US20170038184A1 - Formulation delivery system - Google Patents

Formulation delivery system Download PDF

Info

Publication number
US20170038184A1
US20170038184A1 US15/243,439 US201615243439A US2017038184A1 US 20170038184 A1 US20170038184 A1 US 20170038184A1 US 201615243439 A US201615243439 A US 201615243439A US 2017038184 A1 US2017038184 A1 US 2017038184A1
Authority
US
United States
Prior art keywords
recipient
formulation
injector head
housing
hypodermic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/243,439
Inventor
Charles E. Ankner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/820,507 external-priority patent/US9585867B2/en
Application filed by Individual filed Critical Individual
Priority to US15/243,439 priority Critical patent/US20170038184A1/en
Priority to US15/412,211 priority patent/US20170143664A1/en
Publication of US20170038184A1 publication Critical patent/US20170038184A1/en
Priority to US17/494,469 priority patent/US20220120542A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/36Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information
    • F42B12/46Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing gases, vapours, powders or chemically-reactive substances
    • F42B12/54Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing gases, vapours, powders or chemically-reactive substances by implantation, e.g. hypodermic projectiles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61DVETERINARY INSTRUMENTS, IMPLEMENTS, TOOLS, OR METHODS
    • A61D7/00Devices or methods for introducing solid, liquid, or gaseous remedies or other materials into or onto the bodies of animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M5/2033Spring-loaded one-shot injectors with or without automatic needle insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M5/2046Media being expelled from injector by gas generation, e.g. explosive charge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3295Multiple needle devices, e.g. a plurality of needles arranged coaxially or in parallel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/46Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for controlling depth of insertion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/02Stabilising arrangements
    • F42B10/04Stabilising arrangements using fixed fins
    • F42B10/06Tail fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/02Stabilising arrangements
    • F42B10/26Stabilising arrangements using spin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M2005/2006Having specific accessories
    • A61M2005/2013Having specific accessories triggering of discharging means by contact of injector with patient body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M2005/206With automatic needle insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3123Details having air entrapping or venting means, e.g. purging channels in pistons

Definitions

  • the present inventive system and method is directed to a formulation and a propelled injection system or delivery system for dosing a human or animal with a hypodermic formulation at a distance via a ballistic projectile without causing serious harm to or the death of the recipient.
  • Many such emergency events have ended in death after Law Enforcement arrival because family members and concerned others are presented with the tragic dichotomy of having little or no option other than lethal force to stop a loved one from harming themselves or harming others.
  • emergency response is will not arrive at an event after notification for minutes to hours, depending upon the location and circumstances.
  • moments and minutes can last eternities for those involved, and horribly often end with deadly result.
  • an effective, instantaneous or near-instantaneous, non-lethal or less-than-lethal, apparatus and method for subduing a subject such as an already intoxicated, psychotic, extremely agitated, violent or nonviolent detainee, suspected offender, or known offender would be highly advantageous for both the subduer as well as the subject.
  • a human or animal may be quickly incapacitated or immobilized at a distance.
  • the purpose of and for incapacitating or immobilizing a human or animal may be many and varied. It is contemplated that the fields of medical science, military combat, law enforcement, corrections, emergency response, mass casualty response, and similar fields of service and endeavor may benefit greatly from cannabinoid sedative formulations, or a cannabinoid being added to or administered with known sedative formulations for medical, scientific, and industrial purposes. Other cannabinoid sedative formulations may also be used for scientific and industrial use improvement and purposes.
  • tranquilizing apparatus in the fields of veterinary medical science, zoology, zoo-keeping, animal husbandry, animal control, non-lethal sport hunting, and in many other related fields of endeavor, so-called “tranquilizing” apparatus, formulations, and methods are well known and widely used.
  • These known systems for medicating and/or sedating an animal primarily function via the explosive release of stored kinetic energy, such as but not limited to compressed gas or compressed-and-expanding spring propulsion systems, and the like, to convey a “tranquilizing dart” to an animal at a distance.
  • Brydges-Price '810 discloses and is directed to a projectile for delivery of a tranquilizer; primarily for the delivery of a tranquillizer or medication substance to an animal, the projectile including a cavity to contain such substance, means to deliver the said substance at a point of impact with a target, and means to effectively retard the velocity of the projectile on impact with the target.
  • One stated objective to provide a tranquillizer or other medication delivery system using a projectile is to be preferably spin stabilized having improved range and accuracy and of an inherently stable ballistic shape.
  • the delivery means disclosed and explained in Brydges-Price '810 is as follows: “Located around the needle 4 towards the tip of the nose cap 5 is a gas producing detonator 7 fired by an impact fuse pin 8. In an alternative arrangement two, or more, otherwise inert substances are to be brought together to initiate an action. Attached to the detonator 7 and the needle 4 is the neck 9 of an inflatable bag 10 of which an opposed end 11 is attached to the plug 3.
  • the rear end of the cavity 2 has a piston 12 the rear end of which communicates through concentric passageways 13 around the cavity 2 and ducts 14 in the plug 3 with the interior of the bag 10.
  • the rear end of the casing 1 is closed off by a tail piece 15.
  • the needle tip 6 will make initial impact and the detonator 7 is driven back along the needle . . . and fired via the ignition and retention cuff forming a fixed pin assembly 8 to thus inflate the bag 10 rapidly.
  • the bag 10 expands as illustrated . . . and prevents excess penetration whilst spreading the impact energy over a wide area.
  • the nose cap 5 On inflation of the bag the nose cap 5 is broken open and may be discarded.
  • the nose cap 5 may spread open as shown in a petaline manner and add to the retardation effect.
  • the bag may be striated longitudinally or laterally and coated or impregnated with gas producing chemical compounds to both accelerate expansion and strengthen the bag membrane.
  • the bag inflation gas bleeds through ducts 14 and passageways 13 to drive piston 12 forward thus delivering the drug through the needle 6.
  • the nose part of the projectile may include a solid foam-like or gel-like substance forming an impact absorbing material which spreads on impact. More specifically the gel may comprise a nano-porous open cell foam of the kind known by the trade mark Aerogel.
  • the projectile has a particular use for soft skin animals which presently require firing at close range typically 20 m. A smaller dart construction may be applied to birds and reptiles.”
  • the velocity retarding means comprises an inflatable membrane which is subject to the pressurized medium through means actuated on impact with a target, for example by an impact sensor or by means of a proximity sensing means, or by physical displacement actuating a valve device, the membrane being inflated using said pressure, preferably being gas pressure, stored in the projectile and preferably derived from the propulsive charge gases occurring on firing the projectile from a weapon.”
  • a further stated alternative object of Brydges-Price '908 is: “ . . . to provide a non-lethal projectile which may be fired with accuracy at a soft target directly and even at close ranges and which is designed not to penetrate to any significant extent and which should only cause minimal injury to the limbs or torso.
  • the velocity retarding means comprises an inflatable membrane which is subject to the pressurized medium through means actuated on impact with a target, for example by an impact sensor or by means of a proximity sensing means, or by physical displacement actuating a valve device, the membrane being inflated using said pressure, preferably being gas pressure, stored in the projectile and preferably derived from the propulsive charge gases occurring on firing the projectile from a weapon.”.
  • a target for example by an impact sensor or by means of a proximity sensing means, or by physical displacement actuating a valve device, the membrane being inflated using said pressure, preferably being gas pressure, stored in the projectile and preferably derived from the propulsive charge gases occurring on firing the projectile from a weapon.
  • This movement uncovers apertures 16 in the wall of compartment 2 and permits stored gas pressure in compartment 15 to enter the cavity between casing 1 and compartment 2.
  • This compartment connects through passageways with the cavity 17 inside the membrane 7 and thus rapidly inflates same.
  • the membrane is of rubber it will stretch and expand.
  • the membrane could be of a non- or partly-stretchable material which is folded into the nose cone. During this action the nose 8 is split open and is discarded or peels back.”
  • U.S. Pat. No. 6,736,070 to Baltos discloses and is directed to “ . . . a so-called “collapsule” bullet, which is a molded, hollow cavity that is filled with a tranquilizing fluid.
  • the “collapsule” is fabricated using a high-strength malleable plastic polymer.
  • the bullet is fitted with a so-called “injectile,” which is a hypodermic injection spike (to transmit the tranquilizing fluid) that is backed and driven by an inertia base mass (i.e., lead core) located at the base of the bullet.
  • CollapsuleTM is a derivative of the terms “collapse” and “capsule,” while the term “InjectileTM” is a derivative of the terms “injection” and “projectile.”
  • injectileTM is a derivative of the terms “injection” and “projectile.”
  • F.A.R.T.TM Fluid Activated Repulsive TraumaTM
  • the bullet casing is designed to collapse into the form of a flange or “mushroom” upon impact, creating a tendency for the bullet's kinetic energy to be distributed radially and uniformly to the target's body.
  • This uniform and radial distribution of energy, along with the energy transfer that occurs upon impact and delivery of the tranquilizer fluid simply lacks sufficient energy to penetrate further. This makes the device safer for use in confined spaces (e.g., aircraft compartments) where innocent bystanders may be hit.
  • the collapsule bullet does not deliver a massive blow that might destroy body tissue (as would a conventional bullet). Instead, it contributes to “shock-trauma disorientation and distraction,” making the target easier to stop or subdue. This “shock trauma” will also accelerate the effectiveness of the tranquilizer fluid due to the heart rate increase that occurs naturally after learning one has just been shot.”
  • U.S. Pat. No. 3,820,465 to Delphia discloses and is directed to “ . . . provide a sedative bullet which includes an outer casing member, a least a portion of which is collapsible; a fluid carrying vessel supported within the case member, the vessel including a fluid injection means; fluid means disposed within the casing member for movement in response to the collapse of the collapsible portion, and discharge means for contacting with the moving fluid means for discharging the vessel.”.
  • PRIOR ART FIG. 1D “When the bullet 10 is fired and strikes an object, the nose portion 14 collapse and the needle 28 is driven into a target 42 through the guide member 38 .
  • the bullet 11 is a closed hollow body which at least in its outer part 11a is made of compressibly deformable ductile material such as plastic, zinc, lead, rubber or the like.
  • a deformable, for example a plastic sack or similar container 13 which is filled with an and is communicatingly topped by baseplate 15 of an upstanding hypodermic needle 14 contacting with its end in the inner wall of the hollow bullet.
  • a compression ring 16 or the like rests upon the needle plate 15.
  • the bullet 11 After the cartridge has been fired, the bullet 11 impinges on the target the upper part of the starts to be compressed . . . and the needle 14 penetrates through the wall of the hollow bullet portion 11a into the target. Upon further compression the ring 16 compresses the sack 13 and forces the anesthetic therefrom through the needle 14 into the target.”
  • hypodermic needle configured centrally along the longitudinal axis of a projectile.
  • Such configurations inherently limit the operational velocity of the hypodermic projectile and require a method of either retarding overall muzzle velocity, retarding projectile velocity during flight, or by dissipating, redirecting, or cushioning the imparted energy of the projectile upon target impact; all required to facilitate safe and effective hypodermic dosing with a single and central needle while not permanently injuring or killing the recipient.
  • Non-hypodermic, non-lethal or less-than-lethal impact type weapons and techniques include but are not limited to so-called rubber, wax, or plastic bullets, “bean-bag” bullets, airfoil projectiles, and the like.
  • Known systems utilizing chemical explosive or charge propulsion that is “gun-powder” or “black-powder”) based deliver systems, due to the inherent dangers to life and limb from a solid or semi-solid ballistic projectile impacting a living organism at moderate to high velocities, can and do cause serious injury and/or death when deployed.
  • non-lethal kinetic impact based weapon systems may be used to fire or propel a ballistic hypodermic projectile.
  • Well known types include, but are not limited to, 40 mm and/or 12 gauge “shot-shell” based systems utilizing rubber, plastic, bean-bag, or other similar kinetic impact projectiles. Such known systems may easily be utilized with the instant inventive delivery system to dose a recipient with a formulation at a distance.
  • Officer presence the professionalism, uniform, and utility belt of the Law Enforcement Officer and the marked vessel or vehicle the Officer arrives in.
  • the visual presence of authority is normally enough for a subject to comply with an Officer's lawful demands.
  • a call/situation may require additional Officers or on scene Officers may request assistance in order to gain better control of the situation and ensure a safer environment for all involved. It also will depend on the circumstances of the situation. For example, depending on how many people are at the scene with the Officer, a larger presence may be required. However, if ten Officers arrive at a scene with only a single suspect, the public may perceive the situation as an excessive use of Officer presence within the use of force continuum. In many models, Officer presence includes the Officer's personal defense weapon or firearm unholstered and pointed at a subject.
  • Verbal commands/cooperative controls clear and understandable verbal direction by an Officer aimed at the subject. In some cases, it is necessary for the Officer to include a consequence to the verbal direction so that the subject understands what will happen if the subject refuses to comply with the Officer's direction.
  • the verbal command and the consequence must be legal and not considered excessive according to the continuum. For example, an Officer could not order a disabled person in a wheel chair to stand up or be sprayed by oleoresin capsicum (OC) pepper spray.
  • OC oleoresin capsicum
  • PPCT Pressure Point Control Tactics
  • Control Tactics Techniques—a level of force that has a low probability of causing soft connective tissue damage or bone fractures. This would include joint manipulation techniques, applying pressure to pressure points, and normal application of hand-cuffs.
  • Hard control techniques/Aggressive response techniques the amount of force that has a probability of causing soft connective tissue damage, bone fractures, or irritation of the skin, eyes, and mucus membranes. This would include kicks, punches, stuns and use of aerosol sprays such as oleoresin capsicum (OC) pepper spray.
  • OC oleoresin capsicum
  • Intermediate weapons an amount of force that would have a high probability of causing soft connective tissue damage or bone fractures. (e.g. expandable baton, baton, taser, beanbag rounds, rubber fin stabilized ammunition, mace, police dogs, etc.). Intermediate weapon techniques are designed to impact muscles, arms and legs, and intentionally using an intermediate weapon on the head, neck, groin, knee caps, or spine would be classified as deadly or lethal force.
  • Lethal force/Deadly force a force with a high probability of causing death or serious bodily injury. Serious bodily injury includes protracted or obvious physical disfigurement, or protracted loss of or impairment to the function of a bodily member, organ, or the mental faculty.
  • a firearm is the most widely recognized lethal or deadly force weapon, however, an automobile or weapon of opportunity (knife, club, heavy object) could also be defined as a deadly force utility.
  • hypodermic projectile with which a recipient may be dosed with a medicative and/or sedative formulation at a distance without causing permanent serious injury to or the death of the recipient.
  • a medicative and/or sedative formulation including a cannabinoid
  • THC tetrahydrocannabinol
  • an object of the present invention is to provide an apparatus and method for inducing a dose of a medicative and/or sedative formulation in a recipient at a distance.
  • Another object of the present invention is to provide a ballistic hypodermic projectile with which a recipient may be dosed with a medicative and/or sedative formulation at a distance without causing permanent serious injury to or the death of the recipient.
  • Another object of the present invention is to humanely incapacitate a human or animal by introducing a medicative and/or sedative formulation, including a cannabinoid, which renders the recipient incapacitated after dosing.
  • Another object of the present invention is to provide a delivery system which doses a recipient with a sedative formulation resulting in a tetrahydrocannabinol (THC) blood level of above at least 1-50 milligrams per milliliter of whole blood, and below a dosage which causes irreparable harm to or the death of the recipient.
  • THC tetrahydrocannabinol
  • Another object of the present invention is to provide a sedative formulation and delivery system free of preparatory steps prior to use in routine yet emergency situations.
  • Another object of the present invention is to provide a sedative formulation which remains effective for use over a long time period, and under adverse environmental extremes such as but not limited to: temperature, humidity, shock, vibration, ballistic g-force, instantaneous acceleration, instantaneous deceleration, wind blast, and the like.
  • Another object of the present invention is to provide a sedative formulation and delivery system which remains operant over a long time period, and under adverse environmental extremes such as but not limited to: temperature, humidity, shock, vibration, ballistic g-force, instantaneous acceleration, instantaneous deceleration, wind blast, and the like.
  • Another object of the present invention is to provide an apparatus and method of humanely incapacitating a human or animal at a distance comprising a sedative formulation which renders a recipient incapacitated after dosing, and below a dosage which causes irreparable harm to or death of the recipient.
  • Another object of the present invention is to provide an apparatus and method of humanely incapacitating a human or animal comprising, providing a sedative formulation which renders a recipient incapacitated after administration, providing a ballistic hypodermic delivery system which doses the recipient with the formulation below a dosage which causes irreparable harm to or death of the recipient, and wherein the formulation continues to render the recipient incapacitated without irreparable harm to or death of the recipient.
  • a projectile injection system for dosing a human or animal recipient from a distance, the system comprising: a housing having a longitudinal axis, a distal end, and a proximal end, wherein said housing has at least one cavity storing a hypodermic formulation and at least one outlet port through which the hypodermic formulation exits said housing; and an injector head having at least one inlet port fluidly connected to the at least one outlet port of the housing, and at least one distal hypodermic needle extending distally from the injector head, the injector head mounted to the distal end of the housing via a rotatable hub, wherein upon contact with the recipient, the at least one distal hypodermic needle penetrates the recipient and the hypodermic formulation exits the at least one cavity and passes through the at least one outlet port of the housing into the at least one inlet port of the injector head and through the at least one distal hypodermic needle, so that the recipient is dosed with the hypodermic formulation without causing
  • the hypodermic formulation is a cannabinoid formulation.
  • the cannabinoid formulation includes less than 9200 mg of tetrahydrocannabinol per kg of body weight of the recipient, such that the dose administered to the recipient is a non-lethal dose.
  • said projectile injection system is propelled by and from the group consisting of lethal ballistic weapons such as single-shot, semi-automatic, or fully-automatic revolvers, pistols, shotguns, scatterguns, rifles, grenade launchers, rocket launchers, mortars, light artillery, heavy artillery, missile launchers, and combinations thereof.
  • lethal ballistic weapons such as single-shot, semi-automatic, or fully-automatic revolvers, pistols, shotguns, scatterguns, rifles, grenade launchers, rocket launchers, mortars, light artillery, heavy artillery, missile launchers, and combinations thereof.
  • said projectile injection system is configured to undergo spiraling ballistic flight.
  • the injector head has a longitudinal axis that is common with the longitudinal axis of the housing, and wherein upon contact with the recipient, the at least one hypodermic needle cooperatively with the direction of rotation penetrates the dermis of the recipient to a depth facilitative of and suitable for subdermal bolus injection of the formulation, wherein the at least one hypodermic needle constructively stops both distal and rotational movement along the common longitudinal axis when the injector head impacts the recipient.
  • the rotatable hub allows said housing to continue rotation along the common longitudinal axis, thus dissipating the remaining kinetic energy after the injector head has constructively stopped rotation.
  • the housing further includes a plunger and a housing vent, wherein the housing vent allows for housing pressure equalization when and as the plunger displaces resulting in the injection of the formulation into the recipient.
  • the injection system comprises a turbine or worm gear in communication with the rotatable hub, wherein when the housing continues rotation as the injector head remains constructively stationary, the turbine or worm gear forces the formulation through the at least one outlet port resulting in the injection of the formulation into the recipient.
  • the system is reusable.
  • the injector system utilizes inertial forces upon impact of the injector head with the recipient resulting in the injection of the formulation into the recipient.
  • the housing further includes a worm gear along the common longitudinal axis in communication with the plunger and in communication with the rotatable hub, whereby the continuing rotation of the housing along the common longitudinal axis in relation to the hypodermic injector head and after impact with the recipient causes the plunger to displace along the common longitudinal axis resulting in the injection of the formulation.
  • the housing further includes a gas under pressure, wherein when the gas is suddenly released, or comprises an explosive substance whereby when ignited expands, or comprises a spring under compression whereby when suddenly released, causes the plunger to displace resulting in the injection of the formulation.
  • the at least one hypodermic needle further includes a barb.
  • the at least one hypodermic needle is configured in an arc.
  • the at least one hypodermic needle is configured in one or more cycloidal, epicycloidal, hypocycloidal, or other spiral arc.
  • the injector head further comprises a cooperative strut corresponding to the at least one hypodermic needle and configured in such a manner as to facilitate dermal penetration of the recipient by the at least one hypodermic needle and to facilitate the injection of the formulation into the recipient.
  • the injector head comprises a plurality of hypodermic needles cooperatively corresponding to the at least one hypodermic needle and configured in such a manner as to facilitate dermal penetration of the recipient by the plurality of hypodermic needles and to facilitate injection of the formulation into the recipient.
  • the outer circumference of the projectile injection system changes during ballistic flight.
  • the outer circumference of the projectile injection system changes after impacting the recipient.
  • the projectile injection system emits a sound during ballistic flight or during rotation after the injector head impacts the recipient.
  • the rotatable hub further includes or operates as a clutch between the housing and the injector head.
  • the injector head further includes an airfoil.
  • a propelled injection system for dosing a human or animal at a distance comprising: a housing including at least one cavity, at least one outlet port, a vent, a plunger, and a hypodermic cannabinoid formulation; and an injector head mounted to the housing via a rotatable hub, the injector head including at least one inlet port and at least one hypodermic needle, wherein when the injector head impacts a recipient, the at least one hypodermic needle penetrates the dermis of the recipient to a depth facilitative of and suitable for subdermal bolus injection due to the rotatable hub allowing the housing to continue rotation while the injector head stops rotation, wherein the remaining kinetic energy after the injector head has constructively stopped rotation is dissipated; and whereby upon the injector head base impacting the recipient the vent allows for housing pressure equalization as the plunger displaces resulting in the dosing of the recipient with the formulation without causing serious injury to or the death of the recipient.
  • a method for dosing a human or animal at a distance with a formulation comprising the steps of: providing a propelled injection system including a housing including at least one outlet port and a hypodermic formulation, and a hypodermic injector head including at least one inlet port and at least one hypodermic needle, wherein the hypodermic injector head is mounted to the housing via a rotational hub; and propelling the housing and the hypodermic injector in a spiraling ballistic trajectory to impact a recipient, wherein upon or after the injector head impacts the recipient, the recipient is dosed with the formulation without causing serious injury to or the death of the recipient resulting from the injector head impacting the recipient or the injecting of the hypodermic formulation.
  • the spiraling hypodermic injector head impacts the recipient, the at least one hypodermic needle cooperatively with the direction of rotation penetrates the derma of the recipient to a depth facilitative of and suitable for subdermal bolus injection without causing serious injury to or the death of the recipient due to the rotational hub allowing the housing to continue rotation and thus dissipating the remaining kinetic energy after the injector head has stopped rotation.
  • the propelled injection system is propelled by and from the group consisting of lethal ballistic weapons such as single-shot, semi-automatic, or fully-automatic revolvers, pistols, shotguns, scatterguns, rifles, grenade launchers, rocket launchers, mortars, light artillery, heavy artillery, missile launchers, and combinations thereof.
  • lethal ballistic weapons such as single-shot, semi-automatic, or fully-automatic revolvers, pistols, shotguns, scatterguns, rifles, grenade launchers, rocket launchers, mortars, light artillery, heavy artillery, missile launchers, and combinations thereof.
  • a system for humanely immobilizing a human or animal comprising: a formulation including a cannabinoid which renders a recipient incapacitated after dosing; and a delivery system used to dose the recipient with the formulation at a distance, wherein upon dosage of the recipient, a tetrahydrocannabinol blood level is induced greater than one-to-fifty milligrams per milliliter of whole blood (1-50 mg/ml) and below a dosage which causes irreparable harm to or the death of the recipient, and wherein upon dosage of the recipient, the recipient becomes immobilized.
  • a delivery system capable of dosing a human or animal at a distance after spiraling ballistic flight comprising: a housing having a longitudinal axis, a distal end, and a proximal end, and including at least one cavity, at least one outlet port, an injection system, and a hypodermic formulation; a hypodermic injector head having a longitudinal axis common with the housing longitudinal axis, a distal end, and a proximal end, and being sealably mounted along the common longitudinal axis at the distal end of the housing via a rotatable hub, the injector head including a base, at least one inlet port, and at least one distal hypodermic needle, wherein when the spiraling at least one hypodermic needle contacts a recipient, the at least one hypodermic needle cooperatively with the direction of rotation penetrates the dermis of the recipient to a depth facilitative of and suitable for subdermal bolus injection of the formulation, and then constructively stops both distal and rotational movement along the common longitudinal axis
  • FIGS. 1A-1E are schematic diagrams of various PRIOR ART delivery systems
  • FIG. 2 is a schematic diagram of one embodiment of the projectile injection system
  • FIG. 3 is a schematic diagram of the embodiment of FIG. 2 ;
  • FIG. 4 is an end view of the embodiment of FIG. 2 ;
  • FIG. 5 is a schematic diagram of one embodiment of the inventive projectile injection system
  • FIG. 6 is an end view of the embodiment of FIG. 5 ;
  • FIG. 7 is a schematic diagram of the housing of one embodiment of the projectile injection system
  • FIG. 8 is a schematic diagram of the housing of one embodiment of the projectile injection system
  • FIG. 9 is a schematic diagram of one embodiment of the projectile injection system in a first position
  • FIG. 10 is a schematic diagram of the embodiment of FIG. 9 in a second position
  • FIG. 11 is a schematic diagram of one embodiment of the projectile injection system in a first or proximal position
  • FIG. 12 is a schematic diagram of the embodiment of FIG. 11 in a second or intermediate position
  • FIG. 13 is a schematic diagram of the embodiment of FIG. 11 in a third or distal position
  • FIG. 14 is a schematic diagram of one embodiment of the projectile injection system in a first or proximal position
  • FIG. 15 is a schematic diagram of the embodiment of FIG. 14 in a second or intermediate position
  • FIG. 16 is a schematic diagram of the embodiment of FIG. 14 in a third or distal position
  • FIG. 17 is a schematic diagram of one embodiment of the projectile injection system in a first position
  • FIG. 18 is a schematic diagram of one embodiment of the projectile injection system
  • FIG. 19 is a schematic diagram of the embodiment of FIG. 17 in a second position.
  • FIGS. 20A-20F are schematic diagrams of one embodiment of the projectile injection system.
  • the inventive method and apparatus provides a formulation and propelled injection system (also known as a “delivery system”) configured for dosing a recipient at a distance.
  • the apparatuses to propel the projectile injection system may include a revolver, pistol, shot-gun, or rifle including a ballistic hypodermic projectile comprising a sedative formulation.
  • the formulation may be primarily a cannabinoid based formulation as disclosed in U.S. patent application Ser. No. 14/820,507, filed Aug. 6, 2015, entitled CANNABINIOD FORMULATION FOR THE SEDATION OF A HUMAN OR ANIMAL, and published as U.S. Patent Application Publication No. 2015/0342922 (herein incorporated by reference in its entirety).
  • the instant inventive injection system may be used and is well suited to deploy and deliver known formulations, as well as yet to be developed sedative and/or meditative formulations, to improve their delivery safety and/or performance.
  • Many and varied medicative and/or sedative formulations may be utilized with the instant inventive propelled injection system.
  • dronabinol was administered via bolus intermuscular quadricep injection with a 0.5 mL polysorbate 80 and 10 mL saline carrier:
  • First Injection 1 mg dronabinol, typical recreational cannabis intoxication symptom onset (euphoria, visual spacial disorientation and slight distortion) within thirty-to-sixty seconds; peaking within five to seven minutes with a ninety-minute duration.
  • Second Injection 2.5 mg dronabinol, intense and severe recreational cannabis intoxication symptom onset (dissociative euphoria, extreme visual spacial disorientation, audio sensitivity) within ten-to-thirty seconds; peaking within one minute with a three-hour duration.
  • Forth Injection 25 mg dronabinol, severe cannabis intoxication symptom onset (dissociative euphoria, extreme visual spacial disorientation, audio sensitivity) within two-to-five seconds, followed by dissociative unconsciousness within thirty-to-sixty seconds lasting four hours. Recovery to “first injection state” within six hours.
  • tetrahydrocannabinol and other cannabinoids cause quick and/or immediate incapacitation of a human or animal when delivered at high doses, while being safe and non-lethal; and thus may be used for industrial, scientific, and medical purposes.
  • a dosage of approximately 1000 mg of tetrahydrocannabinol per kg of body weight is known to be the lowest intravenous dosage which causes death in laboratory animals.
  • the typical lethal oral dosage of tetrahydrocannabinol is between approximately 225-450 mg per kg of body weight in laboratory animals.
  • the acute one dose LD50 for tetrahydrocannabinol was 100 mg/kg in dogs and 15.6-62.5 mg/kg in monkeys depending on concentration of the solution.
  • tetrahydrocannabinol emulsified in a sesame oil, polysorbate 80, or saline vehicles were administered at 15 mg/ml or 40 mg/ml.
  • the emulsions were administered at a uniform rate of 2 ml/15 sec.
  • Doses administered were 1, 4, 16, 64, 92, 128, 192 and 256 mg/kg. All monkeys injected with 92 mg/kg or less survived and completely recovered from all effects within two to four days.
  • An analogous intravenous dosage for a 100 kg human would be 9,200 mg (9.2 g) of near-pure tetrahydrocannabinol.
  • Enormous intravenous doses of tetrahydrocannabinol, and all tetrahydrocannabinol and concentrated cannabis extracts ingested orally were unable to produce death or organ pathology in large mammals, but did produce fatalities in smaller rodents due to profound central nervous system depression.
  • the nonlethal oral consumption of 3 g/kg of tetrahydrocannabinol by a dog and monkey would be comparable to a 154-pound adult human consuming approximately forty-six pounds, 21 kg, of one-percent THC cannabis, or ten-pounds of five-percent hashish, at one time.
  • These doses would be comparable to a 154-pound adult human smoking at one time almost three pounds (1.28 kg) of one-percent THC cannabis, 250,000 times the usual smoked dose, and over a million times the minimal effective dose assuming fifty-percent destruction of the tetrahydrocannabinol by combustion.
  • Estimated whole blood volume of a 100 kg human male is 7500 mL, or 75 mL of whole blood per kg of body weight.
  • an initial or first hypodermic dosing of between 250 to 500 mg of tetrahydrocannabinol is insufficient to effectively incapacitate a human recipient, an additional or a plurality of doses including between 250 to 500 mg of tetrahydrocannabinol may be safely administered without concern of reaching or exceeding any known or contemplated lethal tetrahydrocannabinol levels.
  • Formulations of tetrahydrocannabinol may include carriers and or solvents which include sesame oil, polysorbate, polysorbate 80 and/or saline. Other organic and non-toxic solvents and/or surfactants are also contemplated. Additionally, the formulation may contain one or more excipients, such as buffers, alcohols, lipids, ascorbic acid, phospholipids, EDTA, sodium chloride, mannitol, sorbitol, and glycerol, for example.
  • excipients such as buffers, alcohols, lipids, ascorbic acid, phospholipids, EDTA, sodium chloride, mannitol, sorbitol, and glycerol, for example.
  • THC Tetrahydrofuran
  • Other carriers are also contemplated which allow for the THC to be mixed to form a solution or a mixture, such that a liquid formulation of the THC may be dosed to effectively incapacitate a human recipient.
  • cannabinoids and specifically tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN), may be exploited for industrial, scientific, and medical purposes.
  • known antipsychotic compounds may be included in the codependent inventive cannabinoid formulation to prevent or mitigate quick onset and/or violent psychotic reactions to cannabinoids, especially tetrahydrocannabinol.
  • known antipsychotic or neroleptic formulations include but are not limited to butyrophenones, phenothiazines, thioxanthenes, so-called atypical antipsychotics, and so-called second-generation antipsychotics.
  • External ballistics entails the calculation, prediction, and performance of projectiles in-flight.
  • ballistic flight below approximately twenty-thousand feet altitude is germane; therefore, only “breathable atmosphere ballistic flight” will be considered and described.
  • Terminal ballistics relates to the result or action a particular projectile has at the end of ballistic flight.
  • a “short-range ballistic distance” is less than 10 yards.
  • a “medium-to-long range ballistic distance” is 10 to 100 yards.
  • a “long range ballistic distance” is greater than 100 yards.
  • a “low ballistic velocity” is less than 300 feet per second.
  • a “low-to-medium ballistic velocity” is 300 to 800 feet per second.
  • a “medium-to-high ballistic velocity” is greater than 800 feet per second.
  • the U.S. Navy's Mark 45 cannon utilizes a five-inch diameter, seventy pound (approximately 500,000 gr) projectile imparting 435 ft-lbs of muzzle energy traveling at 20 fps; while a 9 ⁇ 19 mm 115 gr full metal jacketed bullet has a similar muzzle energy traveling at approximately 1,300 fps. At 20 fps the cannon shell would take several seconds to even exit the many foot-long barrel of the Mark 45, whereas the 9 mm projectile would exit a four-inch barrel at 3/10,000ths of a second.
  • standard tables can determine the overall “effective lethal range” of an unimpeded solid projectile, and the velocity and energy imparted when striking an object at any given point in ballistic flight.
  • the ballistic coefficient is about 0.028, but the typical 40-grain bullet of a .22 long rifle cartridge has a ballistic coefficient of approximately 0.125.
  • the result is that not only does a pellet fired from an air rifle have a muzzle velocity lower than that of even a bullet fired from a .22 rim-fire, it loses its velocity much more rapidly. All of this means that the path of the pellet involves a lot of curvature and it is more easily blown off course by wind.”
  • hypodermic formulations have the consistency and viscosity of water.
  • a limiting aspect of known hypodermic delivery systems is “effective payload” due to formulation mass.
  • non-lethal and less-than-lethal kinetic impact weapons or ammunition have resulted in common guidelines for their safe and effective use.
  • kinetic impact weapons are not deployed to the head, neck, spine, front center of the chest, joints, groin, hands, or feet.
  • Ideal locations for kinetic impact weapon deployment are the thighs, buttocks, upper arms, forearms, the back over the shoulder-blades, and the rear of the lower legs.
  • the general rule of such non-lethal weapons is to impact the muscles, and not the joints, bones, or the groin.
  • ideal deployment of the instant inventive delivery system is to the large muscle groups of the body, including but not limited to: the upper and lower legs, the buttocks, the upper back away from the spine, the upper chest away from the sternum, the shoulders, and the upper and lower arms.
  • the delivery system may also be deployed to the muscles of the neck.
  • the instant inventive delivery system be deployed as close as safely possible to the recipient's heart or brain, in order to as quickly as possible deliver a sedative formulation to the brain via cardiovascular circulation.
  • hypodermic formulation delivery system capable of increased ballistic velocity during flight as compared to known methods and systems, by absorbing or redirecting the resulting increased imparted energy of the projectile away from the recipient upon impact, and correspondingly reducing the velocity and resulting imparted energy of the delivery system to less-than-lethal levels, thereby safely and effectively injecting the recipient with the formulation without causing serious physical harm to, nor the death of, the recipient.
  • the ballistic formulation delivery system 100 includes a ballistic injector head 110 , a rotatable hub 1000 , and a ballistic injector housing 210 .
  • the injector housing 210 may include a cavity 215 , an inertia activated plunger 230 internal to the housing, a medicative and/or sedative formulation 250 , and one or more formulation collection or outlet port 220 .
  • the medicative and/or sedative formulation 250 is located within the cavity 215 .
  • the injector head 110 may include one or more hypodermic needles 115 including one or more barb (not shown) to prevent dislodgement of the one or more hypodermic needles 115 from the recipient, and one or more formulation reception or inlet port(s) 120 which by intention and design compliment and utilize induced longitudinal and rotational inertial forces transferred to the hypodermic injector head 110 via the rotatable mount 1000 from the spinning injector housing 210 and the formulation 250 within the cavity 215 , in order to safely and effectively penetrate the derma of the recipient with the at least one hypodermic needle, and to cause the injection of the medicative and/or sedative formulation 250 from the cavity 215 into the recipient.
  • one hypodermic needle 115 is contemplated, and in additional embodiments, two or three or more hypodermic needles are contemplated extending distally from the injector head 110 .
  • the one or more hypodermic needles are curved or hooked extending distally from the injection head base approximately one-half to three inches.
  • the diameter of the injector head would be commensurate with and vary depending upon the propulsion system used and the caliber of such system.
  • the overall delivery system size and configuration is similar to and compatible with known firearms chambered in and for .410 thru .12 gauge shot-shells, and also for known 40 mm grenade or canister launcher rounds.
  • the delivery system size and configuration be chambered in and compatible for use with known lethal revolvers and pistols such as but not limited to: .22 Long Rifle, .380 ACP, 9 mm Luger, .38 Special, .357 Magnum, .40 S&W, 10 mm Auto, .44 Special, .44 Magnum, .45 ACP, .50 Action Express, and .500 S&W Magnum.
  • delivery system 100 is propelled at low ballistic velocities ranging from 50 to 300 feet per second to a recipient.
  • delivery system 100 is propelled at low ballistic velocities ranging from 50 to 300 feet per second to a recipient.
  • a recipient Preferably, by rifling on the ballistic injector housing 210 ( FIGS. 7 and 8 , Ref. No. 300 ), by offset aerodynamic fins or stabilizers ( FIG. 8 , Ref. No. 305 ), or by rifling inherent to the launcher or gun used (not shown); as the injector housing 210 spirals along a trajectory thus providing ballistic and gyroscopic stability to the housing 210 , the rotatable mount 1000 transfers and/or induces a corresponding rotational spin to the injector head 110 .
  • the rotatable mount 1000 may freely spin or act as a clutch to induce a desired or specific rate of rotation or spin to the injector head 110 .
  • known and predetermined inertial forces may be used to “cooperatively twist or spiral” the at least one hypodermic needle 115 into the recipient facilitative of safe and effective subdermal bolus injection of the formulation 250 .
  • the at least one hypodermic needle 115 is hooked or arced in a manner as and in order to “drill into” a recipient to a depth facilitative of safe and effective subdermal bolus injection, and to also constructively halt distal or forward movement, and also constructively halt rotation, upon the injector head base 145 impacting the recipient.
  • the housing 210 as allowed by the rotatable mount 1000 continues rotation and thereby transfers, converts, redirects, dissipates, or conveys any remaining kinetic energy by way of friction and heat to the rotatable mount 1000 .
  • the delivery system may realistically be propelled at and impact a living recipient at greater ballistic velocities and having a greater mass than as would a conventional and known projectile of similar mass lacking a rotatable mount 1000 , thereby greatly reducing the potential lethality of the delivery system 100 .
  • the at least one outlet port 220 is configured in such a way to be rotatably and yet be sealably in fluid communication with the at least one inlet port 120 in order to dose the recipient with the formulation 250 by way of the at least one hypodermic needle 115 .
  • This may be accomplished in a variety of known ways including but not limited to using O-ring seals, tongue and grove seals, precision face-to-face surfaces, or the like.
  • the injector housing 210 should rotate in relation to the injector head 110 while allowing for or facilitating the displacement of the hypodermic formulation 250 from the injector housing 210 cavity 215 to and through the injector head 110 and into the recipient upon or after the at least one hypodermic needle 115 penetrates the recipient.
  • another inventive embodiment includes a cooperative formulation reception channel or troth 125 in fluid communication with the at least one outlet port 220 and the at least one inlet port 120 .
  • a cooperative formulation reception channel or troth 125 in fluid communication with the at least one outlet port 220 and the at least one inlet port 120 .
  • Such a configuration allows for easier and more efficient sealing of the delivery system, allows for ease of rotation of the injection head 110 , and therefore facilitate a greater rate of induction of the hypodermic formulation 250 .
  • FIGS. 5 and 6 such a configuration allows for an increased flow of fluid into a recipient.
  • the housing 210 includes an inertial plunger 230 , a centering post 240 , and a housing vent 260 .
  • the inertial plunger 230 displaces distally toward the recipient resulting in the injection of the formulation 250 .
  • a housing vent 260 may be provided to prevent a vacuum from forming behind the plunger 230 and thus retarding, impeding, or preventing injection of the formulation 250 . The vent 260 therefore allows for pressure equalization within the housing 210 and cavity 215 as the plunger 230 is displaced.
  • Centering post 240 may be provided to guide and prevent the inertial plunger 230 from becoming cocked within the injector housing 210 and cavity 215 during displacement and hinder formulation 250 injection. As depicted in FIGS. 11, 12, and 13 , a telescoping centering post 240 ′ may also be provided depending upon length of the housing 210 , and therefore the required “throw of” or “distance of displacement” of the plunger 230 .
  • another inventive embodiment of the housing 210 includes a plunger 230 ′, a shaft 280 , and a worm gear 290 in communication with the plunger 230 ′.
  • the shaft 280 is in mechanical communication with either the rotatable mount 1000 and/or the injector head 110 , and is allowed to rotate within the injector housing 210 .
  • the injector housing 210 cooperatively continues to rotate about the shaft 280 and the worm gear 290 , thus displacing the plunger 230 ′ along the longitudinal axis of the housing resulting in the injection of the formulation 250 .
  • another inventive embodiment of the housing 210 includes a turbine or corkscrew palate 285 and a shaft 280 in mechanical communication with either the rotatable mount 1000 and/or the injector head 110 , and allowed to rotate free of and within the injector housing 210 .
  • the injector housing 210 continues to rotate about the shaft 280 and the turbine or corkscrew palate 285 forces the formulation into the at least one outlet port 220 , and resulting in the injection of the formulation 250 .
  • What is highly desired and an object of the instant inventive method and system is to provide a hypodermic delivery system capable of dosing a recipient with a formulation having a combined mass between 10 and 500 grains, propelled at low-to-medium ballistic velocities (300 to 800 fps) and with medium-to-long range ballistic accuracy (10 to 100+ yards) without causing serious physical harm to, nor the death of, the recipient.
  • This objective may be accomplished using a staged or graceful velocity degradation method and system.
  • All known systems utilize a single method or stage of reducing imparted energy of known non-lethal projectiles.
  • a collapsible or deformable material is added to the distal or forward nose of a projectile.
  • the material deforms whereby the projectile velocity is reduced and the energy imparted is dissipated over a wider impact area in hopes of not seriously injuring or killing the recipient.
  • Brydges-Price '810, Brydges-Price '908, Baltos, Delphia, and Muller referenced and discussed earlier all utilize such collapsing or deforming material energy absorbing method and system.
  • using such impact reducing material alone is largely inadequate to prevent serious harm to or death of a recipient when impacted by projectiles traveling above 300 fps, regardless of projectile mass.
  • the instant inventive delivery system 100 may also include a forward of or leading-edge airfoil.
  • the inventions and work of the late Abraham Flatau have relevance. Mr. Flatau was a pioneer in the fields of external and terminal ballistics, and later in life devoted his time and energy to designing and patenting novel aerial toys. One such is taught by U.S. Pat. No. 6,454,623 granted Sep. 24, 2002, (herein “Flatau” and included in its entirety by reference). Flatau includes a closely spaced colinearly aligned ring wing or airfoil connected by spokes to a central slender member.
  • the instant inventive delivery system 100 may further comprise such an airfoil thus providing an additional stage of graceful velocity degradation when the instant inventive delivery system 100 strikes a recipient, as well as increasing the overall ballistic stability and performance of the instant inventive delivery system 100 in flight.
  • An additional ballistic advantage to such a leading ring wing or airfoil configuration is that depending upon the airfoil configuration, a partial vacuum may be created within and behind the airfoil via a venturi effect.
  • the central slender member of Flatau encounters reduced aerodynamic drag due to its placement central to and within the ring wing or airfoil. This induced venturi effect may be utilized to further reduce the aerodynamic drag, and thus increase the velocity of the instant inventive housing 210 and injector head 110 when similarly configured.
  • an inventive embodiment of the injector head 110 includes a ring wing or airfoil 400 distal to, forward of, or leading the injector head 110 , and releasably in mechanical communication with the injector head 110 by at least two or more spokes 410 .
  • a ring wing or airfoil 400 may be capable of expanding in outer circumference greater than the outer circumference of either the housing 210 , the injector head 110 , or both. After leaving a launcher or gun barrel muzzle, such expansion of the airfoil may be achieved by telescopic or expanding surface design and utilizing forces inherent to a spiraling ballistic projectile.
  • the outer circumference of the ring wing or airfoil 400 may remain fixed throughout ballistic flight; as will be the case in the following explanative discussion.
  • the delivery system 100 is propelled at low-to-moderate ballistic velocities up to approximately 800 fps.
  • the delivery system 100 is caused to spiral in flight, either by rifling on the injector housing 210 ( FIGS. 7 and 8 , Ref. No. 300 ), by rifling on the outer surface of the ring wing or airfoil 400 (not shown), by offset aerodynamic stabilizers ( FIG. 8 , Ref. No.
  • the spiraling provided by a launcher or gun barrel to the delivery system 100 directly or causationally imparts gyroscopic stability to the housing 210 , the injector head 110 , and/or the ring wing or airfoil 400 .
  • the at least two or more spokes 410 fracture, detach, or disengage from the injector head 110 and/or ring wing or airfoil 400 and thereby absorb, dissipate, or redirect a portion of the overall delivery system 100 velocity and resulting energy. It is contemplated that the ring wing or airfoil 400 have as little mass as possible, as to not cause serious harm to or the death of the recipient 500 upon impact.
  • the ring wing or airfoil 400 be designed in such a manner as to segment, fracture, separate, and/or displace upon impact with the recipient 500 to further absorb or dissipate an increased portion of the overall imparted energy of the delivery system 100 .
  • an energy absorbing nose cone 420 forward of or distal to the at least one hypodermic needle 115 next impacts the recipient 500 at a slower velocity than that of the ring wing or airfoil 400 leading edge.
  • the nose cone 420 either collapses, displaces, distorts, compacts, fractures, or detaches from the injector head 110 , it thereby absorbs, dissipates, or redirects a further portion of the overall delivery system 100 velocity and imparted energy.
  • the rotatable mount 1000 may freely spin or act as a clutch to induce a desired or specific rate of rotation or spin to the injector head 110 .
  • known and predetermined inertial and ballistic forces may next be used to “cooperatively twist or spiral” the at least one hypodermic needle 115 into the recipient 500 facilitative of and for safe and effective subdermal bolus injection of the formulation 250 ; and further absorbing, dissipating, or redirecting a portion of the overall delivery system 100 imparted energy.
  • the at least one hypodermic needle 115 is hooked or arced in order and as to “drill into” a recipient 500 to a depth facilitative of safe and effective subdermal bolus injection, and to also constructively halt distal or forward movement, and also constructively halt rotation, upon the injector head base 145 impacting the recipient 500 .
  • housing 210 via the rotatable mount 1000 continues rotation and thereby transfers, converts, redirects, dissipates, or conveys the remaining portion of the imparted energy by way of friction and heat to the rotatable mount 1000 .
  • the delivery system may realistically be propelled at and impact a living recipient 500 at greater ballistic velocities and having a greater mass than as would a known conventional projectile of similar mass lacking the rotatable mount 1000 , lacking the nose cone 420 , and/or lacking the leading ring wing or airfoil 400 .
  • the inventive method and apparatus provides a delivery system adapted for dosing a recipient hypodermically with a formulation at a distance; the delivery system utilizing known common revolver, pistol, shot-gun, rifle, other firearms, and/or known grenade canister launchers.
  • non-lethal or less-than-lethal weapons such as hypodermic syringes, hypodermic darts, blowpipes, dart-pistols, dart-rifles, jab-sticks, dart-arrows, slingshots, and the like.
  • many and varied known lethal weapons may utilize the inventive ballistic formulation hypodermic delivery system, such as but not limited to, single-shot, semi-automatic, or fully-automatic revolvers, pistols, shotguns, scatterguns, rifles, grenade launchers, and combinations thereof.

Abstract

A system and method of humanely dosing a human or animal with a formulation at a distance. A system capable of dosing a recipient with a formulation having a mass between 10 and 500 grains propelled at low-to-medium ballistic velocities (300 to 800 feet per second) and with medium-to-long range ballistic accuracy (10 to over 100 yards) without causing serious physical harm to, nor the death of, the recipient.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • The present application is a continuation-in-part of U.S. patent application Ser. No. 14/820,507, filed Aug. 6, 2015, entitled CANNABINIOD FORMULATION FOR THE SEDATION OF A HUMAN OR ANIMAL, published as U.S. Patent Application Publication No. 2015/0342922 A1, herein incorporated by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present inventive system and method is directed to a formulation and a propelled injection system or delivery system for dosing a human or animal with a hypodermic formulation at a distance via a ballistic projectile without causing serious harm to or the death of the recipient.
  • BACKGROUND OF THE INVENTION
  • It is well known in the fields of non-lethal and less-than-lethal weaponry that humanely rendering a subject (either human or animal) safe to approach and subdue, compliant to commands, and/or to render a subject safe from harm to the subject and/or others immediately or within moments saves lives in many critical and life-threatening situations.
  • Further, if a subject remains safely incapacitated or immobilized for an extended period, such as a period of minutes and/or hours, then taking such a suspect or detainee into lawful custody or containment is safer for both the subduer as well as the subdued and innocent third parties.
  • In today's complex and dangerous world, Law Enforcement and Correction Officials currently have no way of safely and effectively sedating a suspect or inmate, and consequently Officers often resort to lethal force when threatened or endangered. Such tragic events at times invoke public outrage, such as recent suspect shootings in Ferguson, Mo. and Baton Rouge, La., which resulted in massive public riots and unrest across the United States. Relatedly, the assassination of Law Enforcement Officers in Dallas, Tex., Baton Rouge, La., and Orlando, Fla. has resulted in a deadly balance between public safety and civil liberty. Sadly, and yet realistically, psychosis and chemical addiction has and does play a lethal role in many such tragic events. Families also suffer for lack of a system and method to safely and quickly sedate a loved one suffering a violent psychosis or chemical intoxication prior to or after summoning emergency medical response and/or Law Enforcement help. Many such emergency events have ended in death after Law Enforcement arrival because family members and concerned others are presented with the tragic dichotomy of having little or no option other than lethal force to stop a loved one from harming themselves or harming others. Typically, emergency response is will not arrive at an event after notification for minutes to hours, depending upon the location and circumstances. When dealing with a violently psychotic or chemically impaired person, moments and minutes can last eternities for those involved, and horribly often end with deadly result.
  • Accordingly, providing an effective, instantaneous or near-instantaneous, non-lethal or less-than-lethal, apparatus and method for subduing a subject, such as an already intoxicated, psychotic, extremely agitated, violent or nonviolent detainee, suspected offender, or known offender would be highly advantageous for both the subduer as well as the subject.
  • Primary goals of both military and civilian Law Enforcement personal are to keep the peace and save innocent lives—including their own lives, those of their “comrades in arms” and those of aggressive or violent subjects in certain circumstances. These goals of both civilian and military Law Enforcement may be better accomplished via the instant inventive cannabinoid formulation and delivery system.
  • Although never developed into effective weapons systems in the context of the Cold War, psychochemical warfare theory and research, along with overlapping mind control drug research, was secretly pursued in the mid-20th century by the U.S. Military and Central Intelligence Agency. These research programs were ended when they came to light and generated controversy in the mid-1970s.
  • This course of human events during that time hindered or prohibited cannabis, cannabis-derived, or synthetic-cannabinoids from being developed into safe and effective non-lethal anesthetics and sedatives, and non-lethal psychochemical weapons. Moreover, during the 1970s, with the U.S. categorizing cannabis as a Schedule 1 Controlled Substance, touting cannabis as an effective and safe sedation or psychochemical warfare agent would have been prohibited by then public policy and law.
  • With modern advances in science and technology—possibly executive governmental agencies, legislatures, law enforcement, civilian defenders, and medical science may now be amenable to an effective system and method to counter the ever changing and ever present threats to life and limb in today's dangerous world, and to do so in a humane, effective, and non-lethal manner.
  • Accordingly, it is an object of the present invention to provide a cannabinoid formulation for quickly and safely sedating a subject, thus making subduing, and if required, containing the subject safer for all involved.
  • Additionally, and depending upon the formulation, a human or animal may be quickly incapacitated or immobilized at a distance. The purpose of and for incapacitating or immobilizing a human or animal may be many and varied. It is contemplated that the fields of medical science, military combat, law enforcement, corrections, emergency response, mass casualty response, and similar fields of service and endeavor may benefit greatly from cannabinoid sedative formulations, or a cannabinoid being added to or administered with known sedative formulations for medical, scientific, and industrial purposes. Other cannabinoid sedative formulations may also be used for scientific and industrial use improvement and purposes.
  • Correspondingly, in the fields of veterinary medical science, zoology, zoo-keeping, animal husbandry, animal control, non-lethal sport hunting, and in many other related fields of endeavor, so-called “tranquilizing” apparatus, formulations, and methods are well known and widely used. These known systems for medicating and/or sedating an animal primarily function via the explosive release of stored kinetic energy, such as but not limited to compressed gas or compressed-and-expanding spring propulsion systems, and the like, to convey a “tranquilizing dart” to an animal at a distance.
  • U.S. Pat. No. 7,013,810 to Brydges-Price (herein “Brydges-Price '810” and incorporated in its entirety by reference), discloses and is directed to a projectile for delivery of a tranquilizer; primarily for the delivery of a tranquillizer or medication substance to an animal, the projectile including a cavity to contain such substance, means to deliver the said substance at a point of impact with a target, and means to effectively retard the velocity of the projectile on impact with the target. One stated objective to provide a tranquillizer or other medication delivery system using a projectile, is to be preferably spin stabilized having improved range and accuracy and of an inherently stable ballistic shape. The velocity retarded in such a way as to prevent excess injury or penetration and may be achieved by means which rapidly produces a large increase in area at the nose of the projectile thus spreading and dissipating the kinetic energy over a large area. Referring to PRIOR ART FIG. 1A, the delivery means disclosed and explained in Brydges-Price '810 is as follows: “Located around the needle 4 towards the tip of the nose cap 5 is a gas producing detonator 7 fired by an impact fuse pin 8. In an alternative arrangement two, or more, otherwise inert substances are to be brought together to initiate an action. Attached to the detonator 7 and the needle 4 is the neck 9 of an inflatable bag 10 of which an opposed end 11 is attached to the plug 3. The rear end of the cavity 2 has a piston 12 the rear end of which communicates through concentric passageways 13 around the cavity 2 and ducts 14 in the plug 3 with the interior of the bag 10. The rear end of the casing 1 is closed off by a tail piece 15. In use, and following discharge from the weapon, the needle tip 6 will make initial impact and the detonator 7 is driven back along the needle . . . and fired via the ignition and retention cuff forming a fixed pin assembly 8 to thus inflate the bag 10 rapidly. The bag 10 expands as illustrated . . . and prevents excess penetration whilst spreading the impact energy over a wide area. On inflation of the bag the nose cap 5 is broken open and may be discarded. In an alternative arrangement the nose cap 5 may spread open as shown in a petaline manner and add to the retardation effect. The bag may be striated longitudinally or laterally and coated or impregnated with gas producing chemical compounds to both accelerate expansion and strengthen the bag membrane. The bag inflation gas bleeds through ducts 14 and passageways 13 to drive piston 12 forward thus delivering the drug through the needle 6. The nose part of the projectile may include a solid foam-like or gel-like substance forming an impact absorbing material which spreads on impact. More specifically the gel may comprise a nano-porous open cell foam of the kind known by the trade mark Aerogel. The projectile has a particular use for soft skin animals which presently require firing at close range typically 20 m. A smaller dart construction may be applied to birds and reptiles.”
  • U.S. Pat. No. 6,807,908 to Brydges-Price (herein “Brydges-Price '908” and incorporated in its entirety by reference), discloses and is directed to “ . . . a projectile including means to effectively retard the velocity of the projectile on impact with a target wherein the velocity is retarded in such a way as to prevent excess injury or penetration by deployment of means, following impact with a target, which rapidly expands to produce a large increase in the area at the nose of the projectile to spread the kinetic energy over a large area, characterized in that said expansion of said means is effected using a pressurized gaseous medium carried in the projectile. Preferably the velocity retarding means comprises an inflatable membrane which is subject to the pressurized medium through means actuated on impact with a target, for example by an impact sensor or by means of a proximity sensing means, or by physical displacement actuating a valve device, the membrane being inflated using said pressure, preferably being gas pressure, stored in the projectile and preferably derived from the propulsive charge gases occurring on firing the projectile from a weapon.” A further stated alternative object of Brydges-Price '908 is: “ . . . to provide a non-lethal projectile which may be fired with accuracy at a soft target directly and even at close ranges and which is designed not to penetrate to any significant extent and which should only cause minimal injury to the limbs or torso. Preferably the velocity retarding means comprises an inflatable membrane which is subject to the pressurized medium through means actuated on impact with a target, for example by an impact sensor or by means of a proximity sensing means, or by physical displacement actuating a valve device, the membrane being inflated using said pressure, preferably being gas pressure, stored in the projectile and preferably derived from the propulsive charge gases occurring on firing the projectile from a weapon.”. Referring to PRIOR ART FIG. 1B, “ . . . . On impact with a target the nose plug 9 is moved back over the needle 5 exposing the orifice 6 to permit some substance 3 in the cavity 2 to bleed thus allowing piston 4 to move forward. This movement uncovers apertures 16 in the wall of compartment 2 and permits stored gas pressure in compartment 15 to enter the cavity between casing 1 and compartment 2. This compartment connects through passageways with the cavity 17 inside the membrane 7 and thus rapidly inflates same. Where the membrane is of rubber it will stretch and expand. The membrane could be of a non- or partly-stretchable material which is folded into the nose cone. During this action the nose 8 is split open and is discarded or peels back.”
  • U.S. Pat. No. 6,736,070 to Baltos (herein “Baltos” and incorporated in its entirety by reference), discloses and is directed to “ . . . a so-called “collapsule” bullet, which is a molded, hollow cavity that is filled with a tranquilizing fluid. Preferably, the “collapsule” is fabricated using a high-strength malleable plastic polymer. The bullet is fitted with a so-called “injectile,” which is a hypodermic injection spike (to transmit the tranquilizing fluid) that is backed and driven by an inertia base mass (i.e., lead core) located at the base of the bullet. Note that the term “Collapsule™” is a derivative of the terms “collapse” and “capsule,” while the term “Injectile™” is a derivative of the terms “injection” and “projectile.” In addition to those terms and addressing the function of the dynamic inertia base to shed mass in the form of a liquid and/or a secondary means of incapacitation the applicant also seeks recognition of the term “Fluid Activated Repulsive Trauma™” (F.A.R.T.™).”. Referring to PRIOR ART FIG. 1C, “Specifically, the bullet casing is designed to collapse into the form of a flange or “mushroom” upon impact, creating a tendency for the bullet's kinetic energy to be distributed radially and uniformly to the target's body. This uniform and radial distribution of energy, along with the energy transfer that occurs upon impact and delivery of the tranquilizer fluid simply lacks sufficient energy to penetrate further. This makes the device safer for use in confined spaces (e.g., aircraft compartments) where innocent bystanders may be hit. In addition, the collapsule bullet does not deliver a massive blow that might destroy body tissue (as would a conventional bullet). Instead, it contributes to “shock-trauma disorientation and distraction,” making the target easier to stop or subdue. This “shock trauma” will also accelerate the effectiveness of the tranquilizer fluid due to the heart rate increase that occurs naturally after learning one has just been shot.”
  • U.S. Pat. No. 3,820,465 to Delphia (herein “Delphia” and incorporated in its entirety by reference), discloses and is directed to “ . . . provide a sedative bullet which includes an outer casing member, a least a portion of which is collapsible; a fluid carrying vessel supported within the case member, the vessel including a fluid injection means; fluid means disposed within the casing member for movement in response to the collapse of the collapsible portion, and discharge means for contacting with the moving fluid means for discharging the vessel.”. Referring to PRIOR ART FIG. 1D, “When the bullet 10 is fired and strikes an object, the nose portion 14 collapse and the needle 28 is driven into a target 42 through the guide member 38 . . . . The collapsing of the nose portion 14 simultaneously forces the heavy fluid 36 toward the rear of the casing 12 and the resulting pressure forces the piston member 32 forwardly. The forward motion of a piston member 32 forces the sedative fluid out of the vessel 24 and discharges it into the target 42 though the needle 28.”
  • U.S. Pat. No. 3,584,582 to Muller (herein “Muller” and incorporated in its entirety by reference), discloses and is directed to “ . . . improvements to cartridges used in paralyzing men or animals and its main objective is to project such cartridges from a gun or the like forcibly discharging therefrom a hypodermic fluid into the target upon impact.” Muller further discloses “ . . . a casing which houses a detonating charge and of a bullet body inserted thereto having an outer hollow portion made of ductile material such as plastic, zinc, lead, rubber or the like to be compressed upon reaching a target. An upstanding hypodermic needle and a hypodermic medium are arranged within said hollow bullet body and upon impact upon a target the needle penetrates through the wall thereof into the target and carries hypodermic medium thereto.”. Referring to PRIOR ART FIG. 1E, “The bullet 11 is a closed hollow body which at least in its outer part 11a is made of compressibly deformable ductile material such as plastic, zinc, lead, rubber or the like. At the base of the hollow bullet 11 is a deformable, for example a plastic sack or similar container 13 which is filled with an and is communicatingly topped by baseplate 15 of an upstanding hypodermic needle 14 contacting with its end in the inner wall of the hollow bullet. A compression ring 16 or the like rests upon the needle plate 15. After the cartridge has been fired, the bullet 11 impinges on the target the upper part of the starts to be compressed . . . and the needle 14 penetrates through the wall of the hollow bullet portion 11a into the target. Upon further compression the ring 16 compresses the sack 13 and forces the anesthetic therefrom through the needle 14 into the target.”
  • All such known systems, however, have many disadvantages, including but not limited to: short effective range—typically less than 10 to 25 yards, limited total formulation volume—typically 1 to 5 mL, limited accuracy —typically caused by poor stabilization, low or no induced ballistic spiral, and/or low ballistic velocities.
  • Consequently, such systems are not well suited for emergency or immediate use situations; nor specifically suited for use in sedating a human at a distance. Such known delivery systems must be “prepped” minutes or hours before use—and once ready for use must be deployed within minutes or hours; thus making such systems unsuited and ineffective for routine emergency deployment, especially for use with human recipients.
  • Primarily and most disadvantageously, all such known and so called “dart and dart systems” or “sedative bullets” utilize a single hypodermic needle configured centrally along the longitudinal axis of a projectile. Such configurations inherently limit the operational velocity of the hypodermic projectile and require a method of either retarding overall muzzle velocity, retarding projectile velocity during flight, or by dissipating, redirecting, or cushioning the imparted energy of the projectile upon target impact; all required to facilitate safe and effective hypodermic dosing with a single and central needle while not permanently injuring or killing the recipient.
  • Other known non-hypodermic, non-lethal or less-than-lethal impact type weapons and techniques include but are not limited to so-called rubber, wax, or plastic bullets, “bean-bag” bullets, airfoil projectiles, and the like. However, even these devices if poorly designed and/or carelessly deployed may cause unintended serious injury to and/or the death of a recipient. Known systems utilizing chemical explosive or charge propulsion (that is “gun-powder” or “black-powder”) based deliver systems, due to the inherent dangers to life and limb from a solid or semi-solid ballistic projectile impacting a living organism at moderate to high velocities, can and do cause serious injury and/or death when deployed.
  • Accordingly, and consequently, such known systems propel projectiles at relatively low ballistic velocities, typically less than 300 feet per second (FPS), making such systems less than effective at medium to long ranges, and also less than effective in emergency yet routine circumstances.
  • However, world-wide commercially available non-lethal kinetic impact based weapon systems may be used to fire or propel a ballistic hypodermic projectile. Well known types include, but are not limited to, 40 mm and/or 12 gauge “shot-shell” based systems utilizing rubber, plastic, bean-bag, or other similar kinetic impact projectiles. Such known systems may easily be utilized with the instant inventive delivery system to dose a recipient with a formulation at a distance.
  • The widely known “use of force continuum” outlines a specific progression of force, used and adhered to by many Law Enforcement and Corrections agencies. The use of force continuum varies considerably among different departments and jurisdictions, and especially varies related to the wide gap between empty hand control and deadly force techniques. One example of a general use of force continuum model cited in many U.S. government publications is as follows:
  • 1. Officer presence—the professionalism, uniform, and utility belt of the Law Enforcement Officer and the marked vessel or vehicle the Officer arrives in. The visual presence of authority is normally enough for a subject to comply with an Officer's lawful demands. Depending on the totality of the circumstances, a call/situation may require additional Officers or on scene Officers may request assistance in order to gain better control of the situation and ensure a safer environment for all involved. It also will depend on the circumstances of the situation. For example, depending on how many people are at the scene with the Officer, a larger presence may be required. However, if ten Officers arrive at a scene with only a single suspect, the public may perceive the situation as an excessive use of Officer presence within the use of force continuum. In many models, Officer presence includes the Officer's personal defense weapon or firearm unholstered and pointed at a subject.
  • 2. Verbal commands/cooperative controls—clear and understandable verbal direction by an Officer aimed at the subject. In some cases, it is necessary for the Officer to include a consequence to the verbal direction so that the subject understands what will happen if the subject refuses to comply with the Officer's direction. The verbal command and the consequence must be legal and not considered excessive according to the continuum. For example, an Officer could not order a disabled person in a wheel chair to stand up or be sprayed by oleoresin capsicum (OC) pepper spray.
  • 3. Empty-hand submission techniques, PPCT—Pressure Point Control Tactics, Control Tactics, Techniques—a level of force that has a low probability of causing soft connective tissue damage or bone fractures. This would include joint manipulation techniques, applying pressure to pressure points, and normal application of hand-cuffs.
  • 4. Hard control techniques/Aggressive response techniques—the amount of force that has a probability of causing soft connective tissue damage, bone fractures, or irritation of the skin, eyes, and mucus membranes. This would include kicks, punches, stuns and use of aerosol sprays such as oleoresin capsicum (OC) pepper spray. Some models split these techniques between empty hand, soft control, and intermediate weapon techniques.
  • 5. Intermediate weapons—an amount of force that would have a high probability of causing soft connective tissue damage or bone fractures. (e.g. expandable baton, baton, taser, beanbag rounds, rubber fin stabilized ammunition, mace, police dogs, etc.). Intermediate weapon techniques are designed to impact muscles, arms and legs, and intentionally using an intermediate weapon on the head, neck, groin, knee caps, or spine would be classified as deadly or lethal force.
  • 6. Lethal force/Deadly force—a force with a high probability of causing death or serious bodily injury. Serious bodily injury includes protracted or obvious physical disfigurement, or protracted loss of or impairment to the function of a bodily member, organ, or the mental faculty. A firearm is the most widely recognized lethal or deadly force weapon, however, an automobile or weapon of opportunity (knife, club, heavy object) could also be defined as a deadly force utility.
  • In view of the limits of the use of force continuum techniques, it is desirable to provide a system and method to provide a delivery system for incapacitating a recipient with a medicative and/or sedative formulation at a distance.
  • It is further desirable to provide a hypodermic projectile with which a recipient may be dosed with a medicative and/or sedative formulation at a distance without causing permanent serious injury to or the death of the recipient.
  • It is further desirable to provide an apparatus and method for humanely incapacitating a human or animal by introducing a medicative and/or sedative formulation, including a cannabinoid, which renders a recipient incapacitated after dosing.
  • It is further desirable to provide a delivery system which doses a recipient with a sedative formulation resulting in a tetrahydrocannabinol (THC) blood level of above at least 1-50 milligrams per milliliter of whole blood, and below a dosage which causes irreparable harm to or the death of the recipient.
  • It is further desirable to provide a system and method of providing a sedative formulation and delivery system free of preparatory steps prior to use.
  • It is further desirable to provide an apparatus and method of providing a sedative formulation which remains safe and effective over a long time period, and under adverse environmental extremes such as but not limited to: temperature, humidity, shock, vibration, ballistic g-force, instantaneous acceleration, instantaneous deceleration, wind blast, and the like.
  • It is further desirable to provide an apparatus and method of providing a sedative formulation and delivery system which remains operant over a long time period, and under adverse environmental extremes such as but not limited to: temperature, humidity, shock, vibration, ballistic g-force, instantaneous acceleration, instantaneous deceleration, wind blast, and the like.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention is to provide an apparatus and method for inducing a dose of a medicative and/or sedative formulation in a recipient at a distance.
  • Another object of the present invention is to provide a ballistic hypodermic projectile with which a recipient may be dosed with a medicative and/or sedative formulation at a distance without causing permanent serious injury to or the death of the recipient.
  • Another object of the present invention is to humanely incapacitate a human or animal by introducing a medicative and/or sedative formulation, including a cannabinoid, which renders the recipient incapacitated after dosing.
  • Another object of the present invention is to provide a delivery system which doses a recipient with a sedative formulation resulting in a tetrahydrocannabinol (THC) blood level of above at least 1-50 milligrams per milliliter of whole blood, and below a dosage which causes irreparable harm to or the death of the recipient.
  • Another object of the present invention is to provide a sedative formulation and delivery system free of preparatory steps prior to use in routine yet emergency situations.
  • Another object of the present invention is to provide a sedative formulation which remains effective for use over a long time period, and under adverse environmental extremes such as but not limited to: temperature, humidity, shock, vibration, ballistic g-force, instantaneous acceleration, instantaneous deceleration, wind blast, and the like.
  • Another object of the present invention is to provide a sedative formulation and delivery system which remains operant over a long time period, and under adverse environmental extremes such as but not limited to: temperature, humidity, shock, vibration, ballistic g-force, instantaneous acceleration, instantaneous deceleration, wind blast, and the like.
  • Another object of the present invention is to provide an apparatus and method of humanely incapacitating a human or animal at a distance comprising a sedative formulation which renders a recipient incapacitated after dosing, and below a dosage which causes irreparable harm to or death of the recipient.
  • Another object of the present invention is to provide an apparatus and method of humanely incapacitating a human or animal comprising, providing a sedative formulation which renders a recipient incapacitated after administration, providing a ballistic hypodermic delivery system which doses the recipient with the formulation below a dosage which causes irreparable harm to or death of the recipient, and wherein the formulation continues to render the recipient incapacitated without irreparable harm to or death of the recipient.
  • It is yet another object of the present invention to provide an apparatus and method for humanely incapacitating a human or animal comprising, providing a formulation and a delivery system capable of dosing the recipient with the formulation at a distance which renders a recipient incapacitated after dosing, and wherein the recipient remains incapacitated or immobilized without causing irreparable harm to or the death of the recipient.
  • It is yet another object of the present invention to provide an apparatus and method for humanely incapacitating a human or animal comprising, providing a formulation including a cannabinoid and a delivery system capable of dosing the recipient with the formulation at a distance which renders a recipient incapacitated after dosing, and wherein the recipient remains incapacitated without causing irreparable harm to or the death of the recipient.
  • Yet further, it is an object of the present invention to provide a method and apparatus of humanely incapacitating a human or animal comprising, providing a formulation including a cannabinoid which renders a recipient incapacitated after dosing, providing a delivery system which doses the recipient with the formulation resulting in a tetrahydrocannabinol blood level of above at least 1 to 100 mg per mL of whole blood and below a dosage which causes irreparable harm to or the death of the recipient, wherein the formulation includes at least one antipsychotic from the group consisting of antipsychotic or neuroleptic formulations including but not limited to butyrophenones, phenothiazines, thioxanthenes, atypical antipsychotics, second-generation antipsychotics, and combinations thereof.
  • These and other objects of the invention are achieved by the claims.
  • These and other objects of the invention are achieved by a projectile injection system for dosing a human or animal recipient from a distance, the system comprising: a housing having a longitudinal axis, a distal end, and a proximal end, wherein said housing has at least one cavity storing a hypodermic formulation and at least one outlet port through which the hypodermic formulation exits said housing; and an injector head having at least one inlet port fluidly connected to the at least one outlet port of the housing, and at least one distal hypodermic needle extending distally from the injector head, the injector head mounted to the distal end of the housing via a rotatable hub, wherein upon contact with the recipient, the at least one distal hypodermic needle penetrates the recipient and the hypodermic formulation exits the at least one cavity and passes through the at least one outlet port of the housing into the at least one inlet port of the injector head and through the at least one distal hypodermic needle, so that the recipient is dosed with the hypodermic formulation without causing serious injury to or the death of the recipient.
  • In certain embodiments, the hypodermic formulation is a cannabinoid formulation.
  • In certain embodiments, the cannabinoid formulation includes less than 9200 mg of tetrahydrocannabinol per kg of body weight of the recipient, such that the dose administered to the recipient is a non-lethal dose.
  • In certain embodiments, said projectile injection system is propelled by and from the group consisting of lethal ballistic weapons such as single-shot, semi-automatic, or fully-automatic revolvers, pistols, shotguns, scatterguns, rifles, grenade launchers, rocket launchers, mortars, light artillery, heavy artillery, missile launchers, and combinations thereof.
  • In certain embodiments, said projectile injection system is configured to undergo spiraling ballistic flight.
  • In certain embodiments, the injector head has a longitudinal axis that is common with the longitudinal axis of the housing, and wherein upon contact with the recipient, the at least one hypodermic needle cooperatively with the direction of rotation penetrates the dermis of the recipient to a depth facilitative of and suitable for subdermal bolus injection of the formulation, wherein the at least one hypodermic needle constructively stops both distal and rotational movement along the common longitudinal axis when the injector head impacts the recipient.
  • In certain embodiments, the rotatable hub allows said housing to continue rotation along the common longitudinal axis, thus dissipating the remaining kinetic energy after the injector head has constructively stopped rotation.
  • In certain embodiments, the housing further includes a plunger and a housing vent, wherein the housing vent allows for housing pressure equalization when and as the plunger displaces resulting in the injection of the formulation into the recipient.
  • In certain embodiments, the injection system comprises a turbine or worm gear in communication with the rotatable hub, wherein when the housing continues rotation as the injector head remains constructively stationary, the turbine or worm gear forces the formulation through the at least one outlet port resulting in the injection of the formulation into the recipient.
  • In certain embodiments, the system is reusable.
  • In certain embodiments, the injector system utilizes inertial forces upon impact of the injector head with the recipient resulting in the injection of the formulation into the recipient.
  • In certain embodiments, the housing further includes a worm gear along the common longitudinal axis in communication with the plunger and in communication with the rotatable hub, whereby the continuing rotation of the housing along the common longitudinal axis in relation to the hypodermic injector head and after impact with the recipient causes the plunger to displace along the common longitudinal axis resulting in the injection of the formulation.
  • In certain embodiments, the housing further includes a gas under pressure, wherein when the gas is suddenly released, or comprises an explosive substance whereby when ignited expands, or comprises a spring under compression whereby when suddenly released, causes the plunger to displace resulting in the injection of the formulation.
  • In certain embodiments, the at least one hypodermic needle further includes a barb.
  • In certain embodiments, the at least one hypodermic needle is configured in an arc.
  • In certain embodiments, the at least one hypodermic needle is configured in one or more cycloidal, epicycloidal, hypocycloidal, or other spiral arc.
  • In certain embodiments, the injector head further comprises a cooperative strut corresponding to the at least one hypodermic needle and configured in such a manner as to facilitate dermal penetration of the recipient by the at least one hypodermic needle and to facilitate the injection of the formulation into the recipient.
  • In certain embodiments, the injector head comprises a plurality of hypodermic needles cooperatively corresponding to the at least one hypodermic needle and configured in such a manner as to facilitate dermal penetration of the recipient by the plurality of hypodermic needles and to facilitate injection of the formulation into the recipient.
  • In certain embodiments, the outer circumference of the projectile injection system changes during ballistic flight.
  • In certain embodiments, the outer circumference of the projectile injection system changes after impacting the recipient.
  • In certain embodiments, the projectile injection system emits a sound during ballistic flight or during rotation after the injector head impacts the recipient.
  • In certain embodiments, the rotatable hub further includes or operates as a clutch between the housing and the injector head.
  • In certain embodiments, the injector head further includes an airfoil.
  • Other objects of the invention are achieved by providing a propelled injection system for dosing a human or animal at a distance comprising: a housing including at least one cavity, at least one outlet port, a vent, a plunger, and a hypodermic cannabinoid formulation; and an injector head mounted to the housing via a rotatable hub, the injector head including at least one inlet port and at least one hypodermic needle, wherein when the injector head impacts a recipient, the at least one hypodermic needle penetrates the dermis of the recipient to a depth facilitative of and suitable for subdermal bolus injection due to the rotatable hub allowing the housing to continue rotation while the injector head stops rotation, wherein the remaining kinetic energy after the injector head has constructively stopped rotation is dissipated; and whereby upon the injector head base impacting the recipient the vent allows for housing pressure equalization as the plunger displaces resulting in the dosing of the recipient with the formulation without causing serious injury to or the death of the recipient.
  • Other objects of the invention are achieved by providing a method for dosing a human or animal at a distance with a formulation, the method comprising the steps of: providing a propelled injection system including a housing including at least one outlet port and a hypodermic formulation, and a hypodermic injector head including at least one inlet port and at least one hypodermic needle, wherein the hypodermic injector head is mounted to the housing via a rotational hub; and propelling the housing and the hypodermic injector in a spiraling ballistic trajectory to impact a recipient, wherein upon or after the injector head impacts the recipient, the recipient is dosed with the formulation without causing serious injury to or the death of the recipient resulting from the injector head impacting the recipient or the injecting of the hypodermic formulation.
  • In certain embodiments, the spiraling hypodermic injector head impacts the recipient, the at least one hypodermic needle cooperatively with the direction of rotation penetrates the derma of the recipient to a depth facilitative of and suitable for subdermal bolus injection without causing serious injury to or the death of the recipient due to the rotational hub allowing the housing to continue rotation and thus dissipating the remaining kinetic energy after the injector head has stopped rotation.
  • In certain embodiments, the propelled injection system is propelled by and from the group consisting of lethal ballistic weapons such as single-shot, semi-automatic, or fully-automatic revolvers, pistols, shotguns, scatterguns, rifles, grenade launchers, rocket launchers, mortars, light artillery, heavy artillery, missile launchers, and combinations thereof.
  • Other objects of the invention are achieved by providing a system for humanely immobilizing a human or animal, the system comprising: a formulation including a cannabinoid which renders a recipient incapacitated after dosing; and a delivery system used to dose the recipient with the formulation at a distance, wherein upon dosage of the recipient, a tetrahydrocannabinol blood level is induced greater than one-to-fifty milligrams per milliliter of whole blood (1-50 mg/ml) and below a dosage which causes irreparable harm to or the death of the recipient, and wherein upon dosage of the recipient, the recipient becomes immobilized.
  • A delivery system capable of dosing a human or animal at a distance after spiraling ballistic flight, comprising: a housing having a longitudinal axis, a distal end, and a proximal end, and including at least one cavity, at least one outlet port, an injection system, and a hypodermic formulation; a hypodermic injector head having a longitudinal axis common with the housing longitudinal axis, a distal end, and a proximal end, and being sealably mounted along the common longitudinal axis at the distal end of the housing via a rotatable hub, the injector head including a base, at least one inlet port, and at least one distal hypodermic needle, wherein when the spiraling at least one hypodermic needle contacts a recipient, the at least one hypodermic needle cooperatively with the direction of rotation penetrates the dermis of the recipient to a depth facilitative of and suitable for subdermal bolus injection of the formulation, and then constructively stops both distal and rotational movement along the common longitudinal axis when the injector head base impacts the recipient, due to the rotatable hub allowing the housing to continue rotation along the common longitudinal axis and thus dissipating the remaining kinetic energy after the injector head has constructively stopped rotation, and whereby upon or after the injector head penetrating the dermis of the recipient, the recipient is dosed with the hypodermic formulation stored in the at least one cavity via the injection system, the at least one outlet and inlet ports, and the at least one hypodermic needle, without causing serious injury to or the death of the recipient resulting from the at least one hypodermic needle and injector head base impact or from the resulting injection of the hypodermic formulation.
  • Other objects of the invention and its particular features and advantages will become more apparent from consideration of the following drawings and accompanying detailed description. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A-1E are schematic diagrams of various PRIOR ART delivery systems;
  • FIG. 2 is a schematic diagram of one embodiment of the projectile injection system;
  • FIG. 3 is a schematic diagram of the embodiment of FIG. 2;
  • FIG. 4 is an end view of the embodiment of FIG. 2;
  • FIG. 5 is a schematic diagram of one embodiment of the inventive projectile injection system;
  • FIG. 6 is an end view of the embodiment of FIG. 5;
  • FIG. 7 is a schematic diagram of the housing of one embodiment of the projectile injection system;
  • FIG. 8 is a schematic diagram of the housing of one embodiment of the projectile injection system;
  • FIG. 9 is a schematic diagram of one embodiment of the projectile injection system in a first position;
  • FIG. 10 is a schematic diagram of the embodiment of FIG. 9 in a second position;
  • FIG. 11 is a schematic diagram of one embodiment of the projectile injection system in a first or proximal position;
  • FIG. 12 is a schematic diagram of the embodiment of FIG. 11 in a second or intermediate position;
  • FIG. 13 is a schematic diagram of the embodiment of FIG. 11 in a third or distal position;
  • FIG. 14 is a schematic diagram of one embodiment of the projectile injection system in a first or proximal position;
  • FIG. 15 is a schematic diagram of the embodiment of FIG. 14 in a second or intermediate position;
  • FIG. 16 is a schematic diagram of the embodiment of FIG. 14 in a third or distal position;
  • FIG. 17 is a schematic diagram of one embodiment of the projectile injection system in a first position;
  • FIG. 18 is a schematic diagram of one embodiment of the projectile injection system;
  • FIG. 19 is a schematic diagram of the embodiment of FIG. 17 in a second position; and
  • FIGS. 20A-20F are schematic diagrams of one embodiment of the projectile injection system.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The inventive method and apparatus provides a formulation and propelled injection system (also known as a “delivery system”) configured for dosing a recipient at a distance. The apparatuses to propel the projectile injection system may include a revolver, pistol, shot-gun, or rifle including a ballistic hypodermic projectile comprising a sedative formulation. It is contemplated that the formulation may be primarily a cannabinoid based formulation as disclosed in U.S. patent application Ser. No. 14/820,507, filed Aug. 6, 2015, entitled CANNABINIOD FORMULATION FOR THE SEDATION OF A HUMAN OR ANIMAL, and published as U.S. Patent Application Publication No. 2015/0342922 (herein incorporated by reference in its entirety). However, the instant inventive injection system may be used and is well suited to deploy and deliver known formulations, as well as yet to be developed sedative and/or meditative formulations, to improve their delivery safety and/or performance. Many and varied medicative and/or sedative formulations may be utilized with the instant inventive propelled injection system.
  • During instant inventor experimentation, dronabinol was administered via bolus intermuscular quadricep injection with a 0.5 mL polysorbate 80 and 10 mL saline carrier:
  • First Injection—1 mg dronabinol, typical recreational cannabis intoxication symptom onset (euphoria, visual spacial disorientation and slight distortion) within thirty-to-sixty seconds; peaking within five to seven minutes with a ninety-minute duration.
  • Second Injection—2.5 mg dronabinol, intense and severe recreational cannabis intoxication symptom onset (dissociative euphoria, extreme visual spacial disorientation, audio sensitivity) within ten-to-thirty seconds; peaking within one minute with a three-hour duration.
  • Third Injection—10 mg dronabinol, severe cannabis intoxication symptom onset (dissociative euphoria, extreme visual spacial disorientation, audio sensitivity) within five seconds, followed by dissociative unconsciousness within thirty-to-sixty seconds lasting ninety-to-one hundred and twenty minutes. Recovery to “first injection state” within two hours.
  • Forth Injection—25 mg dronabinol, severe cannabis intoxication symptom onset (dissociative euphoria, extreme visual spacial disorientation, audio sensitivity) within two-to-five seconds, followed by dissociative unconsciousness within thirty-to-sixty seconds lasting four hours. Recovery to “first injection state” within six hours.
  • Forty-eight hours passed between injections, and instant inventor experimentation ended after the fourth injection.
  • While not wishing to be bound by any one theory or combination of theories, the instant inventor has discovered that tetrahydrocannabinol and other cannabinoids cause quick and/or immediate incapacitation of a human or animal when delivered at high doses, while being safe and non-lethal; and thus may be used for industrial, scientific, and medical purposes.
  • The lethality of intravenous dosing of tetrahydrocannabinol in humans is typically unknown. As detailed in Marihuana, A Signal of Misunderstanding, a report delivered to the United States Congress by Raymond P. Shafer on Mar. 22, 1972 (herein incorporated by reference in its entirety), in laboratory animals, a dosage that caused death in 50% of subjects (“LD50”) was in units of mg of tetrahydrocannabinol per kg of body weight. In mice and rats, an LD50 tetrahydrocannabinol dose is 28.6 mg per 42.47 kg of body weight. A dosage of approximately 1000 mg of tetrahydrocannabinol per kg of body weight is known to be the lowest intravenous dosage which causes death in laboratory animals. The typical lethal oral dosage of tetrahydrocannabinol is between approximately 225-450 mg per kg of body weight in laboratory animals.
  • Using intravenous administration, the acute one dose LD50 for tetrahydrocannabinol was 100 mg/kg in dogs and 15.6-62.5 mg/kg in monkeys depending on concentration of the solution. The minimal lethal intravenous dose for dogs, also depending upon concentration, was 25-99 mg/kg, and for monkeys 3.9-15.5 mg/kg.
  • In contrast to the delayed death observed in rats after oral administration, lethality in rats, dogs, and monkeys after intravenous injection occurred within minutes. When sub-lethal amounts were injected, central nervous system depression with concomitant behavioral changes similar to those observed after oral doses were observed. However, their onset was more rapid and the intensity of affect more severe with anesthesia, with convulsions noted after injection. Monkeys and dogs that survived the intravenous injection recovered completely within five to nine days.
  • The only consistent pathological changes noted were in animals which succumb. Pulmonary changes including hemorrhage, edema, emphysema, and generalized congestion were found—and death resulted from respiratory arrest and subsequent cardiac failure. The investigators presumed one mechanism possibly accounting for these findings was due to the concentration of the tetrahydrocannabinol solution and its insolubility in water. Presumably when these highly concentrated solutions mixed with blood, the tetrahydrocannabinol precipitated out of solution. The precipitated foreign material then formed aggregates (or emboli) that were filtered out in the lung capillaries causing a physical blockage of pulmonary blood flow.
  • Subsequently, intravenous studies were repeated using tetrahydrocannabinol emulsified in a sesame oil, polysorbate 80, or saline vehicles at 15 mg/ml or 40 mg/ml. The emulsions were administered at a uniform rate of 2 ml/15 sec. Doses administered were 1, 4, 16, 64, 92, 128, 192 and 256 mg/kg. All monkeys injected with 92 mg/kg or less survived and completely recovered from all effects within two to four days. An analogous intravenous dosage for a 100 kg human would be 9,200 mg (9.2 g) of near-pure tetrahydrocannabinol. All monkeys injected with 128 mg/kg or more succumb within thirty minutes for all but one subject, which took one-hundred-and-eighty minutes to expire. An analogous lethal intravenous dosage for a 100 kg human would be 12,800 mg (12.8 g) of near-pure tetrahydrocannabinol.
  • Histopathological changes found in the lungs of the deceased monkeys were like those described after the previous intravenous experiment. All monkeys that died exhibited severe respiratory depression and bradycardia within five minutes after injection. Respiratory arrest and subsequent cardiac failure occurred within minutes. Behavioral changes preceding death were salivation, prostration, coma, and tremors.
  • Behavioral and physiological changes described clinically in the surviving monkeys followed a consistent developmental sequence and were roughly dose related in severity and duration. Onset was fifteen minutes following injection and duration was up to forty-eight hours. Huddled posture and lethargy were the most persistent changes. Constipation, anorexia, and weight loss were noted. Hypothermia, bradycardia, and decreased respiratory rate generally were maximal two-to-six hours post injection. Tremors with motion but not at rest were believed to be caused by peripheral muscle inadequacy.
  • Enormous intravenous doses of tetrahydrocannabinol, and all tetrahydrocannabinol and concentrated cannabis extracts ingested orally were unable to produce death or organ pathology in large mammals, but did produce fatalities in smaller rodents due to profound central nervous system depression.
  • The nonlethal oral consumption of 3 g/kg of tetrahydrocannabinol by a dog and monkey would be comparable to a 154-pound adult human consuming approximately forty-six pounds, 21 kg, of one-percent THC cannabis, or ten-pounds of five-percent hashish, at one time. In addition, 92 mg/kg tetrahydrocannabinol intravenously produced no fatalities in monkeys. These doses would be comparable to a 154-pound adult human smoking at one time almost three pounds (1.28 kg) of one-percent THC cannabis, 250,000 times the usual smoked dose, and over a million times the minimal effective dose assuming fifty-percent destruction of the tetrahydrocannabinol by combustion.
  • While not wishing to be bound by any one theory or combination of theories, instant inventor mathematical extrapolation and interpolation indicate the following adult human lethality doses for and of hypodermically injected tetrahydrocannabinol:
  • 100% survival—9200 mg of tetrahydrocannabinol per kg of body weight. 100% lethality—12800 mg of tetrahydrocannabinol per kg of body weight.
  • Estimated whole blood volume of a 100 kg human male is 7500 mL, or 75 mL of whole blood per kg of body weight.
  • Converted: 100% survival—122 mg of tetrahydrocannabinol per 1 mL of whole blood. 100% lethality—170 mg tetrahydrocannabinol per 1 mL of whole blood.
  • Instant inventor experimentation indicates an assured effective dose of tetrahydrocannabinol for incapacitation to be approximately 1 to 10 mg of tetrahydrocannabinol per 1 mL of whole blood for an adult human male, and approximately 0.5 to 7.5 mg of tetrahydrocannabinol per 1 mL of whole blood for an adult human female. Therefore, depending on the emergency situation and circumstances involved, it is highly desired and an object of the present inventive formulation and delivery system to hypodermically dose an adult human weighing between 50 and 120 kg with a formulation including between 250 to 500 mg of tetrahydrocannabinol with a single bolus subdermal injection to ensure safe, effective, and extremely rapid incapacitation. It is also highly desired, contemplated, and a further object of the inventive formulation and delivery system that if an initial or first hypodermic dosing of between 250 to 500 mg of tetrahydrocannabinol is insufficient to effectively incapacitate a human recipient, an additional or a plurality of doses including between 250 to 500 mg of tetrahydrocannabinol may be safely administered without concern of reaching or exceeding any known or contemplated lethal tetrahydrocannabinol levels.
  • Formulations of tetrahydrocannabinol may include carriers and or solvents which include sesame oil, polysorbate, polysorbate 80 and/or saline. Other organic and non-toxic solvents and/or surfactants are also contemplated. Additionally, the formulation may contain one or more excipients, such as buffers, alcohols, lipids, ascorbic acid, phospholipids, EDTA, sodium chloride, mannitol, sorbitol, and glycerol, for example.
  • Other carriers are also contemplated which allow for the THC to be mixed to form a solution or a mixture, such that a liquid formulation of the THC may be dosed to effectively incapacitate a human recipient.
  • Evidence from animal studies and human case reports appear to indicate that the ratio of an incapacitating effective-dose to lethal-dose of tetrahydrocannabinol is quite large; and much more favorable than that of many other common psychoactive agents including alcohol, barbiturates, and opiates. This effective-to-lethal tetrahydrocannabinol dosage range may be exploited for medical, scientific, and industrial purposes.
  • While not wishing to be bound by any one theory or combination of theories, it is believed that, the combination, ratio, delivery system, method, or technique, dosage, dosage timing, dosage sequence, and in combination with other known sedatives; cannabinoids, and specifically tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN), may be exploited for industrial, scientific, and medical purposes.
  • Relatedly, known antipsychotic compounds may be included in the codependent inventive cannabinoid formulation to prevent or mitigate quick onset and/or violent psychotic reactions to cannabinoids, especially tetrahydrocannabinol. Such known antipsychotic or neroleptic formulations include but are not limited to butyrophenones, phenothiazines, thioxanthenes, so-called atypical antipsychotics, and so-called second-generation antipsychotics.
  • Many embodiments of the instant method and apparatus for dosing a human or animal at a distance with a hypodermic formulation involve necessary interplay between medical and veterinary science, and external and terminal ballistics.
  • External ballistics entails the calculation, prediction, and performance of projectiles in-flight. Primarily, for the objective of dosing a human or animal with a hypodermic formulation, ballistic flight below approximately twenty-thousand feet altitude is germane; therefore, only “breathable atmosphere ballistic flight” will be considered and described. Terminal ballistics relates to the result or action a particular projectile has at the end of ballistic flight.
  • As defined herein, a “short-range ballistic distance” is less than 10 yards. As defined herein, a “medium-to-long range ballistic distance” is 10 to 100 yards. As defined herein, a “long range ballistic distance” is greater than 100 yards.
  • As defined herein, a “low ballistic velocity” is less than 300 feet per second. As defined herein, a “low-to-medium ballistic velocity” is 300 to 800 feet per second. As defined herein, a “medium-to-high ballistic velocity” is greater than 800 feet per second.
  • One cardinal rule of such ballistics related to solid projectiles is “the greater the mass, the greater the energy”. This can be understood by exemplary Table 1. below of muzzle velocities and corresponding calculated muzzle energies (hereinafter, gr=grains, fps=feet per second, ft-lbs=foot pounds):
  • TABLE 1
    Mass Velocity Energy
    100 gr  100 fps  2 ft-lbs
    100 gr  250 fps  14 ft-lbs
    100 gr  500 fps  56 ft-lbs
    100 gr  750 fps 125 ft-lbs
    100 gr 1000 fps 222 ft-lbs
    100 gr 1500 fps 500 ft-lbs
    100 gr 2000 fps 888 ft-lbs
    100 gr 2500 fps 1388 ft-lbs
    100 gr 3000 fps 1998 ft-lbs 
  • However, many factors come into play when considering and discussing “lethal” ballistics. The U.S. Navy's Mark 45 cannon utilizes a five-inch diameter, seventy pound (approximately 500,000 gr) projectile imparting 435 ft-lbs of muzzle energy traveling at 20 fps; while a 9×19 mm 115 gr full metal jacketed bullet has a similar muzzle energy traveling at approximately 1,300 fps. At 20 fps the cannon shell would take several seconds to even exit the many foot-long barrel of the Mark 45, whereas the 9 mm projectile would exit a four-inch barrel at 3/10,000ths of a second. A person could quite literally dodge the massive Mark 45 shell at such a low velocity, if it exited the cannon muzzle at all. In fact, such a massive projectile would “fall out of the air” traveling at such a low velocity. In operational reality, the Mark 45 utilizes much higher muzzle velocities. Thus it can be appreciated and understood that the velocity of a projectile is not the entire story on lethality, nor is muzzle energy alone.
  • Additionally, terminal ballistics play a tremendous part in the story of projectile lethality. A projectile's shape, composition, configuration, and the like will and does greatly effect lethality.
  • Unless the projectile destroys the heart, lungs, or parts of the central nervous system (brain, spinal cord), it is quite possible that an individual or animal may survive a ballistic impact with modern and immediate trauma care. “Ballistic lethality” therefore is a variable concept in which it is virtually impossible to precisely predict whether or not a person or animal will die from any given projectile impact or wound.
  • Generally, the majority of lethal firearms propel a solid projectile at 800 feet per second (fps) or faster. The smallest, and often considered “the weakest of lethal rounds” is the commonly available .22 caliber short rim-fire. Subsonic, the twenty-two hundredths of an inch diameter thirty grain bullet travels at slightly faster than 800 fps imparting approximately 44 ft-lbs of muzzle energy. Such a configuration is indeed adequate to kill a human or animal, though typically not instantaneously. Conversely however, some have survived wounding from a .45 ACP ball round (200 gr, 900 fps, 360 ft-lbs), illustrating projectile lethality is not a cut-and-dry science nor art.
  • A further cardinal rule of external ballistics related to solid projectiles is “velocity and energy erode while mass remains constant”. Notice in Table 1. above that the mass of the projectile did not change. At the end of flight striking nothing but atmosphere and after gravity and drag have taken their toll, the 100 gr projectile velocity and energy will return to zero as the projectile eventually strikes the ground. The projectile was 100 gr when fired, as it will be 100 gr when striking the ground, or a target. Hence, a primary goal of lethal external and terminal ballistics is to strike an intended living target before the velocity and energy for a given projectile fall below “assured lethal values”.
  • Using simple to very complex calculations, standard tables can determine the overall “effective lethal range” of an unimpeded solid projectile, and the velocity and energy imparted when striking an object at any given point in ballistic flight.
  • In the realm of non-lethal weapons, the external ballistics of so-called air-guns or BB-guns has relevance. Professor Jim House, Adjunct Professor of Chemistry at Illinois Wesley University, discussed such in an essay entitled Airgun Ballistics, found at http://www.crosman.com/get-hunting/airgun-ballistics, and hereby incorporated in its entirety by reference.
  • Quoting Professor House, “A rifle chambered for the .22 long rifle cartridge fires a 40-grain bullet at approximately 1200 fps. A powerful .22 caliber air rifle . . . fires a 14.3 grain pellet with a muzzle velocity of approximately 900 fps. The firearm generates a muzzle energy of approximately 130 ft-lbs . . . whereas that of the air rifle is only about 26 ft-lbs. One frequently hears the expression describing an air rifle as “shoots as hard as a .22”, but the firearm is much more powerful than any air rifle except perhaps some of the big bore .357 precharged pneumatics.”
  • “In addition to the power factor, there is the difference in the trajectory of the projectile. Pellets used in air rifles do not have the aerodynamic efficiency of bullets used in firearms and, consequently, they lose velocity rapidly. Even the bullets used in .22 rim-fire rifles do not have the ability to penetrate air nearly as well as the streamlined bullets used in center fire rifles. The ability of a projectile to retain its velocity when passing through air is reflected by a variable known as the ballistic coefficient. The higher the ballistic coefficient, the less air resistance retards the motion of the projectile. For a relatively efficient .22 caliber pellet . . . , the ballistic coefficient is about 0.028, but the typical 40-grain bullet of a .22 long rifle cartridge has a ballistic coefficient of approximately 0.125. The result is that not only does a pellet fired from an air rifle have a muzzle velocity lower than that of even a bullet fired from a .22 rim-fire, it loses its velocity much more rapidly. All of this means that the path of the pellet involves a lot of curvature and it is more easily blown off course by wind.”
  • Another important factor in such calculations and performance is the rate of ballistic spin (that is, spiral rate or parabolic twist) of a projectile. So-called rifled muskets were invented in the 1700s and resulted in significant improvement in ballistic projectile performance, range, and accuracy.
  • And yet another important factor in eternal ballistics is the three axis center of gravity of a projectile. If a spiraling projectile is colloquially “tail heavy” or along the longitudinal axis is “out of round”, the projectile may and will tumble in flight thus becoming less efficient and less accurate.
  • Another vital factor in such a system is the mass of the delivered and injected formulation. Typically, hypodermic formulations have the consistency and viscosity of water. A limiting aspect of known hypodermic delivery systems is “effective payload” due to formulation mass. Under sea-level and temperate conditions, water has the following volume to mass ratios: 1 ml=(0.9 grams or 13.8 grains); 2 ml=(1.9 grams or 29.3 grains); 3 ml=(2.8 grams or 43.2 grains); 4 ml=(3.8 grams or 58.7 grains); 5 ml=(4.9 grams or 75.6 grains); 10 ml=(9.6 grams or 148.1 grains); 15 ml=(14.5 grams or 223.8 grains); 20 ml=(19.3 grams or 297.8 grains); 30 ml=(28.9 grams or 445.9 grains). As can then be appreciated and understood, as the volume of a formulation payload increases, so does its mass and therefore the imparted energy to the recipient at ballistic flight termination.
  • Depending upon the formulation, it may be desired to inject a recipient with a high fluid volume hypodermic dosage and therefore a ballistically heavy projectile in and of itself. Add to the formulation the mass of the delivery system, and the risk of lethality of the system overall greatly increases.
  • The common use of non-lethal and less-than-lethal kinetic impact weapons or ammunition has resulted in common guidelines for their safe and effective use. Typically, kinetic impact weapons are not deployed to the head, neck, spine, front center of the chest, joints, groin, hands, or feet. Ideal locations for kinetic impact weapon deployment are the thighs, buttocks, upper arms, forearms, the back over the shoulder-blades, and the rear of the lower legs. The general rule of such non-lethal weapons is to impact the muscles, and not the joints, bones, or the groin.
  • Relatedly, it is contemplated that ideal deployment of the instant inventive delivery system is to the large muscle groups of the body, including but not limited to: the upper and lower legs, the buttocks, the upper back away from the spine, the upper chest away from the sternum, the shoulders, and the upper and lower arms. Depending on the velocity, mass, and configuration, it is contemplated that the delivery system may also be deployed to the muscles of the neck. Ideally, it is desired and contemplated that the instant inventive delivery system be deployed as close as safely possible to the recipient's heart or brain, in order to as quickly as possible deliver a sedative formulation to the brain via cardiovascular circulation.
  • It is therefore highly desired and an object of the instant inventive method and system to provide a hypodermic formulation delivery system capable of increased ballistic velocity during flight as compared to known methods and systems, by absorbing or redirecting the resulting increased imparted energy of the projectile away from the recipient upon impact, and correspondingly reducing the velocity and resulting imparted energy of the delivery system to less-than-lethal levels, thereby safely and effectively injecting the recipient with the formulation without causing serious physical harm to, nor the death of, the recipient.
  • One embodiment of the instant inventive ballistic hypodermic formulation delivery system is depicted in FIG. 2. As depicted, the ballistic formulation delivery system 100 includes a ballistic injector head 110, a rotatable hub 1000, and a ballistic injector housing 210.
  • The injector housing 210 may include a cavity 215, an inertia activated plunger 230 internal to the housing, a medicative and/or sedative formulation 250, and one or more formulation collection or outlet port 220. In certain embodiments, the medicative and/or sedative formulation 250 is located within the cavity 215.
  • The injector head 110 may include one or more hypodermic needles 115 including one or more barb (not shown) to prevent dislodgement of the one or more hypodermic needles 115 from the recipient, and one or more formulation reception or inlet port(s) 120 which by intention and design compliment and utilize induced longitudinal and rotational inertial forces transferred to the hypodermic injector head 110 via the rotatable mount 1000 from the spinning injector housing 210 and the formulation 250 within the cavity 215, in order to safely and effectively penetrate the derma of the recipient with the at least one hypodermic needle, and to cause the injection of the medicative and/or sedative formulation 250 from the cavity 215 into the recipient.
  • In certain embodiments, one hypodermic needle 115 is contemplated, and in additional embodiments, two or three or more hypodermic needles are contemplated extending distally from the injector head 110.
  • In certain embodiments, the one or more hypodermic needles are curved or hooked extending distally from the injection head base approximately one-half to three inches. Relatedly, the diameter of the injector head would be commensurate with and vary depending upon the propulsion system used and the caliber of such system. By way of example, it is contemplated that the overall delivery system size and configuration is similar to and compatible with known firearms chambered in and for .410 thru .12 gauge shot-shells, and also for known 40 mm grenade or canister launcher rounds. It is further contemplated that the delivery system size and configuration be chambered in and compatible for use with known lethal revolvers and pistols such as but not limited to: .22 Long Rifle, .380 ACP, 9 mm Luger, .38 Special, .357 Magnum, .40 S&W, 10 mm Auto, .44 Special, .44 Magnum, .45 ACP, .50 Action Express, and .500 S&W Magnum.
  • One possible inventive embodiment basic theory of operation is as follows: delivery system 100 is propelled at low ballistic velocities ranging from 50 to 300 feet per second to a recipient. Preferably, by rifling on the ballistic injector housing 210 (FIGS. 7 and 8, Ref. No. 300), by offset aerodynamic fins or stabilizers (FIG. 8, Ref. No. 305), or by rifling inherent to the launcher or gun used (not shown); as the injector housing 210 spirals along a trajectory thus providing ballistic and gyroscopic stability to the housing 210, the rotatable mount 1000 transfers and/or induces a corresponding rotational spin to the injector head 110.
  • Depending on the system configuration, it is contemplated that the rotatable mount 1000 may freely spin or act as a clutch to induce a desired or specific rate of rotation or spin to the injector head 110. In this way, known and predetermined inertial forces may be used to “cooperatively twist or spiral” the at least one hypodermic needle 115 into the recipient facilitative of safe and effective subdermal bolus injection of the formulation 250.
  • It is also contemplated that the at least one hypodermic needle 115 is hooked or arced in a manner as and in order to “drill into” a recipient to a depth facilitative of safe and effective subdermal bolus injection, and to also constructively halt distal or forward movement, and also constructively halt rotation, upon the injector head base 145 impacting the recipient. Thus the housing 210 as allowed by the rotatable mount 1000 continues rotation and thereby transfers, converts, redirects, dissipates, or conveys any remaining kinetic energy by way of friction and heat to the rotatable mount 1000. In this way, the delivery system may realistically be propelled at and impact a living recipient at greater ballistic velocities and having a greater mass than as would a conventional and known projectile of similar mass lacking a rotatable mount 1000, thereby greatly reducing the potential lethality of the delivery system 100.
  • As depicted in FIGS. 3-6, preferably the at least one outlet port 220 is configured in such a way to be rotatably and yet be sealably in fluid communication with the at least one inlet port 120 in order to dose the recipient with the formulation 250 by way of the at least one hypodermic needle 115. This may be accomplished in a variety of known ways including but not limited to using O-ring seals, tongue and grove seals, precision face-to-face surfaces, or the like. Regardless of the rotation and/or sealing technology or configuration used, the injector housing 210 should rotate in relation to the injector head 110 while allowing for or facilitating the displacement of the hypodermic formulation 250 from the injector housing 210 cavity 215 to and through the injector head 110 and into the recipient upon or after the at least one hypodermic needle 115 penetrates the recipient.
  • As depicted in FIGS. 5 and 6, another inventive embodiment includes a cooperative formulation reception channel or troth 125 in fluid communication with the at least one outlet port 220 and the at least one inlet port 120. Such a configuration allows for easier and more efficient sealing of the delivery system, allows for ease of rotation of the injection head 110, and therefore facilitate a greater rate of induction of the hypodermic formulation 250. As depicted in FIGS. 5 and 6, such a configuration allows for an increased flow of fluid into a recipient.
  • As depicted in FIGS. 9 and 10, another inventive embodiment of the housing 210 includes an inertial plunger 230, a centering post 240, and a housing vent 260. In accordance with Newton's first law of motion, when the delivery system 100 impacts a solid, semi-solid, or non-Newtonian fluid target, the inertial plunger 230 displaces distally toward the recipient resulting in the injection of the formulation 250. A housing vent 260 may be provided to prevent a vacuum from forming behind the plunger 230 and thus retarding, impeding, or preventing injection of the formulation 250. The vent 260 therefore allows for pressure equalization within the housing 210 and cavity 215 as the plunger 230 is displaced. Centering post 240 may be provided to guide and prevent the inertial plunger 230 from becoming cocked within the injector housing 210 and cavity 215 during displacement and hinder formulation 250 injection. As depicted in FIGS. 11, 12, and 13, a telescoping centering post 240′ may also be provided depending upon length of the housing 210, and therefore the required “throw of” or “distance of displacement” of the plunger 230.
  • As depicted in FIGS. 14, 15, and 16, another inventive embodiment of the housing 210 includes a plunger 230′, a shaft 280, and a worm gear 290 in communication with the plunger 230′. In operation, it is contemplated that the shaft 280 is in mechanical communication with either the rotatable mount 1000 and/or the injector head 110, and is allowed to rotate within the injector housing 210. Thereby, when the injector head 110 halts rotation upon impacting a recipient, the injector housing 210 cooperatively continues to rotate about the shaft 280 and the worm gear 290, thus displacing the plunger 230′ along the longitudinal axis of the housing resulting in the injection of the formulation 250.
  • As depicted in FIGS. 17, 18 and 19, another inventive embodiment of the housing 210 includes a turbine or corkscrew palate 285 and a shaft 280 in mechanical communication with either the rotatable mount 1000 and/or the injector head 110, and allowed to rotate free of and within the injector housing 210. Thereby, when the injector head 110 halts rotation upon impacting a recipient, the injector housing 210 continues to rotate about the shaft 280 and the turbine or corkscrew palate 285 forces the formulation into the at least one outlet port 220, and resulting in the injection of the formulation 250.
  • What is highly desired and an object of the instant inventive method and system is to provide a hypodermic delivery system capable of dosing a recipient with a formulation having a combined mass between 10 and 500 grains, propelled at low-to-medium ballistic velocities (300 to 800 fps) and with medium-to-long range ballistic accuracy (10 to 100+ yards) without causing serious physical harm to, nor the death of, the recipient.
  • This objective may be accomplished using a staged or graceful velocity degradation method and system. All known systems utilize a single method or stage of reducing imparted energy of known non-lethal projectiles. Typically, a collapsible or deformable material is added to the distal or forward nose of a projectile. As the projectile impacts a recipient the material deforms whereby the projectile velocity is reduced and the energy imparted is dissipated over a wider impact area in hopes of not seriously injuring or killing the recipient. Brydges-Price '810, Brydges-Price '908, Baltos, Delphia, and Muller referenced and discussed earlier all utilize such collapsing or deforming material energy absorbing method and system. However, using such impact reducing material alone is largely inadequate to prevent serious harm to or death of a recipient when impacted by projectiles traveling above 300 fps, regardless of projectile mass.
  • Therefore, by using such known energy absorbing materials with the instant inventive hypodermic formulation delivery system 100 including a rotatable mount 1000, higher ballistic velocities may be realized thus improving the performance, range, and accuracy of non-lethal projectiles and systems.
  • Further and accordingly, the instant inventive delivery system 100 may also include a forward of or leading-edge airfoil. In this regard, the inventions and work of the late Abraham Flatau have relevance. Mr. Flatau was a pioneer in the fields of external and terminal ballistics, and later in life devoted his time and energy to designing and patenting novel aerial toys. One such is taught by U.S. Pat. No. 6,454,623 granted Sep. 24, 2002, (herein “Flatau” and included in its entirety by reference). Flatau includes a closely spaced colinearly aligned ring wing or airfoil connected by spokes to a central slender member. The instant inventive delivery system 100 may further comprise such an airfoil thus providing an additional stage of graceful velocity degradation when the instant inventive delivery system 100 strikes a recipient, as well as increasing the overall ballistic stability and performance of the instant inventive delivery system 100 in flight. An additional ballistic advantage to such a leading ring wing or airfoil configuration is that depending upon the airfoil configuration, a partial vacuum may be created within and behind the airfoil via a venturi effect. The central slender member of Flatau encounters reduced aerodynamic drag due to its placement central to and within the ring wing or airfoil. This induced venturi effect may be utilized to further reduce the aerodynamic drag, and thus increase the velocity of the instant inventive housing 210 and injector head 110 when similarly configured.
  • As depicted in FIGS. 20A-20E, an inventive embodiment of the injector head 110 includes a ring wing or airfoil 400 distal to, forward of, or leading the injector head 110, and releasably in mechanical communication with the injector head 110 by at least two or more spokes 410.
  • As depicted in FIG. 20A, it is contemplated that a ring wing or airfoil 400 may be capable of expanding in outer circumference greater than the outer circumference of either the housing 210, the injector head 110, or both. After leaving a launcher or gun barrel muzzle, such expansion of the airfoil may be achieved by telescopic or expanding surface design and utilizing forces inherent to a spiraling ballistic projectile. Optionally, as depicted in FIG. 20B, the outer circumference of the ring wing or airfoil 400 may remain fixed throughout ballistic flight; as will be the case in the following explanative discussion.
  • As depicted and contemplated, a possible basic theory of operation for one such embodiment of the instant inventive delivery system 100, utilizing such a staged or graceful velocity degradation configuration, is as follows: As depicted in FIG. 20B, the delivery system 100 is propelled at low-to-moderate ballistic velocities up to approximately 800 fps. Preferably the delivery system 100 is caused to spiral in flight, either by rifling on the injector housing 210 (FIGS. 7 and 8, Ref. No. 300), by rifling on the outer surface of the ring wing or airfoil 400 (not shown), by offset aerodynamic stabilizers (FIG. 8, Ref. No. 305), or by rifling inherent to the launcher or gun barrel used (not shown). The spiraling provided by a launcher or gun barrel to the delivery system 100 directly or causationally imparts gyroscopic stability to the housing 210, the injector head 110, and/or the ring wing or airfoil 400.
  • As depicted in FIG. 20C, upon the ring wing or airfoil 400 impacting a recipient 500, the at least two or more spokes 410 fracture, detach, or disengage from the injector head 110 and/or ring wing or airfoil 400 and thereby absorb, dissipate, or redirect a portion of the overall delivery system 100 velocity and resulting energy. It is contemplated that the ring wing or airfoil 400 have as little mass as possible, as to not cause serious harm to or the death of the recipient 500 upon impact. It is also contemplated that the ring wing or airfoil 400 be designed in such a manner as to segment, fracture, separate, and/or displace upon impact with the recipient 500 to further absorb or dissipate an increased portion of the overall imparted energy of the delivery system 100.
  • As depicted in FIG. 20D, once the injector head 110 has been slowed by and is free of the ring wing or airfoil 400, an energy absorbing nose cone 420 forward of or distal to the at least one hypodermic needle 115 next impacts the recipient 500 at a slower velocity than that of the ring wing or airfoil 400 leading edge. As the nose cone 420 either collapses, displaces, distorts, compacts, fractures, or detaches from the injector head 110, it thereby absorbs, dissipates, or redirects a further portion of the overall delivery system 100 velocity and imparted energy. It is contemplated that the rotatable mount 1000 may freely spin or act as a clutch to induce a desired or specific rate of rotation or spin to the injector head 110. In this way, known and predetermined inertial and ballistic forces may next be used to “cooperatively twist or spiral” the at least one hypodermic needle 115 into the recipient 500 facilitative of and for safe and effective subdermal bolus injection of the formulation 250; and further absorbing, dissipating, or redirecting a portion of the overall delivery system 100 imparted energy.
  • As depicted in FIG. 20E, it is also contemplated that the at least one hypodermic needle 115 is hooked or arced in order and as to “drill into” a recipient 500 to a depth facilitative of safe and effective subdermal bolus injection, and to also constructively halt distal or forward movement, and also constructively halt rotation, upon the injector head base 145 impacting the recipient 500. As depicted in FIG. 20E, thus housing 210 via the rotatable mount 1000 continues rotation and thereby transfers, converts, redirects, dissipates, or conveys the remaining portion of the imparted energy by way of friction and heat to the rotatable mount 1000. In this way, the delivery system may realistically be propelled at and impact a living recipient 500 at greater ballistic velocities and having a greater mass than as would a known conventional projectile of similar mass lacking the rotatable mount 1000, lacking the nose cone 420, and/or lacking the leading ring wing or airfoil 400.
  • The inventive method and apparatus provides a delivery system adapted for dosing a recipient hypodermically with a formulation at a distance; the delivery system utilizing known common revolver, pistol, shot-gun, rifle, other firearms, and/or known grenade canister launchers.
  • Many and varied apparatus or inventive formulation delivery system types and techniques may be provided within the scope of the instant inventive delivery system, such as but not limited to, non-lethal or less-than-lethal weapons such as hypodermic syringes, hypodermic darts, blowpipes, dart-pistols, dart-rifles, jab-sticks, dart-arrows, slingshots, and the like.
  • Additionally, many and varied known lethal weapons may utilize the inventive ballistic formulation hypodermic delivery system, such as but not limited to, single-shot, semi-automatic, or fully-automatic revolvers, pistols, shotguns, scatterguns, rifles, grenade launchers, and combinations thereof.
  • Accordingly, the instant inventive method and system is not to be limited by the embodiments as described and depicted, as these are given by way of example only and not by way of limitation.
  • Having thus described several embodiments for practicing the inventive method and system, its advantages and objectives can be easily understood. Variations from the description above may and can be made by one skilled in the art without departing from the scope of the invention, which is to be determined from and by the following claims.

Claims (28)

What is claimed is:
1. A projectile injection system for dosing a human or animal recipient from a distance, the system comprising:
a housing having a longitudinal axis, a distal end, and a proximal end, wherein said housing has at least one cavity storing a hypodermic formulation and at least one outlet port through which the hypodermic formulation exits said housing; and
an injector head having at least one inlet port fluidly connected to the at least one outlet port of the housing, and at least one distal hypodermic needle extending distally from the injector head, the injector head mounted to the distal end of the housing via a rotatable hub,
wherein upon contact with the recipient, the at least one distal hypodermic needle penetrates the recipient and the hypodermic formulation exits the at least one cavity and passes through the at least one outlet port of the housing into the at least one inlet port of the injector head and through the at least one distal hypodermic needle, so that the recipient is dosed with the hypodermic formulation without causing serious injury to or the death of the recipient.
2. The system of claim 1, wherein the hypodermic formulation is a cannabinoid formulation.
3. The system of claim 2, wherein the cannabinoid formulation includes less than 9200 mg of tetrahydrocannabinol per kg of body weight of the recipient, such that the dose administered to the recipient is a non-lethal dose.
4. The system of claim 1, wherein said projectile injection system is propelled by and from the group consisting of lethal ballistic weapons such as single-shot, semi-automatic, or fully-automatic revolvers, pistols, shotguns, scatterguns, rifles, grenade launchers, rocket launchers, mortars, light artillery, heavy artillery, missile launchers, and combinations thereof
5. The system of claim 1, wherein said projectile injection system is configured to undergo spiraling ballistic flight.
6. The system of claim 5, wherein the injector head has a longitudinal axis that is common with the longitudinal axis of the housing, and wherein upon contact with the recipient, the at least one hypodermic needle cooperatively with the direction of rotation penetrates the dermis of the recipient to a depth facilitative of and suitable for subdermal bolus injection of the formulation, wherein the at least one hypodermic needle constructively stops both distal and rotational movement along the common longitudinal axis when the injector head impacts the recipient.
7. The system of claim 6, wherein the rotatable hub allows said housing to continue rotation along the common longitudinal axis, thus dissipating the remaining kinetic energy after the injector head has constructively stopped rotation.
8. The system of claim 1, wherein the housing further includes a plunger and a housing vent, wherein the housing vent allows for housing pressure equalization when and as the plunger displaces resulting in the injection of the formulation into the recipient.
9. The system of claim 1, wherein the injection system comprises a turbine or worm gear in communication with the rotatable hub, wherein when the housing continues rotation as the injector head remains constructively stationary, the turbine or worm gear forces the formulation through the at least one outlet port resulting in the injection of the formulation into the recipient.
10. The system of claim 1, wherein the system is reusable.
11. The system of claim 1, wherein the injector system utilizes inertial forces upon impact of the injector head with the recipient resulting in the injection of the formulation into the recipient.
12. The system of claim 8, wherein the housing further includes a worm gear along the common longitudinal axis in communication with the plunger and in communication with the rotatable hub, whereby the continuing rotation of the housing along the common longitudinal axis in relation to the hypodermic injector head and after impact with the recipient causes the plunger to displace along the common longitudinal axis resulting in the injection of the formulation.
13. The system of claim 8, wherein the housing further includes a gas under pressure, wherein when the gas is suddenly released, or comprises an explosive substance whereby when ignited expands, or comprises a spring under compression whereby when suddenly released, causes the plunger to displace resulting in the injection of the formulation.
14. The system of claim 1, wherein the at least one hypodermic needle further includes a barb.
15. The system of claim 1, wherein the at least one hypodermic needle is configured in an arc.
16. The system of claim 15, wherein the at least one hypodermic needle is configured in one or more cycloidal, epicycloidal, hypocycloidal, or other spiral arc.
17. The system of claim 1, wherein the injector head further comprises a cooperative strut corresponding to the at least one hypodermic needle and configured in such a manner as to facilitate dermal penetration of the recipient by the at least one hypodermic needle and to facilitate the injection of the formulation into the recipient.
18. The system of claim 1, wherein the injector head comprises a plurality of hypodermic needles cooperatively corresponding to the at least one hypodermic needle and configured in such a manner as to facilitate dermal penetration of the recipient by the plurality of hypodermic needles and to facilitate injection of the formulation into the recipient.
19. The system of claim 1, wherein the outer circumference of the projectile injection system changes during ballistic flight.
20. The system of claim 1, wherein the outer circumference of the projectile injection system changes after impacting the recipient.
21. The system of claim 1, wherein the projectile injection system emits a sound during ballistic flight or during rotation after the injector head impacts the recipient.
22. The system of claim 1, wherein the rotatable hub further includes or operates as a clutch between the housing and the injector head.
23. The system of claim 1, wherein the injector head further includes an airfoil.
24. A propelled injection system for dosing a human or animal at a distance comprising:
a housing including at least one cavity, at least one outlet port, a vent, a plunger, and a hypodermic cannabinoid formulation; and
an injector head mounted to the housing via a rotatable hub, the injector head including at least one inlet port and at least one hypodermic needle,
wherein when the injector head impacts a recipient, the at least one hypodermic needle penetrates the dermis of the recipient to a depth facilitative of and suitable for subdermal bolus injection due to the rotatable hub allowing the housing to continue rotation while the injector head stops rotation, wherein the remaining kinetic energy after the injector head has constructively stopped rotation is dissipated; and
whereby upon the injector head base impacting the recipient the vent allows for housing pressure equalization as the plunger displaces resulting in the dosing of the recipient with the formulation without causing serious injury to or the death of the recipient.
25. A method for dosing a human or animal at a distance with a formulation, the method comprising the steps of:
providing a propelled injection system including
a housing including at least one outlet port and a hypodermic formulation, and
a hypodermic injector head including at least one inlet port and at least one hypodermic needle,
wherein the hypodermic injector head is mounted to the housing via a rotational hub; and
propelling the housing and the hypodermic injector in a spiraling ballistic trajectory to impact a recipient,
wherein upon or after the injector head impacts the recipient, the recipient is dosed with the formulation without causing serious injury to or the death of the recipient resulting from the injector head impacting the recipient or the injecting of the hypodermic formulation.
26. The method of claim 25, wherein when the spiraling hypodermic injector head impacts the recipient, the at least one hypodermic needle cooperatively with the direction of rotation penetrates the derma of the recipient to a depth facilitative of and suitable for subdermal bolus injection without causing serious injury to or the death of the recipient due to the rotational hub allowing the housing to continue rotation and thus dissipating the remaining kinetic energy after the injector head has stopped rotation.
27. The method of claim 25 wherein the propelled injection system is propelled by and from the group consisting of lethal ballistic weapons such as single-shot, semi-automatic, or fully-automatic revolvers, pistols, shotguns, scatterguns, rifles, grenade launchers, rocket launchers, mortars, light artillery, heavy artillery, missile launchers, and combinations thereof.
28. A system for humanely immobilizing a human or animal, the system comprising:
a formulation including a cannabinoid which renders a recipient incapacitated after dosing; and
a delivery system used to dose the recipient with the formulation at a distance,
wherein upon dosage of the recipient, a tetrahydrocannabinol blood level is induced greater than one-to-fifty milligrams per milliliter of whole blood (1-50 mg/ml) and below a dosage which causes irreparable harm to or the death of the recipient, and
wherein upon dosage of the recipient, the recipient becomes immobilized.
US15/243,439 2015-08-06 2016-08-22 Formulation delivery system Abandoned US20170038184A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/243,439 US20170038184A1 (en) 2015-08-06 2016-08-22 Formulation delivery system
US15/412,211 US20170143664A1 (en) 2015-08-06 2017-01-23 Cannabinoid formulation for the sedation and/or anaesthetizing of a human or animal
US17/494,469 US20220120542A1 (en) 2015-08-06 2021-10-05 Ballistic delivery method and system for injectable formulations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/820,507 US9585867B2 (en) 2015-08-06 2015-08-06 Cannabinod formulation for the sedation of a human or animal
US15/243,439 US20170038184A1 (en) 2015-08-06 2016-08-22 Formulation delivery system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/820,507 Continuation-In-Part US9585867B2 (en) 2015-08-06 2015-08-06 Cannabinod formulation for the sedation of a human or animal

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/820,507 Continuation-In-Part US9585867B2 (en) 2015-08-06 2015-08-06 Cannabinod formulation for the sedation of a human or animal
US17/494,469 Continuation US20220120542A1 (en) 2015-08-06 2021-10-05 Ballistic delivery method and system for injectable formulations

Publications (1)

Publication Number Publication Date
US20170038184A1 true US20170038184A1 (en) 2017-02-09

Family

ID=58052457

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/243,439 Abandoned US20170038184A1 (en) 2015-08-06 2016-08-22 Formulation delivery system
US17/494,469 Pending US20220120542A1 (en) 2015-08-06 2021-10-05 Ballistic delivery method and system for injectable formulations

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/494,469 Pending US20220120542A1 (en) 2015-08-06 2021-10-05 Ballistic delivery method and system for injectable formulations

Country Status (1)

Country Link
US (2) US20170038184A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108742927A (en) * 2018-06-27 2018-11-06 新乡医学院 A kind of thrombus induction experimental provision
CN109009537A (en) * 2018-06-27 2018-12-18 新乡医学院 A kind of animal blood vessels inner film injury experimental provision
US11236979B1 (en) * 2021-06-24 2022-02-01 Gary Lee Johnson Non-lethal tranquilizer bullet

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982536A (en) * 1974-11-15 1976-09-28 Minnesota Mining And Manufacturing Company Ballistic inoculation of animals and projectile therefor
US4262597A (en) * 1979-01-25 1981-04-21 The United States Of America As Represented By The Secretary Of The Army Pre-wrapped two-piece ring airfoil projectile of non-hazardous material
US4863428A (en) * 1988-03-24 1989-09-05 Ballistivet, Inc. Injecting projectile dart
US5356383A (en) * 1990-02-09 1994-10-18 Damal Limited Hypodermic needle/syringe assemblies and device for removing needles therefrom
US5601534A (en) * 1995-06-07 1997-02-11 The University Of Memphis Disposable hypodermic syringe and needle combination
US5993423A (en) * 1998-08-18 1999-11-30 Choi; Soo Bong Portable automatic syringe device and injection needle unit thereof
US20020031480A1 (en) * 1998-10-27 2002-03-14 Joanne Peart Delta9 tetrahydrocannabinol (Delta9 THC) solution metered dose inhalers and methods of use
US20030047105A1 (en) * 1996-11-18 2003-03-13 Jaycor Tactical Systems, Inc. Non-lethal projectile systems
US20070038181A1 (en) * 2005-08-09 2007-02-15 Alexander Melamud Method, system and device for delivering a substance to tissue
US20090030381A1 (en) * 2007-07-23 2009-01-29 Lind Casey J Arced Hypodermic Needle
US7766013B2 (en) * 2001-06-05 2010-08-03 Alexza Pharmaceuticals, Inc. Aerosol generating method and device
US20110166521A1 (en) * 2008-05-09 2011-07-07 Owen Mumford Limited Electrically actuated injector
US20120022499A1 (en) * 2010-04-21 2012-01-26 Abbott Biotechnology Ltd. Wearable automatic injection device for controlled delivery of therapeutic agents
US20130303985A1 (en) * 2012-04-06 2013-11-14 Paul K. WOTTON Needle assisted jet injection administration of testosterone compositions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951070A (en) * 1972-11-29 1976-04-20 Abraham Flatau Non-hazardous ring airfoil projectile of non-lethal material
US3820465A (en) * 1973-02-09 1974-06-28 J Delphia Sedative bullet
US6251418B1 (en) * 1997-12-18 2001-06-26 C.R. Bard, Inc. Systems and methods for local delivery of an agent

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982536A (en) * 1974-11-15 1976-09-28 Minnesota Mining And Manufacturing Company Ballistic inoculation of animals and projectile therefor
US4262597A (en) * 1979-01-25 1981-04-21 The United States Of America As Represented By The Secretary Of The Army Pre-wrapped two-piece ring airfoil projectile of non-hazardous material
US4863428A (en) * 1988-03-24 1989-09-05 Ballistivet, Inc. Injecting projectile dart
US5356383A (en) * 1990-02-09 1994-10-18 Damal Limited Hypodermic needle/syringe assemblies and device for removing needles therefrom
US5601534A (en) * 1995-06-07 1997-02-11 The University Of Memphis Disposable hypodermic syringe and needle combination
US20030047105A1 (en) * 1996-11-18 2003-03-13 Jaycor Tactical Systems, Inc. Non-lethal projectile systems
US5993423A (en) * 1998-08-18 1999-11-30 Choi; Soo Bong Portable automatic syringe device and injection needle unit thereof
US20020031480A1 (en) * 1998-10-27 2002-03-14 Joanne Peart Delta9 tetrahydrocannabinol (Delta9 THC) solution metered dose inhalers and methods of use
US7766013B2 (en) * 2001-06-05 2010-08-03 Alexza Pharmaceuticals, Inc. Aerosol generating method and device
US20070038181A1 (en) * 2005-08-09 2007-02-15 Alexander Melamud Method, system and device for delivering a substance to tissue
US20090030381A1 (en) * 2007-07-23 2009-01-29 Lind Casey J Arced Hypodermic Needle
US20110166521A1 (en) * 2008-05-09 2011-07-07 Owen Mumford Limited Electrically actuated injector
US20120022499A1 (en) * 2010-04-21 2012-01-26 Abbott Biotechnology Ltd. Wearable automatic injection device for controlled delivery of therapeutic agents
US20130303985A1 (en) * 2012-04-06 2013-11-14 Paul K. WOTTON Needle assisted jet injection administration of testosterone compositions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108742927A (en) * 2018-06-27 2018-11-06 新乡医学院 A kind of thrombus induction experimental provision
CN109009537A (en) * 2018-06-27 2018-12-18 新乡医学院 A kind of animal blood vessels inner film injury experimental provision
US11236979B1 (en) * 2021-06-24 2022-02-01 Gary Lee Johnson Non-lethal tranquilizer bullet
US20220412708A1 (en) * 2021-06-24 2022-12-29 Gary Lee Johnson Non-lethal tranquilizer bullet
US11543221B1 (en) * 2021-06-24 2023-01-03 Gary Lee Johnson Non-lethal tranquilizer bullet

Also Published As

Publication number Publication date
US20220120542A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
BARACH et al. Ballistics: a pathophysiologic examination of the wounding mechanisms of firearms: Part I
US20220120542A1 (en) Ballistic delivery method and system for injectable formulations
US6223658B1 (en) Non-lethal weapon firing a frangible, weighted paint ball
US6393992B1 (en) Non-lethal projectile for delivering an inhibiting substance to a living target
US6283037B1 (en) Non-lethal shot-gun round
US7526998B2 (en) Stabilized non-lethal projectile systems
US3782286A (en) Non-lethal projectile and launcher therefor
US7194960B2 (en) Non-lethal projectiles for delivering an inhibiting substance to a living target
US6997110B2 (en) Deployable bullets
US5221809A (en) Non-lethal weapons system
US3502025A (en) Nonpenetrating drug injecting bullet
US7987790B1 (en) Ring airfoil glider expendable cartridge and glider launching method
US20030106545A1 (en) Non-lethal handgun
La Garde Gunshot injuries: how they are inflicted, their complications and treatment
BRPI0500226B1 (en) PROJECTILE FOR NON-LETHAL AMMUNITION
US20030167955A1 (en) Passive action security systems
US11808552B1 (en) Less lethal projectile system
US4204474A (en) Caloric incapacitating low-lethality projectile
FACKLER et al. A reconsideration of the wounding mechanism of very high velocity projectiles—importance of projectile shape
US20070151551A1 (en) Non-lethal hand pistol
US20060027124A1 (en) Non-lethal shotgun round with foam liner
ES2261440T3 (en) NON-PENETRATING PROJECT.
US9052175B1 (en) Sabotage cartridge with toxic agent
US4091736A (en) Incapacitating anti-personnel smallarms projectile
RU2427787C1 (en) Cartridge of non-lethal damaging action (versions)

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STCV Information on status: appeal procedure

Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: TC RETURN OF APPEAL

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION