US20150045622A1 - Spectrally-encoded endoscopy techniques, apparatus and methods - Google Patents

Spectrally-encoded endoscopy techniques, apparatus and methods Download PDF

Info

Publication number
US20150045622A1
US20150045622A1 US14/465,960 US201414465960A US2015045622A1 US 20150045622 A1 US20150045622 A1 US 20150045622A1 US 201414465960 A US201414465960 A US 201414465960A US 2015045622 A1 US2015045622 A1 US 2015045622A1
Authority
US
United States
Prior art keywords
arrangement
radiation
fiber
dispersive
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/465,960
Other versions
US9516997B2 (en
Inventor
Milen Shishkov
Guillermo J. Tearney
Brett Eugene Bouma
Dvir Yelin
Nicusor Iftimia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Hospital Corp
Original Assignee
General Hospital Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Hospital Corp filed Critical General Hospital Corp
Priority to US14/465,960 priority Critical patent/US9516997B2/en
Assigned to THE GENERAL HOSPITAL CORPORATION reassignment THE GENERAL HOSPITAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IFTIMIA, NICUSOR, BOUMA, BRETT EUGENE, SHISHKOV, MILEN, TEARNEY, GUILLERMO J., YELIN, DVIR
Publication of US20150045622A1 publication Critical patent/US20150045622A1/en
Priority to US15/376,144 priority patent/US9791317B2/en
Application granted granted Critical
Publication of US9516997B2 publication Critical patent/US9516997B2/en
Priority to US15/705,064 priority patent/US20180010965A1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2453Optical details of the proximal end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • A61B1/00167Details of optical fibre bundles, e.g. shape or fibre distribution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/002Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor having rod-lens arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0068Confocal scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • A61B5/0086Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters using infrared radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the present invention relates generally to apparatus and method for spectrally encoded endoscopy and, more particularly to, e.g., apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and method for producing one or more optical arrangements.
  • Certain medical and technical applications utilize an ability to look inside the patient's body or use a particular device when the available pathways for probe advancement are of very narrow diameter (e.g., small vessels, small ducts, small needles, cracks etc.).
  • Conventional miniature endoscopes are generally composed of fiber-optic imaging bundles. These conventional instruments have diameters that range of from approximately 250 ⁇ m to 1.0 mm. Since optical fibers have a finite diameter, a limited number of fibers can be incorporated into one imaging bundle, resulting in a limited number of resolvable elements. The resultant image resolution and field of view provided by these imaging devices may be insufficient for obtaining endoscopic images of diagnostic quality in patients.
  • the use of multiple fibers for imaging also increases the rigidity of the endoscopes, likely resulting in a bend radius of approximately 5 cm for the smallest probes in a clinical use.
  • U.S. Pat. No. 6,134,003 describes spectrally encoded endoscopy (“SEE”) techniques and arrangements which facilitate the use of a single optical fiber to transmit one-dimensional (e.g., line) image by spectrally encoding one spatial axis. By mechanically scanning this image line in the direction perpendicular thereto, a two dimensional image of the scanned plane can be obtained outside of the probe.
  • SEE spectrally encoded endoscopy
  • SEE techniques and systems facilitate a simultaneous detection of most or all points along a one-dimensional line of the image.
  • Encoding the spatial information on the sample can be accomplished by using a broad spectral bandwidth light source as the input to a single optical fiber endoscope.
  • FIG. 1 shows one such exemplary SEE system/probe 100 .
  • light provided by the source can be transmitted via an optical fiber 110 , and collimated by a collimating lens 120 .
  • the source spectrum of the light can be dispersed by a dispersing element 130 (e.g., a diffracting grating), and focused by a lens 140 onto the sample.
  • This optical configuration can provide an illumination of the sample with an array of focused spots 150 (e.g., on a wavelength-encoded axis), where each position (e.g., on the x-axis) can be encoded by a different wavelength (l).
  • the reflectance as a function of transverse location can be determined by measuring the reflected spectrum.
  • High-speed spectral detection can occur externally to the probe and, as a result, the detection of one line of image data may not necessarily increase the diameter of the exemplary system/probe 100 .
  • the other dimension (e.g., y, slow scan axis) of the image can be obtained by mechanically scanning the optical fiber and distal optics at a slower rate.
  • One of the objectives of the present invention is to overcome certain deficiencies and shortcomings of the prior art systems and methods (including those described herein above), and provide exemplary embodiments of systems and methods for generating data using one or more endoscopic microscopy techniques and, more particularly to e.g., generating such data using one or more high-resolution endoscopic microscopy techniques.
  • certain exemplary embodiments of the present invention can facilitate the use and production of narrow diameter optical fiber probes that use exemplary SEE techniques.
  • Certain procedures and configuration to achieve the preferable optical and mechanical functionality at the distal end of a narrow diameter fiber optical probe for SEE can be provided.
  • Different exemplary embodiments can be provided to incorporate the exemplary SEE optical functionality at a tip of the optical fiber in accordance with certain concepts of the present invention.
  • different types of fibers can be used depending on the spectral region and the size/flexibility preferences, e.g., single mode, multimode or double clad fibers can be used.
  • the same channel can be used for illumination and collecting of the reflected light.
  • Double clad fiber can be employed for improving the collecting efficiency and minimizing the speckle in the exemplary SEE system.
  • a regular telecommunication single mode fiber SMF28 can be used.
  • the exemplary apparatus can include at least one first optical fiber arrangement which is configured to transceive at least one first electro-magnetic radiation, and can include at least one fiber.
  • the exemplary apparatus can also include at least one second focusing arrangement in optical communication with the optical fiber arrangement. The second arrangement can be configured to focus and provide there through the first electro-magnetic radiation.
  • the exemplary apparatus can include at least one third dispersive arrangement which is configured to receive a particular radiation which is the first electro-magnetic radiation and/or the focused electro-magnetic radiation, and forward a dispersed radiation thereof to at least one section of the structure. At least one end of the fiber can be directly connected to the second focusing arrangement and/or the third dispersive arrangement.
  • the end and/or the section can be directly connected to the third dispersive arrangement.
  • the second focusing arrangement can include at least one optical element which may be directly connected the end.
  • the second arrangement may include an optical component with a numerical aperture of at most 0.2, and the optical element may be directly connected the optical component.
  • the second arrangement may include an optical component with a numerical aperture of at most 0.2.
  • the end may be directly connected to the optical component.
  • the particular radiation can include a plurality of wavelengths and/or a single wavelength that changes over time.
  • the third dispersive arrangement may be configured to spatially separate the particular radiation into a plurality of signals having differing center wavelengths.
  • the first, second and third arrangement can be provided in a monolithic configuration.
  • the third dispersive arrangement may be a fiber grating, a blazed grating, a grism, a dual prism, a binary, prism and/or a holographic lens grating.
  • the second focusing arrangement can include a gradient index lens, a reflective mirror lens grating combination and/or a diffractive lens.
  • At least one fourth arrangement can be provided which is configured to control a focal distance of the second focusing arrangement.
  • the third dispersive arrangement may include a balloon.
  • the second focusing arrangement and the third dispersive arrangement can be provided in a single arrangement.
  • the single arrangement may be a holographic arrangement and/or a diffractive arrangement.
  • an exemplary embodiment of a method for producing an optical arrangement can be provided.
  • a first set of optical elements having a first size in a first configuration and a second set of optical elements in cooperation with the second set and having a second size in a second configuration can be provided.
  • the first and second sets can be clamped into a third set of optical elements.
  • the third set can be polished, and a further set of optical elements may be deposited on the polished set.
  • the first set and/or the second set can be at least one set of cylindrical optical elements. At least one of the cylindrical optical elements may be an optical fiber.
  • the third set may be polished at an angle with respect to the extension of at least one of the optical elements. The angle can substantially correspond to a Littrow's angle and/or be substantially greater than 1 degree.
  • the further set may be a grating, and/or can include a diffractive optical element.
  • a layer can be applied between elements of the first set and/or the second set. The layer may be composed of a thin material and/or a soft material.
  • FIG. 1 is a schematic diagram of a procedure for implementing one-dimensional space-to-spectrum encoding
  • FIG. 2 is a schematic diagram of an exemplary embodiment of an SEE imaging system/probe
  • FIG. 3 is a schematic diagram of another exemplary embodiment of the SEE imaging system/probe, in which a prism is used as a dispersing element;
  • FIG. 4 is a schematic diagram of an additional exemplary embodiment of the SEE imaging system/probe, in which a micro spherical lens is used with the grating following a lens;
  • FIG. 5 is a schematic diagram of a further exemplary embodiment of the SEE imaging system/probe, which has a micro spherical lens design with the grating before the lens;
  • FIG. 6 is a schematic diagram of an exemplary embodiment of a micro spherical lens configuration with the grating provided before the lens, and in which the lens can be formed by a drop of optical epoxy at a tip of a fiber;
  • FIG. 7 is a schematic diagram of an exemplary embodiment of an endoscopic system/probe that can use a holographic optical element (“HOE”) formed in a drop of photosensitized polymer combining the functionality of expansion, focusing and dispersing regions;
  • HOE holographic optical element
  • FIG. 8 is a schematic diagram of an exemplary embodiment of the endoscopic system/probe assembly that may be non-monolithic to facilitate zooming and/or refocusing;
  • FIG. 9A is a schematic diagram of an exemplary embodiment of the endoscopic system/probe assembly having monolithic distal optics and a grism as a dispersing element in an exemplary configuration for side imaging;
  • FIG. 9B is a schematic diagram of another exemplary embodiment of the endoscopic system/probe assembly having monolithic distal optics and a double prism grism as a dispersing element in an exemplary configuration for forward imaging;
  • FIG. 10A is a schematic diagram of an exemplary embodiment of a cylindrical grating substrate with a tilted base for a Littrow regime
  • FIG. 10B is a schematic diagram of an exemplary embodiment of a prismatic grating substrate with a tilted base for the Littrow regime
  • FIG. 10C is a schematic diagram of another exemplary embodiment of the cylindrical grating substrate with a mirror tilted base and flatten side for the Littrow regime;
  • FIG. 10D is a schematic diagram another exemplary embodiment of the prismatic grating substrate with a mirror tilted base for the Littrow regime
  • FIG. 11A is a schematic diagram of yet another exemplary embodiment of the endoscopic system/probe assembly in an exemplary balloon catheter configuration, in which approximately all of the optical functionality is transferred to the balloon by via HOE that is deposited on the balloon surface;
  • FIG. 11B is a schematic diagram of still another exemplary embodiment of the endoscopic system/probe assembly in balloon catheter configuration, in which at least some optical functionality is transferred to the balloon by the use of high refractive index transparent liquid to fill a thin wall balloon to form an inflatable focusing lens;
  • FIG. 12 is a schematic diagram of an exemplary embodiment of a catheter system/probe delivery technique using an exemplary guide catheter
  • FIG. 13 is a schematic diagram of another exemplary embodiment of a catheter system/probe delivery procedure using an exemplary biopsy needle
  • FIG. 14 is a flow diagram of a method according to an exemplary embodiment of the present invention for making the exemplary embodiment of the SEE system/probe shown in FIG. 2 ;
  • FIG. 15 is an illustration of procedural steps of an exemplary embodiment of a process for mounting grating substrates which can be facilitated for an exemplary grating fabrication process.
  • endoscopic probe can be used to describe one or more portions of an exemplary embodiment of an endoscopic system, which can be inserted into a human or animal body in order to obtain an image of tissue within the body.
  • the term “endoscopic probe” may be used to describe a portion of an endoscopic system, which can be inserted into a human body in order to obtain an image of tissue within the human body.
  • the term “monolithic” may be used to describe a structure formed as a single piece, which can have more than one optical function.
  • the term “hybrid” may be used to describe a structure formed as a plurality of pieces, e.g., each piece having one optical function.
  • the exemplary embodiments of the system, apparatus, probe and method described herein can apply to any wavelength of light or electro-magnetic radiation, including but not limited to visible light and near infrared light.
  • FIG. 2 shows an exemplary embodiment of a SEE imaging system/probe 200 (e.g., endoscopic probe having a single mode fiber that deliver light from a light source to the tip of the fiber) which can include an optical fiber 210 , an expansion region 220 , a focusing region 230 , an angled region 240 and a dispersing element 250 (e.g., grating).
  • the exemplary system/probe 200 can generate a spectrally encoded imaging signal, e.g., a line 260 on the imaged surface with the longer wavelengths 280 deviated further from the probe axis than the shorter wavelengths 270 .
  • the optical fiber 210 can be a single-mode fiber and/or a multi-mode fiber (e.g., preferably single mode for preserving the phase relation of the source light and the light remitted by the sample).
  • SEE capabilities can be provided in a catheter or endoscope.
  • a high-resolution microscopy of surfaces of the body accessible by endoscope can be facilitated by the exemplary embodiment of the system/probe 200 .
  • a multiple of (e.g., four) distinct regions with specific optical properties can be used to determine the system/probe functionality.
  • the expansion region can be used to facilitate the beam that is confined in the fiber core to expand and fill an aperture.
  • the expansion region can be composed of optical glass (e.g., a piece of coreless fiber spliced to the main fiber and then cleaved to a predetermined length), optical epoxy, air, or transparent fluid.
  • Index matching with the fiber core may be desirable for reducing the back reflection from the interface between the fiber and the expansion region.
  • Other techniques and/or arrangements for reducing the back reflection e.g., anti-reflection coating or angle cleaving, can be employed in case of air or other non-matching media used as an expansion region.
  • the diverging beam can be transformed to a converging one.
  • a gradient index (“GRIN”) lens or spherical micro lens can be used as shall be described in more detail below with reference to other exemplary embodiments.
  • the GRIN lens can be made by splicing a piece of GRIN fiber and cleaving it to a predetermined length.
  • the spherical lens can be formed on the coreless fiber tip by melting it, by polishing, or by applying a small measured amount of optical epoxy.
  • the angled region can be used to support the dispersing element and/or provide an incidence tilt for the output direction and/or the desired regime (Litrow) in certain cases (e.g., a diffraction grating).
  • the desired regime e.g., a diffraction grating
  • different media can be used, and different techniques and/or arrangements for obtaining the desired tilt can be employed.
  • some of such exemplary techniques can include angle cleaving, polishing, molding of the optical epoxy etc.
  • the dispersing element can tilt different parts of the incident spectrum at different angles, thus producing the desired spatial spread of the incident light. It can be a prism made of high dispersion material or a high efficiency diffracting grating. It is possible to also produce a grating at the fiber tip. For example, transmitting or reflecting gratings can be used in different regimes depending on the application.
  • dispersing elements can be used: prism or diffracting grating.
  • the holographic optical element that combines the dispersing power of the grating and the focusing power of a lens can also be used as shown in FIG. 7 .
  • Prism made of dispersing material can be used when the light source has a very broad spectrum, e.g., a femto-second laser source with microstructured fiber for super-continuum generation.
  • the spectrum can span in visible and near infrared.
  • FIG. 3 shows another exemplary embodiment of the SEE system/probe 300 which can include a single mode optical fiber 310 spliced to a coreless fiber 320 (e.g., the expansion region). Further, a short piece of gradient refracting index (GRIN) fiber 330 can be spliced to the coreless fiber (e.g., the focusing region). In addition, another short piece of coreless fiber 340 can be spliced to the focusing region 330 .
  • the output surface 350 may be angle polished/cleaved, thus forming a refracting boundary between the fiber 340 and the external medium 355 (e.g., air, water or other liquid).
  • the external medium 355 e.g., air, water or other liquid
  • an exemplary use of the prism 340 is illustrated as a dispersive element.
  • this exemplary configuration can provide a high transmission efficiency. It may be desirable for the angled region to be made of a highly dispersive material. In the case of a normal dispersion, longer wavelength parts of the original spectrum 370 may deviate less than the shorter wavelengths 380 , thus forming the imaging line 360 .
  • FIG. 5 shows a schematic diagram of a further exemplary embodiment of the SEE imaging system/probe 500 , which has a micro spherical lens 530 with a grating 550 provided before the lens 530 use of the reflection diffracting grating.
  • the use of reflection diffracting grating utilizes a housing that can enlarge the system/probe. The additional details of the exemplary embodiment of the SEE system/probe 500 shall be described in further detail below.
  • the selected dispersing element can be a transmission diffracting grating. It is also possible to use other grating, e.g., a volume holographic grating or a surface phase grating.
  • the volume holographic gratings can exhibit a higher efficiency, but are less common, and some of the materials used therefore generally require sealing from the humidity, as well as more expensive and difficult to replicate.
  • the surface phase gratings may be less efficient, but are easy to replicate and mass-produce when a master grating is made.
  • the grating can be a thin film ( ⁇ 5-10 ⁇ m) that is applied to the angled region.
  • FIG. 4 shows another exemplary embodiment of the SEE system/probe 400 which can include a single mode optical fiber 410 spliced to a coreless fiber 420 .
  • the tip of the expansion region 420 can be melted to form a small spherical surface 425 , and then a low refractive index epoxy 430 may be used to attach the grating 440 at an angle to the system/probe 400 .
  • the focusing region can be the surface that separates the expansion region and the angled region.
  • the longer wavelengths 460 of the original spectrum may deviate more than the shorter wavelengths 470 , thus possibly forming the imaging line 450 .
  • FIG. 5 shows the exemplary SEE probe 500 described above, which can include a single mode optical fiber 510 spliced to a coreless fiber 520 .
  • the tip of the expansion region 520 can be melted to form a ball 530 .
  • the ball may be polished at an angle (Littrow) and on the flat surface 540 that can result from this exemplary procedure, a reflecting grating 550 may be deposited.
  • the light beam can expand in the expansion section after exiting an end 510 of the core of the optical fiber 510 , and may then be dispersed by the grating 550 . Different monochromatic beams that can result may then be focused by the near spherical surface of the glass ball to form the imaging line 560 .
  • the dispersing element may be provided before the focusing element.
  • the longer wavelengths 580 of the original spectrum may deviate more than the shorter wavelengths 570 .
  • FIG. 6 shows another exemplary embodiment of the SEE system/probe 600 which may include a single mode optical fiber 610 spliced to a short piece of coreless fiber 620 that may be angle cleaved or polished at an angle (which can be the Littrow angle for the grating 630 ) and the grating 630 may be deposited on the tip of the expansion region 620 .
  • a drop of an optical epoxy 640 can be cured at the tip of the fiber 610 to protect the transmission grating 630 and form the focusing surface 650 .
  • the dispersing element 630 can be provided before the focusing element 650 , and the expansion region 620 and the angled region 620 may coincide.
  • the longer wavelengths 670 of the original spectrum may deviate more than the shorter wavelengths 680 to form the imaging line 660 .
  • FIG. 7 shows yet another exemplary embodiment of the SEE system/probe 700 , which can include a single mode optical fiber 710 .
  • a holographic optical element (“HOE”) 730 written in a drop of photosensitive polymer 720 can incorporate the optical functionality of the expansion, focusing and dispersing elements.
  • the longer wavelengths 750 of the original spectrum can deviate more than the shorter wavelengths 760 to form the imaging line 740 .
  • FIG. 8 shows still another exemplary embodiment of the SEE system/probe 800 which can include a static monolithic core 810 and a spinning flexible thin wall Teflon tubing 820 with the angled region 850 attached to its end.
  • An optical fiber 830 , an expansion region 835 , and a focusing region 840 may be attached/glued/spliced together to form the core 810 .
  • a dispersing element/grating 857 can be deposited on the tilted output surface of the angled region 850 .
  • the glass-to-air interfaces of the focusing region 840 845 and the angled region 850 853 may be anti-reflection coated. Changing the gap between such elements by advancing the core 810 can effectively change the distance 880 of the imaging line 860 to the output surface of the system/probe 800 (e.g., the grating 875 ).
  • Exemplary non-monolithic configurations similar to those shown in the exemplary embodiment of FIG. 8 can allow for additional functionality such as zooming and/or focusing to be provided in the distal probe end. Multi-lens configurations may also be implemented.
  • FIG. 9A shows a further exemplary embodiment of the SEE imaging system/probe 900 which can include a static sheath 905 with a transparent window 908 and a monolithic optical core 910 that can be scanned.
  • the core can include an optical fiber 915 , an expansion region 917 , a focusing element (e.g., a GRIN lens) 920 , and a prism 925 with the grating 930 deposited on its output surface.
  • the optical elements may be maintained together with a micro mechanical housing 940 .
  • This exemplary configuration may represent a side looking imaging system/probe.
  • FIG. 9B shows still another exemplary embodiment of the SEE imaging system/probe 950 which can include a static sheath 955 with a transparent window 958 and a monolithic optical core 960 that can be scanned.
  • the core can include an optical fiber 965 , an expansion region 967 , and a focusing element (GRIN lens) 970 .
  • a grating 980 may be sandwiched between prisms 975 and 977 .
  • the optical elements may be maintained together with a micro mechanical housing 990 .
  • This exemplary configuration can represent a forward-looking imaging system/probe.
  • FIGS. 10A-10C illustrate exemplary embodiments of the substrate that can provide a Littrow regime for the grating.
  • FIG. 10A shows an exemplary embodiment of a diffracting grating substrate 1000 which can include a cylindrical body 1005 with one side 1020 polished at the Littrow's angle 1015 .
  • FIG. 10B shows another exemplary embodiment of the diffracting grating substrate 1025 which includes a prismatic body 1030 with one side 1045 polished at the Littrow's angle 1040 .
  • FIG. 10C shows still another exemplary embodiment of the diffracting grating substrate 1050 which can include a cylindrical body 1055 with one side 1057 polished at the complimentary to Littrow's angle 1058 and a mirror 1087 deposited.
  • Another flat surface 1065 may be polished parallel to the cylinder axis where the grating is to be deposited.
  • FIG. 10A shows an exemplary embodiment of a diffracting grating substrate 1000 which can include a cylindrical body 1005 with one side 1020 polished at the Littrow's angle 1015 .
  • FIG. 10B shows another exemplary embodiment of the diffracting grating substrate 10
  • FIG. 10D shows yet another exemplary embodiment of the diffracting grating substrate 1075 which can include a prismatic body 1080 with one side 1087 polished at the complimentary to Littrow's angle 1085 and a mirror 1087 deposited.
  • the grating is intended to be deposited on the side 1095 . It should be understood that the illustrated sizes are merely exemplary, and other sizes are possible and are within the scope of the present invention.
  • the system/probe can be small enough to be introduced through a small opening, and big enough to be able to image at big distances in a cavity. These conflicting preferences can be met by using an inflating balloon with added optical functionality. Two such exemplary configurations are shown in FIGS. 11A and 11B .
  • FIG. 11A shows another exemplary embodiment of the SEE system/probe 1100 which can include a single mode optical fiber 1110 .
  • a holographic optical element (“HOE”) 1125 written on the surface of the inflating balloon 1120 can incorporate the optical functionality of the focusing and dispersing elements.
  • the dispersed light may be focused into the imaging line 1130 .
  • the image of the area 1135 may be obtained.
  • This exemplary configuration may be further defined by the material availability for infrared applications and the possible difficulties associated with the holographic process.
  • FIG. 11B shows still another exemplary embodiment of the SEE system/probe 1150 which can include a single mode optical fiber 1160 .
  • a holographic optical element (“HOE”) 1165 written in a drop of photosensitive polymer 1067 deposited on the tip of the fiber 1060 can incorporate the optical functionality of the expansion, and dispersing elements.
  • the balloon catheter 1170 may be filled with a high refractive index biocompatible liquid, thus forming a near spherical refracting focusing surface 1175 .
  • This exemplary configuration may be further defined by the material availability for infrared applications and the possible difficulties associated with the holographic process.
  • the system/probe can include an optical fiber with a modified tip. (See FIGS. 2-7 ).
  • the system/probe can illuminate a line at the object and acquire one line of image at a time.
  • the imaging line is scanned in transverse direction across the object. This can be a repetitive or a single scan. In such cases, an image or the surface that the line scans can be acquired and displayed.
  • the information obtained from the back-scattered light can be interpreted in various manners to represent different tissue types, different states of the same tissue, various types of dysphasia, tissue damage etc. as well as motion of body liquids and cells.
  • Certain exemplary arrangements which can be used for placing the probe and scanning the tissue may be as follows.
  • a very thin wall sealed PTFE tube can be used as a protective transparent sheath for the probe that can be delivered through the lumen of a guide catheter to the area of interest (as shown in FIG. 12 ).
  • the fiber inside the thin tube can be scanned by rotating or by pulling in order to obtain an image.
  • a short distal part of the catheter can be of a small diameter.
  • the proximal end can be of a bigger diameter with added additional springs/shafts to protect the fiber and convey the motion.
  • FIG. 12 shows an exemplary embodiment of a catheter of the SEE system/probe 1200 which can include an optical core 1230 .
  • the exemplary system/probe 1200 can be protected by a transparent sheath 1220 that can allow the transmission of the imaging light 1240 into the region of interest.
  • the imaging catheter 1220 can be placed trough a guide catheter 1210 .
  • the fiber optic probe may be inserted into the biopsy needle (as shown in FIG. 13 ).
  • the fiber optic probe may be embedded within the needle biopsy device or inserted through the lumen of the needle. The image can be acquired during the insertion of the needle or by rotating of the probe inside the needle and, e.g., only looking at a limited angle
  • FIG. 13 shows another exemplary embodiment of a catheter of the SEE system/probe 1300 which can include an optical core 1330 .
  • the exemplary system/probe 1300 can be delivered to the region being imaged through the lumen of a biopsy needle 1320 that may be delivered through an endoscope or guide catheter 1310 .
  • the exemplary system/probe may be incorporated into an electrocautery device, scalpel, or be an independent hand-held device.
  • One exemplary parameter for comparing different miniature endoscope technologies may be the number of resolvable points.
  • This exemplary parameter can be the limiting factor that may render a technology more or less useful for the particular application.
  • the total number of resolvable points provided by the exemplary embodiments of the SEE system/probe (n) for the first diffraction order can be defined by:
  • n ( ⁇ ⁇ ⁇ d ⁇ 0 ⁇ ⁇ ⁇ ⁇ cos ⁇ ( ⁇ i ) ) 2
  • Exemplary determinations can indicate that for a source with a center wavelength, ⁇ 0 , source bandwidth, ⁇ , of 250 nm, a grating input angle, ⁇ i , of 49° and a grating groove density, ⁇ , of 1800 lines per mm, a 250 ⁇ m diameter SEE probe may facilitate imaging with, e.g., 40,000 resolvable points.
  • a commercially available 300 ⁇ m diameter fiber-optic image bundle contains only 1,600 resolvable points.
  • FIG. 14 shows a flow diagram of a method according to an exemplary embodiment of the present invention for making the exemplary embodiment of the SEE system/probe shown in FIG. 2 .
  • the end of SMF-28 optical fiber 210 or any other optical fiber can be stripped (step 1410 ).
  • the spacer can be polished to a predetermined length.
  • the GRIN lens can be polished to a predetermined length in step 1430 .
  • the grating 250 can be polished to a predetermined length and angle.
  • step 1410 The results of step 1410 are provided to step 1450 , in which the end of the optical fiber is cleaved.
  • step 1420 and 1430 are provided to step 1460 , in which the spacer and GRIN lens are glued together.
  • step 1440 are provided to step 1470 , in which the grating 250 is deposited on the grating substrate.
  • step 1450 and 1460 are provided to step 1475 , in which the spacer-GRIN lens assembly is glued to the optical fiber using an optical epoxy and the spacing is varied to achieve the desired focal properties.
  • the results of steps 1475 and 1470 are provided to step 1485 in which the grating 250 bearing the grating substrate is glued to the GRIN lens.
  • step 1480 flexible, optically clear, bio- and device-compatible sheath can be provided for housing the imaging core.
  • the results of steps 1480 and 1485 are forwarded to step 1490 , in which the exemplary system/probe is assembled, e.g., by inserting the core into the sheath and sealing and sterilizing the resultant assembly.
  • FIG. 15 shows an illustration of procedural steps of an exemplary embodiment of a process for mounting grating substrates which can be facilitated for an exemplary grating fabrication process.
  • dimensions and materials provided in FIG. 15 are exemplary, and numerous other dimensions and materials can be utilized in accordance with the exemplary embodiments of the present invention.
  • several glass rods 1500 , 1510 with different diameters 1500 , 1510 can be stacked and mounted together inside a particular mount 1520 into a particular location 1525 .
  • the rods can be separated by a thin lead foil 1530 (e.g., 127 ⁇ m thick).
  • the rod stack can then be polished at an angle while inside the mount 1520 .
  • a grating 1540 may be fabricated, e.g., without disassembling the pieces.
  • the pieces can be disassembled.
  • the individual pieces may then be polished from the other side 1550 .
  • the completed grating 1560 can then be assembled into the fiber or lens.
  • the stack of fibers and the lead foil 1530 is shown in FIG. 15 as a small square 1525 in the middle of the particular mount 1520 (e.g., a holder).
  • the same stack is shown as a parallelogram in the middle. This stack is further enlarged in the top right drawing of FIG. 15 , labeled “Top view”.
  • the final exemplary product e.g., a completed piece 1560

Abstract

Exemplary apparatus for obtaining information for a structure can be provided. For example, the exemplary apparatus can include at least one first optical fiber arrangement which is configured to transceive at least one first electro-magnetic radiation, and can include at least one fiber. The exemplary apparatus can also include at least one second focusing arrangement in optical communication with the optical fiber arrangement. The second arrangement can be configured to focus and provide there through the first electro-magnetic radiation to generate the focused electro-magnetic radiation. Further, the exemplary apparatus can include at least at least one dispersive third arrangement which can receive a particular radiation (e.g., the first electro-magnetic radiation(s) and/or the focused electro-magnetic radiation), and forward a dispersed radiation thereof to at least one section of the structure.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • The present application is a continuation of U.S. patent application Ser. No. 13/427,463 filed Mar. 22, 2012, which is a divisional of U.S. patent application Ser. No. 11/623,852 filed Jan. 17, 2007. This application is also based upon and claims the benefit of priority from U.S. Patent Application Ser. No. 60/760,139, filed Jan. 19, 2006. The entire disclosures of such applications are incorporated herein by reference.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
  • The invention was made with the U.S. Government support under Contract No. BES-0086709 awarded by the National Science Foundation. Thus, the U.S. Government has certain rights in the invention.
  • FIELD OF THE INVENTION
  • The present invention relates generally to apparatus and method for spectrally encoded endoscopy and, more particularly to, e.g., apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and method for producing one or more optical arrangements.
  • BACKGROUND OF THE INVENTION
  • Certain medical and technical applications utilize an ability to look inside the patient's body or use a particular device when the available pathways for probe advancement are of very narrow diameter (e.g., small vessels, small ducts, small needles, cracks etc.).
  • Conventional miniature endoscopes are generally composed of fiber-optic imaging bundles. These conventional instruments have diameters that range of from approximately 250 μm to 1.0 mm. Since optical fibers have a finite diameter, a limited number of fibers can be incorporated into one imaging bundle, resulting in a limited number of resolvable elements. The resultant image resolution and field of view provided by these imaging devices may be insufficient for obtaining endoscopic images of diagnostic quality in patients. The use of multiple fibers for imaging also increases the rigidity of the endoscopes, likely resulting in a bend radius of approximately 5 cm for the smallest probes in a clinical use. These technical limitations of fiber bundle microendoscopes, including a low number of resolvable points and increased rigidity, have limited the widespread use of miniature endoscopy in medicine.
  • U.S. Pat. No. 6,134,003 describes spectrally encoded endoscopy (“SEE”) techniques and arrangements which facilitate the use of a single optical fiber to transmit one-dimensional (e.g., line) image by spectrally encoding one spatial axis. By mechanically scanning this image line in the direction perpendicular thereto, a two dimensional image of the scanned plane can be obtained outside of the probe. This conventional technology provides a possibility for designing the probes that are of slightly bigger diameter than an optical fiber. Probes in approximately 100 μm diameter range may be developed using such SEE technology.
  • SEE techniques and systems facilitate a simultaneous detection of most or all points along a one-dimensional line of the image. Encoding the spatial information on the sample can be accomplished by using a broad spectral bandwidth light source as the input to a single optical fiber endoscope.
  • FIG. 1 shows one such exemplary SEE system/probe 100. For example, at a distal end of the exemplary system/probe 100, light provided by the source can be transmitted via an optical fiber 110, and collimated by a collimating lens 120. Further, the source spectrum of the light can be dispersed by a dispersing element 130 (e.g., a diffracting grating), and focused by a lens 140 onto the sample. This optical configuration can provide an illumination of the sample with an array of focused spots 150 (e.g., on a wavelength-encoded axis), where each position (e.g., on the x-axis) can be encoded by a different wavelength (l). Following the transmission back through the optical fiber, the reflectance as a function of transverse location can be determined by measuring the reflected spectrum. High-speed spectral detection can occur externally to the probe and, as a result, the detection of one line of image data may not necessarily increase the diameter of the exemplary system/probe 100. The other dimension (e.g., y, slow scan axis) of the image can be obtained by mechanically scanning the optical fiber and distal optics at a slower rate.
  • Accordingly, it may be beneficial to address and/or overcome at least some of the deficiencies described herein above.
  • OBJECTS AND SUMMARY OF THE INVENTION
  • One of the objectives of the present invention is to overcome certain deficiencies and shortcomings of the prior art systems and methods (including those described herein above), and provide exemplary embodiments of systems and methods for generating data using one or more endoscopic microscopy techniques and, more particularly to e.g., generating such data using one or more high-resolution endoscopic microscopy techniques.
  • For example, certain exemplary embodiments of the present invention can facilitate the use and production of narrow diameter optical fiber probes that use exemplary SEE techniques. Certain procedures and configuration to achieve the preferable optical and mechanical functionality at the distal end of a narrow diameter fiber optical probe for SEE can be provided.
  • Different exemplary embodiments can be provided to incorporate the exemplary SEE optical functionality at a tip of the optical fiber in accordance with certain concepts of the present invention. For example, different types of fibers can be used depending on the spectral region and the size/flexibility preferences, e.g., single mode, multimode or double clad fibers can be used.
  • In one exemplary embodiment of the SEE system, the same channel can be used for illumination and collecting of the reflected light. Double clad fiber can be employed for improving the collecting efficiency and minimizing the speckle in the exemplary SEE system. For example, a regular telecommunication single mode fiber SMF28 can be used.
  • According to a particular exemplary embodiment of an apparatus for obtaining information for a structure according to the present invention can be provided. For example, the exemplary apparatus can include at least one first optical fiber arrangement which is configured to transceive at least one first electro-magnetic radiation, and can include at least one fiber. The exemplary apparatus can also include at least one second focusing arrangement in optical communication with the optical fiber arrangement. The second arrangement can be configured to focus and provide there through the first electro-magnetic radiation. Further, the exemplary apparatus can include at least one third dispersive arrangement which is configured to receive a particular radiation which is the first electro-magnetic radiation and/or the focused electro-magnetic radiation, and forward a dispersed radiation thereof to at least one section of the structure. At least one end of the fiber can be directly connected to the second focusing arrangement and/or the third dispersive arrangement.
  • According to still another exemplary embodiment of the present invention, the end and/or the section can be directly connected to the third dispersive arrangement. The second focusing arrangement can include at least one optical element which may be directly connected the end. The second arrangement may include an optical component with a numerical aperture of at most 0.2, and the optical element may be directly connected the optical component. The second arrangement may include an optical component with a numerical aperture of at most 0.2. The end may be directly connected to the optical component.
  • In yet another exemplary embodiment of the present invention, the particular radiation can include a plurality of wavelengths and/or a single wavelength that changes over time. The third dispersive arrangement may be configured to spatially separate the particular radiation into a plurality of signals having differing center wavelengths. The first, second and third arrangement can be provided in a monolithic configuration. The third dispersive arrangement may be a fiber grating, a blazed grating, a grism, a dual prism, a binary, prism and/or a holographic lens grating. The second focusing arrangement can include a gradient index lens, a reflective mirror lens grating combination and/or a diffractive lens.
  • According to a further exemplary embodiment of the present invention, at least one fourth arrangement can be provided which is configured to control a focal distance of the second focusing arrangement. The third dispersive arrangement may include a balloon. The second focusing arrangement and the third dispersive arrangement can be provided in a single arrangement. The single arrangement may be a holographic arrangement and/or a diffractive arrangement.
  • In addition, an exemplary embodiment of a method for producing an optical arrangement can be provided. For example, a first set of optical elements having a first size in a first configuration and a second set of optical elements in cooperation with the second set and having a second size in a second configuration can be provided. The first and second sets can be clamped into a third set of optical elements. The third set can be polished, and a further set of optical elements may be deposited on the polished set.
  • According to yet another exemplary embodiment of the present invention, the first set and/or the second set can be at least one set of cylindrical optical elements. At least one of the cylindrical optical elements may be an optical fiber. The third set may be polished at an angle with respect to the extension of at least one of the optical elements. The angle can substantially correspond to a Littrow's angle and/or be substantially greater than 1 degree. The further set may be a grating, and/or can include a diffractive optical element. A layer can be applied between elements of the first set and/or the second set. The layer may be composed of a thin material and/or a soft material.
  • Other features and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the invention, when taken in conjunction with the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further objects, features and advantages of the present invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the present invention, in which:
  • FIG. 1 is a schematic diagram of a procedure for implementing one-dimensional space-to-spectrum encoding;
  • FIG. 2 is a schematic diagram of an exemplary embodiment of an SEE imaging system/probe;
  • FIG. 3 is a schematic diagram of another exemplary embodiment of the SEE imaging system/probe, in which a prism is used as a dispersing element;
  • FIG. 4 is a schematic diagram of an additional exemplary embodiment of the SEE imaging system/probe, in which a micro spherical lens is used with the grating following a lens;
  • FIG. 5 is a schematic diagram of a further exemplary embodiment of the SEE imaging system/probe, which has a micro spherical lens design with the grating before the lens;
  • FIG. 6 is a schematic diagram of an exemplary embodiment of a micro spherical lens configuration with the grating provided before the lens, and in which the lens can be formed by a drop of optical epoxy at a tip of a fiber;
  • FIG. 7 is a schematic diagram of an exemplary embodiment of an endoscopic system/probe that can use a holographic optical element (“HOE”) formed in a drop of photosensitized polymer combining the functionality of expansion, focusing and dispersing regions;
  • FIG. 8 is a schematic diagram of an exemplary embodiment of the endoscopic system/probe assembly that may be non-monolithic to facilitate zooming and/or refocusing;
  • FIG. 9A is a schematic diagram of an exemplary embodiment of the endoscopic system/probe assembly having monolithic distal optics and a grism as a dispersing element in an exemplary configuration for side imaging;
  • FIG. 9B is a schematic diagram of another exemplary embodiment of the endoscopic system/probe assembly having monolithic distal optics and a double prism grism as a dispersing element in an exemplary configuration for forward imaging;
  • FIG. 10A is a schematic diagram of an exemplary embodiment of a cylindrical grating substrate with a tilted base for a Littrow regime;
  • FIG. 10B is a schematic diagram of an exemplary embodiment of a prismatic grating substrate with a tilted base for the Littrow regime;
  • FIG. 10C is a schematic diagram of another exemplary embodiment of the cylindrical grating substrate with a mirror tilted base and flatten side for the Littrow regime;
  • FIG. 10D is a schematic diagram another exemplary embodiment of the prismatic grating substrate with a mirror tilted base for the Littrow regime;
  • FIG. 11A is a schematic diagram of yet another exemplary embodiment of the endoscopic system/probe assembly in an exemplary balloon catheter configuration, in which approximately all of the optical functionality is transferred to the balloon by via HOE that is deposited on the balloon surface;
  • FIG. 11B is a schematic diagram of still another exemplary embodiment of the endoscopic system/probe assembly in balloon catheter configuration, in which at least some optical functionality is transferred to the balloon by the use of high refractive index transparent liquid to fill a thin wall balloon to form an inflatable focusing lens;
  • FIG. 12 is a schematic diagram of an exemplary embodiment of a catheter system/probe delivery technique using an exemplary guide catheter;
  • FIG. 13 is a schematic diagram of another exemplary embodiment of a catheter system/probe delivery procedure using an exemplary biopsy needle;
  • FIG. 14 is a flow diagram of a method according to an exemplary embodiment of the present invention for making the exemplary embodiment of the SEE system/probe shown in FIG. 2; and
  • FIG. 15 is an illustration of procedural steps of an exemplary embodiment of a process for mounting grating substrates which can be facilitated for an exemplary grating fabrication process.
  • Throughout the figures, the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components or portions of the illustrated embodiments. Moreover, while the subject invention will now be described in detail with reference to the figures, it is done so in connection with the illustrative embodiments. It is intended that changes and modifications can be made to the described embodiments without departing from the true scope and spirit of the subject invention as defined by the appended claims.
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • Prior to providing a detailed description of the various exemplary embodiments of the methods and systems for endoscopic microscopy according to the present invention, some introductory concepts and terminology are provided below. As used herein, the term “endoscopic probe” can be used to describe one or more portions of an exemplary embodiment of an endoscopic system, which can be inserted into a human or animal body in order to obtain an image of tissue within the body.
  • Prior to describing the exemplary embodiments of the systems and/or probes for spectrally encoded endoscopy according to the present invention, certain exemplary concepts and terminology are provided herein. For example, the term “endoscopic probe” may be used to describe a portion of an endoscopic system, which can be inserted into a human body in order to obtain an image of tissue within the human body. The term “monolithic” may be used to describe a structure formed as a single piece, which can have more than one optical function. The term “hybrid” may be used to describe a structure formed as a plurality of pieces, e.g., each piece having one optical function.
  • The exemplary embodiments of the system, apparatus, probe and method described herein can apply to any wavelength of light or electro-magnetic radiation, including but not limited to visible light and near infrared light.
  • FIG. 2 shows an exemplary embodiment of a SEE imaging system/probe 200 (e.g., endoscopic probe having a single mode fiber that deliver light from a light source to the tip of the fiber) which can include an optical fiber 210, an expansion region 220, a focusing region 230, an angled region 240 and a dispersing element 250 (e.g., grating). The exemplary system/probe 200 can generate a spectrally encoded imaging signal, e.g., a line 260 on the imaged surface with the longer wavelengths 280 deviated further from the probe axis than the shorter wavelengths 270.
  • The optical fiber 210 can be a single-mode fiber and/or a multi-mode fiber (e.g., preferably single mode for preserving the phase relation of the source light and the light remitted by the sample). By facilitation a light delivery through the optical fiber 210, SEE capabilities can be provided in a catheter or endoscope. Thus, a high-resolution microscopy of surfaces of the body accessible by endoscope can be facilitated by the exemplary embodiment of the system/probe 200.
  • A multiple of (e.g., four) distinct regions with specific optical properties can be used to determine the system/probe functionality.
  • For example, the expansion region can be used to facilitate the beam that is confined in the fiber core to expand and fill an aperture. The expansion region can be composed of optical glass (e.g., a piece of coreless fiber spliced to the main fiber and then cleaved to a predetermined length), optical epoxy, air, or transparent fluid. Index matching with the fiber core may be desirable for reducing the back reflection from the interface between the fiber and the expansion region. Other techniques and/or arrangements for reducing the back reflection, e.g., anti-reflection coating or angle cleaving, can be employed in case of air or other non-matching media used as an expansion region.
  • In the focusing region, the diverging beam can be transformed to a converging one. For example, a gradient index (“GRIN”) lens or spherical micro lens can be used as shall be described in more detail below with reference to other exemplary embodiments. For example, the GRIN lens can be made by splicing a piece of GRIN fiber and cleaving it to a predetermined length. The spherical lens can be formed on the coreless fiber tip by melting it, by polishing, or by applying a small measured amount of optical epoxy.
  • The angled region can be used to support the dispersing element and/or provide an incidence tilt for the output direction and/or the desired regime (Litrow) in certain cases (e.g., a diffraction grating). As with the expansion region, different media can be used, and different techniques and/or arrangements for obtaining the desired tilt can be employed. For example, some of such exemplary techniques can include angle cleaving, polishing, molding of the optical epoxy etc.
  • The dispersing element can tilt different parts of the incident spectrum at different angles, thus producing the desired spatial spread of the incident light. It can be a prism made of high dispersion material or a high efficiency diffracting grating. It is possible to also produce a grating at the fiber tip. For example, transmitting or reflecting gratings can be used in different regimes depending on the application.
  • Other numerous combinations and permutations of the above-mentioned regions can provide a functional system/probe, certain exemplary embodiments of which shall be described in further detail below. For example, two general types of dispersing elements can be used: prism or diffracting grating. The holographic optical element that combines the dispersing power of the grating and the focusing power of a lens can also be used as shown in FIG. 7.
  • Prism made of dispersing material can be used when the light source has a very broad spectrum, e.g., a femto-second laser source with microstructured fiber for super-continuum generation. In such exemplary source, the spectrum can span in visible and near infrared.
  • FIG. 3 shows another exemplary embodiment of the SEE system/probe 300 which can include a single mode optical fiber 310 spliced to a coreless fiber 320 (e.g., the expansion region). Further, a short piece of gradient refracting index (GRIN) fiber 330 can be spliced to the coreless fiber (e.g., the focusing region). In addition, another short piece of coreless fiber 340 can be spliced to the focusing region 330. The output surface 350 may be angle polished/cleaved, thus forming a refracting boundary between the fiber 340 and the external medium 355 (e.g., air, water or other liquid). In FIG. 3, an exemplary use of the prism 340 is illustrated as a dispersive element. With an anti-reflecting coating on the output surface 350, this exemplary configuration can provide a high transmission efficiency. It may be desirable for the angled region to be made of a highly dispersive material. In the case of a normal dispersion, longer wavelength parts of the original spectrum 370 may deviate less than the shorter wavelengths 380, thus forming the imaging line 360.
  • Diffracting gratings can be preferable in the case of narrow band source because of the higher dispersing power that can be achieved with such gratings. For example, the transmission and reflection diffracting gratings can be used. FIG. 5 shows a schematic diagram of a further exemplary embodiment of the SEE imaging system/probe 500, which has a micro spherical lens 530 with a grating 550 provided before the lens 530 use of the reflection diffracting grating. In other exemplary configuration, the use of reflection diffracting grating utilizes a housing that can enlarge the system/probe. The additional details of the exemplary embodiment of the SEE system/probe 500 shall be described in further detail below.
  • The selected dispersing element can be a transmission diffracting grating. It is also possible to use other grating, e.g., a volume holographic grating or a surface phase grating. The volume holographic gratings can exhibit a higher efficiency, but are less common, and some of the materials used therefore generally require sealing from the humidity, as well as more expensive and difficult to replicate. The surface phase gratings may be less efficient, but are easy to replicate and mass-produce when a master grating is made. For both of these exemplary elements, the grating can be a thin film (˜5-10 μm) that is applied to the angled region.
  • FIG. 4 shows another exemplary embodiment of the SEE system/probe 400 which can include a single mode optical fiber 410 spliced to a coreless fiber 420. In this exemplary embodiment, the tip of the expansion region 420 can be melted to form a small spherical surface 425, and then a low refractive index epoxy 430 may be used to attach the grating 440 at an angle to the system/probe 400. In this exemplary system/probe 400, the focusing region can be the surface that separates the expansion region and the angled region. The longer wavelengths 460 of the original spectrum may deviate more than the shorter wavelengths 470, thus possibly forming the imaging line 450.
  • FIG. 5 shows the exemplary SEE probe 500 described above, which can include a single mode optical fiber 510 spliced to a coreless fiber 520. The tip of the expansion region 520 can be melted to form a ball 530. The ball may be polished at an angle (Littrow) and on the flat surface 540 that can result from this exemplary procedure, a reflecting grating 550 may be deposited. The light beam can expand in the expansion section after exiting an end 510 of the core of the optical fiber 510, and may then be dispersed by the grating 550. Different monochromatic beams that can result may then be focused by the near spherical surface of the glass ball to form the imaging line 560. The dispersing element may be provided before the focusing element. The longer wavelengths 580 of the original spectrum may deviate more than the shorter wavelengths 570.
  • FIG. 6 shows another exemplary embodiment of the SEE system/probe 600 which may include a single mode optical fiber 610 spliced to a short piece of coreless fiber 620 that may be angle cleaved or polished at an angle (which can be the Littrow angle for the grating 630) and the grating 630 may be deposited on the tip of the expansion region 620. A drop of an optical epoxy 640 can be cured at the tip of the fiber 610 to protect the transmission grating 630 and form the focusing surface 650. The dispersing element 630 can be provided before the focusing element 650, and the expansion region 620 and the angled region 620 may coincide. The longer wavelengths 670 of the original spectrum may deviate more than the shorter wavelengths 680 to form the imaging line 660.
  • FIG. 7 shows yet another exemplary embodiment of the SEE system/probe 700, which can include a single mode optical fiber 710. A holographic optical element (“HOE”) 730 written in a drop of photosensitive polymer 720 can incorporate the optical functionality of the expansion, focusing and dispersing elements. The longer wavelengths 750 of the original spectrum can deviate more than the shorter wavelengths 760 to form the imaging line 740.
  • FIG. 8 shows still another exemplary embodiment of the SEE system/probe 800 which can include a static monolithic core 810 and a spinning flexible thin wall Teflon tubing 820 with the angled region 850 attached to its end. An optical fiber 830, an expansion region 835, and a focusing region 840 may be attached/glued/spliced together to form the core 810. A dispersing element/grating 857 can be deposited on the tilted output surface of the angled region 850. The glass-to-air interfaces of the focusing region 840 845 and the angled region 850 853 may be anti-reflection coated. Changing the gap between such elements by advancing the core 810 can effectively change the distance 880 of the imaging line 860 to the output surface of the system/probe 800 (e.g., the grating 875).
  • Exemplary non-monolithic configurations similar to those shown in the exemplary embodiment of FIG. 8 can allow for additional functionality such as zooming and/or focusing to be provided in the distal probe end. Multi-lens configurations may also be implemented.
  • The use of a prism-grating combination (grism) may facilitate a control of the angle of incidence and the probe output direction. Exemplary arrangement which implements such configurations are shown in FIG. 9A and FIG. 9B. In particular, FIG. 9A shows a further exemplary embodiment of the SEE imaging system/probe 900 which can include a static sheath 905 with a transparent window 908 and a monolithic optical core 910 that can be scanned. The core can include an optical fiber 915, an expansion region 917, a focusing element (e.g., a GRIN lens) 920, and a prism 925 with the grating 930 deposited on its output surface. The optical elements may be maintained together with a micro mechanical housing 940. This exemplary configuration may represent a side looking imaging system/probe.
  • FIG. 9B shows still another exemplary embodiment of the SEE imaging system/probe 950 which can include a static sheath 955 with a transparent window 958 and a monolithic optical core 960 that can be scanned. The core can include an optical fiber 965, an expansion region 967, and a focusing element (GRIN lens) 970. A grating 980 may be sandwiched between prisms 975 and 977. The optical elements may be maintained together with a micro mechanical housing 990. This exemplary configuration can represent a forward-looking imaging system/probe.
  • It may be beneficial for this exemplary application to utilize a grating in Littrow regime when the angle of incidence is equal to the angle of diffraction (e.g., for the central wavelength). In this exemplary configuration, the shape of the beam may not change after the grating, and thus provide an effective regime. FIGS. 10A-10C illustrate exemplary embodiments of the substrate that can provide a Littrow regime for the grating.
  • For example, FIG. 10A shows an exemplary embodiment of a diffracting grating substrate 1000 which can include a cylindrical body 1005 with one side 1020 polished at the Littrow's angle 1015. FIG. 10B shows another exemplary embodiment of the diffracting grating substrate 1025 which includes a prismatic body 1030 with one side 1045 polished at the Littrow's angle 1040. FIG. 10C shows still another exemplary embodiment of the diffracting grating substrate 1050 which can include a cylindrical body 1055 with one side 1057 polished at the complimentary to Littrow's angle 1058 and a mirror 1087 deposited. Another flat surface 1065 may be polished parallel to the cylinder axis where the grating is to be deposited. FIG. 10D shows yet another exemplary embodiment of the diffracting grating substrate 1075 which can include a prismatic body 1080 with one side 1087 polished at the complimentary to Littrow's angle 1085 and a mirror 1087 deposited. The grating is intended to be deposited on the side 1095. It should be understood that the illustrated sizes are merely exemplary, and other sizes are possible and are within the scope of the present invention.
  • In certain exemplary applications, the system/probe can be small enough to be introduced through a small opening, and big enough to be able to image at big distances in a cavity. These conflicting preferences can be met by using an inflating balloon with added optical functionality. Two such exemplary configurations are shown in FIGS. 11A and 11B.
  • In particular, FIG. 11A shows another exemplary embodiment of the SEE system/probe 1100 which can include a single mode optical fiber 1110. A holographic optical element (“HOE”) 1125 written on the surface of the inflating balloon 1120 can incorporate the optical functionality of the focusing and dispersing elements. The dispersed light may be focused into the imaging line 1130. When the exemplary system/probe 1100 is spun, the image of the area 1135 may be obtained. This exemplary configuration may be further defined by the material availability for infrared applications and the possible difficulties associated with the holographic process.
  • FIG. 11B shows still another exemplary embodiment of the SEE system/probe 1150 which can include a single mode optical fiber 1160. A holographic optical element (“HOE”) 1165 written in a drop of photosensitive polymer 1067 deposited on the tip of the fiber 1060 can incorporate the optical functionality of the expansion, and dispersing elements. Further, the balloon catheter 1170 may be filled with a high refractive index biocompatible liquid, thus forming a near spherical refracting focusing surface 1175. This exemplary configuration may be further defined by the material availability for infrared applications and the possible difficulties associated with the holographic process.
  • One exemplary advantage of the various exemplary embodiments of the present invention may be the relative simple configurations and designs of the exemplary embodiments of the systems/probes. According to one exemplary embodiment, e.g., the system/probe can include an optical fiber with a modified tip. (See FIGS. 2-7). For example, the system/probe can illuminate a line at the object and acquire one line of image at a time. In order to acquire an image with this exemplary system/probe, it may be preferable that the imaging line is scanned in transverse direction across the object. This can be a repetitive or a single scan. In such cases, an image or the surface that the line scans can be acquired and displayed. The information obtained from the back-scattered light can be interpreted in various manners to represent different tissue types, different states of the same tissue, various types of dysphasia, tissue damage etc. as well as motion of body liquids and cells. Certain exemplary arrangements which can be used for placing the probe and scanning the tissue may be as follows.
  • Catheter Exemplary Embodiments
  • Where catheters are used in medicine, a very thin wall sealed PTFE tube can be used as a protective transparent sheath for the probe that can be delivered through the lumen of a guide catheter to the area of interest (as shown in FIG. 12). When in place, the fiber inside the thin tube can be scanned by rotating or by pulling in order to obtain an image. A short distal part of the catheter can be of a small diameter. The proximal end can be of a bigger diameter with added additional springs/shafts to protect the fiber and convey the motion.
  • For example, FIG. 12 shows an exemplary embodiment of a catheter of the SEE system/probe 1200 which can include an optical core 1230. The exemplary system/probe 1200 can be protected by a transparent sheath 1220 that can allow the transmission of the imaging light 1240 into the region of interest. The imaging catheter 1220 can be placed trough a guide catheter 1210.
  • Needle Exemplary Embodiments
  • For needle biopsies that are traditionally performed under CT, MRI, or ultrasound guidance, the fiber optic probe may be inserted into the biopsy needle (as shown in FIG. 13). In this exemplary configuration, the fiber optic probe may be embedded within the needle biopsy device or inserted through the lumen of the needle. The image can be acquired during the insertion of the needle or by rotating of the probe inside the needle and, e.g., only looking at a limited angle
  • FIG. 13 shows another exemplary embodiment of a catheter of the SEE system/probe 1300 which can include an optical core 1330. The exemplary system/probe 1300 can be delivered to the region being imaged through the lumen of a biopsy needle 1320 that may be delivered through an endoscope or guide catheter 1310.
  • Intraoperative Exemplary Embodiments
  • For example, the exemplary system/probe may be incorporated into an electrocautery device, scalpel, or be an independent hand-held device.
  • Exemplary Optical Parameters
  • One exemplary parameter for comparing different miniature endoscope technologies may be the number of resolvable points. This exemplary parameter can be the limiting factor that may render a technology more or less useful for the particular application. The total number of resolvable points provided by the exemplary embodiments of the SEE system/probe (n) for the first diffraction order can be defined by:
  • n = ( Δλ d λ 0 Λ cos ( θ i ) ) 2
  • Exemplary determinations can indicate that for a source with a center wavelength, λ0, source bandwidth, Δλ, of 250 nm, a grating input angle, θi, of 49° and a grating groove density, Λ, of 1800 lines per mm, a 250 μm diameter SEE probe may facilitate imaging with, e.g., 40,000 resolvable points. In comparison, a commercially available 300 μm diameter fiber-optic image bundle (Holl Meditronics, 30-0084-00) contains only 1,600 resolvable points.
  • FIG. 14 shows a flow diagram of a method according to an exemplary embodiment of the present invention for making the exemplary embodiment of the SEE system/probe shown in FIG. 2. In particular, the end of SMF-28 optical fiber 210 or any other optical fiber can be stripped (step 1410). In step 1420, the spacer can be polished to a predetermined length. The GRIN lens can be polished to a predetermined length in step 1430. Further, in step 1440, the grating 250 can be polished to a predetermined length and angle.
  • The results of step 1410 are provided to step 1450, in which the end of the optical fiber is cleaved. The results of steps 1420 and 1430 are provided to step 1460, in which the spacer and GRIN lens are glued together. The results of step 1440 are provided to step 1470, in which the grating 250 is deposited on the grating substrate. The results of steps 1450 and 1460 are provided to step 1475, in which the spacer-GRIN lens assembly is glued to the optical fiber using an optical epoxy and the spacing is varied to achieve the desired focal properties. The results of steps 1475 and 1470 are provided to step 1485 in which the grating 250 bearing the grating substrate is glued to the GRIN lens. In step 1480, flexible, optically clear, bio- and device-compatible sheath can be provided for housing the imaging core. The results of steps 1480 and 1485 are forwarded to step 1490, in which the exemplary system/probe is assembled, e.g., by inserting the core into the sheath and sealing and sterilizing the resultant assembly.
  • FIG. 15 shows an illustration of procedural steps of an exemplary embodiment of a process for mounting grating substrates which can be facilitated for an exemplary grating fabrication process. It should be understood that dimensions and materials provided in FIG. 15 are exemplary, and numerous other dimensions and materials can be utilized in accordance with the exemplary embodiments of the present invention. For example, several glass rods 1500, 1510 with different diameters 1500, 1510 can be stacked and mounted together inside a particular mount 1520 into a particular location 1525. The rods can be separated by a thin lead foil 1530 (e.g., 127 μm thick). The rod stack can then be polished at an angle while inside the mount 1520. After polishing, the polished face can be cleaned, and a grating 1540 may be fabricated, e.g., without disassembling the pieces. When grating fabrication is completed, the pieces can be disassembled. The individual pieces may then be polished from the other side 1550. The completed grating 1560 can then be assembled into the fiber or lens. The stack of fibers and the lead foil 1530 is shown in FIG. 15 as a small square 1525 in the middle of the particular mount 1520 (e.g., a holder). In a top projection indicated in FIG. 15, the same stack is shown as a parallelogram in the middle. This stack is further enlarged in the top right drawing of FIG. 15, labeled “Top view”. The final exemplary product (e.g., a completed piece 1560) can be obtained from one of the rods 1500 by shortening and/or polishing the non-grating-carrying end to obtain the desired length.
  • The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. Indeed, the arrangements, systems and methods according to the exemplary embodiments of the present invention can be used with and/or implement any OCT system, OFDI system, SD-OCT system or other imaging systems, and for example with those described in International Patent Application PCT/US2004/029148, filed Sep. 8, 2004, U.S. patent application Ser. No. 11/266,779, filed Nov. 2, 2005, and U.S. patent application Ser. No. 10/501,276, filed Jul. 9, 2004, the disclosures of which are incorporated by reference herein in their entireties. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the present invention. In addition, to the extent that the prior art knowledge has not been explicitly incorporated by reference herein above, it is explicitly being incorporated herein in its entirety. All publications referenced herein above are incorporated herein by reference in their entireties.

Claims (25)

1-26. (canceled)
27. An apparatus for obtaining information for a structure, comprising:
at least one first optical fiber arrangement configured to transceive at least one first electro-magnetic radiation, and including at least one fiber;
at least one dispersive second arrangement configured to receive a particular radiation which is at least one of the at least one first electro-magnetic radiation, and forward a spectrally-dispersed radiation thereof to at least one section of the structure; and
at least one focusing third arrangement in an optical communication with the at least one first optical fiber arrangement,
wherein the at least one third arrangement is configured to focus and provide there through the dispersed radiation to generate a focused electro-magnetic radiation, and
wherein at least one end of the at least one fiber is connected to at least one of the at least one focusing third arrangement and the at least one dispersive second arrangement.
28. The apparatus according to claim 27, wherein the at least one dispersive second arrangement is provided at a particular angle with respect to an extension of at least one of the at least one first optical fiber arrangement.
29. The apparatus according to claim 28, wherein the particular angle substantially corresponds to a Littrow's angle.
30. The apparatus according to claim 28, wherein the particular angle is substantially greater than 1 degree.
31. The apparatus according to claim 27, wherein the at least one dispersive arrangement includes a grating.
32. The apparatus according to claim 27, wherein the at least one focusing arrangement includes an optical component with a numerical aperture of at most 0.2.
33. The apparatus according to claim 32, wherein the at least one end is directly connected to the optical component.
34. The apparatus according to claim 27, wherein the particular radiation comprises at least one of a plurality of wavelengths or a single wavelength that changes over time.
35. An apparatus for obtaining information for a structure, comprising:
at least one first optical fiber arrangement configured to transceive at least one first electro-magnetic radiation, and including at least one fiber;
at least one dispersive second arrangement configured to receive a particular radiation which is at least one of the at least one first electro-magnetic radiation, and forward a spectrally-dispersed radiation thereof to at least one section of the structure;
at least one focusing third arrangement in optical communication with the at least one first optical fiber arrangement,
wherein the at least one focusing third arrangement is configured to focus and provide there through the dispersive radiation to generate the focused electro-magnetic radiation,
wherein at least one end of the at least one fiber is connected to at least one of the at least one focusing third arrangement and the at least one dispersive second arrangement, and
wherein at least two of the first, second and third arrangements are provided in a monolithic configuration.
36. The apparatus according to claim 35, wherein the at least one dispersive second arrangement is provided at a particular angle with respect to an extension of at least one of the at least one first optical fiber arrangement.
37. The apparatus according to claim 36, wherein the particular angle substantially corresponds to a Littrow's angle.
38. The apparatus according to claim 36, wherein the particular angle is substantially greater than 1 degree.
39. The apparatus according to claim 35, wherein the at least one dispersive arrangement includes a grating.
40. The apparatus according to claim 35, wherein the at least one focusing arrangement includes an optical component with a numerical aperture of at most 0.2.
41. The apparatus according to claim 40, wherein the at least one end is directly connected to the optical component.
42. The apparatus according to claim 35, wherein the particular radiation comprises at least one of a plurality of wavelengths or a single wavelength that changes over time.
43. An apparatus for obtaining information for a structure, comprising:
at least one first optical fiber arrangement configured to transceive at least one first electro-magnetic radiation, and including at least one fiber;
at least one focusing second arrangement configured to generate focused electro-magnetic radiation; and
at least one dispersive third arrangement configured to forward a spectrally-dispersed radiation to at least one section of the structure,
wherein a radiation, that is from the at least one first electro-magnetic and the at least one dispersive third arrangement, is forward to at least one section of the structure, and
wherein at least one end of the at least one fiber is connected to at least one of the at least one focusing second arrangement and the at least one dispersive third arrangement.
44. The apparatus according to claim 43, wherein the at least one dispersive second arrangement is provided at a particular angle with respect to an extension of at least one of the at least one first optical fiber arrangement.
45. The apparatus according to claim 44, wherein the particular angle substantially corresponds to a Littrow's angle.
46. The apparatus according to claim 44, wherein the particular angle is substantially greater than 1 degree.
47. The apparatus according to claim 43, wherein the at least one dispersive arrangement includes a grating.
48. The apparatus according to claim 43, wherein the at least one focusing arrangement includes an optical component with a numerical aperture of at most 0.2.
49. The apparatus according to claim 48, wherein the at least one end is directly connected to the optical component.
50. The apparatus according to claim 48, wherein the particular radiation comprises at least one of a plurality of wavelengths or a single wavelength that changes over time.
US14/465,960 2006-01-19 2014-08-22 Spectrally-encoded endoscopy techniques, apparatus and methods Active 2027-05-18 US9516997B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/465,960 US9516997B2 (en) 2006-01-19 2014-08-22 Spectrally-encoded endoscopy techniques, apparatus and methods
US15/376,144 US9791317B2 (en) 2006-01-19 2016-12-12 Spectrally-encoded endoscopy techniques and methods
US15/705,064 US20180010965A1 (en) 2006-01-19 2017-09-14 Spectrally-encoded endoscopy techniques, apparatus and methods

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US76013906P 2006-01-19 2006-01-19
US11/623,852 US8145018B2 (en) 2006-01-19 2007-01-17 Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements
US13/427,463 US8818149B2 (en) 2006-01-19 2012-03-22 Spectrally-encoded endoscopy techniques, apparatus and methods
US14/465,960 US9516997B2 (en) 2006-01-19 2014-08-22 Spectrally-encoded endoscopy techniques, apparatus and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/427,463 Continuation US8818149B2 (en) 2006-01-19 2012-03-22 Spectrally-encoded endoscopy techniques, apparatus and methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/376,144 Continuation US9791317B2 (en) 2006-01-19 2016-12-12 Spectrally-encoded endoscopy techniques and methods

Publications (2)

Publication Number Publication Date
US20150045622A1 true US20150045622A1 (en) 2015-02-12
US9516997B2 US9516997B2 (en) 2016-12-13

Family

ID=38288373

Family Applications (5)

Application Number Title Priority Date Filing Date
US11/623,852 Active 2030-09-25 US8145018B2 (en) 2006-01-19 2007-01-17 Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements
US13/427,463 Active US8818149B2 (en) 2006-01-19 2012-03-22 Spectrally-encoded endoscopy techniques, apparatus and methods
US14/465,960 Active 2027-05-18 US9516997B2 (en) 2006-01-19 2014-08-22 Spectrally-encoded endoscopy techniques, apparatus and methods
US15/376,144 Active US9791317B2 (en) 2006-01-19 2016-12-12 Spectrally-encoded endoscopy techniques and methods
US15/705,064 Abandoned US20180010965A1 (en) 2006-01-19 2017-09-14 Spectrally-encoded endoscopy techniques, apparatus and methods

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/623,852 Active 2030-09-25 US8145018B2 (en) 2006-01-19 2007-01-17 Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements
US13/427,463 Active US8818149B2 (en) 2006-01-19 2012-03-22 Spectrally-encoded endoscopy techniques, apparatus and methods

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/376,144 Active US9791317B2 (en) 2006-01-19 2016-12-12 Spectrally-encoded endoscopy techniques and methods
US15/705,064 Abandoned US20180010965A1 (en) 2006-01-19 2017-09-14 Spectrally-encoded endoscopy techniques, apparatus and methods

Country Status (2)

Country Link
US (5) US8145018B2 (en)
WO (1) WO2007084903A2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024145A1 (en) * 2015-08-05 2017-02-09 Canon U.S.A., Inc. Forward and angle view endoscope
US9869854B2 (en) 2015-12-16 2018-01-16 Canon U.S.A, Inc. Endoscopic system
WO2018013838A1 (en) * 2016-07-15 2018-01-18 Canon U.S.A. Inc. Spectrally encoded probes
WO2018113885A1 (en) * 2016-12-20 2018-06-28 3Dintegrated Aps A 3 d sensor system comprising an optical transmitter device, a detector and a computer system
US10095020B2 (en) 2014-01-31 2018-10-09 Canon U.S.A., Inc. Apparatus and methods for color endoscopy
US10194065B2 (en) 2015-08-05 2019-01-29 Canon U.S.A., Inc. Endoscope probes and systems, and methods for use therewith
US10288868B2 (en) 2014-01-31 2019-05-14 Canon U.S.A., Inc. Optical probe, light intensity detection, imaging method and system
US10321810B2 (en) 2016-06-13 2019-06-18 Canon U.S.A., Inc. Spectrally encoded endoscopic probe having a fixed fiber
US10371614B2 (en) 2016-11-03 2019-08-06 Canon U.S.A., Inc. Diagnostic spectrally encoded endoscopy apparatuses and systems and methods for use with same
US10401610B2 (en) 2016-07-15 2019-09-03 Canon Usa, Inc. Spectrally encoded probe with multiple diffraction orders
US10444146B2 (en) 2015-12-28 2019-10-15 Canon U.S.A., Inc. Optical probe, light intensity detection, imaging method and system
US10551245B2 (en) 2016-02-12 2020-02-04 Canon U.S.A., Inc. Simple monolithic optical element for forward-viewing spectrally encoded endoscopy
US10646111B2 (en) 2016-09-23 2020-05-12 Canon U.S.A., Inc. Spectrally encoded endoscopy apparatus and methods
US10825152B2 (en) 2017-09-14 2020-11-03 Canon U.S.A., Inc. Distortion measurement and correction for spectrally encoded endoscopy
US10898068B2 (en) 2016-11-01 2021-01-26 Canon U.S.A., Inc. Multi-bandwidth spectrally encoded endoscope

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1434522B1 (en) 2000-10-30 2010-01-13 The General Hospital Corporation Optical systems for tissue analysis
US9295391B1 (en) 2000-11-10 2016-03-29 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
AT503309B1 (en) 2001-05-01 2011-08-15 Gen Hospital Corp DEVICE FOR DETERMINING ATHEROSCLEROTIC BEARING BY MEASURING OPTICAL TISSUE PROPERTIES
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US7643153B2 (en) 2003-01-24 2010-01-05 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US7567349B2 (en) 2003-03-31 2009-07-28 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
KR20130138867A (en) 2003-06-06 2013-12-19 더 제너럴 하스피탈 코포레이션 Process and apparatus for a wavelength tunning source
CN103181754A (en) 2003-10-27 2013-07-03 通用医疗公司 Method and apparatus for performing optical imaging using frequency-domain interferometry
WO2005117534A2 (en) 2004-05-29 2005-12-15 The General Hospital Corporation Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging
US7447408B2 (en) 2004-07-02 2008-11-04 The General Hospital Corproation Imaging system and related techniques
US8081316B2 (en) 2004-08-06 2011-12-20 The General Hospital Corporation Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
KR20120062944A (en) 2004-08-24 2012-06-14 더 제너럴 하스피탈 코포레이션 Method and apparatus for imaging of vessel segments
EP1793730B1 (en) 2004-08-24 2011-12-28 The General Hospital Corporation Process, system and software arrangement for determining elastic modulus
KR101269455B1 (en) 2004-09-10 2013-05-30 더 제너럴 하스피탈 코포레이션 System and method for optical coherence imaging
JP4997112B2 (en) 2004-09-29 2012-08-08 ザ ジェネラル ホスピタル コーポレイション Apparatus for transmitting at least one electromagnetic radiation and method of manufacturing the same
US7995210B2 (en) 2004-11-24 2011-08-09 The General Hospital Corporation Devices and arrangements for performing coherence range imaging using a common path interferometer
EP1816949A1 (en) 2004-11-29 2007-08-15 The General Hospital Corporation Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
EP1875436B1 (en) 2005-04-28 2009-12-09 The General Hospital Corporation Evaluation of image features of an anatomical structure in optical coherence tomography images
JP5702049B2 (en) 2005-06-01 2015-04-15 ザ ジェネラル ホスピタル コーポレイション Apparatus, method and system for performing phase resolved optical frequency domain imaging
ES2354287T3 (en) 2005-08-09 2011-03-11 The General Hospital Corporation APPARATUS AND METHOD FOR PERFORMING A DEMODULATION IN QUADRATURE BY POLARIZATION IN OPTICAL COHERENCE TOMOGRAPHY.
JP6046325B2 (en) 2005-09-29 2016-12-14 ザ ジェネラル ホスピタル コーポレイション Method and apparatus for the observation and analysis of one or more biological samples with progressively increased resolution
US7889348B2 (en) 2005-10-14 2011-02-15 The General Hospital Corporation Arrangements and methods for facilitating photoluminescence imaging
WO2007082228A1 (en) 2006-01-10 2007-07-19 The General Hospital Corporation Systems and methods for generating data based on one or more spectrally-encoded endoscopy techniques
CN104257348A (en) 2006-01-19 2015-01-07 通用医疗公司 Methods And Systems For Optical Imaging Of Epithelial Luminal Organs By Beam Scanning Thereof
WO2007084903A2 (en) 2006-01-19 2007-07-26 The General Hospital Corporation Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and method for producing one or more optical arrangements
EP1986545A2 (en) 2006-02-01 2008-11-05 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
JP5524487B2 (en) 2006-02-01 2014-06-18 ザ ジェネラル ホスピタル コーポレイション A method and system for emitting electromagnetic radiation to at least a portion of a sample using a conformal laser treatment procedure.
EP1988825B1 (en) 2006-02-08 2016-12-21 The General Hospital Corporation Arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
WO2007101026A2 (en) 2006-02-24 2007-09-07 The General Hospital Corporation Methods and systems for performing angle-resolved fourier-domain optical coherence tomography
EP3150110B1 (en) 2006-05-10 2020-09-02 The General Hospital Corporation Processes, arrangements and systems for providing frequency domain imaging of a sample
JP2010501877A (en) 2006-08-25 2010-01-21 ザ ジェネラル ホスピタル コーポレイション Apparatus and method for improving optical coherence tomography imaging capabilities using volumetric filtering techniques
WO2008049118A2 (en) 2006-10-19 2008-04-24 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample and effecting such portion(s)
EP2104968A1 (en) 2007-01-19 2009-09-30 The General Hospital Corporation Rotating disk reflection for fast wavelength scanning of dispersed broadband light
WO2008118781A2 (en) 2007-03-23 2008-10-02 The General Hospital Corporation Methods, arrangements and apparatus for utilizing a wavelength-swept laser using angular scanning and dispersion procedures
US10534129B2 (en) 2007-03-30 2020-01-14 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
WO2008131082A1 (en) 2007-04-17 2008-10-30 The General Hospital Corporation Apparatus and methods for measuring vibrations using spectrally-encoded endoscopy techniques
WO2009018456A2 (en) * 2007-07-31 2009-02-05 The General Hospital Corporation Systems and methods for providing beam scan patterns for high speed doppler optical frequency domain imaging
US7933021B2 (en) 2007-10-30 2011-04-26 The General Hospital Corporation System and method for cladding mode detection
US8948849B2 (en) 2008-04-28 2015-02-03 The Trustees Of Dartmouth College System and method for optode and electrode positioning cap for electroencephalography, diffuse optical imaging, and functional neuroimaging
US8527035B2 (en) * 2008-04-28 2013-09-03 The Trustees Of Dartmouth College System, optode and cap for near-infrared diffuse-optical function neuroimaging
US7898656B2 (en) 2008-04-30 2011-03-01 The General Hospital Corporation Apparatus and method for cross axis parallel spectroscopy
EP2274572A4 (en) 2008-05-07 2013-08-28 Gen Hospital Corp System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
JP5795531B2 (en) 2008-06-20 2015-10-14 ザ ジェネラル ホスピタル コーポレイション Fused fiber optic coupler structure and method of using the same
JP5667051B2 (en) 2008-07-14 2015-02-12 ザ ジェネラル ホスピタル コーポレイション Equipment for color endoscopy
EP2321766B1 (en) * 2008-07-24 2015-02-25 The Regents of The University of California Apparatus and method for dispersive fourier-transform imaging
US8780176B2 (en) * 2008-08-15 2014-07-15 Technion Research & Development Foundation Limited Vessel imaging system and method
EP3330696B1 (en) 2008-12-10 2023-07-12 The General Hospital Corporation Systems, apparatus and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
WO2010090837A2 (en) 2009-01-20 2010-08-12 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
JP2012515930A (en) 2009-01-26 2012-07-12 ザ ジェネラル ホスピタル コーポレーション System, method and computer-accessible medium for providing a wide-field super-resolution microscope
WO2010091190A2 (en) 2009-02-04 2010-08-12 The General Hospital Corporation Apparatus and method for utilization of a high-speed optical wavelength tuning source
US11490826B2 (en) 2009-07-14 2022-11-08 The General Hospital Corporation Apparatus, systems and methods for measuring flow and pressure within a vessel
CA2773984C (en) * 2009-09-14 2018-08-21 Memorial Sloan-Kettering Cancer Center Apparatus, system and method for providing laser steering and focusing for incision, excision and ablation of tissue in minimally-invasive surgery
EP2485641A4 (en) * 2009-10-06 2015-10-14 Gen Hospital Corp Apparatus and methods for imaging particular cells including eosinophils
WO2011059278A2 (en) * 2009-11-13 2011-05-19 Yoon Sang Jin Surgical device and medical needle module having indication function
WO2011066149A1 (en) * 2009-11-30 2011-06-03 Laura Weller-Brophy Method and apparatus for cervical cancer screening
WO2011074051A1 (en) * 2009-12-14 2011-06-23 東洋ガラス株式会社 Lateral emission apparatus and manufacturing method thereof
US8804126B2 (en) 2010-03-05 2014-08-12 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
EP2575598A2 (en) 2010-05-25 2013-04-10 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
EP2575597B1 (en) 2010-05-25 2022-05-04 The General Hospital Corporation Apparatus for providing optical imaging of structures and compositions
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US8570207B1 (en) * 2010-06-09 2013-10-29 Arrowhead Center, Inc. Method, technique, and system for detecting Brillouin precursors at microwave frequencies for enhanced performance in various applications
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
CN103370651A (en) 2010-12-10 2013-10-23 Nkt光子学有限公司 An acousto-optical tunable filter (AOTF) for a broad band source for fluorescence measurement system
US8873900B2 (en) * 2011-04-21 2014-10-28 Medtronic Vascular, Inc. Balloon catheter with integrated optical sensor for determining balloon diameter
US9330092B2 (en) 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
WO2013029047A1 (en) 2011-08-25 2013-02-28 The General Hospital Corporation Methods, systems, arrangements and computer-accessible medium for providing micro-optical coherence tomography procedures
EP2769491A4 (en) 2011-10-18 2015-07-22 Gen Hospital Corp Apparatus and methods for producing and/or providing recirculating optical delay(s)
EP2804524B1 (en) 2012-01-19 2019-04-24 Technion Research & Development Foundation Ltd. Vessel imaging system and method
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
WO2013177154A1 (en) 2012-05-21 2013-11-28 The General Hospital Corporation Apparatus, device and method for capsule microscopy
JP6227652B2 (en) * 2012-08-22 2017-11-08 ザ ジェネラル ホスピタル コーポレイション System, method, and computer-accessible medium for fabricating a miniature endoscope using soft lithography
US20140066756A1 (en) * 2012-09-04 2014-03-06 Ninepoint Medical, Inc. Low cost molded optical probe with astigmatic correction, fiber port, low back reflection, and highly reproducible in manufacturing quantities
GB201219171D0 (en) * 2012-10-25 2012-12-12 Epipole Ltd Image acquisition apparatus
US20140153864A1 (en) * 2012-12-04 2014-06-05 Ninepoint Medical, Inc. Low cost extended depth of field optical probes
JP2016506270A (en) * 2012-12-21 2016-03-03 デイビッド アンダーソン, Multi-sensor device
US20140200446A1 (en) * 2013-01-16 2014-07-17 Thomas Haider Method and apparatus for the infusion of a catheter into an artery/vein and for suspected tissue removal
US9968261B2 (en) 2013-01-28 2018-05-15 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
WO2014120791A1 (en) 2013-01-29 2014-08-07 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
WO2014121082A1 (en) 2013-02-01 2014-08-07 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
SG10201707238QA (en) * 2013-03-07 2017-10-30 Univ Nanyang Tech Optical imaging device and method for imaging a sample
EP2967491B1 (en) 2013-03-15 2022-05-11 The General Hospital Corporation A transesophageal endoscopic system for determining a mixed venous oxygen saturation of a pulmonary artery
US9364167B2 (en) 2013-03-15 2016-06-14 Lx Medical Corporation Tissue imaging and image guidance in luminal anatomic structures and body cavities
US9439570B2 (en) 2013-03-15 2016-09-13 Lx Medical Corporation Tissue imaging and image guidance in luminal anatomic structures and body cavities
US10219724B2 (en) * 2013-05-02 2019-03-05 VS Medtech, Inc. Systems and methods for measuring and characterizing interior surfaces of luminal structures
CN103211567B (en) * 2013-05-07 2015-02-11 深圳市中科微光医疗器械技术有限公司 Integrated super-miniature optical coherence tomography probe
WO2014186353A1 (en) 2013-05-13 2014-11-20 The General Hospital Corporation Detecting self-interefering fluorescence phase and amplitude
EP3021735A4 (en) 2013-07-19 2017-04-19 The General Hospital Corporation Determining eye motion by imaging retina. with feedback
WO2015009932A1 (en) 2013-07-19 2015-01-22 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
ES2893237T3 (en) 2013-07-26 2022-02-08 Massachusetts Gen Hospital Apparatus with a laser arrangement using optical scattering for applications in optical coherence tomography in the Fourier domain
JP2015097569A (en) 2013-11-18 2015-05-28 住友電気工業株式会社 Optical probe for optical interference tomographic imaging, and manufacturing method thereof
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
WO2015116991A1 (en) 2014-01-30 2015-08-06 The General Hospital Corporation Characterizing, imaging and/or modifying a tissue
WO2015116974A1 (en) 2014-01-31 2015-08-06 Canon U.S.A., Inc. Miniature endoscope using nanoimprint lithography
WO2015116986A2 (en) 2014-01-31 2015-08-06 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10111581B2 (en) * 2014-02-27 2018-10-30 Align Technology, Inc. Thermal defogging system and method
DE102014204243A1 (en) * 2014-03-07 2015-09-10 Siemens Aktiengesellschaft Endoscope with depth determination
WO2015153982A1 (en) 2014-04-04 2015-10-08 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
EP3171766B1 (en) 2014-07-25 2021-12-29 The General Hospital Corporation Apparatus for in vivo imaging and diagnosis
GB2528864A (en) * 2014-07-31 2016-02-10 Technion Res & Dev Foundation Spectral imaging using single-axis spectrally dispersed illumination
US20170219485A1 (en) * 2014-10-01 2017-08-03 Purdue Research Foundation Organism Identification
CN105583695A (en) * 2014-10-22 2016-05-18 中芯国际集成电路制造(上海)有限公司 Probe clearing method of probe and probe
US9869820B2 (en) 2015-12-09 2018-01-16 Canon U.S.A, Inc. Optical probe, light intensity detection, imaging method and system
JP2019511010A (en) 2016-03-24 2019-04-18 キヤノン ユーエスエイ, インコーポレイテッドCanon U.S.A., Inc Multi-channel fiber optic rotary bonder
US10682044B2 (en) 2017-01-12 2020-06-16 Canon U.S.A., Inc. Spectrally encoded forward view and spectrally encoded multi-view endoscope using back-reflected light between reflective surfaces
US10895692B2 (en) 2017-06-01 2021-01-19 Canon U.S.A., Inc. Fiber optic rotary joints and methods of using and manufacturing same
US10337987B2 (en) 2017-06-16 2019-07-02 Canon U.S.A. , Inc. Radial-line scanning spectrometer with two-dimensional sensor
KR101880465B1 (en) 2017-09-22 2018-07-20 엘지전자 주식회사 Mobile terminal
US10357160B2 (en) 2017-10-05 2019-07-23 Canon U.S.A., Inc. Image acquiring apparatus, systems, and methods
US11224336B2 (en) 2017-11-17 2022-01-18 Canon U.S.A., Inc. Rotational extender and/or repeater for rotating fiber based optical imaging systems, and methods and storage mediums for use therewith
US10809538B2 (en) 2017-11-27 2020-10-20 Canon U.S.A., Inc. Image acquisition apparatus, spectral apparatus, methods, and storage medium for use with same
US11213191B2 (en) 2018-01-25 2022-01-04 Canon U.S.A., Inc. Optical fiber arrangement for endoscope
US10506922B2 (en) 2018-04-06 2019-12-17 Canon U.S.A., Inc. Spectrometer for color spectrally-encoded endoscopy
US10314469B1 (en) 2018-05-02 2019-06-11 Canon U.S.A., Inc. Spectrally encoded probes
US11534058B2 (en) * 2018-05-03 2022-12-27 The General Hospital Corporation Systems, methods, and media for capsule-based multimode endoscopy
WO2020072470A1 (en) 2018-10-05 2020-04-09 Canon U.S.A., Inc. Overmolded distal optics for intraluminal optical probes
US20200249377A1 (en) * 2019-01-31 2020-08-06 Canon U.S.A., Inc. Diffractive optical device, endoscopic probe, and fabrication methods therefor
US11707186B2 (en) 2019-06-14 2023-07-25 Canon U.S.A., Inc. Fluorescence or auto-fluorescence trigger or triggers
US11112541B2 (en) * 2019-12-20 2021-09-07 Mitutoyo Corporation Tunable acoustic gradient lens system with reflective configuration and increased power
JP2023508607A (en) * 2019-12-31 2023-03-02 トルネード スペクトラル システムズ インコーポレイテッド Apparatus and method for mitigating interference in optical spectroscopic probes with parallel sample beams
TWI796268B (en) * 2022-08-05 2023-03-11 國立勤益科技大學 Multi-band photoacoustic endoscopy probe diagnosis device and its operation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020122246A1 (en) * 1998-02-26 2002-09-05 Tearney Guillermo J. Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy
US8818149B2 (en) * 2006-01-19 2014-08-26 The General Hospital Corporation Spectrally-encoded endoscopy techniques, apparatus and methods

Family Cites Families (657)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2339754A (en) 1941-03-04 1944-01-25 Westinghouse Electric & Mfg Co Supervisory apparatus
US3090753A (en) 1960-08-02 1963-05-21 Exxon Research Engineering Co Ester oil compositions containing acid anhydride
GB1257778A (en) 1967-12-07 1971-12-22
US3601480A (en) 1968-07-10 1971-08-24 Physics Int Co Optical tunnel high-speed camera system
JPS4932484U (en) 1972-06-19 1974-03-20
US3872407A (en) 1972-09-01 1975-03-18 Us Navy Rapidly tunable laser
JPS584481Y2 (en) 1973-06-23 1983-01-26 オリンパス光学工業株式会社 Naishikiyoushiyahenkankogakkei
FR2253410A5 (en) 1973-12-03 1975-06-27 Inst Nat Sante Rech Med
US3941121A (en) 1974-12-20 1976-03-02 The University Of Cincinnati Focusing fiber-optic needle endoscope
US3983507A (en) 1975-01-06 1976-09-28 Research Corporation Tunable laser systems and method
US3973219A (en) 1975-04-24 1976-08-03 Cornell Research Foundation, Inc. Very rapidly tuned cw dye laser
US4030831A (en) 1976-03-22 1977-06-21 The United States Of America As Represented By The Secretary Of The Navy Phase detector for optical figure sensing
US4111524A (en) * 1977-04-14 1978-09-05 Bell Telephone Laboratories, Incorporated Wavelength division multiplexer
US4141362A (en) 1977-05-23 1979-02-27 Richard Wolf Gmbh Laser endoscope
US4224929A (en) 1977-11-08 1980-09-30 Olympus Optical Co., Ltd. Endoscope with expansible cuff member and operation section
DE2964775D1 (en) 1978-03-09 1983-03-24 Nat Res Dev Measurement of small movements
GB2030313A (en) 1978-06-29 1980-04-02 Wolf Gmbh Richard Endoscopes
FR2448728A1 (en) 1979-02-07 1980-09-05 Thomson Csf ROTATING JOINT DEVICE FOR OPTICAL CONDUCTOR CONNECTION AND SYSTEM COMPRISING SUCH A DEVICE
US4300816A (en) 1979-08-30 1981-11-17 United Technologies Corporation Wide band multicore optical fiber
US4295738A (en) 1979-08-30 1981-10-20 United Technologies Corporation Fiber optic strain sensor
US4428643A (en) 1981-04-08 1984-01-31 Xerox Corporation Optical scanning system with wavelength shift correction
US5065331A (en) 1981-05-18 1991-11-12 Vachon Reginald I Apparatus and method for determining the stress and strain in pipes, pressure vessels, structural members and other deformable bodies
GB2106736B (en) 1981-09-03 1985-06-12 Standard Telephones Cables Ltd Optical transmission system
US4479499A (en) 1982-01-29 1984-10-30 Alfano Robert R Method and apparatus for detecting the presence of caries in teeth using visible light
US5302025A (en) 1982-08-06 1994-04-12 Kleinerman Marcos Y Optical systems for sensing temperature and other physical parameters
US4601036A (en) 1982-09-30 1986-07-15 Honeywell Inc. Rapidly tunable laser
HU187188B (en) 1982-11-25 1985-11-28 Koezponti Elelmiszeripari Device for generating radiation of controllable spectral structure
CH663466A5 (en) 1983-09-12 1987-12-15 Battelle Memorial Institute METHOD AND DEVICE FOR DETERMINING THE POSITION OF AN OBJECT IN RELATION TO A REFERENCE.
US4639999A (en) * 1984-11-02 1987-02-03 Xerox Corporation High resolution, high efficiency I.R. LED printing array fabrication method
US4763977A (en) 1985-01-09 1988-08-16 Canadian Patents And Development Limited-Societe Optical fiber coupler with tunable coupling ratio and method of making
US5318024A (en) 1985-03-22 1994-06-07 Massachusetts Institute Of Technology Laser endoscope for spectroscopic imaging
US5693043A (en) * 1985-03-22 1997-12-02 Massachusetts Institute Of Technology Catheter for laser angiosurgery
EP0590268B1 (en) 1985-03-22 1998-07-01 Massachusetts Institute Of Technology Fiber Optic Probe System for Spectrally Diagnosing Tissue
US4734578A (en) 1985-03-27 1988-03-29 Olympus Optical Co., Ltd. Two-dimensional scanning photo-electric microscope
US4607622A (en) 1985-04-11 1986-08-26 Charles D. Fritch Fiber optic ocular endoscope
US4631498A (en) 1985-04-26 1986-12-23 Hewlett-Packard Company CW Laser wavemeter/frequency locking technique
US4650327A (en) 1985-10-28 1987-03-17 Oximetrix, Inc. Optical catheter calibrating assembly
JPS62188001U (en) 1986-05-20 1987-11-30
US5040889A (en) 1986-05-30 1991-08-20 Pacific Scientific Company Spectrometer with combined visible and ultraviolet sample illumination
CA1290019C (en) 1986-06-20 1991-10-01 Hideo Kuwahara Dual balanced optical signal receiver
US4770492A (en) 1986-10-28 1988-09-13 Spectran Corporation Pressure or strain sensitive optical fiber
JPH0824665B2 (en) 1986-11-28 1996-03-13 オリンパス光学工業株式会社 Endoscope device
US4744656A (en) 1986-12-08 1988-05-17 Spectramed, Inc. Disposable calibration boot for optical-type cardiovascular catheter
JPS63158363A (en) 1986-12-22 1988-07-01 Daikin Mfg Co Ltd Seal device for air rotary joint
US4751706A (en) 1986-12-31 1988-06-14 The United States Of America As Represented By The Secretary Of The Army Laser for providing rapid sequence of different wavelengths
US4834111A (en) 1987-01-12 1989-05-30 The Trustees Of Columbia University In The City Of New York Heterodyne interferometer
GB2209221B (en) 1987-09-01 1991-10-23 Litton Systems Inc Hydrophone demodulator circuit and method
US5202931A (en) 1987-10-06 1993-04-13 Cell Analysis Systems, Inc. Methods and apparatus for the quantitation of nuclear protein
US4909631A (en) 1987-12-18 1990-03-20 Tan Raul Y Method for film thickness and refractive index determination
US4890901A (en) 1987-12-22 1990-01-02 Hughes Aircraft Company Color corrector for embedded prisms
US4892406A (en) 1988-01-11 1990-01-09 United Technologies Corporation Method of and arrangement for measuring vibrations
FR2626367B1 (en) 1988-01-25 1990-05-11 Thomson Csf MULTI-POINT FIBER OPTIC TEMPERATURE SENSOR
FR2626383B1 (en) 1988-01-27 1991-10-25 Commissariat Energie Atomique EXTENDED FIELD SCAN AND DEPTH CONFOCAL OPTICAL MICROSCOPY AND DEVICES FOR CARRYING OUT THE METHOD
US4925302A (en) 1988-04-13 1990-05-15 Hewlett-Packard Company Frequency locking device
US5730731A (en) 1988-04-28 1998-03-24 Thomas J. Fogarty Pressure-based irrigation accumulator
US4998972A (en) 1988-04-28 1991-03-12 Thomas J. Fogarty Real time angioscopy imaging system
US4905169A (en) 1988-06-02 1990-02-27 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation
US5242437A (en) 1988-06-10 1993-09-07 Trimedyne Laser Systems, Inc. Medical device applying localized high intensity light and heat, particularly for destruction of the endometrium
EP0393165B2 (en) 1988-07-13 2007-07-25 Optiscan Pty Ltd Scanning confocal endoscope
GB8817672D0 (en) 1988-07-25 1988-09-01 Sira Ltd Optical apparatus
US5214538A (en) 1988-07-25 1993-05-25 Keymed (Medical And Industrial Equipment) Limited Optical apparatus
US4868834A (en) 1988-09-14 1989-09-19 The United States Of America As Represented By The Secretary Of The Army System for rapidly tuning a low pressure pulsed laser
DE3833602A1 (en) 1988-10-03 1990-02-15 Krupp Gmbh SPECTROMETER FOR SIMULTANEOUS INTENSITY MEASUREMENT IN DIFFERENT SPECTRAL AREAS
US4940328A (en) 1988-11-04 1990-07-10 Georgia Tech Research Corporation Optical sensing apparatus and method
US4966589A (en) 1988-11-14 1990-10-30 Hemedix International, Inc. Intravenous catheter placement device
EP0449883B1 (en) 1988-12-21 1996-01-31 Massachusetts Institute Of Technology A method for laser induced fluorescence of tissue
US5046501A (en) 1989-01-18 1991-09-10 Wayne State University Atherosclerotic identification
US5085496A (en) 1989-03-31 1992-02-04 Sharp Kabushiki Kaisha Optical element and optical pickup device comprising it
US5317389A (en) 1989-06-12 1994-05-31 California Institute Of Technology Method and apparatus for white-light dispersed-fringe interferometric measurement of corneal topography
US4965599A (en) 1989-11-13 1990-10-23 Eastman Kodak Company Scanning apparatus for halftone image screen writing
US5133035A (en) 1989-11-14 1992-07-21 Hicks John W Multifiber endoscope with multiple scanning modes to produce an image free of fixed pattern noise
US4984888A (en) 1989-12-13 1991-01-15 Imo Industries, Inc. Two-dimensional spectrometer
KR930003307B1 (en) 1989-12-14 1993-04-24 주식회사 금성사 Three dimensional projector
US5251009A (en) 1990-01-22 1993-10-05 Ciba-Geigy Corporation Interferometric measuring arrangement for refractive index measurements in capillary tubes
DD293205B5 (en) 1990-03-05 1995-06-29 Zeiss Carl Jena Gmbh Optical fiber guide for a medical observation device
US5039193A (en) 1990-04-03 1991-08-13 Focal Technologies Incorporated Fibre optic single mode rotary joint
US5262644A (en) 1990-06-29 1993-11-16 Southwest Research Institute Remote spectroscopy for raman and brillouin scattering
US5197470A (en) 1990-07-16 1993-03-30 Eastman Kodak Company Near infrared diagnostic method and instrument
GB9015793D0 (en) 1990-07-18 1990-09-05 Medical Res Council Confocal scanning optical microscope
US5127730A (en) 1990-08-10 1992-07-07 Regents Of The University Of Minnesota Multi-color laser scanning confocal imaging system
US5845639A (en) 1990-08-10 1998-12-08 Board Of Regents Of The University Of Washington Optical imaging methods
JPH04135551A (en) 1990-09-27 1992-05-11 Olympus Optical Co Ltd Optical three-dimensional image observing device
US5305759A (en) 1990-09-26 1994-04-26 Olympus Optical Co., Ltd. Examined body interior information observing apparatus by using photo-pulses controlling gains for depths
JP3104984B2 (en) 1990-09-27 2000-10-30 オリンパス光学工業株式会社 Optical scanning device for tomographic image observation
US5241364A (en) 1990-10-19 1993-08-31 Fuji Photo Film Co., Ltd. Confocal scanning type of phase contrast microscope and scanning microscope
US5250186A (en) 1990-10-23 1993-10-05 Cetus Corporation HPLC light scattering detector for biopolymers
US5202745A (en) 1990-11-07 1993-04-13 Hewlett-Packard Company Polarization independent optical coherence-domain reflectometry
US5275594A (en) 1990-11-09 1994-01-04 C. R. Bard, Inc. Angioplasty system having means for identification of atherosclerotic plaque
JP3035336B2 (en) 1990-11-27 2000-04-24 興和株式会社 Blood flow measurement device
US5228001A (en) 1991-01-23 1993-07-13 Syracuse University Optical random access memory
US5784162A (en) 1993-08-18 1998-07-21 Applied Spectral Imaging Ltd. Spectral bio-imaging methods for biological research, medical diagnostics and therapy
US6198532B1 (en) 1991-02-22 2001-03-06 Applied Spectral Imaging Ltd. Spectral bio-imaging of the eye
US5293872A (en) 1991-04-03 1994-03-15 Alfano Robert R Method for distinguishing between calcified atherosclerotic tissue and fibrous atherosclerotic tissue or normal cardiovascular tissue using Raman spectroscopy
US6501551B1 (en) 1991-04-29 2002-12-31 Massachusetts Institute Of Technology Fiber optic imaging endoscope interferometer with at least one faraday rotator
US6564087B1 (en) 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US6111645A (en) 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
US5748598A (en) 1995-12-22 1998-05-05 Massachusetts Institute Of Technology Apparatus and methods for reading multilayer storage media using short coherence length sources
US6485413B1 (en) 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
US5465147A (en) 1991-04-29 1995-11-07 Massachusetts Institute Of Technology Method and apparatus for acquiring images using a ccd detector array and no transverse scanner
US6134003A (en) 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US5956355A (en) 1991-04-29 1999-09-21 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
EP0581871B2 (en) 1991-04-29 2009-08-12 Massachusetts Institute Of Technology Apparatus for optical imaging and measurement
US5441053A (en) 1991-05-03 1995-08-15 University Of Kentucky Research Foundation Apparatus and method for multiple wavelength of tissue
US5281811A (en) * 1991-06-17 1994-01-25 Litton Systems, Inc. Digital wavelength division multiplex optical transducer having an improved decoder
US5208651A (en) 1991-07-16 1993-05-04 The Regents Of The University Of California Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes
AU2519892A (en) 1991-08-20 1993-03-16 Douglas C.B. Redd Optical histochemical analysis, in vivo detection and real-time guidance for ablation of abnormal tissues using a raman spectroscopic detection system
DE4128744C1 (en) 1991-08-29 1993-04-22 Siemens Ag, 8000 Muenchen, De
US5177488A (en) 1991-10-08 1993-01-05 Hughes Aircraft Company Programmable fiber optic delay line, and radar target simulation system incorporating the same
EP0550929B1 (en) 1991-12-30 1997-03-19 Koninklijke Philips Electronics N.V. Optical device and apparatus for scanning an information plane, comprising such an optical device
US5353790A (en) 1992-01-17 1994-10-11 Board Of Regents, The University Of Texas System Method and apparatus for optical measurement of bilirubin in tissue
US5212667A (en) 1992-02-03 1993-05-18 General Electric Company Light imaging in a scattering medium, using ultrasonic probing and speckle image differencing
US5217456A (en) 1992-02-24 1993-06-08 Pdt Cardiovascular, Inc. Device and method for intra-vascular optical radial imaging
US5248876A (en) 1992-04-21 1993-09-28 International Business Machines Corporation Tandem linear scanning confocal imaging system with focal volumes at different heights
US5283795A (en) 1992-04-21 1994-02-01 Hughes Aircraft Company Diffraction grating driven linear frequency chirped laser
US5486701A (en) 1992-06-16 1996-01-23 Prometrix Corporation Method and apparatus for measuring reflectance in two wavelength bands to enable determination of thin film thickness
US5411025A (en) 1992-06-30 1995-05-02 Cordis Webster, Inc. Cardiovascular catheter with laterally stable basket-shaped electrode array
US5716324A (en) 1992-08-25 1998-02-10 Fuji Photo Film Co., Ltd. Endoscope with surface and deep portion imaging systems
US5348003A (en) 1992-09-03 1994-09-20 Sirraya, Inc. Method and apparatus for chemical analysis
EP0587514A1 (en) 1992-09-11 1994-03-16 Welch Allyn, Inc. Processor module for video inspection probe
US5772597A (en) 1992-09-14 1998-06-30 Sextant Medical Corporation Surgical tool end effector
US5698397A (en) 1995-06-07 1997-12-16 Sri International Up-converting reporters for biological and other assays using laser excitation techniques
DE69333503T2 (en) 1992-09-21 2004-11-18 Institut National De La Santé Et De La Recherche Médicale (Inserm) INTRACORPORAL PROBE FOR DETERMINING THE SPEED OF A LIQUID, IN PARTICULAR THE FLOW THROUGH THE AORTA
EP0669820B1 (en) 1992-11-18 1997-04-16 Spectrascience, Inc. Apparatus for diagnostic imaging
US5383467A (en) 1992-11-18 1995-01-24 Spectrascience, Inc. Guidewire catheter and apparatus for diagnostic imaging
US5785663A (en) 1992-12-21 1998-07-28 Artann Corporation Method and device for mechanical imaging of prostate
US5400771A (en) 1993-01-21 1995-03-28 Pirak; Leon Endotracheal intubation assembly and related method
JPH06222242A (en) 1993-01-27 1994-08-12 Shin Etsu Chem Co Ltd Optical fiber coupler and its manufacture
US5987346A (en) 1993-02-26 1999-11-16 Benaron; David A. Device and method for classification of tissue
US5414509A (en) 1993-03-08 1995-05-09 Associated Universities, Inc. Optical pressure/density measuring means
JP3112595B2 (en) 1993-03-17 2000-11-27 安藤電気株式会社 Optical fiber strain position measuring device using optical frequency shifter
FI93781C (en) 1993-03-18 1995-05-26 Wallac Oy Biospecific multiparametric assay method
DE4309056B4 (en) 1993-03-20 2006-05-24 Häusler, Gerd, Prof. Dr. Method and device for determining the distance and scattering intensity of scattering points
US5485079A (en) 1993-03-29 1996-01-16 Matsushita Electric Industrial Co., Ltd. Magneto-optical element and optical magnetic field sensor
DE4310209C2 (en) 1993-03-29 1996-05-30 Bruker Medizintech Optical stationary imaging in strongly scattering media
DE4314189C1 (en) 1993-04-30 1994-11-03 Bodenseewerk Geraetetech Device for the examination of optical fibres made of glass by means of heterodyne Brillouin spectroscopy
SE501932C2 (en) 1993-04-30 1995-06-26 Ericsson Telefon Ab L M Apparatus and method for dispersion compensation in a fiber optic transmission system
US5424827A (en) 1993-04-30 1995-06-13 Litton Systems, Inc. Optical system and method for eliminating overlap of diffraction spectra
US5454807A (en) 1993-05-14 1995-10-03 Boston Scientific Corporation Medical treatment of deeply seated tissue using optical radiation
DE69418248T2 (en) 1993-06-03 1999-10-14 Hamamatsu Photonics Kk Optical laser scanning system with Axikon
JP3234353B2 (en) 1993-06-15 2001-12-04 富士写真フイルム株式会社 Tomographic information reader
US5840031A (en) 1993-07-01 1998-11-24 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials and ablating tissue
US5995645A (en) 1993-08-18 1999-11-30 Applied Spectral Imaging Ltd. Method of cancer cell detection
US5803082A (en) 1993-11-09 1998-09-08 Staplevision Inc. Omnispectramammography
US5983125A (en) 1993-12-13 1999-11-09 The Research Foundation Of City College Of New York Method and apparatus for in vivo examination of subcutaneous tissues inside an organ of a body using optical spectroscopy
US5450203A (en) 1993-12-22 1995-09-12 Electroglas, Inc. Method and apparatus for determining an objects position, topography and for imaging
US5411016A (en) 1994-02-22 1995-05-02 Scimed Life Systems, Inc. Intravascular balloon catheter for use in combination with an angioscope
US5590660A (en) 1994-03-28 1997-01-07 Xillix Technologies Corp. Apparatus and method for imaging diseased tissue using integrated autofluorescence
DE4411017C2 (en) 1994-03-30 1995-06-08 Alexander Dr Knuettel Optical stationary spectroscopic imaging in strongly scattering objects through special light focusing and signal detection of light of different wavelengths
TW275570B (en) 1994-05-05 1996-05-11 Boehringer Mannheim Gmbh
ATE242999T1 (en) 1994-07-14 2003-07-15 Washington Res Found DEVICE FOR DETECTING BARRETT METAPLASIA IN THE ESOPHAUS
US5459325A (en) 1994-07-19 1995-10-17 Molecular Dynamics, Inc. High-speed fluorescence scanner
US6159445A (en) 1994-07-20 2000-12-12 Nycomed Imaging As Light imaging contrast agents
JP3010072B2 (en) 1994-08-08 2000-02-14 株式会社トーメー Corneal shape measuring device
ES2233727T3 (en) 1994-08-18 2005-06-16 Carl Zeiss Meditec Ag SURGICAL DEVICE ASSISTED BY OPTICAL COHERENCE TOMOGRAPHY.
US5491524A (en) 1994-10-05 1996-02-13 Carl Zeiss, Inc. Optical coherence tomography corneal mapping apparatus
US5740808A (en) 1996-10-28 1998-04-21 Ep Technologies, Inc Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions
US5817144A (en) 1994-10-25 1998-10-06 Latis, Inc. Method for contemporaneous application OF laser energy and localized pharmacologic therapy
US6033721A (en) 1994-10-26 2000-03-07 Revise, Inc. Image-based three-axis positioner for laser direct write microchemical reaction
JPH08136345A (en) 1994-11-10 1996-05-31 Anritsu Corp Double monochromator
JPH08160129A (en) 1994-12-05 1996-06-21 Uniden Corp Speed detector
US5566267A (en) 1994-12-15 1996-10-15 Ceram Optec Industries Inc. Flat surfaced optical fibers and diode laser medical delivery devices
US5600486A (en) 1995-01-30 1997-02-04 Lockheed Missiles And Space Company, Inc. Color separation microlens
US5648848A (en) 1995-02-01 1997-07-15 Nikon Precision, Inc. Beam delivery apparatus and method for interferometry using rotatable polarization chucks
DE19506484C2 (en) 1995-02-24 1999-09-16 Stiftung Fuer Lasertechnologie Method and device for selective non-invasive laser myography (LMG)
RU2100787C1 (en) 1995-03-01 1997-12-27 Геликонов Валентин Михайлович Fibre-optical interferometer and fiber-optical piezoelectric transducer
US5868731A (en) 1996-03-04 1999-02-09 Innotech Usa, Inc. Laser surgical device and method of its use
WO1996028212A1 (en) 1995-03-09 1996-09-19 Innotech Usa, Inc. Laser surgical device and method of its use
US5526338A (en) 1995-03-10 1996-06-11 Yeda Research & Development Co. Ltd. Method and apparatus for storage and retrieval with multilayer optical disks
US5697373A (en) 1995-03-14 1997-12-16 Board Of Regents, The University Of Texas System Optical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies
US5735276A (en) 1995-03-21 1998-04-07 Lemelson; Jerome Method and apparatus for scanning and evaluating matter
JP3945820B2 (en) 1995-03-24 2007-07-18 オプティスキャン ピーティーワイ リミテッド Optical fiber confocal image forming apparatus with variable near-confocal control means
US5565983A (en) 1995-05-26 1996-10-15 The Perkin-Elmer Corporation Optical spectrometer for detecting spectra in separate ranges
US5621830A (en) 1995-06-07 1997-04-15 Smith & Nephew Dyonics Inc. Rotatable fiber optic joint
US5785651A (en) 1995-06-07 1998-07-28 Keravision, Inc. Distance measuring confocal microscope
WO1997001167A1 (en) 1995-06-21 1997-01-09 Massachusetts Institute Of Technology Apparatus and method for accessing data on multilayered optical media
ATA107495A (en) 1995-06-23 1996-06-15 Fercher Adolf Friedrich Dr COHERENCE BIOMETRY AND TOMOGRAPHY WITH DYNAMIC COHERENT FOCUS
JP3654309B2 (en) 1995-06-28 2005-06-02 株式会社日立メディコ Acicular ultrasonic probe
US5829439A (en) 1995-06-28 1998-11-03 Hitachi Medical Corporation Needle-like ultrasonic probe for ultrasonic diagnosis apparatus, method of producing same, and ultrasonic diagnosis apparatus using same
US6104945A (en) 1995-08-01 2000-08-15 Medispectra, Inc. Spectral volume microprobe arrays
AU1130797A (en) 1995-08-24 1997-03-19 Purdue Research Foundation Fluorescence lifetime-based imaging and spectroscopy in tissues and other random media
US6016197A (en) 1995-08-25 2000-01-18 Ceramoptec Industries Inc. Compact, all-optical spectrum analyzer for chemical and biological fiber optic sensors
FR2738343B1 (en) 1995-08-30 1997-10-24 Cohen Sabban Joseph OPTICAL MICROSTRATIGRAPHY DEVICE
US6615071B1 (en) 1995-09-20 2003-09-02 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
US6763261B2 (en) 1995-09-20 2004-07-13 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
ATE221338T1 (en) 1995-09-20 2002-08-15 Texas Heart Inst YINDICATION OF THERMAL DISCONTINUITY ON VESSEL WALLS
US5742419A (en) 1995-11-07 1998-04-21 The Board Of Trustees Of The Leland Stanford Junior Universtiy Miniature scanning confocal microscope
DE19542955C2 (en) 1995-11-17 1999-02-18 Schwind Gmbh & Co Kg Herbert endoscope
US5719399A (en) 1995-12-18 1998-02-17 The Research Foundation Of City College Of New York Imaging and characterization of tissue based upon the preservation of polarized light transmitted therethrough
JP3699761B2 (en) 1995-12-26 2005-09-28 オリンパス株式会社 Epifluorescence microscope
US5748318A (en) 1996-01-23 1998-05-05 Brown University Research Foundation Optical stress generator and detector
US5840023A (en) 1996-01-31 1998-11-24 Oraevsky; Alexander A. Optoacoustic imaging for medical diagnosis
US5642194A (en) 1996-02-05 1997-06-24 The Regents Of The University Of California White light velocity interferometer
US5862273A (en) 1996-02-23 1999-01-19 Kaiser Optical Systems, Inc. Fiber optic probe with integral optical filtering
US5843000A (en) 1996-05-07 1998-12-01 The General Hospital Corporation Optical biopsy forceps and method of diagnosing tissue
ATA84696A (en) 1996-05-14 1998-03-15 Adolf Friedrich Dr Fercher METHOD AND ARRANGEMENTS FOR INCREASING CONTRAST IN OPTICAL COHERENCE TOMOGRAPHY
US6020963A (en) 1996-06-04 2000-02-01 Northeastern University Optical quadrature Interferometer
US5795295A (en) 1996-06-25 1998-08-18 Carl Zeiss, Inc. OCT-assisted surgical microscope with multi-coordinate manipulator
US5842995A (en) 1996-06-28 1998-12-01 Board Of Regents, The Univerisity Of Texas System Spectroscopic probe for in vivo measurement of raman signals
US6296608B1 (en) 1996-07-08 2001-10-02 Boston Scientific Corporation Diagnosing and performing interventional procedures on tissue in vivo
US6245026B1 (en) 1996-07-29 2001-06-12 Farallon Medsystems, Inc. Thermography catheter
US5840075A (en) 1996-08-23 1998-11-24 Eclipse Surgical Technologies, Inc. Dual laser device for transmyocardial revascularization procedures
US6396941B1 (en) 1996-08-23 2002-05-28 Bacus Research Laboratories, Inc. Method and apparatus for internet, intranet, and local viewing of virtual microscope slides
US6544193B2 (en) 1996-09-04 2003-04-08 Marcio Marc Abreu Noninvasive measurement of chemical substances
JPH1090603A (en) 1996-09-18 1998-04-10 Olympus Optical Co Ltd Endscopic optical system
US5801831A (en) 1996-09-20 1998-09-01 Institute For Space And Terrestrial Science Fabry-Perot spectrometer for detecting a spatially varying spectral signature of an extended source
RU2108122C1 (en) 1996-09-24 1998-04-10 Владимир Павлович Жаров Method and device for physiotherapeutic irradiation with light
EP0928433A1 (en) 1996-09-27 1999-07-14 Vincent Lauer Microscope generating a three-dimensional representation of an object
DE19640495C2 (en) 1996-10-01 1999-12-16 Leica Microsystems Device for confocal surface measurement
US5843052A (en) 1996-10-04 1998-12-01 Benja-Athon; Anuthep Irrigation kit for application of fluids and chemicals for cleansing and sterilizing wounds
US5904651A (en) 1996-10-28 1999-05-18 Ep Technologies, Inc. Systems and methods for visualizing tissue during diagnostic or therapeutic procedures
US5752518A (en) 1996-10-28 1998-05-19 Ep Technologies, Inc. Systems and methods for visualizing interior regions of the body
US6044288A (en) 1996-11-08 2000-03-28 Imaging Diagnostics Systems, Inc. Apparatus and method for determining the perimeter of the surface of an object being scanned
US5872879A (en) 1996-11-25 1999-02-16 Boston Scientific Corporation Rotatable connecting optical fibers
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US6437867B2 (en) 1996-12-04 2002-08-20 The Research Foundation Of The City University Of New York Performing selected optical measurements with optical coherence domain reflectometry
US6249630B1 (en) 1996-12-13 2001-06-19 Imra America, Inc. Apparatus and method for delivery of dispersion-compensated ultrashort optical pulses with high peak power
US5906759A (en) 1996-12-26 1999-05-25 Medinol Ltd. Stent forming apparatus with stent deforming blades
US5871449A (en) 1996-12-27 1999-02-16 Brown; David Lloyd Device and method for locating inflamed plaque in an artery
US6272268B1 (en) 1996-12-31 2001-08-07 Corning Incorporated Optical couplers with multilayer fibers
US5991697A (en) 1996-12-31 1999-11-23 The Regents Of The University Of California Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media
US5760901A (en) 1997-01-28 1998-06-02 Zetetic Institute Method and apparatus for confocal interference microscopy with background amplitude reduction and compensation
JP3213250B2 (en) 1997-01-29 2001-10-02 株式会社生体光情報研究所 Optical measurement device
US5801826A (en) 1997-02-18 1998-09-01 Williams Family Trust B Spectrometric device and method for recognizing atomic and molecular signatures
US5836877A (en) 1997-02-24 1998-11-17 Lucid Inc System for facilitating pathological examination of a lesion in tissue
US6120516A (en) 1997-02-28 2000-09-19 Lumend, Inc. Method for treating vascular occlusion
US5968064A (en) 1997-02-28 1999-10-19 Lumend, Inc. Catheter system for treating a vascular occlusion
US6010449A (en) 1997-02-28 2000-01-04 Lumend, Inc. Intravascular catheter system for treating a vascular occlusion
WO1998038907A1 (en) 1997-03-06 1998-09-11 Massachusetts Institute Of Technology Instrument for optically scanning of living tissue
WO1998040007A1 (en) 1997-03-13 1998-09-17 Biomax Technologies, Inc. Methods and apparatus for detecting the rejection of transplanted tissue
US6078047A (en) 1997-03-14 2000-06-20 Lucent Technologies Inc. Method and apparatus for terahertz tomographic imaging
US5994690A (en) 1997-03-17 1999-11-30 Kulkarni; Manish D. Image enhancement in optical coherence tomography using deconvolution
JPH10267631A (en) 1997-03-26 1998-10-09 Kowa Co Optical measuring instrument
JPH10267830A (en) 1997-03-26 1998-10-09 Kowa Co Optical measuring device
GB9707414D0 (en) 1997-04-11 1997-05-28 Imperial College Anatomical probe
ATE257014T1 (en) 1997-04-29 2004-01-15 Amersham Health As LIGHT IMAGING CONTRAST AGENTS
AU7221698A (en) 1997-04-29 1998-11-24 Nycomed Imaging As Light imaging contrast agents
US6117128A (en) 1997-04-30 2000-09-12 Kenton W. Gregory Energy delivery catheter and method for the use thereof
US5887009A (en) 1997-05-22 1999-03-23 Optical Biopsy Technologies, Inc. Confocal optical scanning system employing a fiber laser
US6006128A (en) 1997-06-02 1999-12-21 Izatt; Joseph A. Doppler flow imaging using optical coherence tomography
US6002480A (en) 1997-06-02 1999-12-14 Izatt; Joseph A. Depth-resolved spectroscopic optical coherence tomography
US6208415B1 (en) 1997-06-12 2001-03-27 The Regents Of The University Of California Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography
JP2002516586A (en) 1997-06-23 2002-06-04 ティーエイチエス インターナショナル,インコーポレイテッド Method and apparatus for providing acoustic hemostasis
US5920390A (en) 1997-06-26 1999-07-06 University Of North Carolina Fiberoptic interferometer and associated method for analyzing tissue
US6048349A (en) 1997-07-09 2000-04-11 Intraluminal Therapeutics, Inc. Systems and methods for guiding a medical instrument through a body
US6058352A (en) 1997-07-25 2000-05-02 Physical Optics Corporation Accurate tissue injury assessment using hybrid neural network analysis
US5921926A (en) 1997-07-28 1999-07-13 University Of Central Florida Three dimensional optical imaging colposcopy
US6014214A (en) 1997-08-21 2000-01-11 Li; Ming-Chiang High speed inspection of a sample using coherence processing of scattered superbroad radiation
US5892583A (en) 1997-08-21 1999-04-06 Li; Ming-Chiang High speed inspection of a sample using superbroad radiation coherent interferometer
US6069698A (en) 1997-08-28 2000-05-30 Olympus Optical Co., Ltd. Optical imaging apparatus which radiates a low coherence light beam onto a test object, receives optical information from light scattered by the object, and constructs therefrom a cross-sectional image of the object
US6297018B1 (en) 1998-04-17 2001-10-02 Ljl Biosystems, Inc. Methods and apparatus for detecting nucleic acid polymorphisms
US5920373A (en) 1997-09-24 1999-07-06 Heidelberg Engineering Optische Messysteme Gmbh Method and apparatus for determining optical characteristics of a cornea
US6193676B1 (en) 1997-10-03 2001-02-27 Intraluminal Therapeutics, Inc. Guide wire assembly
US5951482A (en) 1997-10-03 1999-09-14 Intraluminal Therapeutics, Inc. Assemblies and methods for advancing a guide wire through body tissue
US6091984A (en) 1997-10-10 2000-07-18 Massachusetts Institute Of Technology Measuring tissue morphology
US5955737A (en) 1997-10-27 1999-09-21 Systems & Processes Engineering Corporation Chemometric analysis for extraction of individual fluorescence spectrum and lifetimes from a target mixture
US6052186A (en) 1997-11-05 2000-04-18 Excel Precision, Inc. Dual laser system for extended heterodyne interferometry
US6134010A (en) 1997-11-07 2000-10-17 Lucid, Inc. Imaging system using polarization effects to enhance image quality
US6037579A (en) 1997-11-13 2000-03-14 Biophotonics Information Laboratories, Ltd. Optical interferometer employing multiple detectors to detect spatially distorted wavefront in imaging of scattering media
US6107048A (en) 1997-11-20 2000-08-22 Medical College Of Georgia Research Institute, Inc. Method of detecting and grading dysplasia in epithelial tissue
WO1999039317A1 (en) 1998-01-28 1999-08-05 Ht Medical Systems, Inc. Interface device and method for interfacing instruments to medical procedure simulation system
US6165170A (en) 1998-01-29 2000-12-26 International Business Machines Corporation Laser dermablator and dermablation
EP2267507A3 (en) 1998-02-26 2011-08-17 The General Hospital Corporation Confocal microscopy with multi-spectral encoding
US6048742A (en) 1998-02-26 2000-04-11 The United States Of America As Represented By The Secretary Of The Air Force Process for measuring the thickness and composition of thin semiconductor films deposited on semiconductor wafers
US6134033A (en) 1998-02-26 2000-10-17 Tyco Submarine Systems Ltd. Method and apparatus for improving spectral efficiency in wavelength division multiplexed transmission systems
RU2148378C1 (en) 1998-03-06 2000-05-10 Геликонов Валентин Михайлович Device for performing optic coherent tomography, optic fiber scanning device and method for diagnosing biological tissue in vivo
US6174291B1 (en) 1998-03-09 2001-01-16 Spectrascience, Inc. Optical biopsy system and methods for tissue diagnosis
US6066102A (en) 1998-03-09 2000-05-23 Spectrascience, Inc. Optical biopsy forceps system and method of diagnosing tissue
US6151522A (en) 1998-03-16 2000-11-21 The Research Foundation Of Cuny Method and system for examining biological materials using low power CW excitation raman spectroscopy
DE19814057B4 (en) 1998-03-30 2009-01-02 Carl Zeiss Meditec Ag Arrangement for optical coherence tomography and coherence topography
US6175669B1 (en) 1998-03-30 2001-01-16 The Regents Of The Universtiy Of California Optical coherence domain reflectometry guidewire
US6384915B1 (en) 1998-03-30 2002-05-07 The Regents Of The University Of California Catheter guided by optical coherence domain reflectometry
US6996549B2 (en) 1998-05-01 2006-02-07 Health Discovery Corporation Computer-aided image analysis
WO1999057507A1 (en) 1998-05-01 1999-11-11 Board Of Regents, The University Of Texas System Method and apparatus for subsurface imaging
JPH11326826A (en) 1998-05-13 1999-11-26 Sony Corp Illuminating method and illuminator
US6053613A (en) 1998-05-15 2000-04-25 Carl Zeiss, Inc. Optical coherence tomography with new interferometer
FR2778838A1 (en) 1998-05-19 1999-11-26 Koninkl Philips Electronics Nv METHOD FOR DETECTING VARIATIONS IN ELASTICITY AND ECHOGRAPHIC APPARATUS FOR CARRYING OUT THIS METHOD
US5995223A (en) 1998-06-01 1999-11-30 Power; Joan Fleurette Apparatus for rapid phase imaging interferometry and method therefor
JPH11352409A (en) 1998-06-05 1999-12-24 Olympus Optical Co Ltd Fluorescence detector
US6549801B1 (en) 1998-06-11 2003-04-15 The Regents Of The University Of California Phase-resolved optical coherence tomography and optical doppler tomography for imaging fluid flow in tissue with fast scanning speed and high velocity sensitivity
AU5101699A (en) 1998-07-15 2000-02-07 Corazon Technologies, Inc. Methods and devices for reducing the mineral content of vascular calcified lesions
US6166373A (en) 1998-07-21 2000-12-26 The Institute For Technology Development Focal plane scanner with reciprocating spatial window
JP2000046729A (en) 1998-07-31 2000-02-18 Takahisa Mitsui Apparatus and method for high-speed measurement of optical topographic image by using wavelength dispersion
US20040140130A1 (en) 1998-08-31 2004-07-22 Halliburton Energy Services, Inc., A Delaware Corporation Roller-cone bits, systems, drilling methods, and design methods with optimization of tooth orientation
US6741884B1 (en) 1998-09-03 2004-05-25 Hypermed, Inc. Infrared endoscopic balloon probes
US8024027B2 (en) 1998-09-03 2011-09-20 Hyperspectral Imaging, Inc. Infrared endoscopic balloon probes
EP1112022A4 (en) 1998-09-11 2004-08-04 Spectrx Inc Multi-modal optical tissue diagnostic system
JP2000131222A (en) 1998-10-22 2000-05-12 Olympus Optical Co Ltd Optical tomographic image device
US7180600B2 (en) * 1998-09-21 2007-02-20 Olympus Corporation Optical imaging apparatus
AU6417599A (en) 1998-10-08 2000-04-26 University Of Kentucky Research Foundation, The Methods and apparatus for (in vivo) identification and characterization of vulnerable atherosclerotic plaques
JP2000121961A (en) 1998-10-13 2000-04-28 Olympus Optical Co Ltd Confocal optical scanning probe system
US6274871B1 (en) 1998-10-22 2001-08-14 Vysis, Inc. Method and system for performing infrared study on a biological sample
US6324419B1 (en) 1998-10-27 2001-11-27 Nejat Guzelsu Apparatus and method for non-invasive measurement of stretch
JP2000126116A (en) 1998-10-28 2000-05-09 Olympus Optical Co Ltd Photo-diagnosis system
US6524249B2 (en) 1998-11-11 2003-02-25 Spentech, Inc. Doppler ultrasound method and apparatus for monitoring blood flow and detecting emboli
WO2000030225A1 (en) 1998-11-13 2000-05-25 Research And Development Institute, Inc. Programmable frequency reference for laser frequency stabilization, and arbitrary optical clock generator, using persistent spectral hole burning
EP1002497B1 (en) 1998-11-20 2006-07-26 Fuji Photo Film Co., Ltd. Blood vessel imaging system
US5975697A (en) 1998-11-25 1999-11-02 Oti Ophthalmic Technologies, Inc. Optical mapping apparatus with adjustable depth resolution
US6352502B1 (en) 1998-12-03 2002-03-05 Lightouch Medical, Inc. Methods for obtaining enhanced spectroscopic information from living tissue, noninvasive assessment of skin condition and detection of skin abnormalities
RU2149464C1 (en) 1999-01-19 2000-05-20 Таганрогский государственный радиотехнический университет Dynamic memory unit for storage of radio signals
US6191862B1 (en) 1999-01-20 2001-02-20 Lightlab Imaging, Llc Methods and apparatus for high speed longitudinal scanning in imaging systems
US6272376B1 (en) 1999-01-22 2001-08-07 Cedars-Sinai Medical Center Time-resolved, laser-induced fluorescence for the characterization of organic material
US6445944B1 (en) 1999-02-01 2002-09-03 Scimed Life Systems Medical scanning system and related method of scanning
US6615072B1 (en) 1999-02-04 2003-09-02 Olympus Optical Co., Ltd. Optical imaging device
US6185271B1 (en) 1999-02-16 2001-02-06 Richard Estyn Kinsinger Helical computed tomography with feedback scan control
DE19908883A1 (en) 1999-03-02 2000-09-07 Rainer Heintzmann Process for increasing the resolution of optical imaging
US20070048818A1 (en) 1999-03-12 2007-03-01 Human Genome Sciences, Inc. Human secreted proteins
EP1181598A4 (en) 1999-03-29 2004-05-12 Scimed Life Systems Inc Single mode optical fiber coupling systems
US6859275B2 (en) 1999-04-09 2005-02-22 Plain Sight Systems, Inc. System and method for encoded spatio-spectral information processing
US6264610B1 (en) 1999-05-05 2001-07-24 The University Of Connecticut Combined ultrasound and near infrared diffused light imaging system
US6353693B1 (en) 1999-05-31 2002-03-05 Sanyo Electric Co., Ltd. Optical communication device and slip ring unit for an electronic component-mounting apparatus
US6993170B2 (en) 1999-06-23 2006-01-31 Icoria, Inc. Method for quantitative analysis of blood vessel structure
JP2001004447A (en) 1999-06-23 2001-01-12 Yokogawa Electric Corp Spectrometer
US6611833B1 (en) 1999-06-23 2003-08-26 Tissueinformatics, Inc. Methods for profiling and classifying tissue using a database that includes indices representative of a tissue population
US6208887B1 (en) 1999-06-24 2001-03-27 Richard H. Clarke Catheter-delivered low resolution Raman scattering analyzing system for detecting lesions
US7426409B2 (en) 1999-06-25 2008-09-16 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
GB9915082D0 (en) 1999-06-28 1999-08-25 Univ London Optical fibre probe
US6359692B1 (en) 1999-07-09 2002-03-19 Zygo Corporation Method and system for profiling objects having multiple reflective surfaces using wavelength-tuning phase-shifting interferometry
WO2001004828A1 (en) 1999-07-13 2001-01-18 Chromavision Medical Systems, Inc. Automated detection of objects in a biological sample
CA2381223C (en) 1999-07-30 2009-11-24 Ceramoptec Industries, Inc. Dual wavelength medical diode laser system
ES2242622T3 (en) 1999-07-30 2005-11-16 Boston Scientific Limited CONNECTION OF ROTATIONAL AND TRANSLATION PROPULSION FOR CATETER ASSEMBLY.
JP2001046321A (en) 1999-08-09 2001-02-20 Asahi Optical Co Ltd Endoscope device
US6445939B1 (en) 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
US6725073B1 (en) 1999-08-17 2004-04-20 Board Of Regents, The University Of Texas System Methods for noninvasive analyte sensing
JP3869589B2 (en) 1999-09-02 2007-01-17 ペンタックス株式会社 Fiber bundle and endoscope apparatus
JP4464519B2 (en) 2000-03-21 2010-05-19 オリンパス株式会社 Optical imaging device
US6687010B1 (en) 1999-09-09 2004-02-03 Olympus Corporation Rapid depth scanning optical imaging device
US6198956B1 (en) 1999-09-30 2001-03-06 Oti Ophthalmic Technologies Inc. High speed sector scanning apparatus having digital electronic control
JP2001174744A (en) 1999-10-06 2001-06-29 Olympus Optical Co Ltd Optical scanning probe device
JP4363719B2 (en) 1999-10-08 2009-11-11 オリンパス株式会社 Ultrasound-guided puncture system device
US6393312B1 (en) 1999-10-13 2002-05-21 C. R. Bard, Inc. Connector for coupling an optical fiber tissue localization device to a light source
US6308092B1 (en) 1999-10-13 2001-10-23 C. R. Bard Inc. Optical fiber tissue localization device
WO2001027679A1 (en) 1999-10-15 2001-04-19 Cellavision Ab Microscope and method for manufacturing a composite image with a high resolution
US6538817B1 (en) 1999-10-25 2003-03-25 Aculight Corporation Method and apparatus for optical coherence tomography with a multispectral laser source
JP2001125009A (en) 1999-10-28 2001-05-11 Asahi Optical Co Ltd Endoscope
IL132687A0 (en) 1999-11-01 2001-03-19 Keren Mechkarim Ichilov Pnimit System and method for evaluating body fluid samples
JP2003515129A (en) 1999-11-19 2003-04-22 ジョビン イヴォン、インコーポレーテッド Compact spectrofluorometer
US7236637B2 (en) 1999-11-24 2007-06-26 Ge Medical Systems Information Technologies, Inc. Method and apparatus for transmission and display of a compressed digitized image
EP1232377B1 (en) 1999-11-24 2004-03-31 Haag-Streit Ag Method and device for measuring the optical properties of at least two regions located at a distance from one another in a transparent and/or diffuse object
AU1542700A (en) 1999-12-09 2001-06-18 Oti Ophthalmic Technologies Inc. Optical mapping apparatus with adjustable depth resolution
JP2001174404A (en) 1999-12-15 2001-06-29 Takahisa Mitsui Apparatus and method for measuring optical tomographic image
US6738144B1 (en) 1999-12-17 2004-05-18 University Of Central Florida Non-invasive method and low-coherence apparatus system analysis and process control
US6680780B1 (en) 1999-12-23 2004-01-20 Agere Systems, Inc. Interferometric probe stabilization relative to subject movement
US6445485B1 (en) 2000-01-21 2002-09-03 At&T Corp. Micro-machine polarization-state controller
WO2001054580A1 (en) 2000-01-27 2001-08-02 National Research Council Of Canada Visible-near infrared spectroscopy in burn injury assessment
JP3660185B2 (en) 2000-02-07 2005-06-15 独立行政法人科学技術振興機構 Tomographic image forming method and apparatus therefor
US6475210B1 (en) 2000-02-11 2002-11-05 Medventure Technology Corp Light treatment of vulnerable atherosclerosis plaque
US6556305B1 (en) 2000-02-17 2003-04-29 Veeco Instruments, Inc. Pulsed source scanning interferometer
US6618143B2 (en) 2000-02-18 2003-09-09 Idexx Laboratories, Inc. High numerical aperture flow cytometer and method of using same
US6751490B2 (en) 2000-03-01 2004-06-15 The Board Of Regents Of The University Of Texas System Continuous optoacoustic monitoring of hemoglobin concentration and hematocrit
AU2001251114A1 (en) 2000-03-28 2001-10-08 Board Of Regents, The University Of Texas System Enhancing contrast in biological imaging
US6687013B2 (en) 2000-03-28 2004-02-03 Hitachi, Ltd. Laser interferometer displacement measuring system, exposure apparatus, and electron beam lithography apparatus
US6567585B2 (en) 2000-04-04 2003-05-20 Optiscan Pty Ltd Z sharpening for fibre confocal microscopes
US6692430B2 (en) 2000-04-10 2004-02-17 C2Cure Inc. Intra vascular imaging apparatus
AU2001259188A1 (en) 2000-04-27 2001-11-07 Iridex Corporation Method and apparatus for real-time detection, control and recording of sub-clinical therapeutic laser lesions during ocular laser photocoagulation
US6889075B2 (en) 2000-05-03 2005-05-03 Rocky Mountain Biosystems, Inc. Optical imaging of subsurface anatomical structures and biomolecules
US6711283B1 (en) 2000-05-03 2004-03-23 Aperio Technologies, Inc. Fully automatic rapid microscope slide scanner
US6301048B1 (en) 2000-05-19 2001-10-09 Avanex Corporation Tunable chromatic dispersion and dispersion slope compensator utilizing a virtually imaged phased array
US6441959B1 (en) 2000-05-19 2002-08-27 Avanex Corporation Method and system for testing a tunable chromatic dispersion, dispersion slope, and polarization mode dispersion compensator utilizing a virtually imaged phased array
US6560259B1 (en) 2000-05-31 2003-05-06 Applied Optoelectronics, Inc. Spatially coherent surface-emitting, grating coupled quantum cascade laser with unstable resonance cavity
US6677769B2 (en) * 2000-06-09 2004-01-13 The Regents Of The University Of Michigan Scanning electromagnetic-field imager with optical-fiber-based electro-optic field-mapping system
US6975898B2 (en) 2000-06-19 2005-12-13 University Of Washington Medical imaging, diagnosis, and therapy using a scanning single optical fiber system
JP4460117B2 (en) 2000-06-29 2010-05-12 独立行政法人理化学研究所 Grism
JP2002035005A (en) 2000-07-21 2002-02-05 Olympus Optical Co Ltd Therapeutic device
US6757467B1 (en) 2000-07-25 2004-06-29 Optical Air Data Systems, Lp Optical fiber system
US6441356B1 (en) 2000-07-28 2002-08-27 Optical Biopsy Technologies Fiber-coupled, high-speed, angled-dual-axis optical coherence scanning microscopes
US6882432B2 (en) 2000-08-08 2005-04-19 Zygo Corporation Frequency transform phase shifting interferometry
WO2002014944A1 (en) 2000-08-11 2002-02-21 Crystal Fibre A/S Optical wavelength converter
US7625335B2 (en) 2000-08-25 2009-12-01 3Shape Aps Method and apparatus for three-dimensional optical scanning of interior surfaces
DE10042840A1 (en) 2000-08-30 2002-03-14 Leica Microsystems Device and method for exciting fluorescence microscope markers in multiphoton scanning microscopy
AU2001288320A1 (en) 2000-09-05 2002-03-22 Arroyo Optics, Inc. System and method for fabricating components of precise optical path length
JP2002095663A (en) 2000-09-26 2002-04-02 Fuji Photo Film Co Ltd Method of acquiring optical tomographic image of sentinel lymph node and its device
JP2002113017A (en) 2000-10-05 2002-04-16 Fuji Photo Film Co Ltd Laser treatment device
EP1434522B1 (en) 2000-10-30 2010-01-13 The General Hospital Corporation Optical systems for tissue analysis
AU1210502A (en) 2000-10-31 2002-05-15 Forskningsct Riso Optical amplification in coherent optical frequency modulated continuous wave reflectometry
JP3842101B2 (en) 2000-10-31 2006-11-08 富士写真フイルム株式会社 Endoscope device
US6687036B2 (en) 2000-11-03 2004-02-03 Nuonics, Inc. Multiplexed optical scanner technology
JP2002148185A (en) 2000-11-08 2002-05-22 Fuji Photo Film Co Ltd Oct apparatus
US9295391B1 (en) 2000-11-10 2016-03-29 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
EP1409721A2 (en) 2000-11-13 2004-04-21 Gnothis Holding SA Detection of nucleic acid polymorphisms
US6665075B2 (en) 2000-11-14 2003-12-16 Wm. Marshurice University Interferometric imaging system and method
DE10057539B4 (en) 2000-11-20 2008-06-12 Robert Bosch Gmbh Interferometric measuring device
US6558324B1 (en) 2000-11-22 2003-05-06 Siemens Medical Solutions, Inc., Usa System and method for strain image display
US6856712B2 (en) 2000-11-27 2005-02-15 University Of Washington Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition
US7027633B2 (en) 2000-11-30 2006-04-11 Foran David J Collaborative diagnostic systems
JP4786027B2 (en) 2000-12-08 2011-10-05 オリンパス株式会社 Optical system and optical apparatus
US6501878B2 (en) 2000-12-14 2002-12-31 Nortel Networks Limited Optical fiber termination
US6687007B1 (en) 2000-12-14 2004-02-03 Kestrel Corporation Common path interferometer for spectral image generation
ATE345092T1 (en) 2000-12-28 2006-12-15 Palomar Medical Tech Inc APPARATUS FOR THERAPEUTIC ELECTROMAGNETIC RADIATION THERAPY OF THE SKIN
US7230708B2 (en) 2000-12-28 2007-06-12 Dmitri Olegovich Lapotko Method and device for photothermal examination of microinhomogeneities
US6515752B2 (en) 2000-12-28 2003-02-04 Coretek, Inc. Wavelength monitoring system
EP1221581A1 (en) 2001-01-04 2002-07-10 Universität Stuttgart Interferometer
JP2002205434A (en) 2001-01-10 2002-07-23 Seiko Epson Corp Image output unit and printing system
WO2002054948A1 (en) 2001-01-11 2002-07-18 The Johns Hopkins University Assessment of tooth structure using laser based ultrasonics
US7177491B2 (en) 2001-01-12 2007-02-13 Board Of Regents The University Of Texas System Fiber-based optical low coherence tomography
JP3628615B2 (en) 2001-01-16 2005-03-16 独立行政法人科学技術振興機構 Heterodyne beat image synchronous measurement device
US6697652B2 (en) 2001-01-19 2004-02-24 Massachusetts Institute Of Technology Fluorescence, reflectance and light scattering spectroscopy for measuring tissue
WO2002075242A2 (en) 2001-01-22 2002-09-26 Roth Jonathan E Method and apparatus for polarization-sensitive optical coherence tomography
US6613411B2 (en) * 2001-01-25 2003-09-02 3M Innovative Properties Company Conformable multi-layer sheet materials
US7973936B2 (en) 2001-01-30 2011-07-05 Board Of Trustees Of Michigan State University Control system and apparatus for use with ultra-fast laser
US20020140942A1 (en) 2001-02-17 2002-10-03 Fee Michale Sean Acousto-optic monitoring and imaging in a depth sensitive manner
GB0104378D0 (en) 2001-02-22 2001-04-11 Expro North Sea Ltd Improved tubing coupling
US6654127B2 (en) 2001-03-01 2003-11-25 Carl Zeiss Ophthalmic Systems, Inc. Optical delay line
US6721094B1 (en) 2001-03-05 2004-04-13 Sandia Corporation Long working distance interference microscope
US7244232B2 (en) 2001-03-07 2007-07-17 Biomed Solutions, Llc Process for identifying cancerous and/or metastatic cells of a living organism
IL142773A (en) * 2001-03-08 2007-10-31 Xtellus Inc Fiber optical attenuator
JP2002263055A (en) 2001-03-12 2002-09-17 Olympus Optical Co Ltd Tip hood for endoscope
US6563995B2 (en) 2001-04-02 2003-05-13 Lightwave Electronics Optical wavelength filtering apparatus with depressed-index claddings
US6552796B2 (en) 2001-04-06 2003-04-22 Lightlab Imaging, Llc Apparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography
US7139598B2 (en) 2002-04-04 2006-11-21 Veralight, Inc. Determination of a measure of a glycation end-product or disease state using tissue fluorescence
WO2002083003A1 (en) 2001-04-11 2002-10-24 Clarke Dana S Tissue structure identification in advance of instrument
US20020158211A1 (en) 2001-04-16 2002-10-31 Dakota Technologies, Inc. Multi-dimensional fluorescence apparatus and method for rapid and highly sensitive quantitative analysis of mixtures
DE10118760A1 (en) 2001-04-17 2002-10-31 Med Laserzentrum Luebeck Gmbh Procedure for determining the runtime distribution and arrangement
DE10121179B4 (en) * 2001-04-30 2005-12-22 Infineon Technologies Ag Experimental method for the verification of aberrations in optical exposure apparatus
WO2002088684A1 (en) 2001-04-30 2002-11-07 The General Hospital Corporation Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
US7616986B2 (en) 2001-05-07 2009-11-10 University Of Washington Optical fiber scanner for performing multimodal optical imaging
US6615062B2 (en) 2001-05-31 2003-09-02 Infraredx, Inc. Referencing optical catheters
US6701181B2 (en) 2001-05-31 2004-03-02 Infraredx, Inc. Multi-path optical catheter
DE60219627T2 (en) 2001-06-04 2008-02-07 The General Hospital Corp., Boston IDENTIFICATION AND THERAPY OF SENSITIVE PLAQUE WITH PHOTODYNAMIC COMPOUNDS
EP1191321B1 (en) 2001-06-07 2002-12-11 Agilent Technologies, Inc. (a Delaware corporation) Determination of properties of an optical device
US6879851B2 (en) 2001-06-07 2005-04-12 Lightlab Imaging, Llc Fiber optic endoscopic gastrointestinal probe
DE10129651B4 (en) 2001-06-15 2010-07-08 Carl Zeiss Jena Gmbh Method for compensation of the dispersion in signals of short-coherence and / or OCT interferometers
US6702744B2 (en) 2001-06-20 2004-03-09 Advanced Cardiovascular Systems, Inc. Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US6685885B2 (en) 2001-06-22 2004-02-03 Purdue Research Foundation Bio-optical compact dist system
US20040166593A1 (en) 2001-06-22 2004-08-26 Nolte David D. Adaptive interferometric multi-analyte high-speed biosensor
US6723090B2 (en) 2001-07-02 2004-04-20 Palomar Medical Technologies, Inc. Fiber laser device for medical/cosmetic procedures
US6795199B2 (en) 2001-07-18 2004-09-21 Avraham Suhami Method and apparatus for dispersion compensated reflected time-of-flight tomography
DE10137530A1 (en) 2001-08-01 2003-02-13 Presens Prec Sensing Gmbh Arrangement and method for multiple fluorescence measurement
AU2002337666A1 (en) 2001-08-03 2003-02-17 Joseph A. Izatt Aspects of basic oct engine technologies for high speed optical coherence tomography and light source and other improvements in oct
US20030103212A1 (en) 2001-08-03 2003-06-05 Volker Westphal Real-time imaging system and method
US20030030816A1 (en) 2001-08-11 2003-02-13 Eom Tae Bong Nonlinearity error correcting method and phase angle measuring method for displacement measurement in two-freqency laser interferometer and displacement measurement system using the same
US6900899B2 (en) 2001-08-20 2005-05-31 Agilent Technologies, Inc. Interferometers with coated polarizing beam splitters that are rotated to optimize extinction ratios
US20030045798A1 (en) 2001-09-04 2003-03-06 Richard Hular Multisensor probe for tissue identification
EP1293925A1 (en) 2001-09-18 2003-03-19 Agfa-Gevaert Radiographic scoring method
US6961123B1 (en) 2001-09-28 2005-11-01 The Texas A&M University System Method and apparatus for obtaining information from polarization-sensitive optical coherence tomography
JP2003102672A (en) 2001-10-01 2003-04-08 Japan Science & Technology Corp Method and device for automatically detecting, treating, and collecting objective site of lesion or the like
DE10150934A1 (en) 2001-10-09 2003-04-10 Zeiss Carl Jena Gmbh Depth resolved measurement and imaging of biological samples using laser scanning microscopy, whereby heterodyne detection and optical modulation is used to allow imaging of deep sample regions
US7822470B2 (en) 2001-10-11 2010-10-26 Osypka Medical Gmbh Method for determining the left-ventricular ejection time TLVE of a heart of a subject
US6980299B1 (en) 2001-10-16 2005-12-27 General Hospital Corporation Systems and methods for imaging a sample
US6658278B2 (en) 2001-10-17 2003-12-02 Terumo Cardiovascular Systems Corporation Steerable infrared imaging catheter having steering fins
US7006231B2 (en) 2001-10-18 2006-02-28 Scimed Life Systems, Inc. Diffraction grating based interferometric systems and methods
US6749344B2 (en) 2001-10-24 2004-06-15 Scimed Life Systems, Inc. Connection apparatus for optical coherence tomography catheters
US6661513B1 (en) 2001-11-21 2003-12-09 Roygbiv, Llc Refractive-diffractive spectrometer
US7588535B2 (en) 2001-12-11 2009-09-15 C2Cure Inc. Apparatus, method and system for intravascular photographic imaging
US20030216719A1 (en) 2001-12-12 2003-11-20 Len Debenedictis Method and apparatus for treating skin using patterns of optical energy
DE60220541T2 (en) 2001-12-14 2007-10-04 Agilent Technologies, Inc. (n.d.Ges.d. Staates Delaware), Santa Clara EXTERNAL RESONATOR WITH RETRO REFLECTING DEVICE, ESPECIALLY FOR TUNING LASERS
US7365858B2 (en) 2001-12-18 2008-04-29 Massachusetts Institute Of Technology Systems and methods for phase measurements
US7736301B1 (en) 2001-12-18 2010-06-15 Advanced Cardiovascular Systems, Inc. Rotatable ferrules and interfaces for use with an optical guidewire
US6947787B2 (en) 2001-12-21 2005-09-20 Advanced Cardiovascular Systems, Inc. System and methods for imaging within a body lumen
US6975891B2 (en) 2001-12-21 2005-12-13 Nir Diagnostics Inc. Raman spectroscopic system with integrating cavity
EP1324051A1 (en) 2001-12-26 2003-07-02 Kevin R. Forrester Motion measuring device
US20080154090A1 (en) 2005-01-04 2008-06-26 Dune Medical Devices Ltd. Endoscopic System for In-Vivo Procedures
JP2005530128A (en) 2002-01-11 2005-10-06 ザ・ジェネラル・ホスピタル・コーポレイション Apparatus for OCT imaging using axial line focus to improve resolution and depth regions
US7072045B2 (en) 2002-01-16 2006-07-04 The Regents Of The University Of California High resolution optical coherence tomography with an improved depth range using an axicon lens
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
JP2005516187A (en) 2002-01-24 2005-06-02 ザ ジェネラル ホスピタル コーポレーション Apparatus and method for ranging with parallel detection of spectral bands and noise reduction of low coherence interferometry (LCI) and optical coherence tomography (OCT) signals
WO2003069272A1 (en) 2002-02-14 2003-08-21 Imalux Corporation Method for studying an object and an optical interferometer for carrying out said method
US20030165263A1 (en) 2002-02-19 2003-09-04 Hamer Michael J. Histological assessment
US7116887B2 (en) 2002-03-19 2006-10-03 Nufern Optical fiber
US7006232B2 (en) 2002-04-05 2006-02-28 Case Western Reserve University Phase-referenced doppler optical coherence tomography
US6704590B2 (en) 2002-04-05 2004-03-09 Cardiac Pacemakers, Inc. Doppler guiding catheter using sensed blood turbulence levels
US7113818B2 (en) 2002-04-08 2006-09-26 Oti Ophthalmic Technologies Inc. Apparatus for high resolution imaging of moving organs
US7016048B2 (en) 2002-04-09 2006-03-21 The Regents Of The University Of California Phase-resolved functional optical coherence tomography: simultaneous imaging of the stokes vectors, structure, blood flow velocity, standard deviation and birefringence in biological samples
US20030236443A1 (en) 2002-04-19 2003-12-25 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US7503904B2 (en) 2002-04-25 2009-03-17 Cardiac Pacemakers, Inc. Dual balloon telescoping guiding catheter
JP4135551B2 (en) 2002-05-07 2008-08-20 松下電工株式会社 Position sensor
JP3834789B2 (en) 2002-05-17 2006-10-18 独立行政法人科学技術振興機構 Autonomous ultra-short optical pulse compression, phase compensation, waveform shaping device
RU2242710C2 (en) 2002-06-07 2004-12-20 Геликонов Григорий Валентинович Method and device for building object image and device for delivering low coherence optical radiation
WO2003105678A2 (en) 2002-06-12 2003-12-24 Advanced Research And Technology Institute, Inc. Method and apparatus for improving both lateral and axial resolution in ophthalmoscopy
US7272252B2 (en) 2002-06-12 2007-09-18 Clarient, Inc. Automated system for combining bright field and fluorescent microscopy
JP4045140B2 (en) 2002-06-21 2008-02-13 国立大学法人 筑波大学 Polarization-sensitive optical spectral interference coherence tomography apparatus and method for measuring polarization information inside a sample using the apparatus
RU2213421C1 (en) 2002-06-21 2003-09-27 Южно-Российский государственный университет экономики и сервиса Dynamic radio-signal memory device
US20040039252A1 (en) 2002-06-27 2004-02-26 Koch Kenneth Elmon Self-navigating endotracheal tube
JP3621693B2 (en) 2002-07-01 2005-02-16 フジノン株式会社 Interferometer device
AU2003261158A1 (en) 2002-07-12 2004-02-02 Joe Izatt Method and device for quantitative image correction for optical coherence tomography
JP3950378B2 (en) 2002-07-19 2007-08-01 新日本製鐵株式会社 Synchronous machine
JP4258015B2 (en) 2002-07-31 2009-04-30 毅 椎名 Ultrasonic diagnostic system, strain distribution display method, and elastic modulus distribution display method
JP4373651B2 (en) 2002-09-03 2009-11-25 Hoya株式会社 Diagnostic light irradiation device
JP2004113780A (en) 2002-09-06 2004-04-15 Pentax Corp Endoscope and optical tomographic endoscope system
US7283247B2 (en) 2002-09-25 2007-10-16 Olympus Corporation Optical probe system
WO2004029566A1 (en) 2002-09-26 2004-04-08 Bio Techplex Corporation Method and apparatus for screening using a waveform modulated led
US6842254B2 (en) 2002-10-16 2005-01-11 Fiso Technologies Inc. System and method for measuring an optical path difference in a sensing interferometer
US7734332B2 (en) 2002-10-18 2010-06-08 Ariomedica Ltd. Atherectomy system with imaging guidewire
US20040092829A1 (en) 2002-11-07 2004-05-13 Simon Furnish Spectroscope with modified field-of-view
JP4246986B2 (en) 2002-11-18 2009-04-02 株式会社町田製作所 Vibration object observation system and vocal cord observation processing apparatus
US6847449B2 (en) 2002-11-27 2005-01-25 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for reducing speckle in optical coherence tomography images
EP1426799A3 (en) 2002-11-29 2005-05-18 Matsushita Electric Industrial Co., Ltd. Optical demultiplexer, optical multi-/demultiplexer, and optical device
DE10260256B9 (en) 2002-12-20 2007-03-01 Carl Zeiss Interferometer system and measuring / machining tool
GB0229734D0 (en) 2002-12-23 2003-01-29 Qinetiq Ltd Grading oestrogen and progesterone receptors expression
JP4148771B2 (en) 2002-12-27 2008-09-10 株式会社トプコン Laser device for medical machine
US7123363B2 (en) 2003-01-03 2006-10-17 Rose-Hulman Institute Of Technology Speckle pattern analysis method and system
CA2514189A1 (en) 2003-01-24 2004-08-12 The General Hospital Corporation System and method for identifying tissue using low-coherence interferometry
US7075658B2 (en) 2003-01-24 2006-07-11 Duke University Method for optical coherence tomography imaging with molecular contrast
US7567349B2 (en) 2003-03-31 2009-07-28 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
US7643153B2 (en) 2003-01-24 2010-01-05 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US6943892B2 (en) 2003-01-29 2005-09-13 Sarnoff Corporation Instrument having a multi-mode optical element and method
WO2004073501A2 (en) 2003-02-20 2004-09-02 Gutin Mikhail Optical coherence tomography with 3d coherence scanning
JP4338412B2 (en) 2003-02-24 2009-10-07 Hoya株式会社 Confocal probe and confocal microscope
US7271918B2 (en) 2003-03-06 2007-09-18 Zygo Corporation Profiling complex surface structures using scanning interferometry
JP4135550B2 (en) 2003-04-18 2008-08-20 日立電線株式会社 Semiconductor light emitting device
US7110109B2 (en) 2003-04-18 2006-09-19 Ahura Corporation Raman spectroscopy system and method and specimen holder therefor
JP2004317437A (en) 2003-04-18 2004-11-11 Olympus Corp Optical imaging apparatus
WO2004098396A2 (en) 2003-05-01 2004-11-18 The Cleveland Clinic Foundation Method and apparatus for measuring a retinal sublayer characteristic
US7355721B2 (en) 2003-05-05 2008-04-08 D4D Technologies, Llc Optical coherence tomography imaging
CN100522043C (en) 2003-05-12 2009-08-05 富士能株式会社 Airbag type endoscope
SE527164C2 (en) 2003-05-14 2006-01-10 Spectracure Ab Interactive therapy/diagnosis system for tumor, has operation mode selector to optically direct non-ionizing electromagnetic therapeutic and/or diagnostic radiation to tumor site, through radiation conductor
US7376455B2 (en) 2003-05-22 2008-05-20 Scimed Life Systems, Inc. Systems and methods for dynamic optical imaging
WO2004111929A2 (en) 2003-05-28 2004-12-23 Duke University Improved system for fourier domain optical coherence tomography
AU2004244303A1 (en) 2003-05-29 2004-12-09 The Regents Of The University Of Michigan Double-clad fiber scanning microscope
EP1644697A4 (en) 2003-05-30 2006-11-29 Univ Duke System and method for low coherence broadband quadrature interferometry
US7263394B2 (en) 2003-06-04 2007-08-28 Tomophase Corporation Coherence-gated optical glucose monitor
US6943881B2 (en) 2003-06-04 2005-09-13 Tomophase Corporation Measurements of optical inhomogeneity and other properties in substances using propagation modes of light
KR20130138867A (en) 2003-06-06 2013-12-19 더 제너럴 하스피탈 코포레이션 Process and apparatus for a wavelength tunning source
US7458683B2 (en) 2003-06-16 2008-12-02 Amo Manufacturing Usa, Llc Methods and devices for registering optical measurement datasets of an optical system
US7170913B2 (en) 2003-06-19 2007-01-30 Multiwave Photonics, Sa Laser source with configurable output beam characteristics
US20040260182A1 (en) 2003-06-23 2004-12-23 Zuluaga Andres F. Intraluminal spectroscope with wall contacting probe
US7245753B2 (en) 2003-06-26 2007-07-17 Carestream Health, Inc. Method for determining dental alignment using radiographs
JP4677208B2 (en) 2003-07-29 2011-04-27 オリンパス株式会社 Confocal microscope
US20050038322A1 (en) 2003-08-11 2005-02-17 Scimed Life Systems Imaging endoscope
US7307734B2 (en) 2003-08-14 2007-12-11 University Of Central Florida Interferometric sensor for characterizing materials
US7539530B2 (en) 2003-08-22 2009-05-26 Infraredx, Inc. Method and system for spectral examination of vascular walls through blood during cardiac motion
US20050083534A1 (en) 2003-08-28 2005-04-21 Riza Nabeel A. Agile high sensitivity optical sensor
JP4590171B2 (en) 2003-08-29 2010-12-01 オリンパス株式会社 Capsule type medical device and medical device equipped with the capsule type medical device
JP2005077964A (en) 2003-09-03 2005-03-24 Fujitsu Ltd Spectroscope apparatus
US20050059894A1 (en) 2003-09-16 2005-03-17 Haishan Zeng Automated endoscopy device, diagnostic method, and uses
US20050057680A1 (en) 2003-09-16 2005-03-17 Agan Martin J. Method and apparatus for controlling integration time in imagers
US7935055B2 (en) 2003-09-19 2011-05-03 Siemens Medical Solutions Usa, Inc. System and method of measuring disease severity of a patient before, during and after treatment
US6949072B2 (en) 2003-09-22 2005-09-27 Infraredx, Inc. Devices for vulnerable plaque detection
US8172747B2 (en) 2003-09-25 2012-05-08 Hansen Medical, Inc. Balloon visualization for traversing a tissue wall
US20080252901A1 (en) 2003-09-26 2008-10-16 School Jiridical Person Kitasato Gakuen Wavelength-Tunable Light Source And Optical Coherence Tomography
JP3796550B2 (en) 2003-09-26 2006-07-12 日本電信電話株式会社 Optical interference tomography device
US7142835B2 (en) 2003-09-29 2006-11-28 Silicon Laboratories, Inc. Apparatus and method for digital image correction in a receiver
US7292792B2 (en) 2003-09-30 2007-11-06 Lucent Technologies Inc. High speed modulation of optical subcarriers
DE10349230A1 (en) 2003-10-23 2005-07-07 Carl Zeiss Meditec Ag Apparatus for interferometric eye length measurement with increased sensitivity
CN103181754A (en) 2003-10-27 2013-07-03 通用医疗公司 Method and apparatus for performing optical imaging using frequency-domain interferometry
DE10351319B4 (en) 2003-10-31 2005-10-20 Med Laserzentrum Luebeck Gmbh Interferometer for optical coherence tomography
US7130320B2 (en) 2003-11-13 2006-10-31 Mitutoyo Corporation External cavity laser with rotary tuning element
WO2005054780A1 (en) 2003-11-28 2005-06-16 The General Hospital Corporation Method and apparatus for three-dimensional spectrally encoded imaging
US7359062B2 (en) 2003-12-09 2008-04-15 The Regents Of The University Of California High speed spectral domain functional optical coherence tomography and optical doppler tomography for in vivo blood flow dynamics and tissue structure
DE10358735B4 (en) 2003-12-15 2011-04-21 Siemens Ag Catheter device comprising a catheter, in particular an intravascular catheter
US7145661B2 (en) 2003-12-31 2006-12-05 Carl Zeiss Meditec, Inc. Efficient optical coherence tomography (OCT) system and method for rapid imaging in three dimensions
JP4414771B2 (en) 2004-01-08 2010-02-10 オリンパス株式会社 Confocal microspectroscope
RU2255426C1 (en) 2004-02-19 2005-06-27 Южно-Российский государственный университет экономики и сервиса Radio-signal dynamic memory device having series binary fiber- optic system
JP4462959B2 (en) 2004-02-25 2010-05-12 富士通株式会社 Microscope image photographing system and method
EP1722669A4 (en) 2004-02-27 2009-05-27 Optiscan Pty Ltd Optical element
DE102004011189B4 (en) * 2004-03-04 2011-05-05 Carl Mahr Holding Gmbh Optical measuring head
US20050254059A1 (en) 2004-05-14 2005-11-17 Alphonse Gerard A Low coherence interferometric system for optical metrology
US7190464B2 (en) 2004-05-14 2007-03-13 Medeikon Corporation Low coherence interferometry for detecting and characterizing plaques
US7242480B2 (en) 2004-05-14 2007-07-10 Medeikon Corporation Low coherence interferometry for detecting and characterizing plaques
WO2005117534A2 (en) 2004-05-29 2005-12-15 The General Hospital Corporation Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging
US7447408B2 (en) 2004-07-02 2008-11-04 The General Hospital Corproation Imaging system and related techniques
DE102004035269A1 (en) 2004-07-21 2006-02-16 Rowiak Gmbh Laryngoscope with OCT
US8081316B2 (en) 2004-08-06 2011-12-20 The General Hospital Corporation Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
WO2006020605A2 (en) 2004-08-10 2006-02-23 The Regents Of The University Of California Device and method for the delivery and/or elimination of compounds in tissue
KR101269455B1 (en) 2004-09-10 2013-05-30 더 제너럴 하스피탈 코포레이션 System and method for optical coherence imaging
JP4997112B2 (en) 2004-09-29 2012-08-08 ザ ジェネラル ホスピタル コーポレイション Apparatus for transmitting at least one electromagnetic radiation and method of manufacturing the same
US7113625B2 (en) 2004-10-01 2006-09-26 U.S. Pathology Labs, Inc. System and method for image analysis of slides
SE0402435L (en) 2004-10-08 2006-04-09 Trajan Badju Process and system for generating three-dimensional images
CA2584993A1 (en) 2004-10-22 2006-04-27 Bevan Leslie Reid Analytical method and apparatus
EP2272424A1 (en) 2004-10-29 2011-01-12 The General Hospital Corporation Polarisation-sensitive optical coherence tomography
JP5623692B2 (en) 2004-11-02 2014-11-12 ザ ジェネラル ホスピタル コーポレイション Optical fiber rotator, optical system and method for sample imaging
US7417740B2 (en) 2004-11-12 2008-08-26 Medeikon Corporation Single trace multi-channel low coherence interferometric sensor
US8617152B2 (en) 2004-11-15 2013-12-31 Medtronic Ablation Frontiers Llc Ablation system with feedback
DE102005045071A1 (en) 2005-09-21 2007-04-12 Siemens Ag Catheter device with a position sensor system for the treatment of a partial and / or complete vascular occlusion under image monitoring
GB0425419D0 (en) 2004-11-18 2004-12-22 Sira Ltd Interference apparatus and method and probe
WO2006058187A2 (en) 2004-11-23 2006-06-01 Robert Eric Betzig Optical lattice microscopy
GB0426609D0 (en) 2004-12-03 2005-01-05 Ic Innovations Ltd Analysis
JP2006162366A (en) 2004-12-06 2006-06-22 Fujinon Corp Optical tomographic imaging system
US7450242B2 (en) 2004-12-10 2008-11-11 Fujifilm Corporation Optical tomography apparatus
US7336366B2 (en) 2005-01-20 2008-02-26 Duke University Methods and systems for reducing complex conjugate ambiguity in interferometric data
US8315282B2 (en) 2005-01-20 2012-11-20 Massachusetts Institute Of Technology Fourier domain mode locking: method and apparatus for control and improved performance
US7330270B2 (en) 2005-01-21 2008-02-12 Carl Zeiss Meditec, Inc. Method to suppress artifacts in frequency-domain optical coherence tomography
US7342659B2 (en) 2005-01-21 2008-03-11 Carl Zeiss Meditec, Inc. Cross-dispersed spectrometer in a spectral domain optical coherence tomography system
HU227859B1 (en) 2005-01-27 2012-05-02 E Szilveszter Vizi Real-time 3d nonlinear microscope measuring system and its application
US7267494B2 (en) 2005-02-01 2007-09-11 Finisar Corporation Fiber stub for cladding mode coupling reduction
US7860555B2 (en) 2005-02-02 2010-12-28 Voyage Medical, Inc. Tissue visualization and manipulation system
US7664300B2 (en) 2005-02-03 2010-02-16 Sti Medical Systems, Llc Uterine cervical cancer computer-aided-diagnosis (CAD)
DE102005007574B3 (en) 2005-02-18 2006-08-31 Siemens Ag catheter device
EP1910996A1 (en) 2005-02-23 2008-04-16 Lyncee Tec S.A. Wave front sensing method and apparatus
JP4628820B2 (en) 2005-02-25 2011-02-09 サンテック株式会社 Wavelength scanning fiber laser light source
US7530948B2 (en) 2005-02-28 2009-05-12 University Of Washington Tethered capsule endoscope for Barrett's Esophagus screening
DE102005010790A1 (en) 2005-03-09 2006-09-14 Basf Ag Photovoltaic cell with a photovoltaically active semiconductor material contained therein
US20060224053A1 (en) 2005-03-30 2006-10-05 Skyline Biomedical, Inc. Apparatus and method for non-invasive and minimally-invasive sensing of venous oxygen saturation and pH levels
JP2008538612A (en) 2005-04-22 2008-10-30 ザ ジェネラル ホスピタル コーポレイション Configuration, system, and method capable of providing spectral domain polarization sensitive optical coherence tomography
WO2006116362A2 (en) 2005-04-25 2006-11-02 The Trustees Of Boston University Structured substrates for optical surface profiling
WO2006124860A1 (en) 2005-05-13 2006-11-23 The General Hospital Corporation Arrangements, systems and methods capable of providing spectral-domain optical coherence reflectometry for a sensitive detection of chemical and biological sample
EP2453241B1 (en) 2005-05-23 2017-01-11 Harald F. Hess Optical microscopy with phototransformable optical labels
WO2006130797A2 (en) 2005-05-31 2006-12-07 The General Hospital Corporation Spectral encoding heterodyne interferometry techniques for imaging
JP5702049B2 (en) 2005-06-01 2015-04-15 ザ ジェネラル ホスピタル コーポレイション Apparatus, method and system for performing phase resolved optical frequency domain imaging
US20080208022A1 (en) 2005-06-07 2008-08-28 Koninklijke Philips Electronics, N.V. Laser Optical Feedback Tomography Sensor and Method
US7391520B2 (en) 2005-07-01 2008-06-24 Carl Zeiss Meditec, Inc. Fourier domain optical coherence tomography employing a swept multi-wavelength laser and a multi-channel receiver
US20080218696A1 (en) 2005-07-01 2008-09-11 Jose Mir Non-Invasive Monitoring System
DE102005034443A1 (en) 2005-07-22 2007-02-22 Carl Zeiss Jena Gmbh Sample e.g. cell particle, luminescence microscopy method, involves prevailing one of sample regions for image of sample, so that image has local resolution which is enhanced in relation to excitation radiation distribution
US7292347B2 (en) 2005-08-01 2007-11-06 Mitutoyo Corporation Dual laser high precision interferometer
JP4376837B2 (en) 2005-08-05 2009-12-02 サンテック株式会社 Wavelength scanning laser light source
ES2354287T3 (en) 2005-08-09 2011-03-11 The General Hospital Corporation APPARATUS AND METHOD FOR PERFORMING A DEMODULATION IN QUADRATURE BY POLARIZATION IN OPTICAL COHERENCE TOMOGRAPHY.
US7668342B2 (en) 2005-09-09 2010-02-23 Carl Zeiss Meditec, Inc. Method of bioimage data processing for revealing more meaningful anatomic features of diseased tissues
WO2007030835A2 (en) 2005-09-10 2007-03-15 Baer Stephen C High resolution microscopy using an optically switchable fluorophore
US8114581B2 (en) 2005-09-15 2012-02-14 The Regents Of The University Of California Methods and compositions for detecting neoplastic cells
JP4708937B2 (en) 2005-09-15 2011-06-22 Hoya株式会社 OCT observation instrument, fixing instrument, and OCT system
KR100743591B1 (en) 2005-09-23 2007-07-27 한국과학기술원 Confocal Self-Interference Microscopy Which Excluding Side Lobes
JP6046325B2 (en) 2005-09-29 2016-12-14 ザ ジェネラル ホスピタル コーポレイション Method and apparatus for the observation and analysis of one or more biological samples with progressively increased resolution
US7450241B2 (en) 2005-09-30 2008-11-11 Infraredx, Inc. Detecting vulnerable plaque
US7400410B2 (en) 2005-10-05 2008-07-15 Carl Zeiss Meditec, Inc. Optical coherence tomography for eye-length measurement
US7545504B2 (en) 2005-10-07 2009-06-09 Biotigen, Inc. Imaging systems using unpolarized light and related methods and controllers
JP2009511909A (en) 2005-10-11 2009-03-19 デユーク・ユニバーシテイ System and method for angle resolved low coherence interferometry with endoscope
WO2007044786A2 (en) 2005-10-11 2007-04-19 Zygo Corporation Interferometry method and system including spectral decomposition
US7408649B2 (en) 2005-10-26 2008-08-05 Kla-Tencor Technologies Corporation Method and apparatus for optically analyzing a surface
WO2007084945A1 (en) 2006-01-19 2007-07-26 The General Hospital Corporation Systems and methods for performing rapid fluorescense lifetime, excitation and emission spectral measurements
CN104257348A (en) 2006-01-19 2015-01-07 通用医疗公司 Methods And Systems For Optical Imaging Of Epithelial Luminal Organs By Beam Scanning Thereof
GB0601183D0 (en) 2006-01-20 2006-03-01 Perkinelmer Ltd Improvements in and relating to imaging
US7787129B2 (en) 2006-01-31 2010-08-31 The Board Of Trustees Of The University Of Illinois Method and apparatus for measurement of optical properties in tissue
EP1988825B1 (en) 2006-02-08 2016-12-21 The General Hospital Corporation Arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
US8184367B2 (en) 2006-02-15 2012-05-22 University Of Central Florida Research Foundation Dynamically focused optical instrument
DE102006008990B4 (en) 2006-02-23 2008-05-21 Atmos Medizintechnik Gmbh & Co. Kg Method and arrangement for generating a signal corresponding to the opening state of the vocal folds of the larynx
TWI414543B (en) 2006-02-24 2013-11-11 Toray Industries Fiber reinforced thermoplastic resin molded body, molding material, and process for manufacturing the same
JP2007271761A (en) 2006-03-30 2007-10-18 Fujitsu Ltd Spectrometer and wavelength dispersion controller
CN101466298B (en) 2006-04-05 2011-08-31 通用医疗公司 Methods arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample
US20070253901A1 (en) 2006-04-27 2007-11-01 David Deng Atherosclerosis genes and related reagents and methods of use thereof
WO2007127395A2 (en) 2006-04-28 2007-11-08 Bioptigen, Inc. Methods, systems and computer program products for optical coherence tomography (oct) using automatic dispersion compensation
WO2007133964A2 (en) 2006-05-12 2007-11-22 The General Hospital Corporation Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images
US7460248B2 (en) 2006-05-15 2008-12-02 Carestream Health, Inc. Tissue imaging system
EP1859727A1 (en) 2006-05-26 2007-11-28 Stichting voor de Technische Wetenschappen optical triggering system for stroboscopy and a stroboscopic system
US7599074B2 (en) 2006-06-19 2009-10-06 The Board Of Trustees Of The Leland Stanford Junior University Grating angle magnification enhanced angular sensor and scanner
US20070291277A1 (en) 2006-06-20 2007-12-20 Everett Matthew J Spectral domain optical coherence tomography system
US7496220B2 (en) 2006-08-28 2009-02-24 Thermo Electron Scientific Instruments Llc Spectroscopic microscopy with image-driven analysis
WO2008049118A2 (en) 2006-10-19 2008-04-24 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample and effecting such portion(s)
EP2087400B1 (en) 2006-10-26 2019-10-16 Cornell Research Foundation, Inc. Production of optical pulses at a desired wavelength using soliton self-frequency shift in higher-order-mode fiber
WO2008053474A2 (en) 2006-10-30 2008-05-08 Elfi-Tech Ltd. System and method for in vivo measurement of biological parameters
DE102006054556A1 (en) 2006-11-20 2008-05-21 Zimmer Medizinsysteme Gmbh Apparatus and method for non-invasive, optical detection of chemical and physical blood values and body constituents
US20080204762A1 (en) 2007-01-17 2008-08-28 Duke University Methods, systems, and computer program products for removing undesired artifacts in fourier domain optical coherence tomography (FDOCT) systems using integrating buckets
US7911621B2 (en) 2007-01-19 2011-03-22 The General Hospital Corporation Apparatus and method for controlling ranging depth in optical frequency domain imaging
US20080226029A1 (en) 2007-03-12 2008-09-18 Weir Michael P Medical device including scanned beam unit for imaging and therapy
JP5227525B2 (en) 2007-03-23 2013-07-03 株式会社日立製作所 Biological light measurement device
MX2009010331A (en) 2007-03-26 2009-10-16 Univ Tokyo Nat Univ Corp Germ cell marker using fish vasa gene.
US8244334B2 (en) 2007-04-10 2012-08-14 University Of Southern California Methods and systems for blood flow measurement using doppler optical coherence tomography
WO2008137637A2 (en) 2007-05-04 2008-11-13 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with a sample using brillouin microscopy
US7799558B1 (en) 2007-05-22 2010-09-21 Dultz Shane C Ligand binding assays on microarrays in closed multiwell plates
US8166967B2 (en) 2007-08-15 2012-05-01 Chunyuan Qiu Systems and methods for intubation
US20090219544A1 (en) 2007-09-05 2009-09-03 The General Hospital Corporation Systems, methods and computer-accessible medium for providing spectral-domain optical coherence phase microscopy for cell and deep tissue imaging
JP2011500173A (en) 2007-10-12 2011-01-06 ザ ジェネラル ホスピタル コーポレイション System and process for optical imaging of luminal anatomical structures
US9332942B2 (en) 2008-01-28 2016-05-10 The General Hospital Corporation Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging
JP5192247B2 (en) 2008-01-29 2013-05-08 並木精密宝石株式会社 OCT probe
US7898656B2 (en) 2008-04-30 2011-03-01 The General Hospital Corporation Apparatus and method for cross axis parallel spectroscopy
US8184298B2 (en) 2008-05-21 2012-05-22 The Board Of Trustees Of The University Of Illinois Spatial light interference microscopy and fourier transform light scattering for cell and tissue characterization
EP2293714B1 (en) 2008-06-02 2014-08-13 Lightlab Imaging, Inc. Quantitative methods for obtaining tissue characteristics from optical coherence tomography images
JP5324839B2 (en) 2008-06-19 2013-10-23 株式会社トプコン Optical image measuring device
JP5546112B2 (en) 2008-07-07 2014-07-09 キヤノン株式会社 Ophthalmic imaging apparatus and ophthalmic imaging method
US8133127B1 (en) 2008-07-21 2012-03-13 Synder Terrance W Sports training device and methods of use
JP5371315B2 (en) 2008-07-30 2013-12-18 キヤノン株式会社 Optical coherence tomography method and optical coherence tomography apparatus
US20110160681A1 (en) 2008-12-04 2011-06-30 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems, devices, and methods including catheters having light removable coatings based on a sensed condition
CN101744601B (en) 2008-12-05 2013-04-24 德昌电机(深圳)有限公司 Capsule type imaging device and internal image capturing system
US8864669B2 (en) 2008-12-29 2014-10-21 Perseus-Biomed Inc. Method and system for tissue imaging and analysis
US8457715B2 (en) 2009-04-08 2013-06-04 Covidien Lp System and method for determining placement of a tracheal tube
US9089331B2 (en) 2009-07-31 2015-07-28 Case Western Reserve University Characterizing ablation lesions using optical coherence tomography (OCT)
WO2011055376A1 (en) 2009-11-09 2011-05-12 Tata Institute Of Fundamental Research Biological laser plasma x-ray point source
KR101522850B1 (en) 2010-01-14 2015-05-26 삼성전자주식회사 Method and apparatus for encoding/decoding motion vector
US8804126B2 (en) 2010-03-05 2014-08-12 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020122246A1 (en) * 1998-02-26 2002-09-05 Tearney Guillermo J. Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy
US8818149B2 (en) * 2006-01-19 2014-08-26 The General Hospital Corporation Spectrally-encoded endoscopy techniques, apparatus and methods

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10288868B2 (en) 2014-01-31 2019-05-14 Canon U.S.A., Inc. Optical probe, light intensity detection, imaging method and system
US10095020B2 (en) 2014-01-31 2018-10-09 Canon U.S.A., Inc. Apparatus and methods for color endoscopy
US10966597B2 (en) 2015-08-05 2021-04-06 Canon U.S.A., Inc. Forward and angle view endoscope
WO2017024145A1 (en) * 2015-08-05 2017-02-09 Canon U.S.A., Inc. Forward and angle view endoscope
US10194065B2 (en) 2015-08-05 2019-01-29 Canon U.S.A., Inc. Endoscope probes and systems, and methods for use therewith
US9869854B2 (en) 2015-12-16 2018-01-16 Canon U.S.A, Inc. Endoscopic system
US10444146B2 (en) 2015-12-28 2019-10-15 Canon U.S.A., Inc. Optical probe, light intensity detection, imaging method and system
US10551245B2 (en) 2016-02-12 2020-02-04 Canon U.S.A., Inc. Simple monolithic optical element for forward-viewing spectrally encoded endoscopy
US10321810B2 (en) 2016-06-13 2019-06-18 Canon U.S.A., Inc. Spectrally encoded endoscopic probe having a fixed fiber
US10234694B2 (en) 2016-07-15 2019-03-19 Canon U.S.A., Inc. Spectrally encoded probes
US10401610B2 (en) 2016-07-15 2019-09-03 Canon Usa, Inc. Spectrally encoded probe with multiple diffraction orders
JP2019527576A (en) * 2016-07-15 2019-10-03 キヤノン ユーエスエイ, インコーポレイテッドCanon U.S.A., Inc Spectral encoding probe
WO2018013838A1 (en) * 2016-07-15 2018-01-18 Canon U.S.A. Inc. Spectrally encoded probes
US10646111B2 (en) 2016-09-23 2020-05-12 Canon U.S.A., Inc. Spectrally encoded endoscopy apparatus and methods
US10898068B2 (en) 2016-11-01 2021-01-26 Canon U.S.A., Inc. Multi-bandwidth spectrally encoded endoscope
US10371614B2 (en) 2016-11-03 2019-08-06 Canon U.S.A., Inc. Diagnostic spectrally encoded endoscopy apparatuses and systems and methods for use with same
WO2018113885A1 (en) * 2016-12-20 2018-06-28 3Dintegrated Aps A 3 d sensor system comprising an optical transmitter device, a detector and a computer system
US10825152B2 (en) 2017-09-14 2020-11-03 Canon U.S.A., Inc. Distortion measurement and correction for spectrally encoded endoscopy

Also Published As

Publication number Publication date
US20070188855A1 (en) 2007-08-16
US20180010965A1 (en) 2018-01-11
US8818149B2 (en) 2014-08-26
US9791317B2 (en) 2017-10-17
US8145018B2 (en) 2012-03-27
US20120328241A1 (en) 2012-12-27
US9516997B2 (en) 2016-12-13
WO2007084903A2 (en) 2007-07-26
WO2007084903A3 (en) 2008-06-26
US20170160132A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
US9791317B2 (en) Spectrally-encoded endoscopy techniques and methods
US7366376B2 (en) System and method for optical coherence imaging
JP6770109B2 (en) Omnidirectional visual device
JP4932993B2 (en) Single mode fiber optic coupling system
US9864140B2 (en) Miniature optical elements for fiber-optic beam shaping
US8184367B2 (en) Dynamically focused optical instrument
EP2972535B1 (en) Optical fiber beam directing systems and apparatuses
JP2000097846A5 (en) Optical scanning probe device and optical imaging device
US11681093B2 (en) Multicore fiber with distal motor
US10426326B2 (en) Fiber optic correction of astigmatism
AU2017441379B2 (en) Optical endoscope
US20210149101A1 (en) Multicore Fiber Instrument with 3D-Printed Distal Optics
JP6886432B2 (en) Fiber Optic Beam Directional Systems and Equipment
JP2020201520A (en) Optical fiber beam-directing systems and apparatuses

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE GENERAL HOSPITAL CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHISHKOV, MILEN;TEARNEY, GUILLERMO J.;BOUMA, BRETT EUGENE;AND OTHERS;SIGNING DATES FROM 20070112 TO 20070117;REEL/FRAME:034088/0502

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4