US20120251963A1 - Thermostat with integrated carbon monoxide (co) sensor - Google Patents

Thermostat with integrated carbon monoxide (co) sensor Download PDF

Info

Publication number
US20120251963A1
US20120251963A1 US13/077,888 US201113077888A US2012251963A1 US 20120251963 A1 US20120251963 A1 US 20120251963A1 US 201113077888 A US201113077888 A US 201113077888A US 2012251963 A1 US2012251963 A1 US 2012251963A1
Authority
US
United States
Prior art keywords
sensor
carbon monoxide
thermostat
signal
cartridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/077,888
Inventor
Kimberly Ann Barker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Industry Inc
Original Assignee
Siemens Industry Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Industry Inc filed Critical Siemens Industry Inc
Priority to US13/077,888 priority Critical patent/US20120251963A1/en
Assigned to SIEMENS INDUSTRY, INC. reassignment SIEMENS INDUSTRY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BARKER, KIMBERLY A
Priority to PCT/US2012/028473 priority patent/WO2012134771A1/en
Publication of US20120251963A1 publication Critical patent/US20120251963A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/022Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using electronic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1902Control of temperature characterised by the use of electric means characterised by the use of a variable reference value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/38Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05001Measuring CO content in flue gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05002Measuring CO2 content in flue gas

Definitions

  • thermostats and other temperature control devices are often utilized in households to control and otherwise regulate the temperature and/or airflow provided by a residential or commercial heating, ventilation and air-conditioning (HVAC) system.
  • HVAC heating, ventilation and air-conditioning
  • An exemplary thermostat may include, a temperature-sensitive switch or sensor that controls a space conditioning unit or system that may be part of a typical HVAC system. For example, when the sensor or switch detects that the indoor temperature drops below or rises above a threshold; the switch or sensor toggles to an ON-position and communicates a temperature signal to the thermostat. The temperature signal causes the thermostat to activate a furnace or air conditioner to drive the indoor temperature to the threshold. Adjustments to the thermostat threshold may be implemented manually via controls provided on the device itself or may be implemented remotely via a communication interface.
  • Remote adjustment or control of a thermostat threshold may be accomplished utilizing a wired or wireless communication interface or module coupled to or in communication with the thermostat.
  • a control signal including a temperature threshold adjustment value may be received by the wired or wireless communication interface or module and provided to the thermostat.
  • the thermostat may, in turn, utilize the temperature threshold adjustment value to change the thermostat threshold, which causes the furnace or air conditioner to operate and drive the indoor temperature to the adjusted threshold.
  • the disclosed embodiments generally relate to thermostats and more particularly to thermostats configured to provide environmental and emergency control of an environmental control device or other heating, ventilation and air-conditioning (HVAC) component.
  • HVAC heating, ventilation and air-conditioning
  • a thermostat control device in one embodiment, includes a temperature sensor, a cartridge sensor and a controller in communication with the temperature sensor and the cartridge sensor.
  • the controller further includes a processor, a memory in communication with the processor, the memory storing processor executable instructions configured to: generate a furnace control signal in response to a temperature sensor signal; analyze a cartridge sensor signal received from the cartridge sensor against a threshold; and generate, if the cartridge sensor signal exceeds the threshold, an emergency furnace shutdown signal.
  • a thermostat control system in another embodiment, includes a thermostat device having a temperature sensor, a communication module and a controller.
  • the controller configured to generate a furnace control signal in response to a temperature sensor signal, analyze a carbon monoxide sensor signal received, via the communication module, from the carbon monoxide sensor with respect to a threshold, and generate, if the carbon monoxide sensor signal exceeds the threshold, an emergency furnace shutdown signal.
  • the thermostat control system further includes a safety device in communication with the thermostat device, the safety including a carbon monoxide sensor, and a communication module configured to communicate the carbon monoxide sensor signal to communication module portion of the thermostat device.
  • a method of environmental control utilizing a thermostat in communication with an environmental control device and a sensing device includes analyzing a temperature control signal, wherein the temperature control signal represents a physical temperature substantially adjacent to the thermostat, generating an environmental control signal in response to the received temperature sensor signal, wherein the environmental control signal is provided to the environmental control device, receiving, at the thermostat, a sensor signal from the sensing device; analyzing the received sensor signal with respect to a threshold; and generating, if the received sensor signal exceeds the threshold, an emergency environmental control shutdown signal, wherein the environmental control signal is provided to the environmental control device.
  • FIG. 1 illustrates a front view of an exemplary embodiment of a thermostat control device as disclosed herein;
  • FIG. 2 illustrates a top view of the exemplary thermostat control device shown in FIG. 1 ;
  • FIG. 3A illustrates an internal block diagram of the exemplary thermostat control device shown in FIG. 1 ;
  • FIG. 3B illustrates a block diagram of an exemplary thermostat control routine stored in the memory shown in FIG. 3A ;
  • FIGS. 4 to 7 depict operation flowcharts illustrating an exemplary process that may be implemented or performed by the thermostat controller of the thermostat control device shown in FIG. 1 to monitor and respond to both temperature and carbon monoxide levels in a surrounding area in accordance with the present invention
  • FIGS. 8 to 11 illustrate exemplary information displays that may be generated by the exemplary thermostat control device shown in FIG. 1 .
  • the present disclosure generally relates to residential and commercial environmental monitoring and control systems and more particularly to a residential or commercial thermostat control device configured to monitor air quality within a residence or commercial space and, in response to the monitored air quality, control a furnace or other environmental control device.
  • the thermostat control device incorporates a cartridge sensor with may be configured to cooperate with, for example, a removable carbon dioxide sensor cartridge.
  • the thermostat control device is configured to communicate with one or more remote sensors or safety devices.
  • FIG. 1 illustrates a front view of a thermostat control device 100 .
  • the thermostat control device 100 (also referred to herein as “thermostat 100 ”), in this exemplary embodiment, includes a substantially rectilinear housing 102 .
  • the housing 102 may be, for example, an injected molded plastic housing configured and designed to replace a standard residential or commercial thermostat. In this way, the disclosed thermostat control device 100 may be used in place of and/or to upgrade residential or commercial thermostats in use today.
  • the housing 102 may be configured or designed to support a display 104 .
  • the display 104 may be a resistive or capacitive touchscreen display capable of receiving one or more user inputs via interaction with a surface of the touchscreen.
  • the display 104 may be, for example, a high-resolution color display, a low-power e-ink display provided by E Ink Corporation of Cambridge, Mass. and/or may operate in different display modes based on ambient lighting conditions, time of day, season of the year or other environmental factors.
  • the display 104 may be configured to generate a graphical user interface (GUI) and provide a user with one or more pieces of relevant environmental information 106 received from a communicatively connected processor 304 and memory module 306 .
  • GUI graphical user interface
  • the housing 102 may further include a plurality of controls 112 carried therein.
  • the plurality of controls 112 may be any buttons, switches or other touch sensitive devices or sensors.
  • the plurality of controls 112 includes temperature control buttons 112 a and 112 b .
  • the temperature control button 112 a is configured to increase the temperature corresponding to a temperature set point 806 b (see FIG. 8 ) while, the temperature control button 112 b is configured to decrease the temperature.
  • the CO test button 112 c may be utilized to check the sensor 108 and/or reset the displayed CO levels 806 g (see FIG. 8 ) shown by the display 104 .
  • the CO test button 112 c may further be utilized to test the sensors as discussed below in connection with FIGS. 4 to 7 .
  • FIG. 2 illustrates a top view of the housing 102 discussed above and shown in FIG. 1 .
  • the top view illustrates a battery compartment 200 substantially adjacent to the display 104 .
  • the battery compartment 200 may carry or support one or more batteries, fuel cells, capacitors or other energy storage devices as generally indicated by the reference 202
  • the top view further illustrates a sensor compartment 204 sized to support and protect the sensor 108 .
  • the sensor compartment 204 may be configured to accept a removable sensor or sensor cartridge.
  • Removable sensors or sensor cartridges may be configured to detect toxins, impurities, or dangerous levels of other gases within range of the sensor.
  • the thermostat control device 100 may be configured to carry and cooperate with a removable carbon monoxide sensor 108 .
  • the thermostat control device 100 may be configured to carry and cooperate with an alternate removable sensor 108 configured to detect, for example, radon gas, carbon dioxide levels (CO 2 ), toxic chemicals or other potential hazards. In this way, the thermostat control device 100 may be configured or tailored based on a given environment or user need.
  • FIG. 3A illustrates an internal block diagram 300 of one embodiment of the thermostat control device 100 .
  • individual functions and/or modules are illustrated as separate logical entities in communication via a bus 302 .
  • bus 302 may be implemented as a bus that a single or limited number of physical components.
  • these functions and/or modules may be specialized computer or program logic configured to gather, process or otherwise manipulate environmental systems or data.
  • the thermostat control device 100 may include a processor 304 in communication with the bus 302 .
  • the processor 304 in one embodiment may be a computer processor configured to execute a computer and/or control program stored in a memory module 306 .
  • the memory module 306 is shown in communication with the processor 304 via the bus 302 .
  • the memory module 306 may be configured to store temperature control programs, routines or other information utilized or executable by the processor 304 .
  • the processor 304 may further be configured to provide or drive the display 104 via the bus 302 .
  • the processor 304 may, in turn, generate and/or update the plurality of information 106 shown on the display 104 and discussed in connection with exemplary FIG. 3B .
  • An audio module 308 may be in communications with the processor 304 .
  • the audio module 308 may include one or more speakers, buzzers and other vibratory indicators.
  • the processor 304 may drive or otherwise control the audio module 308 to provide a user with an indication of an alert or other event.
  • a temperature sensor 310 may be configured to directly measure the air temperature around the thermostat control device 100 .
  • the temperature sensor 310 may be configured to process temperature data, humidity information or other data directly detected or received via a communication module 312 .
  • the communication module 312 may be a wired or wireless communication module configured to communicate with automation components, environmental control systems or other elements in communication with the residential or commercial structure.
  • the communication module 312 may be configured to communicate via a powerline network, an Ethernet network, a two-wire network or other known networking configuration.
  • the communication module 312 may be configured to communicate according to Wi-Fi, Bluetooth, ZigBee or other known radio communications protocol such as the IEEE 802.xx protocols.
  • the communications module 312 may be configured for both wired and wireless communications for increased flexibility.
  • a communications port 314 may be directly and/or electrically connected to an I/O module 316 .
  • the I/O module 316 and the bus 302 serve to communicatively couple the communication module 312 to the communications port 314 .
  • the I/O module 316 includes a main or master connector 318 configured to receive power and communicate information with a furnace or other environmental control device (not shown).
  • the I/O module 316 further includes an emergency connector 320 configured to communicate with the master shutoff circuit of the furnace or other environmental control device.
  • the emergency connector 320 may be utilized by the processor 304 in conjunction with a carbon monoxide sensor 322 .
  • the carbon monoxide sensor 322 may be coupled to a carbon monoxide cartridge 324 .
  • the carbon monoxide sensor 322 represents any device or mechanism necessary to detect changes in the carbon monoxide levels within a room or other area monitored by the thermostat control device 100 .
  • the carbon monoxide sensor 322 may further include any programming or circuitry necessary to gather, organize and/or queue the detected changes.
  • the carbon monoxide cartridge 324 may be a removable cartridge corresponding to removable sensor 108 , which could be accessed through, for example, the sensor compartment 204 shown in FIG. 2 .
  • the carbon monoxide cartridge 324 may be or include an opti-chemical pad (not shown) carrying or infused with a dye or chemical that causes the pad to change to a predetermined color when carbon monoxide reacts with the dye or chemical on or in the opt-chemical pad.
  • the carbon monoxide sensor 322 may include a light or an optical sensor configured to detect the color change in the opti-chemical pad and communicate an alarm signal to the processor 304 when the detected color change corresponds to a predetermined concentration level of carbon dioxide (e.g., 100 parts per million) in proximity to the carbon monoxide cartridge 324 (e.g., at the grate 110 of the housing 102 ).
  • a predetermined concentration level of carbon dioxide e.g., 100 parts per million
  • the opti-chemical pad may be a removable or replaceable pad protected by and encapsulated in a carbon dioxide gas permeable silicone coating.
  • the carbon monoxide cartridge 324 may comprise a removable cartridge of synthetic hemoglobin that darkens in color when carbon monoxide is present and lightens in color when carbon monoxide concentrations are low (e.g., less than 100 parts per million).
  • the carbon monoxide sensor 322 may be a biomimetic sensor, such as an opto-chemical or gel sensor configured to detect the color change in the synthetic hemoglobin of the carbon monoxide cartridge 324 .
  • the carbon monoxide cartridge 324 may be an electrochemical cell sized to removably couple or fit within the sensor compartment 204 .
  • the electrochemical cell includes a cell container configured to support or position a gas permeable membrane that forms a surface of the cell container nearest the grate 110 when the cell container is carried or supported within the sensor compartment 204 .
  • the exemplary electrochemical cell further includes a carbon monoxide and oxygen diffusion barrier disposed directly beneath and/or in fluid communication with the gas permeable membrane forming the surface of the cell container.
  • the electrochemical cell may also include a first electrode or anode (also referenced as the “sensing electrode”) and a second electrode or cathode.
  • the sensing electrode is attached to the cell container and disposed substantially adjacent to the grate 110 beneath and in the diffusion barrier.
  • the sensing electrode is configured to consume or react to the presence of carbon monoxide that diffused through the diffusion barrier from the air near the grate 110 .
  • the cathode is similarly disposed beneath and in the diffusion barrier relative to the sensing electrode (and, thus, may also face the grate 110 ).
  • the cathode electrode is configured to consume or react to the presence of oxygen in the diffusion barrier.
  • the diffusion barrier may comprise, include or otherwise support a sulfuric acid component. When carbon monoxide diffuses into the diffusion barrier to the sensing electrode, the carbon monoxide oxidizes to create a potential difference between the sensing electrode and the cathode. The potential difference results in a current flow between the two electrodes that is proportional to the amount of carbon monoxide present at the first or sensing electrode.
  • the carbon monoxide sensor 322 is configured to measure or read the current flow between the cathode and the sensing electrode when the cartridge 324 is inserted in the compartment 204 .
  • the carbon monoxide sensor 322 may communicate: (1) the current value as a signal to the processor 304 for generating an alarm when the current value reaches a predetermined level or threshold corresponding to a pre-determined concentration of carbon monoxide; or (2) an alarm signal to the processor 304 when the current value reaches the predetermined level or threshold.
  • the carbon monoxide sensor 322 and the carbon monoxide cartridge 324 may together comprise a semiconductor carbon monoxide detector.
  • the carbon monoxide cartridge 324 is a packaged semiconductor sensor element (not shown) that includes at least two layers of thin tin dioxide wires disposed on an insulating ceramic base.
  • the carbon monoxide sensor 322 in this exemplary embodiment, is an integrated circuit that includes a heating source adapted to connect to and heat the tin dioxide wires when the carbon monoxide cartridge 324 is inserted into the sensor compartment 204 .
  • the heating source of the carbon monoxide sensor 322 may, in turn, be configured to heat the tin dioxide wire layers to approximately 400 degrees Celcius (° C.) or higher to cause the sensing element of the carbon monoxide cartridge 324 to effectively sense carbon monoxide at or near the grate 110 .
  • the sensing element of the carbon monoxide cartridge 324 is heated, oxygen at or near the grate 110 increases resistance of the tin dioxide wires, but carbon monoxide at or near the grate 110 reduces resistance of the sensing element.
  • the integrated circuit of the carbon monoxide sensor 322 also includes a resistance sensitive input configured to connect to the tin dioxide wires of the sensing element of the carbon monoxide cartridge 324 when it is inserted in the sensor compartment 204 .
  • the carbon monoxide sensor 322 measures the resistance of the sensing element and compares the measured resistance to a pre-determined resistance corresponding to a pre-determined threshold concentration of carbon monoxide near the grate 110 .
  • the carbon monoxide sensor 322 may communicate: (1) the measured resistance as a signal to the processor 304 for generating an alarm when the measured resistance reaches the pre-determined resistance corresponding to the predetermined threshold of concentration of carbon monoxide near the gate 110 ; or (2) an alarm signal to the processor 304 when the measured resistance reaches the predetermined threshold.
  • the carbon monoxide sensor 322 may communicate carbon monoxide levels or information to the processor 304 as described herein.
  • the processor 304 may, in turn, evaluate the received sensor data against carbon monoxide thresholds, historical trends, or other set points. If the carbon monoxide levels are determined to exceed a given threshold and/or provide a danger, the processor 304 may institute an emergency shutdown of the furnace or environmental control device via the emergency connector 320 . For example, when a dangerous carbon monoxide level is detected, the processor 304 may implement an emergency routine 336 stored in the memory module 306 (see FIG. 10 ). The emergency routine may direct the display 104 to provide a visual warning, the audio module 308 to provide an auditory warning, and communicate a shutdown signal to the furnace via the emergency connector 320 .
  • the thermostat control device 100 may further include a power supply module 326 which may receive power from the main connector 318 via the bus 302 .
  • the power supply module 326 may then be configured to convert, modulate, or otherwise condition the power supplied to the various modules and elements within the device.
  • a battery module 328 may correspond to the battery 202 shown in FIG. 2 .
  • the battery module 328 may be a rechargeable battery that draws power from the main connector 318 via the bus 302 .
  • the processor 304 may include or be configured to access in memory 306 and run subroutines, code or other instructions to control the charge and discharge of the battery module 328 .
  • the processor 304 may limit or otherwise adjust the power profile of the device 100 to extend the battery life. Adjustments to the power profile may include dimming the display 104 , limiting the length frequency and strength of any audio indications provided by the audio module 308 .
  • FIG. 3B illustrates an expanded internal block diagram highlighting the processor 304 in communication with the memory module 306 via the bus 302 as shown in FIG. 3A .
  • the memory 306 is shown to include multiple memory blocks or routines stored for execution by the processor 304 .
  • the memory block or routines discussed and disclosed herein may include executable and/or compiled computer readable instructions programmed to interface with and/or control the modules operable within the thermostat control device 100 .
  • the memory blocks or routines may operate as drivers to interface between, for example, the display 104 and the processor 304 .
  • the memory 306 further include a thermostat controller program 329 (referred herein as the thermostat controller 329 ) configured to monitor and control temperature sensor 310 and carbon monoxide sensor 322 and, in response to a monitored carbon monoxide value exceeding a pre-determined threshold, trigger an audio alarm, a visual alarm and/or a furnace shutdown as further described herein.
  • the thermostat controller 329 of the thermostat control device 100 may employ or be configured to access the one or more driver routines 330 , 336 , 338 and 340 to perform an operational process as described in detail in reference to FIGS. 4 to 7 .
  • one of the memory blocks or routines may be a data analysis routine 330 .
  • the data analysis routine 330 may be programmed to receive, organize and process data and information from, for example, the CO sensor 322 , the temperature sensor 310 and/or the touchscreen portion of the display 104 .
  • the memory module 306 may further include a display routine 332 executable by the processor 304 .
  • a data storage/RAM 332 may be configured to store sensor and analysis data and provide a swap file for use by the processor 304 .
  • the memory module 306 may further include a dedicated ROM and/or operating system 334 which can provide the platform upon which the other blocks or modules execute or operate.
  • the memory module 306 may further include the emergency routine 336 configured to direct the display 104 to generate a visual warning and the audio module 308 to sound an auditory warning.
  • the emergency routine 336 may further access the communication module 312 to send an alert or message to a remote installer or maintenance provider.
  • the emergency routine 336 may, in response to instructions from the processor 304 , cause a shutdown signal to be communicated to the furnace via the emergency connector 320 .
  • the memory module 306 may include and execute a power control routine 338 .
  • the power control routine 338 may be configured to interface with and control the power supply 326 and the battery module 328 .
  • the power control routine 338 can control the charge and discharge of the battery module 328 .
  • the power control routine 338 may include power usages routines configured to control the power levels of individual modules or routines in response to the power available from the battery module 328 and/or the power supply 326 .
  • the display routine 340 may be programmed to convert the environmental information 106 and/or information from the data analysis routine 330 to instructions and commands necessary to create and display images and graphics on the display 104
  • FIG. 8 illustrates a representation and embodiment of the display 104 configured to present environmental information 106 to the user.
  • Individual elements or components of the environmental information 106 are specifically identified by the reference numerals 806 a to 806 g .
  • the display 104 may receive display instructions received from the processor 304 (for example, when executing thermostat controller 329 as described herein) and generated by the display routine 340 (see FIGS. 3A and 3B ).
  • the processor 304 may communicate with the memory module 306 to execute software and/or program instructions contained within the display routine 340 to drive or control the display 104 and provide the environmental information to a user.
  • the environmental information 106 may include the temperature 806 a as determined or otherwise monitored by the temperature sensor 310 and analyzed by the data analysis routine 330 .
  • a temperature set point 806 b stored in the data storage 332 may further be displayed to provide a reference or point of comparison relative to the display temperature 806 a .
  • a status 806 c of an HVAC or environmental fan may be provided to indicate whether the device is off or running in a manual or automatic mode.
  • an HVAC status 806 d may be provided to indicate whether the overall HVAC system is off, running in a cooling mode, a heating mode, or is in standby.
  • the HVAC status information 806 c and 806 d may be received from, for example, the data analysis routine 330 or the data storage 332 and provided to the processor 304 .
  • the display 104 may further provide a graphical battery or power indicator 806 e in response to information received from the power control routine 338 via the processor 304 .
  • the indicator 806 e may be configured to alert a user if an internal battery (not shown) is losing charge, if the device has, or is currently, experiencing a power outage, or any combination thereof. Date, time, season, phase of the moon or other information may be displayed as indicated by the reference 806 f .
  • the display 104 may also display a carbon monoxide (CO) level 806 g in, for example, parts per million.
  • CO carbon monoxide
  • the displayed carbon monoxide level 806 g may be collected or otherwise detected by a sensor 108 mounted behind a grate 110 integrally formed by the housing 102 .
  • the grate 110 may be any mesh or slats configured to allow air, smoke or other fluid to flow substantially adjacent to the sensor 108 .
  • Data or information from the sensor 108 may be communicated to the data analysis routine 330 for processing and/or storage in the data storage 332 .
  • thermostat controller 329 when implemented as a program and routines 330 , 336 , 338 and 340 (as well as other programs that may be described herein) may comprise or may be included in one or more code sections containing instructions for performing respective operations.
  • thermostat control device 100 may contain additional or different components.
  • FIGS. 4 to 7 depict operation flowcharts illustrating an exemplary process 400 that may be implemented or performed by the thermostat controller 329 of the thermostat control device 100 to monitor and respond to both temperature and carbon monoxide levels in a surrounding area in accordance with the present invention.
  • the process 400 performed by the thermostat controller 329 includes a test subroutine 402 and an operational subroutine 426 .
  • the thermostat controller 329 of the thermostat control device 100 determines whether to initiate an alarm test (step 404 ) to test the audible and/or carbon monoxide alarm functions of the thermostat control device 100 .
  • the thermostat controller 329 initiates an alarm test upon receiving (i) a user alarm test input via a user selection of a pre-determined portion of the touch screen surface of the display 104 , (ii) a test input icon (not shown in figures) displayed on the touch screen surface of the display 104 or (iii) a user actuation of the carbon monoxide test button 112 c.
  • the thermostat controller 329 next activates the test subroutine 402 .
  • the thermostat controller 329 determines whether to perform an audible alarm test, a carbon monoxide alarm test or both (step 406 ).
  • the user may be prompted by the thermostat controller 329 to select either an audible alarm test or a carbon monoxide alarm test via a graphically generated button provided on the display 104 or a separate actuation of a button on the housing 102 of the thermostat control device.
  • the user as indicated by step 408 , may signal the thermostat controller 329 to perform a carbon monoxide alarm test subroutine by selectively pressing the carbon monoxide test button 112 c.
  • the user may further select or indicate that only the carbon monoxide sensor is to be tested by providing an input to the thermostat controller 329 (step 410 ).
  • test instructions may be provided or generated by the display routine 340 portion of the thermostat controller 329 and displayed via the display 104 as indicated at step 412 . These test instructions may be intended to walk the user through the carbon monoxide sensor testing procedure.
  • the test instruction may include status information related to the current testing procedure, the logged results or a combination of past and current information and results.
  • the thermostat controller 329 logs or otherwise stores the current information and test results (step 414 ).
  • FIG. 9 illustrates a carbon monoxide replacement display screen that may be generated by the display routine portion 330 of the thermostat controller 329 and displayed via the display 104 in the event that the carbon monoxide testing procedure reveals that the carbon monoxide sensor 322 and/or carbon monoxide cartridge 324 are no longer reliable or capable of accurate measurements.
  • the thermostat controller 329 may implement an audible alarm test as indicated at step 406 .
  • the user at step 416 , may signal the thermostat controller 329 to perform an alarm test subroutine by selectively pressing, for example, an alarm test button generated by the display routine 330 and presented on the display 104 .
  • the thermostat controller 329 responds to the provided signal and selects or initiates an audible alarm test (step 418 ).
  • the thermostat controller 329 directs the display routine 330 to generate an alarm display screen that may be shown on the display 104 to warn the user that the test is in progress (step 420 ).
  • an audible alarm may be generated by the emergency routine 336 portion of the thermostat controller 329 and broadcast via the audio module 308 at shown in step 422 .
  • the test results may be logged or otherwise stored by the thermostat controller 329 in a retrievable manner.
  • the thermostat controller 329 may access the operational subroutine 426 as if it had been originally selected. Alternatively, the thermostat controller 329 may access and/or execute the operational subroutine 426 before or in place of the test subroutine 402 .
  • the thermostat controller 329 via the data analysis routine 330 , next evaluates the carbon monoxide levels measured by the carbon monoxide sensor 322 against a carbon monoxide threshold (which may be stored in, for example, the data storage 332 ) to determine whether a detected carbon monoxide level exceeds the threshold (step 428 ). If the detected levels exceed the threshold, then a carbon monoxide alarm may be generated by the thermostat controller 329 , via the emergency routine 336 , to cause a carbon monoxide alarm screen to be displayed on the display 104 (step 430 ). In addition to the carbon monoxide alarm screen, the thermostat controller 329 may, at step 432 , direct the emergency routine 336 to generate an audible alarm signal for broadcast by the audio module 308 . In response to a detected carbon monoxide event, the thermostat controller 329 via the emergency routine 336 may communicate a furnace shutdown signal to the furnace via the emergency connector 320 (step 434 ).
  • a carbon monoxide threshold which may be stored in, for example, the data storage 332
  • a carbon monoxide alarm notification such as an e-mail alert or other communication, may be generated by the thermostat controller 329 via the emergency routine 336 as shown at step 536 of FIG. 5 .
  • the thermostat controller 329 may activate an alarm active delay timer as shown at step 538 .
  • the alarm active delay timer may be utilized by the thermostat controller 329 to filter out anomalous alarm signals or unwarranted activations by insuring that the alarm conditions are measured to be continuous before activation.
  • the alarm active delay timer may be set, for example, anywhere between 5 seconds and 2 min. or any other period determined necessary to provide sufficient accuracy. If the alarm active delay timer is determined to be active, the process will repeat until time has elapsed.
  • FIG. 10 illustrates a carbon monoxide alarm display screen that may be generated by the display routine 340 in response to commands or instructions from the thermostat controller 329 and displayed via the display 104 in the event that carbon monoxide level is determined to exceed a safe level.
  • the display of FIG. 10 may further include an indication that the alarm company support contact or line has been contacted.
  • the thermostat controller may continue or restart process 400 at step 404 .
  • the carbon monoxide levels measured by the car monoxide sensor 322 may be determined by the thermostat controller 329 to be below the assigned threshold.
  • the thermostat controller 329 may display the determined carbon monoxide (CO) level 106 g via the display 104 as indicated at step 436 .
  • the thermostat controller 329 may next activate a temperature detection and analysis routine portion of the data analysis routine 330 (referenced as Temperature Control in FIG. 6 ).
  • the temperature detection and analysis routine portion of the thermostat controller 329 may include receiving temperature data from, for example, the temperature sensor 310 .
  • temperature data may be received from a remote sensor (not shown) via the communication module 312 .
  • the thermostat controller 329 may, as indicated by steps 640 and 642 , evaluate the temperature data with respect to high and low temperature thresholds, respectively. If the temperature data is determined by the data analysis routine 330 of the thermostat controller 329 to be between the high and low thresholds, then the thermostat controller 329 may continue processing or restart at step 404 of the process 400 .
  • the thermostat controller 329 and the emergency routine 336 may activate an alarm active delay timer (step 744 ).
  • the alarm active delay timer may be utilized by the thermostat controller 329 to filter out anomalous alarm signals or unwarranted activations by ensuring that the alarm conditions are measured to be continuous before activation.
  • the thermostat controller 329 via the emergency routine 336 may, as indicated at step 746 , contact or notify the alarm company support contact of the ongoing carbon monoxide alarm notification.
  • thermostat controller 329 of the thermostat control device 100 may continue processing or restart at step 404 of the operational process 400 .

Abstract

A thermostat control device is disclosed. The thermostat control device includes a temperature sensor, a cartridge sensor and a controller in communication with the temperature sensor and the cartridge sensor. The controller further includes a processor, a memory in communication with the processor, the memory storing processor executable instructions configured to: generate a furnace control signal in response to a temperature sensor signal; analyze a cartridge sensor signal received from the cartridge sensor against a threshold; and generate, if the cartridge sensor signal exceeds the threshold, an emergency furnace shutdown signal.

Description

    BACKGROUND
  • Thermostats and other temperature control devices are often utilized in households to control and otherwise regulate the temperature and/or airflow provided by a residential or commercial heating, ventilation and air-conditioning (HVAC) system. An exemplary thermostat may include, a temperature-sensitive switch or sensor that controls a space conditioning unit or system that may be part of a typical HVAC system. For example, when the sensor or switch detects that the indoor temperature drops below or rises above a threshold; the switch or sensor toggles to an ON-position and communicates a temperature signal to the thermostat. The temperature signal causes the thermostat to activate a furnace or air conditioner to drive the indoor temperature to the threshold. Adjustments to the thermostat threshold may be implemented manually via controls provided on the device itself or may be implemented remotely via a communication interface.
  • Remote adjustment or control of a thermostat threshold may be accomplished utilizing a wired or wireless communication interface or module coupled to or in communication with the thermostat. For example, a control signal including a temperature threshold adjustment value may be received by the wired or wireless communication interface or module and provided to the thermostat. The thermostat may, in turn, utilize the temperature threshold adjustment value to change the thermostat threshold, which causes the furnace or air conditioner to operate and drive the indoor temperature to the adjusted threshold.
  • SUMMARY
  • The disclosed embodiments generally relate to thermostats and more particularly to thermostats configured to provide environmental and emergency control of an environmental control device or other heating, ventilation and air-conditioning (HVAC) component.
  • In one embodiment, a thermostat control device is disclosed. The thermostat control device includes a temperature sensor, a cartridge sensor and a controller in communication with the temperature sensor and the cartridge sensor. The controller further includes a processor, a memory in communication with the processor, the memory storing processor executable instructions configured to: generate a furnace control signal in response to a temperature sensor signal; analyze a cartridge sensor signal received from the cartridge sensor against a threshold; and generate, if the cartridge sensor signal exceeds the threshold, an emergency furnace shutdown signal.
  • In another embodiment, a thermostat control system is disclosed. The thermostat control system includes a thermostat device having a temperature sensor, a communication module and a controller. The controller configured to generate a furnace control signal in response to a temperature sensor signal, analyze a carbon monoxide sensor signal received, via the communication module, from the carbon monoxide sensor with respect to a threshold, and generate, if the carbon monoxide sensor signal exceeds the threshold, an emergency furnace shutdown signal. The thermostat control system further includes a safety device in communication with the thermostat device, the safety including a carbon monoxide sensor, and a communication module configured to communicate the carbon monoxide sensor signal to communication module portion of the thermostat device.
  • In yet another embodiment, a method of environmental control utilizing a thermostat in communication with an environmental control device and a sensing device is disclosed. The method includes analyzing a temperature control signal, wherein the temperature control signal represents a physical temperature substantially adjacent to the thermostat, generating an environmental control signal in response to the received temperature sensor signal, wherein the environmental control signal is provided to the environmental control device, receiving, at the thermostat, a sensor signal from the sensing device; analyzing the received sensor signal with respect to a threshold; and generating, if the received sensor signal exceeds the threshold, an emergency environmental control shutdown signal, wherein the environmental control signal is provided to the environmental control device.
  • Other embodiments are disclosed, and each of the embodiments can be used alone or together in combination. Additional features and advantages of the disclosed embodiments are described in, and will be apparent from, the following Detailed Description and the figures.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 illustrates a front view of an exemplary embodiment of a thermostat control device as disclosed herein;
  • FIG. 2 illustrates a top view of the exemplary thermostat control device shown in FIG. 1;
  • FIG. 3A illustrates an internal block diagram of the exemplary thermostat control device shown in FIG. 1;
  • FIG. 3B illustrates a block diagram of an exemplary thermostat control routine stored in the memory shown in FIG. 3A;
  • FIGS. 4 to 7 depict operation flowcharts illustrating an exemplary process that may be implemented or performed by the thermostat controller of the thermostat control device shown in FIG. 1 to monitor and respond to both temperature and carbon monoxide levels in a surrounding area in accordance with the present invention; and
  • FIGS. 8 to 11 illustrate exemplary information displays that may be generated by the exemplary thermostat control device shown in FIG. 1.
  • DETAILED DESCRIPTION
  • The present disclosure generally relates to residential and commercial environmental monitoring and control systems and more particularly to a residential or commercial thermostat control device configured to monitor air quality within a residence or commercial space and, in response to the monitored air quality, control a furnace or other environmental control device. In another configuration, the thermostat control device incorporates a cartridge sensor with may be configured to cooperate with, for example, a removable carbon dioxide sensor cartridge. In yet another configuration, the thermostat control device is configured to communicate with one or more remote sensors or safety devices.
  • FIG. 1 illustrates a front view of a thermostat control device 100. The thermostat control device 100 (also referred to herein as “thermostat 100”), in this exemplary embodiment, includes a substantially rectilinear housing 102. The housing 102 may be, for example, an injected molded plastic housing configured and designed to replace a standard residential or commercial thermostat. In this way, the disclosed thermostat control device 100 may be used in place of and/or to upgrade residential or commercial thermostats in use today.
  • The housing 102 may be configured or designed to support a display 104. The display 104 may be a resistive or capacitive touchscreen display capable of receiving one or more user inputs via interaction with a surface of the touchscreen. The display 104 may be, for example, a high-resolution color display, a low-power e-ink display provided by E Ink Corporation of Cambridge, Mass. and/or may operate in different display modes based on ambient lighting conditions, time of day, season of the year or other environmental factors. The display 104 may be configured to generate a graphical user interface (GUI) and provide a user with one or more pieces of relevant environmental information 106 received from a communicatively connected processor 304 and memory module 306.
  • The housing 102 may further include a plurality of controls 112 carried therein. The plurality of controls 112 may be any buttons, switches or other touch sensitive devices or sensors. In the illustrated embodiment, the plurality of controls 112 includes temperature control buttons 112 a and 112 b. The temperature control button 112 a is configured to increase the temperature corresponding to a temperature set point 806 b (see FIG. 8) while, the temperature control button 112 b is configured to decrease the temperature. The CO test button 112 c may be utilized to check the sensor 108 and/or reset the displayed CO levels 806 g (see FIG. 8) shown by the display 104. The CO test button 112 c may further be utilized to test the sensors as discussed below in connection with FIGS. 4 to 7.
  • FIG. 2 illustrates a top view of the housing 102 discussed above and shown in FIG. 1. The top view illustrates a battery compartment 200 substantially adjacent to the display 104. The battery compartment 200 may carry or support one or more batteries, fuel cells, capacitors or other energy storage devices as generally indicated by the reference 202
  • The top view further illustrates a sensor compartment 204 sized to support and protect the sensor 108. For example, the sensor compartment 204 may be configured to accept a removable sensor or sensor cartridge. Removable sensors or sensor cartridges may be configured to detect toxins, impurities, or dangerous levels of other gases within range of the sensor. For example, the thermostat control device 100 may be configured to carry and cooperate with a removable carbon monoxide sensor 108. In another embodiment or configuration, the thermostat control device 100 may be configured to carry and cooperate with an alternate removable sensor 108 configured to detect, for example, radon gas, carbon dioxide levels (CO2), toxic chemicals or other potential hazards. In this way, the thermostat control device 100 may be configured or tailored based on a given environment or user need.
  • FIG. 3A illustrates an internal block diagram 300 of one embodiment of the thermostat control device 100. In this representation, individual functions and/or modules are illustrated as separate logical entities in communication via a bus 302. However, it will be understood that these functions and/or modules may be integrated into a single or limited number of physical components. Alternatively, these functions and/or modules, may be specialized computer or program logic configured to gather, process or otherwise manipulate environmental systems or data.
  • The thermostat control device 100 may include a processor 304 in communication with the bus 302. The processor 304 in one embodiment may be a computer processor configured to execute a computer and/or control program stored in a memory module 306. The memory module 306 is shown in communication with the processor 304 via the bus 302. For example, the memory module 306 may be configured to store temperature control programs, routines or other information utilized or executable by the processor 304. The processor 304 may further be configured to provide or drive the display 104 via the bus 302. The processor 304 may, in turn, generate and/or update the plurality of information 106 shown on the display 104 and discussed in connection with exemplary FIG. 3B.
  • An audio module 308 may be in communications with the processor 304. The audio module 308 may include one or more speakers, buzzers and other vibratory indicators. The processor 304 may drive or otherwise control the audio module 308 to provide a user with an indication of an alert or other event.
  • A temperature sensor 310 may be configured to directly measure the air temperature around the thermostat control device 100. Alternatively, the temperature sensor 310 may be configured to process temperature data, humidity information or other data directly detected or received via a communication module 312.
  • The communication module 312 may be a wired or wireless communication module configured to communicate with automation components, environmental control systems or other elements in communication with the residential or commercial structure. For example, the communication module 312 may be configured to communicate via a powerline network, an Ethernet network, a two-wire network or other known networking configuration. In another embodiment, the communication module 312 may be configured to communicate according to Wi-Fi, Bluetooth, ZigBee or other known radio communications protocol such as the IEEE 802.xx protocols. In yet other embodiments, the communications module 312 may be configured for both wired and wireless communications for increased flexibility.
  • A communications port 314 may be directly and/or electrically connected to an I/O module 316. The I/O module 316 and the bus 302 serve to communicatively couple the communication module 312 to the communications port 314. The I/O module 316 includes a main or master connector 318 configured to receive power and communicate information with a furnace or other environmental control device (not shown). The I/O module 316 further includes an emergency connector 320 configured to communicate with the master shutoff circuit of the furnace or other environmental control device.
  • The emergency connector 320 may be utilized by the processor 304 in conjunction with a carbon monoxide sensor 322. The carbon monoxide sensor 322, in turn, may be coupled to a carbon monoxide cartridge 324. In this embodiment, the carbon monoxide sensor 322 represents any device or mechanism necessary to detect changes in the carbon monoxide levels within a room or other area monitored by the thermostat control device 100. Moreover, the carbon monoxide sensor 322 may further include any programming or circuitry necessary to gather, organize and/or queue the detected changes. The carbon monoxide cartridge 324 may be a removable cartridge corresponding to removable sensor 108, which could be accessed through, for example, the sensor compartment 204 shown in FIG. 2. In one exemplary embodiment, the carbon monoxide cartridge 324 may be or include an opti-chemical pad (not shown) carrying or infused with a dye or chemical that causes the pad to change to a predetermined color when carbon monoxide reacts with the dye or chemical on or in the opt-chemical pad.
  • In another exemplary embodiment, the carbon monoxide sensor 322 may include a light or an optical sensor configured to detect the color change in the opti-chemical pad and communicate an alarm signal to the processor 304 when the detected color change corresponds to a predetermined concentration level of carbon dioxide (e.g., 100 parts per million) in proximity to the carbon monoxide cartridge 324 (e.g., at the grate 110 of the housing 102).
  • In another exemplary embodiment, the opti-chemical pad may be a removable or replaceable pad protected by and encapsulated in a carbon dioxide gas permeable silicone coating. Alternatively, the carbon monoxide cartridge 324 may comprise a removable cartridge of synthetic hemoglobin that darkens in color when carbon monoxide is present and lightens in color when carbon monoxide concentrations are low (e.g., less than 100 parts per million).
  • In yet another embodiment, the carbon monoxide sensor 322 may be a biomimetic sensor, such as an opto-chemical or gel sensor configured to detect the color change in the synthetic hemoglobin of the carbon monoxide cartridge 324.
  • In another embodiment, the carbon monoxide cartridge 324 may be an electrochemical cell sized to removably couple or fit within the sensor compartment 204. The electrochemical cell includes a cell container configured to support or position a gas permeable membrane that forms a surface of the cell container nearest the grate 110 when the cell container is carried or supported within the sensor compartment 204. The exemplary electrochemical cell further includes a carbon monoxide and oxygen diffusion barrier disposed directly beneath and/or in fluid communication with the gas permeable membrane forming the surface of the cell container. In this exemplary embodiment, the electrochemical cell may also include a first electrode or anode (also referenced as the “sensing electrode”) and a second electrode or cathode. The sensing electrode is attached to the cell container and disposed substantially adjacent to the grate 110 beneath and in the diffusion barrier. The sensing electrode is configured to consume or react to the presence of carbon monoxide that diffused through the diffusion barrier from the air near the grate 110. The cathode is similarly disposed beneath and in the diffusion barrier relative to the sensing electrode (and, thus, may also face the grate 110). The cathode electrode is configured to consume or react to the presence of oxygen in the diffusion barrier. The diffusion barrier may comprise, include or otherwise support a sulfuric acid component. When carbon monoxide diffuses into the diffusion barrier to the sensing electrode, the carbon monoxide oxidizes to create a potential difference between the sensing electrode and the cathode. The potential difference results in a current flow between the two electrodes that is proportional to the amount of carbon monoxide present at the first or sensing electrode.
  • In this embodiment, the carbon monoxide sensor 322 is configured to measure or read the current flow between the cathode and the sensing electrode when the cartridge 324 is inserted in the compartment 204. The carbon monoxide sensor 322 may communicate: (1) the current value as a signal to the processor 304 for generating an alarm when the current value reaches a predetermined level or threshold corresponding to a pre-determined concentration of carbon monoxide; or (2) an alarm signal to the processor 304 when the current value reaches the predetermined level or threshold.
  • In another embodiment, the carbon monoxide sensor 322 and the carbon monoxide cartridge 324 may together comprise a semiconductor carbon monoxide detector. In this embodiment, the carbon monoxide cartridge 324 is a packaged semiconductor sensor element (not shown) that includes at least two layers of thin tin dioxide wires disposed on an insulating ceramic base. The carbon monoxide sensor 322, in this exemplary embodiment, is an integrated circuit that includes a heating source adapted to connect to and heat the tin dioxide wires when the carbon monoxide cartridge 324 is inserted into the sensor compartment 204.
  • The heating source of the carbon monoxide sensor 322 may, in turn, be configured to heat the tin dioxide wire layers to approximately 400 degrees Celcius (° C.) or higher to cause the sensing element of the carbon monoxide cartridge 324 to effectively sense carbon monoxide at or near the grate 110. When the sensing element of the carbon monoxide cartridge 324 is heated, oxygen at or near the grate 110 increases resistance of the tin dioxide wires, but carbon monoxide at or near the grate 110 reduces resistance of the sensing element. The integrated circuit of the carbon monoxide sensor 322 also includes a resistance sensitive input configured to connect to the tin dioxide wires of the sensing element of the carbon monoxide cartridge 324 when it is inserted in the sensor compartment 204. When the resistance sensitive input is connected to the tin oxide wires of the sensing element, the carbon monoxide sensor 322 measures the resistance of the sensing element and compares the measured resistance to a pre-determined resistance corresponding to a pre-determined threshold concentration of carbon monoxide near the grate 110. In this implementation, the carbon monoxide sensor 322 may communicate: (1) the measured resistance as a signal to the processor 304 for generating an alarm when the measured resistance reaches the pre-determined resistance corresponding to the predetermined threshold of concentration of carbon monoxide near the gate 110; or (2) an alarm signal to the processor 304 when the measured resistance reaches the predetermined threshold.
  • In operation, the carbon monoxide sensor 322 may communicate carbon monoxide levels or information to the processor 304 as described herein. The processor 304 may, in turn, evaluate the received sensor data against carbon monoxide thresholds, historical trends, or other set points. If the carbon monoxide levels are determined to exceed a given threshold and/or provide a danger, the processor 304 may institute an emergency shutdown of the furnace or environmental control device via the emergency connector 320. For example, when a dangerous carbon monoxide level is detected, the processor 304 may implement an emergency routine 336 stored in the memory module 306 (see FIG. 10). The emergency routine may direct the display 104 to provide a visual warning, the audio module 308 to provide an auditory warning, and communicate a shutdown signal to the furnace via the emergency connector 320.
  • The thermostat control device 100 may further include a power supply module 326 which may receive power from the main connector 318 via the bus 302. The power supply module 326 may then be configured to convert, modulate, or otherwise condition the power supplied to the various modules and elements within the device. A battery module 328 may correspond to the battery 202 shown in FIG. 2. Alternatively, the battery module 328 may be a rechargeable battery that draws power from the main connector 318 via the bus 302. The processor 304 may include or be configured to access in memory 306 and run subroutines, code or other instructions to control the charge and discharge of the battery module 328. For example, if the thermostat control device 100 is determined to be operating on battery power, the processor 304 may limit or otherwise adjust the power profile of the device 100 to extend the battery life. Adjustments to the power profile may include dimming the display 104, limiting the length frequency and strength of any audio indications provided by the audio module 308.
  • FIG. 3B illustrates an expanded internal block diagram highlighting the processor 304 in communication with the memory module 306 via the bus 302 as shown in FIG. 3A. In the illustrated embodiment, the memory 306 is shown to include multiple memory blocks or routines stored for execution by the processor 304. The memory block or routines discussed and disclosed herein may include executable and/or compiled computer readable instructions programmed to interface with and/or control the modules operable within the thermostat control device 100. In one embodiment, the memory blocks or routines may operate as drivers to interface between, for example, the display 104 and the processor 304. The memory 306 further include a thermostat controller program 329 (referred herein as the thermostat controller 329) configured to monitor and control temperature sensor 310 and carbon monoxide sensor 322 and, in response to a monitored carbon monoxide value exceeding a pre-determined threshold, trigger an audio alarm, a visual alarm and/or a furnace shutdown as further described herein. The thermostat controller 329 of the thermostat control device 100 may employ or be configured to access the one or more driver routines 330, 336, 338 and 340 to perform an operational process as described in detail in reference to FIGS. 4 to 7.
  • In an embodiment, one of the memory blocks or routines may be a data analysis routine 330. The data analysis routine 330 may be programmed to receive, organize and process data and information from, for example, the CO sensor 322, the temperature sensor 310 and/or the touchscreen portion of the display 104. The memory module 306 may further include a display routine 332 executable by the processor 304. A data storage/RAM 332 may be configured to store sensor and analysis data and provide a swap file for use by the processor 304. The memory module 306 may further include a dedicated ROM and/or operating system 334 which can provide the platform upon which the other blocks or modules execute or operate.
  • The memory module 306 may further include the emergency routine 336 configured to direct the display 104 to generate a visual warning and the audio module 308 to sound an auditory warning. The emergency routine 336 may further access the communication module 312 to send an alert or message to a remote installer or maintenance provider. The emergency routine 336 may, in response to instructions from the processor 304, cause a shutdown signal to be communicated to the furnace via the emergency connector 320.
  • In another embodiment, the memory module 306 may include and execute a power control routine 338. The power control routine 338 may be configured to interface with and control the power supply 326 and the battery module 328. For example, the power control routine 338 can control the charge and discharge of the battery module 328. Alternatively or in addition to, the power control routine 338 may include power usages routines configured to control the power levels of individual modules or routines in response to the power available from the battery module 328 and/or the power supply 326.
  • The display routine 340 may be programmed to convert the environmental information 106 and/or information from the data analysis routine 330 to instructions and commands necessary to create and display images and graphics on the display 104
  • FIG. 8 illustrates a representation and embodiment of the display 104 configured to present environmental information 106 to the user. Individual elements or components of the environmental information 106 are specifically identified by the reference numerals 806 a to 806 g. For example, in one embodiment, the display 104 may receive display instructions received from the processor 304 (for example, when executing thermostat controller 329 as described herein) and generated by the display routine 340 (see FIGS. 3A and 3B). In this embodiment, the processor 304 may communicate with the memory module 306 to execute software and/or program instructions contained within the display routine 340 to drive or control the display 104 and provide the environmental information to a user. In one embodiment, the environmental information 106 may include the temperature 806 a as determined or otherwise monitored by the temperature sensor 310 and analyzed by the data analysis routine 330.
  • A temperature set point 806 b stored in the data storage 332 may further be displayed to provide a reference or point of comparison relative to the display temperature 806 a. A status 806 c of an HVAC or environmental fan may be provided to indicate whether the device is off or running in a manual or automatic mode. Moreover, an HVAC status 806 d may be provided to indicate whether the overall HVAC system is off, running in a cooling mode, a heating mode, or is in standby. The HVAC status information 806 c and 806 d may be received from, for example, the data analysis routine 330 or the data storage 332 and provided to the processor 304.
  • The display 104 may further provide a graphical battery or power indicator 806 e in response to information received from the power control routine 338 via the processor 304. The indicator 806 e may be configured to alert a user if an internal battery (not shown) is losing charge, if the device has, or is currently, experiencing a power outage, or any combination thereof. Date, time, season, phase of the moon or other information may be displayed as indicated by the reference 806 f. The display 104 may also display a carbon monoxide (CO) level 806 g in, for example, parts per million.
  • The displayed carbon monoxide level 806 g may be collected or otherwise detected by a sensor 108 mounted behind a grate 110 integrally formed by the housing 102. The grate 110 may be any mesh or slats configured to allow air, smoke or other fluid to flow substantially adjacent to the sensor 108. Data or information from the sensor 108 may be communicated to the data analysis routine 330 for processing and/or storage in the data storage 332.
  • While each of the programs or routines 329, 330, 336, 338 and 340 are described as being implemented as software, the present implementation may be implemented as a combination of hardware and software or hardware alone (such as in an application-specific integrated circuit (“ASIC”) device). Also, one of skill in the art will appreciate that the thermostat controller 329 when implemented as a program and routines 330, 336, 338 and 340 (as well as other programs that may be described herein) may comprise or may be included in one or more code sections containing instructions for performing respective operations.
  • In addition, although aspects of one embodiment shown in FIG. 3B are depicted as being stored in memory 306, one skilled in the art will appreciate that all or part of systems and methods consistent with the present invention may be stored on or read from other computer-readable media, such as secondary storage devices, like hard disks, floppy disks, and CD-ROM; or other forms of ROM or RAM either currently known or later developed. Further, although specific components of thermostat control device 100 have been described, one skilled in the art will appreciate that a thermostat control device suitable for use with methods, systems, and articles of manufacture consistent with the present invention may contain additional or different components.
  • FIGS. 4 to 7 depict operation flowcharts illustrating an exemplary process 400 that may be implemented or performed by the thermostat controller 329 of the thermostat control device 100 to monitor and respond to both temperature and carbon monoxide levels in a surrounding area in accordance with the present invention. The process 400 performed by the thermostat controller 329 includes a test subroutine 402 and an operational subroutine 426.
  • Initially, the thermostat controller 329 of the thermostat control device 100 determines whether to initiate an alarm test (step 404) to test the audible and/or carbon monoxide alarm functions of the thermostat control device 100. In one implementation, the thermostat controller 329 initiates an alarm test upon receiving (i) a user alarm test input via a user selection of a pre-determined portion of the touch screen surface of the display 104, (ii) a test input icon (not shown in figures) displayed on the touch screen surface of the display 104 or (iii) a user actuation of the carbon monoxide test button 112 c.
  • If an alarm test is to be initiated, the thermostat controller 329 next activates the test subroutine 402. As part of the test subroutine, the thermostat controller 329 determines whether to perform an audible alarm test, a carbon monoxide alarm test or both (step 406). In one embodiment, the user may be prompted by the thermostat controller 329 to select either an audible alarm test or a carbon monoxide alarm test via a graphically generated button provided on the display 104 or a separate actuation of a button on the housing 102 of the thermostat control device. For example, the user, as indicated by step 408, may signal the thermostat controller 329 to perform a carbon monoxide alarm test subroutine by selectively pressing the carbon monoxide test button 112 c.
  • The user may further select or indicate that only the carbon monoxide sensor is to be tested by providing an input to the thermostat controller 329 (step 410). In response to the selection, test instructions may be provided or generated by the display routine 340 portion of the thermostat controller 329 and displayed via the display 104 as indicated at step 412. These test instructions may be intended to walk the user through the carbon monoxide sensor testing procedure. In another embodiment, the test instruction may include status information related to the current testing procedure, the logged results or a combination of past and current information and results. Upon completion of the testing procedure, the thermostat controller 329 logs or otherwise stores the current information and test results (step 414). FIG. 9 illustrates a carbon monoxide replacement display screen that may be generated by the display routine portion 330 of the thermostat controller 329 and displayed via the display 104 in the event that the carbon monoxide testing procedure reveals that the carbon monoxide sensor 322 and/or carbon monoxide cartridge 324 are no longer reliable or capable of accurate measurements.
  • Alternatively, the thermostat controller 329 may implement an audible alarm test as indicated at step 406. The user, at step 416, may signal the thermostat controller 329 to perform an alarm test subroutine by selectively pressing, for example, an alarm test button generated by the display routine 330 and presented on the display 104. The thermostat controller 329 responds to the provided signal and selects or initiates an audible alarm test (step 418).
  • Subsequently, the thermostat controller 329 directs the display routine 330 to generate an alarm display screen that may be shown on the display 104 to warn the user that the test is in progress (step 420). After the aforementioned precautions have been taken, an audible alarm may be generated by the emergency routine 336 portion of the thermostat controller 329 and broadcast via the audio module 308 at shown in step 422. At step 424 the test results may be logged or otherwise stored by the thermostat controller 329 in a retrievable manner.
  • Upon completion of the test subroutine 402, the thermostat controller 329 may access the operational subroutine 426 as if it had been originally selected. Alternatively, the thermostat controller 329 may access and/or execute the operational subroutine 426 before or in place of the test subroutine 402.
  • The thermostat controller 329, via the data analysis routine 330, next evaluates the carbon monoxide levels measured by the carbon monoxide sensor 322 against a carbon monoxide threshold (which may be stored in, for example, the data storage 332) to determine whether a detected carbon monoxide level exceeds the threshold (step 428). If the detected levels exceed the threshold, then a carbon monoxide alarm may be generated by the thermostat controller 329, via the emergency routine 336, to cause a carbon monoxide alarm screen to be displayed on the display 104 (step 430). In addition to the carbon monoxide alarm screen, the thermostat controller 329 may, at step 432, direct the emergency routine 336 to generate an audible alarm signal for broadcast by the audio module 308. In response to a detected carbon monoxide event, the thermostat controller 329 via the emergency routine 336 may communicate a furnace shutdown signal to the furnace via the emergency connector 320 (step 434).
  • A carbon monoxide alarm notification, such as an e-mail alert or other communication, may be generated by the thermostat controller 329 via the emergency routine 336 as shown at step 536 of FIG. 5. Subsequently, the thermostat controller 329 may activate an alarm active delay timer as shown at step 538. The alarm active delay timer may be utilized by the thermostat controller 329 to filter out anomalous alarm signals or unwarranted activations by insuring that the alarm conditions are measured to be continuous before activation. The alarm active delay timer may be set, for example, anywhere between 5 seconds and 2 min. or any other period determined necessary to provide sufficient accuracy. If the alarm active delay timer is determined to be active, the process will repeat until time has elapsed. Once the alarm active delay timer is no longer active, the thermostat controller 329 directs the emergency routine 336 to contact or notify the alarm company support contact or line of the ongoing carbon monoxide alarm event (step 540). FIG. 10 illustrates a carbon monoxide alarm display screen that may be generated by the display routine 340 in response to commands or instructions from the thermostat controller 329 and displayed via the display 104 in the event that carbon monoxide level is determined to exceed a safe level. The display of FIG. 10 may further include an indication that the alarm company support contact or line has been contacted. Upon completion of this task, the thermostat controller may continue or restart process 400 at step 404.
  • Returning to step 428 of the operational process 400 implemented by the thermostat controller 329, the carbon monoxide levels measured by the car monoxide sensor 322 may be determined by the thermostat controller 329 to be below the assigned threshold. In this instance, the thermostat controller 329 may display the determined carbon monoxide (CO) level 106 g via the display 104 as indicated at step 436.
  • The thermostat controller 329, as shown at step 638 of FIG. 6, may next activate a temperature detection and analysis routine portion of the data analysis routine 330 (referenced as Temperature Control in FIG. 6). The temperature detection and analysis routine portion of the thermostat controller 329 may include receiving temperature data from, for example, the temperature sensor 310. Alternatively, temperature data may be received from a remote sensor (not shown) via the communication module 312. The thermostat controller 329 may, as indicated by steps 640 and 642, evaluate the temperature data with respect to high and low temperature thresholds, respectively. If the temperature data is determined by the data analysis routine 330 of the thermostat controller 329 to be between the high and low thresholds, then the thermostat controller 329 may continue processing or restart at step 404 of the process 400.
  • If the temperature data is determined to be outside the predefined high limit or low limit thresholds, then the thermostat controller 329 and the emergency routine 336 may activate an alarm active delay timer (step 744). As previously discussed, the alarm active delay timer may be utilized by the thermostat controller 329 to filter out anomalous alarm signals or unwarranted activations by ensuring that the alarm conditions are measured to be continuous before activation. Once the alarm active delay timer is no longer in force, the thermostat controller 329 via the emergency routine 336 may, as indicated at step 746, contact or notify the alarm company support contact of the ongoing carbon monoxide alarm notification. FIG. 11 illustrates a low temperature alarm display screen that may be generated by the thermostat controller 329 via the display routine 340 and displayed on the display 104 in the event that the temperature data is determined to be below the low temperature threshold. Similarly, high temperature alarm display screens may be generated and presented to the user by the display routine 340. Upon completion of this task, thermostat controller 329 of the thermostat control device 100 may continue processing or restart at step 404 of the operational process 400.
  • It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present invention and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.

Claims (22)

1. A thermostat control device comprising:
a temperature sensor;
a cartridge sensor;
a controller in communication with the temperature sensor and the cartridge sensor, the controller comprising:
a processor;
a memory in communication with the processor, the memory storing processor executable instructions configured to:
generate a furnace control signal in response to a temperature sensor signal;
analyze a cartridge sensor signal received from the cartridge sensor against a threshold; and
generate, if the cartridge sensor signal exceeds the threshold, an emergency furnace shutdown signal.
2. The device of claim 1 further comprising:
a touch screen display in communication with the controller, the touch screen display configured to:
display at least one piece of sensor data; and
receive a control input to alter the furnace control signal.
3. The device of claim 1 further comprising:
a wireless communication module in communication with the controller, wherein the wireless communication module is configured for communication with one or more safety devices.
4. The device of claim 3, wherein the wireless communication module is configured to communication according to a protocol selected from the group consisting of: IEEE 802.11 (WiFi), IEEE 802.16 (WiMax), IEEE 802.15.4 (ZigBee) and Bluetooth.
5. The device of claim 4, wherein the cartridge sensor signal is received from one of the safety devices via the wireless communication module.
6. The device of claim 4, wherein the temperature sensor signal is received from one of the safety devices via the wireless communication module.
7. The device of claim 1, wherein the cartridge sensor includes a carbon dioxide sensor cartridge.
8. The device of claim 1, wherein the carbon monoxide sensor includes a removable sensor cartridge.
9. A thermostat control system comprising:
a thermostat device comprising:
a temperature sensor;
a communication module; and
a controller configured to:
generate a furnace control signal in response to a temperature sensor signal;
analyze a carbon monoxide sensor signal received, via the communication module, from the carbon monoxide sensor with respect to a threshold; and
generate, if the carbon monoxide sensor signal exceeds the threshold, an emergency furnace shutdown signal;
a safety device in communication with the thermostat device, the safety comprising:
a carbon monoxide sensor; and
a communication module configured to communicate the carbon monoxide sensor signal to communication module portion of the thermostat device.
10. The system of claim 9, wherein the safety device further comprises:
a temperature sensor, wherein the communication module is configured to communicate the temperature signal to communication module portion of the thermostat device.
11. The device of claim 9 further comprising:
a touch screen display in communication with the controller, the touch screen display configured to:
display at least one piece of sensor data; and
receive a control input to alter the furnace control signal.
12. The device of claim 9 wherein the communication module is a wireless communication module in communication with the controller, wherein the wireless communication module is configured for communication with the safety device.
13. The device of claim 12, wherein the wireless communication module is configured to communication according to a protocol selected from the group consisting of: IEEE 802.11 (WiFi), IEEE 802.16 (WiMax), IEEE 802.15.4 (ZigBee) and Bluetooth.
14. The device of claim 13, wherein the carbon monoxide sensor includes a removable sensor cartridge.
15. The device of claim 8 further comprising:
a carbon monoxide sensor, wherein the carbon monoxide sensor includes a removable sensor cartridge.
16. A method of residential environmental control in a building utilizing a thermostat in communication with an environmental control device and a sensing device wherein the thermostat is disposed within the building, the method comprising:
analyzing a temperature control signal, wherein the temperature control signal represents a physical temperature substantially adjacent to the thermostat;
generating an environmental control signal in response to the received temperature sensor signal, wherein the environmental control signal is provided to the environmental control device;
receiving, at the thermostat, a sensor signal from the sensing device;
analyzing the received sensor signal with respect to a threshold; and
generating, if the received sensor signal exceeds the threshold, an emergency environmental control shutdown signal, wherein the environmental control signal is provided to the environmental control device.
17. The method of claim 16, wherein the sensor signal is a carbon monoxide signal.
18. The method of claim 16, wherein analyzing the temperature control signal comprises wirelessly receiving the temperature control signal from the sensing device, wherein the sensing device is in wireless communication with the thermostat.
19. The method of claim 16, wherein analyzing the temperature control signal comprises receiving the temperature control signal from the sensing device via a communication bus provided within the thermostat.
20. The method of claim 16, wherein the environmental control device is selected from the group consisting of: a furnace; an air conditioning unit and a ventilation unit.
21. The method of claim 16, wherein the sensing device is a carbon monoxide sensor.
22. The method of claim 21, wherein the carbon monoxide sensor include a replaceable cartridge.
US13/077,888 2011-03-31 2011-03-31 Thermostat with integrated carbon monoxide (co) sensor Abandoned US20120251963A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/077,888 US20120251963A1 (en) 2011-03-31 2011-03-31 Thermostat with integrated carbon monoxide (co) sensor
PCT/US2012/028473 WO2012134771A1 (en) 2011-03-31 2012-03-09 Thermostat with integrated carbon monoxide (co) sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/077,888 US20120251963A1 (en) 2011-03-31 2011-03-31 Thermostat with integrated carbon monoxide (co) sensor

Publications (1)

Publication Number Publication Date
US20120251963A1 true US20120251963A1 (en) 2012-10-04

Family

ID=45976513

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/077,888 Abandoned US20120251963A1 (en) 2011-03-31 2011-03-31 Thermostat with integrated carbon monoxide (co) sensor

Country Status (2)

Country Link
US (1) US20120251963A1 (en)
WO (1) WO2012134771A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140137583A1 (en) * 2012-11-12 2014-05-22 Seontaek Kim Apparatus for controlling an air conditioner
TWI465191B (en) * 2012-10-11 2014-12-21 Nat Univ Chung Hsing Egg hatching device
US9240968B1 (en) * 2014-02-13 2016-01-19 Sprint Communications Company L.P. Autogenerated email summarization process
US20160097534A1 (en) * 2014-10-02 2016-04-07 Ryan De Vries Toxic Gas Expelling Assembly
US20160123587A1 (en) * 2014-10-30 2016-05-05 Paul Ventura Heating system shut-off saftey device
CN105650869A (en) * 2016-02-18 2016-06-08 成都佳美嘉科技有限公司 Internet of things fan heater
CN105890176A (en) * 2016-05-05 2016-08-24 盛嘎 Display-separated water heater
USD772260S1 (en) * 2014-11-14 2016-11-22 Volvo Car Corporation Display screen with graphical user interface
USD772903S1 (en) * 2014-11-14 2016-11-29 Volvo Car Corporation Display screen with transitional graphical user interface
USD772905S1 (en) * 2014-11-14 2016-11-29 Volvo Car Corporation Display screen with graphical user interface
USD772904S1 (en) * 2014-11-14 2016-11-29 Volvo Car Corporation Display screen with transitional graphical user interface
EP3190351A1 (en) * 2016-01-06 2017-07-12 Vaillant GmbH Heating display
US20170224024A1 (en) * 2014-10-24 2017-08-10 Philip Morris Products S.A. Aerosol-generating device, system and method with a combustion gas detector
US20180328614A1 (en) * 2017-05-12 2018-11-15 Thomas L. Jordan Detection and Control Device for HVAC Supply Vent
US10408471B1 (en) * 2016-12-28 2019-09-10 Lionel Lanouette Wireless carbon monoxide furnace shutoff system
USD875110S1 (en) * 2017-01-12 2020-02-11 Johnson Controls Technology Company Display screen or portion thereof with graphical user interface
USD908099S1 (en) 2017-01-12 2021-01-19 Johnson Controls Technology Company Building automation device
USD908713S1 (en) * 2018-07-12 2021-01-26 Distech Controls Inc. Display screen or portion thereof with graphical user interface
US20210222877A1 (en) * 2017-03-16 2021-07-22 CoEvac, LLC Automatic Smoke/Carbon Monoxide Power Cut-Off Method and System
US11085832B2 (en) 2016-08-25 2021-08-10 Johnson Controls Technology Company Mitigation of fluid ingress via convection venting on electronic devices
US11713891B2 (en) 2019-10-10 2023-08-01 Ademco Inc. Carbon monoxide detection system

Citations (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335847A (en) * 1980-05-27 1982-06-22 Levine Michael R Electronic thermostat with repetitive operation cycle
US4469274A (en) * 1980-05-27 1984-09-04 Levine Michael R Electronic thermostat with repetitive operation cycle
US5259445A (en) * 1992-07-13 1993-11-09 The Detroit Edison Company Control for dual heating system including a heat pump and furnace
US5400246A (en) * 1989-05-09 1995-03-21 Ansan Industries, Ltd. Peripheral data acquisition, monitor, and adaptive control system via personal computer
US5481481A (en) * 1992-11-23 1996-01-02 Architectural Engergy Corporation Automated diagnostic system having temporally coordinated wireless sensors
US5566879A (en) * 1993-12-06 1996-10-22 Comptel Domotique Inc. System for centralized controlling of a plurality of temperature regulating devices
US5595342A (en) * 1993-05-24 1997-01-21 British Gas Plc Control system
US5632614A (en) * 1995-07-07 1997-05-27 Atwood Industries , Inc. Gas fired appliance igntion and combustion monitoring system
US5742516A (en) * 1994-03-17 1998-04-21 Olcerst; Robert Indoor air quality and ventilation assessment monitoring device
US5781024A (en) * 1996-07-26 1998-07-14 Diametrics Medical, Inc. Instrument performance verification system
US5793296A (en) * 1996-04-30 1998-08-11 Lewkowicz; Mike Apparatus for carbon monoxide detection and automatic shutoff of a heating system
US5911747A (en) * 1997-09-19 1999-06-15 Pentech Energy Solutions, Inc. HVAC system control incorporating humidity and carbon monoxide measurement
US6062482A (en) * 1997-09-19 2000-05-16 Pentech Energy Solutions, Inc. Method and apparatus for energy recovery in an environmental control system
US6385599B1 (en) * 1996-04-26 2002-05-07 Sgs-Thomson Microelectronics S.A. Method and apparatus for a fuzzy self-adaptive control system
US6578770B1 (en) * 2002-04-09 2003-06-17 Howard B. Rosen Thermostat incorporating a carbon dioxide sensor suitable for reading using potentiostat techniques, and environmental control system incorporating such thermostat
US6742349B1 (en) * 2000-05-16 2004-06-01 Sanyo Electric Co., Ltd. Equipment sensing system and equipment control device
US20040117330A1 (en) * 2002-03-28 2004-06-17 Ehlers Gregory A. System and method for controlling usage of a commodity
US20050006488A1 (en) * 2003-07-08 2005-01-13 Daniel Stanimirovic Fully articulated and comprehensive air and fluid distribution, metering, and control method and apparatus for primary movers, heat exchangers, and terminal flow devices
US20050212681A1 (en) * 2004-03-23 2005-09-29 Northcoast Innovations Garage carbon monoxide detector with automatic garage door opening command
US20060038672A1 (en) * 2004-07-02 2006-02-23 Optimal Licensing Corporation System and method for delivery and management of end-user services
US20060106510A1 (en) * 2004-11-01 2006-05-18 Heffington Mark F Programmable automotive computer system
US20070043478A1 (en) * 2003-07-28 2007-02-22 Ehlers Gregory A System and method of controlling an HVAC system
US20070088465A1 (en) * 2004-11-01 2007-04-19 Heffington Mark F Programmable automotive computer method and apparatus with accelerometer input
US20070099137A1 (en) * 2005-11-02 2007-05-03 Emerson Electric Co. Ignition control with integral carbon monoxide sensor
US20070099136A1 (en) * 2005-10-28 2007-05-03 Beckett Gas, Inc. Burner control
US20070120693A1 (en) * 2005-11-29 2007-05-31 Vij Ashok K Sensing system and components for detecting and remotely monitoring carbon monoxide in a space of concern
US20070131784A1 (en) * 2005-12-12 2007-06-14 Garozzo James P Low voltage power line communication for climate control system
US20070142927A1 (en) * 2005-12-21 2007-06-21 Mark Nelson Systems and methods for notifying of persistent states of monitored systems using distributed monitoring devices
US20070233420A1 (en) * 2006-02-09 2007-10-04 Potucek Kevin L Programmable aerator cooling system
US20080048046A1 (en) * 2006-08-24 2008-02-28 Ranco Inc. Of Delaware Networked appliance information display apparatus and network incorporating same
US20080054082A1 (en) * 2004-12-22 2008-03-06 Evans Edward B Climate control system including responsive controllers
US20080078337A1 (en) * 2005-02-07 2008-04-03 Donnelly Donald E Systems And Methods For Controlling A Water Heater
US20080099570A1 (en) * 2006-10-04 2008-05-01 Steve Krebs System and method for estimating temperature drift and drive curves
US20080182215A1 (en) * 2007-01-31 2008-07-31 Alberto Sid System and method for controlling toxic gas
US20080284579A1 (en) * 2007-05-15 2008-11-20 David Contreras Carbon monoxide safety system
US20080289834A1 (en) * 2007-05-25 2008-11-27 Tsm Corporation Hazard detection and suppression apparatus
US20090134993A1 (en) * 2007-11-28 2009-05-28 Ranco Incorporated Of Delaware Thermostat With Audible Interconnect To Threat Detectors
US20090243852A1 (en) * 2007-10-23 2009-10-01 La Crosse Technology, Ltd. Remote Location Monitoring
US20100019921A1 (en) * 2007-06-19 2010-01-28 At&T Intellectual Property, Inc. Methods, apparatuses, and computer program products for implementing situational control processes
US20100023865A1 (en) * 2005-03-16 2010-01-28 Jim Fulker Cross-Client Sensor User Interface in an Integrated Security Network
US20110113120A1 (en) * 2009-11-12 2011-05-12 Bank Of America Corporation Facility maintenance and management system
US8090477B1 (en) * 2010-08-20 2012-01-03 Ecofactor, Inc. System and method for optimizing use of plug-in air conditioners and portable heaters
US8138690B2 (en) * 2008-04-14 2012-03-20 Digital Lumens Incorporated LED-based lighting methods, apparatus, and systems employing LED light bars, occupancy sensing, local state machine, and meter circuit
US20120095614A1 (en) * 2010-10-14 2012-04-19 Delayo Richard Electronic control device and method for boiler system
US20120253527A1 (en) * 2011-04-04 2012-10-04 Ecobee, Inc. Programming Simulator for an HVAC Controller
US20120305661A1 (en) * 2011-05-31 2012-12-06 Ecobee, Inc. HVAC Controller with Predictive Set-Point Control
US20130018513A1 (en) * 2011-07-11 2013-01-17 Ecobee, Inc. HVAC Controller with Predictive Set-Point Control
US20130054033A1 (en) * 2011-08-25 2013-02-28 Siemens Industry, Inc. Synergistic interface system for a building network
US20130066474A1 (en) * 2011-09-12 2013-03-14 Siemens Industry, Inc. Thermostat control device with integrated feedback and notification capability
US20130085613A1 (en) * 2011-09-30 2013-04-04 Siemens Industry, Inc. Method and system for improving energy efficiency in an hvac system
US20130095868A1 (en) * 2007-07-31 2013-04-18 Johnson Controls Technology Company Pairing wireless devices of a network using relative gain arrays
US20130123991A1 (en) * 2011-11-16 2013-05-16 Robert Charles Richmond Thermostat and irrigation controller with removable user interface
US20130173064A1 (en) * 2011-10-21 2013-07-04 Nest Labs, Inc. User-friendly, network connected learning thermostat and related systems and methods
US20130321637A1 (en) * 2009-03-02 2013-12-05 Flir Systems, Inc. Monitor and control systems and methods for occupant safety and energy efficiency of structures
US20130331021A1 (en) * 2012-06-06 2013-12-12 Siemens Industry, Inc. Radon detection and mitigation in a building automation system
US20130338839A1 (en) * 2010-11-19 2013-12-19 Matthew Lee Rogers Flexible functionality partitioning within intelligent-thermostat-controlled hvac systems
US20140034284A1 (en) * 2005-02-23 2014-02-06 Emerson Electric Co. Interactive Control System for an HVAC System
US20140052300A1 (en) * 2010-12-31 2014-02-20 Nest Labs, Inc. Inhibiting deleterious control coupling in an enclosure having multiple hvac regions
US20140058567A1 (en) * 2010-11-19 2014-02-27 Nest Labs, Inc. Hvac schedule establishment in an intelligent, network-connected thermostat
US20140088918A1 (en) * 2012-09-21 2014-03-27 Rosemount Inc. Flame instability monitoring with draft pressure and process variable
US20140277761A1 (en) * 2013-03-15 2014-09-18 Nest Labs, Inc. Controlling an hvac system in association with a demand-response event
US8988232B1 (en) * 2013-10-07 2015-03-24 Google Inc. Smart-home hazard detector providing useful follow up communications to detection events
US20150097689A1 (en) * 2013-10-07 2015-04-09 Google Inc. Hazard detection unit facilitating convenient setup of plural instances thereof in the smart home

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651034B2 (en) * 2000-08-04 2010-01-26 Tjernlund Products, Inc. Appliance room controller
US20050270151A1 (en) * 2003-08-22 2005-12-08 Honeywell International, Inc. RF interconnected HVAC system and security system
US7250870B1 (en) * 2005-03-21 2007-07-31 John Viner Back draft alarm assembly for combustion heating device
US20080182506A1 (en) * 2007-01-29 2008-07-31 Mark Jackson Method for controlling multiple indoor air quality parameters
US20080290183A1 (en) * 2007-05-22 2008-11-27 Honeywell International Inc. Special purpose controller interface with instruction area
US20090302996A1 (en) * 2008-06-10 2009-12-10 Millennial Net, Inc. System and method for a management server
US8016205B2 (en) * 2009-02-12 2011-09-13 Emerson Electric Co. Thermostat with replaceable carbon monoxide sensor module

Patent Citations (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469274A (en) * 1980-05-27 1984-09-04 Levine Michael R Electronic thermostat with repetitive operation cycle
US4335847A (en) * 1980-05-27 1982-06-22 Levine Michael R Electronic thermostat with repetitive operation cycle
US5400246A (en) * 1989-05-09 1995-03-21 Ansan Industries, Ltd. Peripheral data acquisition, monitor, and adaptive control system via personal computer
US5259445A (en) * 1992-07-13 1993-11-09 The Detroit Edison Company Control for dual heating system including a heat pump and furnace
US5481481A (en) * 1992-11-23 1996-01-02 Architectural Engergy Corporation Automated diagnostic system having temporally coordinated wireless sensors
US5595342A (en) * 1993-05-24 1997-01-21 British Gas Plc Control system
US5566879A (en) * 1993-12-06 1996-10-22 Comptel Domotique Inc. System for centralized controlling of a plurality of temperature regulating devices
US5742516A (en) * 1994-03-17 1998-04-21 Olcerst; Robert Indoor air quality and ventilation assessment monitoring device
US5632614A (en) * 1995-07-07 1997-05-27 Atwood Industries , Inc. Gas fired appliance igntion and combustion monitoring system
US6385599B1 (en) * 1996-04-26 2002-05-07 Sgs-Thomson Microelectronics S.A. Method and apparatus for a fuzzy self-adaptive control system
US5793296A (en) * 1996-04-30 1998-08-11 Lewkowicz; Mike Apparatus for carbon monoxide detection and automatic shutoff of a heating system
US5781024A (en) * 1996-07-26 1998-07-14 Diametrics Medical, Inc. Instrument performance verification system
US20040079093A1 (en) * 1997-09-19 2004-04-29 Gauthier Dale A. Method and apparatus for energy recovery in an environmental control system
US5911747A (en) * 1997-09-19 1999-06-15 Pentech Energy Solutions, Inc. HVAC system control incorporating humidity and carbon monoxide measurement
US20010020644A1 (en) * 1997-09-19 2001-09-13 Gauthier Dale A. Method and apparatus for energy recovery in an environmental control system
US6062482A (en) * 1997-09-19 2000-05-16 Pentech Energy Solutions, Inc. Method and apparatus for energy recovery in an environmental control system
US20030102382A1 (en) * 1997-09-19 2003-06-05 Gauthier Dale A. Method and apparatus for energy recovery in an environmental control system
US6176436B1 (en) * 1997-09-19 2001-01-23 Pentech Energy Solutions, Inc. Method and apparatus for energy recovery in an environmental control system
US6742349B1 (en) * 2000-05-16 2004-06-01 Sanyo Electric Co., Ltd. Equipment sensing system and equipment control device
US20040117330A1 (en) * 2002-03-28 2004-06-17 Ehlers Gregory A. System and method for controlling usage of a commodity
US20040133314A1 (en) * 2002-03-28 2004-07-08 Ehlers Gregory A. System and method of controlling an HVAC system
US6578770B1 (en) * 2002-04-09 2003-06-17 Howard B. Rosen Thermostat incorporating a carbon dioxide sensor suitable for reading using potentiostat techniques, and environmental control system incorporating such thermostat
US20050006488A1 (en) * 2003-07-08 2005-01-13 Daniel Stanimirovic Fully articulated and comprehensive air and fluid distribution, metering, and control method and apparatus for primary movers, heat exchangers, and terminal flow devices
US20070043478A1 (en) * 2003-07-28 2007-02-22 Ehlers Gregory A System and method of controlling an HVAC system
US20050212681A1 (en) * 2004-03-23 2005-09-29 Northcoast Innovations Garage carbon monoxide detector with automatic garage door opening command
US20060038672A1 (en) * 2004-07-02 2006-02-23 Optimal Licensing Corporation System and method for delivery and management of end-user services
US20060106510A1 (en) * 2004-11-01 2006-05-18 Heffington Mark F Programmable automotive computer system
US20070088465A1 (en) * 2004-11-01 2007-04-19 Heffington Mark F Programmable automotive computer method and apparatus with accelerometer input
US20080054082A1 (en) * 2004-12-22 2008-03-06 Evans Edward B Climate control system including responsive controllers
US20080078337A1 (en) * 2005-02-07 2008-04-03 Donnelly Donald E Systems And Methods For Controlling A Water Heater
US20140034284A1 (en) * 2005-02-23 2014-02-06 Emerson Electric Co. Interactive Control System for an HVAC System
US20100023865A1 (en) * 2005-03-16 2010-01-28 Jim Fulker Cross-Client Sensor User Interface in an Integrated Security Network
US20070099136A1 (en) * 2005-10-28 2007-05-03 Beckett Gas, Inc. Burner control
US20070099137A1 (en) * 2005-11-02 2007-05-03 Emerson Electric Co. Ignition control with integral carbon monoxide sensor
US20090253087A1 (en) * 2005-11-02 2009-10-08 Donnelly Donald E Ignition control with integral carbon monoxide sensor
US20070120693A1 (en) * 2005-11-29 2007-05-31 Vij Ashok K Sensing system and components for detecting and remotely monitoring carbon monoxide in a space of concern
US20070131784A1 (en) * 2005-12-12 2007-06-14 Garozzo James P Low voltage power line communication for climate control system
US20070142927A1 (en) * 2005-12-21 2007-06-21 Mark Nelson Systems and methods for notifying of persistent states of monitored systems using distributed monitoring devices
US20070233420A1 (en) * 2006-02-09 2007-10-04 Potucek Kevin L Programmable aerator cooling system
US20080048046A1 (en) * 2006-08-24 2008-02-28 Ranco Inc. Of Delaware Networked appliance information display apparatus and network incorporating same
US20080099570A1 (en) * 2006-10-04 2008-05-01 Steve Krebs System and method for estimating temperature drift and drive curves
US20080182215A1 (en) * 2007-01-31 2008-07-31 Alberto Sid System and method for controlling toxic gas
US20080284579A1 (en) * 2007-05-15 2008-11-20 David Contreras Carbon monoxide safety system
US20080289834A1 (en) * 2007-05-25 2008-11-27 Tsm Corporation Hazard detection and suppression apparatus
US20100019921A1 (en) * 2007-06-19 2010-01-28 At&T Intellectual Property, Inc. Methods, apparatuses, and computer program products for implementing situational control processes
US20130095868A1 (en) * 2007-07-31 2013-04-18 Johnson Controls Technology Company Pairing wireless devices of a network using relative gain arrays
US20090243852A1 (en) * 2007-10-23 2009-10-01 La Crosse Technology, Ltd. Remote Location Monitoring
US20090134993A1 (en) * 2007-11-28 2009-05-28 Ranco Incorporated Of Delaware Thermostat With Audible Interconnect To Threat Detectors
US8138690B2 (en) * 2008-04-14 2012-03-20 Digital Lumens Incorporated LED-based lighting methods, apparatus, and systems employing LED light bars, occupancy sensing, local state machine, and meter circuit
US20130321637A1 (en) * 2009-03-02 2013-12-05 Flir Systems, Inc. Monitor and control systems and methods for occupant safety and energy efficiency of structures
US20110113120A1 (en) * 2009-11-12 2011-05-12 Bank Of America Corporation Facility maintenance and management system
US8090477B1 (en) * 2010-08-20 2012-01-03 Ecofactor, Inc. System and method for optimizing use of plug-in air conditioners and portable heaters
US20120095614A1 (en) * 2010-10-14 2012-04-19 Delayo Richard Electronic control device and method for boiler system
US20140058567A1 (en) * 2010-11-19 2014-02-27 Nest Labs, Inc. Hvac schedule establishment in an intelligent, network-connected thermostat
US20130226354A9 (en) * 2010-11-19 2013-08-29 Nest Labs, Inc. Adjusting proximity thresholds for activating a device user interface
US20130338839A1 (en) * 2010-11-19 2013-12-19 Matthew Lee Rogers Flexible functionality partitioning within intelligent-thermostat-controlled hvac systems
US20140052300A1 (en) * 2010-12-31 2014-02-20 Nest Labs, Inc. Inhibiting deleterious control coupling in an enclosure having multiple hvac regions
US20120253527A1 (en) * 2011-04-04 2012-10-04 Ecobee, Inc. Programming Simulator for an HVAC Controller
US20120305661A1 (en) * 2011-05-31 2012-12-06 Ecobee, Inc. HVAC Controller with Predictive Set-Point Control
US20130018513A1 (en) * 2011-07-11 2013-01-17 Ecobee, Inc. HVAC Controller with Predictive Set-Point Control
US20130054033A1 (en) * 2011-08-25 2013-02-28 Siemens Industry, Inc. Synergistic interface system for a building network
US20130066474A1 (en) * 2011-09-12 2013-03-14 Siemens Industry, Inc. Thermostat control device with integrated feedback and notification capability
US20130085613A1 (en) * 2011-09-30 2013-04-04 Siemens Industry, Inc. Method and system for improving energy efficiency in an hvac system
US20140005839A1 (en) * 2011-10-21 2014-01-02 Nest Labs, Inc. Prospective determination of processor wake-up conditions in energy buffered hvac control unit
US20130173064A1 (en) * 2011-10-21 2013-07-04 Nest Labs, Inc. User-friendly, network connected learning thermostat and related systems and methods
US20130123991A1 (en) * 2011-11-16 2013-05-16 Robert Charles Richmond Thermostat and irrigation controller with removable user interface
US20130331021A1 (en) * 2012-06-06 2013-12-12 Siemens Industry, Inc. Radon detection and mitigation in a building automation system
US20140088918A1 (en) * 2012-09-21 2014-03-27 Rosemount Inc. Flame instability monitoring with draft pressure and process variable
US20140277761A1 (en) * 2013-03-15 2014-09-18 Nest Labs, Inc. Controlling an hvac system in association with a demand-response event
US8988232B1 (en) * 2013-10-07 2015-03-24 Google Inc. Smart-home hazard detector providing useful follow up communications to detection events
US20150097689A1 (en) * 2013-10-07 2015-04-09 Google Inc. Hazard detection unit facilitating convenient setup of plural instances thereof in the smart home

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI465191B (en) * 2012-10-11 2014-12-21 Nat Univ Chung Hsing Egg hatching device
US9964347B2 (en) * 2012-11-12 2018-05-08 Lg Electronics Inc. Apparatus for controlling an air conditioner
US20140137583A1 (en) * 2012-11-12 2014-05-22 Seontaek Kim Apparatus for controlling an air conditioner
US9240968B1 (en) * 2014-02-13 2016-01-19 Sprint Communications Company L.P. Autogenerated email summarization process
US20160097534A1 (en) * 2014-10-02 2016-04-07 Ryan De Vries Toxic Gas Expelling Assembly
US10897929B2 (en) * 2014-10-24 2021-01-26 Philip Morris Products S.A. Aerosol-generating device, system and method with a combustion gas detector
US20170224024A1 (en) * 2014-10-24 2017-08-10 Philip Morris Products S.A. Aerosol-generating device, system and method with a combustion gas detector
US20160123587A1 (en) * 2014-10-30 2016-05-05 Paul Ventura Heating system shut-off saftey device
US11137138B2 (en) * 2014-10-30 2021-10-05 Paul Ventura Heating system shut-off safety device
USD772260S1 (en) * 2014-11-14 2016-11-22 Volvo Car Corporation Display screen with graphical user interface
USD772903S1 (en) * 2014-11-14 2016-11-29 Volvo Car Corporation Display screen with transitional graphical user interface
USD772905S1 (en) * 2014-11-14 2016-11-29 Volvo Car Corporation Display screen with graphical user interface
USD772904S1 (en) * 2014-11-14 2016-11-29 Volvo Car Corporation Display screen with transitional graphical user interface
EP3190351A1 (en) * 2016-01-06 2017-07-12 Vaillant GmbH Heating display
CN105650869A (en) * 2016-02-18 2016-06-08 成都佳美嘉科技有限公司 Internet of things fan heater
CN105890176A (en) * 2016-05-05 2016-08-24 盛嘎 Display-separated water heater
US11085832B2 (en) 2016-08-25 2021-08-10 Johnson Controls Technology Company Mitigation of fluid ingress via convection venting on electronic devices
US10408471B1 (en) * 2016-12-28 2019-09-10 Lionel Lanouette Wireless carbon monoxide furnace shutoff system
USD875110S1 (en) * 2017-01-12 2020-02-11 Johnson Controls Technology Company Display screen or portion thereof with graphical user interface
USD908099S1 (en) 2017-01-12 2021-01-19 Johnson Controls Technology Company Building automation device
USD949803S1 (en) 2017-01-12 2022-04-26 Johnson Controls Tyco IP Holdings LLP Building automation device
US20210222877A1 (en) * 2017-03-16 2021-07-22 CoEvac, LLC Automatic Smoke/Carbon Monoxide Power Cut-Off Method and System
US10900685B2 (en) * 2017-05-12 2021-01-26 Thomas L. Jordan Detection and control device for HVAC supply vent
US20180328614A1 (en) * 2017-05-12 2018-11-15 Thomas L. Jordan Detection and Control Device for HVAC Supply Vent
USD908713S1 (en) * 2018-07-12 2021-01-26 Distech Controls Inc. Display screen or portion thereof with graphical user interface
US11713891B2 (en) 2019-10-10 2023-08-01 Ademco Inc. Carbon monoxide detection system

Also Published As

Publication number Publication date
WO2012134771A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
US20120251963A1 (en) Thermostat with integrated carbon monoxide (co) sensor
US10777072B2 (en) Systems and methods for multi-criteria alarming
US10741059B2 (en) Systems and methods for handling latent anomalies
US8902071B2 (en) HVAC controller with HVAC system fault detection
US9633553B2 (en) Systems and methods for compensating for sensor drift in a hazard detection system
US9002523B2 (en) HVAC controller with diagnostic alerts
US10325467B2 (en) Event prioritization and user interfacing for hazard detection in multi-room smart-home environment
US9989507B2 (en) Detection and prevention of toxic gas
CA2851257C (en) Strategic reduction of power usage in multi-sensing, wirelessly communicating learning thermostat
US20130158715A1 (en) Hvac controller with hvac system failure detection
US7225054B2 (en) Controller with programmable service event display mode
US20130158714A1 (en) Hvac controller with user activated performance test
US20150233596A1 (en) Strategic reduction of power usage in multi-sensing, wirelessly communicating learning thermostat
CN110635977A (en) Equipment self-checking method and device
US10242560B2 (en) Systems and methods for detecting anomalies in a hazard detection system
EP3699581A1 (en) Electronic device and control method therefor
JP5148324B2 (en) Alarm device
KR102233937B1 (en) Server of health management using semantic analysis for sensing data of care plug device, and the method thereof
CA3004697A1 (en) Detection and control device for hvac supply vent
JP2005339099A (en) Communication equipment and its program
CN115685860A (en) Intelligent environmental air management system

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS INDUSTRY, INC., GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BARKER, KIMBERLY A;REEL/FRAME:026099/0482

Effective date: 20110406

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION