US3797494A - Bandage for the administration of drug by controlled metering through microporous materials - Google Patents

Bandage for the administration of drug by controlled metering through microporous materials Download PDF

Info

Publication number
US3797494A
US3797494A US00169976A US3797494DA US3797494A US 3797494 A US3797494 A US 3797494A US 00169976 A US00169976 A US 00169976A US 3797494D A US3797494D A US 3797494DA US 3797494 A US3797494 A US 3797494A
Authority
US
United States
Prior art keywords
drug
reservoir
bandage
microporous
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00169976A
Inventor
A Zaffaroni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alza Corp
Original Assignee
Alza Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ZA714095A external-priority patent/ZA714095B/en
Application filed by Alza Corp filed Critical Alza Corp
Application granted granted Critical
Publication of US3797494A publication Critical patent/US3797494A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • A61K9/703Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
    • A61K9/7038Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer
    • A61K9/7046Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer the adhesive comprising macromolecular compounds
    • A61K9/7053Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer the adhesive comprising macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds, e.g. polyvinyl, polyisobutylene, polystyrene
    • A61K9/7061Polyacrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/0008Introducing ophthalmic products into the ocular cavity or retaining products therein
    • A61F9/0017Introducing ophthalmic products into the ocular cavity or retaining products therein implantable in, or in contact with, the eye, e.g. ocular inserts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0004Osmotic delivery systems; Sustained release driven by osmosis, thermal energy or gas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • A61K9/703Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
    • A61K9/7038Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer
    • A61K9/7076Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer the adhesive comprising ingredients of undetermined constitution or reaction products thereof, e.g. rosin or other plant resins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • A61K9/703Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
    • A61K9/7084Transdermal patches having a drug layer or reservoir, and one or more separate drug-free skin-adhesive layers, e.g. between drug reservoir and skin, or surrounding the drug reservoir; Liquid-filled reservoir patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • A61K9/703Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
    • A61K9/7092Transdermal patches having multiple drug layers or reservoirs, e.g. for obtaining a specific release pattern, or for combining different drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/58Adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • A61M31/002Devices for releasing a drug at a continuous and controlled rate for a prolonged period of time

Definitions

  • This invention relates to a device for the administration of drug and, more particularly, to a medical bandage for the controlled continuous metering of flow of systemically or topically active drug to the skin or mucosa over a period of time.
  • Topically active drugs are agents which, when applied to the skin or mucosa, primarily cause a pharmacological or physiological response at or near the site of their application.
  • systemically active drugs are agents which, when applied to the skin or mucosa, are absorbed through the body surface to which applied and are transported from their site of application by the recipients circulatory system or lymphatic system, to cause a pharmacologic or physiologic response at a remote site in the body.
  • systemically active drugs are conventionally administered either orally or by injection, with the primary objective of the mode being to achieve a given desired blood level of drug in circulation over a period of time.
  • these prior art methods possess certain shortcomings resulting in the failure to obtain these goals.
  • the oral route is inadequate for several reasons even though the drug is administered at periodic intervals according to a well defined schedule.
  • the rate of absorption of drug through the gastrointestinal tract is affected by both the contents of the tract and the time of passage of drug through the small intestine. Therefore, such variables as whether the drug is administered before or after eating and the type and quantity of food eaten (for example, high or low fat content), or whether administered before or after a bowel movement, affect the. rate of absorption of the drug which takes place in the small intestine.
  • the time of passage of drug through the small intestine is affected by the rate of peristaltic contracting, adding further uncertainty. Also important is the rate of circulation of blood to the small intestine and the fact that many drugs administered by this route are rendered inactive by gastric acid and digestive enzymes of the gastrointestinal tract or liver where the drug can be metabolized to an inactive product by that organ. These factors make it difficult to achieve a desired time course of concentration of the drug in the blood.
  • the almost inevitable result of oral administration of drugs through the gastrointestinal tract is, that the level of drug in circulation surges to a peak level at the time the drug is administered, followed by a decline in concentration in 2 the blood and body compartments.
  • a plot of drug in circulation after'administration of several tablets a day has the appearance of a series of peaks which may surpass the toxic threshold of the drug, and valleys which fall below the critical point needed to achieve the desired therapeutic effect.
  • drugs by injection can entail certain disadvantages. For example, very strict asepsis must be maintained to avoid infection of the blood, the vascular system or heart. Drug administration by poor intravenous injection technique may result in perivascular injection when it is not intended; and the typical result of injection into the blood is a sudden rise in the blood concentration followed by an uncontrolled decline. Additionally, administration of drugs by injection is inconvenient and painful. Other dosage forms for systemic administration of drug, such as rectal suppositories and sublingual lozenges, also produce non-uniform levels of the therapeutic agent in circulation. These dosage forms require great patient cooperation, have low patient acceptability, and are sparingly used throughout most of the world.
  • a large number of locally acting drugs are available to treat skin disorders or other conditions which manifest themselves in a manner such that they are susceptible to treatment via the skin.
  • These drugs are conventionally topically administered to the skin with the active agent carried in the form of ointments, creams, salves, liniments, powders, dressings, and the like.
  • the popularity of these types of formulations resides in the fact that it is quite easy to topically apply the agent to the skin in this manner. In most cases, however, it is not possible to determine how much of the preparation has been taken up or effectively administered to the sking since only non-uniform levels of the agent are available, nor is there any assurance that sufficient medication will be available for the duration of periods that it is required.
  • a further undesirable feature is the unsightliness of these formulations which often discourages patients from using them during their waking hours of the day when they are most likely to be seen by others. Further, the preparations are subject to rub off onto clothing, thus causing much inconvenience and annoyance tothe user.
  • an object of this invention is to provide a bandage for the improved continuous administration of a predetermined controlled quantity of topically or systemically active drug to or through the skin or body mucosa over a period of time, which overcomes the disadvantages inherent in the aforesaid prior art modes of administration.
  • Another object of this invention is to provide a bandage which can be adapted to deliver controlled quantities of drug having a wide variety of chemical and physical properties and over a wide range of drug delivery rates.
  • one feature of the invention resides in a bandage for the continuous administration of controlled quantities of drug to the skin or mucosa, comprised of a laminate of: (l) a backing member; bearing (2) a discrete middle reservoir layer containing a drug confined within a body, the body being formed from drug release rate controlling microporous material permeable to the passage of the drug, to continuously meter the flow of a therapeutically effective amount of the drug to the skin or mucosa from the reservoir at a controlled and predetermined rate over a period of time; and (3) a pressure-sensitive adhesive surface adapted for contact with the skin or mucosa and positioned on one surface of the reservoir remote from the backing member.
  • a bandage comprised of a laminate of: (l) a backing member; bearing (2) a discrete middle reservoir containing a drug confined therein, the reservoir being formed of material permeable to passage of the drug; and (3) a pressure-sensitive adhesive surface adapted for contact with the skin or mucosa and positioned on one surface of the reservoir remote from the backing member and wherein one or more drug release rate controlling microporous membranes are interposed between the surface of the reservoir and pressure-sensitive adhesive so as to continuously meter the flow of a therapeutically effective amount of the drug from the reservoir at a controlled and predetermined rate over a period of time.
  • the reservoir can be a container having the agent confined therein or a solid or microporous matrix having agent dispersed therein.
  • Still another embodiment of this invention resides in an adhesive bandage comprising a laminate of: (l) a backing member; bearing (2) a pressure-sensitive adhesive on one surface thereof adapted for contact with the skin or mucosa, said pressure-sensitive adhesive having distributed therethrough, (3) a plurality of discrete microcapsules, each of which microcapsules comprises a drug confined within a body of drug release rate controlling porous material to continuously meter the flow of a therapeutically effective amount of the drug to the skin or mucosa of the patient from the microcapsules at a controlled and predetermined rate over a period of time.
  • reservoir as used herein to define the drug containing portion of the subject bandage, is intended to connote a broad class of structures capable of fulfilling'the intended function, and includes both discrete porous microcapsules, as well as distinct reservoir compartments or layers.
  • the foregoing term encompasses containers having one or more interior drug containing chambers, as well as solid matrices and microporous matrices having a systemically or topically active drug distributed therethrough.
  • drug or agent when not further qualitied, includes both topically active and systemically active drugs. as hereinbefore defined.
  • FIG. 1 is a cross-sectional view of an embodiment of the medical bandage of the invention, wherein the drug is uniformly distributed throughout a matrix of microporous material permeable to the passage of the drug by flow through the pores of the material and the material is laminated to a backing member.
  • the matrix material which acts as a reservoir for the drug bears a coating of the pressure-sensitive adhesive thereon;
  • FIG. 2 is a cross-sectional view of still another embodiment of the invention, wherein the adhesive bandage of the invention is comprised of a backing member having a reservoir on one surface thereof of drug uniformly distributed throughout a matrix material permeable to passage of the drug, and on the surface of the reservoir remote from the backing member bearing a pressure-sensitive adhesive coating.
  • a microporous membrane is interposed between the reservoir layer and the pressure-sensitive adhesive coating;
  • FIG. 3 is a cross-sectional view of another embodiment of the bandage of the invention, wherein the reservoir laminated to the backing member is a hollow container permeable to passage of drug by flow through the pores of one surface thereof, and having the drug confined within the interior chamber thereof.
  • the reservoir bears a coating of pressure-sensitive adhesive thereon;
  • FIG. 4 is a perspective view of the medical adhesive bandage of the invention, wherein the drug is microencapsulated with a porous material permeable to the passage of the drug, and the microcapsules are uniformly distributed throughout the pressure-sensitive coating;
  • FIG. 5 is a cross-sectional view of the bandage of the invention shown in FIG. 4.
  • a bandage suitable, by virtue of the microporous materials employed therein, for the predetermined controlled administration of drug to the skin or mucosa of the body over a period of time.
  • the bandage of the invention it is applied to the patients skin or mucosa and should be in firm contact therewith so as to form a tight seal.
  • Flow of drug from the reservoir is metered through the pores of the rate release controlling material in accordance with the laws of hydrodynamics or diffusion, as hereinafter discussed, at a predetermined rate.
  • drug molecules are continuously removed from the reservoir and migrate to the skin or mucosa of the patient.
  • the drugs are absorbed by the skin or mucosa and enter circulation through the capillary network.
  • the reservoir containing the drug is formed of material permeable to the drug to permit passage of the drug.
  • the drug reservoir can be of microporous material or otherwise.
  • the drug must first pass through a microporous membrane material prior to reaching the skin or mucosa. It is therefore critical to the practice of this invention for all embodiments that, at some point after or concurrent with the release of drug from the reservoir and prior to reaching the skin or mucosa, the drug pass through the drug release rate controlling microporous membrane or matrix material to meter the flow thereof.
  • the rate of passage or permeation of drug through the microporous material is determined by the transfer mechanism which can be either by:
  • the microporous material has a structure that enables the drug to pass through the pre-existing pores or capillaries, either by diffusive permeability or microporous hydrodynamic flow, depending upon the mode of use as describd hereinafter. Since the microporous rate controlling material is preferably selected so that the drug is substantially insoluble therein, as hereinafter described, flow of drug through the structure of the material can be neglected.
  • the release rate can be controlled in accordance with Ficks First Law, depending on the particular design by selection of dependent variables such as the diffusivity and solubility of the drug in the diffusive medium and the thickness and porosity of the material properly modified by a tortuosity factor.
  • drug transfer mechanism (2) i.e., flow of drug through the pores of the microporous rate controlling material, the pressure differential, the thickness of the membrane, the viscosity of the permeant drug, the size of the permeant molecule relative to the pore size, the absolute value of the pore size, and the number of pores or percent voids in the material are the controlling factors governing permeability.
  • flow mechanism of this type e.g., viscous flow
  • the amount of drug passing through the porous structure is given by Poiseuilles equation for viscous flow.
  • microporous rate controlling membrane or matrix material will be dependent on the particular drug to be used in the bandage.
  • organic and inorganic polymeric materials can be shaped into a wide variety of forms with tailored morphology and a wide range of chemical and physical properties to advantageously control release of a wide variety of drugs, including those with large molecular structures such as insulin, and over a large dosage range rate appropriate pore size selection.
  • a given microporous membrane or matrix material can be adapted to control the release of drugs having a wide range of chemical properties by diffusive permeability.
  • the dosage rate per area of bandage can be controlled since the material functions to meter the flow of drug from the device. Therefore, bandages of the same surface area can provide different dosages of a drug by varying the above discussed parameters.
  • the microporous rate controlling materials of this invention are known in the art and can be visualized as a plurality of sponge-like fused polymer particles which provide a supporting structure having therethrough a dispersion of microscopic sized interconnecting voids or pores.
  • the rate controlling structures formed from the materials can be isotropic, wherein the structure is homogeneous throughout the cross-section of the matrix or membrane material, or anisotropic wherein the structure is non-homogenous.
  • These rate controlling structures are commercially available and can be made by a multitude of different methods, e.g., etched nuclear track, and materials employed, e.g., polyelectrolyte, ion exchange polymers, as described in R. E.
  • Materials useful in forming the microporous rate controlling materials used in this invention include, but are not limited to the following.
  • Polycarbonates i.e., linear polyesters of carbonic acids in which carbonate groups recur in the polymer chain, by phosgenation of a dihydroxy aromatic such as bisphenol A.
  • Such materials are sold under the trade designation Lexan'by the General Electric Company.
  • Polyvinylchlorides one such material is sold under the trade designation Geon 121 by B. G. Goodrich Chemical Company.
  • Polyamides such as polyhexamethylene adipamide and other such polyamides popularly known as nylon.
  • One particularly advantageous material is that sold under the trade name NOMEX by E. I. DuPont de Nemours & Co.
  • Modacrylic copolymers such as that sold under the trade designation DYNEL and formed of polyvinylchloride percent) and acrylonitrile (40 percent), styrene-acrylic acid copolymers, and the like.
  • Polysulfones such as those of the type characterized by diphenylene sulfone groups :in the linear chain thereof are useful. Such materials are available from Union Carbide Corporation under the trade designation P-l700.
  • Halogenated polymers such as polyvinylidene fluoride sold under the trade designation Kynar by Pennsalt Chemical Corporation, polyvinylfluoride sold under the trade name Tedlar by E. I. DuPont de Nemours & Co. and the polyfluorohalocarbon sold under the trade name Aclar by Allied Chemical Corporation.
  • Polychloroethers such as that sold under the trade name Penton by Hercules Incorporated, and other such thermoplastic polyethers.
  • Acetal polymers such as the polyformaldehyde sold under the trade nambe Delrin by I. DuPont de Nemours & Co., and the like.
  • Acrylic resins such as polyacrylonitrile polymethyl poly (vinyl alcohol); polyelectrolyte structures formed of two ionically associated polymers of the type as set forth in U.S. Pat. Nos. 3,549,016 and 3,546,142; derivatives of polystyrene such as poly (sodium styrenesulfonate) and polyvinylbenzyltrimethyl-ammonium chloride); poly( hydroxyethyl methacrylate poly(isobutyl vinyl ether), and the like, may also be utilized.
  • a large number of copolymers which can be formed by reacting various proportions of monomers from the aforesaid list of polymers are also useful for preparing rate controlling structures useful in the invention.
  • the bandage of the invention is comprised of drug 24 uniformly distributed in the interstices of the microporous matrix material forming reservoir 22.
  • the matrix material is laminated to backing member 21 and bears a pressure-sensitive adhesive coating 23 thereon.
  • the microporous matrix material 22 functions to control the release rate of the drug impregnated therein.
  • the reservoir can be prepared by employing any of the known impregnating techniques.
  • the drug can be added to the rate controlling material in liquid form and uniformly distributed therethrough by mixing, and subsequently converted to a microporous structure by the various methods known to the art.
  • One such method calls for dissolving a natural or synthetic polymer in a suitable solvent in which it has sufficient solubility to permit the preparation of a solution that is sufficiently viscous for conventional film casting.
  • the preferred method is to cast a film of a polymer solution having the drug therein, and, shortly after casting, to immerse it in a non-solvent or diluent, a medium which is compatible with the solvent, but not a solvent for the polymer.
  • the original solution then forms two phases, one polymer-rich and one polymer-poor. Under the proper conditions, both of these phases are physically continuous, so that the resulting polymer membrane is mechanically reasonably strong, but it is completely interlaced with continuous pores.
  • the size and uniformity of the pores depend on the conditions of preparation.
  • preformed microporous materials can be impregnated with drug by immersion in a bath of the drug to diffuse the drug into the material. While the matrix material can be of any convenient thickness, typically a thickness of from 20 to 200 microns is employed.
  • FIG. 2 illustrates a further modified form of the invention wherein the adhesive bandage 30 of the invention is comprised of a backing member 21 having a reservoir 32 on one surface thereof.
  • a microporous rate controlling membrane 35 is interposed between the reservoir 32 and a pressure-sensitive adhesive coating 23.
  • Drug 24 is confined in polymeric matrix material 32 which acts as the reservoir for the drug.
  • Matrix material 32 can be solid material as illustrated, or microporous as illustrated for reservoir 22 in FIG. 1. If desired, additional membranes can be juxtaposed next to membrane 35 in order to achieve optimum rate release properties.
  • the matrix material 32 when solid or microporous should have a release rate to drug which is higher than that of the rate controlling microporous membrane 35, such that passage through the latter is the rate controlling step.
  • Materials used to form the matrix reservoir 32 of FIG. 2, when solid, can be those heretofore exemplitied for preparing the microporous rate controlling material and, in addition, include hydrophobic polymers such as plasticized or unplasticized polyvinylchloride, plasticized nylon, plasticized soft nylon, plasticized polyethyleneterephthalate, natural rubber, C -C olefins, e.g., polyethylene, polyisoprene, polyisobutylene, polybutadiene; silicone rubbers, especially the medical grade polydimethylsiloxanes, as described in US. Pat. No. 3,279,996, hydrophilic polymers such as the hydrophilic hydrogels of esters of acrylic and methacrylic acid (as described in US.
  • hydrophobic polymers such as plasticized or unplasticized polyvinylchloride, plasticized nylon, plasticized soft nylon, plasticized polyethyleneterephthalate, natural rubber, C -C olefins, e.g., polyethylene
  • FIG. 3 illustrates a further form of the invention wherein bandage 40 includes a backing member 21 and a reservoir 42 in the form of a hollow container having an interior chamber 43 containing drug 34.
  • Wall or surface 45 of reservoir 42, remote from backing member 21, is of a microporous membrane structure permeable to passage of drug 34, to meter the flow of drug to pressure-sensitive adhesive layer 23 on the outer surface thereof.
  • the sides of the reservoir 42, other than rate controlling microporous membrane 45, preferably are impermeable to passage of the drug, and can be made of the same materials used to make the backing member as hereinafter described.
  • one face surface of the drug reservoir bears a backing member 21. The purpose of the backing is to prevent passage of the drug through the surface of the reservoir distant from the adhesive layer.
  • An ancillary purpose of the backing is to provide support for the bandage where needed.
  • the backing becomes unnecessary.
  • the other surface of the reservoir bears a coating of a pressure-sensitive adhesive.
  • additional microporous rate controlling membranes can be juxtaposed on top of membrane 45 to further tailor the rate of flow of drug.
  • the membrane will have different characteristics than the reservoir membrane 45 of the particulardevice.
  • This use of a pair of multiplicity of membranes, that is, the reservoir wall and the further membrane, allows for precise metering of drug out of the reservoir; for the thickness, porosity and composition of both membranes can be varied to provide for wide range of dosage levels for a given area of bandage.
  • this type of membrane can be used with either the matrix (FIGS. 1 or 2) or container type (FIG. 3) of reservoir.
  • the rate controlling microporous membrane 45 can be supported by an appropriate mesh or screen having a greater release rate to drug than does membrane 45.
  • the reservoir of the embodiment in FIG. 3 can be formed by molding into the form of a hollow container with the drug trapped therein. While the non-rate controlling walls of the reservoir can be of any convenient thickness, usually they have a thickness of from 0.01 to 7 millimeters.
  • the rate controlling membranes 35 and 45, in FIGS. 2 and 3, respectively, can have varying thickness depending upon the nature of the membrane, its porosity and the number of membranes used in combination. Typically, a thickness of from 20 to 200 microns is employed.
  • the pressuresensitive adhesive surface need not form a continuous layer on the subject bandage.
  • a bandage having a distinct reservoir layer equally advantageous results are obtained by providing an annu lar surface of adhesive around the periphery of the bandage face.
  • drug may be directly absorbed by the skin from the exposed surface of the drug reservoir layer without first migrating through an adhesive layer.
  • the adhesive can be supplied separately from the reservoir and backing, with the device assembled at the point of use.
  • the adhesive in sheet form can have both surfaces protected with a release film and the wall of the reservoir can be similarly protected.
  • the release films can be removed from the reservoir and one surface of the adhesive, the adhesive sheet applied to the reservoir wall to complete assemblage of the bandage, the remaining release film then removed from the adhesive, and the bandage then applied to the patient.
  • one type of drug transfer mechanism is that of flow through the pores or pinholes in microporous rate controlling material.
  • a driving force, Le a pressure differential across the microporous material, is necessary to cause the flow of drug by this mode.
  • the bandage of the type illustrated in FIG. 3, wherein the reservoir is a hollow container, can be conveniently adapted to meter the flow of drug by a microporous hydrodynamic mechanism by pressurizing the container. This can suitably be accomplished by admixing with the drug a solid particulate material which liberates gas on contact with the drug formulation.
  • a conventional effervescent powder such as a mixture of citric acid and sodium bicarbonate can be inserted immediately prior to use through an opening in the reservoir wall so provide for this purpose.
  • the opening is sealed, for example, by means of an adhesive tape.
  • the pressure can be controlled by adjusting the particle size of the effervescent powder composition and the quantity thereof. Pressure in an amount of from 1 mm to 50 mm of mercury can be satisfactorily employed, with the actual amount depending upon the desired release rate and the other parameters previously discussed regarding viscousflow.
  • FIGS. 4 and 5 illustrate an adhesive bandage of the invention including a backing member 11 bearing a pressure-sensitive adhesive coating 12 on one surface thereof.
  • Adhesive coating 12 has uniformly distributed therethrough microcapsules 13 comprising drug encapsulated with a microporous rate controlling material permeable to passage of the drug.
  • porous microcapsules 13 constitute the drug reservoir.
  • the encapsulating material can be uniformly impregnated with the drug to form microcapsules which are a porous matrix having the drug distributed therethrough.
  • particles of drug can be encapsulated with a thin microporous-coatingof the encapsulating material to form microcapsules having an interior chamber containing the drug.
  • particles of a matrix such as starch, gum acacia, gum tragacanth, and polyvinylchloride
  • a matrix such as starch, gum acacia, gum tragacanth, and polyvinylchloride
  • other materials such as the microporous rate controlling materials previously described, which function to meter the flow of drug to the adhesives; use of a microporous matrix and a different rate controlling membrane coating to slow the passage of the drug from the microcapsules, which is desirable: with drugs that are released too rapidly from available encapsulating materials, is therefore also contemplated herein.
  • any of the encapsulation or impregnation techniques known in the art can be used to prepare the microcapsules to be incorporated into the pressure-sensitive adhesive in accord with the embodiment of FIGS. 4 and 5.
  • the porous microcapsules can be made by techniques as set forth in US. Ser. No. 751,251, corresponding to German Patent No. 1,939,066, entitled Microcapsules with Anisotropic MicroporousLiquid Permeable Polymeric Outer Skin and Internal Macroporous Support Partitions or Structure, Bixler, Michaels, and Sternberg, or by standard coacervation methods.
  • the coacervation method of fabrication consists essentially of the formation of three immiscible phases, a liquid manufacturing phase, a core material phase and a coating phase with deposition of the liquid polymer coating on the core material and rigidizing the coating, usually by thermal, cross-linking or desolvation techniques to form microcapsules.
  • the microcapsules made by the above techniques have an average particle size of from several tenths of a micron to 5,000 microns, although this feature is not critical to the practice of the invention.
  • Techniques for preparing microcapsules such as the classic Bonneberg de long and Kass method are reported in Biochem. Z, Vol. 232, Pg. 338 to 345, I931; Colloid Science, Vol.
  • the drug can beadded to the encapsulating material in liquid form and uniformly distributed therethrough by mixing and then forming the microcapsules by any of the above set forth methods.
  • the porous microparticles can be made by the above techniques and impregnated with drug.
  • Still another method is to impregnate a porous solid encapsulating material with a drug by immersion in a bath of the drug to diffuse the drug-into the material, and subsequently the solid material can be, reduced to fine microcapsules by grinding, each of the microcapsules comprising drug coated with and distributed throughout the encapsulating material.
  • drug can be encapsulated with a microporouscoating by suspending dry particles of the drug in an air stream and contacting that stream with a stream containing the encapsulating material to coat the drug particles.
  • the micro-capsules have an average particle size of form 1 to 1000 microns, although this is not critical to the invention.
  • microcapsules are then mixed by conventional methods, e.g., stirring, ballmilling, and the like, with a pressure-sensitive adhesive.
  • the mixture of microcapsules and pressure-sensitive adhesive is then coated onto a backing member, usually to provide an adhesive layer 0.01 to 7 millimeters thick, although these limits can be exceeded if more or less drug is required.
  • the purpose of the backing is to provide support for the bandage and to prevent passage of the drug through the adhesive surface away from the body surface to which the bandage is applied.
  • the microporous rate controlling materials can be adapted to control the release of drug 1 by diffusive permeation wherein the micropores are impregnated or otherwise filled with a diffusive medium for the drug to be administered.
  • the material can be impregnated with the diffusive medium by methods well known to the art, e.g., as by immersion in a bath of the material to permit the diffusive medium material to fully saturate the micropores.
  • the impregnation technique can be employed with any of the embodiments represented herein. In embodiments illustrated in FIGS, 1, 4 and 5 the micropores can be concurrently impregnated with both drug and diffusive medium material.
  • the pressure-sensitive adhesive and microporous rate controlling material employed are water permeable, body fluids will self-migrate into the microporous material after the bandage has been in contact with the skin for a suitable period of time to provide the diffusive medium, as hereinafter described, without the necessity of carrying out a separate impregnation step. Additionally, the pores can be self-filled by migration of the diffusive medium by contact with the composition employed to prepare the drug formulation, as later described.
  • the diffusive medium is one which enables the drug to dissolve therein and flow by diffusion at the desired rate. It can be either of a liquid or solid nature and be a poor or good solvent for the drug. A medium with poor solvent properties for the drug is desired when the required release rate is low and of course the converse is true when the desired release rate is high.
  • the art provides many useful approaches to enable selection of particular solvent-drug systems. Specific attention is called to Remingtons Pharmaceutical Sciences, Chapters 19 and 71.
  • the solvent selected must be non-toxic and one in which the rate controlling microporous material has the required solubility.
  • the materials which are useful for impregnating the micropores can be polar, semi-polar or non-polar.
  • Exemplary are any of the pharmaceutically acceptable solvents such as water, alcohols containing 2 to carbon atoms, such as hexanol, cyclohexanol, benzylalcohol, 1,2-butanediol, glycerol, and amyl alcohol; hydrocarbons having 5 to 12 carbon atoms such as n-hexane, cyclohexane, and ethyl benzene; aldehydes and ketones having 4 to 10 carbon atoms such as heptyl aldehyde, cyclohexanone, and benzaldehyde; esters having 4 to 10 carbon atoms such as amyl acetate and benzyl propionate; etheral oils such as oil of eucalyptus, oil of rue, cumin oil, limonene, thyme], and l-pinene; halogenated hydrocarbons having 2 to 8 carbon atoms such as n-hexyl
  • plasticizers used in the fabrication of microporous rate controlling material, e.g., octyl diphenyl phosphate.
  • these plasticizers are suitable diffusive materials for the drug used, advantageously, the necessity for filling the pores by a separate step is thus obviated.
  • Other plasticizers known to the art can be employed, such as long-chain fatty amides, higher alcohols, and high boiling esters such as di(isooctyl) sebacate or di(2-ethyl hexyl) phthalate.
  • the diffusive medium also be incorporated in the reservoir in combination with the drug in the form of a pharmaceutically acceptable carrier as hereinafter described.
  • Suitable systemic drugs include, without limitation, Anti-microbial Agents such as penicillin, tetracycline, oxytetracycline, chlortetracycline, chloramphenicol, and sulfonamides; Sedatives and Hypnotics such as pentabarbital sodium, phenobarbital, secobarbital sodium, codeine, (oz-bromoisovaleryl) urea, carbromal, and sodium pheno-barbital; Psychic Energizers such as 3-( Z-aminopropyl) indole acetate and 3-( 2- aminobutyl) indole acetate; Tranquilizers such as reserpine, chlorpromazine hydrochloride, and thi
  • Suitable drugs include, without limitation: Antiperspirants, e.g., aluminum chloride; Deodorants, e.g., hexachlorophene, methylbenzethonium chloride; Astringents, e.
  • tannic acid e.g., tannic acid
  • Irritants e.g., methyl salicylate, camphor, cantharidin'
  • Keratolytics e.g., benzoic acid, salicylic acid, resorcinol, iodochlorhydroxyquin
  • Antifungal Agents such as tolnaftate, griseofulvin, nystatin and amphotericin
  • Anti-inflammatory Agents such as corticosteroids, e.g., hydrocortisone, hydrocortisone-acetate, prednisolone, methylprednisolone, triamcinolone acetonide, fludrocortisone, flurandrenolone, flumethasone, dexamethasone sodium phosphate, bethamethasone valerate, fluocinolone acetonide; fluorometholone; and pram'ox'ine fiCl; Anti-neo
  • simple pharmacologically acceptable derivatives of the drugs such as ethers, esters, amides, acetals, salts, etc., or formulations of these drugs, having the desired polymeric permeability or transport properties can be prepared and used in practicing the invention.
  • Drugs mentioned above can be used alone or in combination with others and each other.
  • the derivatives should be such as to convert to the active drugs within the body through the action of body enzyme assisted transformations, pH, etc.
  • the above drugs and other drugs can be present in the reservoir alone or in combination form with pharmaceutical carriers.
  • the pharmaceutical carriers acceptable for the purpose of this invention are the art known carriers that do not adversely affect the drug, the host, or the material comprising the drug delivery device.
  • Suitable pharmaceutical carriers include sterile water; saline, dextrose; dextrose in water or saline; condensation products of castor oil and ethylene oxide combining about 30 to about 35 moles of ethylene oxide per mole of castor oil; liquid glyceryl triester of a lower molecular weight fatty acid; lower alkanols; oils such as corn oil; peanut oil, sesame oil and the like, with emulsifiers such as mono-or di-glyceride of a fatty acid, or a phosphatide, e.g., lecithin, and the like; glycols; polyalkylene glycols; aqueous media in the presence of a suspending agent, for example, sodium carboxymethylcellulose; sodium
  • the drug can also be mixed in the reservoir with a transporting agent, that is, a material that aids or assists the drug delivery device to achieve the administration of a drug to a drug receptor, for example, by enhancing penetration through the skin.
  • a transporting agent that is, a material that aids or assists the drug delivery device to achieve the administration of a drug to a drug receptor, for example, by enhancing penetration through the skin.
  • the transporting aids suitable for the purpose of the invention are thetherapeutically acceptable transporting aids that do not adversely affect the host, the drug, or alter or adversely affect the materials forming the drug delivery device.
  • the transporting aids can be used alone or they can be admixed with acceptable carriers and the like.
  • transporting aids include manovalent, saturated and unsaturated aliphatic cycloaliphatic and aromatic alcohols having 4 to 12 carbon atoms, such as hexanol, cyclohexane and the like; aliphatic cycloaliphatic and aromatic hydrocarbons having from 5 to 12 carbon atoms such as hexane, cyclohexane, isopropylbenzene and the like; cycloaliphatic and aromaticaldehydes and ketones having from 4 to carbon atoms such as cyclohexanone; acetamide; N,N-di(lower) alkyl acetamides such as N,N-diethyl acetamide, N,N- dimethyl acetamide, N-( Z-hydroxyethyl) acetamide, and the like; and other transporting agents such as aliphatic, cycloaliphatic and aromatic esters; N,N-dilower alkyl sulfoxides;
  • the amount of active agent to be incorporated in the bandage to obtain the desired therapeutic effect will vary depending upon the desired dosage, the permeability of the rate controlling materials of the bandage which are employed to the particular agent to be used, and the length of time the bandage is to remain on the skin or body mucosa. Since the bandage of this invention is designed to control drug administration for an extended period of time, such as 1 day or more, there isno critical upper limit on the amount of agent incorporated into the bandage. The lower limit is determined by the fact that sufficient amounts of the agent must remain in the bandage to maintain the desired dosage. In order to achieve a therapeutic effect in a human adult, the daily release dosage of atropine should be in the range of between 200 and 600 micrograms per day.
  • the drug delivery bandages made according to the invention can release at a controlled rate about 25 nanograms to about 1 gram of drug or larger amounts per day.
  • other devices for use for different time periods such as Week or month are also readily made by the invention.
  • the effective rate of release of the active agent to the skin or mucosa can be in the range of from 0.5 to 1000 micrograms per square centimeter of bandage per day. The exactamount will depend on the desired dosage as well as the condition to be treated.
  • the desired effective rate of release of active agent can be obtained by altering the earlier discussed parameters affecting the release ratecontrolling barrier.
  • the release rate can also be controlled by varying the number of microcapsules present in a given volume of the matrix of the device. This is a particularly desirable feature of this aspect of the invention. Additionally, the duration of action of the device can be altered by controlling the amount of active agent initially incorporated consistent with the release rate.
  • the release rate of drug, as well as the duration of release of the drug from the device can be predetermined to be in consonance with the optimum therapeutic values. Once thisdosage level in micrograms per square centimeter of bandage has been determined, the total amountof drug to be incorporated in the bandage can be established by obtaining the release rate of the agent in the particular material or materials which are to be used; Those skilled in the art can readily determine the rate of permeation of agent through the porous rate controlling material or selected combinations of rate controlling materials. Standard techniques are described in Encyl. Polymer Science and Technology, Vo. Sand 9, Pg. 65 to and 795 to 807, 1968; and the references cited therein.
  • any of the well-known dermatologically acceptable pressure-sensitive adhesives can be used in practicing this invention.
  • exemplary adhesives include acrylic or methacrylic resins such as polymers of esters of acrylic or methacrylic acid with alcohols such as n-butanol, npentanol, isopentanol, 2-methyl butanol, l-methyl butanol, l-methyl pentanol, Z-methyl pentanol, 3-methyl pentanol, 2-ethyl .butanol, isooctanol, n-decanol, or ndodecanol, alone or copolymerized with ethylenically unsaturated monomers such as acrylic acid, methacrylic acid, acrylamide, methacrylamide, N-
  • alkoxymethyl acrylamides N-alkoxymethyl methacrylamides, N-tert. butylacrylamide, itaconic acid, vinylacetate, N-branched alkyl maleamic acids wherein the alkyl group has to 24 carbon atoms, glycol diacrylates, or mixtures of these; natural or synthetic rubbers such as silicone rubber, styrenebutadiene, butylether, neoprene, polyisobutylene, polybutadiene, and polyisoprene; polyurethane elastomers; vinyl polymers, such as polyvinylalcohol, polyvinyl ethers, polyvinyl pyrrolidone, and polyvinylacetate; ureaformaldehyde resins; phenolformaldehyde resins; resorcinol formaldehyde resins, cellulose derivatives such as ethyl cellulose, methyl cellulose, nitrocellulose, cellulose acetatebutyrate, and
  • the adhesive layer covers one face surface of the bandage or when the reservoir is in the form of microcapsules distributed throughout the adhesive, the adhesive must be permeable to passage of the drug to allow drug released from the reservoir to reach the outer surface of the bandage in contact with the patient.
  • the rate of release of drug from the adhesive should exceed the rate of release of drug from the reservoir so that release from the reservoir by passage through the drug release controlling microporous material is the rate limiting step for drug administration by the device of the invention.
  • the adhesive is disposed only about the periphery of the bandage face, the adhesive need not be permeable to passage of the drug.
  • Suitable backings include cellophane, cellulose acetate, ethylcellulose, plasticized vinylacetate-vinylchloride copolymers, polyethylene terephthalate, nylon, polyethylene, polypropylene, polyvinylidenechloride, paper, cloth, and aluminum foil.
  • a' flexible occlusive backing is employed to conform to the shape of the body member to which the adhesive tape is applied and to enhance administration of the agent to the skin.
  • the adhesive surface of the tape generally is covered with a protective release film or foil such as waxed paper.
  • the exposed rear surface of the backing member can be coated with a low-adhesion backsize and the bandage rolled about itself.
  • the therapeutic bandage usually is packaged between hermetically sealed polyethylene terephthalate films under an inert atmosphere, such as gaseous nitrogen.
  • the adhesive bandage of the invention wherein the drug is topical, it is applied directly to the area of skin to be treated, to release a therapeutically effective amount of the agent to the affected area.
  • the bandage can be applied to any area of the patients skin, with the lower back and buttocks being the areas of choice.
  • the bandage can be applied to the mucosa of the mouth, for example, by application to the palate or the buccal mucosa, to obtain absorption of the drug by the oral mucosa.
  • the bandage of the invention can be used to administer drugs to other mucosa of the body, for example, it can be applied to the vaginal mucosa, rectal mucosa, etc. By use of this invention, one ensures that an accurately measured quantity of the active drug is available to the site of application.
  • Porous, discrete particles of polymerized poly(vinyl chloride) of about 100 microns in diameter are prepared by mixing 100 grams of suspension grade poly(- vinyl chloride) resin with 50 grams of octyl diphenyl phosphate and 10 grams of nitroglycerin. These ingredients are mixed at room temperature into a sticky, wet mass. Next, the solvent is allowed to escape to form dry, free flowing, discrete micro-capsules.
  • the resulting bandage is effective to control the continuous administration of a daily therapeutically effective dosage of nitroglycerin for the prophylactic treatment of angina pectoris.
  • EXAMPLE 2 Dry crystalline powdered megesterol acetate (0.3 gram) in 10 ml. ethanol is mixed with 25 parts by weight of polydimethylsiloxane, 5 parts by weight of silicone oil and 0.25 parts by weight of stannous octoate catalyst. The ingredients are mixed until a homogenous mixture is produced. The mixture is then cast into a mold and allowed to cure to prepare a matrix having a surface area of 10 square centimeters and 9 mils thick. One face surface of the matrix is bonded to a sheet of cellophane. On the other face surface is placed an ethanol impregnated microporous membrane of the same external surface area as the matrix.
  • the membrane is sold by Millipore Corporation and designated to the trade as HA, and is characterized by a porosity of 60 percent, a pore size of 0.45 microns, and a thickness of 4 mils.
  • Dimethyl silicone rubber adhesive is coated to a thickness of 2 mils on the membrane.
  • the adhesive face surface of the completed bandage has an area of 10 square centimeters.
  • the bandage is effective to slowly release megesterol acetate, and when applied to the female skin, is useful for fertility control.
  • EXAMPLE 3 10 milligrams of betamethasone in 10 ml. of propylene glycol is placed on a sheet of dimethyl silicone rubber having a thickness of 10 mils. The sheet is folded to provide a surface area of l square centimeters on each face and the flaps sealed with silicone adhesive to provide a thin envelope containing the drug. The top face of the envelope is removed and replaced with a propylene glycol impregnated microporous membrane sold by Amicon Corporation under the designation of PM 30. The membrane is secured to the envelope by means of adhesive to form a tight seal therewith.
  • the membrane is characterized by having an anisotropic structure, with a minimum pore size of 70 angstrom units, an overall porosity of 70 percent, and a thickness of 4 units.
  • polyacrylate solution ethylacetate: hexane/:1
  • non-volatile matter obtained by the catalytic polymerization of isomylacrylate and acrylic acid in the ratio of 95:5 in ethylacetate and then diluting with hexane
  • Castor oil fislfi
  • One face surface of the envelope is bonded to a sheet of cellophane while the external membrane surface is coated with adhesive prepared above to a thickness of 2 millimeters.
  • the adhesive face surface of the bandage has an area of 100 square centimeters. The bandage is effective to release a therapeutically effective daily dosage of the drug when applied to the skin for control of psoriasis.
  • EXAMPLE 4 3 grams of a polyacrylonitrile fiber sold under the trade designation Orlon by E. I. DuPont de Nemours & Co. was dissolved in 30 grams of an aqueous solution comprising 70 percent by weight of zinc chloride. After the solution was cooled to about 25C, 0.250 grams of DIGOXIN was added to the solution. Thereupon, the solution was added drop-wise through a No. 21 hypodermic needle into an acetone bath whereupon particles were formed. After being stirred for about thirty minutes in the acetone, the particles were removed and placed in a water bath for four hours at room temperature to leach our residual acetone and salt.
  • this invention provides an easy to use device for administering systemically active drugs through the skin or oral mucosa and other body mucosa. Uncertainties of administration through the gastrointestinal tract are avoided and a controlled constant level of drug in circulation can be obtained. Treatment is begun by applying the bandage to the skin or mucosa and terminated by removing it therefrom.
  • the bandage can contain and administer the complete dosage requirements for a particular time period, for example, 24 hours. Intervention by the patient is required only to apply and remove the bandage, so that uncertainties through patient error are eliminated.
  • Moreoventhis invention provides a reliable and easy to use device for administering topically active drugs directly to the affected areas of skin or mucosa. Uncertainties resulting from topical application of these agents, from creams and solutions, are not encountered; and a precisely determined amount of the drug is applied in a controlled manner.
  • adhesive bandage includes any product having a backing member and a pressure-sensitive adhesive face surface.
  • Such products can be provided in various sizes and configurations, including tapes, bandages, sheets, plasters, and the like.
  • a medical bandage for the continuous administration of controlled quantities of drug to the skin or mucosa comprised of a laminate of: (l) a backing mem' ber; bearing (2) a discrete middle reservoir layer containing a drug confined within a body, the body being comprised of drug release rate controlling microporous material permeable to the passage of drug, to continuously meter the flow of a therapeutically effective amount of the drug to the skin or mucosa from the reservoir at a controlled and predetermined rate over a period of time; and (3) a pressure-sensitive adhesive surface adapted for contact with the skin or mucosa and postitioned on one surface of the reservoir remote from the backing member.
  • a medical bandage for the continuous administration of controlled quantities of drug to the skin or mucosa comprised of a laminate of: (l) a backing member; bearing (2) a discrete middle reservoir containing a drug confined therein, the reservoir being formed of material permeable to passage of the drug; and (3) a pressure-sensitive adhesive surface adapted for contact with the skin or mucosa and positionedon one surface of the reservoir remote from the backing member and wherein one or more drug release rate controlling microporous membranes are interposed between the surface of the reservoir and pressure-sensitive adhesive so as to continuously meter the flow of a therapeutically effective amount of the drug from the reservoir at a controlled and predetermined rate over a period of time.

Abstract

A bandage for use in the continuous administration of drugs to the skin or mucosa, comprising a backing member defining one exterior surface, a surface of pressure-sensitive adhesive defining a second exterior surface, and disposed therebetween a reservoir containing drug formulation confined therein. The reservoir can comprise a distinct layer of the bandage or a plurality of microcapsules distributed throughout the adhesive surface, and in either case the drug can be confined within an interior chamber of the reservoir or distributed throughout a reservoir matrix. The drug passes through drug release rate controlling microporous material which continuously meters the flow of drug by viscous or diffusive transfer to the skin or mucosa at a controlled and predetermined rate over a period of time.

Description

United States Patent [191 Zaffaroni ]*Mar. 19, 1974 1 1 BANDAGE FOR THE ADMINISTRATION OF DRUG BY CONTROLLED METERING THROUGH MICROPOROUS MATERIALS [75] Inventor: Alejandro Zaffaroni,Atherton,
Calif.
[73] Assignees Alza Corporation, Palo Alto, Calif.
[ Notice: The portion of the term of this patent subsequent to Aug. 10, 1988, has been disclaimed.
[22] Filed: Aug. 9, 1971 [21] Appl. No.: 169,976
Related US. Application Data [63] Continuation-impart of Ser. Nos. 812,116, April 1, 1969, Pat. No. 3,598,122, and Ser. No. 812,117, April 1, 1969, Pat. No. 3,598,123, and Ser. No. 150,085, June 4, 1971, Pat. No. 3,731,683.
[52] US. Cl. 128/268 [51] Int. Cl A611 15/06 [58] Field of Search l28/260, 268, 156, 155,
[56] References Cited UNITED STATES PATENTS 3,598,122 8/1971 Zaffaroni 128/268 3,598,123 8/1971 Zaffaroni 128/268 3,426,754 2/1969 Bierenbaum.... 128/268 X 3,053,255 9/1962 Meyer 128/268 3,464,413 9/1969 Goldfarb et 3].. 128/268 3,512,997 5/1970 Cohly et a1. 128/296 X Primary Examiner-Dalton L. Truluck Assistant Examiner-.1. C. McGowan 5 7 ABSTRACT or distributed throughout a reservoir matrix. The drug passes through drug release rate controlling micropo' rous material which continuously meters the flow of drug by viscous or diffusive transfer to the skin or mucosa at a controlled and predetermined rate over a period of time. i
7 Claims, 5 Drawing Figures PATENTEUIAR I 9 1914 INVENTOR.
BY Alejandro Zaffaroni BANDAGE FOR THE ADMINISTRATION OF DRUG BY CONTROLLED METERING THROUGH MICROPOROUS MATERIALS RELATED APPLICATIONS This application is a continuation-in-part of Ser. No. 812,1 l6, filed Apr. 1, 1969, and now issued on Aug. 10, 1971 as US. Pat. No. 3,598,122 entitled Bandage for Administering Drugs"; Ser. No. 812,1 l7, filed Apr. 1, 1969, and now also issued on Aug. 10, 1971 as US. Pat. No. 3,598,123 entitled Bandage; and Ser. No. 150,085, filed June 4, 1971, and now issued on May 8, 1973 as US. Pat. No. 3,731,683 entitled Bandage for the Controlled Metering of Topical Drugs to the Skin; all being applications of Alejandro Zaffaroni.
BRACKGROUND OF THE INVENTION This invention relates to a device for the administration of drug and, more particularly, to a medical bandage for the controlled continuous metering of flow of systemically or topically active drug to the skin or mucosa over a period of time.
Topically active drugs, as that term is used in this specification and the appended claims, are agents which, when applied to the skin or mucosa, primarily cause a pharmacological or physiological response at or near the site of their application. systemically active drugs, as that term is used in this specification and the appended claims, are agents which, when applied to the skin or mucosa, are absorbed through the body surface to which applied and are transported from their site of application by the recipients circulatory system or lymphatic system, to cause a pharmacologic or physiologic response at a remote site in the body.
systemically active drugs are conventionally administered either orally or by injection, with the primary objective of the mode being to achieve a given desired blood level of drug in circulation over a period of time. However, these prior art methods possess certain shortcomings resulting in the failure to obtain these goals. For example, the oral route is inadequate for several reasons even though the drug is administered at periodic intervals according to a well defined schedule. The rate of absorption of drug through the gastrointestinal tract is affected by both the contents of the tract and the time of passage of drug through the small intestine. Therefore, such variables as whether the drug is administered before or after eating and the type and quantity of food eaten (for example, high or low fat content), or whether administered before or after a bowel movement, affect the. rate of absorption of the drug which takes place in the small intestine. Additionally, the time of passage of drug through the small intestine is affected by the rate of peristaltic contracting, adding further uncertainty. Also important is the rate of circulation of blood to the small intestine and the fact that many drugs administered by this route are rendered inactive by gastric acid and digestive enzymes of the gastrointestinal tract or liver where the drug can be metabolized to an inactive product by that organ. These factors make it difficult to achieve a desired time course of concentration of the drug in the blood. The almost inevitable result of oral administration of drugs through the gastrointestinal tract is, that the level of drug in circulation surges to a peak level at the time the drug is administered, followed by a decline in concentration in 2 the blood and body compartments. Thus, a plot of drug in circulation after'administration of several tablets a day has the appearance of a series of peaks which may surpass the toxic threshold of the drug, and valleys which fall below the critical point needed to achieve the desired therapeutic effect.
The administration of drugs by injection can entail certain disadvantages. For example, very strict asepsis must be maintained to avoid infection of the blood, the vascular system or heart. Drug administration by poor intravenous injection technique may result in perivascular injection when it is not intended; and the typical result of injection into the blood is a sudden rise in the blood concentration followed by an uncontrolled decline. Additionally, administration of drugs by injection is inconvenient and painful. Other dosage forms for systemic administration of drug, such as rectal suppositories and sublingual lozenges, also produce non-uniform levels of the therapeutic agent in circulation. These dosage forms require great patient cooperation, have low patient acceptability, and are sparingly used throughout most of the world.
A large number of locally acting drugs are available to treat skin disorders or other conditions which manifest themselves in a manner such that they are susceptible to treatment via the skin. These drugs are conventionally topically administered to the skin with the active agent carried in the form of ointments, creams, salves, liniments, powders, dressings, and the like. The popularity of these types of formulations resides in the fact that it is quite easy to topically apply the agent to the skin in this manner. In most cases, however, it is not possible to determine how much of the preparation has been taken up or effectively administered to the sking since only non-uniform levels of the agent are available, nor is there any assurance that sufficient medication will be available for the duration of periods that it is required. A further undesirable feature is the unsightliness of these formulations which often discourages patients from using them during their waking hours of the day when they are most likely to be seen by others. Further, the preparations are subject to rub off onto clothing, thus causing much inconvenience and annoyance tothe user.
SUMMARY OF THE INVENTION Accordingly, an object of this invention is to provide a bandage for the improved continuous administration of a predetermined controlled quantity of topically or systemically active drug to or through the skin or body mucosa over a period of time, which overcomes the disadvantages inherent in the aforesaid prior art modes of administration.
Another object of this invention is to provide a bandage which can be adapted to deliver controlled quantities of drug having a wide variety of chemical and physical properties and over a wide range of drug delivery rates.
In accomplishing these objects, one feature of the invention resides ina bandage for the continuous administration of controlled quantities of drug to the skin or mucosa, comprised of a laminate of: (l) a backing member; bearing (2) a discrete middle reservoir layer containing a drug confined within a body, the body being formed from drug release rate controlling microporous material permeable to the passage of the drug, to continuously meter the flow of a therapeutically effective amount of the drug to the skin or mucosa from the reservoir at a controlled and predetermined rate over a period of time; and (3) a pressure-sensitive adhesive surface adapted for contact with the skin or mucosa and positioned on one surface of the reservoir remote from the backing member.
Another aspect of this invention resides in a bandage comprised of a laminate of: (l) a backing member; bearing (2) a discrete middle reservoir containing a drug confined therein, the reservoir being formed of material permeable to passage of the drug; and (3) a pressure-sensitive adhesive surface adapted for contact with the skin or mucosa and positioned on one surface of the reservoir remote from the backing member and wherein one or more drug release rate controlling microporous membranes are interposed between the surface of the reservoir and pressure-sensitive adhesive so as to continuously meter the flow of a therapeutically effective amount of the drug from the reservoir at a controlled and predetermined rate over a period of time. The reservoir can be a container having the agent confined therein or a solid or microporous matrix having agent dispersed therein.
Still another embodiment of this invention resides in an adhesive bandage comprising a laminate of: (l) a backing member; bearing (2) a pressure-sensitive adhesive on one surface thereof adapted for contact with the skin or mucosa, said pressure-sensitive adhesive having distributed therethrough, (3) a plurality of discrete microcapsules, each of which microcapsules comprises a drug confined within a body of drug release rate controlling porous material to continuously meter the flow of a therapeutically effective amount of the drug to the skin or mucosa of the patient from the microcapsules at a controlled and predetermined rate over a period of time.
Other objects, features and advantages of the invention will become more apparent from the following description when taken in conjunction with the accompanying drawings.
The term reservoir, as used herein to define the drug containing portion of the subject bandage, is intended to connote a broad class of structures capable of fulfilling'the intended function, and includes both discrete porous microcapsules, as well as distinct reservoir compartments or layers. Likewise, as will be hereinafter more completely developed, the foregoing term encompasses containers having one or more interior drug containing chambers, as well as solid matrices and microporous matrices having a systemically or topically active drug distributed therethrough.
The term drug or agent, when not further qualitied, includes both topically active and systemically active drugs. as hereinbefore defined.
BRIEF DESCRIPTION OF THE DRAWINGS In the drawings:
FIG. 1 is a cross-sectional view of an embodiment of the medical bandage of the invention, wherein the drug is uniformly distributed throughout a matrix of microporous material permeable to the passage of the drug by flow through the pores of the material and the material is laminated to a backing member. The matrix material which acts as a reservoir for the drug bears a coating of the pressure-sensitive adhesive thereon;
FIG. 2 is a cross-sectional view of still another embodiment of the invention, wherein the adhesive bandage of the invention is comprised of a backing member having a reservoir on one surface thereof of drug uniformly distributed throughout a matrix material permeable to passage of the drug, and on the surface of the reservoir remote from the backing member bearing a pressure-sensitive adhesive coating. A microporous membrane is interposed between the reservoir layer and the pressure-sensitive adhesive coating;
FIG. 3 is a cross-sectional view of another embodiment of the bandage of the invention, wherein the reservoir laminated to the backing member is a hollow container permeable to passage of drug by flow through the pores of one surface thereof, and having the drug confined within the interior chamber thereof. The reservoir bears a coating of pressure-sensitive adhesive thereon;
FIG. 4 is a perspective view of the medical adhesive bandage of the invention, wherein the drug is microencapsulated with a porous material permeable to the passage of the drug, and the microcapsules are uniformly distributed throughout the pressure-sensitive coating;
FIG. 5 is a cross-sectional view of the bandage of the invention shown in FIG. 4.
DETAILED DESCRIPTION OF THE INVENTION In accordance with this invention there is provided a bandage suitable, by virtue of the microporous materials employed therein, for the predetermined controlled administration of drug to the skin or mucosa of the body over a period of time. To use the bandage of the invention it is applied to the patients skin or mucosa and should be in firm contact therewith so as to form a tight seal. Flow of drug from the reservoir is metered through the pores of the rate release controlling material in accordance with the laws of hydrodynamics or diffusion, as hereinafter discussed, at a predetermined rate. In operation, drug molecules are continuously removed from the reservoir and migrate to the skin or mucosa of the patient. In the case of systemic drugs, the drugs are absorbed by the skin or mucosa and enter circulation through the capillary network.
The reservoir containing the drug is formed of material permeable to the drug to permit passage of the drug. Depending upon the particular embodiment as described above, the drug reservoir can be of microporous material or otherwise. However, as is apparent in the latter case, the drug must first pass through a microporous membrane material prior to reaching the skin or mucosa. It is therefore critical to the practice of this invention for all embodiments that, at some point after or concurrent with the release of drug from the reservoir and prior to reaching the skin or mucosa, the drug pass through the drug release rate controlling microporous membrane or matrix material to meter the flow thereof. The rate of passage or permeation of drug through the microporous material is determined by the transfer mechanism which can be either by:
l. diffusive flux of drug molecules as is the case, as hereinafter described, where the micropores of the rate controlling microporous membrane or matrix material are impregnated with a diffusive medium for the drug in which the drug molecules can dissolve in and flow through to a direction of lower chemical potential; or
2. pressure induced viscous type flow of drug molecules through the pores in the microporous membrane or matrix rate controlling material.
Thus, the microporous material has a structure that enables the drug to pass through the pre-existing pores or capillaries, either by diffusive permeability or microporous hydrodynamic flow, depending upon the mode of use as describd hereinafter. Since the microporous rate controlling material is preferably selected so that the drug is substantially insoluble therein, as hereinafter described, flow of drug through the structure of the material can be neglected.
For drug transfer mechanism 1) set forth above, i.e., wherein the drug diffuses through a diffusive medium for the drug, the release rate can be controlled in accordance with Ficks First Law, depending on the particular design by selection of dependent variables such as the diffusivity and solubility of the drug in the diffusive medium and the thickness and porosity of the material properly modified by a tortuosity factor. For drug transfer mechanism (2), i.e., flow of drug through the pores of the microporous rate controlling material, the pressure differential, the thickness of the membrane, the viscosity of the permeant drug, the size of the permeant molecule relative to the pore size, the absolute value of the pore size, and the number of pores or percent voids in the material are the controlling factors governing permeability. For the simplest type of flow mechanism of this type, e.g., viscous flow, the amount of drug passing through the porous structure is given by Poiseuilles equation for viscous flow.
Therefore, the selection of appropriate materials for fabricating the microporous rate controlling membrane or matrix material will be dependent on the particular drug to be used in the bandage. Both organic and inorganic polymeric materials can be shaped into a wide variety of forms with tailored morphology and a wide range of chemical and physical properties to advantageously control release of a wide variety of drugs, including those with large molecular structures such as insulin, and over a large dosage range rate appropriate pore size selection. Additionally, by impregnating the interconnected pores of the microporous structure with a diffusive medium for the drug to be administered, a given microporous membrane or matrix material can be adapted to control the release of drugs having a wide range of chemical properties by diffusive permeability. Thus, by varying the composition, pore size, and effective thickness of the microporous rate controlling material, the viscosity of the drug to be administered by appropriate formulation or by impregnating the material with suitable solvent, the dosage rate per area of bandage can be controlled since the material functions to meter the flow of drug from the device. Therefore, bandages of the same surface area can provide different dosages of a drug by varying the above discussed parameters.
The microporous rate controlling materials of this invention are known in the art and can be visualized as a plurality of sponge-like fused polymer particles which provide a supporting structure having therethrough a dispersion of microscopic sized interconnecting voids or pores. The rate controlling structures formed from the materials can be isotropic, wherein the structure is homogeneous throughout the cross-section of the matrix or membrane material, or anisotropic wherein the structure is non-homogenous. These rate controlling structures are commercially available and can be made by a multitude of different methods, e.g., etched nuclear track, and materials employed, e.g., polyelectrolyte, ion exchange polymers, as described in R. E. Kesting, Synthetic Polymer Membranes, McGraw Hill, Chapters 4 and 5, 1971; J. D. Ferry, Ultrafiltration Membranes, Chemical Review, Vol. 18, Page 373, 1934. Materials possessing from 5 percent to 95 percent voids and having an effective pore size of from about 10 angstroms to about 100 microns can be suitably employed in the practice of this invention. Materials with pore sizes significantly below angstroms can be considered to be molecular diffusion type membranes and matrices. In order to obtain the most advantageous results, the materials should be formed into structures with the desired morphology in accordance with methods known to those skilled in the art to achieve the desired release rate of drug. Additionally, the material must have the appropriate chemical resistance to the drug used and be non-toxic when used as an element of the bandage of the invention.
Materials useful in forming the microporous rate controlling materials used in this invention include, but are not limited to the following.
Polycarbonates, i.e., linear polyesters of carbonic acids in which carbonate groups recur in the polymer chain, by phosgenation of a dihydroxy aromatic such as bisphenol A. Such materials are sold under the trade designation Lexan'by the General Electric Company.
Polyvinylchlorides; one such material is sold under the trade designation Geon 121 by B. G. Goodrich Chemical Company.
Polyamides such as polyhexamethylene adipamide and other such polyamides popularly known as nylon. One particularly advantageous material is that sold under the trade name NOMEX by E. I. DuPont de Nemours & Co.
Modacrylic copolymers, such as that sold under the trade designation DYNEL and formed of polyvinylchloride percent) and acrylonitrile (40 percent), styrene-acrylic acid copolymers, and the like.
Polysulfones such as those of the type characterized by diphenylene sulfone groups :in the linear chain thereof are useful. Such materials are available from Union Carbide Corporation under the trade designation P-l700.
Halogenated polymers such as polyvinylidene fluoride sold under the trade designation Kynar by Pennsalt Chemical Corporation, polyvinylfluoride sold under the trade name Tedlar by E. I. DuPont de Nemours & Co. and the polyfluorohalocarbon sold under the trade name Aclar by Allied Chemical Corporation.
Polychloroethers such as that sold under the trade name Penton by Hercules Incorporated, and other such thermoplastic polyethers.
Acetal polymers such as the polyformaldehyde sold under the trade nambe Delrin by I. DuPont de Nemours & Co., and the like.
Acrylic resins such as polyacrylonitrile polymethyl poly (vinyl alcohol); polyelectrolyte structures formed of two ionically associated polymers of the type as set forth in U.S. Pat. Nos. 3,549,016 and 3,546,142; derivatives of polystyrene such as poly (sodium styrenesulfonate) and polyvinylbenzyltrimethyl-ammonium chloride); poly( hydroxyethyl methacrylate poly(isobutyl vinyl ether), and the like, may also be utilized. A large number of copolymers which can be formed by reacting various proportions of monomers from the aforesaid list of polymers are also useful for preparing rate controlling structures useful in the invention.
As illustrated in FIG. 1, the bandage of the invention is comprised of drug 24 uniformly distributed in the interstices of the microporous matrix material forming reservoir 22. The matrix material is laminated to backing member 21 and bears a pressure-sensitive adhesive coating 23 thereon. The microporous matrix material 22 functions to control the release rate of the drug impregnated therein. The reservoir can be prepared by employing any of the known impregnating techniques. Thus, the drug can be added to the rate controlling material in liquid form and uniformly distributed therethrough by mixing, and subsequently converted to a microporous structure by the various methods known to the art. One such method calls for dissolving a natural or synthetic polymer in a suitable solvent in which it has sufficient solubility to permit the preparation of a solution that is sufficiently viscous for conventional film casting. The preferred method is to cast a film of a polymer solution having the drug therein, and, shortly after casting, to immerse it in a non-solvent or diluent, a medium which is compatible with the solvent, but not a solvent for the polymer. The original solution then forms two phases, one polymer-rich and one polymer-poor. Under the proper conditions, both of these phases are physically continuous, so that the resulting polymer membrane is mechanically reasonably strong, but it is completely interlaced with continuous pores. The size and uniformity of the pores depend on the conditions of preparation. Alternatively, preformed microporous materials can be impregnated with drug by immersion in a bath of the drug to diffuse the drug into the material. While the matrix material can be of any convenient thickness, typically a thickness of from 20 to 200 microns is employed.
FIG. 2 illustrates a further modified form of the invention wherein the adhesive bandage 30 of the invention is comprised of a backing member 21 having a reservoir 32 on one surface thereof. A microporous rate controlling membrane 35 is interposed between the reservoir 32 and a pressure-sensitive adhesive coating 23. Drug 24 is confined in polymeric matrix material 32 which acts as the reservoir for the drug. Matrix material 32 can be solid material as illustrated, or microporous as illustrated for reservoir 22 in FIG. 1. If desired, additional membranes can be juxtaposed next to membrane 35 in order to achieve optimum rate release properties. The matrix material 32 when solid or microporous should have a release rate to drug which is higher than that of the rate controlling microporous membrane 35, such that passage through the latter is the rate controlling step. Materials used to form the matrix reservoir 32 of FIG. 2, when solid, can be those heretofore exemplitied for preparing the microporous rate controlling material and, in addition, include hydrophobic polymers such as plasticized or unplasticized polyvinylchloride, plasticized nylon, plasticized soft nylon, plasticized polyethyleneterephthalate, natural rubber, C -C olefins, e.g., polyethylene, polyisoprene, polyisobutylene, polybutadiene; silicone rubbers, especially the medical grade polydimethylsiloxanes, as described in US. Pat. No. 3,279,996, hydrophilic polymers such as the hydrophilic hydrogels of esters of acrylic and methacrylic acid (as described in US. Pat. Nos. 2,967,576 and 3,220,960, and Belgian Patent No. 701,813), modified collagen, cross-linked polyvinylalcohol, and crosslinked partially hydrolyzed polyvinylacetate. Of course, these materials used to form the matrix must be permeable to passage of the drug, as by diffusion. Accordingly, selection of appropriate materials will, in each instance, be dependent on the particular drug to be administered.
FIG. 3 illustrates a further form of the invention wherein bandage 40 includes a backing member 21 and a reservoir 42 in the form of a hollow container having an interior chamber 43 containing drug 34. Wall or surface 45 of reservoir 42, remote from backing member 21, is of a microporous membrane structure permeable to passage of drug 34, to meter the flow of drug to pressure-sensitive adhesive layer 23 on the outer surface thereof. The sides of the reservoir 42, other than rate controlling microporous membrane 45, preferably are impermeable to passage of the drug, and can be made of the same materials used to make the backing member as hereinafter described. As discussed, one face surface of the drug reservoir bears a backing member 21. The purpose of the backing is to prevent passage of the drug through the surface of the reservoir distant from the adhesive layer. An ancillary purpose of the backing is to provide support for the bandage where needed. When the outer surface of the reservoir 33 is impermeable to the drug and strong enough, the backing becomes unnecessary. The other surface of the reservoir bears a coating of a pressure-sensitive adhesive.
If desired, additional microporous rate controlling membranes can be juxtaposed on top of membrane 45 to further tailor the rate of flow of drug. Of course, in each instance, the membrane will have different characteristics than the reservoir membrane 45 of the particulardevice. This use of a pair of multiplicity of membranes, that is, the reservoir wall and the further membrane, allows for precise metering of drug out of the reservoir; for the thickness, porosity and composition of both membranes can be varied to provide for wide range of dosage levels for a given area of bandage. It will be appreciated that this type of membrane can be used with either the matrix (FIGS. 1 or 2) or container type (FIG. 3) of reservoir. To provide additional mechanical strength, if necessary, the rate controlling microporous membrane 45 can be supported by an appropriate mesh or screen having a greater release rate to drug than does membrane 45. v
The reservoir of the embodiment in FIG. 3 can be formed by molding into the form of a hollow container with the drug trapped therein. While the non-rate controlling walls of the reservoir can be of any convenient thickness, usually they have a thickness of from 0.01 to 7 millimeters. The rate controlling membranes 35 and 45, in FIGS. 2 and 3, respectively, can have varying thickness depending upon the nature of the membrane, its porosity and the number of membranes used in combination. Typically, a thickness of from 20 to 200 microns is employed.
It will, of course, be appreciated that the pressuresensitive adhesive surface need not form a continuous layer on the subject bandage. Particularly in the case of a bandage having a distinct reservoir layer, equally advantageous results are obtained by providing an annu lar surface of adhesive around the periphery of the bandage face. In this manner a liquid tight adhesive seal between the bandage and the patients skin or mucosa is maintained, and at the same time, drug may be directly absorbed by the skin from the exposed surface of the drug reservoir layer without first migrating through an adhesive layer. As a further alternative, in the embodiment of the invention employing a distinct reservoir layer, to prevent passage of the drug into the adhesive layer prior to use, the adhesive can be supplied separately from the reservoir and backing, with the device assembled at the point of use. For example, the adhesive in sheet form can have both surfaces protected with a release film and the wall of the reservoir can be similarly protected. At the point of use, the release films can be removed from the reservoir and one surface of the adhesive, the adhesive sheet applied to the reservoir wall to complete assemblage of the bandage, the remaining release film then removed from the adhesive, and the bandage then applied to the patient.
As previouslydiscussed, one type of drug transfer mechanism is that of flow through the pores or pinholes in microporous rate controlling material. A driving force, Le, a pressure differential across the microporous material, is necessary to cause the flow of drug by this mode. The bandage of the type illustrated in FIG. 3, wherein the reservoir is a hollow container, can be conveniently adapted to meter the flow of drug by a microporous hydrodynamic mechanism by pressurizing the container. This can suitably be accomplished by admixing with the drug a solid particulate material which liberates gas on contact with the drug formulation. For example, in the case wherein the formulation is of an aqueous nature, a conventional effervescent powder such as a mixture of citric acid and sodium bicarbonate can be inserted immediately prior to use through an opening in the reservoir wall so provide for this purpose. After insertion of the effervescent material, the opening is sealed, for example, by means of an adhesive tape. The pressure can be controlled by adjusting the particle size of the effervescent powder composition and the quantity thereof. Pressure in an amount of from 1 mm to 50 mm of mercury can be satisfactorily employed, with the actual amount depending upon the desired release rate and the other parameters previously discussed regarding viscousflow.
FIGS. 4 and 5 illustrate an adhesive bandage of the invention including a backing member 11 bearing a pressure-sensitive adhesive coating 12 on one surface thereof. Adhesive coating 12 has uniformly distributed therethrough microcapsules 13 comprising drug encapsulated with a microporous rate controlling material permeable to passage of the drug. Thus, in the embodiment illustrated herein, porous microcapsules 13 constitute the drug reservoir.
To provide the microcapsules, the encapsulating material can be uniformly impregnated with the drug to form microcapsules which are a porous matrix having the drug distributed therethrough. Alternatively, particles of drug can be encapsulated with a thin microporous-coatingof the encapsulating material to form microcapsules having an interior chamber containing the drug. If desired, particles of a matrix, such as starch, gum acacia, gum tragacanth, and polyvinylchloride, can be impregnated with the drug and encapsulated with other materials such as the microporous rate controlling materials previously described, which function to meter the flow of drug to the adhesives; use of a microporous matrix and a different rate controlling membrane coating to slow the passage of the drug from the microcapsules, which is desirable: with drugs that are released too rapidly from available encapsulating materials, is therefore also contemplated herein.
Any of the encapsulation or impregnation techniques known in the art can be used to prepare the microcapsules to be incorporated into the pressure-sensitive adhesive in accord with the embodiment of FIGS. 4 and 5. The porous microcapsules can be made by techniques as set forth in US. Ser. No. 751,251, corresponding to German Patent No. 1,939,066, entitled Microcapsules with Anisotropic MicroporousLiquid Permeable Polymeric Outer Skin and Internal Macroporous Support Partitions or Structure, Bixler, Michaels, and Sternberg, or by standard coacervation methods. The coacervation method of fabrication, as conventionally employed, consists essentially of the formation of three immiscible phases, a liquid manufacturing phase, a core material phase and a coating phase with deposition of the liquid polymer coating on the core material and rigidizing the coating, usually by thermal, cross-linking or desolvation techniques to form microcapsules. Usually, the microcapsules made by the above techniques have an average particle size of from several tenths of a micron to 5,000 microns, although this feature is not critical to the practice of the invention. Techniques for preparing microcapsules, such as the classic Bungenberg de long and Kass method are reported in Biochem. Z, Vol. 232, Pg. 338 to 345, I931; Colloid Science, Vol. 11, Reversible System,edited by H. R. Kruyt, 1949, Elsevier Publishing Company, Inc., New York; J. Pharm. Sci, Vol. 59, No. 10, Pg 1367 to 1376, 1970; and, Remingtons Pharmaceittical Science, Vol. XIV, Pg. 1676 to 1677, 1970, Mack Publishing Company, Easton, Pennsylvania. Thus, the drug can beadded to the encapsulating material in liquid form and uniformly distributed therethrough by mixing and then forming the microcapsules by any of the above set forth methods. Alternatively, the porous microparticles can be made by the above techniques and impregnated with drug. Still another method is to impregnate a porous solid encapsulating material with a drug by immersion in a bath of the drug to diffuse the drug-into the material, and subsequently the solid material can be, reduced to fine microcapsules by grinding, each of the microcapsules comprising drug coated with and distributed throughout the encapsulating material. Further, drug can be encapsulated with a microporouscoating by suspending dry particles of the drug in an air stream and contacting that stream with a stream containing the encapsulating material to coat the drug particles. Usually, the micro-capsules have an average particle size of form 1 to 1000 microns, although this is not critical to the invention. The microcapsules, however made, are then mixed by conventional methods, e.g., stirring, ballmilling, and the like, with a pressure-sensitive adhesive. The mixture of microcapsules and pressure-sensitive adhesive is then coated onto a backing member, usually to provide an adhesive layer 0.01 to 7 millimeters thick, although these limits can be exceeded if more or less drug is required. The purpose of the backing is to provide support for the bandage and to prevent passage of the drug through the adhesive surface away from the body surface to which the bandage is applied.
As above discussed, the microporous rate controlling materials can be adapted to control the release of drug 1 by diffusive permeation wherein the micropores are impregnated or otherwise filled with a diffusive medium for the drug to be administered. The material can be impregnated with the diffusive medium by methods well known to the art, e.g., as by immersion in a bath of the material to permit the diffusive medium material to fully saturate the micropores. The impregnation technique can be employed with any of the embodiments represented herein. In embodiments illustrated in FIGS, 1, 4 and 5 the micropores can be concurrently impregnated with both drug and diffusive medium material.
In cases where the pressure-sensitive adhesive and microporous rate controlling material employed are water permeable, body fluids will self-migrate into the microporous material after the bandage has been in contact with the skin for a suitable period of time to provide the diffusive medium, as hereinafter described, without the necessity of carrying out a separate impregnation step. Additionally, the pores can be self-filled by migration of the diffusive medium by contact with the composition employed to prepare the drug formulation, as later described.
The diffusive medium is one which enables the drug to dissolve therein and flow by diffusion at the desired rate. It can be either of a liquid or solid nature and be a poor or good solvent for the drug. A medium with poor solvent properties for the drug is desired when the required release rate is low and of course the converse is true when the desired release rate is high.
The art provides many useful approaches to enable selection of particular solvent-drug systems. Specific attention is called to Remingtons Pharmaceutical Sciences, Chapters 19 and 71. The solvent selected must be non-toxic and one in which the rate controlling microporous material has the required solubility. The materials which are useful for impregnating the micropores can be polar, semi-polar or non-polar. Exemplary are any of the pharmaceutically acceptable solvents such as water, alcohols containing 2 to carbon atoms, such as hexanol, cyclohexanol, benzylalcohol, 1,2-butanediol, glycerol, and amyl alcohol; hydrocarbons having 5 to 12 carbon atoms such as n-hexane, cyclohexane, and ethyl benzene; aldehydes and ketones having 4 to 10 carbon atoms such as heptyl aldehyde, cyclohexanone, and benzaldehyde; esters having 4 to 10 carbon atoms such as amyl acetate and benzyl propionate; etheral oils such as oil of eucalyptus, oil of rue, cumin oil, limonene, thyme], and l-pinene; halogenated hydrocarbons having 2 to 8 carbon atoms such as n-hexyl chloride, n-hexyl bromide, and cyclohexyl chloride; or mixtures of any of the foregoing materials.
Also suitable are many of the conventional non-toxic plasticizers used in the fabrication of microporous rate controlling material, e.g., octyl diphenyl phosphate. When these plasticizers are suitable diffusive materials for the drug used, advantageously, the necessity for filling the pores by a separate step is thus obviated. Other plasticizers known to the art can be employed, such as long-chain fatty amides, higher alcohols, and high boiling esters such as di(isooctyl) sebacate or di(2-ethyl hexyl) phthalate.
It is preferred that the diffusive medium also be incorporated in the reservoir in combination with the drug in the form of a pharmaceutically acceptable carrier as hereinafter described.
In practicing this invention one can employ any systemically active drug which will be absorbed by the body surface to which the bandage is applied, consistent with their known dosages and uses. Of course, the amount of drug necessary to obtain the desired therapeutic effect will vary depending on the particular drug used. Suitable systemic drugs include, without limitation, Anti-microbial Agents such as penicillin, tetracycline, oxytetracycline, chlortetracycline, chloramphenicol, and sulfonamides; Sedatives and Hypnotics such as pentabarbital sodium, phenobarbital, secobarbital sodium, codeine, (oz-bromoisovaleryl) urea, carbromal, and sodium pheno-barbital; Psychic Energizers such as 3-( Z-aminopropyl) indole acetate and 3-( 2- aminobutyl) indole acetate; Tranquilizers such as reserpine, chlorpromazine hydrochloride, and thiopropazate hydrochloride; Hormones such as adrenocorticosteroids, for example, 6a-methylprednisolone; androgenic steroids, for example, methyltestosterone, and fluoxymesterone; estrogenic steroids, for example, estrone, l7B-estradiol and ethinyl estradiol; progestational steroids, for example, l7a-hydroxyprogesterone acetate, medroxyprogesterone acetate, 19-norprogesterone, and norethindrone; and thyroxine; Antipyretics such as aspirin, salicylamide, and sodium salicylate; morphine and other narcotic analgesics; Antidiabetics, e.g., insulin; Cardiovascular Agents, e.g., nitroglycerin, and cardiac glycosides such as digitoxin, digoxin, ouabain; Anti-spasmodics such as atropine, methscopolamine bromide, methscopolamine bromide with phenobarbital; Anti-malarials such as the 4-aminoquinolines, 9-amino-quinolines, and pyrimethamine; and Nutritional Agents such as vitamins, essential amino acids, and essential fats.
Additionally, in practicing this invention one can employ a wide variety of topically active drugs consistent with their known dosages and uses. Suitable drugs include, without limitation: Antiperspirants, e.g., aluminum chloride; Deodorants, e.g., hexachlorophene, methylbenzethonium chloride; Astringents, e. g., tannic acid; Irritants, e.g., methyl salicylate, camphor, cantharidin', Keratolytics, e.g., benzoic acid, salicylic acid, resorcinol, iodochlorhydroxyquin; Antifungal Agents, such as tolnaftate, griseofulvin, nystatin and amphotericin; Anti-inflammatory Agents, such as corticosteroids, e.g., hydrocortisone, hydrocortisone-acetate, prednisolone, methylprednisolone, triamcinolone acetonide, fludrocortisone, flurandrenolone, flumethasone, dexamethasone sodium phosphate, bethamethasone valerate, fluocinolone acetonide; fluorometholone; and pram'ox'ine fiCl; Anti-neoplastic Agentsiegl, methotrexate; and Antibacterial Agents, such as bacitracin, neomycin erythromycifi,tetfacycline HCl, chlortetracycline I-lCl, chloramphenicol, oxytetracycline, polymyxin B, nitrofuraxone, mafenide (a-amino-ptoluenesulfonamide), hexachlorophene, benzalkonium chloride, cetalkonium chloride, methylbenzethonium chloride, and neomycin sulfate.
It will be appreciated, with regard to the aforesaid list of drugs, that characterization of the drug as either systemically or topically active is done for purposes of convenience only. Further, a given drug can be both systemically and topically active depending upon its manner of use.
In addition to the aforementioned drugs, simple pharmacologically acceptable derivatives of the drugs, such as ethers, esters, amides, acetals, salts, etc., or formulations of these drugs, having the desired polymeric permeability or transport properties can be prepared and used in practicing the invention. Drugs mentioned above can be used alone or in combination with others and each other. Of course, the derivatives should be such as to convert to the active drugs within the body through the action of body enzyme assisted transformations, pH, etc.
The above drugs and other drugs can be present in the reservoir alone or in combination form with pharmaceutical carriers. The pharmaceutical carriers acceptable for the purpose of this invention are the art known carriers that do not adversely affect the drug, the host, or the material comprising the drug delivery device. Suitable pharmaceutical carriers include sterile water; saline, dextrose; dextrose in water or saline; condensation products of castor oil and ethylene oxide combining about 30 to about 35 moles of ethylene oxide per mole of castor oil; liquid glyceryl triester of a lower molecular weight fatty acid; lower alkanols; oils such as corn oil; peanut oil, sesame oil and the like, with emulsifiers such as mono-or di-glyceride of a fatty acid, or a phosphatide, e.g., lecithin, and the like; glycols; polyalkylene glycols; aqueous media in the presence of a suspending agent, for example, sodium carboxymethylcellulose; sodium alginate; poly(vinylpyrrolidone); and the like, alone, or with suitable dispensing agents such as lecithin; polyoxyethylene stearate; and the like. The carrier may also contain adjuvants such as preserving, stabilizing, wetting, emulsifying agents, and the like.
The drug can also be mixed in the reservoir with a transporting agent, that is, a material that aids or assists the drug delivery device to achieve the administration of a drug to a drug receptor, for example, by enhancing penetration through the skin. The transporting aids suitable for the purpose of the invention are thetherapeutically acceptable transporting aids that do not adversely affect the host, the drug, or alter or adversely affect the materials forming the drug delivery device. The transporting aids can be used alone or they can be admixed with acceptable carriers and the like. Exemplary of transporting aids include manovalent, saturated and unsaturated aliphatic cycloaliphatic and aromatic alcohols having 4 to 12 carbon atoms, such as hexanol, cyclohexane and the like; aliphatic cycloaliphatic and aromatic hydrocarbons having from 5 to 12 carbon atoms such as hexane, cyclohexane, isopropylbenzene and the like; cycloaliphatic and aromaticaldehydes and ketones having from 4 to carbon atoms such as cyclohexanone; acetamide; N,N-di(lower) alkyl acetamides such as N,N-diethyl acetamide, N,N- dimethyl acetamide, N-( Z-hydroxyethyl) acetamide, and the like; and other transporting agents such as aliphatic, cycloaliphatic and aromatic esters; N,N-dilower alkyl sulfoxides; essential oils; halogenated or nitrated aliphatic, cycloaliphatic and aromatic hydrocar- T4 bons; salicylates; polyalkylene glycol silicates; mixtures thereof; and the like.
The amount of active agent to be incorporated in the bandage to obtain the desired therapeutic effect will vary depending upon the desired dosage, the permeability of the rate controlling materials of the bandage which are employed to the particular agent to be used, and the length of time the bandage is to remain on the skin or body mucosa. Since the bandage of this invention is designed to control drug administration for an extended period of time, such as 1 day or more, there isno critical upper limit on the amount of agent incorporated into the bandage. The lower limit is determined by the fact that sufficient amounts of the agent must remain in the bandage to maintain the desired dosage. In order to achieve a therapeutic effect in a human adult, the daily release dosage of atropine should be in the range of between 200 and 600 micrograms per day. Thus, for example, using atropine and with a bandage intended to remain in place for 1 week, and with a release rate of 500 micrograms of atropine per day, at least 3.5 mg of atropine would be incorporated in the bandage. Generally, the drug delivery bandages made according to the invention can release at a controlled rate about 25 nanograms to about 1 gram of drug or larger amounts per day. Of course, other devices for use for different time periods such as Week or month are also readily made by the invention.
The effective rate of release of the active agent to the skin or mucosa can be in the range of from 0.5 to 1000 micrograms per square centimeter of bandage per day. The exactamount will depend on the desired dosage as well as the condition to be treated. The desired effective rate of release of active agent can be obtained by altering the earlier discussed parameters affecting the release ratecontrolling barrier. In the case of the micro-encapsulated active agent, the release rate can also be controlled by varying the number of microcapsules present in a given volume of the matrix of the device. This is a particularly desirable feature of this aspect of the invention. Additionally, the duration of action of the device can be altered by controlling the amount of active agent initially incorporated consistent with the release rate. Further, the release rate of drug, as well as the duration of release of the drug from the device, can be predetermined to be in consonance with the optimum therapeutic values. Once thisdosage level in micrograms per square centimeter of bandage has been determined, the total amountof drug to be incorporated in the bandage can be established by obtaining the release rate of the agent in the particular material or materials which are to be used; Those skilled in the art can readily determine the rate of permeation of agent through the porous rate controlling material or selected combinations of rate controlling materials. Standard techniques are described in Encyl. Polymer Science and Technology, Vo. Sand 9, Pg. 65 to and 795 to 807, 1968; and the references cited therein.
Any of the well-known dermatologically acceptable pressure-sensitive adhesives can be used in practicing this invention. Exemplary adhesives include acrylic or methacrylic resins such as polymers of esters of acrylic or methacrylic acid with alcohols such as n-butanol, npentanol, isopentanol, 2-methyl butanol, l-methyl butanol, l-methyl pentanol, Z-methyl pentanol, 3-methyl pentanol, 2-ethyl .butanol, isooctanol, n-decanol, or ndodecanol, alone or copolymerized with ethylenically unsaturated monomers such as acrylic acid, methacrylic acid, acrylamide, methacrylamide, N-
alkoxymethyl acrylamides, N-alkoxymethyl methacrylamides, N-tert. butylacrylamide, itaconic acid, vinylacetate, N-branched alkyl maleamic acids wherein the alkyl group has to 24 carbon atoms, glycol diacrylates, or mixtures of these; natural or synthetic rubbers such as silicone rubber, styrenebutadiene, butylether, neoprene, polyisobutylene, polybutadiene, and polyisoprene; polyurethane elastomers; vinyl polymers, such as polyvinylalcohol, polyvinyl ethers, polyvinyl pyrrolidone, and polyvinylacetate; ureaformaldehyde resins; phenolformaldehyde resins; resorcinol formaldehyde resins, cellulose derivatives such as ethyl cellulose, methyl cellulose, nitrocellulose, cellulose acetatebutyrate, and carboxymethyl cellulose; and natural gums such as guar, acacia, pectins, starch, dextrin, albumin, gelatin, casein, etc. The adhesives may be compounded with tackifiers and stabilizers as is well know in the art.
When the adhesive layer covers one face surface of the bandage or when the reservoir is in the form of microcapsules distributed throughout the adhesive, the adhesive must be permeable to passage of the drug to allow drug released from the reservoir to reach the outer surface of the bandage in contact with the patient. In such cases, the rate of release of drug from the adhesive should exceed the rate of release of drug from the reservoir so that release from the reservoir by passage through the drug release controlling microporous material is the rate limiting step for drug administration by the device of the invention. Of course, when the adhesive is disposed only about the periphery of the bandage face, the adhesive need not be permeable to passage of the drug.
Various occlusive and non-occlusive, flexible or nonflexible backing members can be used in the adhesive bandage of the invention. Suitable backings include cellophane, cellulose acetate, ethylcellulose, plasticized vinylacetate-vinylchloride copolymers, polyethylene terephthalate, nylon, polyethylene, polypropylene, polyvinylidenechloride, paper, cloth, and aluminum foil. Preferably, a' flexible occlusive backing is employed to conform to the shape of the body member to which the adhesive tape is applied and to enhance administration of the agent to the skin.
To prevent passage of the drug away from the exposed surface of the pressure-sensitive adhesive prior to use, the adhesive surface of the tape generally is covered with a protective release film or foil such as waxed paper. Alternatively, the exposed rear surface of the backing member can be coated with a low-adhesion backsize and the bandage rolled about itself. To enhance stability of the active compounds, the therapeutic bandage usually is packaged between hermetically sealed polyethylene terephthalate films under an inert atmosphere, such as gaseous nitrogen.
To use the adhesive bandage of the invention, wherein the drug is topical, it is applied directly to the area of skin to be treated, to release a therapeutically effective amount of the agent to the affected area. For administration of systemic drugs the bandage can be applied to any area of the patients skin, with the lower back and buttocks being the areas of choice. In like manner, the bandage can be applied to the mucosa of the mouth, for example, by application to the palate or the buccal mucosa, to obtain absorption of the drug by the oral mucosa. Although obtaining a liquid tight adhesive seal between the skin and bandage is important, it becomes critical in the mouth. Without such a seal, irrigation of the oral mucosa by saliva will transfer the drug to the gastrointestinal tract, rather than to circulation through the oral mucosa. In addition, the bandage of the invention can be used to administer drugs to other mucosa of the body, for example, it can be applied to the vaginal mucosa, rectal mucosa, etc. By use of this invention, one ensures that an accurately measured quantity of the active drug is available to the site of application.
The following examples are merely illustrative to the present invention and should not be construed as limiting the scope of the invention in any way, as these examples and other equivalents thereof will become apparent to those versed in the art in light of the present disclosure, drawings and accompanying claims.
EXAMPLE 1 Porous, discrete particles of polymerized poly(vinyl chloride) of about 100 microns in diameter are prepared by mixing 100 grams of suspension grade poly(- vinyl chloride) resin with 50 grams of octyl diphenyl phosphate and 10 grams of nitroglycerin. These ingredients are mixed at room temperature into a sticky, wet mass. Next, the solvent is allowed to escape to form dry, free flowing, discrete micro-capsules. 10 grams of the resulting microcapsules of polyvinylchloride/nitroglycerin are mixed with 100 grams of a 22 percent solution in hexane: isopropyl-acetate (:30) of a viscoelastic copolymer of isooctyl acrylate and acrylic acid (94:6) adhesive to uniformly distribute the microcapsules throughout the adhesive solution. The resulting slurry is coated onto a cellophane sheet 10 centimeters in width by centimeters in length and the solvent removed from the coated film.
When a 5 centimeter by 5 centimeter section is cut from the above sheet and applied to the skin of a human adult, the resulting bandage is effective to control the continuous administration of a daily therapeutically effective dosage of nitroglycerin for the prophylactic treatment of angina pectoris.
EXAMPLE 2 Dry crystalline powdered megesterol acetate (0.3 gram) in 10 ml. ethanol is mixed with 25 parts by weight of polydimethylsiloxane, 5 parts by weight of silicone oil and 0.25 parts by weight of stannous octoate catalyst. The ingredients are mixed until a homogenous mixture is produced. The mixture is then cast into a mold and allowed to cure to prepare a matrix having a surface area of 10 square centimeters and 9 mils thick. One face surface of the matrix is bonded to a sheet of cellophane. On the other face surface is placed an ethanol impregnated microporous membrane of the same external surface area as the matrix. The membrane is sold by Millipore Corporation and designated to the trade as HA, and is characterized by a porosity of 60 percent, a pore size of 0.45 microns, and a thickness of 4 mils. Dimethyl silicone rubber adhesive is coated to a thickness of 2 mils on the membrane. The adhesive face surface of the completed bandage has an area of 10 square centimeters. The bandage is effective to slowly release megesterol acetate, and when applied to the female skin, is useful for fertility control.
EXAMPLE 3 10 milligrams of betamethasone in 10 ml. of propylene glycol is placed on a sheet of dimethyl silicone rubber having a thickness of 10 mils. The sheet is folded to provide a surface area of l square centimeters on each face and the flaps sealed with silicone adhesive to provide a thin envelope containing the drug. The top face of the envelope is removed and replaced with a propylene glycol impregnated microporous membrane sold by Amicon Corporation under the designation of PM 30. The membrane is secured to the envelope by means of adhesive to form a tight seal therewith. The membrane is characterized by having an anisotropic structure, with a minimum pore size of 70 angstrom units, an overall porosity of 70 percent, and a thickness of 4 units.
Pressure-sensitive adhesive is prepared by mixing together 90 grams of polyacrylate solution (ethylacetate: hexane/:1) containing 25 percent non-volatile matter (obtained by the catalytic polymerization of isomylacrylate and acrylic acid in the ratio of 95:5 in ethylacetate and then diluting with hexane), 5 grams polyvinylethylether (reduced viscosity= 0.3 i 0.1), 1 gram Castor oil (fislfiand l gra r n s pblyethyleneglycol 400.
One face surface of the envelope is bonded to a sheet of cellophane while the external membrane surface is coated with adhesive prepared above to a thickness of 2 millimeters. The adhesive face surface of the bandage has an area of 100 square centimeters. The bandage is effective to release a therapeutically effective daily dosage of the drug when applied to the skin for control of psoriasis.
EXAMPLE 4 3 grams of a polyacrylonitrile fiber sold under the trade designation Orlon by E. I. DuPont de Nemours & Co. was dissolved in 30 grams of an aqueous solution comprising 70 percent by weight of zinc chloride. After the solution was cooled to about 25C, 0.250 grams of DIGOXIN was added to the solution. Thereupon, the solution was added drop-wise through a No. 21 hypodermic needle into an acetone bath whereupon particles were formed. After being stirred for about thirty minutes in the acetone, the particles were removed and placed in a water bath for four hours at room temperature to leach our residual acetone and salt.
grams of polyvinylethylether (reduced visosity= 5 .0 i 0.5) 4 grams of polyvinylethylether (reduced viscosity= 4 grams of glycerol ester of hydrogenated rosin and 2 grams polyethyleneglycol 400 The resulting DIGOXIN capsules are mixed with pressuresensitive adhesive prepared above to uniformly distribute the microcapsules throughout the adhesive. Immediately thereafter, the adhesive mixture is coated onto one surface of a 1000 square centimeter Mylar sheet. A 5 centimeter by 5 centimeter area of the resulting bandage can be used for control of cardiac disorders.
Thus, this invention provides an easy to use device for administering systemically active drugs through the skin or oral mucosa and other body mucosa. Uncertainties of administration through the gastrointestinal tract are avoided and a controlled constant level of drug in circulation can be obtained. Treatment is begun by applying the bandage to the skin or mucosa and terminated by removing it therefrom. The bandage can contain and administer the complete dosage requirements for a particular time period, for example, 24 hours. Intervention by the patient is required only to apply and remove the bandage, so that uncertainties through patient error are eliminated.
Moreoventhis invention provides a reliable and easy to use device for administering topically active drugs directly to the affected areas of skin or mucosa. Uncertainties resulting from topical application of these agents, from creams and solutions, are not encountered; and a precisely determined amount of the drug is applied in a controlled manner.
Although the product of this invention has been referred to as an adhesive bandage, those skilled in the art will appreciate that the term adhesive bandage" as used herein includes any product having a backing member and a pressure-sensitive adhesive face surface. Such products can be provided in various sizes and configurations, including tapes, bandages, sheets, plasters, and the like.
What is claimed is:
l. A medical bandage for the continuous administration of controlled quantities of drug to the skin or mucosa, comprised of a laminate of: (l) a backing mem' ber; bearing (2) a discrete middle reservoir layer containing a drug confined within a body, the body being comprised of drug release rate controlling microporous material permeable to the passage of drug, to continuously meter the flow of a therapeutically effective amount of the drug to the skin or mucosa from the reservoir at a controlled and predetermined rate over a period of time; and (3) a pressure-sensitive adhesive surface adapted for contact with the skin or mucosa and postitioned on one surface of the reservoir remote from the backing member.
2. The bandage as defined by claim 1 wherein the pores of the microporous rate controlling material are filled with a medium to permit controlled diffusion of the drug from the reservoir.
3. A medical bandage for the continuous administration of controlled quantities of drug to the skin or mucosa, comprised of a laminate of: (l) a backing member; bearing (2) a discrete middle reservoir containing a drug confined therein, the reservoir being formed of material permeable to passage of the drug; and (3) a pressure-sensitive adhesive surface adapted for contact with the skin or mucosa and positionedon one surface of the reservoir remote from the backing member and wherein one or more drug release rate controlling microporous membranes are interposed between the surface of the reservoir and pressure-sensitive adhesive so as to continuously meter the flow of a therapeutically effective amount of the drug from the reservoir at a controlled and predetermined rate over a period of time.
4. The bandage as defined by claim 3 wherein the reservoir is a container having the drug confined therein.
5. The bandage as defined by claim 4 wherein the reservoir is pressurized to permit controlled microporous flow of the drug from the reservoir.
6. The bandage as defined by claim 3 wherein the reservoir is a solid or microporous matrix having the drug dispersed therein.
7. The bandage as defined by claim 3 wherein the pores of the microporous rate controlling material are filled with a medium to permit controlled diffusion of the drug from the reservoir.

Claims (6)

  1. 2. The bandage as defined by claim 1 wherein the pores of the microporous rate controlling material are filled with a medium to permit controlled diffusion of the drug from the reservoir.
  2. 3. A medical bandage for the continuous administration of controlled quantities of drug to the skin or mucosa, comprised of a laminate of: (1) a backing member; bearing (2) a discrete middle reservoir containing a drug confined therein, the reservoir being formed of material permeable to passage of the drug; and (3) a pressure-sensitive adhesive surface adapted for contact with the skin or mucosa and positioned on one surface of the reservoir remote from the backing membeR and wherein one or more drug release rate controlling microporous membranes are interposed between the surface of the reservoir and pressure-sensitive adhesive so as to continuously meter the flow of a therapeutically effective amount of the drug from the reservoir at a controlled and predetermined rate over a period of time.
  3. 4. The bandage as defined by claim 3 wherein the reservoir is a container having the drug confined therein.
  4. 5. The bandage as defined by claim 4 wherein the reservoir is pressurized to permit controlled microporous flow of the drug from the reservoir.
  5. 6. The bandage as defined by claim 3 wherein the reservoir is a solid or microporous matrix having the drug dispersed therein.
  6. 7. The bandage as defined by claim 3 wherein the pores of the microporous rate controlling material are filled with a medium to permit controlled diffusion of the drug from the reservoir.
US00169976A 1969-04-01 1971-08-09 Bandage for the administration of drug by controlled metering through microporous materials Expired - Lifetime US3797494A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US81211769A 1969-04-01 1969-04-01
US81211669A 1969-04-01 1969-04-01
US15008571A 1971-06-04 1971-06-04
ZA714095A ZA714095B (en) 1969-04-01 1971-06-22 Bandage for administering drugs
US16997671A 1971-08-09 1971-08-09

Publications (1)

Publication Number Publication Date
US3797494A true US3797494A (en) 1974-03-19

Family

ID=27538369

Family Applications (1)

Application Number Title Priority Date Filing Date
US00169976A Expired - Lifetime US3797494A (en) 1969-04-01 1971-08-09 Bandage for the administration of drug by controlled metering through microporous materials

Country Status (1)

Country Link
US (1) US3797494A (en)

Cited By (512)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972995A (en) * 1975-04-14 1976-08-03 American Home Products Corporation Dosage form
DE2604718A1 (en) * 1975-02-06 1976-08-19 Alza Corp THERAPEUTIC DEVICE FOR ADMINISTERING SKOPOLAMINBASE
US4031894A (en) * 1975-12-08 1977-06-28 Alza Corporation Bandage for transdermally administering scopolamine to prevent nausea
US4039653A (en) * 1974-01-23 1977-08-02 Defoney, Brenman, Mayes & Baron Long-acting articles for oral delivery and process
US4060084A (en) * 1976-09-07 1977-11-29 Alza Corporation Method and therapeutic system for providing chemotherapy transdermally
DE2647581A1 (en) * 1976-10-21 1978-04-27 Henkel Kgaa BLISTER PACK
FR2368962A1 (en) * 1976-11-02 1978-05-26 Merck Patent Gmbh ANTI-BACTERIAL DRESSING AND ITS MANUFACTURING PROCESS
US4201211A (en) * 1977-07-12 1980-05-06 Alza Corporation Therapeutic system for administering clonidine transdermally
WO1980001139A1 (en) * 1978-12-06 1980-06-12 Svedman Paul Device for treating tissues,for example skin
US4230105A (en) * 1978-11-13 1980-10-28 Merck & Co., Inc. Transdermal delivery of drugs
US4262003A (en) * 1975-12-08 1981-04-14 Alza Corporation Method and therapeutic system for administering scopolamine transdermally
US4286592A (en) * 1980-02-04 1981-09-01 Alza Corporation Therapeutic system for administering drugs to the skin
WO1982000005A1 (en) * 1980-06-26 1982-01-07 Key Pharma Polymeric diffusion matrix containing a vasodilator
JPS5777617A (en) * 1980-10-20 1982-05-15 Nichiban Co Ltd Plaster for cardiac disease
US4341208A (en) * 1980-07-14 1982-07-27 Whitman Medical Corporation Moisture-retentive covering for ointment application
DE3205258A1 (en) * 1981-02-17 1982-09-16 Alza Corp., 94304 Palo Alto, Calif. DOSING UNIT FOR THE SIMULTANEOUS ADMINISTRATION OF ACTIVE SUBSTANCES AND AGENTS TO ENHANCE PERCUTANEOUS ABSORPTION
JPS5846015A (en) * 1981-09-10 1983-03-17 Nitto Electric Ind Co Ltd Medicinal preparation
US4432756A (en) * 1981-11-27 1984-02-21 Alza Corporation Parenteral controlled therapy
US4460372A (en) * 1981-02-17 1984-07-17 Alza Corporation Percutaneous absorption enhancer dispenser for use in coadministering drug and percutaneous absorption enhancer
EP0114125A2 (en) * 1983-01-20 1984-07-25 Almedco, Inc. Medication application systems
US4479793A (en) * 1981-11-27 1984-10-30 Alza Corporation Parenteral administration using drug delivery device
US4479794A (en) * 1981-11-27 1984-10-30 Alza Corporation System for intravenous therapy
US4484909A (en) * 1981-11-27 1984-11-27 Alza Corporation Parenteral therapy using solid drug
FR2548021A1 (en) * 1983-06-29 1985-01-04 Dick P R DERMAL PHARMACEUTICAL COMPOSITIONS WITH PROLONGED AND CONTINUOUS ACTION BASED ON ESSENTIAL FATTY ACIDS
US4493702A (en) * 1981-11-27 1985-01-15 Alza Corporation Parenteral administration using osmotically motivated delivery system
US4511351A (en) * 1984-05-14 1985-04-16 Alza Corporation Parenteral delivery system utilizing a hollow fiber cellular unit
US4511353A (en) * 1981-07-13 1985-04-16 Alza Corporation Intravenous system for delivering a beneficial agent
US4511352A (en) * 1984-05-14 1985-04-16 Alza Corporation Parenteral delivery system with in-line container
US4515585A (en) * 1982-05-24 1985-05-07 Alza Corporation System for parenteral administration of agent
US4525162A (en) * 1981-07-31 1985-06-25 Alza Corporation Parenteral controlled delivery
EP0153200A2 (en) * 1984-02-21 1985-08-28 Yamanouchi Pharmaceutical Co. Ltd. Medicinal patch
US4548599A (en) * 1981-11-27 1985-10-22 Alza Corporation Parenteral controlled therapy
US4552556A (en) * 1981-11-27 1985-11-12 Alza Corporation Parenteral controlled therapy
US4573996A (en) * 1984-01-03 1986-03-04 Jonergin, Inc. Device for the administration of an active agent to the skin or mucosa
EP0174108A2 (en) * 1984-08-09 1986-03-12 Leonora I. Jost Transdermal delivery devices
US4579553A (en) * 1981-11-27 1986-04-01 Alza Corporation Parenteral controlled therapy
US4583981A (en) * 1981-11-27 1986-04-22 Alza Corporation Parenteral controlled therapy, using a porous matrix with parenteral agent
US4585452A (en) * 1983-04-12 1986-04-29 Key Pharmaceuticals, Inc. Transdermal systemic dosage forms
US4586922A (en) * 1981-10-09 1986-05-06 Alza Corporation Intravenous system for delivering a beneficial agent
US4596555A (en) * 1984-05-14 1986-06-24 Alza Corporation Parenteral delivery system utilizing a hollow fiber cellular unit
US4615697A (en) * 1983-11-14 1986-10-07 Bio-Mimetics, Inc. Bioadhesive compositions and methods of treatment therewith
EP0196769A2 (en) * 1985-02-25 1986-10-08 Rutgers, The State University of New Jersey A novel transdermal pharmaceutical absorption dosage unit
FR2581314A1 (en) * 1985-05-03 1986-11-07 Alza Corp MEDICAL DEVICE FOR THE TRANSDERMAL DELIVERY OF HIGHLY IONIZED DRUGS INSOLUBLE IN FAT BODIES
US4624665A (en) * 1984-10-01 1986-11-25 Biotek, Inc. Method of transdermal drug delivery
WO1987000042A1 (en) * 1985-07-02 1987-01-15 Rutgers, The State University Of New Jersey Transdermal verapamil delivery device
US4655767A (en) * 1984-10-29 1987-04-07 Dow Corning Corporation Transdermal drug delivery devices with amine-resistant silicone adhesives
WO1987001938A1 (en) * 1985-09-27 1987-04-09 The Regents Of The University Of California Liposome transdermal drug delivery system
US4661105A (en) * 1981-06-29 1987-04-28 Alza Corporation Medical bandage for administering vasodilator drug
US4664650A (en) * 1982-05-24 1987-05-12 Alza Corporation Apparatus for parenteral infusion of fluid containing beneficial agent
US4666441A (en) * 1985-12-17 1987-05-19 Ciba-Geigy Corporation Multicompartmentalized transdermal patches
US4671953A (en) * 1985-05-01 1987-06-09 University Of Utah Research Foundation Methods and compositions for noninvasive administration of sedatives, analgesics, and anesthetics
WO1987003477A1 (en) * 1985-12-12 1987-06-18 Flexcon Company, Inc. Transdermal methods and adhesives
US4680172A (en) * 1985-03-05 1987-07-14 Ciba-Geigy Corporation Devices and methods for treating memory impairment
JPS62169723A (en) * 1986-01-22 1987-07-25 Teisan Seiyaku Kk Sustained release preparation
US4698062A (en) * 1985-10-30 1987-10-06 Alza Corporation Medical device for pulsatile transdermal delivery of biologically active agents
US4704119A (en) * 1983-02-03 1987-11-03 Alza Corporation Method comprising transdermal and buccal treatment of angina
US4710191A (en) * 1985-12-16 1987-12-01 Jonergin, Inc. Therapeutic device for the administration of medicaments
US4725272A (en) * 1981-06-29 1988-02-16 Alza Corporation Novel bandage for administering beneficial drug
WO1988001516A1 (en) * 1986-08-28 1988-03-10 Lohmann Gmbh & Co. Kg. Transdermal therapeutic system, its use and production process
US4738670A (en) * 1984-03-13 1988-04-19 Bayer Aktiengesellschaft Medicinal plasters
US4740199A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4740201A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4740103A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4740198A (en) * 1981-10-09 1988-04-26 Alza Corporation Method of administering intravenous drug using rate-controlled dosage form
US4740200A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4740197A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent via polymer delivery
US4741735A (en) * 1981-10-09 1988-05-03 Alza Corporation Intravenous system for delivering a beneficial agent
US4741734A (en) * 1981-10-09 1988-05-03 Alza Corporation Releasing means for adding agent using releasing means to IV fluid
US4743249A (en) * 1986-02-14 1988-05-10 Ciba-Geigy Corp. Dermal and transdermal patches having a discontinuous pattern adhesive layer
US4752478A (en) * 1984-12-17 1988-06-21 Merck & Co., Inc. Transdermal system for timolol
EP0272918A2 (en) * 1986-12-22 1988-06-29 Cygnus Therapeutic Systems Diffusion matrix for transdermal drug administration and transdermal drug delivery devices including same
EP0273004A2 (en) * 1986-11-20 1988-06-29 Ciba-Geigy Ag User-activated therapeutical system
US4756710A (en) * 1985-04-05 1988-07-12 Merck & Co., Inc. pH-Mediated drug delivery system
US4764379A (en) * 1987-08-24 1988-08-16 Alza Corporation Transdermal drug delivery device with dual permeation enhancers
US4765985A (en) * 1985-03-05 1988-08-23 Ciba-Geigy Corporation Devices and methods for treating memory impairment
EP0285563A1 (en) 1987-04-02 1988-10-05 Ciba-Geigy Ag Transdermal therapeutic systems for combinations of active agents
US4776850A (en) * 1985-05-24 1988-10-11 Beiersdorf Aktiengesellschaft Nitrate-containing plaster
US4790820A (en) * 1981-07-13 1988-12-13 Alza Corporation Parenteral agent dispensing equipment with drug releasing member
US4795436A (en) * 1983-11-14 1989-01-03 Bio-Mimetics, Inc. Bioadhesive composition and method of treatment therewith
US4812313A (en) * 1981-06-29 1989-03-14 Alza Corporation Method for lessening the incidence of anginal attacks
US4812305A (en) * 1987-11-09 1989-03-14 Vocal Rodolfo S Well medicine strip
US4820720A (en) * 1987-08-24 1989-04-11 Alza Corporation Transdermal drug composition with dual permeation enhancers
EP0316168A1 (en) * 1987-11-12 1989-05-17 Theratech, Inc. Device for administering an active agent to the skin or mucosa
US4833172A (en) * 1987-04-24 1989-05-23 Ppg Industries, Inc. Stretched microporous material
US4834979A (en) * 1981-06-29 1989-05-30 Alza Corporation Medical bandage for administering beneficial drug
US4836217A (en) * 1984-10-01 1989-06-06 Fischer Torkel I Hypersensitivity test means
US4839174A (en) * 1987-10-05 1989-06-13 Pharmetrix Corporation Novel transdermal nicotine patch
US4846826A (en) * 1981-07-22 1989-07-11 Alza Corporation Method for treating ischemic conditions
US4849226A (en) * 1981-06-29 1989-07-18 Alza Corporation Method for increasing oxygen supply by administering vasodilator
US4857052A (en) * 1981-07-13 1989-08-15 Alza Corporation Intravenous system for delivering a beneficial agent
US4861644A (en) * 1987-04-24 1989-08-29 Ppg Industries, Inc. Printed microporous material
US4863738A (en) * 1987-11-23 1989-09-05 Alza Corporation Skin permeation enhancer compositions using glycerol monooleate
US4863737A (en) * 1985-05-01 1989-09-05 University Of Utah Compositions and methods of manufacture of compressed powder medicaments
US4871360A (en) * 1981-07-31 1989-10-03 Alza Corporation System for intravenous delivery of a beneficial drug at a regulated rates
US4877618A (en) * 1988-03-18 1989-10-31 Reed Jr Fred D Transdermal drug delivery device
US4885173A (en) * 1985-05-01 1989-12-05 University Of Utah Methods and compositions for noninvasive dose-to-effect administration of drugs with cardiovascular or renal vascular activities
US4898920A (en) * 1987-10-15 1990-02-06 Dow Corning Corporation Adhesive compositions, controlled release compositions and transdermal delivery device
US4904475A (en) * 1985-05-03 1990-02-27 Alza Corporation Transdermal delivery of drugs from an aqueous reservoir
US4906475A (en) * 1988-02-16 1990-03-06 Paco Pharmaceutical Services Estradiol transdermal delivery system
US4906463A (en) * 1986-12-22 1990-03-06 Cygnus Research Corporation Transdermal drug-delivery composition
US4908019A (en) * 1982-05-24 1990-03-13 Alza Corporation Apparatus comprising dual reservoirs for parenteral infusion of fluid containing beneficial agent
US4911707A (en) * 1987-02-13 1990-03-27 Ciba-Geigy Corporation Monolithic user-activated transdermal therapeutic system
US4917688A (en) * 1987-01-14 1990-04-17 Nelson Research & Development Co. Bandage for transdermal delivery of systemically-active drug
AU597618B2 (en) * 1986-02-14 1990-06-07 Ciba-Geigy Ag Dermal and transdermal patches having a discontinuous pattern adhesive layer
US4938759A (en) * 1986-09-02 1990-07-03 Alza Corporation Transdermal delivery device having a rate controlling adhesive
US4943435A (en) * 1987-10-05 1990-07-24 Pharmetrix Corporation Prolonged activity nicotine patch
US4954344A (en) * 1981-06-29 1990-09-04 Alza Corporation Method for treating nocturnal angina
US4969871A (en) * 1989-02-15 1990-11-13 Alza Corporation Intravenous system for delivering a beneficial agent
US4971800A (en) * 1988-07-08 1990-11-20 The Regents Of The University Of California Method and compositions for enhancing the cutaneous penetration of pharmacologically active agents
US4973307A (en) * 1981-07-13 1990-11-27 Alza Corporation Method for administering drugs to a patient
US4973468A (en) * 1989-03-22 1990-11-27 Cygnus Research Corporation Skin permeation enhancer compositions
US4983392A (en) * 1983-11-14 1991-01-08 Bio-Mimetics, Inc. Bioadhesive compositions and methods of treatment therewith
US4985017A (en) * 1981-07-13 1991-01-15 Alza Corporation Parenteral therapeutical system comprising drug cell
US4994031A (en) * 1981-07-13 1991-02-19 Alza Corporation Intravenous system for delivering a beneficial agent
US5006342A (en) * 1986-12-22 1991-04-09 Cygnus Corporation Resilient transdermal drug delivery device
US5024657A (en) * 1984-12-03 1991-06-18 Baxter International Inc. Drug delivery apparatus and method preventing local and systemic toxicity
US5028435A (en) * 1989-05-22 1991-07-02 Advanced Polymer Systems, Inc. System and method for transdermal drug delivery
US5035894A (en) * 1987-10-15 1991-07-30 Dow Corning Corporation Controlled release compositions and transdermal drug delivery device
EP0439430A2 (en) * 1990-01-22 1991-07-31 Ciba-Geigy Ag Transdermal administration of zwitterionic drugs
US5045059A (en) * 1989-02-15 1991-09-03 Alza Corporation Intravenous system for delivering a beneficial agent
US5045317A (en) * 1987-07-16 1991-09-03 The Regents Of The University Of California Enhancing the cutaneous penetration of pharmacologically active agents
US5051260A (en) * 1987-07-16 1991-09-24 The Regents Of The University Of California Method and composition for enhancing the cutaneous penetration of pharmacologically active agents
US5053227A (en) * 1989-03-22 1991-10-01 Cygnus Therapeutic Systems Skin permeation enhancer compositions, and methods and transdermal systems associated therewith
US5059426A (en) * 1989-03-22 1991-10-22 Cygnus Therapeutic Systems Skin permeation enhancer compositions, and methods and transdermal systems associated therewith
US5059189A (en) * 1987-09-08 1991-10-22 E. R. Squibb & Sons, Inc. Method of preparing adhesive dressings containing a pharmaceutically active ingredient
US5069671A (en) * 1981-07-13 1991-12-03 Alza Corporation Intravenous medication
US5071656A (en) * 1987-03-05 1991-12-10 Alza Corporation Delayed onset transdermal delivery device
US5080646A (en) * 1988-10-03 1992-01-14 Alza Corporation Membrane for electrotransport transdermal drug delivery
WO1992001498A2 (en) * 1990-07-16 1992-02-06 Cholestech Corporation Solid-phase precipitation assay device and method
US5091087A (en) * 1990-06-25 1992-02-25 Hoechst Celanese Corp. Fabrication of microporous PBI membranes with narrow pore size distribution
US5091186A (en) * 1989-08-15 1992-02-25 Cygnus Therapeutic Systems Biphasic transdermal drug delivery device
EP0481443A1 (en) * 1990-10-17 1992-04-22 Vectorpharma International S.P.A. Transdermal therapeutic compositions
US5122127A (en) * 1985-05-01 1992-06-16 University Of Utah Apparatus and methods for use in administering medicaments by direct medicament contact to mucosal tissues
US5124157A (en) * 1989-08-18 1992-06-23 Cygnus Therapeutic Systems Method and device for administering dexmedetomidine transdermally
US5132114A (en) * 1985-05-01 1992-07-21 University Of Utah Research Foundation Compositions and methods of manufacture of compressed powder medicaments
US5141750A (en) * 1986-06-13 1992-08-25 Alza Corporation Delayed onset transdermal delivery device
US5147296A (en) * 1988-10-03 1992-09-15 Alza Corporation Membrane for electrotransport transdermal drug delivery
US5151271A (en) * 1981-08-27 1992-09-29 Nitti Electric Industrial Co., Ltd. Pressure-sensitively adhering composite medicinal preparation
US5164416A (en) * 1989-02-03 1992-11-17 Lintec Corporation Transdermal therapeutic formulation containing a limonene
US5164189A (en) * 1989-12-04 1992-11-17 G. D. Searle & Co. Single layer transdermal drug administration system
US5169382A (en) * 1988-10-03 1992-12-08 Alza Corporation Membrane for electrotransport transdermal drug delivery
WO1993003693A1 (en) * 1991-08-23 1993-03-04 Cygnus Therapeutic Systems Transdermal drug delivery device using a polymer-filled microporous membrane to achieve delayed onset
WO1993003692A1 (en) * 1991-08-23 1993-03-04 Cygnus Therapeutic Systems Transdermal drug delivery device using a membrane-protected microporous membrane to achieve delayed onset
US5213965A (en) * 1990-07-16 1993-05-25 Cholestech Corporation Solid-phase precipitation assay device
DE4241128A1 (en) * 1991-12-20 1993-06-24 Lohmann Therapie Syst Lts Transdermal aspirin dosage forms - for antithrombotic therapy or cancer prophylaxis
US5234690A (en) * 1991-08-23 1993-08-10 Cygnus Therapeutic Systems Transdermal drug delivery device using an unfilled microporous membrane to achieve delayed onset
USRE34365E (en) * 1981-07-13 1993-08-31 Intravenous system for delivering a beneficial agent
US5268179A (en) * 1992-02-14 1993-12-07 Ciba-Geigy Corporation Ultrasonically sealed transdermal drug delivery systems
US5288497A (en) * 1985-05-01 1994-02-22 The University Of Utah Compositions of oral dissolvable medicaments
US5298257A (en) * 1987-05-01 1994-03-29 Elan Transdermal Limited Method for the treatment of withdrawal symptoms associated with smoking cessation and preparations for use in said method
EP0593807A1 (en) * 1992-10-22 1994-04-27 LTS Lohmann Therapie-Systeme GmbH & Co. KG Patch for transdermal administration of volatile pharmaceutically active ingredients of chemically basic nature and a process for preparation
US5340585A (en) * 1991-04-12 1994-08-23 University Of Southern California Method and formulations for use in treating benign gynecological disorders
US5340586A (en) * 1991-04-12 1994-08-23 University Of Southern California Methods and formulations for use in treating oophorectomized women
US5378730A (en) * 1988-06-09 1995-01-03 Alza Corporation Permeation enhancer comprising ethanol and monoglycerides
US5405614A (en) * 1992-04-08 1995-04-11 International Medical Associates, Inc. Electronic transdermal drug delivery system
EP0648264A1 (en) * 1992-06-03 1995-04-19 Case Western Reserve University Bandage for continuous application of biologicals
US5411740A (en) * 1992-05-13 1995-05-02 Alza Corporation Transdermal administration of oxybutynin
US5422118A (en) * 1986-11-07 1995-06-06 Pure Pac, Inc. Transdermal administration of amines with minimal irritation and high transdermal flux rate
US5451407A (en) * 1993-06-21 1995-09-19 Alza Corporation Reduction or prevention of skin irritation or sensitization during transdermal administration of a irritating or sensitizing drug
US5498417A (en) * 1994-05-12 1996-03-12 Coating Sciences, Inc. Transdermal delivery of appetite suppressant drug
US5505958A (en) * 1994-10-31 1996-04-09 Algos Pharmaceutical Corporation Transdermal drug delivery device and method for its manufacture
US5508039A (en) * 1991-10-18 1996-04-16 Alza Corporation Controlled transdermal administration of melatonin
US5512292A (en) * 1990-10-29 1996-04-30 Alza Corporation Transdermal contraceptive formulations methods and devices
US5591767A (en) * 1993-01-25 1997-01-07 Pharmetrix Corporation Liquid reservoir transdermal patch for the administration of ketorolac
WO1997004818A2 (en) * 1995-07-29 1997-02-13 Lts Lohmann Therapie-Systeme Gmbh Transdermal therapeutic sysgtem for administering active agents to the human body via the skin
US5612382A (en) * 1994-07-15 1997-03-18 Frances B. Fike Composition for percutaneous absorption of pharmaceutically active ingredients
US5633009A (en) * 1990-11-28 1997-05-27 Sano Corporation Transdermal administration of azapirones
US5641507A (en) * 1993-12-06 1997-06-24 Devillez; Richard L. Delivery system for dermatological and cosmetic ingredients
US5643905A (en) * 1993-01-23 1997-07-01 Therapie-System Gmbh & Co., Kg Pharmaceutical formulation for the treatment of nicotine dependence
US5643596A (en) * 1993-11-03 1997-07-01 Clarion Pharmaceuticals, Inc. Hemostatic patch
US5650165A (en) * 1994-11-15 1997-07-22 Nitto Denko Corporation Percutaneous absorption preparation
US5668143A (en) * 1993-11-29 1997-09-16 Merrell Pharmaceuticals Inc. Heterocyclic benzenesulfonylimine derivatives as inhibitors of IL-1 action
US5684017A (en) * 1993-11-29 1997-11-04 Merrell Pharmaceuticals Inc. Benzenesulfonylimine derivatives as inhibitors of IL-1 action
US5707612A (en) * 1996-04-08 1998-01-13 Alzo, Inc. Use urethane polymers of castor oil skin and personal care product compositiions
US5728688A (en) * 1993-01-19 1998-03-17 Endoreoherche, Inc. Therapeutic methods and delivery systems utilizing sex steroid precursors
US5747065A (en) * 1993-09-29 1998-05-05 Lee; Eun Soo Monoglyceride/lactate ester permeation enhancer for oxybutynin
EP0841056A2 (en) * 1995-03-01 1998-05-13 Hisashi Mineta Personal clothing with effects caused by weak electromagnetic waves
US5756117A (en) * 1992-04-08 1998-05-26 International Medical Asscociates, Inc. Multidose transdermal drug delivery system
US5762952A (en) * 1993-04-27 1998-06-09 Hercon Laboratories Corporation Transdermal delivery of active drugs
US5785991A (en) * 1995-06-07 1998-07-28 Alza Corporation Skin permeation enhancer compositions comprising glycerol monolaurate and lauryl acetate
US5798347A (en) * 1993-01-19 1998-08-25 Endorecherche, Inc. Therapeutic methods and delivery systems utilizing sex steroid precursors
US5807571A (en) * 1993-05-06 1998-09-15 Lts Lohmann Therapie-Systeme Gmbh Transdermal therapeutic systems for administering indole serotonin agonists
US5820876A (en) * 1986-08-28 1998-10-13 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Transdermal therapeutic system
US5827529A (en) * 1991-03-30 1998-10-27 Teikoku Seiyaku Kabushiki Kaisha External preparation for application to the skin containing lidocaine
US5840327A (en) * 1995-08-21 1998-11-24 Alza Corporation Transdermal drug delivery device having enhanced adhesion
US5855908A (en) * 1984-05-01 1999-01-05 University Of Utah Research Foundation Non-dissolvable drug-containing dosage-forms for use in the transmucosal delivery of a drug to a patient
US5869086A (en) * 1993-04-28 1999-02-09 Lts Lohmann Therapie-Systeme Gmbh Systems for the controlled release of pilocarpine
WO1999011265A1 (en) * 1997-09-04 1999-03-11 Lts Lohmann Therapie-Systeme Ag Transdermal therapeutic system containing the active substance scopolamine base
US5891868A (en) * 1997-11-21 1999-04-06 Kaiser Foundation Health Plan, Inc. Methods for treating postmenopausal women using ultra-low doses of estrogen
US5900250A (en) * 1992-05-13 1999-05-04 Alza Corporation Monoglyceride/lactate ester permeation enhancer for oxybutnin
US5912009A (en) * 1996-10-30 1999-06-15 Theratech, Inc. Fatty acid esters of glycolic acid and its salts
US5919478A (en) * 1993-06-25 1999-07-06 Alza Corporation Incorporating poly-N-vinyl amide in a transdermal system
US5939095A (en) * 1993-12-10 1999-08-17 Lts Lohmann Therapie-Systeme Gmbh Transdermal therapeutic system and a process for the combined transdermal application of physostigmine and scopolamine for the prophylaxis and pretreatment of a poisoning caused by highly toxic organophosphorus neurotoxins in particular soman
US5962011A (en) * 1993-12-06 1999-10-05 Schering-Plough Healthcare Products, Inc. Device for delivery of dermatological ingredients
US6001390A (en) * 1995-06-07 1999-12-14 Alza Corporation Formulations for transdermal delivery of pergolide
US6004578A (en) * 1996-10-24 1999-12-21 Alza Corporation Permeation enhances for transdermal drug delivery compositions, devices and methods
US6007837A (en) * 1996-07-03 1999-12-28 Alza Corporation Drug delivery devices and process of manufacture
WO2000030693A1 (en) * 1998-11-23 2000-06-02 Deotexis Inc. Dressing
US6110488A (en) * 1986-08-28 2000-08-29 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Transdermal therapeutic system, its use and production process
US6117448A (en) * 1986-08-28 2000-09-12 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Transdermal therapeutic system, its use and production process
US6126963A (en) * 1986-08-28 2000-10-03 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Transdermal therapeutic system, its use and production process
US6139868A (en) * 1986-08-28 2000-10-31 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Transdermal therapeutic system, its use and production process
US6143303A (en) * 1999-08-14 2000-11-07 Janakiram; Chodavarapu Analgesic anti-inflammatory composition and method of preparing from dodonaea sp
US6163720A (en) * 1997-12-18 2000-12-19 Alza Corporation Layered rate controlling membranes for use in an electrotransport device
US6174545B1 (en) 1997-07-01 2001-01-16 Alza Corporation Drug delivery devices and process of manufacture
US6187322B1 (en) * 1994-01-13 2001-02-13 Lts Lohmann Therapie-Systeme Gmbh Process and a device for the production of a flat administration form comprising a preparation which contains pharmaceutical active substances
US6203817B1 (en) 1997-02-19 2001-03-20 Alza Corporation Reduction of skin reactions caused by transdermal drug delivery
US6238700B1 (en) 1995-12-01 2001-05-29 Alza Corporation Method for preventing crystal formation in a dispersion of a liquid in a matrix
US6267984B1 (en) 1997-12-22 2001-07-31 Alza Corporation Skin permeation enhancer compositions comprising a monoglyceride and ethyl palmitate
US6300327B1 (en) 1991-11-08 2001-10-09 The University Of Southern California Compositions and methods for potentiation of neurotrophin activity
US6326524B1 (en) * 1999-03-02 2001-12-04 Bristol-Myers Squibb Company Hydrocolloid foam dressing
US6348210B1 (en) 1998-11-13 2002-02-19 Alza Corporation Methods for transdermal drug administration
US6375978B1 (en) 1997-12-22 2002-04-23 Alza Corporation Rate controlling membranes for controlled drug delivery devices
WO2002062292A2 (en) * 2001-02-05 2002-08-15 Ferro Corporation Adhesive composition primarily intended for use in medical applications
US6465445B1 (en) 1998-06-11 2002-10-15 Endorecherche, Inc. Medical uses of a selective estrogen receptor modulator in combination with sex steroid precursors
US6465440B2 (en) 1997-11-04 2002-10-15 Wellstat Therapeutics Corporation Antimutagenic compositions for treatment and prevention of photodamage to skin
USRE37934E1 (en) 1986-08-28 2002-12-10 Lts Lohmann Therapie-Systeme Ag Transdermal therapeutic system
US6512010B1 (en) 1996-07-15 2003-01-28 Alza Corporation Formulations for the administration of fluoxetine
US6548510B1 (en) 1999-02-19 2003-04-15 Lts Lohmann Therapie Systeme Ag Pharmaceutical composition containing deoxypeganine for the treatment of nicotine dependence
US20030088204A1 (en) * 2001-11-02 2003-05-08 Joshi Ashok V Novel iontophoretic drug delivery systems
US6569448B1 (en) 1995-12-01 2003-05-27 Alza Corporation Method for preventing crystal formation in a dispersion of a liquid in a matrix
US20030118653A1 (en) * 2001-07-06 2003-06-26 Lavipharm Laboratories Inc. Quick dissolving oral mucosal drug delivery device with moisture barrier coating
US6592892B1 (en) 1999-08-30 2003-07-15 Tepha, Inc. Flushable disposable polymeric products
US20030181516A1 (en) * 2002-03-19 2003-09-25 Krylov Boris Vladimirovich Substance with sedative effect
US6627631B1 (en) * 1999-02-19 2003-09-30 Lts Lohmann Therapie-Systeme Ag Pharmaceutical composition containing desoxypeganine for the treatment of alcoholism
US20030212094A1 (en) * 2000-02-29 2003-11-13 Haruko Yamabe Novel cyclic amide derivatives
US20030224471A1 (en) * 2002-04-09 2003-12-04 Jones Ronald M. High-Density lipoprotein assay device and method
US6660295B2 (en) 1997-09-30 2003-12-09 Alza Corporation Transdermal drug delivery device package with improved drug stability
US20040006134A1 (en) * 2002-02-15 2004-01-08 Endorecherche, Inc. Antiandrogenic biphenyls
US6692763B1 (en) 1998-11-19 2004-02-17 The Regents Of The University Of California Methods for treating postmenopausal women using ultra-low doses of estrogen
US6698162B2 (en) * 2000-03-23 2004-03-02 Teikoku Pharma Usa, Inc. Methods of producing a terminally sterilized topical patch preparation
US6699497B1 (en) 1998-07-24 2004-03-02 Alza Corporation Formulations for the transdermal administration of fenoldopam
US20040081683A1 (en) * 2002-07-30 2004-04-29 Schacht Dietrich Wilhelm Transdermal delivery system
US20040096491A1 (en) * 2001-03-07 2004-05-20 Tetsuro Tateishi Adhesive patch
US20040116406A1 (en) * 2001-04-24 2004-06-17 Klaus Opitz Utilization of galanthamine for the treatment of pathologies of the central nervous system owing to intoxications with psychotropic substances
US20040132751A1 (en) * 2001-04-24 2004-07-08 Klaus Opitz Use of desoxypeganine for treating central nervous system symptoms resulting from intoxications by psychotrops
US6775570B2 (en) 2002-02-04 2004-08-10 Ceramatec, Inc. Iontophoretic treatment device
US20040167145A1 (en) * 2001-07-12 2004-08-26 Klaus Opitz Active ingredient combination for the pharmacological therapy of nicotine dependence
US20040186086A1 (en) * 2001-05-18 2004-09-23 Bunschoten Evert Johannes Use of estrogen compounds to increase libido in women
US20040192620A1 (en) * 2001-05-23 2004-09-30 Bunschoten Evert Johannes Drug delivery system comprising a tetrahydroxylated estrogen for use in hormonal contraception
US20040192683A1 (en) * 2001-06-18 2004-09-30 Joachim Moormann Active ingredient combination for treating a dependence on addictive substances or narcotics using medicaments
US20040198710A1 (en) * 2001-05-23 2004-10-07 Bunschoten Evert Johannes Drug delivery system comprising a tetrahydroxilated estrogen for use in hormonal contraception
US20040198671A1 (en) * 2001-05-18 2004-10-07 Bunschoten Evert Johannes Pharmaceutical composition for use in hormone replacement therapy
US20040198706A1 (en) * 2003-03-11 2004-10-07 Carrara Dario Norberto R. Methods and formulations for transdermal or transmucosal application of active agents
US20040234576A1 (en) * 2003-05-08 2004-11-25 Tepha, Inc., State Of Incorporation Delaware Polyhydroxyalkanoate medical textiles and fibers
US20040234585A1 (en) * 1998-12-18 2004-11-25 Gale Robert M. Transparent transdermal nicotine delivery devices
US20040258742A1 (en) * 2003-04-11 2004-12-23 Van Osdol William Woodson Transdermal administration of N-(2,5-disubstituted phenyl)-N'-(3-substituted phenyl)-N'-methyl guanidines
US20050002997A1 (en) * 2003-04-30 2005-01-06 Howard Stephen A. Tamper resistant transdermal dosage form
US20050025809A1 (en) * 2003-07-08 2005-02-03 Tepha, Inc. Poly-4-hydroxybutyrate matrices for sustained drug delivery
US20050048104A1 (en) * 1999-04-01 2005-03-03 Venkatraman Subramanian S. Transdermal drug delivery devices comprising a polyurethane drug reservoir
US20050053647A1 (en) * 1999-05-21 2005-03-10 Rudolf Matusch Pharmaceutical product comprising the active substance diamorphine, and its use in a process for treating opiate addiction
US20050059645A1 (en) * 2003-07-31 2005-03-17 Bodor Nicholas S. Methods for the treatment of male and female sexual dysfunction
US20050065062A1 (en) * 2003-09-24 2005-03-24 3M Innovative Properties Company Method of formulating a pharmaceutical composition
US20050070488A1 (en) * 2001-11-15 2005-03-31 Coelingh Bennik Herman Jan Tijmen Estrogenic compounds in combination with progestogenic compounds in hormone-replacement therapy
US20050079206A1 (en) * 2002-07-30 2005-04-14 Schacht Dietrich Wilhelm Transdermal delivery system for the administration of rotigotine
US20050142475A1 (en) * 2003-12-30 2005-06-30 Moudry Ronald J. Dry toner comprising encapsulated pigment, methods and uses
WO2005066194A1 (en) 2004-01-07 2005-07-21 Endorecherche, Inc. Helix 12 directed steroidal pharmaceutical products
US20050215538A1 (en) * 2002-06-11 2005-09-29 Coelingh Bennink Herman J T Method of treating human skin and a skin care composition for use in such a method
US20050261209A1 (en) * 2002-06-11 2005-11-24 Bunschoten Evert J Method of treating or preventing immune mediated disorders and pharmaceutical formulation for use therein
US6974588B1 (en) 1999-12-07 2005-12-13 Elan Pharma International Limited Transdermal patch for delivering volatile liquid drugs
US20050276807A1 (en) * 2004-06-15 2005-12-15 Advanced Biotherapy, Inc. Treatment of acne
US20060008432A1 (en) * 2004-07-07 2006-01-12 Sebastiano Scarampi Gilsonite derived pharmaceutical delivery compositions and methods: nail applications
US20060058470A1 (en) * 2004-08-03 2006-03-16 Tepha, Inc. Non-curling polyhydroxyalkanoate sutures
US20060063723A1 (en) * 2002-07-12 2006-03-23 Coelingh Bennink Herman Jan T Pharmaceutical composition comprising esterol derivatives for use in cancer therapy
US7047069B2 (en) 2002-02-04 2006-05-16 Ceramatec, Inc. Iontophoretic fluid delivery device
US7063859B1 (en) 1999-04-28 2006-06-20 Noven Pharmaceuticals, Inc. Barrier film lined backing layer composition and method for topical administration of active agents
EP1674068A1 (en) 1996-02-19 2006-06-28 Acrux DDS Pty Ltd Dermal penetration enhancers and drug delivery systems involving same
US20060177445A1 (en) * 2004-08-16 2006-08-10 Boris Skurkovich Treatment of inflammatory skin diseases
US20060177513A1 (en) * 2005-01-28 2006-08-10 Tepha, Inc. Embolization using poly-4-hydroxybutyrate particles
US20060199866A1 (en) * 2003-04-25 2006-09-07 Joachim Moormann Combination of desoxypeganine and mecamylanine for the treatment of alcohol abuse
US20060210613A1 (en) * 2005-03-15 2006-09-21 Carliss Richard D Therapeutic wound care product
US20060247221A1 (en) * 2002-10-23 2006-11-02 Coelingh Bennink Herman J T Pharmaceutical compositions comprising estetrol derivatives for use in cancer therapy
US20060269475A1 (en) * 2005-04-11 2006-11-30 Ryu Wonhyoung Multi-layer structure having a predetermined layer pattern including an agent
US20060287659A1 (en) * 2003-08-22 2006-12-21 Tepha, Inc. Polyhydroxyalkanoate nerve regeneration devices
WO2006133567A1 (en) 2005-06-17 2006-12-21 Endorecherche, Inc. Helix 12 directed non-steroidal antiandrogens
US20070065463A1 (en) * 2003-06-20 2007-03-22 Ronald Aung-Din Topical therapy for the treatment of migranes, muscle sprains, muscle spasms, spasticity and related conditions
US20070148195A1 (en) * 2000-04-26 2007-06-28 Ebert Charles D Compositions and methods for transdermal oxybutynin therapy
US20070179210A1 (en) * 2006-01-31 2007-08-02 Tyco Healthcare Group Lp Super soft foams
US20070212314A1 (en) * 2004-09-07 2007-09-13 Dow Corning Corporation Silicone Adhesive Formulation Containing An Antiperspirant
US20070212410A1 (en) * 2006-02-27 2007-09-13 Noven Pharmaceuticals, Inc. Compositions and methods for delivery of amino-functional drugs
US20070237812A1 (en) * 2006-04-11 2007-10-11 Tyco Healthcare Group Multi-layer wound dressings
US20070259930A1 (en) * 2006-04-10 2007-11-08 Knopp Neurosciences, Inc. Compositions and methods of using r(+) pramipexole
US20080014259A1 (en) * 2006-05-16 2008-01-17 Knopp Neurosciences, Inc. Compositions of R(+) and S(-) Pramipexole and Methods of Using the Same
US20080051490A1 (en) * 1999-03-25 2008-02-28 Williams Simon F Medical Devices and Applications of Polyhydroxyalkanoate Polymers
US20080090894A1 (en) * 2001-06-05 2008-04-17 Ronald Aung-Din Transdermal migraine therapy
US20080132602A1 (en) * 2006-12-01 2008-06-05 Tepha, Inc. Medical devices containing oriented films of poly-4-hydroxybutyrate and copolymers
US20080160065A1 (en) * 2006-07-12 2008-07-03 Janet Anne Halliday Drug delivery polymer with hydrochloride salt of clindamycin
US20080166745A1 (en) * 2007-01-09 2008-07-10 Cholestech Corporation Device and method for measuring LDL-associated cholesterol
US20080177219A1 (en) * 2007-01-23 2008-07-24 Joshi Ashok V Method for Iontophoretic Fluid Delivery
US20080188791A1 (en) * 2007-02-02 2008-08-07 Difiore Attilio E Active iontophoresis delivery system
WO2008104032A1 (en) * 2007-03-01 2008-09-04 D-Swell Pty Ltd Body wrap with sodium carbonate dosage pack
US20080227985A1 (en) * 2007-03-14 2008-09-18 Knopp Neurosciences, Inc. Synthesis of chirally purified substituted benzothiazoles
WO2008124922A1 (en) 2007-04-12 2008-10-23 Endorecherche, Inc. 17alpha-substituted steroids as systemic antiandrogens and selective androgen receptor modulators
US20080305154A1 (en) * 2007-06-08 2008-12-11 Activatek, Inc. Transdermal medicament patch and active electrode for same
US20090042956A1 (en) * 2006-04-10 2009-02-12 Knopp Neurosciences, Inc. Compositions and methods of using (r)-pramipexole
US20090047334A1 (en) * 2007-08-13 2009-02-19 Patricia Williams Transdermal patch for extended delivery of calcium
US20090054504A1 (en) * 2006-12-14 2009-02-26 Knopp Neurosciences, Inc. Modified Release Formulations of (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine and Methods of Using the Same
US20090098069A1 (en) * 2007-09-14 2009-04-16 Drugtech Corporation Transdermal, alcohol-free, pharmaceutical compositions
US20090169602A1 (en) * 2005-11-23 2009-07-02 Universität Zürich Allergy Treatment by Epicutaneous Allergen Administration
US20090196911A1 (en) * 2006-06-06 2009-08-06 Loubert Gary L Silicone Acrylate Hybride Composition and Method Of Making Same
EP2087892A2 (en) 1999-07-01 2009-08-12 Pharmacia & Upjohn Company LLC (S,S) reboxetine for treating age associated learning and mental disorders
US20090291120A1 (en) * 2006-07-05 2009-11-26 Jukka Tuominen Hydrophilic Polyurethane Compositions
US20090324692A1 (en) * 2006-07-08 2009-12-31 Controlled Therapeutics (Scotland) Limited Polyurethane Elastomers
US20100055437A1 (en) * 2008-08-28 2010-03-04 Tyco Healthcare Group Lp Anti-microbial fibers and related articles and methods
US20100113346A1 (en) * 2007-01-08 2010-05-06 Pantarhei Bioscience B.V. Method of Treating or Preventing Infertility in a Female Mammal and Pharmaceutical Kit for Use in Such Method
US20100121304A1 (en) * 2008-11-10 2010-05-13 Kimberly-Clark Worldwide, Inc. Multifunctional Acrylate Skin-Adhesive Composition
US20100172959A1 (en) * 2007-07-04 2010-07-08 Acino Ag Reservoir system with closed membrane
US20100317745A1 (en) * 2006-10-18 2010-12-16 Donald Magnus Nicolson Bioresorbable Polymers
US20110009460A1 (en) * 2009-06-19 2011-01-13 Valentin Gribkoff Compositions and methods for treating amyotrophic lateral sclerosis
US20110021596A1 (en) * 2009-07-27 2011-01-27 Ronald Aung-Din Topical therapy for migraine
US20110033515A1 (en) * 2009-08-04 2011-02-10 Rst Implanted Cell Technology Tissue contacting material
US20110091488A1 (en) * 2002-09-27 2011-04-21 Controlled Therapeutics (Scotland) Limited Water-swellable polymers
US20110190356A1 (en) * 2008-08-19 2011-08-04 Knopp Neurosciences Inc. Compositions and Methods of Using (R)- Pramipexole
WO2011135531A2 (en) 2010-04-28 2011-11-03 Kimberly-Clark Worldwide, Inc. MEDICAL DEVICES FOR DELIVERY OF siRNA
WO2011135532A2 (en) 2010-04-28 2011-11-03 Kimberly-Clark Worldwide, Inc. Composite microneedle array including nanostructures thereon
WO2011135530A2 (en) 2010-04-28 2011-11-03 Kimberly-Clark Worldwide, Inc. Device for delivery of rheumatoid arthritis medication
DE102010053792A1 (en) 2010-12-08 2012-06-14 Frank Becher Device for germ-free keeping of surfaces, such as door handles, handrails, grip bars, handles of shopping carts and toilet seating surfaces, has flat support material and self-adhesive portion formed on one side of flat support material
US20120245538A1 (en) * 2009-12-04 2012-09-27 Michael Horstmann Transdermal Therapeutic System for the Administration of Peptides
US8389548B2 (en) 1998-06-11 2013-03-05 Endorecherche, Inc. Medical uses of a selective estrogen receptor modulator in combination with sex steroid precursors
EP2584016A1 (en) 2011-10-21 2013-04-24 Dow Corning Corporation Single phase silicone acrylate formulation
EP2599847A1 (en) 2011-11-29 2013-06-05 Dow Corning Corporation A Silicone Acrylate Hybrid Composition and Method of Making Same
US8460707B2 (en) 2004-08-05 2013-06-11 Ferring B.V. Stabilised prostaglandin composition
US8569416B2 (en) 2006-06-06 2013-10-29 Dow Corning Corporation Single phase silicone acrylate formulation
US8592424B2 (en) 2008-06-30 2013-11-26 Afgin Pharma Llc Topical regional neuro-affective therapy
US8614278B2 (en) 2006-06-06 2013-12-24 Dow Corning Corporation Silicone acrylate hybrid composition and method of making same
US20140034058A1 (en) * 2011-03-29 2014-02-06 Resmed R&D Germany Gmbh Cushion for patient interface
US8696637B2 (en) 2011-02-28 2014-04-15 Kimberly-Clark Worldwide Transdermal patch containing microneedles
US20140155916A1 (en) * 2012-11-30 2014-06-05 Covidien Lp Multi-Layer Porous Film Material
US8790689B2 (en) 2003-04-30 2014-07-29 Purdue Pharma L.P. Tamper resistant transdermal dosage form
US8862223B2 (en) 2008-01-18 2014-10-14 Activatek, Inc. Active transdermal medicament patch and circuit board for same
WO2015089634A1 (en) 2013-12-19 2015-06-25 Endorecherche, Inc. Non-steroidal antiandrogens and selective androgen receptor modulators with a pyridyl moiety
WO2015138919A1 (en) 2014-03-14 2015-09-17 The University Of North Carolina At Chapel Hill Small molecules for inhibiting male fertility
US9468630B2 (en) 2013-07-12 2016-10-18 Knopp Biosciences Llc Compositions and methods for treating conditions related to increased eosinophils
US9480770B2 (en) 2002-10-23 2016-11-01 Covidien Lp Methods for preparation of medical dressing containing antimicrobial agent
US9512096B2 (en) 2011-12-22 2016-12-06 Knopp Biosciences, LLP Synthesis of amine substituted 4,5,6,7-tetrahydrobenzothiazole compounds
US9555155B2 (en) 2014-12-11 2017-01-31 Tepha, Inc. Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof
US20170055989A1 (en) * 2015-08-31 2017-03-02 Ethicon Endo-Surgery, Llc Inducing tissue adhesions using surgical adjuncts and medicants
US9586044B2 (en) 2010-04-28 2017-03-07 Kimberly-Clark Worldwide, Inc. Method for increasing the permeability of an epithelial barrier
US9642840B2 (en) 2013-08-13 2017-05-09 Knopp Biosciences, Llc Compositions and methods for treating plasma cell disorders and B-cell prolymphocytic disorders
US9662313B2 (en) 2013-02-28 2017-05-30 Knopp Biosciences Llc Compositions and methods for treating amyotrophic lateral sclerosis in responders
WO2017095730A1 (en) * 2015-11-30 2017-06-08 Elliptical Therapeutics, Llc Systems and methods for transdermal drug delivery
US9682068B2 (en) 2013-05-20 2017-06-20 Mylan Inc. Transdermal therapeutic system for extended dosing of pramipexole in treating neurological disorders
US9763918B2 (en) 2013-08-13 2017-09-19 Knopp Biosciences Llc Compositions and methods for treating chronic urticaria
WO2017180324A1 (en) * 2016-04-12 2017-10-19 Mylan Inc. Double disk transdermal system
US9855221B2 (en) 2001-10-12 2018-01-02 Monosol Rx, Llc Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions
US9931305B2 (en) 2001-10-12 2018-04-03 Monosol Rx, Llc Uniform films for rapid dissolve dosage form incorporating taste-masking compositions
US9993444B2 (en) 2011-01-10 2018-06-12 Invion, Inc. Use of beta-adrenergic inverse agonists for smoking cessation
WO2018126225A1 (en) * 2016-12-29 2018-07-05 International Bioceutical Company, Llc Modular transdermal delivery system and associated methods of manufacture and use
US10022125B2 (en) 2007-06-18 2018-07-17 Covidien Lp Interlocking buttress material retention system
US10098639B2 (en) 2011-12-14 2018-10-16 Covidien Lp Buttress attachment to the cartridge surface
US10111659B2 (en) 2007-03-06 2018-10-30 Covidien Lp Surgical stapling apparatus
US10111810B2 (en) 2002-04-11 2018-10-30 Aquestive Therapeutics, Inc. Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom
US10154840B2 (en) 2004-10-18 2018-12-18 Covidien Lp Annular adhesive structure
US10172809B2 (en) 2015-03-02 2019-01-08 Afgin Pharma Llc Topical regional neuro-affective therapy in mammals with cannabinoids
US10245031B2 (en) 2012-11-30 2019-04-02 Covidien Lp Surgical apparatus including surgical buttress
US10251435B1 (en) 2016-02-23 2019-04-09 Belle Chou Disposable glove with open-cell inner layer
US10272607B2 (en) 2010-10-22 2019-04-30 Aquestive Therapeutics, Inc. Manufacturing of small film strips
US10285704B2 (en) 2012-10-10 2019-05-14 Covidien Lp Buttress fixation for a circular stapler
US10285910B2 (en) 2001-10-12 2019-05-14 Aquestive Therapeutics, Inc. Sublingual and buccal film compositions
US10321911B2 (en) 2013-02-25 2019-06-18 Covidien Lp Circular stapling device with buttress
US10327772B2 (en) 2009-03-31 2019-06-25 Covidien Lp Center cinch and release of buttress material
US10349942B2 (en) 2012-12-13 2019-07-16 Covidien Lp Folded buttress for use with a surgical apparatus
US10357249B2 (en) 2011-12-14 2019-07-23 Covidien Lp Surgical stapling apparatus including releasable surgical buttress
US10368869B2 (en) 2009-03-31 2019-08-06 Covidien Lp Surgical stapling apparatus
US10383816B2 (en) 2015-03-02 2019-08-20 Afgin Pharma, Llc Topical regional neuro-affective therapy with cannabinoid combination products
US10383857B2 (en) 2013-07-12 2019-08-20 Knopp Biosciences Llc Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils
US10470771B2 (en) 2005-03-15 2019-11-12 Covidien Lp Circular anastomosis structures
US10478191B2 (en) 2013-02-04 2019-11-19 Covidien Lp Buttress attachment for circular stapling device
US10485540B2 (en) 2012-07-18 2019-11-26 Covidien Lp Surgical apparatus including surgical buttress
EP3574950A1 (en) 2011-10-27 2019-12-04 Sorrento Therapeutics, Inc. Transdermal delivery of high viscosity bioactive agents
US10500303B2 (en) 2014-08-15 2019-12-10 Tepha, Inc. Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof
US10548598B2 (en) 2013-10-28 2020-02-04 Covidien Lp Circular surgical stapling device including buttress material
US10569071B2 (en) 2015-08-31 2020-02-25 Ethicon Llc Medicant eluting adjuncts and methods of using medicant eluting adjuncts
US10576298B2 (en) 2009-10-15 2020-03-03 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US10611060B2 (en) 2007-06-27 2020-04-07 Covidien Lp Buttress and surgical stapling apparatus
US10617419B2 (en) 2008-12-16 2020-04-14 Covidien Lp Surgical apparatus including surgical buttress
US10626521B2 (en) 2014-12-11 2020-04-21 Tepha, Inc. Methods of manufacturing mesh sutures from poly-4-hydroxybutyrate and copolymers thereof
US10667814B2 (en) 2011-10-26 2020-06-02 Covidien Lp Buttress release from surgical stapler by knife pushing
US10682140B2 (en) 2009-10-15 2020-06-16 Covidien Lp Staple line reinforcement for anvil and cartridge
US10687818B2 (en) 2011-04-27 2020-06-23 Covidien Lp Circular stapler and staple line reinforcment material
US10695066B2 (en) 2012-01-26 2020-06-30 Covidien Lp Surgical device including buttress material
US10722234B2 (en) 2013-02-28 2020-07-28 Covidien Lp Adherence concepts for non-woven absorbable felt buttresses
US10758237B2 (en) 2018-04-30 2020-09-01 Covidien Lp Circular stapling apparatus with pinned buttress
US10786255B2 (en) 2011-12-14 2020-09-29 Covidien Lp Buttress assembly for use with surgical stapling device
US10806459B2 (en) 2018-09-14 2020-10-20 Covidien Lp Drug patterned reinforcement material for circular anastomosis
US10821074B2 (en) 2009-08-07 2020-11-03 Aquestive Therapeutics, Inc. Sublingual and buccal film compositions
US10828266B2 (en) 2016-08-16 2020-11-10 Afgin Pharma, Llc Topical regional neuro-affective therapy with caryophyllene
US10849625B2 (en) 2017-08-07 2020-12-01 Covidien Lp Surgical buttress retention systems for surgical stapling apparatus
US10874768B2 (en) 2017-01-20 2020-12-29 Covidien Lp Drug eluting medical device
US10881395B2 (en) 2012-08-20 2021-01-05 Covidien Lp Buttress attachment features for surgical stapling apparatus
US10925607B2 (en) 2017-02-28 2021-02-23 Covidien Lp Surgical stapling apparatus with staple sheath
US10945733B2 (en) 2017-08-23 2021-03-16 Covidien Lp Surgical buttress reload and tip attachment assemblies for surgical stapling apparatus
US10952729B2 (en) 2018-10-03 2021-03-23 Covidien Lp Universal linear buttress retention/release assemblies and methods
US10959731B2 (en) 2016-06-14 2021-03-30 Covidien Lp Buttress attachment for surgical stapling instrument
US11026686B2 (en) 2016-11-08 2021-06-08 Covidien Lp Structure for attaching buttress to anvil and/or cartridge of surgical stapling instrument
US11045200B2 (en) 2004-10-18 2021-06-29 Covidien Lp Support structures and methods of using the same
US11065000B2 (en) 2018-02-22 2021-07-20 Covidien Lp Surgical buttresses for surgical stapling apparatus
US11077068B2 (en) 2001-10-12 2021-08-03 Aquestive Therapeutics, Inc. Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions
US11096610B2 (en) 2017-03-28 2021-08-24 Covidien Lp Surgical implants including sensing fibers
US20210259681A1 (en) * 2010-09-30 2021-08-26 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US20210267589A1 (en) * 2010-09-30 2021-09-02 Ethicon Llc Tissue thickness compensator comprising a reservoir
US11141151B2 (en) 2017-12-08 2021-10-12 Covidien Lp Surgical buttress for circular stapling
WO2021207328A1 (en) * 2020-04-07 2021-10-14 Bushy Ita Catheter shield
US11191737B2 (en) 2016-05-05 2021-12-07 Aquestive Therapeutics, Inc. Enhanced delivery epinephrine compositions
US11207805B2 (en) 2001-10-12 2021-12-28 Aquestive Therapeutics, Inc. Process for manufacturing a resulting pharmaceutical film
US11219460B2 (en) 2018-07-02 2022-01-11 Covidien Lp Surgical stapling apparatus with anvil buttress
US11273131B2 (en) 2016-05-05 2022-03-15 Aquestive Therapeutics, Inc. Pharmaceutical compositions with enhanced permeation
US11284896B2 (en) 2018-05-09 2022-03-29 Covidien Lp Surgical buttress loading and attaching/detaching assemblies
US11337699B2 (en) 2020-04-28 2022-05-24 Covidien Lp Magnesium infused surgical buttress for surgical stapler
US11399833B2 (en) 2020-10-19 2022-08-02 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11426163B2 (en) 2018-05-09 2022-08-30 Covidien Lp Universal linear surgical stapling buttress
US11432818B2 (en) 2018-05-09 2022-09-06 Covidien Lp Surgical buttress assemblies
US11478245B2 (en) 2019-05-08 2022-10-25 Covidien Lp Surgical stapling device
US20220338870A1 (en) * 2010-09-30 2022-10-27 Cilag Gmbh International Tissue thickness compensator comprising a reservoir
US11510670B1 (en) 2021-06-23 2022-11-29 Covidien Lp Buttress attachment for surgical stapling apparatus
US11523824B2 (en) 2019-12-12 2022-12-13 Covidien Lp Anvil buttress loading for a surgical stapling apparatus
US11534170B2 (en) 2021-01-04 2022-12-27 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11547407B2 (en) 2020-03-19 2023-01-10 Covidien Lp Staple line reinforcement for surgical stapling apparatus
US11571208B2 (en) 2019-10-11 2023-02-07 Covidien Lp Surgical buttress loading units
US11596403B2 (en) 2019-05-08 2023-03-07 Covidien Lp Surgical stapling device
US11596399B2 (en) 2021-06-23 2023-03-07 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11672538B2 (en) 2021-06-24 2023-06-13 Covidien Lp Surgical stapling device including a buttress retention assembly
US11678879B2 (en) 2021-07-01 2023-06-20 Covidien Lp Buttress attachment for surgical stapling apparatus
US11684368B2 (en) 2021-07-14 2023-06-27 Covidien Lp Surgical stapling device including a buttress retention assembly
US11707276B2 (en) 2020-09-08 2023-07-25 Covidien Lp Surgical buttress assemblies and techniques for surgical stapling
US11717297B2 (en) 2014-09-05 2023-08-08 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11730472B2 (en) 2019-04-25 2023-08-22 Covidien Lp Surgical system and surgical loading units thereof
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11730477B2 (en) 2008-10-10 2023-08-22 Cilag Gmbh International Powered surgical system with manually retractable firing system
US11730471B2 (en) 2016-02-09 2023-08-22 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11737754B2 (en) 2010-09-30 2023-08-29 Cilag Gmbh International Surgical stapler with floating anvil
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11744588B2 (en) 2015-02-27 2023-09-05 Cilag Gmbh International Surgical stapling instrument including a removably attachable battery pack
US11744593B2 (en) 2019-06-28 2023-09-05 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11751875B2 (en) 2021-10-13 2023-09-12 Coviden Lp Surgical buttress attachment assemblies for surgical stapling apparatus
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11751867B2 (en) 2017-12-21 2023-09-12 Cilag Gmbh International Surgical instrument comprising sequenced systems
US11759208B2 (en) 2015-12-30 2023-09-19 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11771425B2 (en) 2005-08-31 2023-10-03 Cilag Gmbh International Stapling assembly for forming staples to different formed heights
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11779420B2 (en) 2012-06-28 2023-10-10 Cilag Gmbh International Robotic surgical attachments having manually-actuated retraction assemblies
US11779336B2 (en) 2016-02-12 2023-10-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11793509B2 (en) 2012-03-28 2023-10-24 Cilag Gmbh International Staple cartridge including an implantable layer
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11793512B2 (en) 2005-08-31 2023-10-24 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11793513B2 (en) 2017-06-20 2023-10-24 Cilag Gmbh International Systems and methods for controlling motor speed according to user input for a surgical instrument
US11801052B2 (en) 2021-08-30 2023-10-31 Covidien Lp Assemblies for surgical stapling instruments
US11801047B2 (en) 2008-02-14 2023-10-31 Cilag Gmbh International Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor
US11806017B2 (en) 2021-11-23 2023-11-07 Covidien Lp Anvil buttress loading system for surgical stapling apparatus
US11811253B2 (en) 2016-04-18 2023-11-07 Cilag Gmbh International Surgical robotic system with fault state detection configurations based on motor current draw
US11806013B2 (en) 2012-06-28 2023-11-07 Cilag Gmbh International Firing system arrangements for surgical instruments
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11812961B2 (en) 2007-01-10 2023-11-14 Cilag Gmbh International Surgical instrument including a motor control system
US11812954B2 (en) 2008-09-23 2023-11-14 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11839375B2 (en) 2005-08-31 2023-12-12 Cilag Gmbh International Fastener cartridge assembly comprising an anvil and different staple heights
US11839352B2 (en) 2007-01-11 2023-12-12 Cilag Gmbh International Surgical stapling device with an end effector
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11850310B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge including an adjunct
US11849946B2 (en) 2015-09-23 2023-12-26 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11857187B2 (en) 2010-09-30 2024-01-02 Cilag Gmbh International Tissue thickness compensator comprising controlled release and expansion
US11871939B2 (en) 2017-06-20 2024-01-16 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11871923B2 (en) 2008-09-23 2024-01-16 Cilag Gmbh International Motorized surgical instrument
US11877748B2 (en) 2006-10-03 2024-01-23 Cilag Gmbh International Robotically-driven surgical instrument with E-beam driver
US11882987B2 (en) 2004-07-28 2024-01-30 Cilag Gmbh International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11883025B2 (en) 2010-09-30 2024-01-30 Cilag Gmbh International Tissue thickness compensator comprising a plurality of layers
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US11883020B2 (en) 2006-01-31 2024-01-30 Cilag Gmbh International Surgical instrument having a feedback system
US11890008B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Surgical instrument with firing lockout
US11890029B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US11890005B2 (en) 2017-06-29 2024-02-06 Cilag Gmbh International Methods for closed loop velocity control for robotic surgical instrument
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11896222B2 (en) 2017-12-15 2024-02-13 Cilag Gmbh International Methods of operating surgical end effectors
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11911027B2 (en) 2010-09-30 2024-02-27 Cilag Gmbh International Adhesive film laminate
US11918212B2 (en) 2015-03-31 2024-03-05 Cilag Gmbh International Surgical instrument with selectively disengageable drive systems
US11918210B2 (en) 2014-10-16 2024-03-05 Cilag Gmbh International Staple cartridge comprising a cartridge body including a plurality of wells
US11918222B2 (en) 2014-04-16 2024-03-05 Cilag Gmbh International Stapling assembly having firing member viewing windows
US11918208B2 (en) 2011-05-27 2024-03-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11918215B2 (en) 2016-12-21 2024-03-05 Cilag Gmbh International Staple cartridge with array of staple pockets
US11918220B2 (en) 2012-03-28 2024-03-05 Cilag Gmbh International Tissue thickness compensator comprising tissue ingrowth features
US11931034B2 (en) 2016-12-21 2024-03-19 Cilag Gmbh International Surgical stapling instruments with smart staple cartridges
US11931028B2 (en) 2016-04-15 2024-03-19 Cilag Gmbh International Surgical instrument with multiple program responses during a firing motion
USD1018577S1 (en) 2017-06-28 2024-03-19 Cilag Gmbh International Display screen or portion thereof with a graphical user interface for a surgical instrument
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11944338B2 (en) 2015-03-06 2024-04-02 Cilag Gmbh International Multiple level thresholds to modify operation of powered surgical instruments
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3053255A (en) * 1957-12-19 1962-09-11 Meyer Friedrich Process of percutaneously administering exact doses of physiologically active agents and composite unit therefor
US3426754A (en) * 1964-06-12 1969-02-11 Celanese Corp Breathable medical dressing
US3464413A (en) * 1967-05-26 1969-09-02 United Merchants & Mfg Medical bandages
US3512997A (en) * 1966-09-29 1970-05-19 Tee Pak Inc Extrusion of microporous collagen articles
US3598122A (en) * 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3598123A (en) * 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3053255A (en) * 1957-12-19 1962-09-11 Meyer Friedrich Process of percutaneously administering exact doses of physiologically active agents and composite unit therefor
US3426754A (en) * 1964-06-12 1969-02-11 Celanese Corp Breathable medical dressing
US3512997A (en) * 1966-09-29 1970-05-19 Tee Pak Inc Extrusion of microporous collagen articles
US3464413A (en) * 1967-05-26 1969-09-02 United Merchants & Mfg Medical bandages
US3598122A (en) * 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3598123A (en) * 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3598122B1 (en) * 1969-04-01 1982-11-23

Cited By (762)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039653A (en) * 1974-01-23 1977-08-02 Defoney, Brenman, Mayes & Baron Long-acting articles for oral delivery and process
DE2604718A1 (en) * 1975-02-06 1976-08-19 Alza Corp THERAPEUTIC DEVICE FOR ADMINISTERING SKOPOLAMINBASE
US3972995A (en) * 1975-04-14 1976-08-03 American Home Products Corporation Dosage form
US4262003A (en) * 1975-12-08 1981-04-14 Alza Corporation Method and therapeutic system for administering scopolamine transdermally
US4031894A (en) * 1975-12-08 1977-06-28 Alza Corporation Bandage for transdermally administering scopolamine to prevent nausea
US4060084A (en) * 1976-09-07 1977-11-29 Alza Corporation Method and therapeutic system for providing chemotherapy transdermally
DE2647581A1 (en) * 1976-10-21 1978-04-27 Henkel Kgaa BLISTER PACK
FR2368962A1 (en) * 1976-11-02 1978-05-26 Merck Patent Gmbh ANTI-BACTERIAL DRESSING AND ITS MANUFACTURING PROCESS
US4201211A (en) * 1977-07-12 1980-05-06 Alza Corporation Therapeutic system for administering clonidine transdermally
US4230105A (en) * 1978-11-13 1980-10-28 Merck & Co., Inc. Transdermal delivery of drugs
WO1980001139A1 (en) * 1978-12-06 1980-06-12 Svedman Paul Device for treating tissues,for example skin
US4286592A (en) * 1980-02-04 1981-09-01 Alza Corporation Therapeutic system for administering drugs to the skin
WO1982000005A1 (en) * 1980-06-26 1982-01-07 Key Pharma Polymeric diffusion matrix containing a vasodilator
US4341208A (en) * 1980-07-14 1982-07-27 Whitman Medical Corporation Moisture-retentive covering for ointment application
JPS5777617A (en) * 1980-10-20 1982-05-15 Nichiban Co Ltd Plaster for cardiac disease
JPH0314809B2 (en) * 1980-10-20 1991-02-27 Nichiban Kk
DE3205258A1 (en) * 1981-02-17 1982-09-16 Alza Corp., 94304 Palo Alto, Calif. DOSING UNIT FOR THE SIMULTANEOUS ADMINISTRATION OF ACTIVE SUBSTANCES AND AGENTS TO ENHANCE PERCUTANEOUS ABSORPTION
US4460372A (en) * 1981-02-17 1984-07-17 Alza Corporation Percutaneous absorption enhancer dispenser for use in coadministering drug and percutaneous absorption enhancer
US4834979A (en) * 1981-06-29 1989-05-30 Alza Corporation Medical bandage for administering beneficial drug
US4849226A (en) * 1981-06-29 1989-07-18 Alza Corporation Method for increasing oxygen supply by administering vasodilator
US4812313A (en) * 1981-06-29 1989-03-14 Alza Corporation Method for lessening the incidence of anginal attacks
US4661105A (en) * 1981-06-29 1987-04-28 Alza Corporation Medical bandage for administering vasodilator drug
US4725272A (en) * 1981-06-29 1988-02-16 Alza Corporation Novel bandage for administering beneficial drug
US4954344A (en) * 1981-06-29 1990-09-04 Alza Corporation Method for treating nocturnal angina
US4973307A (en) * 1981-07-13 1990-11-27 Alza Corporation Method for administering drugs to a patient
US4511353A (en) * 1981-07-13 1985-04-16 Alza Corporation Intravenous system for delivering a beneficial agent
US4985017A (en) * 1981-07-13 1991-01-15 Alza Corporation Parenteral therapeutical system comprising drug cell
US4857052A (en) * 1981-07-13 1989-08-15 Alza Corporation Intravenous system for delivering a beneficial agent
US4994031A (en) * 1981-07-13 1991-02-19 Alza Corporation Intravenous system for delivering a beneficial agent
USRE34365E (en) * 1981-07-13 1993-08-31 Intravenous system for delivering a beneficial agent
US5069671A (en) * 1981-07-13 1991-12-03 Alza Corporation Intravenous medication
US4790820A (en) * 1981-07-13 1988-12-13 Alza Corporation Parenteral agent dispensing equipment with drug releasing member
US4846826A (en) * 1981-07-22 1989-07-11 Alza Corporation Method for treating ischemic conditions
US4871360A (en) * 1981-07-31 1989-10-03 Alza Corporation System for intravenous delivery of a beneficial drug at a regulated rates
US4525162A (en) * 1981-07-31 1985-06-25 Alza Corporation Parenteral controlled delivery
US5151271A (en) * 1981-08-27 1992-09-29 Nitti Electric Industrial Co., Ltd. Pressure-sensitively adhering composite medicinal preparation
JPS5846015A (en) * 1981-09-10 1983-03-17 Nitto Electric Ind Co Ltd Medicinal preparation
US4741735A (en) * 1981-10-09 1988-05-03 Alza Corporation Intravenous system for delivering a beneficial agent
US4740197A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent via polymer delivery
US4740200A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4586922A (en) * 1981-10-09 1986-05-06 Alza Corporation Intravenous system for delivering a beneficial agent
US4740198A (en) * 1981-10-09 1988-04-26 Alza Corporation Method of administering intravenous drug using rate-controlled dosage form
US4740103A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4740201A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4740199A (en) * 1981-10-09 1988-04-26 Alza Corporation Intravenous system for delivering a beneficial agent
US4741734A (en) * 1981-10-09 1988-05-03 Alza Corporation Releasing means for adding agent using releasing means to IV fluid
US4583981A (en) * 1981-11-27 1986-04-22 Alza Corporation Parenteral controlled therapy, using a porous matrix with parenteral agent
US4479793A (en) * 1981-11-27 1984-10-30 Alza Corporation Parenteral administration using drug delivery device
US4548599A (en) * 1981-11-27 1985-10-22 Alza Corporation Parenteral controlled therapy
US4552556A (en) * 1981-11-27 1985-11-12 Alza Corporation Parenteral controlled therapy
US4432756A (en) * 1981-11-27 1984-02-21 Alza Corporation Parenteral controlled therapy
US4579553A (en) * 1981-11-27 1986-04-01 Alza Corporation Parenteral controlled therapy
US4493702A (en) * 1981-11-27 1985-01-15 Alza Corporation Parenteral administration using osmotically motivated delivery system
US4484909A (en) * 1981-11-27 1984-11-27 Alza Corporation Parenteral therapy using solid drug
US4479794A (en) * 1981-11-27 1984-10-30 Alza Corporation System for intravenous therapy
US4515585A (en) * 1982-05-24 1985-05-07 Alza Corporation System for parenteral administration of agent
US4664650A (en) * 1982-05-24 1987-05-12 Alza Corporation Apparatus for parenteral infusion of fluid containing beneficial agent
US4908019A (en) * 1982-05-24 1990-03-13 Alza Corporation Apparatus comprising dual reservoirs for parenteral infusion of fluid containing beneficial agent
EP0114125A3 (en) * 1983-01-20 1985-05-22 Almedco, Inc. Medication application systems
EP0114125A2 (en) * 1983-01-20 1984-07-25 Almedco, Inc. Medication application systems
US4704119A (en) * 1983-02-03 1987-11-03 Alza Corporation Method comprising transdermal and buccal treatment of angina
US4585452A (en) * 1983-04-12 1986-04-29 Key Pharmaceuticals, Inc. Transdermal systemic dosage forms
FR2548021A1 (en) * 1983-06-29 1985-01-04 Dick P R DERMAL PHARMACEUTICAL COMPOSITIONS WITH PROLONGED AND CONTINUOUS ACTION BASED ON ESSENTIAL FATTY ACIDS
US4983392A (en) * 1983-11-14 1991-01-08 Bio-Mimetics, Inc. Bioadhesive compositions and methods of treatment therewith
US4795436A (en) * 1983-11-14 1989-01-03 Bio-Mimetics, Inc. Bioadhesive composition and method of treatment therewith
US4615697A (en) * 1983-11-14 1986-10-07 Bio-Mimetics, Inc. Bioadhesive compositions and methods of treatment therewith
US4573996A (en) * 1984-01-03 1986-03-04 Jonergin, Inc. Device for the administration of an active agent to the skin or mucosa
EP0153200A3 (en) * 1984-02-21 1985-09-25 Yamanouchi Pharmaceutical Co. Ltd. Medicinal patch
EP0153200A2 (en) * 1984-02-21 1985-08-28 Yamanouchi Pharmaceutical Co. Ltd. Medicinal patch
US4738670A (en) * 1984-03-13 1988-04-19 Bayer Aktiengesellschaft Medicinal plasters
US5855908A (en) * 1984-05-01 1999-01-05 University Of Utah Research Foundation Non-dissolvable drug-containing dosage-forms for use in the transmucosal delivery of a drug to a patient
US4511351A (en) * 1984-05-14 1985-04-16 Alza Corporation Parenteral delivery system utilizing a hollow fiber cellular unit
US4511352A (en) * 1984-05-14 1985-04-16 Alza Corporation Parenteral delivery system with in-line container
US4596555A (en) * 1984-05-14 1986-06-24 Alza Corporation Parenteral delivery system utilizing a hollow fiber cellular unit
EP0174108A2 (en) * 1984-08-09 1986-03-12 Leonora I. Jost Transdermal delivery devices
EP0174108A3 (en) * 1984-08-09 1987-03-25 Leonora Jost Transdermal delivery devices and method of producing them
US4836217A (en) * 1984-10-01 1989-06-06 Fischer Torkel I Hypersensitivity test means
US4624665A (en) * 1984-10-01 1986-11-25 Biotek, Inc. Method of transdermal drug delivery
USRE35474E (en) * 1984-10-29 1997-03-11 Dow Corning Corporation Transdermal drug delivery devices with amine-resistant silicone adhesives
US4655767A (en) * 1984-10-29 1987-04-07 Dow Corning Corporation Transdermal drug delivery devices with amine-resistant silicone adhesives
US5024657A (en) * 1984-12-03 1991-06-18 Baxter International Inc. Drug delivery apparatus and method preventing local and systemic toxicity
US4752478A (en) * 1984-12-17 1988-06-21 Merck & Co., Inc. Transdermal system for timolol
EP0196769B1 (en) * 1985-02-25 1992-07-08 Rutgers, The State University of New Jersey A novel transdermal pharmaceutical absorption dosage unit
EP0196769A2 (en) * 1985-02-25 1986-10-08 Rutgers, The State University of New Jersey A novel transdermal pharmaceutical absorption dosage unit
US4765985A (en) * 1985-03-05 1988-08-23 Ciba-Geigy Corporation Devices and methods for treating memory impairment
US4680172A (en) * 1985-03-05 1987-07-14 Ciba-Geigy Corporation Devices and methods for treating memory impairment
US4756710A (en) * 1985-04-05 1988-07-12 Merck & Co., Inc. pH-Mediated drug delivery system
US4863737A (en) * 1985-05-01 1989-09-05 University Of Utah Compositions and methods of manufacture of compressed powder medicaments
US4885173A (en) * 1985-05-01 1989-12-05 University Of Utah Methods and compositions for noninvasive dose-to-effect administration of drugs with cardiovascular or renal vascular activities
US4671953A (en) * 1985-05-01 1987-06-09 University Of Utah Research Foundation Methods and compositions for noninvasive administration of sedatives, analgesics, and anesthetics
US5288497A (en) * 1985-05-01 1994-02-22 The University Of Utah Compositions of oral dissolvable medicaments
US5484602A (en) * 1985-05-01 1996-01-16 University Of Utah Research Foundation Methods and compositions for noninvasive dose-to-effect administration of drugs with cardiovascular or renal vascular activities
US5122127A (en) * 1985-05-01 1992-06-16 University Of Utah Apparatus and methods for use in administering medicaments by direct medicament contact to mucosal tissues
US5132114A (en) * 1985-05-01 1992-07-21 University Of Utah Research Foundation Compositions and methods of manufacture of compressed powder medicaments
FR2581314A1 (en) * 1985-05-03 1986-11-07 Alza Corp MEDICAL DEVICE FOR THE TRANSDERMAL DELIVERY OF HIGHLY IONIZED DRUGS INSOLUBLE IN FAT BODIES
US4904475A (en) * 1985-05-03 1990-02-27 Alza Corporation Transdermal delivery of drugs from an aqueous reservoir
US4645502A (en) * 1985-05-03 1987-02-24 Alza Corporation Transdermal delivery of highly ionized fat insoluble drugs
US4776850A (en) * 1985-05-24 1988-10-11 Beiersdorf Aktiengesellschaft Nitrate-containing plaster
US4690683A (en) * 1985-07-02 1987-09-01 Rutgers, The State University Of New Jersey Transdermal varapamil delivery device
WO1987000042A1 (en) * 1985-07-02 1987-01-15 Rutgers, The State University Of New Jersey Transdermal verapamil delivery device
WO1987001938A1 (en) * 1985-09-27 1987-04-09 The Regents Of The University Of California Liposome transdermal drug delivery system
US4698062A (en) * 1985-10-30 1987-10-06 Alza Corporation Medical device for pulsatile transdermal delivery of biologically active agents
WO1987003477A1 (en) * 1985-12-12 1987-06-18 Flexcon Company, Inc. Transdermal methods and adhesives
US4710191A (en) * 1985-12-16 1987-12-01 Jonergin, Inc. Therapeutic device for the administration of medicaments
US4666441A (en) * 1985-12-17 1987-05-19 Ciba-Geigy Corporation Multicompartmentalized transdermal patches
AU599619B2 (en) * 1985-12-17 1990-07-26 Novartis Ag Multicompartmentalized dermal and transdermal patches
JPS62169723A (en) * 1986-01-22 1987-07-25 Teisan Seiyaku Kk Sustained release preparation
JPH0417931B2 (en) * 1986-01-22 1992-03-26 Teisan Seiyaku Kk
AU597618B2 (en) * 1986-02-14 1990-06-07 Ciba-Geigy Ag Dermal and transdermal patches having a discontinuous pattern adhesive layer
US4743249A (en) * 1986-02-14 1988-05-10 Ciba-Geigy Corp. Dermal and transdermal patches having a discontinuous pattern adhesive layer
US5141750A (en) * 1986-06-13 1992-08-25 Alza Corporation Delayed onset transdermal delivery device
US5820876A (en) * 1986-08-28 1998-10-13 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Transdermal therapeutic system
US6224900B1 (en) 1986-08-28 2001-05-01 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Sealing bag for a transdermal therapeutic system
US6264977B1 (en) 1986-08-28 2001-07-24 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Transdermal therapeutic system, its use and production process
US6110488A (en) * 1986-08-28 2000-08-29 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Transdermal therapeutic system, its use and production process
US6117448A (en) * 1986-08-28 2000-09-12 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Transdermal therapeutic system, its use and production process
US6126963A (en) * 1986-08-28 2000-10-03 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Transdermal therapeutic system, its use and production process
US6139868A (en) * 1986-08-28 2000-10-31 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Transdermal therapeutic system, its use and production process
WO1988001516A1 (en) * 1986-08-28 1988-03-10 Lohmann Gmbh & Co. Kg. Transdermal therapeutic system, its use and production process
USRE37934E1 (en) 1986-08-28 2002-12-10 Lts Lohmann Therapie-Systeme Ag Transdermal therapeutic system
EP0261402A1 (en) * 1986-08-28 1988-03-30 LTS Lohmann Therapie-Systeme GmbH & Co. KG Transcutaneous therapeutic device; use and preparation thereof
US4938759A (en) * 1986-09-02 1990-07-03 Alza Corporation Transdermal delivery device having a rate controlling adhesive
US5422118A (en) * 1986-11-07 1995-06-06 Pure Pac, Inc. Transdermal administration of amines with minimal irritation and high transdermal flux rate
EP0273004A3 (en) * 1986-11-20 1988-07-13 Ciba-Geigy Ag User-activated therapeutical system
EP0273004A2 (en) * 1986-11-20 1988-06-29 Ciba-Geigy Ag User-activated therapeutical system
US5006342A (en) * 1986-12-22 1991-04-09 Cygnus Corporation Resilient transdermal drug delivery device
EP0272918A3 (en) * 1986-12-22 1988-08-24 Cygnus Research Corporation Diffusion matrix for transdermal drug administration and transdermal drug delivery devices including same
US4906463A (en) * 1986-12-22 1990-03-06 Cygnus Research Corporation Transdermal drug-delivery composition
EP0272918A2 (en) * 1986-12-22 1988-06-29 Cygnus Therapeutic Systems Diffusion matrix for transdermal drug administration and transdermal drug delivery devices including same
US4917688A (en) * 1987-01-14 1990-04-17 Nelson Research & Development Co. Bandage for transdermal delivery of systemically-active drug
US4911707A (en) * 1987-02-13 1990-03-27 Ciba-Geigy Corporation Monolithic user-activated transdermal therapeutic system
US5071656A (en) * 1987-03-05 1991-12-10 Alza Corporation Delayed onset transdermal delivery device
EP0285563A1 (en) 1987-04-02 1988-10-05 Ciba-Geigy Ag Transdermal therapeutic systems for combinations of active agents
US4833172A (en) * 1987-04-24 1989-05-23 Ppg Industries, Inc. Stretched microporous material
US4861644A (en) * 1987-04-24 1989-08-29 Ppg Industries, Inc. Printed microporous material
US5298257A (en) * 1987-05-01 1994-03-29 Elan Transdermal Limited Method for the treatment of withdrawal symptoms associated with smoking cessation and preparations for use in said method
US5045317A (en) * 1987-07-16 1991-09-03 The Regents Of The University Of California Enhancing the cutaneous penetration of pharmacologically active agents
US5051260A (en) * 1987-07-16 1991-09-24 The Regents Of The University Of California Method and composition for enhancing the cutaneous penetration of pharmacologically active agents
US4764379A (en) * 1987-08-24 1988-08-16 Alza Corporation Transdermal drug delivery device with dual permeation enhancers
US4820720A (en) * 1987-08-24 1989-04-11 Alza Corporation Transdermal drug composition with dual permeation enhancers
US5059189A (en) * 1987-09-08 1991-10-22 E. R. Squibb & Sons, Inc. Method of preparing adhesive dressings containing a pharmaceutically active ingredient
US4839174A (en) * 1987-10-05 1989-06-13 Pharmetrix Corporation Novel transdermal nicotine patch
US4943435A (en) * 1987-10-05 1990-07-24 Pharmetrix Corporation Prolonged activity nicotine patch
US5035894A (en) * 1987-10-15 1991-07-30 Dow Corning Corporation Controlled release compositions and transdermal drug delivery device
US4898920A (en) * 1987-10-15 1990-02-06 Dow Corning Corporation Adhesive compositions, controlled release compositions and transdermal delivery device
US4812305A (en) * 1987-11-09 1989-03-14 Vocal Rodolfo S Well medicine strip
EP0316168A1 (en) * 1987-11-12 1989-05-17 Theratech, Inc. Device for administering an active agent to the skin or mucosa
US4863738A (en) * 1987-11-23 1989-09-05 Alza Corporation Skin permeation enhancer compositions using glycerol monooleate
US4906475A (en) * 1988-02-16 1990-03-06 Paco Pharmaceutical Services Estradiol transdermal delivery system
US4877618A (en) * 1988-03-18 1989-10-31 Reed Jr Fred D Transdermal drug delivery device
US5378730A (en) * 1988-06-09 1995-01-03 Alza Corporation Permeation enhancer comprising ethanol and monoglycerides
US4971800A (en) * 1988-07-08 1990-11-20 The Regents Of The University Of California Method and compositions for enhancing the cutaneous penetration of pharmacologically active agents
US5147296A (en) * 1988-10-03 1992-09-15 Alza Corporation Membrane for electrotransport transdermal drug delivery
US5232438A (en) * 1988-10-03 1993-08-03 Alza Corporation Membrane for electrotransport transdermal drug delivery
US5322502A (en) * 1988-10-03 1994-06-21 Alza Corporation Membrane for electrotransport transdermal drug delivery
US5080646A (en) * 1988-10-03 1992-01-14 Alza Corporation Membrane for electrotransport transdermal drug delivery
US5169383A (en) * 1988-10-03 1992-12-08 Alza Corporation Control membrane for electrotransport drug delivery
US5169382A (en) * 1988-10-03 1992-12-08 Alza Corporation Membrane for electrotransport transdermal drug delivery
US5164416A (en) * 1989-02-03 1992-11-17 Lintec Corporation Transdermal therapeutic formulation containing a limonene
US5045059A (en) * 1989-02-15 1991-09-03 Alza Corporation Intravenous system for delivering a beneficial agent
US5160320A (en) * 1989-02-15 1992-11-03 Alza Corporation Intravenous system for delivering a beneficial agent
US4969871A (en) * 1989-02-15 1990-11-13 Alza Corporation Intravenous system for delivering a beneficial agent
US4973468A (en) * 1989-03-22 1990-11-27 Cygnus Research Corporation Skin permeation enhancer compositions
US5053227A (en) * 1989-03-22 1991-10-01 Cygnus Therapeutic Systems Skin permeation enhancer compositions, and methods and transdermal systems associated therewith
US5059426A (en) * 1989-03-22 1991-10-22 Cygnus Therapeutic Systems Skin permeation enhancer compositions, and methods and transdermal systems associated therewith
US5028435A (en) * 1989-05-22 1991-07-02 Advanced Polymer Systems, Inc. System and method for transdermal drug delivery
US5091186A (en) * 1989-08-15 1992-02-25 Cygnus Therapeutic Systems Biphasic transdermal drug delivery device
LT3753B (en) 1989-08-18 1996-03-25 Cygnus Therapeutic System Device for administering dexmedetomidine transdermally
US5124157A (en) * 1989-08-18 1992-06-23 Cygnus Therapeutic Systems Method and device for administering dexmedetomidine transdermally
US5290561A (en) * 1989-12-04 1994-03-01 G. D. Searle & Co. Single layer transdermal drug administration system
US5164189A (en) * 1989-12-04 1992-11-17 G. D. Searle & Co. Single layer transdermal drug administration system
EP0439430A2 (en) * 1990-01-22 1991-07-31 Ciba-Geigy Ag Transdermal administration of zwitterionic drugs
EP0439430A3 (en) * 1990-01-22 1991-09-25 Ciba-Geigy Ag Transdermal administration of zwitterionic drugs
US5091087A (en) * 1990-06-25 1992-02-25 Hoechst Celanese Corp. Fabrication of microporous PBI membranes with narrow pore size distribution
US5213965A (en) * 1990-07-16 1993-05-25 Cholestech Corporation Solid-phase precipitation assay device
WO1992001498A3 (en) * 1990-07-16 1992-03-05 Cholestech Corp Solid-phase precipitation assay device and method
WO1992001498A2 (en) * 1990-07-16 1992-02-06 Cholestech Corporation Solid-phase precipitation assay device and method
US5582836A (en) * 1990-10-17 1996-12-10 Vectorpharma International S.P.A. Transdermal therapeutic compositions
EP0481443A1 (en) * 1990-10-17 1992-04-22 Vectorpharma International S.P.A. Transdermal therapeutic compositions
US5512292A (en) * 1990-10-29 1996-04-30 Alza Corporation Transdermal contraceptive formulations methods and devices
US5817331A (en) * 1990-11-28 1998-10-06 Sano Corporation Transdermal administration of azapirones
US5633009A (en) * 1990-11-28 1997-05-27 Sano Corporation Transdermal administration of azapirones
US5837280A (en) * 1990-11-28 1998-11-17 Sano Corporation Transdermal administration of azapirones
US5827529A (en) * 1991-03-30 1998-10-27 Teikoku Seiyaku Kabushiki Kaisha External preparation for application to the skin containing lidocaine
US5340586A (en) * 1991-04-12 1994-08-23 University Of Southern California Methods and formulations for use in treating oophorectomized women
US5340585A (en) * 1991-04-12 1994-08-23 University Of Southern California Method and formulations for use in treating benign gynecological disorders
US5273755A (en) * 1991-08-23 1993-12-28 Cygnus Therapeutic Systems Transdermal drug delivery device using a polymer-filled microporous membrane to achieve delayed onset
WO1993003693A1 (en) * 1991-08-23 1993-03-04 Cygnus Therapeutic Systems Transdermal drug delivery device using a polymer-filled microporous membrane to achieve delayed onset
US5234690A (en) * 1991-08-23 1993-08-10 Cygnus Therapeutic Systems Transdermal drug delivery device using an unfilled microporous membrane to achieve delayed onset
US5273756A (en) * 1991-08-23 1993-12-28 Cygnus Therapeutic Systems Transdermal drug delivery device using a membrane-protected microporous membrane to achieve delayed onset
WO1993003692A1 (en) * 1991-08-23 1993-03-04 Cygnus Therapeutic Systems Transdermal drug delivery device using a membrane-protected microporous membrane to achieve delayed onset
US5508039A (en) * 1991-10-18 1996-04-16 Alza Corporation Controlled transdermal administration of melatonin
US6300327B1 (en) 1991-11-08 2001-10-09 The University Of Southern California Compositions and methods for potentiation of neurotrophin activity
DE4241128A1 (en) * 1991-12-20 1993-06-24 Lohmann Therapie Syst Lts Transdermal aspirin dosage forms - for antithrombotic therapy or cancer prophylaxis
US5861170A (en) * 1991-12-20 1999-01-19 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Acetylsalicyclic acid-containing transdermal application system for antithrombotic therapy
US5268179A (en) * 1992-02-14 1993-12-07 Ciba-Geigy Corporation Ultrasonically sealed transdermal drug delivery systems
US5756117A (en) * 1992-04-08 1998-05-26 International Medical Asscociates, Inc. Multidose transdermal drug delivery system
US5405614A (en) * 1992-04-08 1995-04-11 International Medical Associates, Inc. Electronic transdermal drug delivery system
US5932240A (en) * 1992-04-08 1999-08-03 Americare Technology, Inc. Multidose transdermal drug delivery system
US5411740A (en) * 1992-05-13 1995-05-02 Alza Corporation Transdermal administration of oxybutynin
US5900250A (en) * 1992-05-13 1999-05-04 Alza Corporation Monoglyceride/lactate ester permeation enhancer for oxybutnin
US5500222A (en) * 1992-05-13 1996-03-19 Alza Corporation Transdermal administration of oxybutynin
EP0648264A1 (en) * 1992-06-03 1995-04-19 Case Western Reserve University Bandage for continuous application of biologicals
EP0648264A4 (en) * 1992-06-03 1997-10-01 Univ Case Western Reserve Bandage for continuous application of biologicals.
EP0593807A1 (en) * 1992-10-22 1994-04-27 LTS Lohmann Therapie-Systeme GmbH & Co. KG Patch for transdermal administration of volatile pharmaceutically active ingredients of chemically basic nature and a process for preparation
WO1994008571A3 (en) * 1992-10-22 1994-05-26 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Plaster for the transdermal administration of volatile, pharmaceutically active, chemically alkaline ingredients, and processs for producing the same
WO1994008571A2 (en) * 1992-10-22 1994-04-28 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Plaster for the transdermal administration of volatile, pharmaceutically active, chemically alkaline ingredients, and processs for producing the same
US5728688A (en) * 1993-01-19 1998-03-17 Endoreoherche, Inc. Therapeutic methods and delivery systems utilizing sex steroid precursors
US5807849A (en) * 1993-01-19 1998-09-15 Endorecherche, Inc. Therapeutic methods and delivery systems utilizing sex steroid precursors
US5922700A (en) * 1993-01-19 1999-07-13 Endorecherche, Inc. Therapeutic methods and delivery systems utilizing sex steroid precursors
US5854229A (en) * 1993-01-19 1998-12-29 Endorecherche, Inc. Therapeutic methods and delivery systems utilizing sex steroid precursors
US5776923A (en) * 1993-01-19 1998-07-07 Endorecherche, Inc. Method of treating or preventing osteoporosis by adminstering dehydropiandrosterone
US5780460A (en) * 1993-01-19 1998-07-14 Endoreoherche, Inc. Therapeutic methods and delivery systems utilizing sex steroid precursors
US5872114A (en) * 1993-01-19 1999-02-16 Endorecherche, Inc. Therapeutic methods and delivery systems utilizing sex steroid precursors
US5798347A (en) * 1993-01-19 1998-08-25 Endorecherche, Inc. Therapeutic methods and delivery systems utilizing sex steroid precursors
US5843932A (en) * 1993-01-19 1998-12-01 Endorcaherche, Inc. Therapeutic methods and delivery systems utilizing sex steroid precursors
US5837700A (en) * 1993-01-19 1998-11-17 Endorecherche, Inc. Therapeutic methods and delivery systems utilizing sex steroid precursors
US5948434A (en) * 1993-01-19 1999-09-07 Endorecherche, Inc. Therapeutic methods and delivery systems utilizing sex steroid precursors
US5955455A (en) * 1993-01-19 1999-09-21 Endorecherche, Inc. Therapeutic methods and delivery systems utilizing sex steroid precursors
US5824671A (en) * 1993-01-19 1998-10-20 Endorecherche Inc Therapeutic methods and delivery systems utilizing sex steroid precursors
US5643905A (en) * 1993-01-23 1997-07-01 Therapie-System Gmbh & Co., Kg Pharmaceutical formulation for the treatment of nicotine dependence
US5591767A (en) * 1993-01-25 1997-01-07 Pharmetrix Corporation Liquid reservoir transdermal patch for the administration of ketorolac
US5762952A (en) * 1993-04-27 1998-06-09 Hercon Laboratories Corporation Transdermal delivery of active drugs
US5869086A (en) * 1993-04-28 1999-02-09 Lts Lohmann Therapie-Systeme Gmbh Systems for the controlled release of pilocarpine
US5807571A (en) * 1993-05-06 1998-09-15 Lts Lohmann Therapie-Systeme Gmbh Transdermal therapeutic systems for administering indole serotonin agonists
US5451407A (en) * 1993-06-21 1995-09-19 Alza Corporation Reduction or prevention of skin irritation or sensitization during transdermal administration of a irritating or sensitizing drug
US5919478A (en) * 1993-06-25 1999-07-06 Alza Corporation Incorporating poly-N-vinyl amide in a transdermal system
US5750137A (en) * 1993-09-29 1998-05-12 Taskovich; Lina Tormen Monoglyceride/lactate ester permeation enhancer
US5747065A (en) * 1993-09-29 1998-05-05 Lee; Eun Soo Monoglyceride/lactate ester permeation enhancer for oxybutynin
US5643596A (en) * 1993-11-03 1997-07-01 Clarion Pharmaceuticals, Inc. Hemostatic patch
US5645849A (en) * 1993-11-03 1997-07-08 Clarion Pharmaceuticals, Inc. Hemostatic patch
US5668143A (en) * 1993-11-29 1997-09-16 Merrell Pharmaceuticals Inc. Heterocyclic benzenesulfonylimine derivatives as inhibitors of IL-1 action
US5684017A (en) * 1993-11-29 1997-11-04 Merrell Pharmaceuticals Inc. Benzenesulfonylimine derivatives as inhibitors of IL-1 action
US5641507A (en) * 1993-12-06 1997-06-24 Devillez; Richard L. Delivery system for dermatological and cosmetic ingredients
US5962011A (en) * 1993-12-06 1999-10-05 Schering-Plough Healthcare Products, Inc. Device for delivery of dermatological ingredients
US5939095A (en) * 1993-12-10 1999-08-17 Lts Lohmann Therapie-Systeme Gmbh Transdermal therapeutic system and a process for the combined transdermal application of physostigmine and scopolamine for the prophylaxis and pretreatment of a poisoning caused by highly toxic organophosphorus neurotoxins in particular soman
US6187322B1 (en) * 1994-01-13 2001-02-13 Lts Lohmann Therapie-Systeme Gmbh Process and a device for the production of a flat administration form comprising a preparation which contains pharmaceutical active substances
US5498417A (en) * 1994-05-12 1996-03-12 Coating Sciences, Inc. Transdermal delivery of appetite suppressant drug
US5612382A (en) * 1994-07-15 1997-03-18 Frances B. Fike Composition for percutaneous absorption of pharmaceutically active ingredients
US5505958A (en) * 1994-10-31 1996-04-09 Algos Pharmaceutical Corporation Transdermal drug delivery device and method for its manufacture
US5650165A (en) * 1994-11-15 1997-07-22 Nitto Denko Corporation Percutaneous absorption preparation
EP0841056A3 (en) * 1995-03-01 1999-11-24 Hisashi Mineta Personal clothing with effects caused by weak electromagnetic waves
EP0841056A2 (en) * 1995-03-01 1998-05-13 Hisashi Mineta Personal clothing with effects caused by weak electromagnetic waves
US5785991A (en) * 1995-06-07 1998-07-28 Alza Corporation Skin permeation enhancer compositions comprising glycerol monolaurate and lauryl acetate
US5843468A (en) * 1995-06-07 1998-12-01 Alza Corporation Skin permeation enhancer compositions comprising glycerol monolaurate and lauryl acetate
US6001390A (en) * 1995-06-07 1999-12-14 Alza Corporation Formulations for transdermal delivery of pergolide
US6572879B1 (en) 1995-06-07 2003-06-03 Alza Corporation Formulations for transdermal delivery of pergolide
US20040209909A1 (en) * 1995-06-07 2004-10-21 Su Il Yum Novel formulations for transdermal delivery of pergolide
WO1997004818A2 (en) * 1995-07-29 1997-02-13 Lts Lohmann Therapie-Systeme Gmbh Transdermal therapeutic sysgtem for administering active agents to the human body via the skin
US6074665A (en) * 1995-07-29 2000-06-13 Lts Lohmann Therapie-Systeme Gmbh Transdermal therapeutic system for administering active agents to the human body via the skin
WO1997004818A3 (en) * 1995-07-29 1997-03-13 Lohmann Therapie Syst Lts Transdermal therapeutic sysgtem for administering active agents to the human body via the skin
US5840327A (en) * 1995-08-21 1998-11-24 Alza Corporation Transdermal drug delivery device having enhanced adhesion
US6569448B1 (en) 1995-12-01 2003-05-27 Alza Corporation Method for preventing crystal formation in a dispersion of a liquid in a matrix
US7169409B2 (en) 1995-12-01 2007-01-30 Alza Corporation Method for preventing crystal formation in a dispersion of a liquid in a matrix
US6238700B1 (en) 1995-12-01 2001-05-29 Alza Corporation Method for preventing crystal formation in a dispersion of a liquid in a matrix
EP1674068A1 (en) 1996-02-19 2006-06-28 Acrux DDS Pty Ltd Dermal penetration enhancers and drug delivery systems involving same
US5707612A (en) * 1996-04-08 1998-01-13 Alzo, Inc. Use urethane polymers of castor oil skin and personal care product compositiions
US6007837A (en) * 1996-07-03 1999-12-28 Alza Corporation Drug delivery devices and process of manufacture
US6512010B1 (en) 1996-07-15 2003-01-28 Alza Corporation Formulations for the administration of fluoxetine
US7011844B2 (en) 1996-07-15 2006-03-14 Alza Corporation Formulations for the administration of fluoxetine
US20050186277A1 (en) * 1996-07-15 2005-08-25 Gale Robert M. Novel formulations for the administration of fluoxetine
US6004578A (en) * 1996-10-24 1999-12-21 Alza Corporation Permeation enhances for transdermal drug delivery compositions, devices and methods
US5912009A (en) * 1996-10-30 1999-06-15 Theratech, Inc. Fatty acid esters of glycolic acid and its salts
US5952000A (en) * 1996-10-30 1999-09-14 Theratech, Inc. Fatty acid esters of lactic acid salts as permeation enhancers
US6203817B1 (en) 1997-02-19 2001-03-20 Alza Corporation Reduction of skin reactions caused by transdermal drug delivery
US6174545B1 (en) 1997-07-01 2001-01-16 Alza Corporation Drug delivery devices and process of manufacture
US6537571B1 (en) 1997-09-04 2003-03-25 Lts Lohmann Therapie-Systeme Ag Transdermal therapeutic system containing the active substance scopolamine base
WO1999011265A1 (en) * 1997-09-04 1999-03-11 Lts Lohmann Therapie-Systeme Ag Transdermal therapeutic system containing the active substance scopolamine base
US6660295B2 (en) 1997-09-30 2003-12-09 Alza Corporation Transdermal drug delivery device package with improved drug stability
US6465440B2 (en) 1997-11-04 2002-10-15 Wellstat Therapeutics Corporation Antimutagenic compositions for treatment and prevention of photodamage to skin
US20080119449A1 (en) * 1997-11-21 2008-05-22 The Regents Of The University Of California Methods for treating postmenopausal women using ultra-low doses of estrogen
US5891868A (en) * 1997-11-21 1999-04-06 Kaiser Foundation Health Plan, Inc. Methods for treating postmenopausal women using ultra-low doses of estrogen
US6163720A (en) * 1997-12-18 2000-12-19 Alza Corporation Layered rate controlling membranes for use in an electrotransport device
US6375978B1 (en) 1997-12-22 2002-04-23 Alza Corporation Rate controlling membranes for controlled drug delivery devices
US6267984B1 (en) 1997-12-22 2001-07-31 Alza Corporation Skin permeation enhancer compositions comprising a monoglyceride and ethyl palmitate
US20070027122A1 (en) * 1998-06-11 2007-02-01 Endorecherche, Inc. Medical uses of a selective estrogen receptor modulator in combination with sex steroid precursors
US20040157812A1 (en) * 1998-06-11 2004-08-12 Endorecherche, Inc. Medical uses of a selective estrogen receptor modulator in combination with sex steroid precursors
US8188066B2 (en) 1998-06-11 2012-05-29 Endorecherche, Inc. Medical uses of a selective estrogen receptor modulator in combination with sex steroid precursors
US6670346B1 (en) 1998-06-11 2003-12-30 Endorecherche, Inc. Medical uses of a selective estrogen receptor modulator in combination with sex steroid precursors
US7943603B2 (en) 1998-06-11 2011-05-17 Endorecherche, Inc. Medical uses of a selective estrogen receptor modulator in combination with sex steroid precursors
US7429576B2 (en) 1998-06-11 2008-09-30 Endorecherche, Inc. Medical uses of a selective estrogen receptor modulator in combination with sex steroid precursors
US7884092B2 (en) 1998-06-11 2011-02-08 Endorecherche, Inc. Medical uses of a selective estrogen receptor modulator in combination with sex steroid precursors
US8389548B2 (en) 1998-06-11 2013-03-05 Endorecherche, Inc. Medical uses of a selective estrogen receptor modulator in combination with sex steroid precursors
US20070027123A1 (en) * 1998-06-11 2007-02-01 Endorecherche, Inc. Medical uses of a selective estrogen receptor modulator in combination with sex steroid precursors
US6465445B1 (en) 1998-06-11 2002-10-15 Endorecherche, Inc. Medical uses of a selective estrogen receptor modulator in combination with sex steroid precursors
US6960353B2 (en) 1998-07-24 2005-11-01 Alza Corporation Formulations for the transdermal administration of fenoldopam
US6699497B1 (en) 1998-07-24 2004-03-02 Alza Corporation Formulations for the transdermal administration of fenoldopam
US6348210B1 (en) 1998-11-13 2002-02-19 Alza Corporation Methods for transdermal drug administration
US20050250750A1 (en) * 1998-11-19 2005-11-10 The Regents Of The University Of California Methods for treating postmenopausal women using ultra-low doses of estrogen
US6692763B1 (en) 1998-11-19 2004-02-17 The Regents Of The University Of California Methods for treating postmenopausal women using ultra-low doses of estrogen
WO2000030693A1 (en) * 1998-11-23 2000-06-02 Deotexis Inc. Dressing
US8999379B2 (en) 1998-12-18 2015-04-07 Alza Corporation Transparent transdermal nicotine delivery devices
US7622136B2 (en) 1998-12-18 2009-11-24 Alza Corporation Transparent transdermal nicotine delivery devices
US20040234585A1 (en) * 1998-12-18 2004-11-25 Gale Robert M. Transparent transdermal nicotine delivery devices
US20080031933A1 (en) * 1998-12-18 2008-02-07 Alza Corporation Transparent transdermal nicotine delivery devices
US8663680B2 (en) 1998-12-18 2014-03-04 Alza Corporation Transparent transdermal nicotine delivery devices
EP2158903A2 (en) 1998-12-18 2010-03-03 ALZA Corporation Transparent Transdermal Nicotine Delivery Devices
US8075911B2 (en) 1998-12-18 2011-12-13 Alza Corporation Transparent transdermal nicotine delivery devices
US9205059B2 (en) 1998-12-18 2015-12-08 Alza Corporation Transparent transdermal nicotine delivery devices
US6627631B1 (en) * 1999-02-19 2003-09-30 Lts Lohmann Therapie-Systeme Ag Pharmaceutical composition containing desoxypeganine for the treatment of alcoholism
US6548510B1 (en) 1999-02-19 2003-04-15 Lts Lohmann Therapie Systeme Ag Pharmaceutical composition containing deoxypeganine for the treatment of nicotine dependence
US6326524B1 (en) * 1999-03-02 2001-12-04 Bristol-Myers Squibb Company Hydrocolloid foam dressing
US20080051490A1 (en) * 1999-03-25 2008-02-28 Williams Simon F Medical Devices and Applications of Polyhydroxyalkanoate Polymers
US20080095823A1 (en) * 1999-03-25 2008-04-24 Metabolix, Inc. Medical Devices and Applications of Polyhydroxyalkanoate Polymers
US7553923B2 (en) 1999-03-25 2009-06-30 Metabolix, Inc. Medical devices and applications of polyhydroxyalkanoate polymers
US20050048104A1 (en) * 1999-04-01 2005-03-03 Venkatraman Subramanian S. Transdermal drug delivery devices comprising a polyurethane drug reservoir
US7063859B1 (en) 1999-04-28 2006-06-20 Noven Pharmaceuticals, Inc. Barrier film lined backing layer composition and method for topical administration of active agents
US20050053647A1 (en) * 1999-05-21 2005-03-10 Rudolf Matusch Pharmaceutical product comprising the active substance diamorphine, and its use in a process for treating opiate addiction
EP2090312A1 (en) 1999-07-01 2009-08-19 Pharmacia & Upjohn Company LLC (S,S) reboxetine for treating attention deficit disorder
EP2087892A2 (en) 1999-07-01 2009-08-12 Pharmacia & Upjohn Company LLC (S,S) reboxetine for treating age associated learning and mental disorders
US6143303A (en) * 1999-08-14 2000-11-07 Janakiram; Chodavarapu Analgesic anti-inflammatory composition and method of preparing from dodonaea sp
US6592892B1 (en) 1999-08-30 2003-07-15 Tepha, Inc. Flushable disposable polymeric products
US6974588B1 (en) 1999-12-07 2005-12-13 Elan Pharma International Limited Transdermal patch for delivering volatile liquid drugs
US6649681B2 (en) * 2000-02-03 2003-11-18 Ferro Corporation Adhesive composition primarily intended for use in medical applications
US20030212094A1 (en) * 2000-02-29 2003-11-13 Haruko Yamabe Novel cyclic amide derivatives
US7166617B2 (en) 2000-02-29 2007-01-23 Mitsubishi Pharma Corporation Cyclic amide derivatives
US20040142022A1 (en) * 2000-03-23 2004-07-22 Jutaro Shudo Methods of producing a terminally sterilized topical patch preparation
US6698162B2 (en) * 2000-03-23 2004-03-02 Teikoku Pharma Usa, Inc. Methods of producing a terminally sterilized topical patch preparation
US20070148195A1 (en) * 2000-04-26 2007-06-28 Ebert Charles D Compositions and methods for transdermal oxybutynin therapy
US8241662B2 (en) 2000-04-26 2012-08-14 Watson Laboratories, Inc. Unoccluded topical oxybutynin gel composition and methods for transdermal oxybutynin therapy
WO2002062292A2 (en) * 2001-02-05 2002-08-15 Ferro Corporation Adhesive composition primarily intended for use in medical applications
WO2002062292A3 (en) * 2001-02-05 2002-10-31 Ferro Corp Adhesive composition primarily intended for use in medical applications
US20040096491A1 (en) * 2001-03-07 2004-05-20 Tetsuro Tateishi Adhesive patch
US7988991B2 (en) * 2001-03-07 2011-08-02 Hisamitsu Pharmaceutical Co., Inc. Adhesive patch
US20040116406A1 (en) * 2001-04-24 2004-06-17 Klaus Opitz Utilization of galanthamine for the treatment of pathologies of the central nervous system owing to intoxications with psychotropic substances
US8207159B2 (en) 2001-04-24 2012-06-26 Hf Arzneimittelforschung Gmbh Use of galanthamine for the treatment of pathological manifestations of the central nervous system based on intoxications with psychotropic substances
US20040132751A1 (en) * 2001-04-24 2004-07-08 Klaus Opitz Use of desoxypeganine for treating central nervous system symptoms resulting from intoxications by psychotrops
US8048869B2 (en) * 2001-05-18 2011-11-01 Pantarhei Bioscience B.V. Pharmaceutical composition for use in hormone replacement therapy
US20040186086A1 (en) * 2001-05-18 2004-09-23 Bunschoten Evert Johannes Use of estrogen compounds to increase libido in women
US20040198671A1 (en) * 2001-05-18 2004-10-07 Bunschoten Evert Johannes Pharmaceutical composition for use in hormone replacement therapy
US20040198710A1 (en) * 2001-05-23 2004-10-07 Bunschoten Evert Johannes Drug delivery system comprising a tetrahydroxilated estrogen for use in hormonal contraception
US20040192620A1 (en) * 2001-05-23 2004-09-30 Bunschoten Evert Johannes Drug delivery system comprising a tetrahydroxylated estrogen for use in hormonal contraception
US7871995B2 (en) 2001-05-23 2011-01-18 Pantarhei Bioscience B.V. Drug delivery system comprising a tetrahydroxylated estrogen for use in hormonal contraception
US7732430B2 (en) 2001-05-23 2010-06-08 Pantarhei Bioscience B.V. Drug delivery system comprising a tetrahydroxilated estrogen for use in hormonal contraception
US20080090894A1 (en) * 2001-06-05 2008-04-17 Ronald Aung-Din Transdermal migraine therapy
US9012480B2 (en) 2001-06-05 2015-04-21 Afgin Pharma Llc Topical therapy for migraine
US20040192683A1 (en) * 2001-06-18 2004-09-30 Joachim Moormann Active ingredient combination for treating a dependence on addictive substances or narcotics using medicaments
US20030118653A1 (en) * 2001-07-06 2003-06-26 Lavipharm Laboratories Inc. Quick dissolving oral mucosal drug delivery device with moisture barrier coating
US20040167145A1 (en) * 2001-07-12 2004-08-26 Klaus Opitz Active ingredient combination for the pharmacological therapy of nicotine dependence
US11077068B2 (en) 2001-10-12 2021-08-03 Aquestive Therapeutics, Inc. Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions
US11207805B2 (en) 2001-10-12 2021-12-28 Aquestive Therapeutics, Inc. Process for manufacturing a resulting pharmaceutical film
US10888499B2 (en) 2001-10-12 2021-01-12 Aquestive Therapeutics, Inc. Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom
US9931305B2 (en) 2001-10-12 2018-04-03 Monosol Rx, Llc Uniform films for rapid dissolve dosage form incorporating taste-masking compositions
US9855221B2 (en) 2001-10-12 2018-01-02 Monosol Rx, Llc Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions
US10285910B2 (en) 2001-10-12 2019-05-14 Aquestive Therapeutics, Inc. Sublingual and buccal film compositions
US20030088204A1 (en) * 2001-11-02 2003-05-08 Joshi Ashok V Novel iontophoretic drug delivery systems
US7349733B2 (en) 2001-11-02 2008-03-25 Ceramatel, Inc. Iontophoretic drug delivery systems
US8026228B2 (en) 2001-11-15 2011-09-27 Pantarhei Bioscience B.V. Estrogenic compounds in combination with progestogenic compounds in hormone-replacement therapy
US20050070488A1 (en) * 2001-11-15 2005-03-31 Coelingh Bennik Herman Jan Tijmen Estrogenic compounds in combination with progestogenic compounds in hormone-replacement therapy
US6775570B2 (en) 2002-02-04 2004-08-10 Ceramatec, Inc. Iontophoretic treatment device
US7047069B2 (en) 2002-02-04 2006-05-16 Ceramatec, Inc. Iontophoretic fluid delivery device
US6933321B2 (en) 2002-02-15 2005-08-23 Endorecherche, Inc. Antiandrogenic biphenyls
US20040006134A1 (en) * 2002-02-15 2004-01-08 Endorecherche, Inc. Antiandrogenic biphenyls
US7087640B2 (en) 2002-03-19 2006-08-08 Technology Commercialization Corp Substance with sedative effect
US20030181516A1 (en) * 2002-03-19 2003-09-25 Krylov Boris Vladimirovich Substance with sedative effect
US20030224471A1 (en) * 2002-04-09 2003-12-04 Jones Ronald M. High-Density lipoprotein assay device and method
US7795038B2 (en) 2002-04-09 2010-09-14 Cholestech Corporation High-density lipoprotein assay device and method
US10111810B2 (en) 2002-04-11 2018-10-30 Aquestive Therapeutics, Inc. Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom
US9040509B2 (en) 2002-06-11 2015-05-26 Pantarhei Bioscience B.V. Method of treating human skin and a skin care composition for use in such a method
US20050215538A1 (en) * 2002-06-11 2005-09-29 Coelingh Bennink Herman J T Method of treating human skin and a skin care composition for use in such a method
US20050261209A1 (en) * 2002-06-11 2005-11-24 Bunschoten Evert J Method of treating or preventing immune mediated disorders and pharmaceutical formulation for use therein
US20110160173A1 (en) * 2002-06-11 2011-06-30 Pantarhei Bioscience B.V. Method Of Treating Human Skin And A Skin Care Composition For Use In Such A Method
US7943604B2 (en) 2002-06-11 2011-05-17 Pantarhei Bioscience B.V. Method of treating human skin and a skin care composition for use in such a method
US7923440B2 (en) 2002-06-11 2011-04-12 Pantarhei Bioscience B.V. Method of treating or preventing immune mediated disorders and pharmaceutical formulation for use therein
US20060063723A1 (en) * 2002-07-12 2006-03-23 Coelingh Bennink Herman Jan T Pharmaceutical composition comprising esterol derivatives for use in cancer therapy
US10201611B2 (en) 2002-07-12 2019-02-12 Donesta Bioscience B.V. Pharmaceutical composition comprising estetrol derivatives for use in cancer therapy
US9034854B2 (en) 2002-07-12 2015-05-19 Pantarhei Bioscience B.V. Pharmaceutical composition comprising estetrol derivatives for use in cancer therapy
US8617591B2 (en) 2002-07-30 2013-12-31 Ucb Pharma Gmbh Transdermal delivery system for the administration of rotigotine
US20040081683A1 (en) * 2002-07-30 2004-04-29 Schacht Dietrich Wilhelm Transdermal delivery system
US20050079206A1 (en) * 2002-07-30 2005-04-14 Schacht Dietrich Wilhelm Transdermal delivery system for the administration of rotigotine
US8246980B2 (en) * 2002-07-30 2012-08-21 Ucb Pharma Gmbh Transdermal delivery system
US8246979B2 (en) 2002-07-30 2012-08-21 Ucb Pharma Gmbh Transdermal delivery system for the administration of rotigotine
US9987364B2 (en) 2002-09-27 2018-06-05 Ferring B.V. Water-swellable polymers
US20110091488A1 (en) * 2002-09-27 2011-04-21 Controlled Therapeutics (Scotland) Limited Water-swellable polymers
US8628798B2 (en) 2002-09-27 2014-01-14 Ferring B.V. Water-swellable polymers
US8557281B2 (en) 2002-09-27 2013-10-15 Ferring B.V. Water-swellable polymers
US20060247221A1 (en) * 2002-10-23 2006-11-02 Coelingh Bennink Herman J T Pharmaceutical compositions comprising estetrol derivatives for use in cancer therapy
US9561238B2 (en) 2002-10-23 2017-02-07 Donesta Bioscience B.V. Pharmaceutical compositions comprising estetrol derivatives for use in cancer therapy
US9480770B2 (en) 2002-10-23 2016-11-01 Covidien Lp Methods for preparation of medical dressing containing antimicrobial agent
US8987240B2 (en) 2002-10-23 2015-03-24 Pantarhei Bioscience B.V. Pharmaceutical compositions comprising estetrol derivatives for use in cancer therapy
US20040198706A1 (en) * 2003-03-11 2004-10-07 Carrara Dario Norberto R. Methods and formulations for transdermal or transmucosal application of active agents
US20040258742A1 (en) * 2003-04-11 2004-12-23 Van Osdol William Woodson Transdermal administration of N-(2,5-disubstituted phenyl)-N'-(3-substituted phenyl)-N'-methyl guanidines
US20060199866A1 (en) * 2003-04-25 2006-09-07 Joachim Moormann Combination of desoxypeganine and mecamylanine for the treatment of alcohol abuse
US8790689B2 (en) 2003-04-30 2014-07-29 Purdue Pharma L.P. Tamper resistant transdermal dosage form
US8778382B2 (en) 2003-04-30 2014-07-15 Purdue Pharma L.P. Tamper resistant transdermal dosage form
US20050002997A1 (en) * 2003-04-30 2005-01-06 Howard Stephen A. Tamper resistant transdermal dosage form
US20040234576A1 (en) * 2003-05-08 2004-11-25 Tepha, Inc., State Of Incorporation Delaware Polyhydroxyalkanoate medical textiles and fibers
US9333066B2 (en) 2003-05-08 2016-05-10 Tepha, Inc. Method of making a medical textile from polyhydroxyalkanoate fibers
US9125719B2 (en) 2003-05-08 2015-09-08 Tepha, Inc. Polyhydroxyalkanoate medical textiles and fibers
US8034270B2 (en) 2003-05-08 2011-10-11 Tepha, Inc. Polyhydroxyalkanoate medical textiles and fibers
US10111738B2 (en) 2003-05-08 2018-10-30 Tepha, Inc. Polyhydroxyalkanoate medical textiles and fibers
US10136982B2 (en) 2003-05-08 2018-11-27 Tepha, Inc. Polyhydroxyalkanoate medical textiles and fibers
US10314683B2 (en) 2003-05-08 2019-06-11 Tepha, Inc. Polyhydroxyalkanoate medical textiles and fibers
US8758657B2 (en) 2003-05-08 2014-06-24 Tepha, Inc. Process of making polyhydroxyalkanoate medical textiles
US8883830B2 (en) 2003-06-20 2014-11-11 Afgin Pharma LLC. Topical therapy for the treatment of migraines, muscle sprains, muscle spasms, spasticity and related conditions
US20070065463A1 (en) * 2003-06-20 2007-03-22 Ronald Aung-Din Topical therapy for the treatment of migranes, muscle sprains, muscle spasms, spasticity and related conditions
US20050025809A1 (en) * 2003-07-08 2005-02-03 Tepha, Inc. Poly-4-hydroxybutyrate matrices for sustained drug delivery
US20050059645A1 (en) * 2003-07-31 2005-03-17 Bodor Nicholas S. Methods for the treatment of male and female sexual dysfunction
US20060287659A1 (en) * 2003-08-22 2006-12-21 Tepha, Inc. Polyhydroxyalkanoate nerve regeneration devices
US20090209983A1 (en) * 2003-08-22 2009-08-20 Tepha, Inc. Polyhydroxyalkanoate nerve regeneration devices
US20050065062A1 (en) * 2003-09-24 2005-03-24 3M Innovative Properties Company Method of formulating a pharmaceutical composition
US20050142475A1 (en) * 2003-12-30 2005-06-30 Moudry Ronald J. Dry toner comprising encapsulated pigment, methods and uses
US9090651B2 (en) 2004-01-07 2015-07-28 Endorecherche, Inc. Helix 12 directed pharmaceutical products
WO2005066194A1 (en) 2004-01-07 2005-07-21 Endorecherche, Inc. Helix 12 directed steroidal pharmaceutical products
US20050250749A1 (en) * 2004-01-07 2005-11-10 Endorecherche, Inc. Helix 12 directed pharmaceutical products
US20050276807A1 (en) * 2004-06-15 2005-12-15 Advanced Biotherapy, Inc. Treatment of acne
US20060008432A1 (en) * 2004-07-07 2006-01-12 Sebastiano Scarampi Gilsonite derived pharmaceutical delivery compositions and methods: nail applications
US11882987B2 (en) 2004-07-28 2024-01-30 Cilag Gmbh International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US7641825B2 (en) 2004-08-03 2010-01-05 Tepha, Inc. Method of making a polyhydroxyalkanoate filament
US20060058470A1 (en) * 2004-08-03 2006-03-16 Tepha, Inc. Non-curling polyhydroxyalkanoate sutures
US20100093237A1 (en) * 2004-08-03 2010-04-15 Tepha, Inc. Non-curling polyhydroxyalkanoate sutures
US8084125B2 (en) 2004-08-03 2011-12-27 Tepha, Inc. Non-curling polyhydroxyalkanoate sutures
US8491934B2 (en) 2004-08-05 2013-07-23 Ferring B.V. Stabilised prostaglandin composition
US8460707B2 (en) 2004-08-05 2013-06-11 Ferring B.V. Stabilised prostaglandin composition
US8709482B2 (en) 2004-08-05 2014-04-29 Ferring B.V. Stabilised prostaglandin composition
US20060177445A1 (en) * 2004-08-16 2006-08-10 Boris Skurkovich Treatment of inflammatory skin diseases
CN101010065B (en) * 2004-09-07 2012-02-29 陶氏康宁公司 Silicone adhesive formulation containing an antiperspirant
US20070212314A1 (en) * 2004-09-07 2007-09-13 Dow Corning Corporation Silicone Adhesive Formulation Containing An Antiperspirant
US11045200B2 (en) 2004-10-18 2021-06-29 Covidien Lp Support structures and methods of using the same
US10154840B2 (en) 2004-10-18 2018-12-18 Covidien Lp Annular adhesive structure
US10813636B2 (en) 2004-10-18 2020-10-27 Covidien Lp Annular adhesive structure
US20060177513A1 (en) * 2005-01-28 2006-08-10 Tepha, Inc. Embolization using poly-4-hydroxybutyrate particles
US20060210613A1 (en) * 2005-03-15 2006-09-21 Carliss Richard D Therapeutic wound care product
US10470771B2 (en) 2005-03-15 2019-11-12 Covidien Lp Circular anastomosis structures
US20060269475A1 (en) * 2005-04-11 2006-11-30 Ryu Wonhyoung Multi-layer structure having a predetermined layer pattern including an agent
WO2006133567A1 (en) 2005-06-17 2006-12-21 Endorecherche, Inc. Helix 12 directed non-steroidal antiandrogens
US11771425B2 (en) 2005-08-31 2023-10-03 Cilag Gmbh International Stapling assembly for forming staples to different formed heights
US11793512B2 (en) 2005-08-31 2023-10-24 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11839375B2 (en) 2005-08-31 2023-12-12 Cilag Gmbh International Fastener cartridge assembly comprising an anvil and different staple heights
US20090169602A1 (en) * 2005-11-23 2009-07-02 Universität Zürich Allergy Treatment by Epicutaneous Allergen Administration
US11883020B2 (en) 2006-01-31 2024-01-30 Cilag Gmbh International Surgical instrument having a feedback system
US11890008B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Surgical instrument with firing lockout
US11890029B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument
US11944299B2 (en) 2006-01-31 2024-04-02 Cilag Gmbh International Surgical instrument having force feedback capabilities
US20070179210A1 (en) * 2006-01-31 2007-08-02 Tyco Healthcare Group Lp Super soft foams
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US9808554B2 (en) 2006-01-31 2017-11-07 Covidien Lp Super soft foams
US20070212410A1 (en) * 2006-02-27 2007-09-13 Noven Pharmaceuticals, Inc. Compositions and methods for delivery of amino-functional drugs
US8715723B2 (en) 2006-02-27 2014-05-06 Noven Pharmaceuticals, Inc. Compositions and methods for delivery of amino-functional drugs
US8518926B2 (en) 2006-04-10 2013-08-27 Knopp Neurosciences, Inc. Compositions and methods of using (R)-pramipexole
US20070259930A1 (en) * 2006-04-10 2007-11-08 Knopp Neurosciences, Inc. Compositions and methods of using r(+) pramipexole
US20090042956A1 (en) * 2006-04-10 2009-02-12 Knopp Neurosciences, Inc. Compositions and methods of using (r)-pramipexole
US20070237812A1 (en) * 2006-04-11 2007-10-11 Tyco Healthcare Group Multi-layer wound dressings
US8017598B2 (en) 2006-05-16 2011-09-13 Knopp Neurosciences, Inc. Compositions of R(+) and S(−) pramipexole and methods of using the same
US20080014259A1 (en) * 2006-05-16 2008-01-17 Knopp Neurosciences, Inc. Compositions of R(+) and S(-) Pramipexole and Methods of Using the Same
US8445474B2 (en) 2006-05-16 2013-05-21 Knopp Neurosciences, Inc. Compositions of R(+) and S(−) pramipexole and methods of using the same
US20090196911A1 (en) * 2006-06-06 2009-08-06 Loubert Gary L Silicone Acrylate Hybride Composition and Method Of Making Same
US8124689B2 (en) 2006-06-06 2012-02-28 Dow Corning Corporation Silicone acrylate hybride composition and method of making same
US8614278B2 (en) 2006-06-06 2013-12-24 Dow Corning Corporation Silicone acrylate hybrid composition and method of making same
US8569416B2 (en) 2006-06-06 2013-10-29 Dow Corning Corporation Single phase silicone acrylate formulation
US8974813B2 (en) 2006-07-05 2015-03-10 Ferring B.V. Hydrophilic polyurethane compositions
US20090291120A1 (en) * 2006-07-05 2009-11-26 Jukka Tuominen Hydrophilic Polyurethane Compositions
US10105445B2 (en) 2006-07-05 2018-10-23 Ferring B.V. Hydrophilic polyurethane compositions
US8361273B2 (en) 2006-07-08 2013-01-29 Ferring B.V. Polyurethane elastomers
US8361272B2 (en) 2006-07-08 2013-01-29 Ferring B.V. Polyurethane elastomers
US20090324692A1 (en) * 2006-07-08 2009-12-31 Controlled Therapeutics (Scotland) Limited Polyurethane Elastomers
US20080160065A1 (en) * 2006-07-12 2008-07-03 Janet Anne Halliday Drug delivery polymer with hydrochloride salt of clindamycin
US11877748B2 (en) 2006-10-03 2024-01-23 Cilag Gmbh International Robotically-driven surgical instrument with E-beam driver
US20100317745A1 (en) * 2006-10-18 2010-12-16 Donald Magnus Nicolson Bioresorbable Polymers
US8524254B2 (en) 2006-10-18 2013-09-03 Ferring B.V. Bioresorbable polymers
US7943683B2 (en) 2006-12-01 2011-05-17 Tepha, Inc. Medical devices containing oriented films of poly-4-hydroxybutyrate and copolymers
US8753555B2 (en) 2006-12-01 2014-06-17 Tepha, Inc. Medical devices containing oriented films of poly-4-hydroxybutyrate and copolymers
US20110189475A1 (en) * 2006-12-01 2011-08-04 Tepha, Inc. Medical devices containing oriented films of poly-4-hydroxybutyrate and copolymers
US20080132602A1 (en) * 2006-12-01 2008-06-05 Tepha, Inc. Medical devices containing oriented films of poly-4-hydroxybutyrate and copolymers
US8524695B2 (en) 2006-12-14 2013-09-03 Knopp Neurosciences, Inc. Modified release formulations of (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine and methods of using the same
US20090054504A1 (en) * 2006-12-14 2009-02-26 Knopp Neurosciences, Inc. Modified Release Formulations of (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine and Methods of Using the Same
US8236785B2 (en) 2007-01-08 2012-08-07 Pantarhei Bioscience B.V. Method of treating or preventing infertility in a female mammal and pharmaceutical kit for use in such method
US20100113346A1 (en) * 2007-01-08 2010-05-06 Pantarhei Bioscience B.V. Method of Treating or Preventing Infertility in a Female Mammal and Pharmaceutical Kit for Use in Such Method
US7824879B2 (en) 2007-01-09 2010-11-02 Cholestech Corporation Device and method for measuring LDL-associated cholesterol
US20080166745A1 (en) * 2007-01-09 2008-07-10 Cholestech Corporation Device and method for measuring LDL-associated cholesterol
US11849947B2 (en) 2007-01-10 2023-12-26 Cilag Gmbh International Surgical system including a control circuit and a passively-powered transponder
US11844521B2 (en) 2007-01-10 2023-12-19 Cilag Gmbh International Surgical instrument for use with a robotic system
US11931032B2 (en) 2007-01-10 2024-03-19 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11812961B2 (en) 2007-01-10 2023-11-14 Cilag Gmbh International Surgical instrument including a motor control system
US11937814B2 (en) 2007-01-10 2024-03-26 Cilag Gmbh International Surgical instrument for use with a robotic system
US11918211B2 (en) 2007-01-10 2024-03-05 Cilag Gmbh International Surgical stapling instrument for use with a robotic system
US11839352B2 (en) 2007-01-11 2023-12-12 Cilag Gmbh International Surgical stapling device with an end effector
US20080177219A1 (en) * 2007-01-23 2008-07-24 Joshi Ashok V Method for Iontophoretic Fluid Delivery
US20080188791A1 (en) * 2007-02-02 2008-08-07 Difiore Attilio E Active iontophoresis delivery system
WO2008104032A1 (en) * 2007-03-01 2008-09-04 D-Swell Pty Ltd Body wrap with sodium carbonate dosage pack
US10828027B2 (en) 2007-03-06 2020-11-10 Covidien Lp Surgical stapling apparatus
US11510668B2 (en) 2007-03-06 2022-11-29 Covidien Lp Surgical stapling apparatus
US10111659B2 (en) 2007-03-06 2018-10-30 Covidien Lp Surgical stapling apparatus
US20080227985A1 (en) * 2007-03-14 2008-09-18 Knopp Neurosciences, Inc. Synthesis of chirally purified substituted benzothiazoles
US8519148B2 (en) 2007-03-14 2013-08-27 Knopp Neurosciences, Inc. Synthesis of chirally purified substituted benzothiazole diamines
US10179774B2 (en) 2007-03-14 2019-01-15 Knopp Biosciences Llc Synthesis of chirally purified substituted benzothiazole diamines
US20090042844A1 (en) * 2007-04-12 2009-02-12 Endorecherche, Inc. 17alpha-substituted steroids as systemic antiandrogens and selective androgen receptor modulators
US9284345B2 (en) 2007-04-12 2016-03-15 Endorecherche, Inc. 17alpha-substituted steroids as systemic antiandrogens and selective androgen receptor modulators
WO2008124922A1 (en) 2007-04-12 2008-10-23 Endorecherche, Inc. 17alpha-substituted steroids as systemic antiandrogens and selective androgen receptor modulators
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11911028B2 (en) 2007-06-04 2024-02-27 Cilag Gmbh International Surgical instruments for use with a robotic surgical system
US8197844B2 (en) 2007-06-08 2012-06-12 Activatek, Inc. Active electrode for transdermal medicament administration
US20080305154A1 (en) * 2007-06-08 2008-12-11 Activatek, Inc. Transdermal medicament patch and active electrode for same
US11419608B2 (en) 2007-06-18 2022-08-23 Covidien Lp Interlocking buttress material retention system
US10675032B2 (en) 2007-06-18 2020-06-09 Covidien Lp Interlocking buttress material retention system
US10022125B2 (en) 2007-06-18 2018-07-17 Covidien Lp Interlocking buttress material retention system
US10611060B2 (en) 2007-06-27 2020-04-07 Covidien Lp Buttress and surgical stapling apparatus
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US20100172959A1 (en) * 2007-07-04 2010-07-08 Acino Ag Reservoir system with closed membrane
US8440222B2 (en) * 2007-07-04 2013-05-14 Acino Ag Reservoir system with closed membrane
US20090047334A1 (en) * 2007-08-13 2009-02-19 Patricia Williams Transdermal patch for extended delivery of calcium
US20090098069A1 (en) * 2007-09-14 2009-04-16 Drugtech Corporation Transdermal, alcohol-free, pharmaceutical compositions
US8862223B2 (en) 2008-01-18 2014-10-14 Activatek, Inc. Active transdermal medicament patch and circuit board for same
US11801047B2 (en) 2008-02-14 2023-10-31 Cilag Gmbh International Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor
US8592424B2 (en) 2008-06-30 2013-11-26 Afgin Pharma Llc Topical regional neuro-affective therapy
US20110190356A1 (en) * 2008-08-19 2011-08-04 Knopp Neurosciences Inc. Compositions and Methods of Using (R)- Pramipexole
US9849116B2 (en) 2008-08-19 2017-12-26 Knopp Biosciences Llc Compositions and methods of using (R)-pramipexole
US20100055437A1 (en) * 2008-08-28 2010-03-04 Tyco Healthcare Group Lp Anti-microbial fibers and related articles and methods
US11812954B2 (en) 2008-09-23 2023-11-14 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11871923B2 (en) 2008-09-23 2024-01-16 Cilag Gmbh International Motorized surgical instrument
US11730477B2 (en) 2008-10-10 2023-08-22 Cilag Gmbh International Powered surgical system with manually retractable firing system
US20100121304A1 (en) * 2008-11-10 2010-05-13 Kimberly-Clark Worldwide, Inc. Multifunctional Acrylate Skin-Adhesive Composition
US11147722B2 (en) * 2008-11-10 2021-10-19 Kimberly-Clark Worldwide, Inc. Absorbent article with a multifunctional acrylate skin-adhesive composition
US10617419B2 (en) 2008-12-16 2020-04-14 Covidien Lp Surgical apparatus including surgical buttress
US10368869B2 (en) 2009-03-31 2019-08-06 Covidien Lp Surgical stapling apparatus
US11666334B2 (en) 2009-03-31 2023-06-06 Covidien Lp Surgical stapling apparatus
US10327772B2 (en) 2009-03-31 2019-06-25 Covidien Lp Center cinch and release of buttress material
US11116503B2 (en) 2009-03-31 2021-09-14 Covidien Lp Center cinch and release of buttress material
US20110009460A1 (en) * 2009-06-19 2011-01-13 Valentin Gribkoff Compositions and methods for treating amyotrophic lateral sclerosis
US8329734B2 (en) 2009-07-27 2012-12-11 Afgin Pharma Llc Topical therapy for migraine
US20110021596A1 (en) * 2009-07-27 2011-01-27 Ronald Aung-Din Topical therapy for migraine
US20110033515A1 (en) * 2009-08-04 2011-02-10 Rst Implanted Cell Technology Tissue contacting material
US10821074B2 (en) 2009-08-07 2020-11-03 Aquestive Therapeutics, Inc. Sublingual and buccal film compositions
US11617584B2 (en) 2009-10-15 2023-04-04 Covidien Lp Staple line reinforcement for anvil and cartridge
US10682140B2 (en) 2009-10-15 2020-06-16 Covidien Lp Staple line reinforcement for anvil and cartridge
US10576298B2 (en) 2009-10-15 2020-03-03 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US10772845B2 (en) * 2009-12-04 2020-09-15 Lts Lohmann Therapie-Systeme Ag Transdermal therapeutic system for the administration of peptides
US20120245538A1 (en) * 2009-12-04 2012-09-27 Michael Horstmann Transdermal Therapeutic System for the Administration of Peptides
US11083881B2 (en) 2010-04-28 2021-08-10 Sorrento Therapeutics, Inc. Method for increasing permeability of a cellular layer of epithelial cells
WO2011135530A2 (en) 2010-04-28 2011-11-03 Kimberly-Clark Worldwide, Inc. Device for delivery of rheumatoid arthritis medication
US10342965B2 (en) 2010-04-28 2019-07-09 Sorrento Therapeutics, Inc. Method for increasing the permeability of an epithelial barrier
US9586044B2 (en) 2010-04-28 2017-03-07 Kimberly-Clark Worldwide, Inc. Method for increasing the permeability of an epithelial barrier
WO2011135532A2 (en) 2010-04-28 2011-11-03 Kimberly-Clark Worldwide, Inc. Composite microneedle array including nanostructures thereon
US10245421B2 (en) 2010-04-28 2019-04-02 Sorrento Therapeutics, Inc. Nanopatterned medical device with enhanced cellular interaction
US10806914B2 (en) 2010-04-28 2020-10-20 Sorrento Therapeutics, Inc. Composite microneedle array including nanostructures thereon
US11565098B2 (en) 2010-04-28 2023-01-31 Sorrento Therapeutics, Inc. Device for delivery of rheumatoid arthritis medication
US10709884B2 (en) 2010-04-28 2020-07-14 Sorrento Therapeutics, Inc. Device for delivery of rheumatoid arthritis medication
US9522262B2 (en) 2010-04-28 2016-12-20 Kimberly-Clark Worldwide, Inc. Medical devices for delivery of siRNA
US9545507B2 (en) 2010-04-28 2017-01-17 Kimberly-Clark Worldwide, Inc. Injection molded microneedle array and method for forming the microneedle array
US10029083B2 (en) 2010-04-28 2018-07-24 Kimberly-Clark Worldwide, Inc. Medical devices for delivery of siRNA
US10029084B2 (en) 2010-04-28 2018-07-24 Kimberly-Clark Worldwide, Inc. Composite microneedle array including nanostructures thereon
US11179555B2 (en) 2010-04-28 2021-11-23 Sorrento Therapeutics, Inc. Nanopatterned medical device with enhanced cellular interaction
US9526883B2 (en) 2010-04-28 2016-12-27 Kimberly-Clark Worldwide, Inc. Composite microneedle array including nanostructures thereon
US11135414B2 (en) 2010-04-28 2021-10-05 Sorrento Therapeutics, Inc. Medical devices for delivery of siRNA
US9522263B2 (en) 2010-04-28 2016-12-20 Kimberly-Clark Worldwide, Inc. Device for delivery of rheumatoid arthritis medication
WO2011135531A2 (en) 2010-04-28 2011-11-03 Kimberly-Clark Worldwide, Inc. MEDICAL DEVICES FOR DELIVERY OF siRNA
US10029082B2 (en) 2010-04-28 2018-07-24 Kimberly-Clark Worldwide, Inc. Device for delivery of rheumatoid arthritis medication
US20220338870A1 (en) * 2010-09-30 2022-10-27 Cilag Gmbh International Tissue thickness compensator comprising a reservoir
US11911027B2 (en) 2010-09-30 2024-02-27 Cilag Gmbh International Adhesive film laminate
US11737754B2 (en) 2010-09-30 2023-08-29 Cilag Gmbh International Surgical stapler with floating anvil
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US20210259681A1 (en) * 2010-09-30 2021-08-26 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US20210282767A1 (en) * 2010-09-30 2021-09-16 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US20210290226A1 (en) * 2010-09-30 2021-09-23 Ethicon Llc Tissue thickness compensator comprising a reservoir
US11850310B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge including an adjunct
US11883025B2 (en) 2010-09-30 2024-01-30 Cilag Gmbh International Tissue thickness compensator comprising a plurality of layers
US20210267589A1 (en) * 2010-09-30 2021-09-02 Ethicon Llc Tissue thickness compensator comprising a reservoir
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11944292B2 (en) 2010-09-30 2024-04-02 Cilag Gmbh International Anvil layer attached to a proximal end of an end effector
US11857187B2 (en) 2010-09-30 2024-01-02 Cilag Gmbh International Tissue thickness compensator comprising controlled release and expansion
US10940626B2 (en) 2010-10-22 2021-03-09 Aquestive Therapeutics, Inc. Manufacturing of small film strips
US10272607B2 (en) 2010-10-22 2019-04-30 Aquestive Therapeutics, Inc. Manufacturing of small film strips
DE102010053792A1 (en) 2010-12-08 2012-06-14 Frank Becher Device for germ-free keeping of surfaces, such as door handles, handrails, grip bars, handles of shopping carts and toilet seating surfaces, has flat support material and self-adhesive portion formed on one side of flat support material
EP3513787A1 (en) 2011-01-10 2019-07-24 Invion, Inc Use of beta-adrenergic inverse agonists for smoking cessation
US9993444B2 (en) 2011-01-10 2018-06-12 Invion, Inc. Use of beta-adrenergic inverse agonists for smoking cessation
US8696637B2 (en) 2011-02-28 2014-04-15 Kimberly-Clark Worldwide Transdermal patch containing microneedles
US20140034058A1 (en) * 2011-03-29 2014-02-06 Resmed R&D Germany Gmbh Cushion for patient interface
US10687818B2 (en) 2011-04-27 2020-06-23 Covidien Lp Circular stapler and staple line reinforcment material
US11771430B2 (en) 2011-04-27 2023-10-03 Covidien Lp Stapler and staple line reinforcement material
US11918208B2 (en) 2011-05-27 2024-03-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
EP2584016A1 (en) 2011-10-21 2013-04-24 Dow Corning Corporation Single phase silicone acrylate formulation
US10667814B2 (en) 2011-10-26 2020-06-02 Covidien Lp Buttress release from surgical stapler by knife pushing
EP3824942A1 (en) 2011-10-27 2021-05-26 Sorrento Therapeutics, Inc. Transdermal delivery of high viscosity bioactive agents
EP3574950A1 (en) 2011-10-27 2019-12-04 Sorrento Therapeutics, Inc. Transdermal delivery of high viscosity bioactive agents
EP2599847A1 (en) 2011-11-29 2013-06-05 Dow Corning Corporation A Silicone Acrylate Hybrid Composition and Method of Making Same
US10357249B2 (en) 2011-12-14 2019-07-23 Covidien Lp Surgical stapling apparatus including releasable surgical buttress
US11229434B2 (en) 2011-12-14 2022-01-25 Covidien Lp Surgical stapling apparatus including releasable surgical buttress
US10828034B2 (en) 2011-12-14 2020-11-10 Covidien Lp Buttress attachment to the cartridge surface
US10098639B2 (en) 2011-12-14 2018-10-16 Covidien Lp Buttress attachment to the cartridge surface
US10786255B2 (en) 2011-12-14 2020-09-29 Covidien Lp Buttress assembly for use with surgical stapling device
US9512096B2 (en) 2011-12-22 2016-12-06 Knopp Biosciences, LLP Synthesis of amine substituted 4,5,6,7-tetrahydrobenzothiazole compounds
US10208003B2 (en) 2011-12-22 2019-02-19 Knopp Biosciences Llc Synthesis of amine substituted 4,5,6,7-tetrahydrobenzothiazole compounds
US10695066B2 (en) 2012-01-26 2020-06-30 Covidien Lp Surgical device including buttress material
US11419609B2 (en) 2012-01-26 2022-08-23 Covidien Lp Surgical device including buttress material
US11793509B2 (en) 2012-03-28 2023-10-24 Cilag Gmbh International Staple cartridge including an implantable layer
US11918220B2 (en) 2012-03-28 2024-03-05 Cilag Gmbh International Tissue thickness compensator comprising tissue ingrowth features
US11918213B2 (en) 2012-06-28 2024-03-05 Cilag Gmbh International Surgical stapler including couplers for attaching a shaft to an end effector
US11779420B2 (en) 2012-06-28 2023-10-10 Cilag Gmbh International Robotic surgical attachments having manually-actuated retraction assemblies
US11806013B2 (en) 2012-06-28 2023-11-07 Cilag Gmbh International Firing system arrangements for surgical instruments
US11399832B2 (en) 2012-07-18 2022-08-02 Covidien Lp Surgical apparatus including surgical buttress
US10485540B2 (en) 2012-07-18 2019-11-26 Covidien Lp Surgical apparatus including surgical buttress
US10881395B2 (en) 2012-08-20 2021-01-05 Covidien Lp Buttress attachment features for surgical stapling apparatus
US10285704B2 (en) 2012-10-10 2019-05-14 Covidien Lp Buttress fixation for a circular stapler
US11759211B2 (en) 2012-10-10 2023-09-19 Covidien Lp Buttress fixation for a circular stapler
US11207072B2 (en) 2012-10-10 2021-12-28 Covidien Lp Buttress fixation for a circular stapler
US10390827B2 (en) 2012-11-30 2019-08-27 Covidien Lp Multi-layer porous film material
US10245031B2 (en) 2012-11-30 2019-04-02 Covidien Lp Surgical apparatus including surgical buttress
US20140155916A1 (en) * 2012-11-30 2014-06-05 Covidien Lp Multi-Layer Porous Film Material
US9681936B2 (en) * 2012-11-30 2017-06-20 Covidien Lp Multi-layer porous film material
AU2013234420B2 (en) * 2012-11-30 2018-08-09 Covidien Lp Multi-layer porous film material
US10349942B2 (en) 2012-12-13 2019-07-16 Covidien Lp Folded buttress for use with a surgical apparatus
US11806018B2 (en) 2012-12-13 2023-11-07 Coviden Lp Folded buttress for use with a surgical apparatus
US11026688B2 (en) 2012-12-13 2021-06-08 Covidien Lp Folded buttress for use with a surgical apparatus
US10478191B2 (en) 2013-02-04 2019-11-19 Covidien Lp Buttress attachment for circular stapling device
US10321911B2 (en) 2013-02-25 2019-06-18 Covidien Lp Circular stapling device with buttress
US11076857B2 (en) 2013-02-25 2021-08-03 Covidien Lp Circular stapling device with buttress
US10722234B2 (en) 2013-02-28 2020-07-28 Covidien Lp Adherence concepts for non-woven absorbable felt buttresses
US9956206B2 (en) 2013-02-28 2018-05-01 Knopp Biosciences Llc Compositions and methods for treating amyotrophic lateral sclerosis in responders
US10285981B2 (en) 2013-02-28 2019-05-14 Knopp Biosciences Llc Compositions and methods for treating amyotrophic lateral sclerosis in responders
US9662313B2 (en) 2013-02-28 2017-05-30 Knopp Biosciences Llc Compositions and methods for treating amyotrophic lateral sclerosis in responders
US9682068B2 (en) 2013-05-20 2017-06-20 Mylan Inc. Transdermal therapeutic system for extended dosing of pramipexole in treating neurological disorders
US9468630B2 (en) 2013-07-12 2016-10-18 Knopp Biosciences Llc Compositions and methods for treating conditions related to increased eosinophils
US10383856B2 (en) 2013-07-12 2019-08-20 Knopp Biosciences Llc Compositions and methods for treating conditions related to increased eosinophils
US10980783B2 (en) 2013-07-12 2021-04-20 Knopp Biosciences Llc Compositions and methods for treating conditions related to increased eosinophils
US11612589B2 (en) 2013-07-12 2023-03-28 Areteia Therapeutics, Inc. Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils
US10828284B2 (en) 2013-07-12 2020-11-10 Knopp Biosciences Llc Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils
US11026928B2 (en) 2013-07-12 2021-06-08 Knopp Biosciences Llc Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils
US10383857B2 (en) 2013-07-12 2019-08-20 Knopp Biosciences Llc Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils
US10195183B2 (en) 2013-08-13 2019-02-05 Knopp Biosciences Llc Compositions and methods for treating chronic urticaria
US10456381B2 (en) 2013-08-13 2019-10-29 Knopp Biosciences Llc Compositions and methods for treating plasma cell disorders and B-cell prolymphocytic disorders
US10028940B2 (en) 2013-08-13 2018-07-24 Knopp Biosciences Llc Compositions and methods for treating plasma cell disorders and B-cell prolymphocytic disorders
US9642840B2 (en) 2013-08-13 2017-05-09 Knopp Biosciences, Llc Compositions and methods for treating plasma cell disorders and B-cell prolymphocytic disorders
US9763918B2 (en) 2013-08-13 2017-09-19 Knopp Biosciences Llc Compositions and methods for treating chronic urticaria
US10548598B2 (en) 2013-10-28 2020-02-04 Covidien Lp Circular surgical stapling device including buttress material
US11272936B2 (en) 2013-10-28 2022-03-15 Covidien Lp Circular surgical stapling device including buttress material
US9682960B2 (en) 2013-12-19 2017-06-20 Endorecherche, Inc. Non-steroidal antiandrogens and selective androgen receptor modulators with a pyridyl moiety
WO2015089634A1 (en) 2013-12-19 2015-06-25 Endorecherche, Inc. Non-steroidal antiandrogens and selective androgen receptor modulators with a pyridyl moiety
WO2015138919A1 (en) 2014-03-14 2015-09-17 The University Of North Carolina At Chapel Hill Small molecules for inhibiting male fertility
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US11925353B2 (en) 2014-04-16 2024-03-12 Cilag Gmbh International Surgical stapling instrument comprising internal passage between stapling cartridge and elongate channel
US11918222B2 (en) 2014-04-16 2024-03-05 Cilag Gmbh International Stapling assembly having firing member viewing windows
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US11944307B2 (en) 2014-04-16 2024-04-02 Cilag Gmbh International Surgical stapling system including jaw windows
US10500303B2 (en) 2014-08-15 2019-12-10 Tepha, Inc. Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof
US11426484B2 (en) 2014-08-15 2022-08-30 Tepha, Inc. Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof
US11944709B2 (en) 2014-08-15 2024-04-02 Tepha, Inc. Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof
US11717297B2 (en) 2014-09-05 2023-08-08 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11918210B2 (en) 2014-10-16 2024-03-05 Cilag Gmbh International Staple cartridge comprising a cartridge body including a plurality of wells
US11828006B2 (en) 2014-12-11 2023-11-28 Tepha, Inc. Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof
US10227713B2 (en) 2014-12-11 2019-03-12 Tepha, Inc. Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof
US9555155B2 (en) 2014-12-11 2017-01-31 Tepha, Inc. Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof
US10590566B2 (en) 2014-12-11 2020-03-17 Tepha, Inc. Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof
US10626521B2 (en) 2014-12-11 2020-04-21 Tepha, Inc. Methods of manufacturing mesh sutures from poly-4-hydroxybutyrate and copolymers thereof
US11744588B2 (en) 2015-02-27 2023-09-05 Cilag Gmbh International Surgical stapling instrument including a removably attachable battery pack
US10383816B2 (en) 2015-03-02 2019-08-20 Afgin Pharma, Llc Topical regional neuro-affective therapy with cannabinoid combination products
US10716766B2 (en) 2015-03-02 2020-07-21 Afgin Pharma, Llc Topical regional neuro-affective therapy with cannabinoids
US10632064B2 (en) 2015-03-02 2020-04-28 Afgin Pharma, Llc Topical regional neuro affective therapy with cannabinoid combination products
US10172809B2 (en) 2015-03-02 2019-01-08 Afgin Pharma Llc Topical regional neuro-affective therapy in mammals with cannabinoids
US11944338B2 (en) 2015-03-06 2024-04-02 Cilag Gmbh International Multiple level thresholds to modify operation of powered surgical instruments
US11918212B2 (en) 2015-03-31 2024-03-05 Cilag Gmbh International Surgical instrument with selectively disengageable drive systems
US20170055989A1 (en) * 2015-08-31 2017-03-02 Ethicon Endo-Surgery, Llc Inducing tissue adhesions using surgical adjuncts and medicants
US11839733B2 (en) 2015-08-31 2023-12-12 Cilag Gmbh International Medicant eluting adjuncts and methods of using medicant eluting adjuncts
US11826535B2 (en) 2015-08-31 2023-11-28 Cilag Gmbh International Medicant eluting adjuncts and methods of using medicant eluting adjuncts
US11129612B2 (en) * 2015-08-31 2021-09-28 Cilag Gmbh International Inducing tissue adhesions using surgical adjuncts and medicants
US10569071B2 (en) 2015-08-31 2020-02-25 Ethicon Llc Medicant eluting adjuncts and methods of using medicant eluting adjuncts
US10245034B2 (en) * 2015-08-31 2019-04-02 Ethicon Llc Inducing tissue adhesions using surgical adjuncts and medicants
US11849946B2 (en) 2015-09-23 2023-12-26 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US11903586B2 (en) 2015-09-30 2024-02-20 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US11944308B2 (en) 2015-09-30 2024-04-02 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
WO2017095730A1 (en) * 2015-11-30 2017-06-08 Elliptical Therapeutics, Llc Systems and methods for transdermal drug delivery
US11759208B2 (en) 2015-12-30 2023-09-19 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US11730471B2 (en) 2016-02-09 2023-08-22 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11779336B2 (en) 2016-02-12 2023-10-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10251435B1 (en) 2016-02-23 2019-04-09 Belle Chou Disposable glove with open-cell inner layer
WO2017180324A1 (en) * 2016-04-12 2017-10-19 Mylan Inc. Double disk transdermal system
US11931028B2 (en) 2016-04-15 2024-03-19 Cilag Gmbh International Surgical instrument with multiple program responses during a firing motion
US11811253B2 (en) 2016-04-18 2023-11-07 Cilag Gmbh International Surgical robotic system with fault state detection configurations based on motor current draw
US11191737B2 (en) 2016-05-05 2021-12-07 Aquestive Therapeutics, Inc. Enhanced delivery epinephrine compositions
US11273131B2 (en) 2016-05-05 2022-03-15 Aquestive Therapeutics, Inc. Pharmaceutical compositions with enhanced permeation
US10959731B2 (en) 2016-06-14 2021-03-30 Covidien Lp Buttress attachment for surgical stapling instrument
US10828266B2 (en) 2016-08-16 2020-11-10 Afgin Pharma, Llc Topical regional neuro-affective therapy with caryophyllene
US11596404B2 (en) 2016-11-08 2023-03-07 Covidien Lp Structure for attaching buttress to anvil and/or cartridge of surgical stapling instrument
US11026686B2 (en) 2016-11-08 2021-06-08 Covidien Lp Structure for attaching buttress to anvil and/or cartridge of surgical stapling instrument
US11918215B2 (en) 2016-12-21 2024-03-05 Cilag Gmbh International Staple cartridge with array of staple pockets
US11931034B2 (en) 2016-12-21 2024-03-19 Cilag Gmbh International Surgical stapling instruments with smart staple cartridges
US11052055B2 (en) 2016-12-29 2021-07-06 Pure Ratios Holding, Inc Modular transdermal delivery system and associated methods of manufacture and use
WO2018126225A1 (en) * 2016-12-29 2018-07-05 International Bioceutical Company, Llc Modular transdermal delivery system and associated methods of manufacture and use
US10874768B2 (en) 2017-01-20 2020-12-29 Covidien Lp Drug eluting medical device
US11571498B2 (en) 2017-01-20 2023-02-07 Covidien Lp Drug eluting medical device
US10925607B2 (en) 2017-02-28 2021-02-23 Covidien Lp Surgical stapling apparatus with staple sheath
US11096610B2 (en) 2017-03-28 2021-08-24 Covidien Lp Surgical implants including sensing fibers
US11793513B2 (en) 2017-06-20 2023-10-24 Cilag Gmbh International Systems and methods for controlling motor speed according to user input for a surgical instrument
US11871939B2 (en) 2017-06-20 2024-01-16 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD1018577S1 (en) 2017-06-28 2024-03-19 Cilag Gmbh International Display screen or portion thereof with a graphical user interface for a surgical instrument
US11890005B2 (en) 2017-06-29 2024-02-06 Cilag Gmbh International Methods for closed loop velocity control for robotic surgical instrument
US11426164B2 (en) 2017-08-07 2022-08-30 Covidien Lp Surgical buttress retention systems for surgical stapling apparatus
US10849625B2 (en) 2017-08-07 2020-12-01 Covidien Lp Surgical buttress retention systems for surgical stapling apparatus
US11446033B2 (en) 2017-08-23 2022-09-20 Covidien Lp Surgical buttress reload and tip attachment assemblies for surgical stapling apparatus
US10945733B2 (en) 2017-08-23 2021-03-16 Covidien Lp Surgical buttress reload and tip attachment assemblies for surgical stapling apparatus
US11801053B2 (en) 2017-08-23 2023-10-31 Covidien Lp Surgical buttress reload and tip attachment assemblies for surgical stapling apparatus
US11653916B2 (en) 2017-12-08 2023-05-23 Covidien Lp Surgical buttress for circular stapling
US11141151B2 (en) 2017-12-08 2021-10-12 Covidien Lp Surgical buttress for circular stapling
US11896222B2 (en) 2017-12-15 2024-02-13 Cilag Gmbh International Methods of operating surgical end effectors
US11849939B2 (en) 2017-12-21 2023-12-26 Cilag Gmbh International Continuous use self-propelled stapling instrument
US11751867B2 (en) 2017-12-21 2023-09-12 Cilag Gmbh International Surgical instrument comprising sequenced systems
US11065000B2 (en) 2018-02-22 2021-07-20 Covidien Lp Surgical buttresses for surgical stapling apparatus
US11350940B2 (en) 2018-04-30 2022-06-07 Covidien Lp Circular stapling apparatus with pinned buttress
US10758237B2 (en) 2018-04-30 2020-09-01 Covidien Lp Circular stapling apparatus with pinned buttress
US11426163B2 (en) 2018-05-09 2022-08-30 Covidien Lp Universal linear surgical stapling buttress
US11931039B2 (en) 2018-05-09 2024-03-19 Covidien Lp Surgical buttress loading and attaching/detaching assemblies
US11284896B2 (en) 2018-05-09 2022-03-29 Covidien Lp Surgical buttress loading and attaching/detaching assemblies
US11432818B2 (en) 2018-05-09 2022-09-06 Covidien Lp Surgical buttress assemblies
US11219460B2 (en) 2018-07-02 2022-01-11 Covidien Lp Surgical stapling apparatus with anvil buttress
US11376008B2 (en) 2018-09-14 2022-07-05 Covidien Lp Drug patterned reinforcement material for circular anastomosis
US10806459B2 (en) 2018-09-14 2020-10-20 Covidien Lp Drug patterned reinforcement material for circular anastomosis
US10952729B2 (en) 2018-10-03 2021-03-23 Covidien Lp Universal linear buttress retention/release assemblies and methods
US11627964B2 (en) 2018-10-03 2023-04-18 Covidien Lp Universal linear buttress retention/release assemblies and methods
US11730472B2 (en) 2019-04-25 2023-08-22 Covidien Lp Surgical system and surgical loading units thereof
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11596403B2 (en) 2019-05-08 2023-03-07 Covidien Lp Surgical stapling device
US11478245B2 (en) 2019-05-08 2022-10-25 Covidien Lp Surgical stapling device
US11744593B2 (en) 2019-06-28 2023-09-05 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11571208B2 (en) 2019-10-11 2023-02-07 Covidien Lp Surgical buttress loading units
US11523824B2 (en) 2019-12-12 2022-12-13 Covidien Lp Anvil buttress loading for a surgical stapling apparatus
US11547407B2 (en) 2020-03-19 2023-01-10 Covidien Lp Staple line reinforcement for surgical stapling apparatus
WO2021207328A1 (en) * 2020-04-07 2021-10-14 Bushy Ita Catheter shield
US11337699B2 (en) 2020-04-28 2022-05-24 Covidien Lp Magnesium infused surgical buttress for surgical stapler
US11707276B2 (en) 2020-09-08 2023-07-25 Covidien Lp Surgical buttress assemblies and techniques for surgical stapling
US11399833B2 (en) 2020-10-19 2022-08-02 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11534170B2 (en) 2021-01-04 2022-12-27 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11918217B2 (en) 2021-05-28 2024-03-05 Cilag Gmbh International Stapling instrument comprising a staple cartridge insertion stop
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11510670B1 (en) 2021-06-23 2022-11-29 Covidien Lp Buttress attachment for surgical stapling apparatus
US11596399B2 (en) 2021-06-23 2023-03-07 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11672538B2 (en) 2021-06-24 2023-06-13 Covidien Lp Surgical stapling device including a buttress retention assembly
US11678879B2 (en) 2021-07-01 2023-06-20 Covidien Lp Buttress attachment for surgical stapling apparatus
US11684368B2 (en) 2021-07-14 2023-06-27 Covidien Lp Surgical stapling device including a buttress retention assembly
US11801052B2 (en) 2021-08-30 2023-10-31 Covidien Lp Assemblies for surgical stapling instruments
US11751875B2 (en) 2021-10-13 2023-09-12 Coviden Lp Surgical buttress attachment assemblies for surgical stapling apparatus
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11806017B2 (en) 2021-11-23 2023-11-07 Covidien Lp Anvil buttress loading system for surgical stapling apparatus

Similar Documents

Publication Publication Date Title
US3797494A (en) Bandage for the administration of drug by controlled metering through microporous materials
US3996934A (en) Medical bandage
US4666441A (en) Multicompartmentalized transdermal patches
US4810499A (en) Transdermal drug delivery system and method
US4624665A (en) Method of transdermal drug delivery
US4927687A (en) Sustained release transdermal drug delivery composition
US3731683A (en) Bandage for the controlled metering of topical drugs to the skin
US4687481A (en) Transdermal drug delivery system
US5314694A (en) Transdermal formulations, methods and devices
US5064654A (en) Mixed solvent mutually enhanced transdermal therapeutic system
US5679373A (en) Process of assembling a transdermal patch incorporating a polymer film incorporated with an active agent
US5662925A (en) Transdermal delivery system with adhesive overlay and peel seal disc
JP2716231B2 (en) Occluder for administration of physiologically active substances
US5925372A (en) Mixed solvent mutually enhanced transdermal therapeutic system
CA1333689C (en) Transdermal drug delivery device
US5198223A (en) Transdermal formulations, methods and devices
JP2763773B2 (en) Methods of using and manufacturing transdermal therapeutic products
AU657502B2 (en) Transdermal contraceptive formulations, methods and devices
IE61788B1 (en) Transdermal therapeutic system
JP2588039B2 (en) Plaster used as a transdermal medicament exhibiting a gradual release of active substance and method for producing the same
JPH06508379A (en) Transdermal drug delivery device
WO1990011065A1 (en) Device for administering an active agent to the skin or mucosa
JPS6250447B2 (en)
JPS5984817A (en) Pharmaceutical for prolonged release of chemical
JPH046169B2 (en)