Леонтьевич КРАПИВИН Controllable anti-glare diffusion filter 1 (cagdf-1)
RU2607822C1 (en) * 2016-04-15 2017-01-20 Владимир Леонтьевич Крапивин Controlled antiglare scattering filter-1 (uprf-1)
US10971027B2 (en) * 2016-12-02 2021-04-06 AT Systems, LLC System and method for improving safety when operating aircraft in reduced- or modified-visibility conditions
CN110573944A (en) * 2017-04-28 2019-12-13 株式会社Lg化学 Light modulation device
CN110573944B (en) * 2017-04-28 2022-04-12 株式会社Lg化学 Light modulation device
CN110612474A (en) * 2017-04-28 2019-12-24 株式会社Lg化学 Light modulation device
US11009725B2 (en) 2017-04-28 2021-05-18 Lg Chem, Ltd. Light modulation device
EP3617783A4 (en) * 2017-04-28 2020-03-04 LG Chem, Ltd. Optical modulation device
EP3617784A4 (en) * 2017-04-28 2020-03-04 LG Chem, Ltd. Light modulation device
EP3617781A4 (en) * 2017-04-28 2020-03-04 LG Chem, Ltd. Optical modulation device
US10768461B2 (en) 2017-04-28 2020-09-08 Lg Chem, Ltd. Light modulation device
EP3617782A4 (en) * 2017-04-28 2020-03-04 LG Chem, Ltd. Optical modulation device
EP3617786A4 (en) * 2017-04-28 2020-03-04 LG Chem, Ltd. Optical modulation device
US11536987B2 (en) 2017-04-28 2022-12-27 Lg Chem, Ltd. Light modulation device
US11506915B2 (en) 2017-04-28 2022-11-22 Lg Chem, Ltd. Light modulation device
US11262600B2 (en) 2017-04-28 2022-03-01 Lg Chem, Ltd. Light modulation device
CN110612474B (en) * 2017-04-28 2022-10-18 株式会社Lg化学 Light modulation device
US11314106B2 (en) * 2017-04-28 2022-04-26 Lg Chem, Ltd. Light modulation device
US11347080B2 (en) * 2017-04-28 2022-05-31 Lg Chem, Ltd. Light modulation device
JP2020517987A (en) * 2017-04-28 2020-06-18 エルジー・ケム・リミテッド Light modulation device
US20200142246A1 (en) * 2017-04-28 2020-05-07 Lg Chem, Ltd. Light modulation device
US11160687B2 (en) 2017-06-15 2021-11-02 3M Innovative Properties Company Vision-protective headgear with automatic darkening filter comprising an array of switchable shutters
US11022818B2 (en) 2017-10-10 2021-06-01 Verily Life Sciences Llc Ophthalmic device including dynamic visual field modulation
US10866455B2 (en) 2017-10-19 2020-12-15 Ppg Industries Ohio, Inc. Display devices including photochromic-dichroic compounds and dichroic compounds
RU2685555C1 (en) * 2018-02-01 2019-04-22 Владимир Леонтьевич Крапивин Controlled anti-glare diffusing filter (cagdf)
WO2019151900A1 (en) * 2018-02-01 2019-08-08 Владимир Леонтьевич КРАПИВИН Controllable anti-dazzle diffusion filter-2 (cadf-2)
WO2022038014A1 (en) * 2020-08-21 2022-02-24 Optrel Holding AG Sun screen device
EP3958046A1 (en) * 2020-08-21 2022-02-23 Optrel Holding AG Sun protection device

Similar Documents

Publication Publication Date Title
US5608567A (en) Variable transparency electro-optical device
EP1090326B1 (en) Variable light attenuating dichroic liquid crystal device
US10416521B2 (en) Variable transmittance optical filter and uses thereof
US7300167B2 (en) Adjustably opaque window
EP0671294B1 (en) Rearview mirror for vehicles
ES2717014T3 (en) Glazing with electrically switchable optical properties
US8102586B2 (en) Electronic window shading system for houses, transport vehicles and the like
US20080158448A1 (en) Adjustably Opaque Window
US5793449A (en) Protective device
GB2169417A (en) Liquid crystal lens having a variable focal length
WO1994011777A1 (en) Electrochromic-photovoltaic film for light-sensitive control of optical transmittance
US8687258B2 (en) Variable transmittance optical filter and uses thereof
US20070218217A1 (en) Adjustably opaque film for substantially smooth surface
CA2098825A1 (en) Electro-optical device having variable light transmission
JPH09179075A (en) Light control eyeglasses
KR101986192B1 (en) Eyewear with adjustable light transmittance
RU2154851C2 (en) Gear to protect eyes against effects of bright light
JPH02308214A (en) Spectacles with liquid crystal dimmer
FR2685102A1 (en) Electrooptic device having variable transparency
JPH01295217A (en) Electronic sunglasses
CH685176A5 (en) Variable light transmitting electro-optical device for eye protection
WO1987003103A1 (en) Light-shielding device
MXPA06003331A (en) Adjustably opaque window

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20050304