US3593421A - Multihelical omniarch - Google Patents

Multihelical omniarch Download PDF

Info

Publication number
US3593421A
US3593421A US683405A US3593421DA US3593421A US 3593421 A US3593421 A US 3593421A US 683405 A US683405 A US 683405A US 3593421D A US3593421D A US 3593421DA US 3593421 A US3593421 A US 3593421A
Authority
US
United States
Prior art keywords
arch form
resilient member
helices
continuous
arch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US683405A
Inventor
Allen C Brader
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3593421A publication Critical patent/US3593421A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/12Brackets; Arch wires; Combinations thereof; Accessories therefor
    • A61C7/20Arch wires

Definitions

  • Jacobson [541 MULTIHELICALOMNIARCH 10 chains 24 Drawing Figs' ABSTRACT: A resilient arch form structure characterized by ⁇ 52] [1.8.0 .1 32/14 A helices f d integrally therewith The helices are pitched Cl 7/00 and may be interspersed integrally within the arch form strucl PW Sflld! 32/14 ture or may be continuous within the arch form structure such as a continuous wire, plastic form or the like.
  • the arch form is [56] Rekmm cued operatively connected with a tooth for delivering a force UNITED STATES PATENTS simultaneously in at least three planes of space and also 3,052,081 9/1962 Wallshein 32/14 X enabling force application in the form of torsion or torque to 2,305,916 12/1942 Atkinson 32/14 achieve position changes in the tooth root.
  • the multihelical omniarch of the present invention is a component employed in an orthodontic appliance system in the form of an arch form structure characterized by helices formed integrally within a continuous resilient arch form structure such as wire, plastic form or the like.
  • the object of the multihelical omniarch of the present invention is to provide within a single construction, the possibility of delivery of forces a low magnitude in all three dimensions simultaneously and also permit torque forces to be delivered without change of wires.
  • This construction saves the patient and the operator time and cost and enhances the convenience of an orthodontic appliance.
  • This construction also approaches optimum conditions for force control and force delivery by virtue of its differences in construction from existing arch wires.
  • the multihelical omniarch may be machine constructed for providing an inexpensive supply of prefabricated components of orthodontic appliance systems, is compatibly applicable with existing orthodontic systems which employ many different dental bracket configurations, is compatibly applicable by additions of integral arch form attachments with dental attachments of various constructions, may produce a wide range of forces of varied extent and duration by varying the number of helices to meet the wide range of desirable tooth movements encountered in human dental malocclusion, may produce a wide range of forces by varying the diameter of the helices, may be manufactured within a range of wire diameters yielding various ranges of forces, may be segmental (partial for two or more teeth) or include attachment with all the teeth of a given arch, variable in construction with the helices pitched, interspersed or close wound, permits torque between selected locations on the total arch form, may yield a wide range of measurable forces by employing combinations of variables of wire diameter, wire temper, number of helices, helix diameter, pitch or the like to enable tabulation of the measurable quantities to reduce empirical orthodontic procedures, may act in three
  • FIG. I is a perspective view of the basic general linear form of interspersed pitched multihelices formed in and along a single wire;
  • FIG. 2 is a group perspective view showing the form of FIG. I curved and engaging conventional edgewise brackets on several adjacent teeth and illustrating the ligature wire tie employed therewith;
  • FIG. 3 is a perspective view ofa variation of the basic linear form with integral arch form attachments added thereto along straight inter-helical sections;
  • FIG. 4 is a perspective view disclosing the structure of FIG. 3 engaging cooperative dental attachments along several adjacent teeth;
  • FIG. 5 is a plan view of an open wound wire with pitched, interspersed multihclices
  • FIG. 6 is a wire with close wound interspersed multihclices
  • FIG. 7 is a fragmental view of a multihelical arch form attached with ligature wire to a conventional orthodontic bracket ofthc edgewise type
  • FIG. 8 is an exploded view of the construction of FIG. 7;
  • FIG. 9 is a fragmental view of a multihelical arch form with integral arch form attachments engaged in cooperating dental attachments, in situ;
  • FIG. I0 is an exploded view of the construction of FIG. 9 illustrating the capacity of the device for storing energy in torsion;
  • FIG. I1 is a top view ofa curved multihelical arch form construction conformed to an ellipse for direction application to the human dentition and is preferred for the maxillary dentitron;
  • FIG. 12 is a plan view illustrating a parabolic variation of the construction of FIG. II and is useful in conjunction with the mandibular dentition;
  • FIG. 13 is a side perspective view of the construction of FIG. ll illustrating the curvature of the construction and the vertical plane of space;
  • FIG. 14 is a side perspective of the construction of FIG. 12;
  • FIG. 15 is a plan view illustrating a sectional form of the helices illustrating potential use in only part of the dental arch with or without integral arch form attachments;
  • FIG. 16 is a group perspective view of portions of a multihelical arch form in which square and rectangular cross sections of wire may be employed;
  • FIG. I7 is a plan view of an independent multihelical arch form in which a continuous coil spring with spacing between the turns of the resilient material is employed;
  • FIG. 18 is a plan view of an arch form similar to FIG. 17 but with a core wire associated therewith;
  • FIG. I9 is a plan view of the construction of FIG. 18 with multiple arch form attachments mounted thereon;
  • FIG. 20 is an exploded group perspective view illustrating the association of the arch form attachments to the helical wire and core wire;
  • FIG. 21 is a sectional view of the arch form attachment
  • FIG. 22 is a plan view of the arch form wire without a core wire with arch form attachments anchored from the interior of the helices;
  • FIG. 23 is a perspective view-of the arch fonn attachment employed in FIG. 22.
  • FIG. 24 is an end view of'the arch form attachment illus trated in FIG. 23.
  • FIGS. 1 and 2 in the drawings illustrate the basic linear form of the multihelical omniarch generally designated by numeral 30 and includes a single wire 32 interspersed with pitched multihclices 34 formed in and along the wire 32.
  • the arch form is attached to the teeth 36 by conventional edgewise brackets 38 which are attached to the teeth 36 by the usual bands 40 or by any other means.
  • a conventional ligature wire 42 is employed for securing the wire 32 to the edgewise bracket 38 in a conventional manner as illustrated in Fig. 7.
  • the ligature wire ties 42 are conventional and serve to secure the straight sections of the'wire 32 in the conventional edgewise brackets 38.
  • FIGS. 3 and 4 illustrate another type of multihelical omniarch 44 including a single wire 46 having interspersed pitched multihelices 48 formed in and along the single wire.
  • arch form attachments 50 are formed integrally, such as by molding thereon, along straight sections of the wire between the helices 48.
  • This construction is attached to the teeth 52 by cooperative dental attachments 54 attached to the teeth by a suitable band 56 or the like thus providing integral arch fonn attachments for anchoring to the teeth.
  • Fig. illustrates a construction in which the single straight wire 57 is provided with interspersed open wound multihelices 58 while Fig. 6 illustrates a single wire 60 having a plurality of spaced close wound helices 62.
  • Fig. 7 illustrates the manner in which the single wire is attached to the dental bracket 38 with the ligature wire 42
  • Fig. 8 illustrates a view of an exploded nature but with the straight section of the wire 32' being centrally located within the coils of the helices 34' rather than the straight section being disposed along a common line at one edge ofthe coil as illustrated in FIGS. 1, 2 and 7.
  • FIGS. 9 and I0 illustrate the structure of FIGS. 3 and 4 associated with a tooth and the dental attachment with Fig. I0 illustrating the torsional force or capacity of the device to store energy in torsion in order to exert or deliver a torsion or twisting force on the tooth 52 in order to change the tooth root position which is a necessary requirement in some malpositions.
  • Fig. ll illustrates the general basic form of the invention 60 which includes a straight wire 62 and interspersed multihelices 64 which is curved and confonns with an ellipse of 45 for direct application to the human dentition.
  • the curvature in the form of an ellipse renders the structure such as the embodiment of Fig. I useful primarily with the maxillary dentition.
  • Fig. I3 illustrates the curvature in the vertical plane of space of the elliptical curvature which is also useful in delivering a controlled and directed force to the teeth.
  • FIGS. 12 and I4 illustrate another embodiment of the invention which is a parabolic variation generally designated by numeral 66 including straight wire sections 68 and interspersed multihelices 70 which is primarily useful in the mandibular dentition and has curvature in a vertical plane as illustrated in Fig. 14.
  • FIG. 16 illustrates three sectional forms of the invention including a first embodiment 72 including straight wire sections 74 and interspersed multihelices 76, a section 78 including straight wire sections 80 and multihelices 82 with integral arch form attachments 84 thereon in which the helices are open wound or an arch form 86 having straight sections 88 with arch form attachments 90 thereon and multihelices 92 which are close wound.
  • FIG. 16 illustrates two embodiments of the arch form 94 and 96 which are square and rectangular respectively in cross-sectional configuration with it being understood that any of the arch forms disclosed may be constructed of a single wire of such cross-sectional configuration with or without the arch form attachments.
  • FIG. 17 illustrates an independent arch form I00 in the form of a continuous coil spring 102 with spacing between the turns of the resilient material thus forming a pitched coil.
  • FIG. I8 illustrates an arch form 104 in the form of an independent continuous coil spring 106 similar to the structure illustrated in FIG. 17 but with a core wire I08 disposed therein.
  • the core wire 108 will effectively control the parabolic or elliptical shape of the coil with it being pointed out that the construction illustrated in FIGS. I7 and 18 may be constructed either in the form ofan ellipse or parabola.
  • FIGS. I9, and 21 illustrate the construction of FIG. I8 combined with arch form attachments I10 to engage and fit on the outside of the coil spring I06.
  • the arch form attachment [10 includes a cylindrical member I12 integral with a base 114 connected to a tooth by use of a band or the like.
  • the cylindrical member H2 is provided with internal helical grooves and ridges 116 which enable the arch form attachment 0 to be rotated around the helix of the spring I06 like a nut onto a screw to a desired adjusted position in relation to the helix and in relation to other attachments where appropriate.
  • energy may be stored by compression or extension or may simply be controlled by fixation and the distance between the teeth.
  • FIGS. 22- 24 illustrate the arch form illustrated in FIG. I7 combined with arch form attachments I18 which are engaged interiorly of the continuous coil spring 102.
  • the arch form attachment I I8 includes a cylindrical portion I20 and a base 122.
  • the cylindrical member 120 is provided with angulated fins I24 to fit inside of the helical coil spring with the fin performing a capstan function.
  • the arch form attachment I I8 may be rotated to a selected position using the inside diameter of the helices for a threading operation so that the position of the arch form attachment along the coil spring may be selected for each individual requirement.
  • the number of helices in the arch form may be varied, the spacing of the helices may be varied and the diameter thereof may be varied. Generally, any odd number from one to l I separate helical windings is possible. Diameters of the helices may vary and the diameter selected must represent a compromise between the maximum length of wire possible to locate between teeth and the limit of bulk and the scqucllae of tissue irritation to gums and lips.
  • the arch form may be segmental or sectional or may be a complete elliptical or parabolic arch.
  • the helices may be pitched or open wound or close wound helices. The pitched or open wound helices can react to extension or compression in the horizontal plane of space while the close wound helices can react only to extension.
  • the integral arch form attachment may be rotated about the longitudinal axis of the wire l80 or 360 or multiples thereof before attachment with the dental attachment.
  • the other dental attachments on the arch form resist reciprocally and result in torquing movement at the arch form attachment or section of the wire associated therewith.
  • Various combinations may be employed as long as the number of resistance units exceeds the number of units to be torqued.
  • a tooth will be influenced toward a predetermined position as a preselected optimum in one, two, or three planes of space simultaneously.
  • the resilient reaction of the arch form to the deformation incorporated therein plus time permits tissue changes which result in tooth movements toward the original undeformed shape of the arch form thus ironing out" tooth positions toward predetermined positions of optimum appearance and function.
  • An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivering force in three planes of space and also torque forces for bodily moving malposed teeth, said helices being formed in spaced groups interspersed along the length of said resilient member, and arch form attachments connected to the resilient member to deliver stored energy from the resilient member to a dental attachment on a tooth.
  • An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivering force in three planes of space and also torque forces for bodily moving malposed teeth, said helices being continuous from end to end of said resilient member with the convolutions thereof being spaced, a core wire disposed within the helices and defining a longitudinal axis thereof for controlling the curvature of the arch form, and arch form attachments connected to the resilient member to deliver stored energy from the resilient member to a dental attachment on a tooth.
  • An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivering force in three planes of space and also torque forces for bodily moving malposed teeth, said helices being continuous from end to end of said resilient member with the convolutions thereof being spaced, and arch form attachments connected to the resilient member to deliver stored energy from the resilient member to a dental attachment on a tooth, said arch form attachments having an aperture therethrough, said aperture having spiral groove means therein threadedly engaged with the continuous helices for adjusting the position of the arch form attachments in relation to the arch form.
  • An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivering force in three planes of space and also torque forces for bodily moving malposed teeth, said helices being continuous from end to end of said resilient member with the convolutions thereof being spaced, and arch form attachments connected to the resilient member to deliver stored energy from the resilient member to a dental attachment on a tooth, said arch form attachments having a cylindrical portion, a base adapted to be connected to a dental attachment, and an angulated fin connecting the base and cylindrical portion, said cylindrical portion disposed interiorly of the continuous helices with the tin disposed between adjacent convolutions thereof for adjusting the position of the arch form attachments by rotating them in relation to the resilient member.
  • An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having at least one helix incorporated unitarily therein capable of delivering force in three planes of space, and also torque forces for bodily moving malposed teeth, said resilient member being a wire of noncircular cross section to facilitate delivery of torque forces to a dental attachment to which the arch form is operatively connected by an arch form attachment.
  • An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivering force in three planes of space and also torque forces for bodily moving malposed teeth, said arch form being formed into an elliptical curve and provided with a curvature in a vertical direction from the center thereof toward each free end for association with a human dentition.
  • An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivery force in three planes of space and also torque forces for bodily moving malposed teeth, said arch form being formed into a parabolic curve and provided with a curvature in a vertical direction from the center thereof toward each free end for association with a human dentition.

Abstract

A resilient arch form structure characterized by helices formed integrally therewith. The helices are pitched and may be interspersed integrally within the arch form structure or may be continuous within the arch form structure such as a continuous wire, plastic form or the like. The arch form is operatively connected with a tooth for delivering a force simultaneously in at least three planes of space and also enabling force application in the form of torsion or torque to achieve position changes in the tooth root.

Description

0 United States Patent 1 13,593,421
[72} Inventor Allen C. Brader 2,959,856 11/1960 Gurin 1. 32/14 1305 Hamilton 81., Allentown, Pa. OTHER REFERENCES ml P 'AMERlCAN JOURNAL or ORTHODONTICS, Page 8, 221 Filed Nov. 15,1967 D [963 v l 49 12 4s 1 Patented July 20, 1971 Primary Examiner--Robert Peshock Attorneys-Clarence A. OBrien and Harvey B. Jacobson [541 MULTIHELICALOMNIARCH 10 chains 24 Drawing Figs' ABSTRACT: A resilient arch form structure characterized by {52] [1.8.0 .1 32/14 A helices f d integrally therewith The helices are pitched Cl 7/00 and may be interspersed integrally within the arch form strucl PW Sflld! 32/14 ture or may be continuous within the arch form structure such as a continuous wire, plastic form or the like. The arch form is [56] Rekmm cued operatively connected with a tooth for delivering a force UNITED STATES PATENTS simultaneously in at least three planes of space and also 3,052,081 9/1962 Wallshein 32/14 X enabling force application in the form of torsion or torque to 2,305,916 12/1942 Atkinson 32/14 achieve position changes in the tooth root.
PATENTEDJUQOIQH 3593421 SHEET 1 OF 3 Fig-.5 58
Fig.6
7//// Ill! Allen 6. Brader INVENTOK.
PATENTEUJULQOIQYI 3.593421 SHEET 3 BF 3 Allen 6. Bmaer m MWWEMM MULTIIIELICAL OMNIARCH The multihelical omniarch of the present invention is a component employed in an orthodontic appliance system in the form of an arch form structure characterized by helices formed integrally within a continuous resilient arch form structure such as wire, plastic form or the like.
Existing arch materials consist for the most part of metal wires having looped deformations formed therein to store energy and release forces over protracted intervals with low load deflection rates. The leverage of such loops may be increased by lengthening the span of wire between the points of attachment on the teeth which increases the range of activity and diminishes the load. A relatively light force applied continuously over a long range of distance represents the most desirable conditions for the movement of teeth. Presently known arch forms are designed and constructed to operate simultaneously in at least two planes of space. However, the problems of achieving alignment of malposed teeth exist within a three-dimensional concept or in three planes. A fourth direction of force application required is that of torsion or torque to achieve tooth root position changes. The socalled edgewise system of orthodontic appliances was specifically constructed to attain such a function. It is well known that round wires present special problems of torque force application for obvious reasons. However, small diameter round wires are desirable for general orthodontic uses because the wire generated stresses can be a cubed function of the wire diameter in certain force directions.
Accordingly, the object of the multihelical omniarch of the present invention is to provide within a single construction, the possibility of delivery of forces a low magnitude in all three dimensions simultaneously and also permit torque forces to be delivered without change of wires. This construction saves the patient and the operator time and cost and enhances the convenience of an orthodontic appliance. This construction also approaches optimum conditions for force control and force delivery by virtue of its differences in construction from existing arch wires.
The multihelical omniarch may be machine constructed for providing an inexpensive supply of prefabricated components of orthodontic appliance systems, is compatibly applicable with existing orthodontic systems which employ many different dental bracket configurations, is compatibly applicable by additions of integral arch form attachments with dental attachments of various constructions, may produce a wide range of forces of varied extent and duration by varying the number of helices to meet the wide range of desirable tooth movements encountered in human dental malocclusion, may produce a wide range of forces by varying the diameter of the helices, may be manufactured within a range of wire diameters yielding various ranges of forces, may be segmental (partial for two or more teeth) or include attachment with all the teeth of a given arch, variable in construction with the helices pitched, interspersed or close wound, permits torque between selected locations on the total arch form, may yield a wide range of measurable forces by employing combinations of variables of wire diameter, wire temper, number of helices, helix diameter, pitch or the like to enable tabulation of the measurable quantities to reduce empirical orthodontic procedures, may act in three planes simultaneously, permits fabrication of arches custom constructed to optimally solve specific problems of dental malposition, saves the time of multiple arch wire construction for dental malposition problems, provides customized constructions for solving individual cases of dental malposition and otherwise is well adapted for its intended purposes.
These together with other objects and advantages which will become subsequently apparent reside in the details of construction and operation as more fully hereinafter described and claimed, reference being had to the accompanying drawings forming a part hereof, wherein like numerals refer to like parts throughout, and in which:
FIG. I is a perspective view of the basic general linear form of interspersed pitched multihelices formed in and along a single wire;
FIG. 2 is a group perspective view showing the form of FIG. I curved and engaging conventional edgewise brackets on several adjacent teeth and illustrating the ligature wire tie employed therewith;
FIG. 3 is a perspective view ofa variation of the basic linear form with integral arch form attachments added thereto along straight inter-helical sections;
FIG. 4 is a perspective view disclosing the structure of FIG. 3 engaging cooperative dental attachments along several adjacent teeth;
FIG. 5 is a plan view of an open wound wire with pitched, interspersed multihclices;
FIG. 6 is a wire with close wound interspersed multihclices;
FIG. 7 is a fragmental view of a multihelical arch form attached with ligature wire to a conventional orthodontic bracket ofthc edgewise type;
FIG. 8 is an exploded view of the construction of FIG. 7;
FIG. 9 is a fragmental view of a multihelical arch form with integral arch form attachments engaged in cooperating dental attachments, in situ;
FIG. I0 is an exploded view of the construction of FIG. 9 illustrating the capacity of the device for storing energy in torsion;
FIG. I1 is a top view ofa curved multihelical arch form construction conformed to an ellipse for direction application to the human dentition and is preferred for the maxillary dentitron;
FIG. 12 is a plan view illustrating a parabolic variation of the construction of FIG. II and is useful in conjunction with the mandibular dentition;
FIG. 13 is a side perspective view of the construction of FIG. ll illustrating the curvature of the construction and the vertical plane of space;
FIG. 14 is a side perspective of the construction of FIG. 12;
FIG. 15 is a plan view illustrating a sectional form of the helices illustrating potential use in only part of the dental arch with or without integral arch form attachments;
FIG. 16 is a group perspective view of portions of a multihelical arch form in which square and rectangular cross sections of wire may be employed;
FIG. I7 is a plan view of an independent multihelical arch form in which a continuous coil spring with spacing between the turns of the resilient material is employed;
FIG. 18 is a plan view of an arch form similar to FIG. 17 but with a core wire associated therewith;
FIG. I9 is a plan view of the construction of FIG. 18 with multiple arch form attachments mounted thereon;
FIG. 20 is an exploded group perspective view illustrating the association of the arch form attachments to the helical wire and core wire;
FIG. 21 is a sectional view of the arch form attachment;
FIG. 22 is a plan view of the arch form wire without a core wire with arch form attachments anchored from the interior of the helices;
FIG. 23 is a perspective view-of the arch fonn attachment employed in FIG. 22; and
FIG. 24 is an end view of'the arch form attachment illus trated in FIG. 23.
FIGS. 1 and 2 in the drawings illustrate the basic linear form of the multihelical omniarch generally designated by numeral 30 and includes a single wire 32 interspersed with pitched multihclices 34 formed in and along the wire 32. In use, as illustrated in Fig. 2, the arch form is attached to the teeth 36 by conventional edgewise brackets 38 which are attached to the teeth 36 by the usual bands 40 or by any other means. A conventional ligature wire 42 is employed for securing the wire 32 to the edgewise bracket 38 in a conventional manner as illustrated in Fig. 7. The ligature wire ties 42 are conventional and serve to secure the straight sections of the'wire 32 in the conventional edgewise brackets 38.
FIGS. 3 and 4 illustrate another type of multihelical omniarch 44 including a single wire 46 having interspersed pitched multihelices 48 formed in and along the single wire. In this construction, arch form attachments 50 are formed integrally, such as by molding thereon, along straight sections of the wire between the helices 48. This construction is attached to the teeth 52 by cooperative dental attachments 54 attached to the teeth by a suitable band 56 or the like thus providing integral arch fonn attachments for anchoring to the teeth.
Fig. illustrates a construction in which the single straight wire 57 is provided with interspersed open wound multihelices 58 while Fig. 6 illustrates a single wire 60 having a plurality of spaced close wound helices 62.
Fig. 7 illustrates the manner in which the single wire is attached to the dental bracket 38 with the ligature wire 42 and Fig. 8 illustrates a view of an exploded nature but with the straight section of the wire 32' being centrally located within the coils of the helices 34' rather than the straight section being disposed along a common line at one edge ofthe coil as illustrated in FIGS. 1, 2 and 7.
FIGS. 9 and I0 illustrate the structure of FIGS. 3 and 4 associated with a tooth and the dental attachment with Fig. I0 illustrating the torsional force or capacity of the device to store energy in torsion in order to exert or deliver a torsion or twisting force on the tooth 52 in order to change the tooth root position which is a necessary requirement in some malpositions.
Fig. ll illustrates the general basic form of the invention 60 which includes a straight wire 62 and interspersed multihelices 64 which is curved and confonns with an ellipse of 45 for direct application to the human dentition. The curvature in the form of an ellipse renders the structure such as the embodiment of Fig. I useful primarily with the maxillary dentition. Fig. I3 illustrates the curvature in the vertical plane of space of the elliptical curvature which is also useful in delivering a controlled and directed force to the teeth.
FIGS. 12 and I4 illustrate another embodiment of the invention which is a parabolic variation generally designated by numeral 66 including straight wire sections 68 and interspersed multihelices 70 which is primarily useful in the mandibular dentition and has curvature in a vertical plane as illustrated in Fig. 14. The parabolic form of the multihelical arch form as illustrated in FIG. I2 is y=4ax. In the elliptical form of the arch form illustrated in FIGS. II and I3, the generic equation is x/a+y'/b=l FIG. illustrates three sectional forms of the invention including a first embodiment 72 including straight wire sections 74 and interspersed multihelices 76, a section 78 including straight wire sections 80 and multihelices 82 with integral arch form attachments 84 thereon in which the helices are open wound or an arch form 86 having straight sections 88 with arch form attachments 90 thereon and multihelices 92 which are close wound. These sectional forms are employed for use in only part of the dental arch with or without the integral arch form attachments. FIG. 16 illustrates two embodiments of the arch form 94 and 96 which are square and rectangular respectively in cross-sectional configuration with it being understood that any of the arch forms disclosed may be constructed of a single wire of such cross-sectional configuration with or without the arch form attachments.
FIG. 17 illustrates an independent arch form I00 in the form of a continuous coil spring 102 with spacing between the turns of the resilient material thus forming a pitched coil. FIG. I8 illustrates an arch form 104 in the form of an independent continuous coil spring 106 similar to the structure illustrated in FIG. 17 but with a core wire I08 disposed therein. The core wire 108 will effectively control the parabolic or elliptical shape of the coil with it being pointed out that the construction illustrated in FIGS. I7 and 18 may be constructed either in the form ofan ellipse or parabola. FIGS. I9, and 21 illustrate the construction of FIG. I8 combined with arch form attachments I10 to engage and fit on the outside of the coil spring I06. The arch form attachment [10 includes a cylindrical member I12 integral with a base 114 connected to a tooth by use of a band or the like. The cylindrical member H2 is provided with internal helical grooves and ridges 116 which enable the arch form attachment 0 to be rotated around the helix of the spring I06 like a nut onto a screw to a desired adjusted position in relation to the helix and in relation to other attachments where appropriate. By increasing or decreasing the number of turns of the arch form 104 between sites of dental attachments, energy may be stored by compression or extension or may simply be controlled by fixation and the distance between the teeth.
FIGS. 22- 24 illustrate the arch form illustrated in FIG. I7 combined with arch form attachments I18 which are engaged interiorly of the continuous coil spring 102. The arch form attachment I I8 includes a cylindrical portion I20 and a base 122. The cylindrical member 120 is provided with angulated fins I24 to fit inside of the helical coil spring with the fin performing a capstan function. The arch form attachment I I8 may be rotated to a selected position using the inside diameter of the helices for a threading operation so that the position of the arch form attachment along the coil spring may be selected for each individual requirement.
As illustrated, the number of helices in the arch form may be varied, the spacing of the helices may be varied and the diameter thereof may be varied. Generally, any odd number from one to l I separate helical windings is possible. Diameters of the helices may vary and the diameter selected must represent a compromise between the maximum length of wire possible to locate between teeth and the limit of bulk and the scqucllae of tissue irritation to gums and lips. The arch form may be segmental or sectional or may be a complete elliptical or parabolic arch. The helices may be pitched or open wound or close wound helices. The pitched or open wound helices can react to extension or compression in the horizontal plane of space while the close wound helices can react only to extension. The integral arch form attachment may be rotated about the longitudinal axis of the wire l80 or 360 or multiples thereof before attachment with the dental attachment. Thus, the other dental attachments on the arch form resist reciprocally and result in torquing movement at the arch form attachment or section of the wire associated therewith. Various combinations may be employed as long as the number of resistance units exceeds the number of units to be torqued. A tooth will be influenced toward a predetermined position as a preselected optimum in one, two, or three planes of space simultaneously. The resilient reaction of the arch form to the deformation incorporated therein plus time permits tissue changes which result in tooth movements toward the original undeformed shape of the arch form thus ironing out" tooth positions toward predetermined positions of optimum appearance and function. When a fixed relationship is established on the arch form for the attachment of a tooth by use of a dental attachment, bodily movement of the tooth and root becomes possible in contradistinction to a tipping movement of the tooth crown portion only. Thus, with the square or rectangular shape of the arch form and the integral arch form attachment will effect bodily tooth movement where such is preferred over tipping movement which is usually desired.
What I claim as new is as follows:
I. An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivering force in three planes of space and also torque forces for bodily moving malposed teeth, said helices being formed in spaced groups interspersed along the length of said resilient member, and arch form attachments connected to the resilient member to deliver stored energy from the resilient member to a dental attachment on a tooth.
2. The arch form as defined in claim I wherein said helices in each group are open wound with space between each convolution thereof.
3. The arch form as defined in claim I wherein said helices in each group are close wound with the convolutions in each group being in contact.
4. The arch form as defined in claim 1 wherein said arch form attachments are integrally molded on said resilient member intermediate said groups of helices.
5. An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivering force in three planes of space and also torque forces for bodily moving malposed teeth, said helices being continuous from end to end of said resilient member with the convolutions thereof being spaced, a core wire disposed within the helices and defining a longitudinal axis thereof for controlling the curvature of the arch form, and arch form attachments connected to the resilient member to deliver stored energy from the resilient member to a dental attachment on a tooth.
6. An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivering force in three planes of space and also torque forces for bodily moving malposed teeth, said helices being continuous from end to end of said resilient member with the convolutions thereof being spaced, and arch form attachments connected to the resilient member to deliver stored energy from the resilient member to a dental attachment on a tooth, said arch form attachments having an aperture therethrough, said aperture having spiral groove means therein threadedly engaged with the continuous helices for adjusting the position of the arch form attachments in relation to the arch form.
7. An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivering force in three planes of space and also torque forces for bodily moving malposed teeth, said helices being continuous from end to end of said resilient member with the convolutions thereof being spaced, and arch form attachments connected to the resilient member to deliver stored energy from the resilient member to a dental attachment on a tooth, said arch form attachments having a cylindrical portion, a base adapted to be connected to a dental attachment, and an angulated fin connecting the base and cylindrical portion, said cylindrical portion disposed interiorly of the continuous helices with the tin disposed between adjacent convolutions thereof for adjusting the position of the arch form attachments by rotating them in relation to the resilient member.
8. An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having at least one helix incorporated unitarily therein capable of delivering force in three planes of space, and also torque forces for bodily moving malposed teeth, said resilient member being a wire of noncircular cross section to facilitate delivery of torque forces to a dental attachment to which the arch form is operatively connected by an arch form attachment.
9. An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivering force in three planes of space and also torque forces for bodily moving malposed teeth, said arch form being formed into an elliptical curve and provided with a curvature in a vertical direction from the center thereof toward each free end for association with a human dentition.
10. An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivery force in three planes of space and also torque forces for bodily moving malposed teeth, said arch form being formed into a parabolic curve and provided with a curvature in a vertical direction from the center thereof toward each free end for association with a human dentition.

Claims (10)

1. An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivering force in three planes of space and also torque forces for bodily moving malposed teeth, said helices being formed in spaced groups interspersed along the length of said resilient member, and arch form attachments connected to the resilient member to deliver stored energy from the resilient member to a dental attachment on a tooth.
2. The arch form as defined in claim 1 wherein said helices in each group are open wound with space between each convolution thereof.
3. The arch form as defined in claim 1 wherein said helices in each group are close wound with the convolutions in each group being in contact.
4. The arch form as defined in claim 1 wherein said arch form attachments are integrally molded on said resilient member intermediate said groups of helices.
5. An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivering force in three planes of space and also torque forces for bodily moving malposed teeth, said helices being continuous from end to end of said resilient member with the convolutions thereof being spaced, a core wire disposed within the helices and defining a longitudinal axis thereof for controlling the curvature of the arch form, and arch form attachments connected to the resilient member to deliver stored energy from the resilient member to a dental attachment on a tooth.
6. An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivering force in three planes of space and also torque forces for bodily moving malposed teeth, said helices being continuous from end to end of said resilient member with the convolutions thereof being spaced, and arch form attachments connected to the resilient member to deliver stored energy from the resilient member to a dental attachment on a tooth, said arch form attachments having an aperture therethrough, said aperture having spiral groove means therein threadedly engaged with the continuous helices for adjusting the position of the arch form attachments in relation to the arch form.
7. An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivering force in three planes of space and also torque forces for bodily moving malposed teeth, said helices being continuous from end to end of said resilient member with the convolutions thereof being spaced, and arch form attachments connected to the resilient member to deliver stored energy from the resilient member to a dental attachment on a tooth, said arch form attachments having a cylindrical portion, a bAse adapted to be connected to a dental attachment, and an angulated fin connecting the base and cylindrical portion, said cylindrical portion disposed interiorly of the continuous helices with the fin disposed between adjacent convolutions thereof for adjusting the position of the arch form attachments by rotating them in relation to the resilient member.
8. An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having at least one helix incorporated unitarily therein capable of delivering force in three planes of space, and also torque forces for bodily moving malposed teeth, said resilient member being a wire of noncircular cross section to facilitate delivery of torque forces to a dental attachment to which the arch form is operatively connected by an arch form attachment.
9. An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivering force in three planes of space and also torque forces for bodily moving malposed teeth, said arch form being formed into an elliptical curve and provided with a curvature in a vertical direction from the center thereof toward each free end for association with a human dentition.
10. An arch form as a component of an orthodontic appliance system comprising a continuous resilient member having a plurality of integral helices incorporated unitarily therein capable of delivery force in three planes of space and also torque forces for bodily moving malposed teeth, said arch form being formed into a parabolic curve and provided with a curvature in a vertical direction from the center thereof toward each free end for association with a human dentition.
US683405A 1967-11-15 1967-11-15 Multihelical omniarch Expired - Lifetime US3593421A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US68340567A 1967-11-15 1967-11-15

Publications (1)

Publication Number Publication Date
US3593421A true US3593421A (en) 1971-07-20

Family

ID=24743922

Family Applications (1)

Application Number Title Priority Date Filing Date
US683405A Expired - Lifetime US3593421A (en) 1967-11-15 1967-11-15 Multihelical omniarch

Country Status (1)

Country Link
US (1) US3593421A (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3691635A (en) * 1971-02-22 1972-09-19 Melvin Wallshein Orthodontic system for turning a tooth
US3815237A (en) * 1972-11-29 1974-06-11 M Wallshein Orthodontic biassing device
US3861042A (en) * 1972-10-25 1975-01-21 Melvin Wallshein Orthodontic arch wire and method of forming the same
US3878609A (en) * 1972-10-25 1975-04-22 Melvin Wallshein Orthodontic arch wire
US3879850A (en) * 1972-11-29 1975-04-29 Melvin Wallshein Orthodontic elastic appliance
US3936938A (en) * 1974-05-17 1976-02-10 Aledyne Corporation Orthodontic spring appliance and spring clip therefor
US3961421A (en) * 1972-11-29 1976-06-08 Melvin Wallshein Orthodontic elastic band with varying outer periphery
US3988832A (en) * 1972-10-25 1976-11-02 Melvin Wallshein Orthodontic arch wire
US4054997A (en) * 1975-11-07 1977-10-25 Melvin Wallshein Orthodontic elastic appliance
USRE29686E (en) * 1975-04-10 1978-07-04 Orthodontic elastic band with varying outer periphery
EP0400932A2 (en) * 1989-05-29 1990-12-05 GAC International, Inc. Orthodontic coil spring
US5429501A (en) * 1994-03-28 1995-07-04 Ormco Corporation Orthodontic coil springs and methods
US5474444A (en) * 1988-09-26 1995-12-12 Wildman; Alexander J. Multiwire arch system
US5511976A (en) * 1993-09-14 1996-04-30 Wildman; Alexander J. Lingual bracket with hinged camming closure
WO1996039093A1 (en) 1995-06-05 1996-12-12 Wildman Alexander J Lingual bracket with hinged camming closure and releasable lock
US5791897A (en) * 1992-02-26 1998-08-11 Wildman; Alexander J. Multiwire arch system with improved interarch connector
US5842856A (en) * 1994-07-12 1998-12-01 Casey; Kevin M. Release system for treatment of a broken jaw
US5885074A (en) * 1997-10-27 1999-03-23 Hanson; Eric H. Ligatures for orthodontic appliances and orthodontic brackets incorporating such ligatures
US6193509B1 (en) * 1998-04-02 2001-02-27 John Devincenzo Bony anchor extender
FR2806618A1 (en) * 2000-03-23 2001-09-28 Ormco Corp SELF-LIGATURING ORTHODONTICS SUPPORT
DE10039233B4 (en) * 2000-08-11 2004-09-16 Winsauer, Heinz, Dr. Orthodontic spring element for tooth regulation
US20050277083A1 (en) * 2004-06-10 2005-12-15 3M Innovative Properties Company Arch member for an orthodontic brace
US20070264607A1 (en) * 2006-05-10 2007-11-15 Oscar Olavarria Landa System and process for three dimensional teeth movements using a spring retained device attached to an orthodontic micro implant
US20090197217A1 (en) * 2001-04-13 2009-08-06 Orametrix, Inc. Robot and method for bending orthodontic archwires and other medical devices
US7828549B1 (en) 2007-10-31 2010-11-09 Wios, Llc Lingual self-ligating orthodontic bracket, and methods for making and using the same
WO2011039573A1 (en) * 2009-10-02 2011-04-07 Recchia, Michele Orthodontic archwire with integral elements exerting force on the teeth
US8177552B1 (en) 2011-03-23 2012-05-15 Lawner Neil O Elastic bands for orthodontic use
US20120225398A1 (en) * 2011-02-03 2012-09-06 Ashin Al Fallah Orthodontic Archwire And Bracket System
US20120315595A1 (en) * 2010-02-25 2012-12-13 Jean Beaudoin Bracket with front opening and orthodontic inter-bracket adjoining mechanism
US20130040260A1 (en) * 2011-02-15 2013-02-14 King Saud University Orthodontic system
WO2013139397A1 (en) * 2012-03-23 2013-09-26 Dr Christian Drost Archwire for orthodontics
US20140120491A1 (en) * 2012-10-30 2014-05-01 University Of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
WO2014164779A1 (en) * 2013-03-11 2014-10-09 Gautam Pawan Orthodontic appliance
US20150265376A1 (en) * 2014-03-21 2015-09-24 Align Technology, Inc. Segmented orthodontic appliance with elastics
WO2015164462A1 (en) * 2014-04-23 2015-10-29 M&B IP Analysts, LLC A spring-based orthodontic device and methods of using thereof
WO2016148960A1 (en) * 2015-03-13 2016-09-22 3M Innovative Properties Company Orthodontic appliance including arch member
WO2016149007A1 (en) * 2015-03-13 2016-09-22 3M Innovative Properties Company Orthodontic appliance including arch member
US9937018B2 (en) 2013-12-11 2018-04-10 Martin G. Martz Tooth positioning appliance with curved interconnecting elements
US20180221113A1 (en) * 2017-01-31 2018-08-09 Swift Health Systems Inc. Hybrid orthodontic archwires
US10383707B2 (en) * 2015-12-06 2019-08-20 Mechanodontics, Inc. Teeth repositioning systems and methods
US10555792B2 (en) 2014-01-31 2020-02-11 Align Technology, Inc. Direct fabrication of orthodontic appliances with elastics
US10758323B2 (en) 2014-01-31 2020-09-01 Align Technology, Inc. Orthodontic appliances with elastics
US10828133B2 (en) 2016-12-02 2020-11-10 Swift Health Systems Inc. Indirect orthodontic bonding systems and methods for bracket placement
US11058518B2 (en) 2019-05-02 2021-07-13 Brius Technologies, Inc. Dental appliances, systems and methods
US11058517B2 (en) 2017-04-21 2021-07-13 Swift Health Systems Inc. Indirect bonding trays, non-sliding orthodontic appliances, and registration systems for use thereof
US11065085B2 (en) 2015-09-08 2021-07-20 ArchForm Inc. Tooth-positioning appliance, systems and methods of producing and using the same
US11154382B2 (en) 2014-06-20 2021-10-26 Align Technology, Inc. Aligners with elastic layer
US11246682B1 (en) * 2020-11-09 2022-02-15 Elliott Jolley Systems and methods for providing an orthodontic spring
US11452581B2 (en) * 2018-09-04 2022-09-27 Thomas F. Gessel, PLLC Extended buccal tube
US11490995B2 (en) 2021-03-25 2022-11-08 Brius Technologies, Inc. Orthodontic treatment and associated devices, systems, and methods
US11612458B1 (en) 2017-03-31 2023-03-28 Swift Health Systems Inc. Method of tongue preconditioning in preparation for lingual orthodontic treatment
US11642198B2 (en) 2014-06-20 2023-05-09 Align Technology, Inc. Elastic-coated orthodontic appliance
US11759292B2 (en) * 2020-05-04 2023-09-19 Orthodontic Research And Development, S.L. Orthodontic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2305916A (en) * 1941-05-27 1942-12-22 California Inst Res Found Orthodontic appliance
US2959856A (en) * 1959-09-15 1960-11-15 Orthodontic Specialties Inc Orthodontic device
US3052081A (en) * 1959-12-21 1962-09-04 Wallshein Melvin Orthodontic arch wire construction and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2305916A (en) * 1941-05-27 1942-12-22 California Inst Res Found Orthodontic appliance
US2959856A (en) * 1959-09-15 1960-11-15 Orthodontic Specialties Inc Orthodontic device
US3052081A (en) * 1959-12-21 1962-09-04 Wallshein Melvin Orthodontic arch wire construction and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AMERICAN JOURNAL OF ORTHODONTICS, Page 8, Dec. 1963, Vol. 49 -12 *

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3691635A (en) * 1971-02-22 1972-09-19 Melvin Wallshein Orthodontic system for turning a tooth
US3861042A (en) * 1972-10-25 1975-01-21 Melvin Wallshein Orthodontic arch wire and method of forming the same
US3878609A (en) * 1972-10-25 1975-04-22 Melvin Wallshein Orthodontic arch wire
US3988832A (en) * 1972-10-25 1976-11-02 Melvin Wallshein Orthodontic arch wire
US3815237A (en) * 1972-11-29 1974-06-11 M Wallshein Orthodontic biassing device
US3879850A (en) * 1972-11-29 1975-04-29 Melvin Wallshein Orthodontic elastic appliance
US3961421A (en) * 1972-11-29 1976-06-08 Melvin Wallshein Orthodontic elastic band with varying outer periphery
US3936938A (en) * 1974-05-17 1976-02-10 Aledyne Corporation Orthodontic spring appliance and spring clip therefor
USRE29686E (en) * 1975-04-10 1978-07-04 Orthodontic elastic band with varying outer periphery
US4054997A (en) * 1975-11-07 1977-10-25 Melvin Wallshein Orthodontic elastic appliance
US5516284A (en) * 1988-09-26 1996-05-14 Wildman; Alexander J. Lingual orthodontic bracket with hinged closure
US5474444A (en) * 1988-09-26 1995-12-12 Wildman; Alexander J. Multiwire arch system
US5046948A (en) * 1989-05-29 1991-09-10 Gac International, Inc. Orthodontic coil spring
EP0400932A3 (en) * 1989-05-29 1991-01-09 GAC International, Inc. Orthodontic coil spring
EP0400932A2 (en) * 1989-05-29 1990-12-05 GAC International, Inc. Orthodontic coil spring
US5791897A (en) * 1992-02-26 1998-08-11 Wildman; Alexander J. Multiwire arch system with improved interarch connector
US5511976A (en) * 1993-09-14 1996-04-30 Wildman; Alexander J. Lingual bracket with hinged camming closure
US5429501A (en) * 1994-03-28 1995-07-04 Ormco Corporation Orthodontic coil springs and methods
US5842856A (en) * 1994-07-12 1998-12-01 Casey; Kevin M. Release system for treatment of a broken jaw
WO1996039093A1 (en) 1995-06-05 1996-12-12 Wildman Alexander J Lingual bracket with hinged camming closure and releasable lock
US5700145A (en) * 1995-06-05 1997-12-23 Wildman; Alexander J. Lingual bracket with hinged camming closure and releasable lock
US5863199A (en) * 1995-06-05 1999-01-26 Wildman; Alexander J. Lingual bracket with hinged camming closure and locking ears
US5885074A (en) * 1997-10-27 1999-03-23 Hanson; Eric H. Ligatures for orthodontic appliances and orthodontic brackets incorporating such ligatures
US6193509B1 (en) * 1998-04-02 2001-02-27 John Devincenzo Bony anchor extender
FR2806618A1 (en) * 2000-03-23 2001-09-28 Ormco Corp SELF-LIGATURING ORTHODONTICS SUPPORT
DE10039233B4 (en) * 2000-08-11 2004-09-16 Winsauer, Heinz, Dr. Orthodontic spring element for tooth regulation
US20090197217A1 (en) * 2001-04-13 2009-08-06 Orametrix, Inc. Robot and method for bending orthodontic archwires and other medical devices
US20050277083A1 (en) * 2004-06-10 2005-12-15 3M Innovative Properties Company Arch member for an orthodontic brace
US7252506B2 (en) * 2004-06-10 2007-08-07 3M Innovative Properties Company Arch member for an orthodontic brace
US20070264607A1 (en) * 2006-05-10 2007-11-15 Oscar Olavarria Landa System and process for three dimensional teeth movements using a spring retained device attached to an orthodontic micro implant
US7828549B1 (en) 2007-10-31 2010-11-09 Wios, Llc Lingual self-ligating orthodontic bracket, and methods for making and using the same
WO2011039573A1 (en) * 2009-10-02 2011-04-07 Recchia, Michele Orthodontic archwire with integral elements exerting force on the teeth
US20120315595A1 (en) * 2010-02-25 2012-12-13 Jean Beaudoin Bracket with front opening and orthodontic inter-bracket adjoining mechanism
US20120225398A1 (en) * 2011-02-03 2012-09-06 Ashin Al Fallah Orthodontic Archwire And Bracket System
US20130040260A1 (en) * 2011-02-15 2013-02-14 King Saud University Orthodontic system
US9066775B2 (en) * 2011-02-15 2015-06-30 King Saud University Orthodontic system
US8177552B1 (en) 2011-03-23 2012-05-15 Lawner Neil O Elastic bands for orthodontic use
WO2013139397A1 (en) * 2012-03-23 2013-09-26 Dr Christian Drost Archwire for orthodontics
US20140120491A1 (en) * 2012-10-30 2014-05-01 University Of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
US11517405B2 (en) * 2012-10-30 2022-12-06 University Of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
US11510758B2 (en) 2012-10-30 2022-11-29 University Of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
US9427291B2 (en) * 2012-10-30 2016-08-30 University Of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
US11510757B2 (en) * 2012-10-30 2022-11-29 University Of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
US11129696B2 (en) 2012-10-30 2021-09-28 University Of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
US20160361142A1 (en) * 2012-10-30 2016-12-15 University Of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
EP3847995A1 (en) * 2012-10-30 2021-07-14 University of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
US10226312B2 (en) * 2012-10-30 2019-03-12 University Of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
US11058520B2 (en) 2012-10-30 2021-07-13 University Of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
US10219877B2 (en) 2012-10-30 2019-03-05 University Of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
WO2014164779A1 (en) * 2013-03-11 2014-10-09 Gautam Pawan Orthodontic appliance
US9937018B2 (en) 2013-12-11 2018-04-10 Martin G. Martz Tooth positioning appliance with curved interconnecting elements
US10292789B2 (en) 2013-12-11 2019-05-21 Martin G. Martz Tooth positioning appliance with curved interconnecting elements
US11813135B2 (en) 2014-01-31 2023-11-14 Align Technology, Inc. Methods for direct fabrication of orthodontic appliances with elastics
US10555792B2 (en) 2014-01-31 2020-02-11 Align Technology, Inc. Direct fabrication of orthodontic appliances with elastics
US11648089B2 (en) 2014-01-31 2023-05-16 Align Technology, Inc. Orthodontic appliances and systems with elastic members
US10758323B2 (en) 2014-01-31 2020-09-01 Align Technology, Inc. Orthodontic appliances with elastics
US20150265376A1 (en) * 2014-03-21 2015-09-24 Align Technology, Inc. Segmented orthodontic appliance with elastics
US11497586B2 (en) * 2014-03-21 2022-11-15 Align Technology, Inc. Segmented orthodontic appliance with elastics
US20170112595A1 (en) * 2014-04-23 2017-04-27 David Regev Spring-based orthodontic device and methods of using thereof
US10617490B2 (en) * 2014-04-23 2020-04-14 Daniel Harel Spring based orthodontic device and methods of using thereof
WO2015164462A1 (en) * 2014-04-23 2015-10-29 M&B IP Analysts, LLC A spring-based orthodontic device and methods of using thereof
US11642198B2 (en) 2014-06-20 2023-05-09 Align Technology, Inc. Elastic-coated orthodontic appliance
US11154382B2 (en) 2014-06-20 2021-10-26 Align Technology, Inc. Aligners with elastic layer
WO2016148960A1 (en) * 2015-03-13 2016-09-22 3M Innovative Properties Company Orthodontic appliance including arch member
US11337486B2 (en) 2015-03-13 2022-05-24 3M Innovative Properties Company Orthodontic appliance including arch member
WO2016149007A1 (en) * 2015-03-13 2016-09-22 3M Innovative Properties Company Orthodontic appliance including arch member
US11065085B2 (en) 2015-09-08 2021-07-20 ArchForm Inc. Tooth-positioning appliance, systems and methods of producing and using the same
US10980614B2 (en) * 2015-12-06 2021-04-20 Brius Technologies, Inc. Teeth repositioning systems and methods
US10905527B2 (en) * 2015-12-06 2021-02-02 Brius Technologies, Inc. Teeth repositioning systems and methods
US10383707B2 (en) * 2015-12-06 2019-08-20 Mechanodontics, Inc. Teeth repositioning systems and methods
US20200078140A1 (en) * 2015-12-06 2020-03-12 Mechanodontics, Inc. Teeth repositioning systems and methods
US20200085540A1 (en) * 2015-12-06 2020-03-19 Mechanodontics, Inc. Teeth repositioning systems and methods
US11317994B2 (en) 2015-12-06 2022-05-03 Brius Technologies, Inc. Teeth repositioning systems and methods
US11317995B2 (en) 2015-12-06 2022-05-03 Brius Technologies, Inc. Teeth repositioning systems and methods
US11324572B2 (en) * 2015-12-06 2022-05-10 Brius Technologies, Inc. Teeth repositioning systems and methods
US10993785B2 (en) * 2015-12-06 2021-05-04 Brius Technologies, Inc. Teeth repositioning systems and methods
US10828133B2 (en) 2016-12-02 2020-11-10 Swift Health Systems Inc. Indirect orthodontic bonding systems and methods for bracket placement
US11911971B2 (en) 2016-12-02 2024-02-27 Swift Health Systems Inc. Indirect orthodontic bonding systems and methods for bracket placement
US11612459B2 (en) 2016-12-02 2023-03-28 Swift Health Systems Inc. Indirect orthodontic bonding systems and methods for bracket placement
US20210212803A1 (en) * 2017-01-31 2021-07-15 Swift Health Systems Inc. Hybrid orthodontic archwires
US10881489B2 (en) * 2017-01-31 2021-01-05 Swift Health Systems Inc. Hybrid orthodontic archwires
US11957536B2 (en) * 2017-01-31 2024-04-16 Swift Health Systems Inc. Hybrid orthodontic archwires
US20180221113A1 (en) * 2017-01-31 2018-08-09 Swift Health Systems Inc. Hybrid orthodontic archwires
US11612458B1 (en) 2017-03-31 2023-03-28 Swift Health Systems Inc. Method of tongue preconditioning in preparation for lingual orthodontic treatment
US11058517B2 (en) 2017-04-21 2021-07-13 Swift Health Systems Inc. Indirect bonding trays, non-sliding orthodontic appliances, and registration systems for use thereof
US11452581B2 (en) * 2018-09-04 2022-09-27 Thomas F. Gessel, PLLC Extended buccal tube
US11529216B2 (en) 2019-05-02 2022-12-20 Brius Technologies, Inc. Dental appliances, systems and methods
US11058518B2 (en) 2019-05-02 2021-07-13 Brius Technologies, Inc. Dental appliances, systems and methods
US11864974B2 (en) 2019-05-02 2024-01-09 Brius Technologies, Inc. Dental appliances, systems and methods
US11759292B2 (en) * 2020-05-04 2023-09-19 Orthodontic Research And Development, S.L. Orthodontic device
US11246682B1 (en) * 2020-11-09 2022-02-15 Elliott Jolley Systems and methods for providing an orthodontic spring
US11490995B2 (en) 2021-03-25 2022-11-08 Brius Technologies, Inc. Orthodontic treatment and associated devices, systems, and methods
US11504212B2 (en) 2021-03-25 2022-11-22 Brius Technologies, Inc. Orthodontic treatment and associated devices, systems, and methods

Similar Documents

Publication Publication Date Title
US3593421A (en) Multihelical omniarch
US3874080A (en) Buccal end tube
US3618214A (en) Coiled wire spring appliances for use in orthodontics
US3775850A (en) Orthodontic apparatus
US4483674A (en) Device for orthodontic tooth regulation
AU779573B2 (en) Unitary metal injection molded orthodontic bracket
US3256602A (en) Orthodontic appliance
US6669473B1 (en) Anchor screw for orthodontic treatments
US3193930A (en) Orthodontic appliance
US20100304321A1 (en) Five segment orthodontic arch wire and orthodontic apparatus made thereof
US7033171B2 (en) Molar tube lock
US7785102B2 (en) Orthodontic device
JPH0642658Y2 (en) Orthodontic spring member
US3505736A (en) Mechanical arch form with plurality of integral arch form attachments
NL8500743A (en) COMBINATION OF A SINGLE / DOUBLE ORTHODONTIC BRACKET WITH THE EDGE FORWARD.
US4090299A (en) Orthodontic appliance
US3975823A (en) Orthodontic torquing system
US3988832A (en) Orthodontic arch wire
US3119182A (en) Orthodontic appliance
US3178822A (en) Combination orthodontic bracket
US20040131989A1 (en) Orthodontic apparatus
US3123913A (en) rubin
US3444621A (en) Orthodontic appliance
US3218714A (en) Orthodontic brackets
US7354267B2 (en) Tubular orthodontic arch wire