US20160213451A1 - Dental prosthesis production device and dental prosthesis - Google Patents

Dental prosthesis production device and dental prosthesis Download PDF

Info

Publication number
US20160213451A1
US20160213451A1 US14/915,337 US201514915337A US2016213451A1 US 20160213451 A1 US20160213451 A1 US 20160213451A1 US 201514915337 A US201514915337 A US 201514915337A US 2016213451 A1 US2016213451 A1 US 2016213451A1
Authority
US
United States
Prior art keywords
abutment
dental prosthesis
dental
height
implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/915,337
Inventor
Goran Burger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ivoclar Vivadent AG
Original Assignee
Ivoclar Vivadent AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ivoclar Vivadent AG filed Critical Ivoclar Vivadent AG
Assigned to IVOCLAR VIVADENT AG reassignment IVOCLAR VIVADENT AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BURGER, GORAN
Publication of US20160213451A1 publication Critical patent/US20160213451A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0048Connecting the upper structure to the implant, e.g. bridging bars
    • A61C8/005Connecting devices for joining an upper structure with an implant member, e.g. spacers
    • A61C8/0066Connecting devices for joining an upper structure with an implant member, e.g. spacers with positioning means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0004Computer-assisted sizing or machining of dental prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C3/00Dental tools or instruments
    • A61C3/02Tooth drilling or cutting instruments; Instruments acting like a sandblast machine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • A61C8/0013Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • A61C8/0016Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy polymeric material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0048Connecting the upper structure to the implant, e.g. bridging bars
    • A61C8/005Connecting devices for joining an upper structure with an implant member, e.g. spacers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0048Connecting the upper structure to the implant, e.g. bridging bars
    • A61C8/005Connecting devices for joining an upper structure with an implant member, e.g. spacers
    • A61C8/0054Connecting devices for joining an upper structure with an implant member, e.g. spacers having a cylindrical implant connecting part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0048Connecting the upper structure to the implant, e.g. bridging bars
    • A61C8/005Connecting devices for joining an upper structure with an implant member, e.g. spacers
    • A61C8/0059Connecting devices for joining an upper structure with an implant member, e.g. spacers with additional friction enhancing means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0048Connecting the upper structure to the implant, e.g. bridging bars
    • A61C8/005Connecting devices for joining an upper structure with an implant member, e.g. spacers
    • A61C8/006Connecting devices for joining an upper structure with an implant member, e.g. spacers with polygonal positional means, e.g. hexagonal or octagonal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0048Connecting the upper structure to the implant, e.g. bridging bars
    • A61C8/005Connecting devices for joining an upper structure with an implant member, e.g. spacers
    • A61C8/0068Connecting devices for joining an upper structure with an implant member, e.g. spacers with an additional screw

Definitions

  • the invention relates to a dental prosthesis production device according to the preamble of claim 1 , a dental prosthesis according to the preamble of claim 9 , and a method according to the preamble of claim 15 .
  • dental prostheses are attached in the mouth of a patient with the help of an implant.
  • the implant is typically provided with a so-called abutment after it has been inserted, which is connected to the implant in a geometrically true manner, for instance by configuring the surfaces of the implant and the abutment which face one another in an untrue or non-circular manner.
  • the attachment itself is then carried out by means of an abutment screw which penetrates the abutment.
  • an upper area of the abutment is configured as a tubing section whose internal diameter is sufficient for receiving the abutment screw.
  • the abutment screw is supported slightly below this tubing section on a slightly conical supporting area in most cases, whose internal diameter is smaller than the diameter of the head of the abutment screw but wide enough to fit the shank and the thread of the abutment screw.
  • the implant comprises an internal thread in a way known per se for threaded engagement with the thread of the abutment screw.
  • the tubing section or the upper area of the abutment is slightly conical on the outside in most cases and fits into a corresponding recess in the dental structure in a geometrically true manner.
  • the abutment flanges which extend radially towards the outside and which are intended to be in engagement with corresponding grooves in the dental structure in order to provide the desired anti-rotation device. If this area is sawed off without further ado, the anti-rotation mechanism is not available anymore; if, on the other hand, the abutment is used for abutment teeth of a bridge, the anti-rotation device which exists in this connection can be disturbing in some cases as in this case an angularly accurate orientation to, for instance, less than 1° would be necessary to avoid tensions.
  • the invention is based on the task of providing a dental prosthesis production device according to the preamble of claim 1 , a dental prosthesis according to the preamble of claim 9 and a method according to the preamble of claim 15 which take account of the requirements presented to the dental prosthesis consisting of implant, abutment and dental structure in an improved manner and which make it possible to handle the production of the dental prosthesis by the dentist or dental technician in conformity with warranty claims.
  • the production device itself comprises a selection device for abutments.
  • the data of the dental structure produced by means of CAM, compression molding technology or rapid prototyping has been defined beforehand and is present in the production device, such that according to the invention it is particularly favorable that the load-carrying capacity of the power transmission surfaces between abutment and dental structure, the remaining wall thickness of the dental structure, the angular orientation, the height level, etc., can be defined beforehand and in a predetermined manner by the production device.
  • a compression molding technology can also be used, and in this respect it is referred to the entire document EP 1 915 972 A1 by way of example.
  • the abutments can be selected based on the existing dimensioning of the abutments and that the adjusted configuration of the bearing surfaces of the dental structure on the abutment can be specified for the CAM device.
  • Shortening the abutment can be performed by means of a machining tool, in particular a milling cutter, or a CAM device.
  • an inventively advantageous embodiment it is provided to provide a groove or a plurality of grooves which extend(s) vertically almost across the entire height of the upper area of the abutment which is referred to as tubing section herein.
  • This embodiment comprising the anti-rotation device has the advantage that it is also effective in this respect if the height of the tubing section is reduced in accordance with the advantageous embodiment. Furthermore, by realizing flanges according to the groove and tongue principle in the radial inner surface of the dental structure the inventive anti-rotation device can be ensured with the desired reliability.
  • the inventive dental prosthesis is configured as a bridge such that an additional anti-rotation device is not only undesirable but also disturbing the CAM device simply omits or does not produce the corresponding flanges such that the desired ability to rotate for a stress-free mounting of the bridge is given.
  • the desired adhesive gap can be set at an exceptionally great accuracy of, for instance, 50 ⁇ .
  • the milling process automatically defines the curves and radii as can be provided in a stress-related limited manner. An unintentional reduction and thus a decrease of the support surface are precluded, just like an unintentional confusion of the abutments which are adjusted to the corresponding dental structure, respectively. Finishing, such as roughening or the like, is not required; in fact, as part of the CAM production the abutment can, for instance, also be coated and thus be given a desired color in any suitable manner, wherein it is to be understood that the degree of roughness of the coating is adapted to the requirements.
  • the upper area of the abutment can be shortened to standard dimensions in any suitable manner such that the inner surfaces of the dental structure can also be configured with standard dimensions.
  • the configuration of the arrangement of grooves in the upper area of the implant can be used as an anti-rotation device but also, for instance, a respective untrue or non-circular configuration at a collar of the implant which is engaged with the dental structure.
  • the desired shape of the dental prosthesis is determined based on an extraoral or intraoral 3D scan with the aid of a scanbody whose cylindrical geometry comprises a bevel or a ball-shaped reference surface in order to enable the determination and transfer of the initial situation (model) into 3D data (scan).
  • the scanning result is supplied to a CAD device which, based on the shape of neighboring teeth of the desired dental prosthesis, forms a virtual shape of the restoration to be produced and divides it virtually into an implant, an abutment and a dental structure—optionally after the intervention of a user.
  • an abutment refers to any desired meso-structure, that is to say any structure which extends between the implant and the dental structure which is also referred to as suprastructure, wherein it is to be understood that single-unit but also multi-unit dental abutment structures can be realized basically.
  • the outer surface of the tubing section of the abutment can be provided with drain channels for adhesive in any desired manner which can be combined with anti-rotation elements, that is to say corresponding grooves or other female molds at the outer surface of the tubing section, if necessary.
  • the realization of a chamfer at the transition between the tubing section and the collar of the abutment is particularly preferable. This chamfer is typically external to the contact area, that is to say to the area at which the abutment contacts the dental structure, and is thus subjected to lower surface pressure.
  • excessive adhesive can be carried off in a suitable manner by means of a correspondingly suitable configuration of an elongated or ring-shaped recess.
  • the collar of the abutment extends substantially vertically towards the outside and comprises a relatively small axial height which can amount to between 0.1 mm and 1 mm, 0.1 mm and 2 mm and between 0.1 mm and 0.5 mm. This enables an adjustment to the emergence profile in an anatomically favorable manner.
  • FIG. 1 shows a perspective schematic representation of an inventive dental prosthesis
  • FIG. 2 shows the embodiment according to FIG. 1 , however, in a sectional view
  • FIG. 3 shows a modified embodiment of an inventive dental prosthesis according to FIG. 1 ;
  • FIG. 4 shows the embodiment according to FIG. 3 in a sectional view
  • FIG. 5 shows a further modified embodiment of the inventive dental prosthesis in a perspective view
  • FIG. 6 shows the embodiment according to FIG. 5 in a sectional view
  • FIG. 7 shows a view of a further embodiment of an inventive dental prosthesis in a side view
  • FIG. 8 shows the embodiment according to FIG. 7 in a top view
  • FIG. 9 shows the embodiment according to FIGS. 7 and 8 in a sectional view
  • FIG. 10 shows a schematic representation of an inventive dental prosthesis production device illustrating the part relevant for the invention.
  • FIG. 11 shows a schematic representation of an inventive dental prosthesis production device illustrating the part relevant for the invention, however, in a modified embodiment.
  • FIG. 1 an abutment 10 is illustrated as part of a dental prosthesis which can be connected to an implant for the production of a dental structure (see FIG. 2 ).
  • the abutment 10 comprises an implant connection 12 which is able to be supported in a torque-proof manner on an implant.
  • the anti-rotation mechanism realized in this respect can be configured, for instance, with a hexagonal outer shape or a hexagonal inner shape.
  • a collar 14 is formed above the implant connection 12 which collar merges into the implant connection 12 across a relatively large radius (see FIG. 2 ).
  • the collar 14 tapers off in a relatively pointed manner and its top ends in an internal radius 16 which is even considerably smaller than the radius of the implant connection 12 .
  • the tubing section 18 comprises a central recess 20 which is suitable for receiving an implant screw (see FIG. 8 ).
  • the tubing section 18 comprises a slightly conical shape; the cone angle is, for instance, 3°.
  • the abutment 10 comprises a plurality of grooves 22 which are evenly distributed around the periphery and which extend in an open manner towards the top and vertically across a chamfer in a closed manner towards the bottom.
  • FIG. 2 It can be seen from FIG. 2 how a dental structure 28 can be connected to the tubing section 18 .
  • an adhesive gap 30 extends between the dental structure 28 on the one hand and the collar 14 and the tubing section 18 on the other hand.
  • the dental structure 28 comprises flanges which face inwards and which are intended to extend into the grooves 22 of the tubing section 18 in order to ensure that no rotation occurs.
  • the implant can basically be provided with several lengths.
  • the three different lengths presented herein only differ in the height of the tubing section 18 , while the shape of the implant does not exhibit any difference apart from that.
  • the inventive selection device selects the appropriate shape depending on the size and shape of the dental structure 28 . Additionally, if necessary, it is possible to perform a fine adjustment by determining the exact desired height of the tubing section 18 by means of the CAD/CAM device ( FIG. 10 ).
  • molars comprise dental material in the approximal or buccal/lingual direction.
  • the shear forces introduced by the masticatory forces are correspondingly larger with molars, but due to the larger wall thickness in the area surrounding the tubing section 18 molars are also more stable such that a higher surface pressure in the tubing section 18 is possible.
  • the depth of the grooves 22 amounts to approximately half of the wall thickness of the tubing section 18 , and it is to be understood that, if necessary, the selection device can also select an abutment for anterior teeth, which has a slightly smaller wall thickness, for instance 0.5 mm instead of 0.6 mm. In this way, the wall thickness of the dental structure can even be increased slightly.
  • the selection device automatically selects a suitable abutment based on the result that has already been determined, that is to say the dental prosthesis to be produced, and that it adjusts this abutment optionally in a patient-specific manner, reduces its height or adjusts the rest of it.
  • the shape of the abutment is compatible with that of the implant, as can be seen from FIG. 8 .
  • the selection device selects an abutment whose height is the same or larger than a target height such that sufficient material is always provided for the machining process which may be required.
  • the end radius 32 is attached or kept quasi automatically during machining or milling.
  • the dental prosthesis production device also produces at least the inner structure of the dental structure 28 in a suitable manner and adapted to the result of the selection by the selection device and apart from that also adapted to the shape of each abutment 10 used for the production of the dental prosthesis.
  • the outer shape of the dental structure 28 can already be determined based on a detection of the oral situation of the patient by means of a 3D scan, it is also possible and particularly favorable if the scanning result forms a virtual shape of the restoration to be produced based on the shape of neighboring teeth of the dental prosthesis to be produced and at the same time performs the division of this shape into implant, abutment and dental structure.
  • the production device refers to an abutment library which has available a certain number of sizes of the abutment depending on the type of the dental prosthesis, wherein then, depending on the size, the production device takes into account the forces to be absorbed and the selection device selects the abutment also based on this.
  • the height level of the occlusal surface of the dental structure is preferably taken into consideration that is to say that the abutment is shortened to such an extent or is selected in a shorter form by the selection device that sufficient dental material, such as ceramic material, is available between the upper end of the abutment and the occlusal surface.
  • the groove 22 or the plurality of grooves 22 extends across a significant part of the height of the tubing section 18 of the abutment 10 .
  • FIG. 3 illustrates an embodiment of an abutment 10 with only one groove 22 .
  • FIG. 4 it extends to the collar 14 such that sufficient torque-active surface is still available even if the tubing section 18 has been shortened as greatly as possible.
  • the flute (groove 22 ) comprises one end radius or one chamfer, respectively, in order to prevent abrupt changes in stiffness of the abutment.
  • the wall thickness of the tubing section can be constant from the collar 14 to the end radius 32 , or can decrease slightly, for instance by 10% to 15%, wherein it is to be understood that the internal diameter of the tubing section 18 is constant across the height as in the recess 20 an implant screw with its head must be received.
  • the abutment 10 comprises an internal taper 34 in the area of the collar or slightly above, and the head of the implant screw is in contact with the internal taper.
  • FIG. 5 illustrates an embodiment which is modified even further.
  • the anti-rotation device is realized by means of a groove 22 in the area of the collar 14 , while the tubing section 18 is free of grooves or flutes (grooves 22 ).
  • FIG. 7 an abutment is shown slightly enlarged in a position screwed into the implant.
  • the area between the collar 14 and the upper end of the implant 40 is smoothed in a way known per se with dental cement for providing a suitable emergence profile; due to the small height of the collar 14 an adaptation to the requirements of the patient is possible to a large extent.
  • the transition towards the dental structure 28 is important which is in connection with the abutment 10 by means of the adhesive gap 30 .
  • any desired suitable biocompatible adhesive or dental cement can be used as a filling material for the adhesive gap 30 .
  • FIG. 8 It can be seen from FIG. 8 how an implant screw 42 can be inserted into the recess 20 .
  • the screw head is, for instance, provided with an inbus structure which has been modified towards a TORX structure and the screw head 44 fills the recess 20 radially almost completely.
  • the implant 40 is provided with an external thread known per se even if this is not shown in the Figures.
  • an undercut 48 is formed which serves to receive adhesive which drains off. Furthermore, in this embodiment it is provided to compress the surface of the abutment after the shortening process which has been performed optionally, for instance by exposing it to a jet of a granular substance.
  • FIG. 10 illustrates the schematic configuration of a dental prosthesis production device 62 .
  • the oral situation of the patient, in particular the neighboring teeth of the dental prosthesis to be produced is scanned by means of a scanning device 60 .
  • the scan data are present in the dental prosthesis production device 62 .
  • the dental prosthesis production device 62 develops a dental prosthesis in a way known per se, for instance as a virtual hybrid between both the neighboring teeth or in any other suitable manner corresponding to the position of the dental prosthesis in the mouth of the patient.
  • the dental prosthesis production device 62 defines the outer shape of the dental structure 28 , also including the height level for the provision of a suitable occlusal surface (or incisal surface) with respect to the antagonist of the dental prosthesis.
  • the outer shape of the dental structure is also determined, also including the dimensions of the dental structure in the approximal and lingual/buccal direction.
  • a selection device 66 selects a suitable abutment.
  • the abutment 10 is selected such that its height fits the virtual internal space of the dental prosthesis, that is to say such that sufficient ceramic dental material is available for the support at the tubing section 18 .
  • the wall thickness of the dental structure is taken into consideration as a marginal condition in the selection process, for instance >1 mm with anterior teeth and >2 mm with molars and pre-molars.
  • the selection device 66 is part of a CAD station and determines the suitable abutment based on this, which can optionally be shortened in order to optimize it.
  • a CAM device 68 serves this purpose and performs the shaping step which comes up in this respect and which in particular also shapes the end radius 32 of the abutment automatically.
  • the selection device 66 also transmits shape data 72 for providing the internal shape of the dental structure 28 which is produced by the CAM device 68 .
  • a test step it is further checked at the same time if the inner surface of the dental structure 28 fits the respective abutment 10 to be processed. This can be done either by adaptation—without adhesive—or by means of a scan for which the scanning device 60 can be used again.
  • finishing is carried out in a finishing step again by means of the CAM device 28 .
  • scan data is initially provided which has been produced by the 3D scanning device 60 .
  • the selection device 66 does not only determine the shape of the abutment 10 but also the outer shape of the dental suprastructure 28 .
  • This data which fits one another, also with regard to the height of the tubing section 18 in case of the abutment 10 , is supplied to the corresponding production devices, and the height of the abutment 10 is shortened to “L”, “M” or “S”, if necessary.
  • the associated radius is rounded off at the same time.
  • the internal structure of the dental structure 28 is determined such that it matches the radius and produced by means of CAD/CAM, and, of course, at the same time also the outer structure.
  • the dental prosthesis is now assembled in a step 74 , wherein the dental structure 28 is adhesively bonded onto the abutment 10 .
  • a test step and optionally in a finishing step 70 the result is reviewed and finishing is carried out, if necessary, for instance by removing occlusal defects at the occlusal plane of the produced molar of the dental structure 28 .

Abstract

The invention relates to a dental prosthesis production device in which the dental prosthesis has an implant (40) and an abutment (10) which has a shape that is compatible with the implant (40) and on or to which abutment a dental structure (28) that is made of a dental material, in particular ceramic and/or plastic, and produced with the aid of a CAM process using rapid prototyping or compression molding technology can be secured. The abutment is mounted on the implant (40) via a releasable connection, in particular a screw connection (44), having an anti-rotation mechanism (50), and an anti-rotation device (groove 22) is formed between the abutment (10) and the dental structure (28). A selection device (66) is provided for abutments, said selection device allowing a selection of the abutment (10) for producing the dental prosthesis, optionally after reducing the abutment height to a specified value in a patient-specific manner, and a machining tool, in particular a milling cutter, or a CAM device is provided for shortening the abutment (10).

Description

  • The invention relates to a dental prosthesis production device according to the preamble of claim 1, a dental prosthesis according to the preamble of claim 9, and a method according to the preamble of claim 15.
  • In many cases, dental prostheses are attached in the mouth of a patient with the help of an implant. In these cases, the implant is typically provided with a so-called abutment after it has been inserted, which is connected to the implant in a geometrically true manner, for instance by configuring the surfaces of the implant and the abutment which face one another in an untrue or non-circular manner. The attachment itself is then carried out by means of an abutment screw which penetrates the abutment. For this purpose, an upper area of the abutment is configured as a tubing section whose internal diameter is sufficient for receiving the abutment screw. The abutment screw is supported slightly below this tubing section on a slightly conical supporting area in most cases, whose internal diameter is smaller than the diameter of the head of the abutment screw but wide enough to fit the shank and the thread of the abutment screw. In this case, the implant comprises an internal thread in a way known per se for threaded engagement with the thread of the abutment screw.
  • Subsequent to the attachment of the abutment to the implant a dental structure is attached to the abutment. For this purpose, the tubing section or the upper area of the abutment is slightly conical on the outside in most cases and fits into a corresponding recess in the dental structure in a geometrically true manner.
  • Solutions of this kind have been used for approximately 30 years; in this respect, it is referred to DE 32 41 963 C1 or GB 2 119 258 A by way of example.
  • However, particularly with the solution according to the latter document the problem arises that the rotary position of the dental structure relative to the implant is not or not explicitly determined. In this respect, a better and somewhat newer solution is disclosed in U.S. Pat. No. 5,782,918 A1 which shows an anti-rotation device in the form of a flattened portion at the tubing section of the abutment and which, in this respect, realizes an anti-rotation device between implant and dental structure.
  • In this solution only one single size or height of the abutment is provided which is kept small such that even more compact dental structures cover the tubing section completely.
  • Contrary to this, it has been suggested recently to have ready different sizes of abutments which causes corresponding storage efforts and optionally also possibilities of confusion, or which gives the dentist or dental technician expensive post-processing efforts by leaving to him/her the task of adjusting to the size ratios and the oral situation of the patient.
  • However, this is unsatisfactory, the more so as the dentist or dental technician sometimes overlooks that a sufficient support surface must be available for the transmission of power in order to transmit the shear forces introduced during masticatory movements securely and permanently when the size of the abutment changes, for instance by cutting the tubing section to a desired height.
  • By making corresponding changes, in many cases the warranty claims against the manufacturer are violated such that the dentist or dental technician bears the full liability risk which is considered unsatisfactory for understandable reasons.
  • Furthermore, it has become apparent that in spite of a basically sufficiently dimensioned support surface between the dental structure and the implant material fracture has occurred in individual cases, especially with ceramic dental structures which are prone to brittle fractures compared to dental structures consisting of a composite or plastic material.
  • In many cases, in the upper part of the tubing section of the abutment flanges are provided which extend radially towards the outside and which are intended to be in engagement with corresponding grooves in the dental structure in order to provide the desired anti-rotation device. If this area is sawed off without further ado, the anti-rotation mechanism is not available anymore; if, on the other hand, the abutment is used for abutment teeth of a bridge, the anti-rotation device which exists in this connection can be disturbing in some cases as in this case an angularly accurate orientation to, for instance, less than 1° would be necessary to avoid tensions.
  • Contrary to this, the invention is based on the task of providing a dental prosthesis production device according to the preamble of claim 1, a dental prosthesis according to the preamble of claim 9 and a method according to the preamble of claim 15 which take account of the requirements presented to the dental prosthesis consisting of implant, abutment and dental structure in an improved manner and which make it possible to handle the production of the dental prosthesis by the dentist or dental technician in conformity with warranty claims.
  • This task is inventively solved by claims 1, 9 and 15, respectively. Advantageous embodiments may be taken from the subclaims.
  • According to the invention it is particularly favorable that the production device itself comprises a selection device for abutments. The data of the dental structure produced by means of CAM, compression molding technology or rapid prototyping has been defined beforehand and is present in the production device, such that according to the invention it is particularly favorable that the load-carrying capacity of the power transmission surfaces between abutment and dental structure, the remaining wall thickness of the dental structure, the angular orientation, the height level, etc., can be defined beforehand and in a predetermined manner by the production device. Alternatively, a compression molding technology can also be used, and in this respect it is referred to the entire document EP 1 915 972 A1 by way of example.
  • According to the invention it is favorable that in this way the abutments can be selected based on the existing dimensioning of the abutments and that the adjusted configuration of the bearing surfaces of the dental structure on the abutment can be specified for the CAM device. Shortening the abutment can be performed by means of a machining tool, in particular a milling cutter, or a CAM device.
  • In an advantageous embodiment it is possible to get by with only one abutment which can then be shortened to a patient-specific height by means of the CAM device or optionally by means of a separate milling cutter controlled by it. In this way, the disadvantages of a shortening process by cutting off, in particular the disadvantages of a shortening process by manually cutting off can be avoided without further ado; for instance, slants or radii at the upper end of the tubing section of the abutment can be provided by means of the inventively advantageous embodiment of an automatic shortening process such that observed brittle fractures of ceramic dental structures that have been caused by local tensile stresses at the inner corners of the dental structures can be prevented reliably.
  • In an inventively advantageous embodiment it is provided to provide a groove or a plurality of grooves which extend(s) vertically almost across the entire height of the upper area of the abutment which is referred to as tubing section herein. This embodiment comprising the anti-rotation device has the advantage that it is also effective in this respect if the height of the tubing section is reduced in accordance with the advantageous embodiment. Furthermore, by realizing flanges according to the groove and tongue principle in the radial inner surface of the dental structure the inventive anti-rotation device can be ensured with the desired reliability.
  • If, on the other hand, the inventive dental prosthesis is configured as a bridge such that an additional anti-rotation device is not only undesirable but also disturbing the CAM device simply omits or does not produce the corresponding flanges such that the desired ability to rotate for a stress-free mounting of the bridge is given.
  • The fact that an exceptionally high precision of the fit between the dental structure and the abutment is realized inventively, does not prevent the provision of a provided adhesive joint which serves in particular to adjust the resilience of the dental prosthesis compared to the antagonist.
  • In fact, by means of the inventive CAM production the desired adhesive gap can be set at an exceptionally great accuracy of, for instance, 50μ.
  • According to the invention it is particularly favorable that the mistakes that have previously been made in the adjustment of the height of the abutment are suppressed quasi automatically. The milling process automatically defines the curves and radii as can be provided in a stress-related limited manner. An unintentional reduction and thus a decrease of the support surface are precluded, just like an unintentional confusion of the abutments which are adjusted to the corresponding dental structure, respectively. Finishing, such as roughening or the like, is not required; in fact, as part of the CAM production the abutment can, for instance, also be coated and thus be given a desired color in any suitable manner, wherein it is to be understood that the degree of roughness of the coating is adapted to the requirements.
  • The upper area of the abutment can be shortened to standard dimensions in any suitable manner such that the inner surfaces of the dental structure can also be configured with standard dimensions.
  • Here, the configuration of the arrangement of grooves in the upper area of the implant, as discussed above, can be used as an anti-rotation device but also, for instance, a respective untrue or non-circular configuration at a collar of the implant which is engaged with the dental structure.
  • In an advantageous embodiment it is provided that the desired shape of the dental prosthesis is determined based on an extraoral or intraoral 3D scan with the aid of a scanbody whose cylindrical geometry comprises a bevel or a ball-shaped reference surface in order to enable the determination and transfer of the initial situation (model) into 3D data (scan). For this purpose, the scanning result is supplied to a CAD device which, based on the shape of neighboring teeth of the desired dental prosthesis, forms a virtual shape of the restoration to be produced and divides it virtually into an implant, an abutment and a dental structure—optionally after the intervention of a user.
  • Here, an abutment refers to any desired meso-structure, that is to say any structure which extends between the implant and the dental structure which is also referred to as suprastructure, wherein it is to be understood that single-unit but also multi-unit dental abutment structures can be realized basically.
  • It is to be understood that the outer surface of the tubing section of the abutment can be provided with drain channels for adhesive in any desired manner which can be combined with anti-rotation elements, that is to say corresponding grooves or other female molds at the outer surface of the tubing section, if necessary. In this connection, the realization of a chamfer at the transition between the tubing section and the collar of the abutment is particularly preferable. This chamfer is typically external to the contact area, that is to say to the area at which the abutment contacts the dental structure, and is thus subjected to lower surface pressure. Here, excessive adhesive can be carried off in a suitable manner by means of a correspondingly suitable configuration of an elongated or ring-shaped recess.
  • Subsequently to this chamfer the collar of the abutment extends substantially vertically towards the outside and comprises a relatively small axial height which can amount to between 0.1 mm and 1 mm, 0.1 mm and 2 mm and between 0.1 mm and 0.5 mm. This enables an adjustment to the emergence profile in an anatomically favorable manner.
  • Further advantages, details and features may be taken from the following description of several exemplary embodiments of the invention in conjunction with the drawings, in which:
  • FIG. 1 shows a perspective schematic representation of an inventive dental prosthesis;
  • FIG. 2 shows the embodiment according to FIG. 1, however, in a sectional view;
  • FIG. 3 shows a modified embodiment of an inventive dental prosthesis according to FIG. 1;
  • FIG. 4 shows the embodiment according to FIG. 3 in a sectional view;
  • FIG. 5 shows a further modified embodiment of the inventive dental prosthesis in a perspective view;
  • FIG. 6 shows the embodiment according to FIG. 5 in a sectional view;
  • FIG. 7 shows a view of a further embodiment of an inventive dental prosthesis in a side view;
  • FIG. 8 shows the embodiment according to FIG. 7 in a top view;
  • FIG. 9 shows the embodiment according to FIGS. 7 and 8 in a sectional view;
  • FIG. 10 shows a schematic representation of an inventive dental prosthesis production device illustrating the part relevant for the invention; and
  • FIG. 11 shows a schematic representation of an inventive dental prosthesis production device illustrating the part relevant for the invention, however, in a modified embodiment.
  • In FIG. 1 an abutment 10 is illustrated as part of a dental prosthesis which can be connected to an implant for the production of a dental structure (see FIG. 2).
  • The abutment 10 comprises an implant connection 12 which is able to be supported in a torque-proof manner on an implant. The anti-rotation mechanism realized in this respect can be configured, for instance, with a hexagonal outer shape or a hexagonal inner shape.
  • A collar 14 is formed above the implant connection 12 which collar merges into the implant connection 12 across a relatively large radius (see FIG. 2). The collar 14 tapers off in a relatively pointed manner and its top ends in an internal radius 16 which is even considerably smaller than the radius of the implant connection 12.
  • Subsequent to the collar 14 and starting from it, a tubing section 18 or upper part of the abutment extends. The tubing section 18 comprises a central recess 20 which is suitable for receiving an implant screw (see FIG. 8). Towards its upper end, the tubing section 18 comprises a slightly conical shape; the cone angle is, for instance, 3°.
  • For providing an anti-rotation device between the implant on the one hand and the dental structure on the other hand the abutment 10 comprises a plurality of grooves 22 which are evenly distributed around the periphery and which extend in an open manner towards the top and vertically across a chamfer in a closed manner towards the bottom.
  • It can be seen from FIG. 2 how a dental structure 28 can be connected to the tubing section 18. As is schematically suggested in FIG. 2, an adhesive gap 30 extends between the dental structure 28 on the one hand and the collar 14 and the tubing section 18 on the other hand. The dental structure 28 comprises flanges which face inwards and which are intended to extend into the grooves 22 of the tubing section 18 in order to ensure that no rotation occurs.
  • It can also be seen from FIG. 2 that the implant can basically be provided with several lengths. The three different lengths presented herein only differ in the height of the tubing section 18, while the shape of the implant does not exhibit any difference apart from that.
  • All the shapes “L”, “M” and “S” have in common that they end in an end radius 32. In this way, notch effects with respect to the dental structure 28 are prevented.
  • Now, the inventive selection device (FIG. 10) selects the appropriate shape depending on the size and shape of the dental structure 28. Additionally, if necessary, it is possible to perform a fine adjustment by determining the exact desired height of the tubing section 18 by means of the CAD/CAM device (FIG. 10).
  • The height adjustment and the selection are also performed depending on the type of the tooth: While anterior teeth are rather slim and tall, molars comprise dental material in the approximal or buccal/lingual direction.
  • The shear forces introduced by the masticatory forces are correspondingly larger with molars, but due to the larger wall thickness in the area surrounding the tubing section 18 molars are also more stable such that a higher surface pressure in the tubing section 18 is possible. In the exemplary embodiment illustrated, the depth of the grooves 22 amounts to approximately half of the wall thickness of the tubing section 18, and it is to be understood that, if necessary, the selection device can also select an abutment for anterior teeth, which has a slightly smaller wall thickness, for instance 0.5 mm instead of 0.6 mm. In this way, the wall thickness of the dental structure can even be increased slightly.
  • According to the invention it is particularly favorable that the selection device automatically selects a suitable abutment based on the result that has already been determined, that is to say the dental prosthesis to be produced, and that it adjusts this abutment optionally in a patient-specific manner, reduces its height or adjusts the rest of it.
  • It is to be understood that the shape of the abutment is compatible with that of the implant, as can be seen from FIG. 8.
  • When selecting the abutment, the selection device selects an abutment whose height is the same or larger than a target height such that sufficient material is always provided for the machining process which may be required.
  • According to the invention it is important in this connection that the end radius 32 is attached or kept quasi automatically during machining or milling.
  • In this connection, the dental prosthesis production device also produces at least the inner structure of the dental structure 28 in a suitable manner and adapted to the result of the selection by the selection device and apart from that also adapted to the shape of each abutment 10 used for the production of the dental prosthesis.
  • As the outer shape of the dental structure 28 can already be determined based on a detection of the oral situation of the patient by means of a 3D scan, it is also possible and particularly favorable if the scanning result forms a virtual shape of the restoration to be produced based on the shape of neighboring teeth of the dental prosthesis to be produced and at the same time performs the division of this shape into implant, abutment and dental structure.
  • In this connection, it is preferable if the production device refers to an abutment library which has available a certain number of sizes of the abutment depending on the type of the dental prosthesis, wherein then, depending on the size, the production device takes into account the forces to be absorbed and the selection device selects the abutment also based on this.
  • It is to be understood that, in this connection, the height level of the occlusal surface of the dental structure is preferably taken into consideration that is to say that the abutment is shortened to such an extent or is selected in a shorter form by the selection device that sufficient dental material, such as ceramic material, is available between the upper end of the abutment and the occlusal surface.
  • Preferably, the groove 22 or the plurality of grooves 22 extends across a significant part of the height of the tubing section 18 of the abutment 10.
  • In a plurality of grooves 22 the surfaces which are available for the transmission of torques are larger than if only one groove is realized (FIG. 3 and FIG. 4) such that in this case partially covering the height of the tubing section 18 is sufficient, as can be seen from FIG. 2. Even with the smallest height or greatest reduction according to “S” a part of the height of the groove 22 is still available for the anti-rotation device.
  • In contrast, FIG. 3 illustrates an embodiment of an abutment 10 with only one groove 22. As can be seen from FIG. 4, it extends to the collar 14 such that sufficient torque-active surface is still available even if the tubing section 18 has been shortened as greatly as possible.
  • Preferably, the flute (groove 22) comprises one end radius or one chamfer, respectively, in order to prevent abrupt changes in stiffness of the abutment.
  • The wall thickness of the tubing section can be constant from the collar 14 to the end radius 32, or can decrease slightly, for instance by 10% to 15%, wherein it is to be understood that the internal diameter of the tubing section 18 is constant across the height as in the recess 20 an implant screw with its head must be received.
  • In a way known per se the abutment 10 comprises an internal taper 34 in the area of the collar or slightly above, and the head of the implant screw is in contact with the internal taper.
  • In contrast, FIG. 5 illustrates an embodiment which is modified even further. In this solution the anti-rotation device is realized by means of a groove 22 in the area of the collar 14, while the tubing section 18 is free of grooves or flutes (grooves 22).
  • Even if only two grooves 22 or flutes 18 are to be seen in FIG. 5 and FIG. 6 in the area of the collar 14, it is to be understood that a plurality of corresponding grooves is preferably provided to maximize the surfaces suitable for transferring torques.
  • In FIG. 7 an abutment is shown slightly enlarged in a position screwed into the implant. The area between the collar 14 and the upper end of the implant 40 is smoothed in a way known per se with dental cement for providing a suitable emergence profile; due to the small height of the collar 14 an adaptation to the requirements of the patient is possible to a large extent.
  • In this respect, the transition towards the dental structure 28 is important which is in connection with the abutment 10 by means of the adhesive gap 30.
  • It is to be understood that any desired suitable biocompatible adhesive or dental cement can be used as a filling material for the adhesive gap 30.
  • It can be seen from FIG. 8 how an implant screw 42 can be inserted into the recess 20. The screw head is, for instance, provided with an inbus structure which has been modified towards a TORX structure and the screw head 44 fills the recess 20 radially almost completely.
  • It can be seen from FIG. 9 that the screw head 44 of the implant screw 42 contacts the internal taper 34 of the abutment, via the taper support thereof, in order to provide for the screw connection 46. Screws comprising a vertical to flat shoulder also come into question for this purpose, and it is therefore also apparent that an anti-rotation mechanism 50 is realized between the implant 40 and the abutment 10, for instance in the form of hexagonal surfaces which fit one another.
  • It is to be understood that, in practice, the implant 40 is provided with an external thread known per se even if this is not shown in the Figures.
  • As can be seen from FIG. 8, in the area of the internal radius 16 an undercut 48 is formed which serves to receive adhesive which drains off. Furthermore, in this embodiment it is provided to compress the surface of the abutment after the shortening process which has been performed optionally, for instance by exposing it to a jet of a granular substance.
  • In a further modified embodiment it is provided instead to provide the abutment with a single- or two-colored coating.
  • FIG. 10 illustrates the schematic configuration of a dental prosthesis production device 62.
  • Initially, the oral situation of the patient, in particular the neighboring teeth of the dental prosthesis to be produced, is scanned by means of a scanning device 60. In this way, the scan data are present in the dental prosthesis production device 62. Based on this, the dental prosthesis production device 62 develops a dental prosthesis in a way known per se, for instance as a virtual hybrid between both the neighboring teeth or in any other suitable manner corresponding to the position of the dental prosthesis in the mouth of the patient.
  • Thus, the dental prosthesis production device 62 defines the outer shape of the dental structure 28, also including the height level for the provision of a suitable occlusal surface (or incisal surface) with respect to the antagonist of the dental prosthesis.
  • Thus, apart from the height level and position, the outer shape of the dental structure is also determined, also including the dimensions of the dental structure in the approximal and lingual/buccal direction. Based on this and based on the data comprised in a library 64 of abutments (and optionally implants) a selection device 66 selects a suitable abutment. The abutment 10 is selected such that its height fits the virtual internal space of the dental prosthesis, that is to say such that sufficient ceramic dental material is available for the support at the tubing section 18. Furthermore, the wall thickness of the dental structure is taken into consideration as a marginal condition in the selection process, for instance >1 mm with anterior teeth and >2 mm with molars and pre-molars.
  • It is to be understood that these values can be adapted to the requirements to a large extent.
  • The selection device 66 is part of a CAD station and determines the suitable abutment based on this, which can optionally be shortened in order to optimize it. A CAM device 68 serves this purpose and performs the shaping step which comes up in this respect and which in particular also shapes the end radius 32 of the abutment automatically.
  • Furthermore, the selection device 66 also transmits shape data 72 for providing the internal shape of the dental structure 28 which is produced by the CAM device 68.
  • It is to be understood that a separate milling cutter can be realized instead for processing the abutment 10.
  • Preferably, in a test step it is further checked at the same time if the inner surface of the dental structure 28 fits the respective abutment 10 to be processed. This can be done either by adaptation—without adhesive—or by means of a scan for which the scanning device 60 can be used again.
  • In this connection, it is checked as part of a test step if the fit is appropriate or sufficient in order to ensure the desired height level on the one hand but also torque-proof mounting on the other hand.
  • If necessary, finishing is carried out in a finishing step again by means of the CAM device 28. From FIG. 11 a further embodiment of the dental prosthesis production device 62 is apparent. Again, scan data is initially provided which has been produced by the 3D scanning device 60. Based on this and using shape data from a library 64, the selection device 66 does not only determine the shape of the abutment 10 but also the outer shape of the dental suprastructure 28. This data which fits one another, also with regard to the height of the tubing section 18 in case of the abutment 10, is supplied to the corresponding production devices, and the height of the abutment 10 is shortened to “L”, “M” or “S”, if necessary. The associated radius is rounded off at the same time. The internal structure of the dental structure 28 is determined such that it matches the radius and produced by means of CAD/CAM, and, of course, at the same time also the outer structure.
  • As a result, the finished parts are available for providing the dental prosthesis. The dental prosthesis is now assembled in a step 74, wherein the dental structure 28 is adhesively bonded onto the abutment 10.
  • In a test step and optionally in a finishing step 70 the result is reviewed and finishing is carried out, if necessary, for instance by removing occlusal defects at the occlusal plane of the produced molar of the dental structure 28.

Claims (21)

1. A dental prosthesis production device, comprising:
an implant (40) and
an abutment (10) which has a shape that is compatible with the implant (40) onto which abutment a dental structure (28) which is produced by means of a CAM process, using rapid prototyping or compression molding technology and which is made of a dental material, can be attached,
wherein the abutment is mounted on the implant (40) via a releasable connection, having an anti-rotation mechanism (50), and an anti-rotation device (groove 22) being configured between the abutment (10) and the dental structure (28),
characterized in that the anti-rotation device forms at least one flute (groove 22) at a cylindrical or conical area of the abutment (10) (4, 14, 22) which flute extends across at least a part of the height of this area, the flute ending at an end radius or at an end slant of the abutment (10) (5, 15, 21) which flute(s) is/are maintained true to shape even if the area is shortened, and that a selection device (66) is provided for abutments, said selection device allowing a selection of the abutment (10) for producing the dental prosthesis, optionally after reducing the abutment height to a specified value in a patient-specific manner, and a machining tool, or a CAM device is provided for shortening the abutment (10).
2. The dental prosthesis production device as claimed in claim 1, characterized in that by means of the selection device (66) a predefined number of heights of the tubing section (18) of the abutment (10), can be accessed and the height suitable for the dental structure (28) can be selected.
3. The dental prosthesis production device as claimed in claim 1, characterized in that by means of the selection device (66) for the dental prosthesis an abutment (10) can be selected which matches the implant (40) and the dental structure (28) with regard to the diameter and the type, and which abutment is of the same height as or larger than a standardized height with regard to the height, and in that by means of the selection device (66) shape data can be supplied to a CAM device which relate to a patient-specific height of the selected abutment (10).
4. The dental prosthesis production device as claimed in claim 1, characterized in that the optionally provided reduction in height of the abutment (10) can be performed to provide two to five, standardized lengths such that the abutment (10) is provided comprising the unchanged maximum height, one or more medium heights or a minimum height after the standardized reduction in height.
5. The dental prosthesis production device as claimed in claim 1, characterized in that the production device comprises a CAM device for finishing a dental structure (28) which calculates the data of the dental structure (28) to be produced based on the data of its outer geometry and on the data of the adjusted abutment (10) and forwards the data to the CAM device.
6. The dental prosthesis production device as claimed in claim 4, characterized in that a desired shape of the dental prosthesis can be determined based on an extraoral or intraoral 3D scan with the aid of a scanbody having cylindrical geometry comprising a bevel or a ball-shaped reference surface by supplying the scanning result to a CAM device which, based on the shape of neighboring teeth of the desired dental prosthesis, forms a virtual shape of the restorations to be produced and which divides them virtually into an implant (40), an abutment (10) and a dental structure (28).
7. The dental prosthesis production device as claimed in claim 1, characterized in that by means of the selection device (66) at least one abutment (10) of a dental prosthesis can be selected, which comprises a crown or a bridge as a supraconstruction, depending on the desired constructive height level thereof in relation to an occlusal plane, and the degree of the required shortening of the abutment (10) can be returned to predefined standardized heights in order to provide the desired height level of the supraconstruction, and the shape data predefined in this way can be supplied to the CAM device.
8. The dental prosthesis production device as claimed in claim 1, characterized in that the abutment (10) for providing the dental prosthesis comprises a conical or cylindrical area which carries at least one flute which extends across at least a part of the height of the conical or cylindrical area.
9. A dental prosthesis, comprising:
an implant (40) and
an abutment (10) which abutment has a shape that is compatible with the implant on or to which abutment a dental structure (28) which is produced by means of CAM, using rapid prototyping or compression molding technology and which is made of a dental material can be attached,
wherein the abutment being mounted on the implant (40) via a releasable connection, which releasable connection comprises an anti-rotation mechanism (50), and an anti-rotation device being configured between the abutment (10) and the dental structure (28),
characterized in that the anti-rotation device comprises at least one flute (groove 22) at a cylindrical or conical area of the abutment (10) (4, 14, 22), which flute extends across at least a part of the height of the cylindrical or conical area, the flute ending at an end radius or at an end slant of the abutment (10) (5, 15, 21) which abutment can be maintained true to shape even if the area is shortened.
10. The dental prosthesis as claimed in claim 9, characterized in that the area of the abutment (10) is configured cylindrically and in that the at least one flute (groove 22) extends from the end slant or the end radius of the abutment (10), in a case of an unabridged area, across at least 70%, of the height of this area.
11. The dental prosthesis as claimed in claim 10, characterized in that the flute (groove 22) or flutes taper towards a collar (14) of the abutment (10) with a slant or a collar radius or end in front of the radius or the slant of the collar (14) of the abutment (10) (10, 20, 30).
12. The dental prosthesis as claimed claim 11, characterized in that the dental prosthesis comprises two or more abutments (10) with differently shortened cylinder areas (tubing sections 18), wherein every abutment (10) can be additionally shortened to the desired length in a true-to-shape manner by means of one or more profile cutters or by means of a CAM device.
13. The dental prosthesis as claimed in claim 12, characterized in that the abutment (10), after the shortening, is compressed on the surface, by being exposed to a jet of a granular substance and/or that the abutment (10) consists of a ceramic or plastic or metal material.
14. The dental prosthesis as claimed in one of the claim 13, characterized in that the abutment (10) comprises a single-colored to two-colored coating, comprising TiN or an anodization for the production of an aesthetic abutment surface, in brighter shades which are similar to the tooth color and/or that the abutment (10) comprises a roughened surface.
15. The dental prosthesis as claimed in one of the claim 14, characterized in that the flute (groove 22) extends at the cylinder section (tubing sections 18) in the manner of a bent circular arc towards the outside and comprises an end radius or an end slant at the cylinder section (tubing sections 18), and in that the flute (groove 22) ends in front of the radius or the slant of the collar (14) of the abutment (10) with a slant which is rounded off towards the collar (14), and in that the collar comprises at least one rounding at the cylinder section (tubing sections 18) and/or at an implant connection (12) of the abutment (10).
16. The dental prosthesis production device as claimed in claim 1, wherein the dental material comprises one or more of ceramic and plastic,
wherein the releasable connection comprises a screw connection (44), and
wherein the machining tool comprises a milling cutter.
17. The dental prosthesis production device as claimed in claim 2, wherein the predefined number of heights comprise three heights of large, medium and small.
18. The dental prosthesis production device as claimed in claim 4, wherein the standardized lengths comprise two to three lengths.
19. The dental prosthesis production device as claimed in claim 6, wherein the virtual shapes of the restorations are divided into an implant (40), an abutment (10) and a dental structure (28) after user intervention.
20. The dental prosthesis as claimed in claim 10, wherein the at least one flute (groove 22) extends from the end slant or the end radius of the abutment (10) at least 80%, of the height of the unabridged area.
21. The dental prosthesis as claimed in claim 13, wherein the comprises titanium or a titanium alloy.
US14/915,337 2014-05-27 2015-05-22 Dental prosthesis production device and dental prosthesis Abandoned US20160213451A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14169982.7 2014-05-27
EP14169982.7A EP2949287A1 (en) 2014-05-27 2014-05-27 Dental prosthesis production device and dental prosthesis
PCT/EP2015/061442 WO2015181092A1 (en) 2014-05-27 2015-05-22 Dental prosthesis production device and dental prosthesis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/061442 A-371-Of-International WO2015181092A1 (en) 2014-05-27 2015-05-22 Dental prosthesis production device and dental prosthesis

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/654,180 Continuation US11364099B2 (en) 2014-05-27 2019-10-16 Dental prosthesis production device and dental prosthesis

Publications (1)

Publication Number Publication Date
US20160213451A1 true US20160213451A1 (en) 2016-07-28

Family

ID=50846788

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/915,337 Abandoned US20160213451A1 (en) 2014-05-27 2015-05-22 Dental prosthesis production device and dental prosthesis
US16/654,180 Active 2036-03-19 US11364099B2 (en) 2014-05-27 2019-10-16 Dental prosthesis production device and dental prosthesis

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/654,180 Active 2036-03-19 US11364099B2 (en) 2014-05-27 2019-10-16 Dental prosthesis production device and dental prosthesis

Country Status (10)

Country Link
US (2) US20160213451A1 (en)
EP (2) EP2949287A1 (en)
JP (1) JP2017516560A (en)
KR (1) KR102455557B1 (en)
CN (1) CN106456290B (en)
AU (2) AU2015266150A1 (en)
BR (1) BR112016026682A2 (en)
CA (1) CA2946429A1 (en)
MX (1) MX2016013125A (en)
WO (1) WO2015181092A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170027667A1 (en) * 2015-07-31 2017-02-02 Jjgc Indústria E Comércio De Materiais Dentários S.A. Scanbody
GR20170100383A (en) * 2017-08-21 2019-04-22 Vp Innovato Holdings Ltd Dental abutment core and method for manufacturing a dental abutment
US20200100876A1 (en) * 2018-10-01 2020-04-02 Terrats Medical, S.L. Cap part for dental scanning
US20220323184A1 (en) * 2019-06-25 2022-10-13 Nobel Biocare Services Ag Dental components and methods to align dental components

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI679102B (en) * 2018-11-19 2019-12-11 國立虎尾科技大學 Three-dimensional printing manufacturing method of full denture
BR112021014999A8 (en) * 2019-01-29 2022-08-02 Valoc Ag ARRANGEMENT OF PROSTHETIC COMPONENT AND DENTAL RESTORATION KIT
EP3888588A1 (en) * 2020-03-30 2021-10-06 Institut Straumann AG Method for manufacturing a glazed dental prosthesis
KR102599233B1 (en) * 2023-01-27 2023-11-07 박덕희 Method of manufactuing for implant library

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5829977A (en) * 1995-05-25 1998-11-03 Implant Innovations, Inc. Two-piece dental abutment
US5888218A (en) * 1997-03-27 1999-03-30 Folsom Metal Products Implant micro seal
US5951288A (en) * 1998-07-03 1999-09-14 Sawa; Shlaimon T. Self expanding dental implant and method for using the same
US6116904A (en) * 1996-08-21 2000-09-12 Imz Fertigungs- Und Vertriebsgesellschaft Fur Dentale Technologie Mbh Endosteal single tooth implant secured against torsion, stamping tool and positioning aid for producing such a single tooth implant
US6168436B1 (en) * 1997-06-18 2001-01-02 O'brien Gary Universal dental implant abutment system
US6431866B2 (en) * 2000-05-11 2002-08-13 Nobel Biocare Ab Heal in-place abutment system
US20030082498A1 (en) * 2001-11-01 2003-05-01 Anders Halldin Components for improved impression making
US20040076924A1 (en) * 2002-10-17 2004-04-22 Kim Soo Hong Dental implant abutment apparatus
US20040106087A1 (en) * 2002-04-14 2004-06-03 Paul Weigl Method for automated production of ceramic dental prostheses
US20040121286A1 (en) * 2002-06-28 2004-06-24 Zimmer Dental Inc. Organic shaped interface for dental implant devices
US20040185417A1 (en) * 2003-03-18 2004-09-23 Jeff Rassoli Rotationally immobilized dental implant and abutment system
US20050136379A1 (en) * 2003-12-19 2005-06-23 Niznick Gerald A. Multi-part abutment and transfer cap for use with an endosseous dental implant with non-circular, beveled implant/abutment interface
US20050181330A1 (en) * 2004-02-17 2005-08-18 Kim Soo H. Abutment of dental implant and aesthetic surface treatment method of the same
US20070037122A1 (en) * 2005-06-17 2007-02-15 Zimmer Dental, Inc. Dental restorative system and components
US20070298379A1 (en) * 2005-10-20 2007-12-27 D Alise David D Screw-type dental implant
US20080241789A1 (en) * 2005-02-22 2008-10-02 Soenke Mundorf One-Part Or Two-Part Dental Implant System
US20090042167A1 (en) * 2004-09-14 2009-02-12 Oratio B.V. Method of Manufacturing and Installing a Ceramic Dental Implant with an Aesthetic Implant Abutment
US20090047629A1 (en) * 2007-08-17 2009-02-19 Jung Han Kim Method for manufacturing the one body abutment of implant
US20100151421A1 (en) * 2008-12-12 2010-06-17 Plastic Dental Corporation Dental implant
US20100209877A1 (en) * 2009-02-13 2010-08-19 Stephen Hogan Components for use with implants and related methods
US20110123948A1 (en) * 2008-05-15 2011-05-26 Uwe Hinrichsen Two-part rotational dental implant abutment for use with existing implant bases
US20110189633A1 (en) * 2007-10-31 2011-08-04 Tekka Dental implant with female frustoconical connector
US20120141951A1 (en) * 2010-12-07 2012-06-07 Biomet 3I, Llc Universal scanning member for use on dental implant and dental implant analogs
US20120214133A1 (en) * 2011-02-23 2012-08-23 Yunoh Jung Method for fabricating a custom implant abutment
US20120214130A1 (en) * 2011-02-21 2012-08-23 Aeton Medical Llc Abutment and abutment systems for use with implants
US20120237902A1 (en) * 2011-03-17 2012-09-20 Joseph Maniscalco Dds Pc Techniques for providing custom-formed implants
US20120270179A1 (en) * 2010-10-20 2012-10-25 Astra Tech Ab Method of providing a patient-specific dental fixture-mating arrangement
US20120295223A1 (en) * 2011-05-16 2012-11-22 Biomet 3I, Llc Temporary abutment with combination of scanning features and provisionalization features
US20130108986A1 (en) * 2010-02-23 2013-05-02 Seung Young Lee Abutment for implant
WO2013128406A2 (en) * 2012-02-29 2013-09-06 Antonini Matteo A medical device for dental prosthetic systems, a dental prosthetic system, use of the medical device and a forming method of prosthetic devices
US20140205969A1 (en) * 2012-11-20 2014-07-24 Gerald M. Marlin Universal Aligning Adaptor System and Methods
US20170312059A1 (en) * 2014-11-14 2017-11-02 Ivoclar Vivadent Ag Tooth replacement forming device, and method for forming a tooth replacement

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431416A (en) 1982-04-29 1984-02-14 A & L Investment Company Endosseous dental implant system for overdenture retention, crown and bridge support
DE3241963C1 (en) 1982-11-12 1984-04-26 Feldmühle AG, 4000 Düsseldorf Helical jaw implant
US4758161A (en) * 1987-01-28 1988-07-19 Core-Vent Corporation Coping insert for use with a dental implant
US5527182A (en) * 1993-12-23 1996-06-18 Adt Advanced Dental Technologies, Ltd. Implant abutment systems, devices, and techniques
DE19509762A1 (en) * 1995-03-17 1996-09-26 Imz Fertigung Vertrieb Endosseous single tooth implant with spacer sleeve
US5782918A (en) 1996-12-12 1998-07-21 Folsom Metal Products Implant abutment system
US6951460B2 (en) * 2001-11-01 2005-10-04 Astra Tech Ab Components and method for improved impression making
US6648643B2 (en) * 2001-12-19 2003-11-18 Biolock International, Inc. Dental implant/abutment interface and system having prong and channel interconnections
AU2008250516B2 (en) * 2007-05-16 2013-12-19 Nobel Biocare Services Ag Ceramic one-piece dental implant
KR101240116B1 (en) * 2007-07-16 2013-03-07 덴탈포인트 아게 Dental implant
KR101026776B1 (en) * 2009-02-06 2011-04-11 오스템임플란트 주식회사 abutment for implant and method for manufacturing the same
US8480739B2 (en) * 2010-08-11 2013-07-09 Warsaw Orthopedic, Inc. C1-C2 implant and methods of use
EP2436336B1 (en) * 2010-09-29 2016-03-16 Ivoclar Vivadent AG Dental implant system
WO2013027199A1 (en) * 2011-08-21 2013-02-28 Bederak Lev Dental implants - replicas of customized abutment and implant analogs
GB201210120D0 (en) 2012-05-10 2012-07-25 Renishaw Plc Laser sintered part and method of manufacture

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5829977A (en) * 1995-05-25 1998-11-03 Implant Innovations, Inc. Two-piece dental abutment
US6116904A (en) * 1996-08-21 2000-09-12 Imz Fertigungs- Und Vertriebsgesellschaft Fur Dentale Technologie Mbh Endosteal single tooth implant secured against torsion, stamping tool and positioning aid for producing such a single tooth implant
US5888218A (en) * 1997-03-27 1999-03-30 Folsom Metal Products Implant micro seal
US6168436B1 (en) * 1997-06-18 2001-01-02 O'brien Gary Universal dental implant abutment system
US5951288A (en) * 1998-07-03 1999-09-14 Sawa; Shlaimon T. Self expanding dental implant and method for using the same
US6431866B2 (en) * 2000-05-11 2002-08-13 Nobel Biocare Ab Heal in-place abutment system
US20030082498A1 (en) * 2001-11-01 2003-05-01 Anders Halldin Components for improved impression making
US20040106087A1 (en) * 2002-04-14 2004-06-03 Paul Weigl Method for automated production of ceramic dental prostheses
US20040121286A1 (en) * 2002-06-28 2004-06-24 Zimmer Dental Inc. Organic shaped interface for dental implant devices
US20040076924A1 (en) * 2002-10-17 2004-04-22 Kim Soo Hong Dental implant abutment apparatus
US20040185417A1 (en) * 2003-03-18 2004-09-23 Jeff Rassoli Rotationally immobilized dental implant and abutment system
US20050136379A1 (en) * 2003-12-19 2005-06-23 Niznick Gerald A. Multi-part abutment and transfer cap for use with an endosseous dental implant with non-circular, beveled implant/abutment interface
US20050181330A1 (en) * 2004-02-17 2005-08-18 Kim Soo H. Abutment of dental implant and aesthetic surface treatment method of the same
US20090042167A1 (en) * 2004-09-14 2009-02-12 Oratio B.V. Method of Manufacturing and Installing a Ceramic Dental Implant with an Aesthetic Implant Abutment
US20080241789A1 (en) * 2005-02-22 2008-10-02 Soenke Mundorf One-Part Or Two-Part Dental Implant System
US20070037122A1 (en) * 2005-06-17 2007-02-15 Zimmer Dental, Inc. Dental restorative system and components
US20070298379A1 (en) * 2005-10-20 2007-12-27 D Alise David D Screw-type dental implant
US20090047629A1 (en) * 2007-08-17 2009-02-19 Jung Han Kim Method for manufacturing the one body abutment of implant
US20110189633A1 (en) * 2007-10-31 2011-08-04 Tekka Dental implant with female frustoconical connector
US20110123948A1 (en) * 2008-05-15 2011-05-26 Uwe Hinrichsen Two-part rotational dental implant abutment for use with existing implant bases
US20100151421A1 (en) * 2008-12-12 2010-06-17 Plastic Dental Corporation Dental implant
US20100209877A1 (en) * 2009-02-13 2010-08-19 Stephen Hogan Components for use with implants and related methods
US20130108986A1 (en) * 2010-02-23 2013-05-02 Seung Young Lee Abutment for implant
US20120270179A1 (en) * 2010-10-20 2012-10-25 Astra Tech Ab Method of providing a patient-specific dental fixture-mating arrangement
US20120141951A1 (en) * 2010-12-07 2012-06-07 Biomet 3I, Llc Universal scanning member for use on dental implant and dental implant analogs
US20120214130A1 (en) * 2011-02-21 2012-08-23 Aeton Medical Llc Abutment and abutment systems for use with implants
US20120214133A1 (en) * 2011-02-23 2012-08-23 Yunoh Jung Method for fabricating a custom implant abutment
US20120237902A1 (en) * 2011-03-17 2012-09-20 Joseph Maniscalco Dds Pc Techniques for providing custom-formed implants
US20120295223A1 (en) * 2011-05-16 2012-11-22 Biomet 3I, Llc Temporary abutment with combination of scanning features and provisionalization features
US20120295226A1 (en) * 2011-05-16 2012-11-22 Biomet 3I, Llc Temporary abutment with combination of scanning features and provisionalization features
WO2013128406A2 (en) * 2012-02-29 2013-09-06 Antonini Matteo A medical device for dental prosthetic systems, a dental prosthetic system, use of the medical device and a forming method of prosthetic devices
US20150017603A1 (en) * 2012-02-29 2015-01-15 Matteo Antonini Medical Device for Dental Prosthetic Systems, A Dental Prosthetic System, Use of the Medical Device and a Forming Method of Prosthetic Devices
US20140205969A1 (en) * 2012-11-20 2014-07-24 Gerald M. Marlin Universal Aligning Adaptor System and Methods
US20170312059A1 (en) * 2014-11-14 2017-11-02 Ivoclar Vivadent Ag Tooth replacement forming device, and method for forming a tooth replacement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170027667A1 (en) * 2015-07-31 2017-02-02 Jjgc Indústria E Comércio De Materiais Dentários S.A. Scanbody
US10159545B2 (en) * 2015-07-31 2018-12-25 Jjgc Indústria E Comércio De Materiais Dentários S.A. Scanbody
GR20170100383A (en) * 2017-08-21 2019-04-22 Vp Innovato Holdings Ltd Dental abutment core and method for manufacturing a dental abutment
US20200100876A1 (en) * 2018-10-01 2020-04-02 Terrats Medical, S.L. Cap part for dental scanning
US11642201B2 (en) * 2018-10-01 2023-05-09 Terrats Medical, S.L. Cap part for dental scanning
US20220323184A1 (en) * 2019-06-25 2022-10-13 Nobel Biocare Services Ag Dental components and methods to align dental components

Also Published As

Publication number Publication date
AU2018206699A1 (en) 2018-08-02
WO2015181092A4 (en) 2016-01-14
WO2015181092A1 (en) 2015-12-03
US11364099B2 (en) 2022-06-21
KR20170012200A (en) 2017-02-02
JP2017516560A (en) 2017-06-22
CA2946429A1 (en) 2015-12-03
EP2949287A1 (en) 2015-12-02
CN106456290B (en) 2020-05-22
KR102455557B1 (en) 2022-10-17
BR112016026682A2 (en) 2017-08-15
US20200046471A1 (en) 2020-02-13
CN106456290A (en) 2017-02-22
EP3583909B1 (en) 2021-05-19
AU2015266150A1 (en) 2016-10-20
MX2016013125A (en) 2017-04-27
EP3583909A1 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
US11364099B2 (en) Dental prosthesis production device and dental prosthesis
US8480396B2 (en) Method for automatically fabricating a dental superstructure for attachment to an implant
US20070128580A1 (en) Blank and method for producing a dental prosthesis
CA2600556C (en) Abutment set for a dental implant
CA2941915C (en) Dental prosthetic structure for implant
RU2602678C2 (en) Permanent and flexible prosthesis abutment and corresponding method of angular adjustment
US20210000576A1 (en) Abutment Tool Set, And Device For Producing Dental Replacements
EP3166530B1 (en) Dental prostheses cemented onto implants and/or abutments having a reverse margin
US20080171301A1 (en) Depth gauge for use in dental implants
CA2696168C (en) Laboratory implant
KR20160087707A (en) dental abutment and method of operating dental implant using the same
US20190350683A1 (en) Mid-gingival implant system
EP3593752A1 (en) Dental implant, connecting screw and kit for implantation
WO2016113680A1 (en) Method of manufacturing a dental prosthesis abutment, device and machine for implementing the method and abutment obtained by the method
WO2011125309A1 (en) Dental implant
CA3153182A1 (en) Method for producing a computer model for an abutment and for producing an abutment
US20230414330A1 (en) Multifunctional prosthetic component for conventional or digital workflow for implant supported dental prosthesis installation
TR2023004228T2 (en) Multifunctional prosthetic component for traditional or digital workflow for establishing implant-supported dental prosthesis.

Legal Events

Date Code Title Description
AS Assignment

Owner name: IVOCLAR VIVADENT AG, LIECHTENSTEIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BURGER, GORAN;REEL/FRAME:037871/0857

Effective date: 20160302

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION