US3857266A - Rotary arbor wire straightener - Google Patents

Rotary arbor wire straightener Download PDF

Info

Publication number
US3857266A
US3857266A US00391497A US39149773A US3857266A US 3857266 A US3857266 A US 3857266A US 00391497 A US00391497 A US 00391497A US 39149773 A US39149773 A US 39149773A US 3857266 A US3857266 A US 3857266A
Authority
US
United States
Prior art keywords
arbor
collar
die
rack
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00391497A
Inventor
D Wilke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANDY AND HERMAN SPECIALTY METALS GROUP
Original Assignee
HANDY AND HERMAN SPECIALTY METALS GROUP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANDY AND HERMAN SPECIALTY METALS GROUP filed Critical HANDY AND HERMAN SPECIALTY METALS GROUP
Priority to US00391497A priority Critical patent/US3857266A/en
Application granted granted Critical
Publication of US3857266A publication Critical patent/US3857266A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F1/00Bending wire other than coiling; Straightening wire
    • B21F1/02Straightening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F1/00Bending wire other than coiling; Straightening wire
    • B21F1/02Straightening
    • B21F1/023Straightening in a device rotating about the wire axis

Definitions

  • Rotary arbor wire straighteners often referred to as whizzers are employed for straightening a workpiece such as wire, rod or tubing of circular cross-section, wherein the straightening of the workpiece is effected by drawing the workpiece through a series of dies, normally five in number, which have a bore a little larger in diameter than the diameter of the workpiece, and which are located with their longitudinal axes generally parallel with respect to one another but displaced laterally, or offset, with respect to one another by a suitable distance.
  • the dies are adjustably mounted in a suitable carriage referred to as an arbor which rotates around the workpiece on an axis parallel to the direction of travel of the workpiece, the arbor having a longitudinally extending passageway through which the workpiece travels through the successive dies.
  • the workpiece is thus required to follow a rotating sinuous or serpentine path through the series of dies during which time, the workpiece is flexed essentially in all directions.
  • a bent or kinked section of the workpiece passes through the series of dies, it is flexed in a direction to correct the bend or kink by an amount which exceeds the elastic limit of the workpiece and the bend or kink is thus removed and the workpiece is straightened.
  • the rotary arbor wire straightener of the present invention comprises essentially, rack and pinion assemblies mounted within the arbor and connected to selected dies, the free ends of the racks are connected to adjustable nuts or collars movable axially relative to the arbor which impart axial movement to the racks which in turn impart radial movement of the dies relative to the longitudinal axis of the arbor.
  • FIG. 1 is a side elevational view of the rotary arbor straightener
  • FIG. 2 is a sectional view taken along line 2-2 of FIG. 1;
  • FIG. 3 is a fragmentary, sectional view taken along line 3-3 of FIG. 2;
  • FIG. 4 is an enlarged, fragmentary, sectional view taken along line 44 of FIG. 1;
  • FIG. 5 is an enlarged, fragmentary, sectional view similar to FIG. 4 but showing another embodiment of the arbor bearing assembly.
  • the wire straightening device of the present invention comprises a rotary arbor I having a series of dies, five in number, 2a, 2b, 2c, 2d and 2e adjustably mounted therein.
  • necessary adjustments to the three intermediate dies can be made during the operational rotation of the arbor. This is accomplished by a pair of racks 3 slidably mounted within the arbor and meshing with pinion stems 4 (FIG. 3) connected to the die 20. Dies 2b and 2d are similarly provided with pinion stems 5 and 6, respectively, which mesh with a pair of racks 7.
  • racks 3 are connected to a collar 8 adjustable axially relative to the arbor, and the free ends of racks 7 are connected to a collar 9 positioned at the other end of the arbor and axially adjustable relative thereto.
  • racks 3 are caused to slide axially of the arbor to impart rotational movement to the stems 4.
  • racks 7 are caused to slide axially of the arbor to impart rotational movement to stems 5 and 6.
  • Lock nuts or collars 10 and 11 are also provided to hold the respective collars 8 and 9 in the adjusted position.
  • each end of the arbor is journaled in suitable brackets 12 mounted on a support frame 13, rotational movement being imparted to the arbor by a belt and pulley drive assembly 14.
  • die 2b is located within a passageway la provided in the arbor, the die having a bore through which the workpiece or wire 15 travels.
  • the die is mounted between the oppositely extending stems 5 which are'threadably mounted as at 5a to the arbor, the pinion portion of the stern meshing with the racks 7.
  • FIG. 4 shows the details of the connection between the free ends of racks 3 and the adjustment collar 8, and while the connection will be described for the racks 3, it will be understood that an identical connection will be provided at the opposite end of the arbor between racks 7 and adjustment collar 9.
  • an annular rim I6 is connected to the free ends of the racks 3 by set screws 17.
  • One face of the rim is provided with recesses 16a, each of which receives one end of a compression spring 18, the opposite end of each spring being received within a recess lb provided in the end of the arbor.
  • the opposite face of the rim 16 is provided with an annular recess 16b for receiving a plurality of ball bearings 19 which abut the face of collar 8.
  • the collar 8 and lock nut 10 are threadably mounted on a stationary sleeve 20 secured to the bracket 12, the end of the arbor being journaled in the sleeve by suitable bearings 21.
  • the spring 18, biasing the rim and associated ball bearings 19 in a direction toward the collar 8 is compressed.
  • the biasing force of the springs cause the rim and associated free ends of the racks to move outwardly from the arbor. While in the illustrated embodiment ball bearings are used, it will be understood by those skilled in the art that roller bearings could also be employed.
  • FIG. 5 there is illustrated another embodiment of an end connection between the racks and adjustment collar and, while in the illustrated embodiment the connection is shown between the racks? and collar 9, it will be understood that an identical connection will be provided on the opposite end of the arbor between the racks 3 and collar 8.
  • the collar 9 is provided with a ring 22 providing a depending flange which extends into an annular recess 23 formed in an annular rim 24 secured to the free ends of racks 7 by set screws 25.
  • the flange 22 provides an inner race for anti-friction bearings 26, and the end walls of the recess 23 providing the outer races for the bearings.
  • a thrust bearing assembly is thereby provided whereby when the collar 9 is rotated, the flange 22 engaging the bearings 26 causes the rim 24 and associated racks 7 to be either pushed inwardly of the arbor or outwardly therefrom depending upon the direction of rotation of the collar.
  • initial adjustments of the die members are manually accomplished by inserting an Allen wrench into the re spective die stems and rotating the stems to adjust the lateral position of the dies with respect to one another.
  • the wire, to be straightened is fed through the arbor passageway la and through the respective bores of each die.
  • collar 8 is rotated by the machine operator to cause rotation of the stemsS to thereby laterally adjust the die 20. If dies 2b and 2d need adjustment, collar 9 is rotated whereby the lateral position of dies 2b and 2d are simultaneously adjusted relative to the remaining dies.
  • a rotary arbor wire straightener comprising stationary frame means, an arbor rotatably mounted on said frame means, adjustable die means mounted within said arbor and rotatable therewith, rack means slidably mounted in said arbor, pinion means connected to said die means, one end of said rack means engaging said pinion means, a collar threadably mounted on said frame means, and bearing means connected between said collar and the opposite end of said rack means, whereby the die means is adjustable relative to said arbor during the operational rotation of said arbor.
  • a rotary arbor wire straightener according to claim 1 wherein the-bearing means comprises an annu lar rim connected to said opposite end of said rack means, spring means biased between one face of said rim and an end of said arbor, and ball bearings interposed the opposite face of the rim and a face of the collar.
  • a rotary arbor wire straightener comprises an annular rim connected to said opposite end of said rack means, an annular recess provided in the outer surface of the rim, a depending flange connected to the collar and extending into said annular recess, said flange being spaced from the end walls of said recess, and bearings mounted between opposite faces of the depending flange and the end walls of said recess.
  • a rotary arbor wire straightener according to claim 1 wherein the die means includes at least three die members, a collar mounted on said frame means at each end of said arbor, first rack means connected to one of said die members, second rack means connected to the remaining two die members, and bearing means positioned at each end of said arbor and connected between the respective collar and rack means.

Abstract

A rotary arbor wire straightener having wire straightening dies constructed and arranged to be adjustable during continuous operational rotation of the arbor.

Description

United States Patent [191 Wilke Dec. 31, 1974 [54] ROTARY ARBOR WIRE STRAIGHTENER 2,720,907 10/1955 Seibgl 72/79 ,02 ,845 4 1962 E l.... [75] Inventor! David Wllke, York 145?,242 6/1969 TEES 72/77 [73] Assignee: Handy & Harman Specialty Metals Group, Cockeysville, Md. Primary Examiner-Richard .l. Herbst Filed? g- 24, 1973 Attorney, Agent, or Firm-Brady, OBoyle & Gates 211 App]. N0.: 391,497
[52] US. Cl. 72/79, 140/147 [57] ABSTRACT [51] Int. Cl B2lf 1/04 Field of Search H 140/147 A rotary arbor wire straightener having wire straightening dies constructed and arranged to be adjustable References Cited during continuous operational rotation of the arbor.
UNITED STATES PATENTS 432,232 7/1890 Fife 72/77 4 Claims, 5 Drawing Figures l0 1 l2 l4 7 f I QM HINT 8 9 I2\ I K i ROTARY ARBOR WIRE STRAIGI-ITENER BACKGROUND OF THE INVENTION Rotary arbor wire straighteners, often referred to as whizzers are employed for straightening a workpiece such as wire, rod or tubing of circular cross-section, wherein the straightening of the workpiece is effected by drawing the workpiece through a series of dies, normally five in number, which have a bore a little larger in diameter than the diameter of the workpiece, and which are located with their longitudinal axes generally parallel with respect to one another but displaced laterally, or offset, with respect to one another by a suitable distance. The dies are adjustably mounted in a suitable carriage referred to as an arbor which rotates around the workpiece on an axis parallel to the direction of travel of the workpiece, the arbor having a longitudinally extending passageway through which the workpiece travels through the successive dies. The workpiece is thus required to follow a rotating sinuous or serpentine path through the series of dies during which time, the workpiece is flexed essentially in all directions. When a bent or kinked section of the workpiece passes through the series of dies, it is flexed in a direction to correct the bend or kink by an amount which exceeds the elastic limit of the workpiece and the bend or kink is thus removed and the workpiece is straightened.
While the above-noted rotary arbor wire straighteners have been satisfactory for their intended purpose, they have been characterized by the inherent disadvantage of requiring the arbor to be brought to a full stop before necessary adjustments to the dies can be made. In a five-die straightener, it has been found that the three intermediate dies require adjustment, with the center die requiring the most frequent adjustment. The stopping of the arbor to make the necessary adjustment results in a loss of time and production which is overcome by the rotary arbor wire straightener of the present invention which is constructed and arranged whereby the lateral or offset adjustment of the dies with respect to one another can be effected during the continuous operational rotation of the arbor, thus obviating the down-time for die adjustment required heretofore in rotary arbor wire straighteners.
The rotary arbor wire straightener of the present invention comprises essentially, rack and pinion assemblies mounted within the arbor and connected to selected dies, the free ends of the racks are connected to adjustable nuts or collars movable axially relative to the arbor which impart axial movement to the racks which in turn impart radial movement of the dies relative to the longitudinal axis of the arbor.
IN THE DRAWINGS FIG. 1 is a side elevational view of the rotary arbor straightener;
FIG. 2 is a sectional view taken along line 2-2 of FIG. 1;
FIG. 3 is a fragmentary, sectional view taken along line 3-3 of FIG. 2;
FIG. 4 is an enlarged, fragmentary, sectional view taken along line 44 of FIG. 1; and
FIG. 5 is an enlarged, fragmentary, sectional view similar to FIG. 4 but showing another embodiment of the arbor bearing assembly.
Referring to the drawings and more particularly to FIG. 1 thereof, the wire straightening device of the present invention comprises a rotary arbor I having a series of dies, five in number, 2a, 2b, 2c, 2d and 2e adjustably mounted therein. In accordance with the invention, necessary adjustments to the three intermediate dies can be made during the operational rotation of the arbor. This is accomplished by a pair of racks 3 slidably mounted within the arbor and meshing with pinion stems 4 (FIG. 3) connected to the die 20. Dies 2b and 2d are similarly provided with pinion stems 5 and 6, respectively, which mesh with a pair of racks 7. The free ends of racks 3 are connected to a collar 8 adjustable axially relative to the arbor, and the free ends of racks 7 are connected to a collar 9 positioned at the other end of the arbor and axially adjustable relative thereto. By this construction and arrangement, when collar 8 is rotated, racks 3 are caused to slide axially of the arbor to impart rotational movement to the stems 4. Similarly, when collar 9 is rotated, racks 7 are caused to slide axially of the arbor to impart rotational movement to stems 5 and 6. Lock nuts or collars 10 and 11 are also provided to hold the respective collars 8 and 9 in the adjusted position.
To complete the general description of the wire straightener, as shown in FIG. 1, each end of the arbor is journaled in suitable brackets 12 mounted on a support frame 13, rotational movement being imparted to the arbor by a belt and pulley drive assembly 14.
The details of the die mounting in the arbor are illustrated in FIG. 2, and while the mounting of die 2b is shown, it will be understood that the particular mounting is identical for the remaining die members. As will be seen in FIG. 2, die 2b is located within a passageway la provided in the arbor, the die having a bore through which the workpiece or wire 15 travels. The die is mounted between the oppositely extending stems 5 which are'threadably mounted as at 5a to the arbor, the pinion portion of the stern meshing with the racks 7. By this construction and arrangement, when the racks 7 are moved longitudinally of the arbor, the stems 5 are rotated causing the die 2b to move radially with respect to the longitudinal axis of the arbor, thus moving the die laterally of the arbor passageway la.
FIG. 4 shows the details of the connection between the free ends of racks 3 and the adjustment collar 8, and while the connection will be described for the racks 3, it will be understood that an identical connection will be provided at the opposite end of the arbor between racks 7 and adjustment collar 9. As will be seen in FIG. 4, an annular rim I6 is connected to the free ends of the racks 3 by set screws 17. One face of the rim is provided with recesses 16a, each of which receives one end of a compression spring 18, the opposite end of each spring being received within a recess lb provided in the end of the arbor. The opposite face of the rim 16 is provided with an annular recess 16b for receiving a plurality of ball bearings 19 which abut the face of collar 8. The collar 8 and lock nut 10 are threadably mounted on a stationary sleeve 20 secured to the bracket 12, the end of the arbor being journaled in the sleeve by suitable bearings 21. When the nut 8 is rotated to slide the racks inwardly of the arbor, the spring 18, biasing the rim and associated ball bearings 19 in a direction toward the collar 8, is compressed. When the collar 8 is rotated in the opposite direction, the biasing force of the springs cause the rim and associated free ends of the racks to move outwardly from the arbor. While in the illustrated embodiment ball bearings are used, it will be understood by those skilled in the art that roller bearings could also be employed.
In FIG. 5, there is illustrated another embodiment of an end connection between the racks and adjustment collar and, while in the illustrated embodiment the connection is shown between the racks? and collar 9, it will be understood that an identical connection will be provided on the opposite end of the arbor between the racks 3 and collar 8. As willv be seen in FIG. 5, the collar 9 is provided with a ring 22 providing a depending flange which extends into an annular recess 23 formed in an annular rim 24 secured to the free ends of racks 7 by set screws 25. The flange 22 provides an inner race for anti-friction bearings 26, and the end walls of the recess 23 providing the outer races for the bearings. A thrust bearing assembly is thereby provided whereby when the collar 9 is rotated, the flange 22 engaging the bearings 26 causes the rim 24 and associated racks 7 to be either pushed inwardly of the arbor or outwardly therefrom depending upon the direction of rotation of the collar.
In the operation of the rotary arbor wire straightener, initial adjustments of the die members are manually accomplished by inserting an Allen wrench into the re spective die stems and rotating the stems to adjust the lateral position of the dies with respect to one another. The wire, to be straightened, is fed through the arbor passageway la and through the respective bores of each die. During the operational rotation of the arbor, if it is found that adjustment of die 2c is required, collar 8 is rotated by the machine operator to cause rotation of the stemsS to thereby laterally adjust the die 20. If dies 2b and 2d need adjustment, collar 9 is rotated whereby the lateral position of dies 2b and 2d are simultaneously adjusted relative to the remaining dies.
It is to be understood that the forms of the invention herewith shown and described are to be taken as preferred examples of the same, and that various changes in the shape, size and arrangement of parts may be resorted to, without departing from the spirit of the invention or scope of the subjoined claims.
I claim:
1. A rotary arbor wire straightener comprising stationary frame means, an arbor rotatably mounted on said frame means, adjustable die means mounted within said arbor and rotatable therewith, rack means slidably mounted in said arbor, pinion means connected to said die means, one end of said rack means engaging said pinion means, a collar threadably mounted on said frame means, and bearing means connected between said collar and the opposite end of said rack means, whereby the die means is adjustable relative to said arbor during the operational rotation of said arbor.
2. A rotary arbor wire straightener according to claim 1 wherein the-bearing means comprises an annu lar rim connected to said opposite end of said rack means, spring means biased between one face of said rim and an end of said arbor, and ball bearings interposed the opposite face of the rim and a face of the collar.
3. A rotary arbor wire straightener according to claim 1, wherein the bearing means comprises an annular rim connected to said opposite end of said rack means, an annular recess provided in the outer surface of the rim, a depending flange connected to the collar and extending into said annular recess, said flange being spaced from the end walls of said recess, and bearings mounted between opposite faces of the depending flange and the end walls of said recess.
4. A rotary arbor wire straightener according to claim 1 wherein the die means includes at least three die members, a collar mounted on said frame means at each end of said arbor, first rack means connected to one of said die members, second rack means connected to the remaining two die members, and bearing means positioned at each end of said arbor and connected between the respective collar and rack means.

Claims (4)

1. A rotary arbor wire straightener comprising stationary frame means, an arbor rotatably mounted on said frame means, adjustable die means mounted within said arbor and rotatable therewith, rack means slidably mounted in said arbor, pinion means connected to said die means, one end of said rack means engaging said pinion means, a collar threadably mounted on said frame means, and bearing means connected between said collar and the opposite end of said rack means, whereby the die means is adjustable relative to said arbor during the operational rotation of said arbor.
2. A rotary arbor wire straightener according to claim 1 wherein the bearing means comprises an annular rim connected to said opposite end of said rack means, spring means biased between one face of said rim and an end of said arbor, and ball bearings interposed the opposite face of the rim and a face of the collar.
3. A rotary arbor wire straightener according to claim 1, wherein the bearing means comprises an annular rim connected to said opposite end of said rack means, an annular recess provided in the outer surface of the rim, a depending flange connected to the collar and extending into said annular recess, said flange being spaced from the end walls of said recess, and bearings mounted between opposite faces of the depending flange and the end walls of said recess.
4. A rotary arbor wire straightener according to claim 1 wherein the die means includes at least three die members, a collar mounted on said frame means at each end of said arbor, first rack means connected to one of said die members, second rack means connected to the remaining two die members, and bearing means positioned at each end of said arbor and connected between the respective collar and rack means.
US00391497A 1973-08-24 1973-08-24 Rotary arbor wire straightener Expired - Lifetime US3857266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00391497A US3857266A (en) 1973-08-24 1973-08-24 Rotary arbor wire straightener

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00391497A US3857266A (en) 1973-08-24 1973-08-24 Rotary arbor wire straightener

Publications (1)

Publication Number Publication Date
US3857266A true US3857266A (en) 1974-12-31

Family

ID=23546853

Family Applications (1)

Application Number Title Priority Date Filing Date
US00391497A Expired - Lifetime US3857266A (en) 1973-08-24 1973-08-24 Rotary arbor wire straightener

Country Status (1)

Country Link
US (1) US3857266A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2312314A1 (en) * 1975-05-30 1976-12-24 Hans Louis MACHINE FOR STRAIGHTENING METAL WIRES
US5526665A (en) * 1992-10-09 1996-06-18 United States Surgical Corporation Apparatus for straightening coiled wire
EP0800876A2 (en) * 1996-04-12 1997-10-15 Progress Ag Straightening machine
ITBO20080633A1 (en) * 2008-10-15 2010-04-16 Schnell Spa EQUIPMENT FOR STRAIGHTENING METAL AND SIMILAR PROFILES
ES2346608A1 (en) * 2007-10-04 2010-10-18 Estrimec, S.L. Straightening machine for wire (Machine-translation by Google Translate, not legally binding)
CN102000751A (en) * 2010-11-30 2011-04-06 溧阳市超强链条制造有限公司 Straightening device of straightener
US11123782B2 (en) * 2019-01-09 2021-09-21 Husky Corporation Versatile tubing straightener

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US432232A (en) * 1890-07-15 Of bos
US2720907A (en) * 1952-08-22 1955-10-18 Abraham Borut Wire straightener
US3029845A (en) * 1958-10-15 1962-04-17 Lawrence E Egedal Wire straighteners
US3451242A (en) * 1965-10-27 1969-06-24 Pirelli General Cable Works Apparatus for deforming tubing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US432232A (en) * 1890-07-15 Of bos
US2720907A (en) * 1952-08-22 1955-10-18 Abraham Borut Wire straightener
US3029845A (en) * 1958-10-15 1962-04-17 Lawrence E Egedal Wire straighteners
US3451242A (en) * 1965-10-27 1969-06-24 Pirelli General Cable Works Apparatus for deforming tubing

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2312314A1 (en) * 1975-05-30 1976-12-24 Hans Louis MACHINE FOR STRAIGHTENING METAL WIRES
US4046177A (en) * 1975-05-30 1977-09-06 Hans Louis Machine for straightening wires
US5526665A (en) * 1992-10-09 1996-06-18 United States Surgical Corporation Apparatus for straightening coiled wire
EP0800876A2 (en) * 1996-04-12 1997-10-15 Progress Ag Straightening machine
EP0800876A3 (en) * 1996-04-12 1998-05-20 Progress Ag Straightening machine
ES2346608A1 (en) * 2007-10-04 2010-10-18 Estrimec, S.L. Straightening machine for wire (Machine-translation by Google Translate, not legally binding)
ITBO20080633A1 (en) * 2008-10-15 2010-04-16 Schnell Spa EQUIPMENT FOR STRAIGHTENING METAL AND SIMILAR PROFILES
WO2010044009A1 (en) * 2008-10-15 2010-04-22 Schnell S.P.A. Apparatus for straightening metal profiles and the like and method for adjusting straightening members in such an apparatus
CN102000751A (en) * 2010-11-30 2011-04-06 溧阳市超强链条制造有限公司 Straightening device of straightener
CN102000751B (en) * 2010-11-30 2013-04-03 溧阳市超强链条制造有限公司 Straightening device of straightener
US11123782B2 (en) * 2019-01-09 2021-09-21 Husky Corporation Versatile tubing straightener

Similar Documents

Publication Publication Date Title
EP1017515B1 (en) Spinning processing method and apparatus therefor
US2686551A (en) Beading and flanging machine
US3857266A (en) Rotary arbor wire straightener
EP0421575B1 (en) Adjustable guide for rotating cylindrical member
EP1651364B1 (en) Apparatus for rectifing round pipe and tubing
US4047418A (en) Combined drawing and straightening machine for metallic tubes or rods
US3453852A (en) Straightening apparatus for tubes,rods and the like
US3595049A (en) Bellows
US3222906A (en) Tube processing apparatus
JP4278565B2 (en) Bead forming method and apparatus
JPS58173048A (en) Machine for continuously cutting wire material and for cold processing cut piece
US3411334A (en) Method and apparatus for rollextrusion of small tubes
US6233991B1 (en) Apparatus and method for spin forming a tube
US3672197A (en) Straightening machine for pipe-like articles
RU2337780C1 (en) Mill for spiral-shaped tube knurling
BRPI0621813A2 (en) retained seamless pipe chuck rolling mill
KR101929215B1 (en) Roll forming device
JP2000280028A (en) Conical bending roll
US3353389A (en) Apparatus for use in corrugating metal hose
US4037447A (en) Planetary straightening machine
US3595048A (en) Bellows
US2901930A (en) Tube bending machines
US3348401A (en) Methods and equipment for the widening of stock
US2595910A (en) Rolling mill
US4674311A (en) Method and apparatus for automatic shaping/decoration of longitudinal members in modular units of preset size from which ultimately to fashion articles of jewelry in precious metal and articles of costume jewelry