US20080243035A1 - Interchangeable high intensity focused ultrasound transducer - Google Patents

Interchangeable high intensity focused ultrasound transducer Download PDF

Info

Publication number
US20080243035A1
US20080243035A1 US12/051,073 US5107308A US2008243035A1 US 20080243035 A1 US20080243035 A1 US 20080243035A1 US 5107308 A US5107308 A US 5107308A US 2008243035 A1 US2008243035 A1 US 2008243035A1
Authority
US
United States
Prior art keywords
transducer
insert
electrical
housing
slip ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/051,073
Inventor
Jeffrey Robert Crunkilton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solta Medical Inc
Original Assignee
LipoSonix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LipoSonix Inc filed Critical LipoSonix Inc
Priority to US12/051,073 priority Critical patent/US20080243035A1/en
Assigned to LIPOSONIX, INC. reassignment LIPOSONIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CRUNKILTON, JEFFREY ROBERT
Publication of US20080243035A1 publication Critical patent/US20080243035A1/en
Assigned to MEDICIS TECHNOLOGIES CORPORATION reassignment MEDICIS TECHNOLOGIES CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: LIPOSONIX, INC.
Assigned to LIPOSONIX, INC. reassignment LIPOSONIX, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MEDICIS TECHNOLOGIES CORPORATION
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY AGREEMENT Assignors: LIPOSONIX, INC.
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY INTEREST - MEZZANINE LOAN Assignors: LIPOSONIX, INC.
Assigned to CAPITAL ROYALTY PARTNERS II L.P., PARALLEL INVESTMENT OPPORTUNITIES PARTNERS II L.P., CAPITAL ROYALTY PARTNERS II - PARALLEL FUND "A" L.P. reassignment CAPITAL ROYALTY PARTNERS II L.P. SHORT-FORM PATENT SECURITY AGREEMENT Assignors: LIPOSONIX, INC.
Assigned to LIPOSONIX, INC. reassignment LIPOSONIX, INC. RELEASE OF SECURITY INTEREST IN PATENTS Assignors: CAPITAL ROYALTY PARTNERS II - PARALLEL FUND "A" L.P., CAPITAL ROYALTY PARTNERS II L.P., PARALLEL INVESTMENT OPPORTUNITIES PARTNERS II L.P.
Assigned to LIPOSONIX, INC. reassignment LIPOSONIX, INC. RELEASE OF SECURITY INTEREST IN PATENTS Assignors: SILICON VALLEY BANK
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling

Definitions

  • the present invention relates to a sealing adaptor for use with a interchangeable transducer for use within a wet environment transducer housing.
  • HIFU transducers have limited life span because of the high power levels that may tax their physical construction. These transducers degrade and fail for a variety of reasons much faster than transducers used in other medical fields (like diagnostic ultrasound, or other low power applications). Transducers designed for therapeutic ultrasound applications delivering therapeutic power levels may suffer de-lamination of their metallization layers, pitting or physical destruction of the transducer caused by cavitation or thermal effects from exposure to very high temperatures.
  • HIFU transducers below the threshold where damage may occur to the transducer itself.
  • Other systems use water baths with degassed circulating water, or design their therapy regimens with long intervals between therapy pulses. These extended pauses between pulses produce a low pulse repetition frequency (PRF) allowing the transducer to cool, and negative effects in tissue to dissipate.
  • PRF pulse repetition frequency
  • HIFU with a higher PRF, or continuous operation of the transducer for certain lengths of time that preclude low PRF operation.
  • These higher PRF and/or continuous wave (CW) style regimen are desirable when the treatment is designed to maximize the amount of tissue destruction to be achieved in a certain period of time.
  • transducer degradation necessitates a frequent replacement of the HIFU transducer. Replacement is made difficult in that the transducers are generally expensive and delicate components, so handling the transducers is usually kept to a minimum. Further more, transducers in therapeutic medical systems are often imbedded into large bulk chambers filled with water, or attached in a manner that precludes easy removal and replacement of the transducer.
  • the transducer environment may contain water, which should not be permitted to mix with the system electronics.
  • the presence of water during a transducer exchange can make the replacing of a transducer messy and difficult.
  • Once the transducer is replaced water may linger between the electrical connectors between the system and the new transducer.
  • System performance may be degraded due to electrode corrosion or signal cross-talk among the conduction paths caused by the presence of water or other fluids.
  • transducer connector or connecting means, that provides an easier method of removing and connecting transducers to a medical ultrasound device that is compatible with the demands of a wet environment, and capable of handling all system requirements without degradation in performance.
  • Another objective is a connection that has a high reliability and ease of use, to promote a user friendly procedure for removing and/or installing transducers in the medical system.
  • Yet another objective is to provide a transducer that provides various features and operation parameters to expand or broaden the type of transducers a user may connect with the medical system.
  • Still another objective is a transducer that possesses the necessary driving electronics particular to their designed features, so as to reduce the required programming and electronics of the main system.
  • Still another objective is to provide a simple disposal path for used components.
  • Still another objective is a sealing device for electrical signal isolation or electrical connector isolation in a wet environment.
  • the interchangeable transducer adapted for use with a high intensity focused ultrasound (HIFU) medical system.
  • the interchangeable transducer has a housing that is generally rigid and hollow.
  • the housing has two open ends, one adapted for fitting a HIFU transducer, and the other end having an isolation layer and electrical connection for electrical signal and power communication with the HIFU medical system.
  • the interchangeable transducer is adapted to fit into a socket style receptacle on the medical system.
  • the transducer is ideally replaced by the user, so the portion of the transducer which fits into the socket is designed for easy insertion and extraction. Easy insertion is achieved through an orientation free, low engagement force connection between the transducer and the medical system which allows easy user access to the transducer.
  • a slip ring spacer is also described herein for use with a wet electrical connection having a pancake style slip ring.
  • the slip ring spacer has a base formed from a non-conductive material. Multiple apertures extend through the base. The apertures are designed to sheath electrical connectors which extend through the base. There are one or more flanges extending from the base. The flanges are arranged so as to isolate the apertures into cells.
  • FIG. 1 shows an exterior view of an interchangeable transducer.
  • FIG. 2 is a cut away view of an interchangeable transducer.
  • FIG. 3 shows a system for use with an interchangeable transducer.
  • FIGS. 4A-4E illustrate a method of swapping a transducer.
  • FIG. 5A shows an exploded view of one embodiment of the interchangeable transducer.
  • FIG. 5B provides an alternative embodiment of a PCB for use inside the insert.
  • FIGS. 6A-6C show the interchangeable transducer connection to the system socket.
  • FIGS. 6D-6E show the transducer insert using an alternative PCB.
  • FIGS. 6F-6I illustrate a progression of possible adaptor shapes.
  • FIGS. 7 and 8 show alternative PCB positions for the interchangeable transducer.
  • FIGS. 9A-9E show a slip ring seal and a slip ring.
  • FIGS. 10-15C show alternative embodiments of the slip ring seal.
  • the basic design of the interchangeable transducer incorporates a housing which is hollow and generally rigid.
  • the housing holds within it a transducer, such as one compatible with HIFU medical systems, electrical pathways (electronics) for connecting the transducer to a medical system so the transducer can be properly controlled, and a connector that allows the interchangeable transducer to be removed and/or inserted into a receptacle on the medical system.
  • the transducer housing has a shape and electrical connection assembly that allows the housing to be inserted in any radial orientation relative to the system receptacle axis.
  • the axial symmetry may allow for two or more orientations, and desirably an unlimited number of orientations. For visualization purposes only, one may imagine the ease of inserting a mini-plug for headphones into a portable music player.
  • the radial orientation of the plug to the receptacle does not matter, and during use if the plug is rotated within the socket, there is no interruption of the power and signal sent to the head phones. This concept is analogous to the type of adaptor and socket used in the interchangeable transducer connection described herein.
  • the present invention relates to an interchangeable transducer apparatus and methods of making the same, for use with medical ultrasound systems, particularly those considered HIFU medical systems.
  • the transducer described herein incorporates both novel physical components and design, combined with existing materials in a novel fashion to produce a transducer insert meeting one or more of the objectives of the invention.
  • the combinations of various novel elements in one embodiment will meet some objectives, while a different combination of novel elements will meet different objectives.
  • the collective whole of novel developments and arrangements of existing parts contributes to a design that satisfies the most objectives, though not necessarily all objectives in a single design. Different objective requirements will call for different combinations of the inventive concepts herein described.
  • the transducer insert may be suitable for any number of medical devices or medical systems desiring to use an easily replaceable transducer.
  • a therapeutic ultrasound system is described having a therapy head.
  • the therapy head contains a first chamber, being wet, in which a transducer is positioned.
  • the motor drive system uses one of several possible means to move the transducer in the first chamber.
  • Means described include use of actuators that extend from the motor side chamber to the transducer side chamber, a slide positioned on the motor chamber with a magnetically connected transducer in the transducer chamber, or various mechanical translation components for converting the work produced from the motors into the movement of the transducer through a barrier between the two chambers.
  • the interchangeable transducer (also referred to herein as a connectorized transducer or transducer insert), of the present design is well suited for use in a therapy head of the previous description.
  • the interchangeable transducer or transducer insert is formed from a housing having an adaptor end and an acoustic end. There is a communication port at the adaptor end.
  • the adaptor end is designed to fit into a corresponding receptacle on or in the medical ultrasound system.
  • the transducer adaptor end has a plurality of orientations for removably engaging a receptacle in the medical ultrasound system.
  • the adaptor end may be a male or female type part, while the receptacle would be the logical corresponding type part. While we describe primarily a male adaptor and a female receptacle, it should be understood that the adaptor end of the transducer insert can be the female component while the system side receptacle is the male component.
  • the adaptor end and corresponding receptacle end are designed in a manner to provide a plurality of working orientations in which the transducer insert can be placed into the system. In one embodiment the plurality of orientations may simply be a slotted design for the adaptor and receptacle.
  • the electronics of the adaptor and receptacle are arranged in a manner as to allow a “key-less” type of connection.
  • the connection between the adaptor and receptacle may be any design having symmetry about an axis, so the insert may be rotated about the axis so the insert can be fit into the receptacle in at least two directions (normal and flipped). If the connection is shaped like a triangle, three orientations would be possible. For a square four orientations would be possible. This dynamic continues to the logical and most desirable shape of having a circular shaped adaptor where absolute radial freedom is afforded.
  • the insert may be placed into the system receptacle at any radial orientation and proper electrical connection is guaranteed. Regular shapes are not required to make the adaptor connection.
  • Irregular shapes may also be used so long as they are symmetrical.
  • the symmetry of the connection provides the advantage to the user of not having to worry about the orientation of the transducer insert relative to the system socket (receptacle). So long as the shape of the connector matches the receptacle the user knows the orientation will work.
  • Electrical communication is required from the ultrasound medical system and the transducer within the transducer insert. Electrical communication enters the transducer insert at the communication side. Electrical communication means providing any combination of power, signal or ground connections from the transducer to the ultrasound system through the communication port in the transducer insert. This communication can be achieved using wires, cables, connector pins, or other electron conveying instruments as known in the art.
  • the connection may be wires running directly from the communication port to the transducer in a “dumb” design, where no on board intelligence is provided in the insert.
  • intelligence may be incorporated into the insert by adding electrical components to an electrical circuit used to provide electrical communication from the communication port to the transducer. A variety of components may be used in an intelligent design.
  • Electrical components may include a tuning transformer for optimizing the transducer, sensors for measuring various parameters about the environment within the transducer insert, sensors for monitoring the transducers performance and/or safety, components for recording measured or detected data, IC chips for running programmed applications or storing information within the insert, or any other operation desired.
  • the electrical communication between the communication port and the transducer may be provided by a two stage spring pin connection scheme.
  • a first stage set of connection pins connects the communication port to an electrical circuit board.
  • the circuit board may be a PCB/PCBA and may further be a pancake slip ring style PCB/PCBA.
  • a second stage set of connection pins connects the electrical circuit to the transducer. Electrical communication enters the communication port from the ultrasound system. The Electrical communication then travels to the electronic circuit.
  • the circuit board may provide the proper coordination and layout of the various electrical components, and assures proper handling of Electrical communication between the system and the transducer. From the electrical circuit, Electrical communication continues to the transducer. Any return Electrical communication from the transducer may follow a similar route back from the transducer to the circuit board, and then back to the system.
  • the insert may have various data recorders, sensors or programmable components within it. These elements may be on the circuit board.
  • Various possible components that may be incorporated into the insert include a chip for tracking the number of times the transducer has been used, sensors which determine the proper coupling between the transducer and the patient, sensors to determine if the transducer is properly installed into the ultrasound system, or sensors to determine the safe operation of the transducer while providing therapy output.
  • the transducer insert may also be constructed to operate with a component style ultrasound system such as those described in U.S. patent application Ser. No. 11/027,919 entitled “COMPONENT ULTRASOUND SYSTEM” and filed on Dec. 29, 2004 (commonly assigned and herein incorporated by reference).
  • the insert has an adaptor for fitting to an ultrasound system having two or more identical sockets for receiving more than one type of insert, where one of the inserts may be a transducer insert as described herein.
  • the sockets are identical and the inserts used within the sockets may be plugged into any one of the sockets, Each insert has a challenge and recognition component programmed in it, so when the insert is plugged in, the ultrasound medical system can identify each individual insert and know how to properly use it.
  • the system can handle multiple kinds of inserts simultaneously. Each insert may have a different focal depth, performance parameter or use requirement, the system can determine and properly handle the proper operation of all inserts. Desirably the transducer inserts would be properly utilized by the system automatically (without specialized user contribution or instruction to the system other than that used for a single receptacle ultrasound system using a transducer insert).
  • the novel structure is a slip ring seal, designed for use with a pancake style slip ring PCB.
  • the slip ring seal has a base, two or more apertures extending through the base, and flanges extending from the base to isolated the apertures into cells.
  • the flanges may define cells discretely formed around each aperture, or around a select group of apertures, or a combination of the two.
  • connection between the transducer insert and the system is generally a wet environment.
  • the chamber in which the transducer is located is fluid filled.
  • Various fluids are suitable for use in the transducer chamber where the transducer of the present description can be used, in general water is the most common fluid used due to ease of availability, cost and performance characteristics. Reference herein to fluids or water should be understood to incorporate which ever fluid is most suitable for the intended use and design of the transducer, since not all operations will prefer water when another compatible fluid may be superior for the particular application.
  • FIG. 1 A simplified exterior view of the interchangeable transducer 10 is shown in FIG. 1 .
  • the transducer 10 has a housing 16 represented as generally cylindrical.
  • the housing 16 is desirably rigid and hollow.
  • the housing 16 has a transducer end 20 , and an electrical connector and sealed end 14 .
  • External electrical connectors 40 extend through the seal end 14 and are designed to connect to the appropriate electrical lines from the medical system. These may include a transmit/receiver line, ground and power. Additional lines may be provided depending on the need or application of the medical system.
  • the interchangeable transducer need only have addition electrical connectors and support circuitry to enable those capabilities.
  • An adaptor 32 is also provided to allow physical engagement of the transducer 10 to a HIFU medical system.
  • FIG. 2 A simplified interior view of the interchangeable transducer 10 is now illustrated ( FIG. 2 ).
  • the seal end 14 has external electrical connectors 40 for electrical connection to a medical system.
  • the external electrical connectors 40 may extend through the seal end 14 to connect to a component within the housing 16 , or there may be an intermediate connection through the seal end from the interior of the housing. Desirably the external connectors extend through the seal end to provide electrical contact between the socket of the medical system, and the interior of the interchangeable transducer.
  • the transducer 22 is shown at the bottom or lower section of the housing 16 .
  • the transducer 22 is electrically connected to the connectors 40 by wires 12 . Electrical signals from the ultrasound system to the transducer 22 (or visa-versa) may include power, ground, transmit, receive, data or other signals and information as desired.
  • the housing may also contain one or more electrical components as part of the transducer's control circuit.
  • the interchangeable transducer 10 has a connector or other adapter allowing it to engage into a receptor on a medical device system ( FIG. 3 ).
  • a medical system 300 that might use an interchangeable transducer as described herein, is shown having base 302 , an articulating arm 304 , with a display screen 306 and a therapy head 308 . Within the therapy head 308 , there is an adaptor for receiving an interchangeable transducer.
  • a computer or other electronic intelligence (CPU) is also provided to operate the system 300 and the transducer 10 .
  • the internal components of the therapy head 308 are generally described along with the method of changing out transducers ( FIGS. 4A-4E ).
  • any water or other fluids in the therapy head 308 are desirably drained from the therapy head so that water does not splash out of the therapy head when opened. Having water or other fluids in the therapy head is not an impediment to the removal and installation of transducers described herein, so it is not necessary to completely drain the therapy head.
  • the therapy head 308 is inverted, so the main transducer chamber 310 is positioned on the bottom.
  • the therapy head 308 has a removable cap 312 section, with a transmission window 316 ( FIG. 4A ).
  • the cap 312 is removed ( FIG. 4B ) exposing the interior of the therapy head transducer chamber 310 .
  • the interchangeable transducer 10 is connected to a receptor socket 38 .
  • a pair of water lines 320 are used to circulate water inside the transducer chamber when the cap 312 is sealed to the transducer housing 310 .
  • the transducer chamber may have motors or motor cams 326 or drive shafts connected to a mechanical drive system for moving the receptor 38 .
  • the interchangeable transducer 10 can be removed ( FIG. 4C ). Desirably the transducer can be lifted straight out of the receptor 38 , or detached from the receptor with a minimal amount of force (like twisting or rocking).
  • the empty receptor 38 has a PCB slip ring which may get wet during this step, and the presence of water on the PCB is of no concern.
  • a new transducer 10 ′ is now seated onto the receptor 38 in place of the old transducer 10 ( FIG. 4D ). Again the insertion force for placing the new transducer 10 ′ is desirably fairly low, allowing any user to insert the new transducer 10 ′ easily and quickly.
  • the round shape of the transducer plug and the receptor 38 allow for any radial orientation when the new transducer 10 ′ is seated into the receptor 38 .
  • the cap 312 is then repositioned over the transducer chamber 310 to re-form the therapy head 308 ( FIG. 4E ).
  • the new transducer may be desirable to refill the water chamber, activate the medical system 300 , and allow the system to communicate with the new transducer 10 ′ to ensure the transducer is properly seated in the receptor 38 , and that the transducer is responding normally.
  • the system may use a ‘challenge and answer’ protocol to determine the nature of the transducer, and establish the appropriate therapy regimen to use with the particular transducer.
  • the transducer 10 may have an integrated circuit (IC) 30 on board that can provide detailed information to the medical system once it is properly connected. Alternatively the IC may be used for other purposes (see below).
  • a connector or adaptor 32 is shown on the outside of the housing 16 ( FIG. 1 ).
  • the connector 32 allows the transducer housing 16 to mate with a socket or receptacle 38 of a medical system 300 .
  • the connector 32 desirably allows the housing 16 to be inserted into the socket or receptacle with a low insertion force to provide easy insertion or removal.
  • the electrical connectors 40 are designed to operate in conjunction with the mechanism used to mate the transducer 10 to the receptor 38 , so the electrical connectors 40 can establish and maintain contact with the appropriate system side electronic channels regardless of the radial orientation of the transducer when mated to the receptor.
  • the connector 32 similarly can engage the socket 38 in any radial orientation.
  • the receptor or socket 38 has a receiving element 36 for the connector 32 .
  • the connector 32 for engaging the socket may be mechanical, magnetic or electromagnetic in nature. As long as the connector can hold the transducer housing in its proper place in the socket and allow for any radial orientation for insertion and removal,
  • the housing 16 is made from two sections, a lower portion 16 B for receiving the transducer 22 , and an upper portion 16 A adapted for connection with the medical system socket 38 .
  • the transducer 22 is shown having a set of pin receptors 24 r where the electrical pins 24 attach to the transducer.
  • the electrical pins 24 extend from the interface 28 to the transducer and pass through the concentric liner 26 .
  • the liner has apertures for lining up the connection points on the interface and the transducer.
  • An optional transformer 42 can be connected to the interface 28 , and would sit within the aperture defined by the concentric liner 26 .
  • the lower portion 16 B may be assembled by first inserting the transducer 22 into the lower portion 16 B.
  • the transducer 22 may be secured using epoxy or resin along the transducer rim to seal the transducer to the aperture defined by the housing opening 20 .
  • the electrical connector pins 24 are inserted into the concentric liner 26 , and then the connector pins 24 are oriented to match the transducer receiver placements 24 r .
  • the concentric liner 26 is then placed into the lower portion and secured. Electrical components such as the transformer 42 , or the data IC (not shown) may be attached to the PCB 28 , and then the PCB 28 is lined up to match the desired connector pin 24 layout.
  • the PCB 28 has predefined lands on both its upper and lower surface. These lands correspond to the pin orientation for the electrical connector pins 24 of the lower portion, and for the electrical pins of the upper portion 40 .
  • the upper portion 16 A is similarly assembled.
  • the upper portion is sealed across the top, and the electrical pins 40 that extend through the top of the upper portion 16 A are sealed against fluid flow from the outside of the housing to the inside.
  • the electrical pins 40 may be soldered in place, or fixed with an epoxy or other agent to provide the fluid seal between the upper portion 16 A and the apertures needed for the pins.
  • the upper connector pins 40 are inserted through the isolation layer 34 in a predefined arrangement matching the upper lands of the PCB 28 .
  • the connector pins may be any type of electrical pins suitable for use in an interchangeable design. Spring pins, pogo-pins, spring clips and other tensioned electrical connectors are desirable in one embodiment due to their expansive nature.
  • the isolation layer 34 is lowered into the upper housing 16 A.
  • the isolation layer 34 is desirably attached to the upper portion so that the upper housing 16 A and isolation layer 34 can be moved as a single unit.
  • the isolation layer 34 may be attached using an adhesive compound between the isolation layer and the top of the upper housing.
  • the isolation layer 34 may be constructed so there is an interference fit between the isolation layer and the upper section of the housing. Desirably the adhesive or interference fit would prevent water from pooling underneath the isolation layer and the housing.
  • the upper housing is then lowered onto the lower housing assembly so the connector pins 40 match the PCB land layout ( FIG. 5A ).
  • the entire transducer housing may be filled with an inert gas to promote stability and operational life span of the internal components.
  • the transducer insert 10 replaces the standard PCB 28 with a slip ring PCB 29 ( FIG. 5B ).
  • the transducer insert realizes an advantage in assembly by having electrical communication with portions of the transducer insert not directly attached to the PCB 29 in that those non attached components are free from discrete orientation relative to the PCB 29 . Parts desirably directly connected to the PCB 29 would connect to discrete lands sites LD, while pin connections 24 , 40 could connect to the land rings.
  • the transducer 22 may also have a land ring instead of discrete connection points 24 r .
  • land rings By utilizing land rings in the various components within the transducer, freedom from particular orientations are achieved, and thus provide advantages in manufacturing/assembly of the parts and sub components.
  • the medical system socket 38 is illustrated ( FIG. 5A ), this component is not a part of the interchangeable transducer 10 , and is merely illustrated here to show the alignment of all the parts described. Desirably the socket utilizes a pancake style slip ring to improve contact regardless or radial orientation.
  • the transducer used in the interchangeable transducer design may have a single fixed zone, or be designed having two or more focal zones.
  • the transducer may have an imperfect focal zone achieved through a mechanical distortion formed in the transducer, such as those described in U.S. patent application Ser. No. 10/816,197 entitled “VORTEX TRANSDUCER” and filed on Mar. 31, 2004, and U.S. patent application Ser. No. 11/439,706 entitled “Medical Ultrasound Transducer Having Non-Ideal Focal Region” filed May 23, 2006. (both applications commonly assigned and herein incorporated by reference).
  • the vortex transducer and the non-ideal focal region transducers allow for a focal region in a circular or donut shaped pattern wherein the pattern is produced by a mechanical offset in the bowl of the transducer.
  • the isolation layer 34 is primarily used to prevent electrical cross talk and contact corrosion among and between the electrical contacts 40 .
  • the shape and size of the focal region can be mathematically calculated and an appropriate mechanical shape to a transducer can be manufactured. This allows the transducer to focus ultrasound waves in particular desired shapes and patterns without requiring the complexity and cost of an electronically steered transducer.
  • the transducer may also be an electronically focused device, such as a 2D array or a phased array transducer.
  • FIG. 6A there is a housing 16 having a substantially cylindrical shape.
  • the housing 16 has a neck down region located near the isolation layer 34 , and a larger diameter near the transducer 22 .
  • the transducer side 20 is open, or has a window so ultrasound energy may be broadcast out of the housing 16 unimpeded.
  • the transducer 22 is secured near the open end 20 , and connects to an interface 28 via a set of connection pins 24 .
  • the connection pins 24 are held in place with a concentric liner 26 inside the housing 16 .
  • the interface 28 may be a set of connecting wires as previously described, or may include a circuit, PCB, PC(B)A or other hardware component.
  • the interface may also have additional electronics, such as a transformer 42 for tuning the transducer 22 , a data chip or integrated circuit (IC) 30 to help identify the interchangeable transducer 10 to the medical system 300 . Additional components are described below.
  • the transducer 22 there is a seal 14 for preventing water or atmosphere from entering the internal compartment of the transducer 10 .
  • Working in conjunction with the seal 14 is an isolation layer 34 for reducing pin corrosion and/or cross talk between the external electrical connectors 40 .
  • the transducer side 20 is also sealed against the outside environment. While the transducer side 20 may be sealed with the transducer 22 itself and various compounds which can be used to prevent leakage, the seal 14 has one or more apertures 50 for the protrusion of the external electrical connectors 40 .
  • the apertures 50 are desirably large enough to allow the passage of the electrical connectors 40 .
  • the apertures may rely on an interference fit to prevent seepage of fluid between the apertures and the pins, or the use of a sealing agent, or both.
  • the apertures 50 may be sealed once the external electrical connectors 40 are placed using solder, epoxy, resin, adhesive or other suitable sealing agents.
  • a connector 32 is located on the housing and designed for engagement of a corresponding connection on the medical system socket 38 .
  • the receiving element 36 and connector 32 form a transducer-system connection. This connection is desirably one having high endurance. Repetitive reliability is desirable, but not required for the transducer connector 32 , as it is not envisioned that any one particular transducer will be removed and inserted a large number of times.
  • the design of the transducer connector 32 and the system side connection (receptor) 36 allow for individual transducers to be interchanged with the medical system 300 on demand. This allows a single medical system to have a great deal of variety in its operational scope. Each new transducer can provide added capability as well as replacement for worn or out dated parts. Desirably the mating of the transducer 10 to the system 300 can be accomplished with a low insertion force connector 32 and receptor 36 combination. Though the insertion force is low, the connection is robust so the transducer 10 will be stable while mounted in socket 38 .
  • the socket 38 is desirably connected to a motor assembly through a set of cams 326 . Electrical communication between the system 300 and the transducer 10 is maintained regardless of how the socket 38 might be moved.
  • the electrical pin 40 layout as they extend through the seal 34 are designed to make contact with additional lands built into the socket 38 ( FIG. 6B ).
  • the socket lands 102 a - c form concentric structures within the socket.
  • the electrical pins 40 now identified individually 40 a , 40 b , 40 c ( FIG. 6B ) each carry a separate electrical signal from the medical system 100 to the interchangeable transducer 10 .
  • the individual connectors may carry power, transmit/receiver signal information, IC chip detection, ground or other signals as desired.
  • the corresponding lands in the socket PCB form concentric rings for connection with each pin separately.
  • the electrical pins and PCB lands match up, and provide a secure electrical connection ( FIG. 6C ).
  • the pressure used to hold the removable transducer 10 in place with the system side socket 38 desirably provides sufficient force exerted on the isolation layer 34 to prevent fluid from seeping into the region between the isolation layer 34 and the recess of the housing 16 A where the isolation layer is placed.
  • the isolation layer may also be manufactured with flanges on the bottom (not shown) so that isolation layer forms discrete channels or chambers for each electrical connector, or groups of connectors, as the flange or ridge configuration on the top side of the isolation layer.
  • the pin layout and slip ring described herein and shown in the figures represents one embodiment, however this embodiment is not meant to be limiting of the connector layout.
  • the number of electrical pins in the “plug” end of the transducer may be as many as desired or needed to perform the necessary tasks of providing electrical connection, or even stabilizing plugs for structural integrity.
  • the lands of the slip ring like wise may be as many as desired and it does not necessarily follow that each land will have a corresponding electrical connector.
  • a land may be used as a cross-talk sensor by having no physical pin designed to make contact with it, yet still monitor electrical signal when the connection is made.
  • the land itself can be used as an electrical sensor to monitor the safety and stability of the electrical connection and/or the isolation between lands.
  • the transducer insert resembles the assembly previously described. Individual components such as a transformer 42 are still directly connected to the modified PCB 29 ( FIG. 6D ). The electrical pins 24 , 40 are no longer connected to discrete traces on the PCB 29 . The electrical pins 24 , 40 are now pressed against the trace rings 102 a - c on the PCB 29 . This allows the top section 16 A and bottom section 16 B to be press fit together without regard to the orientation of the parts relative to each other. No matter what orientation the top 16 A has to the bottom 16 B, the electrical pins 24 , 40 will still match up with the traces to provide proper electrical communication from the communication port to the transducer.
  • the transducer 22 may have a trace ring 24 LR around the circumference of the transducer so the transducer may also be assembled to the bottom 16 B section without concern for orientation and placement of the electrical pins 24 to the transducer 22 .
  • FIG. 6E A close up of the electrical pin connections 40 to the top of the slip ring PCB 29 is now shown ( FIG. 6E ).
  • the discrete connections for the transformer 42 are shown in the form of a series of discrete lands LD or trace positions.
  • the adaptor for the transducer insert 10 need not be circular, though the circular design is desirable.
  • Various other shapes allowing for multiple orientation of the transducer insert are shown in FIGS. 6G-6I .
  • the transducer adaptor has a “keyless” orientation to the “socket” on the system side. So the adaptor may be oblong for two orientations, triangular for three orientations, progressing to a circular insert and socket ( FIG. 6I ).
  • the socket has electrical contacts in the form of slip rings (dotted lines in FIGS. 6F-6I ), with electrical contact pins set at the desired radius to make physical contact with the corresponding land so the appropriate pins 40 a - x communicates with the corresponding lands 102 a - x.
  • the orientation of the interface 28 as shown in FIGS. 5 , 6 A- 6 C need not be perpendicular to the axis of the transducer housing.
  • the interface 28 along with any additional components may be at any orientation desired.
  • the interface 28 is a PCB or PCA aligned with the axis of the housing 16 ( FIG. 7 ) and has connection wires 12 from the external electronic connectors 40 to a PCB style interface 28 having a transformer 42 and a data IC 30 along with other electronics as may be desired.
  • the interface may be a PCB with a data IC having additional embedded information.
  • the data IC 30 may include data related to the number of uses the transducer is allowed to be activated, or it may record use data which can be used to help improve future interchangeable transducer designs (such as measuring attenuation, feedback, decoupling, thermal information or the like). While this collected data may be stored in the data IC, additional sensors 4021 - i could be added to the interface 28 to record the desired data ( FIG. 8 ).
  • the isolation layer 34 used with the interchangeable transducer may be a washer or disk of electrical isolation material. While the isolation layer may be a solid or otherwise uniform component, an independently novel design for an electrical isolation layer is desirable.
  • An isolation layer well suited for providing isolation between individual contacts in a wet environment is realized in the form of a slip ring seal (spacer).
  • the slip ring spacer is provided at the docking end of the connectorized transducer.
  • the slip ring spacer may have any one of a variety of forms consistent with the general description and requirements described herein, or similar or equivalent to any of the enumerated embodiments described.
  • the slip ring spacer provides a bumper between the connectorized transducer and the socket of the medical system.
  • the seal provides apertures or other means of allowing electrical communication through the seal, between the connectorized transducer and the socket. In addition, the seal allows for simultaneous electrical communication between multiple isolated electrical connectors in a wet environment.
  • the seal provides isolation of each separate electrical connector type, reducing cross talk between different kinds of signal and/or power connectors.
  • the slip ring seal is desirably made from or has properties incorporated into it, that provide water and electrical resistance. If the material is slightly conductive, it is possible for a short to occur between the electrical pins even in the presence of a partial or complete fluid seal.
  • the slip ring spacer 900 has a base 902 and one or more flanges or ridges 9041 - i rising from the base.
  • the ridges or flanges are adapted to press against a slip ring SR and form one or more concentric channels 9061 - i so that each electrical connection ring of the slip ring SR is separated from the other electrical connection rings by the ridges 9041 - i .
  • channels 9061 - i are formed by the ridges or flanges of the slip ring.
  • the ridges are pressed against the slip ring SR, forming a seal against fluid flow between the discrete channels 9061 - i .
  • the slip ring forms one barrier to fluid movement while the slip ring seal forms the sides and bottom of the channels. In this way, electrically conductive fluid is restricted from flowing between the channels, and exposure to the electrical pins is reduced. This minimizes corrosion and cross-talk among and between the electrical pins.
  • the base desirably has apertures for electrical pins or connectors for making contact with the electrical connection rings on the slip ring. In operation, the slip ring spacer 900 allows each connector to communicate with a corresponding slip ring pad without producing cross talk between other channels, even if the environment is wet.
  • the pin connectors may be organized into groups so that multiple pins may be intended to make contact with a slip ring land.
  • the pins may be organized into groups, similar to the two pins 40 b , 40 i sharing a single circular channel ( FIG. 9A ).
  • This illustration is an example of more than one pin designed to make contact with a single land, and there is no limit to the number of pins that can be grouped into a single channel or group, or the number of groups that can be used in the interconnection arrangement between the transducer and the socket.
  • the slip ring spacer may have flanges or ridges on the underside of the base (not shown) in a pattern similar to the flange or ridge pattern on the top surface of the spacer.
  • the presence of flanges or ridges on the bottom of the spacer can help isolate the electrical contact pins from one another in the event fluid seeps below the slip ring seal during operation.
  • the slip ring spacer 900 may utilize numerous alternative embodiments.
  • the slip ring spacer 900 has individually isolated electrical pin zones ( FIG. 10 ).
  • each aperture 40 of the slip ring spacer 900 has one or more rising ridges 904 surrounding each aperture.
  • the outer rim of the base 902 is also encircled with a flange or ridge 904 R to minimize water or fluid flow from the outside of the connector to the inside components.
  • the individual electrical pins that would protrude through the apertures are individually insulated to reduce the risk of electrode corrosion and/or cross talk.
  • a single spiral channel can be formed with a spiral shaped ridge ( FIG. 11 ) with periodic partitions placed in the spiral pattern.
  • the spacer may use various arrangements of ridges or flanges extending from the base.
  • the ridges may be tapered, block shaped, or arranged in a series of thin partitions operating as a group ( FIGS. 12A-12C ).
  • the spacer is made from material that has high water and electrical resistance (like rubber, RTV (Room Temperature Vulcanization) silicone rubber, polymers, etc. . . . ).
  • the material desirably has a durometer low enough to allow the flanges or ridges to deform when they are pressed against a slip ring so the flanges will deform slightly to seal against the slip ring.
  • Designs that are more structurally robust desirably have a lower durometer material with a wider area of contact ( FIGS. 12A , 12 B) while configurations of the seal having a more rigid construction may use material that is a higher durometer material, but a reduced area of contact ( FIG. 12C ).
  • the spacer has a top portion that can compress directly on to the slip ring, and pressure pressure forces any fluid out of the surface area of the slip ring itself so the electrical connection can be made relatively free of any fluid.
  • temporary channels 1301 may join the apertures for the electrical pins, to the outer circumference of the slip ring seal so water may escape or be forced away from the electrical pin outs ( FIGS. 13A-13B ). As the seal is pressed against the slip ring, the channels are compressed against the slip ring surface, and thus reducing the flow of fluid among the electrical connections to a level where cross talk between the slip ring lands is acceptable.
  • the spacer may comprise a water and electrically resistant material having a web like structure ( FIG. 14A-14C ). Gap spaces between the webbing serve as apertures for the electrical pins to protrude from the transducer and the medical system socket.
  • the webbing may have additional material between the web strands to further restrict water flow between the web strands when the slip ring seal is compressed into position between the interchangeable transducer and the system socket.
  • the webbing with or without additional material in the webbing collapses and presses fluid out of the cells and away from the electrical connectors.
  • the collapsed webbing forms a barrier to fluid flow between the web strands.
  • the webbing may be organized ( FIGS. 14A-14C ) or randomly distributed in the formation of the seal ( FIGS. 15A-15C ).
  • a transducer as described herein can be removed from a socket, and then a new one inserted without regard to the radial orientation of the transducer relative to the socket. If the environment containing the socket is wet, the seal on the transducer allows the transducer housing to make good connection on the electrical lands on the socket side, while ensuring solid connection with the transducer and internal workings of the interchangeable transducer. Seams or assembly joints may be sealed with resin or epoxy if needed. Seams and assembly joints may also be sealed with solder, ultrasound welding or similar techniques.
  • Alternative transducer signal connections include using direct electrical connection via pin and socket, direct electrical connection via soldered spring contact and PCB trace, direct electrical connection via PCB trace to floating spring contact (e.g. in carrier) to PCB trace, direct electrical contact via a post and socket with multiple connections (e.g. stereo headphone jack), as well as wireless types of interconnects, such as inductive coupling, and capacitive coupling.
  • the transducer can be secured within the housing by gluing it or mechanically affixing it to the housing.
  • the transducer may be sandwiched between a preformed lip in the housing and the electrical connection pins 24 .
  • the transducer may be attached using a soluble adhesive allowing for the transducer ceramic to be replaced when the interchangeable transducer fails.
  • the physical connector between the transducer housing and the socket may be combined with the electrical connectors.
  • One may visualize a series of stacked electrical connector rings designed to match up to corresponding pin connectors within the socket.
  • the relationship of socket and insert may be reversed so the transducer has a socket for receiving a male end adaptor from the medical system.
  • the physical connection between the transducer housing and the socket can be achieved through any low force insertion mechanism suitable for the medical system and medical procedures desired. These may include a bearing ring, a snap ring, or simply frictional engagement. Rotational capability of the transducer housing within the socket is not critical, so long as the transducer electronically connects to the medical system electronics through the unaligned electrical connections.

Abstract

An interchangeable transducer for use with an ultrasound medical system having a keyless adaptor and capable of operating in a wet environment. The interchangeable transducer has an adaptor for engaging a medical system, an ultrasound transducer and additional electronics to provide a self-contained insert for easy replacement and usage in a variety of medical applications. A slip ring spacer is also disclosed, the slip ring spacer for use with a pancake slip ring having a base and flange configuration to form one or more channels around each contact ring of the pancake slip ring. The channels provide fluid isolation around each connector to help reduce electronic cross talk and contact corrosion between the connector pads of the slip ring while the slip ring is immersed in a wet environment.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • The present application claims the benefit of provisional U.S. Application Nos. 60/976,867 (Attorney Docket No. 021356-002800US), filed Oct. 2, 2007 and 60/908,074 (Attorney Docket No. 021356-001320US) filed on Mar. 26, 2007, the full disclosures of which are incorporated herein by reference.
  • This application is related to, and claims partial priority from, Provisional U.S. Patent Application No. 60/908,074, entitled “Interchangeable High Intensity Focused Ultrasound Transducer” filed on Mar. 26, 2007. This application is also related to U.S. patent application Ser. No. 11/027,912 entitled “Ultrasound Therapy Head with Movement Control” filed on Dec. 29, 2004 and U.S. patent application Ser. No. 11/027,919, entitled “Component Ultrasound Transducer,” also filed on Dec. 29, 2004. All identified applications are herein incorporated by reference in their entirety.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to a sealing adaptor for use with a interchangeable transducer for use within a wet environment transducer housing.
  • Some high intensity focused ultrasound (HIFU) transducers have limited life span because of the high power levels that may tax their physical construction. These transducers degrade and fail for a variety of reasons much faster than transducers used in other medical fields (like diagnostic ultrasound, or other low power applications). Transducers designed for therapeutic ultrasound applications delivering therapeutic power levels may suffer de-lamination of their metallization layers, pitting or physical destruction of the transducer caused by cavitation or thermal effects from exposure to very high temperatures.
  • To combat some of these side effects of HIFU operation, system designs may use HIFU transducers below the threshold where damage may occur to the transducer itself. Other systems use water baths with degassed circulating water, or design their therapy regimens with long intervals between therapy pulses. These extended pauses between pulses produce a low pulse repetition frequency (PRF) allowing the transducer to cool, and negative effects in tissue to dissipate.
  • Unfortunately, some therapy regimen require HIFU with a higher PRF, or continuous operation of the transducer for certain lengths of time that preclude low PRF operation. These higher PRF and/or continuous wave (CW) style regimen are desirable when the treatment is designed to maximize the amount of tissue destruction to be achieved in a certain period of time. In these types of operations, transducer degradation necessitates a frequent replacement of the HIFU transducer. Replacement is made difficult in that the transducers are generally expensive and delicate components, so handling the transducers is usually kept to a minimum. Further more, transducers in therapeutic medical systems are often imbedded into large bulk chambers filled with water, or attached in a manner that precludes easy removal and replacement of the transducer. The transducer environment may contain water, which should not be permitted to mix with the system electronics. The presence of water during a transducer exchange can make the replacing of a transducer messy and difficult. Once the transducer is replaced, water may linger between the electrical connectors between the system and the new transducer. System performance may be degraded due to electrode corrosion or signal cross-talk among the conduction paths caused by the presence of water or other fluids.
  • Thus it would be desirable to provide a transducer connector, or connecting means, that provides an easier method of removing and connecting transducers to a medical ultrasound device that is compatible with the demands of a wet environment, and capable of handling all system requirements without degradation in performance.
  • Thus it is an objective of the present invention to provide a connectorized transducer that can be connected to a therapy head or medical system with as few steps as practical, while preserving the environmental conditions of the connection.
  • Another objective is a connection that has a high reliability and ease of use, to promote a user friendly procedure for removing and/or installing transducers in the medical system.
  • Yet another objective is to provide a transducer that provides various features and operation parameters to expand or broaden the type of transducers a user may connect with the medical system.
  • Still another objective is a transducer that possesses the necessary driving electronics particular to their designed features, so as to reduce the required programming and electronics of the main system.
  • Still another objective is to provide a simple disposal path for used components.
  • Still another objective is a sealing device for electrical signal isolation or electrical connector isolation in a wet environment.
  • BRIEF SUMMARY OF THE INVENTION
  • These and other objectives are achieved through an interchangeable transducer adapted for use with a high intensity focused ultrasound (HIFU) medical system. The interchangeable transducer has a housing that is generally rigid and hollow. The housing has two open ends, one adapted for fitting a HIFU transducer, and the other end having an isolation layer and electrical connection for electrical signal and power communication with the HIFU medical system. The interchangeable transducer is adapted to fit into a socket style receptacle on the medical system. The transducer is ideally replaced by the user, so the portion of the transducer which fits into the socket is designed for easy insertion and extraction. Easy insertion is achieved through an orientation free, low engagement force connection between the transducer and the medical system which allows easy user access to the transducer.
  • A slip ring spacer is also described herein for use with a wet electrical connection having a pancake style slip ring. The slip ring spacer has a base formed from a non-conductive material. Multiple apertures extend through the base. The apertures are designed to sheath electrical connectors which extend through the base. There are one or more flanges extending from the base. The flanges are arranged so as to isolate the apertures into cells.
  • Additional embodiments and methods of making and using the interchangeable transducer are also herein described.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows an exterior view of an interchangeable transducer.
  • FIG. 2 is a cut away view of an interchangeable transducer.
  • FIG. 3 shows a system for use with an interchangeable transducer.
  • FIGS. 4A-4E illustrate a method of swapping a transducer.
  • FIG. 5A shows an exploded view of one embodiment of the interchangeable transducer.
  • FIG. 5B provides an alternative embodiment of a PCB for use inside the insert.
  • FIGS. 6A-6C show the interchangeable transducer connection to the system socket.
  • FIGS. 6D-6E show the transducer insert using an alternative PCB.
  • FIGS. 6F-6I illustrate a progression of possible adaptor shapes.
  • FIGS. 7 and 8 show alternative PCB positions for the interchangeable transducer.
  • FIGS. 9A-9E show a slip ring seal and a slip ring.
  • FIGS. 10-15C show alternative embodiments of the slip ring seal.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Described herein are various forms of replaceable transducers for use with high intensity focused ultrasound (HIFU) medical systems. The basic design of the interchangeable transducer incorporates a housing which is hollow and generally rigid. The housing holds within it a transducer, such as one compatible with HIFU medical systems, electrical pathways (electronics) for connecting the transducer to a medical system so the transducer can be properly controlled, and a connector that allows the interchangeable transducer to be removed and/or inserted into a receptacle on the medical system. The transducer housing has a shape and electrical connection assembly that allows the housing to be inserted in any radial orientation relative to the system receptacle axis. The axial symmetry may allow for two or more orientations, and desirably an unlimited number of orientations. For visualization purposes only, one may imagine the ease of inserting a mini-plug for headphones into a portable music player. The radial orientation of the plug to the receptacle does not matter, and during use if the plug is rotated within the socket, there is no interruption of the power and signal sent to the head phones. This concept is analogous to the type of adaptor and socket used in the interchangeable transducer connection described herein.
  • In the following paragraphs, various aspects and embodiments of the apparatus will be described. Specific details will be set forth in order to provide a thorough understanding of the described embodiments of the present invention. However, it will be apparent to those skilled in the art that the described embodiments may be practiced with only some or all of the described aspects, and with or without some of the specific details. In some instances, descriptions of well-known features may be omitted or simplified so as not to obscure the various aspects and embodiments of the present invention.
  • Parts of the description will be presented using terminology commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art, including terms of operations performed by or components routinely used in ultrasound systems, medical ultrasound systems and HIFU systems. As well understood by those skilled in the art, the operations typically involve producing and controlling the wave form of the transducer through a transmitter signal which generally uses well understood electronics components and controllers. Signal control, depends primarily on the desired objective for using HIFU. Novel variations from prior art devices will be presented here in a straight forward and simple manner so as to highlight the elements necessary to practice the present invention, but not to be prolix in description for those details which are well understood in the art. The term system includes general purpose as well as special purpose arrangements of these components that are stand alone, adjunct or embedded.
  • Various operations may be described as multiple discrete steps performed in turn in a manner that is most helpful in understanding the present invention. However, the order of description should not be construed as to imply that these operations are necessarily performed in the order they are presented, or even order dependent.
  • Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment.
  • The present invention relates to an interchangeable transducer apparatus and methods of making the same, for use with medical ultrasound systems, particularly those considered HIFU medical systems.
  • The transducer described herein incorporates both novel physical components and design, combined with existing materials in a novel fashion to produce a transducer insert meeting one or more of the objectives of the invention. The combinations of various novel elements in one embodiment will meet some objectives, while a different combination of novel elements will meet different objectives. The collective whole of novel developments and arrangements of existing parts contributes to a design that satisfies the most objectives, though not necessarily all objectives in a single design. Different objective requirements will call for different combinations of the inventive concepts herein described.
  • The transducer insert may be suitable for any number of medical devices or medical systems desiring to use an easily replaceable transducer. In pending U.S. patent application Ser. No. 11/027,912 “Ultrasound Therapy Head with Movement Control,” filed 29 Dec. 2004 (commonly assigned and herein incorporated by reference), a therapeutic ultrasound system is described having a therapy head. The therapy head contains a first chamber, being wet, in which a transducer is positioned. There is a second chamber, which may be wet or dry, that contains a motor drive system. The motor drive system uses one of several possible means to move the transducer in the first chamber. Means described include use of actuators that extend from the motor side chamber to the transducer side chamber, a slide positioned on the motor chamber with a magnetically connected transducer in the transducer chamber, or various mechanical translation components for converting the work produced from the motors into the movement of the transducer through a barrier between the two chambers.
  • The interchangeable transducer, (also referred to herein as a connectorized transducer or transducer insert), of the present design is well suited for use in a therapy head of the previous description. The interchangeable transducer or transducer insert is formed from a housing having an adaptor end and an acoustic end. There is a communication port at the adaptor end. The adaptor end is designed to fit into a corresponding receptacle on or in the medical ultrasound system. In one embodiment the transducer adaptor end has a plurality of orientations for removably engaging a receptacle in the medical ultrasound system. There is a transducer at the acoustic end, and a means for electrical communication between the communication port and the transducer.
  • The adaptor end may be a male or female type part, while the receptacle would be the logical corresponding type part. While we describe primarily a male adaptor and a female receptacle, it should be understood that the adaptor end of the transducer insert can be the female component while the system side receptacle is the male component. The adaptor end and corresponding receptacle end are designed in a manner to provide a plurality of working orientations in which the transducer insert can be placed into the system. In one embodiment the plurality of orientations may simply be a slotted design for the adaptor and receptacle. The electronics of the adaptor and receptacle are arranged in a manner as to allow a “key-less” type of connection. Regardless of which orientation the insert is placed into the receptacle, the insert will connect with the system and operate properly. The connection between the adaptor and receptacle may be any design having symmetry about an axis, so the insert may be rotated about the axis so the insert can be fit into the receptacle in at least two directions (normal and flipped). If the connection is shaped like a triangle, three orientations would be possible. For a square four orientations would be possible. This dynamic continues to the logical and most desirable shape of having a circular shaped adaptor where absolute radial freedom is afforded. The insert may be placed into the system receptacle at any radial orientation and proper electrical connection is guaranteed. Regular shapes are not required to make the adaptor connection. Irregular shapes may also be used so long as they are symmetrical. The symmetry of the connection provides the advantage to the user of not having to worry about the orientation of the transducer insert relative to the system socket (receptacle). So long as the shape of the connector matches the receptacle the user knows the orientation will work.
  • Electrical communication is required from the ultrasound medical system and the transducer within the transducer insert. Electrical communication enters the transducer insert at the communication side. Electrical communication means providing any combination of power, signal or ground connections from the transducer to the ultrasound system through the communication port in the transducer insert. This communication can be achieved using wires, cables, connector pins, or other electron conveying instruments as known in the art. In one embodiment, the connection may be wires running directly from the communication port to the transducer in a “dumb” design, where no on board intelligence is provided in the insert. In another embodiment, intelligence may be incorporated into the insert by adding electrical components to an electrical circuit used to provide electrical communication from the communication port to the transducer. A variety of components may be used in an intelligent design. Electrical components may include a tuning transformer for optimizing the transducer, sensors for measuring various parameters about the environment within the transducer insert, sensors for monitoring the transducers performance and/or safety, components for recording measured or detected data, IC chips for running programmed applications or storing information within the insert, or any other operation desired.
  • In another embodiment of the present invention, the electrical communication between the communication port and the transducer may be provided by a two stage spring pin connection scheme. A first stage set of connection pins connects the communication port to an electrical circuit board. The circuit board may be a PCB/PCBA and may further be a pancake slip ring style PCB/PCBA. A second stage set of connection pins connects the electrical circuit to the transducer. Electrical communication enters the communication port from the ultrasound system. The Electrical communication then travels to the electronic circuit. The circuit board may provide the proper coordination and layout of the various electrical components, and assures proper handling of Electrical communication between the system and the transducer. From the electrical circuit, Electrical communication continues to the transducer. Any return Electrical communication from the transducer may follow a similar route back from the transducer to the circuit board, and then back to the system.
  • The insert may have various data recorders, sensors or programmable components within it. These elements may be on the circuit board. Various possible components that may be incorporated into the insert include a chip for tracking the number of times the transducer has been used, sensors which determine the proper coupling between the transducer and the patient, sensors to determine if the transducer is properly installed into the ultrasound system, or sensors to determine the safe operation of the transducer while providing therapy output. There may also be a tuner for a second transducer such as an “A” line transducer for providing simple imaging information to the user or to the system.
  • The transducer insert may also be constructed to operate with a component style ultrasound system such as those described in U.S. patent application Ser. No. 11/027,919 entitled “COMPONENT ULTRASOUND SYSTEM” and filed on Dec. 29, 2004 (commonly assigned and herein incorporated by reference). In this embodiment, the insert has an adaptor for fitting to an ultrasound system having two or more identical sockets for receiving more than one type of insert, where one of the inserts may be a transducer insert as described herein. In a component ultrasound transducer, there are two or more sockets in the therapy head. The sockets are identical and the inserts used within the sockets may be plugged into any one of the sockets, Each insert has a challenge and recognition component programmed in it, so when the insert is plugged in, the ultrasound medical system can identify each individual insert and know how to properly use it. The system can handle multiple kinds of inserts simultaneously. Each insert may have a different focal depth, performance parameter or use requirement, the system can determine and properly handle the proper operation of all inserts. Desirably the transducer inserts would be properly utilized by the system automatically (without specialized user contribution or instruction to the system other than that used for a single receptacle ultrasound system using a transducer insert).
  • Use of modern materials and electronics greatly reduces the costs of manufacturing transducers for the medical ultrasound systems disclosed herein. This cost reduction and ease of manufacturing allows replacement parts to be disposable when worn out or no longer desired.
  • In addition to the transducer insert described herein, a novel structure is now disclosed allowing an electrical connection to be made in a wet environment. The novel structure is a slip ring seal, designed for use with a pancake style slip ring PCB. The slip ring seal has a base, two or more apertures extending through the base, and flanges extending from the base to isolated the apertures into cells. The flanges may define cells discretely formed around each aperture, or around a select group of apertures, or a combination of the two.
  • The connection between the transducer insert and the system is generally a wet environment. Particularly during operation of the transducer the chamber in which the transducer is located is fluid filled. Various fluids are suitable for use in the transducer chamber where the transducer of the present description can be used, in general water is the most common fluid used due to ease of availability, cost and performance characteristics. Reference herein to fluids or water should be understood to incorporate which ever fluid is most suitable for the intended use and design of the transducer, since not all operations will prefer water when another compatible fluid may be superior for the particular application.
  • Now turning to the accompanying drawings, it should be understood the drawing figures are provided to enhance the description provided. Elements shown in the figures are not necessarily illustrated to scale with respect to other drawings, or other parts within the same drawing. The parts or figures should not be taken in any absolute sense of actual design elements other than as illustrations of embodiments for the purpose of understanding the disclosure herein.
  • A simplified exterior view of the interchangeable transducer 10 is shown in FIG. 1. The transducer 10 has a housing 16 represented as generally cylindrical. The housing 16 is desirably rigid and hollow. The housing 16 has a transducer end 20, and an electrical connector and sealed end 14. External electrical connectors 40 extend through the seal end 14 and are designed to connect to the appropriate electrical lines from the medical system. These may include a transmit/receiver line, ground and power. Additional lines may be provided depending on the need or application of the medical system. The interchangeable transducer need only have addition electrical connectors and support circuitry to enable those capabilities. An adaptor 32 is also provided to allow physical engagement of the transducer 10 to a HIFU medical system.
  • A simplified interior view of the interchangeable transducer 10 is now illustrated (FIG. 2). Once again the seal end 14 has external electrical connectors 40 for electrical connection to a medical system. The external electrical connectors 40 may extend through the seal end 14 to connect to a component within the housing 16, or there may be an intermediate connection through the seal end from the interior of the housing. Desirably the external connectors extend through the seal end to provide electrical contact between the socket of the medical system, and the interior of the interchangeable transducer. The transducer 22 is shown at the bottom or lower section of the housing 16. The transducer 22 is electrically connected to the connectors 40 by wires 12. Electrical signals from the ultrasound system to the transducer 22 (or visa-versa) may include power, ground, transmit, receive, data or other signals and information as desired. The housing may also contain one or more electrical components as part of the transducer's control circuit.
  • The interchangeable transducer 10 has a connector or other adapter allowing it to engage into a receptor on a medical device system (FIG. 3). A medical system 300 that might use an interchangeable transducer as described herein, is shown having base 302, an articulating arm 304, with a display screen 306 and a therapy head 308. Within the therapy head 308, there is an adaptor for receiving an interchangeable transducer. A computer or other electronic intelligence (CPU) is also provided to operate the system 300 and the transducer 10.
  • The internal components of the therapy head 308 are generally described along with the method of changing out transducers (FIGS. 4A-4E).
  • Any water or other fluids in the therapy head 308 are desirably drained from the therapy head so that water does not splash out of the therapy head when opened. Having water or other fluids in the therapy head is not an impediment to the removal and installation of transducers described herein, so it is not necessary to completely drain the therapy head. In one embodiment the therapy head 308 is inverted, so the main transducer chamber 310 is positioned on the bottom. The therapy head 308 has a removable cap 312 section, with a transmission window 316 (FIG. 4A).
  • The cap 312 is removed (FIG. 4B) exposing the interior of the therapy head transducer chamber 310. The interchangeable transducer 10 is connected to a receptor socket 38. A pair of water lines 320 are used to circulate water inside the transducer chamber when the cap 312 is sealed to the transducer housing 310. There are mating flanges 322 on the treatment cap 312 and bulkhead 324 that contain an O ring seal on the transducer housing 310 that when assembled create the water tight seal of the chamber (not shown). Under the receptor 38, the transducer chamber may have motors or motor cams 326 or drive shafts connected to a mechanical drive system for moving the receptor 38.
  • Once the cap 312 is removed, the interchangeable transducer 10 can be removed (FIG. 4C). Desirably the transducer can be lifted straight out of the receptor 38, or detached from the receptor with a minimal amount of force (like twisting or rocking). The empty receptor 38 has a PCB slip ring which may get wet during this step, and the presence of water on the PCB is of no concern.
  • A new transducer 10′ is now seated onto the receptor 38 in place of the old transducer 10 (FIG. 4D). Again the insertion force for placing the new transducer 10′ is desirably fairly low, allowing any user to insert the new transducer 10′ easily and quickly. The round shape of the transducer plug and the receptor 38 allow for any radial orientation when the new transducer 10′ is seated into the receptor 38. The cap 312 is then repositioned over the transducer chamber 310 to re-form the therapy head 308 (FIG. 4E).
  • Once the new transducer is in place, it may be desirable to refill the water chamber, activate the medical system 300, and allow the system to communicate with the new transducer 10′ to ensure the transducer is properly seated in the receptor 38, and that the transducer is responding normally. The system may use a ‘challenge and answer’ protocol to determine the nature of the transducer, and establish the appropriate therapy regimen to use with the particular transducer. The transducer 10 may have an integrated circuit (IC) 30 on board that can provide detailed information to the medical system once it is properly connected. Alternatively the IC may be used for other purposes (see below).
  • A connector or adaptor 32 is shown on the outside of the housing 16 (FIG. 1). The connector 32 allows the transducer housing 16 to mate with a socket or receptacle 38 of a medical system 300. The connector 32 desirably allows the housing 16 to be inserted into the socket or receptacle with a low insertion force to provide easy insertion or removal. The electrical connectors 40 are designed to operate in conjunction with the mechanism used to mate the transducer 10 to the receptor 38, so the electrical connectors 40 can establish and maintain contact with the appropriate system side electronic channels regardless of the radial orientation of the transducer when mated to the receptor. The connector 32 similarly can engage the socket 38 in any radial orientation. The receptor or socket 38 has a receiving element 36 for the connector 32. The connector 32 for engaging the socket may be mechanical, magnetic or electromagnetic in nature. As long as the connector can hold the transducer housing in its proper place in the socket and allow for any radial orientation for insertion and removal, the connector will be sufficient for the intended use.
  • The interchangeable transducer assembly is now described (FIG. 5A). In this embodiment, the housing 16 is made from two sections, a lower portion 16B for receiving the transducer 22, and an upper portion 16A adapted for connection with the medical system socket 38. The transducer 22 is shown having a set of pin receptors 24 r where the electrical pins 24 attach to the transducer. The electrical pins 24 extend from the interface 28 to the transducer and pass through the concentric liner 26. Desirably the liner has apertures for lining up the connection points on the interface and the transducer. An optional transformer 42 can be connected to the interface 28, and would sit within the aperture defined by the concentric liner 26.
  • The lower portion 16B may be assembled by first inserting the transducer 22 into the lower portion 16B. The transducer 22 may be secured using epoxy or resin along the transducer rim to seal the transducer to the aperture defined by the housing opening 20. The electrical connector pins 24 are inserted into the concentric liner 26, and then the connector pins 24 are oriented to match the transducer receiver placements 24 r. The concentric liner 26 is then placed into the lower portion and secured. Electrical components such as the transformer 42, or the data IC (not shown) may be attached to the PCB 28, and then the PCB 28 is lined up to match the desired connector pin 24 layout. The PCB 28 has predefined lands on both its upper and lower surface. These lands correspond to the pin orientation for the electrical connector pins 24 of the lower portion, and for the electrical pins of the upper portion 40.
  • The upper portion 16A is similarly assembled. The upper portion is sealed across the top, and the electrical pins 40 that extend through the top of the upper portion 16A are sealed against fluid flow from the outside of the housing to the inside. The electrical pins 40 may be soldered in place, or fixed with an epoxy or other agent to provide the fluid seal between the upper portion 16A and the apertures needed for the pins. The upper connector pins 40 are inserted through the isolation layer 34 in a predefined arrangement matching the upper lands of the PCB 28. The connector pins may be any type of electrical pins suitable for use in an interchangeable design. Spring pins, pogo-pins, spring clips and other tensioned electrical connectors are desirable in one embodiment due to their expansive nature. Spring loaded connectors allow a greater margin of safety in physical distance between the transducer and PCB. Once the connection pins 40 are in place, the isolation layer 34 is lowered into the upper housing 16A. The isolation layer 34 is desirably attached to the upper portion so that the upper housing 16A and isolation layer 34 can be moved as a single unit. The isolation layer 34 may be attached using an adhesive compound between the isolation layer and the top of the upper housing. Alternatively the isolation layer 34 may be constructed so there is an interference fit between the isolation layer and the upper section of the housing. Desirably the adhesive or interference fit would prevent water from pooling underneath the isolation layer and the housing. The upper housing is then lowered onto the lower housing assembly so the connector pins 40 match the PCB land layout (FIG. 5A). The entire transducer housing may be filled with an inert gas to promote stability and operational life span of the internal components.
  • In an alternative embodiment, the transducer insert 10 replaces the standard PCB 28 with a slip ring PCB 29 (FIG. 5B). In this embodiment there are discrete lands LD or traces for direct attachment to particular components (transformer, IC chips, etc. . . . ) as well as traces made into slip rings 102 a-i for connection to various connectors. In this embodiment the transducer insert realizes an advantage in assembly by having electrical communication with portions of the transducer insert not directly attached to the PCB 29 in that those non attached components are free from discrete orientation relative to the PCB 29. Parts desirably directly connected to the PCB 29 would connect to discrete lands sites LD, while pin connections 24, 40 could connect to the land rings. The transducer 22 may also have a land ring instead of discrete connection points 24 r. By utilizing land rings in the various components within the transducer, freedom from particular orientations are achieved, and thus provide advantages in manufacturing/assembly of the parts and sub components.
  • Although the medical system socket 38 is illustrated (FIG. 5A), this component is not a part of the interchangeable transducer 10, and is merely illustrated here to show the alignment of all the parts described. Desirably the socket utilizes a pancake style slip ring to improve contact regardless or radial orientation.
  • The transducer used in the interchangeable transducer design may have a single fixed zone, or be designed having two or more focal zones. The transducer may have an imperfect focal zone achieved through a mechanical distortion formed in the transducer, such as those described in U.S. patent application Ser. No. 10/816,197 entitled “VORTEX TRANSDUCER” and filed on Mar. 31, 2004, and U.S. patent application Ser. No. 11/439,706 entitled “Medical Ultrasound Transducer Having Non-Ideal Focal Region” filed May 23, 2006. (both applications commonly assigned and herein incorporated by reference). The vortex transducer and the non-ideal focal region transducers allow for a focal region in a circular or donut shaped pattern wherein the pattern is produced by a mechanical offset in the bowl of the transducer. The isolation layer 34 is primarily used to prevent electrical cross talk and contact corrosion among and between the electrical contacts 40. The shape and size of the focal region can be mathematically calculated and an appropriate mechanical shape to a transducer can be manufactured. This allows the transducer to focus ultrasound waves in particular desired shapes and patterns without requiring the complexity and cost of an electronically steered transducer. The transducer may also be an electronically focused device, such as a 2D array or a phased array transducer.
  • Internal details of the transducer-socket connection are now described (FIG. 6A). In one embodiment, there is a housing 16 having a substantially cylindrical shape. The housing 16 has a neck down region located near the isolation layer 34, and a larger diameter near the transducer 22. The transducer side 20 is open, or has a window so ultrasound energy may be broadcast out of the housing 16 unimpeded. The transducer 22 is secured near the open end 20, and connects to an interface 28 via a set of connection pins 24. The connection pins 24 are held in place with a concentric liner 26 inside the housing 16. The interface 28 may be a set of connecting wires as previously described, or may include a circuit, PCB, PC(B)A or other hardware component. The interface may also have additional electronics, such as a transformer 42 for tuning the transducer 22, a data chip or integrated circuit (IC) 30 to help identify the interchangeable transducer 10 to the medical system 300. Additional components are described below.
  • Opposite the transducer 22, there is a seal 14 for preventing water or atmosphere from entering the internal compartment of the transducer 10. Working in conjunction with the seal 14 is an isolation layer 34 for reducing pin corrosion and/or cross talk between the external electrical connectors 40. Note the transducer side 20 is also sealed against the outside environment. While the transducer side 20 may be sealed with the transducer 22 itself and various compounds which can be used to prevent leakage, the seal 14 has one or more apertures 50 for the protrusion of the external electrical connectors 40. The apertures 50 are desirably large enough to allow the passage of the electrical connectors 40. The apertures may rely on an interference fit to prevent seepage of fluid between the apertures and the pins, or the use of a sealing agent, or both. The apertures 50 may be sealed once the external electrical connectors 40 are placed using solder, epoxy, resin, adhesive or other suitable sealing agents. A connector 32 is located on the housing and designed for engagement of a corresponding connection on the medical system socket 38. The receiving element 36 and connector 32 form a transducer-system connection. This connection is desirably one having high endurance. Repetitive reliability is desirable, but not required for the transducer connector 32, as it is not envisioned that any one particular transducer will be removed and inserted a large number of times.
  • The design of the transducer connector 32 and the system side connection (receptor) 36 allow for individual transducers to be interchanged with the medical system 300 on demand. This allows a single medical system to have a great deal of variety in its operational scope. Each new transducer can provide added capability as well as replacement for worn or out dated parts. Desirably the mating of the transducer 10 to the system 300 can be accomplished with a low insertion force connector 32 and receptor 36 combination. Though the insertion force is low, the connection is robust so the transducer 10 will be stable while mounted in socket 38. The socket 38 is desirably connected to a motor assembly through a set of cams 326. Electrical communication between the system 300 and the transducer 10 is maintained regardless of how the socket 38 might be moved.
  • The electrical pin 40 layout as they extend through the seal 34 are designed to make contact with additional lands built into the socket 38 (FIG. 6B). The socket lands 102 a-c form concentric structures within the socket. There are isolation rings 104 between the electrical connection lands. The electrical pins 40, now identified individually 40 a, 40 b, 40 c (FIG. 6B) each carry a separate electrical signal from the medical system 100 to the interchangeable transducer 10. The individual connectors may carry power, transmit/receiver signal information, IC chip detection, ground or other signals as desired. The corresponding lands in the socket PCB form concentric rings for connection with each pin separately. This is achieved by arranging the electrical pins 40 a-d at a discrete radius from the center of the transducer connector end. Then the transducer housing engages the socket, the pins of the transducer housing match up to the appropriate concentric lands of the slip ring. In this fashion, even if the transducer is rotated within the socket, the proper electrical pin 40 a-c always remains in contact with the corresponding land ring forming corresponding pin-land connections 102 a-40 a, 102 b-40 b, 102 c-40 c. There is no limit to the lands 102× and connector pins 40× and as many pairings as are desired may be incorporated into the design. When the transducer is mated with the system, the electrical pins and PCB lands match up, and provide a secure electrical connection (FIG. 6C). The pressure used to hold the removable transducer 10 in place with the system side socket 38 desirably provides sufficient force exerted on the isolation layer 34 to prevent fluid from seeping into the region between the isolation layer 34 and the recess of the housing 16A where the isolation layer is placed. The isolation layer may also be manufactured with flanges on the bottom (not shown) so that isolation layer forms discrete channels or chambers for each electrical connector, or groups of connectors, as the flange or ridge configuration on the top side of the isolation layer.
  • The pin layout and slip ring described herein and shown in the figures represents one embodiment, however this embodiment is not meant to be limiting of the connector layout. The number of electrical pins in the “plug” end of the transducer may be as many as desired or needed to perform the necessary tasks of providing electrical connection, or even stabilizing plugs for structural integrity. The lands of the slip ring like wise may be as many as desired and it does not necessarily follow that each land will have a corresponding electrical connector. A land may be used as a cross-talk sensor by having no physical pin designed to make contact with it, yet still monitor electrical signal when the connection is made. The land itself can be used as an electrical sensor to monitor the safety and stability of the electrical connection and/or the isolation between lands.
  • An alternative embodiment using the pancake slip ring PCB 29 in the insert is now described The transducer insert resembles the assembly previously described. Individual components such as a transformer 42 are still directly connected to the modified PCB 29 (FIG. 6D). The electrical pins 24, 40 are no longer connected to discrete traces on the PCB 29. The electrical pins 24, 40 are now pressed against the trace rings 102 a-c on the PCB 29. This allows the top section 16A and bottom section 16B to be press fit together without regard to the orientation of the parts relative to each other. No matter what orientation the top 16A has to the bottom 16B, the electrical pins 24, 40 will still match up with the traces to provide proper electrical communication from the communication port to the transducer.
  • In another embodiment using either the standard PCB 28 or the slip ring PCB 29, the transducer 22 may have a trace ring 24LR around the circumference of the transducer so the transducer may also be assembled to the bottom 16B section without concern for orientation and placement of the electrical pins 24 to the transducer 22.
  • A close up of the electrical pin connections 40 to the top of the slip ring PCB 29 is now shown (FIG. 6E). Here the discrete connections for the transformer 42 are shown in the form of a series of discrete lands LD or trace positions.
  • The adaptor for the transducer insert 10 need not be circular, though the circular design is desirable. Various other shapes allowing for multiple orientation of the transducer insert are shown in FIGS. 6G-6I. To simplify the process of replacing the transducer insert 10 for a user, the transducer adaptor has a “keyless” orientation to the “socket” on the system side. So the adaptor may be oblong for two orientations, triangular for three orientations, progressing to a circular insert and socket (FIG. 6I). There is also no restriction on the shape of the adaptor as being a regular shape, so long as the adaptor shape is symmetrical about one axis so the adaptor can still mate with the ultrasound system when it is oriented in another symmetric alignment. Regardless of the physical shape of the insert connector and socket, the socket has electrical contacts in the form of slip rings (dotted lines in FIGS. 6F-6I), with electrical contact pins set at the desired radius to make physical contact with the corresponding land so the appropriate pins 40 a-x communicates with the corresponding lands 102 a-x.
  • The orientation of the interface 28 as shown in FIGS. 5, 6A-6C need not be perpendicular to the axis of the transducer housing. The interface 28, along with any additional components may be at any orientation desired. In one embodiment, the interface 28 is a PCB or PCA aligned with the axis of the housing 16 (FIG. 7) and has connection wires 12 from the external electronic connectors 40 to a PCB style interface 28 having a transformer 42 and a data IC 30 along with other electronics as may be desired.
  • In another embodiment, the interface may be a PCB with a data IC having additional embedded information. The data IC 30 may include data related to the number of uses the transducer is allowed to be activated, or it may record use data which can be used to help improve future interchangeable transducer designs (such as measuring attenuation, feedback, decoupling, thermal information or the like). While this collected data may be stored in the data IC, additional sensors 4021-i could be added to the interface 28 to record the desired data (FIG. 8).
  • The isolation layer 34 used with the interchangeable transducer may be a washer or disk of electrical isolation material. While the isolation layer may be a solid or otherwise uniform component, an independently novel design for an electrical isolation layer is desirable.
  • An isolation layer well suited for providing isolation between individual contacts in a wet environment is realized in the form of a slip ring seal (spacer). The slip ring spacer is provided at the docking end of the connectorized transducer. The slip ring spacer may have any one of a variety of forms consistent with the general description and requirements described herein, or similar or equivalent to any of the enumerated embodiments described. The slip ring spacer provides a bumper between the connectorized transducer and the socket of the medical system. Furthermore, the seal provides apertures or other means of allowing electrical communication through the seal, between the connectorized transducer and the socket. In addition, the seal allows for simultaneous electrical communication between multiple isolated electrical connectors in a wet environment. The seal provides isolation of each separate electrical connector type, reducing cross talk between different kinds of signal and/or power connectors. The slip ring seal is desirably made from or has properties incorporated into it, that provide water and electrical resistance. If the material is slightly conductive, it is possible for a short to occur between the electrical pins even in the presence of a partial or complete fluid seal.
  • A slip ring spacer is now described as shown in FIGS. 9A-9E. The slip ring spacer 900 has a base 902 and one or more flanges or ridges 9041-i rising from the base. The ridges or flanges are adapted to press against a slip ring SR and form one or more concentric channels 9061-i so that each electrical connection ring of the slip ring SR is separated from the other electrical connection rings by the ridges 9041-i. When the slip ring seal 900 is pressed against a slip ring SR, channels 9061-i are formed by the ridges or flanges of the slip ring. The ridges are pressed against the slip ring SR, forming a seal against fluid flow between the discrete channels 9061-i. The slip ring forms one barrier to fluid movement while the slip ring seal forms the sides and bottom of the channels. In this way, electrically conductive fluid is restricted from flowing between the channels, and exposure to the electrical pins is reduced. This minimizes corrosion and cross-talk among and between the electrical pins. The base desirably has apertures for electrical pins or connectors for making contact with the electrical connection rings on the slip ring. In operation, the slip ring spacer 900 allows each connector to communicate with a corresponding slip ring pad without producing cross talk between other channels, even if the environment is wet.
  • The pin connectors may be organized into groups so that multiple pins may be intended to make contact with a slip ring land. In this case the pins may be organized into groups, similar to the two pins 40 b, 40 i sharing a single circular channel (FIG. 9A). This illustration is an example of more than one pin designed to make contact with a single land, and there is no limit to the number of pins that can be grouped into a single channel or group, or the number of groups that can be used in the interconnection arrangement between the transducer and the socket.
  • Alternatively the slip ring spacer may have flanges or ridges on the underside of the base (not shown) in a pattern similar to the flange or ridge pattern on the top surface of the spacer. The presence of flanges or ridges on the bottom of the spacer can help isolate the electrical contact pins from one another in the event fluid seeps below the slip ring seal during operation.
  • The slip ring spacer 900 may utilize numerous alternative embodiments. The slip ring spacer 900 has individually isolated electrical pin zones (FIG. 10). In this embodiment each aperture 40 of the slip ring spacer 900 has one or more rising ridges 904 surrounding each aperture. The outer rim of the base 902 is also encircled with a flange or ridge 904R to minimize water or fluid flow from the outside of the connector to the inside components. The individual electrical pins that would protrude through the apertures are individually insulated to reduce the risk of electrode corrosion and/or cross talk.
  • A single spiral channel can be formed with a spiral shaped ridge (FIG. 11) with periodic partitions placed in the spiral pattern. The spacer may use various arrangements of ridges or flanges extending from the base. The ridges may be tapered, block shaped, or arranged in a series of thin partitions operating as a group (FIGS. 12A-12C). Desirably the spacer is made from material that has high water and electrical resistance (like rubber, RTV (Room Temperature Vulcanization) silicone rubber, polymers, etc. . . . ). The material desirably has a durometer low enough to allow the flanges or ridges to deform when they are pressed against a slip ring so the flanges will deform slightly to seal against the slip ring. Designs that are more structurally robust desirably have a lower durometer material with a wider area of contact (FIGS. 12A, 12B) while configurations of the seal having a more rigid construction may use material that is a higher durometer material, but a reduced area of contact (FIG. 12C).
  • In another embodiment the spacer has a top portion that can compress directly on to the slip ring, and pressure pressure forces any fluid out of the surface area of the slip ring itself so the electrical connection can be made relatively free of any fluid. In another embodiment, temporary channels 1301 may join the apertures for the electrical pins, to the outer circumference of the slip ring seal so water may escape or be forced away from the electrical pin outs (FIGS. 13A-13B). As the seal is pressed against the slip ring, the channels are compressed against the slip ring surface, and thus reducing the flow of fluid among the electrical connections to a level where cross talk between the slip ring lands is acceptable.
  • In yet another embodiment of the spacer, the spacer may comprise a water and electrically resistant material having a web like structure (FIG. 14A-14C). Gap spaces between the webbing serve as apertures for the electrical pins to protrude from the transducer and the medical system socket. Optionally the webbing may have additional material between the web strands to further restrict water flow between the web strands when the slip ring seal is compressed into position between the interchangeable transducer and the system socket. As the spacer is pressed against the slip ring while the connectorized transducer is pushed into the socket of the medical system, the webbing with or without additional material in the webbing) collapses and presses fluid out of the cells and away from the electrical connectors. The collapsed webbing forms a barrier to fluid flow between the web strands. The webbing may be organized (FIGS. 14A-14C) or randomly distributed in the formation of the seal (FIGS. 15A-15C).
  • In operation, a transducer as described herein can be removed from a socket, and then a new one inserted without regard to the radial orientation of the transducer relative to the socket. If the environment containing the socket is wet, the seal on the transducer allows the transducer housing to make good connection on the electrical lands on the socket side, while ensuring solid connection with the transducer and internal workings of the interchangeable transducer. Seams or assembly joints may be sealed with resin or epoxy if needed. Seams and assembly joints may also be sealed with solder, ultrasound welding or similar techniques.
  • In addition to the embodiments described above, alternative interconnect schemes suitable for use with the present invention are now described. Alternative transducer signal connections include using direct electrical connection via pin and socket, direct electrical connection via soldered spring contact and PCB trace, direct electrical connection via PCB trace to floating spring contact (e.g. in carrier) to PCB trace, direct electrical contact via a post and socket with multiple connections (e.g. stereo headphone jack), as well as wireless types of interconnects, such as inductive coupling, and capacitive coupling.
  • The transducer can be secured within the housing by gluing it or mechanically affixing it to the housing. The transducer may be sandwiched between a preformed lip in the housing and the electrical connection pins 24. In another embodiment the transducer may be attached using a soluble adhesive allowing for the transducer ceramic to be replaced when the interchangeable transducer fails.
  • Structurally the physical connector between the transducer housing and the socket may be combined with the electrical connectors. One may visualize a series of stacked electrical connector rings designed to match up to corresponding pin connectors within the socket. Alternatively the relationship of socket and insert may be reversed so the transducer has a socket for receiving a male end adaptor from the medical system.
  • In other embodiments, the physical connection between the transducer housing and the socket can be achieved through any low force insertion mechanism suitable for the medical system and medical procedures desired. These may include a bearing ring, a snap ring, or simply frictional engagement. Rotational capability of the transducer housing within the socket is not critical, so long as the transducer electronically connects to the medical system electronics through the unaligned electrical connections.
  • Additional alternative embodiments of the present invention will be readily apparent to those skilled in the art upon review of the present disclosure. The lack of description or the embodiments described herein should not be considered as the sole or only method and apparatus of providing for an interchangeable transducer. The scope of the present invention should not be taken as limited by the present disclosure except as defined in the appended claims.

Claims (25)

1. An insert for use with a medical ultrasound system, the insert comprising:
a housing having an adaptor end and an acoustic end;
a communication port at said adaptor end, the adapter end having two or more orientations for engagement to a receptacle in a medical ultrasound system;
a transducer at said acoustic end, said transducer forming a fluid tight seal with said housing, and
for at least one electrical connector between said communication port and said transducer.
2. The insert as described in claim 1, wherein said connection port further comprises an isolation layer.
3. The insert of claim 2, wherein the isolation layer is a slip ring spacer.
4. The insert as described in claim 1, wherein the adapter end has radial freedom to engage a receptacle in any radial orientation.
5. The insert as described in claim 1, wherein said electrical contacts are spring loaded contract pins.
6. The insert as described in claim 1, wherein the transducer has two or more discrete focal zones.
7. The insert as described in claim 1, wherein the transducer has an imperfect focal region.
8. The insert as described in claim 1, wherein the adaptor end is slidably engaged into said medical ultrasound system.
9. The insert as described in claim 1, wherein said electrical connector comprises one or more electrical components.
10. The insert as described in claim 1, wherein the electrical connector are a first set of spring pins frictionally engaged between said communication port and a PCB, and a second set of spring pins frictionally engaged between the PCB and the transducer.
11. The insert as described in claim 1, wherein the insert is disposable.
12. An interchangeable transducer apparatus adapted for use with a high intensity focused ultrasound (HIFU) medical system, the apparatus comprising:
a substantially rigid and hollow housing having an axial alignment and having a first end and a second end;
a transducer positioned within the first end of the housing, the transducer being electrically connected to an interface disposed within the housing and forming a fluid tight seal with the housing;
an isolation layer positioned within the second end of the housing, the isolation layer having a plurality of apertures for receiving a plurality electrical connectors extending from the interface;
a connector positioned on the exterior surface of the housing, the connector allowing for the removable engagement of the housing with an ultrasound medical system;
wherein the connector and electrical connectors provide releasable mechanical and electrical engagement (respectively) to a receptacle in the medical system in two or more axial alignments between the housing and the ultrasound medical system.
13. The apparatus of claim 12, wherein said ultrasound medical system is a high intensity focused ultrasound (HIFU) medical system.
14. The apparatus of claim 12, wherein the isolation layer is a slip ring spacer.
15. The apparatus of claim 14, wherein the slip ring spacer has a plurality of concentric rings adapted to is isolate the electrical connectors from one another.
16. The ultrasound medical system of claim 12, wherein the receptacle is a wet environment.
17. The apparatus of claim 12, wherein the interface is a circuit.
18. The circuit of claim 17, further comprising at least one electronic control component for controlling the transducer.
19. The apparatus of claim 12, wherein the interface is a printed circuit board or assembly (PCB or PCBA).
20. The apparatus of claim 12, wherein the electrical connectors are spring loaded contact pins.
21. The apparatus of claim 12, wherein the transducer has two or more discrete focal zones.
22. The apparatus of claim 12, wherein the transducer has an imperfect focal region.
23. The apparatus of claim 12, wherein the apparatus is disposable.
24. The apparatus of claim 12, wherein the electrical connectors are arranged at a specific radius from the center of the seal so as to match a corresponding set of connection rings in a socket of a medical system.
25. The apparatus of claim 12, further comprising an inert gas filled interior.
US12/051,073 2007-03-26 2008-03-19 Interchangeable high intensity focused ultrasound transducer Abandoned US20080243035A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/051,073 US20080243035A1 (en) 2007-03-26 2008-03-19 Interchangeable high intensity focused ultrasound transducer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US90807407P 2007-03-26 2007-03-26
US97686707P 2007-10-02 2007-10-02
US12/051,073 US20080243035A1 (en) 2007-03-26 2008-03-19 Interchangeable high intensity focused ultrasound transducer

Publications (1)

Publication Number Publication Date
US20080243035A1 true US20080243035A1 (en) 2008-10-02

Family

ID=39789258

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/051,073 Abandoned US20080243035A1 (en) 2007-03-26 2008-03-19 Interchangeable high intensity focused ultrasound transducer
US12/051,081 Active 2029-09-12 US8142200B2 (en) 2007-03-26 2008-03-19 Slip ring spacer and method for its use

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/051,081 Active 2029-09-12 US8142200B2 (en) 2007-03-26 2008-03-19 Slip ring spacer and method for its use

Country Status (11)

Country Link
US (2) US20080243035A1 (en)
EP (1) EP2131744A4 (en)
JP (1) JP2010522618A (en)
KR (1) KR20100015724A (en)
CN (1) CN101677811A (en)
AU (1) AU2008230830A1 (en)
BR (1) BRPI0809303A2 (en)
CA (1) CA2681410A1 (en)
IL (1) IL200932A0 (en)
MX (1) MX2009010349A (en)
WO (1) WO2008118917A2 (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090240146A1 (en) * 2007-10-26 2009-09-24 Liposonix, Inc. Mechanical arm
US20100242590A1 (en) * 2009-03-27 2010-09-30 Daniel Measurement And Control, Inc. Flow Meter and Temperature Stabilizing Cover Therefor
US20110077514A1 (en) * 2009-09-29 2011-03-31 Medicis Technologies Corporation Variable treatment site body contouring using an ultrasound therapy device
WO2012018562A1 (en) 2010-07-24 2012-02-09 Medicis Technologies Corporation Apparatus and methods for non-invasive body contouring
US20120067750A1 (en) * 2010-09-22 2012-03-22 Medicis Technologies Corporation Modified atmosphere packaging for ultrasound transducer cartridge
US20120215136A1 (en) * 2010-10-22 2012-08-23 Smith & Nephew, Inc. Medical device
US8333700B1 (en) 2004-10-06 2012-12-18 Guided Therapy Systems, L.L.C. Methods for treatment of hyperhidrosis
US8444562B2 (en) 2004-10-06 2013-05-21 Guided Therapy Systems, Llc System and method for treating muscle, tendon, ligament and cartilage tissue
US8636665B2 (en) 2004-10-06 2014-01-28 Guided Therapy Systems, Llc Method and system for ultrasound treatment of fat
US8641622B2 (en) 2004-10-06 2014-02-04 Guided Therapy Systems, Llc Method and system for treating photoaged tissue
US8663112B2 (en) 2004-10-06 2014-03-04 Guided Therapy Systems, Llc Methods and systems for fat reduction and/or cellulite treatment
US8690779B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Noninvasive aesthetic treatment for tightening tissue
US20140276076A1 (en) * 2013-03-15 2014-09-18 Muffin Incorporated Internal ultrasound assembly fluid seal
US8858471B2 (en) 2011-07-10 2014-10-14 Guided Therapy Systems, Llc Methods and systems for ultrasound treatment
US8857438B2 (en) 2010-11-08 2014-10-14 Ulthera, Inc. Devices and methods for acoustic shielding
US8868958B2 (en) 2005-04-25 2014-10-21 Ardent Sound, Inc Method and system for enhancing computer peripheral safety
US8915870B2 (en) 2004-10-06 2014-12-23 Guided Therapy Systems, Llc Method and system for treating stretch marks
US9011336B2 (en) 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
US9011337B2 (en) 2011-07-11 2015-04-21 Guided Therapy Systems, Llc Systems and methods for monitoring and controlling ultrasound power output and stability
US9039617B2 (en) 2009-11-24 2015-05-26 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
US9114247B2 (en) 2004-09-16 2015-08-25 Guided Therapy Systems, Llc Method and system for ultrasound treatment with a multi-directional transducer
US9149658B2 (en) 2010-08-02 2015-10-06 Guided Therapy Systems, Llc Systems and methods for ultrasound treatment
US9216276B2 (en) 2007-05-07 2015-12-22 Guided Therapy Systems, Llc Methods and systems for modulating medicants using acoustic energy
US9263663B2 (en) 2012-04-13 2016-02-16 Ardent Sound, Inc. Method of making thick film transducer arrays
US9272162B2 (en) 1997-10-14 2016-03-01 Guided Therapy Systems, Llc Imaging, therapy, and temperature monitoring ultrasonic method
US9320537B2 (en) 2004-10-06 2016-04-26 Guided Therapy Systems, Llc Methods for noninvasive skin tightening
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
US9510802B2 (en) 2012-09-21 2016-12-06 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
US9566454B2 (en) 2006-09-18 2017-02-14 Guided Therapy Systems, Llc Method and sysem for non-ablative acne treatment and prevention
US9579080B2 (en) 2012-10-16 2017-02-28 Muffin Incorporated Internal transducer assembly with slip ring
US9694212B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, Llc Method and system for ultrasound treatment of skin
US9700340B2 (en) 2004-10-06 2017-07-11 Guided Therapy Systems, Llc System and method for ultra-high frequency ultrasound treatment
US9827449B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US9907535B2 (en) 2000-12-28 2018-03-06 Ardent Sound, Inc. Visual imaging system for ultrasonic probe
US10039938B2 (en) 2004-09-16 2018-08-07 Guided Therapy Systems, Llc System and method for variable depth ultrasound treatment
US10420960B2 (en) 2013-03-08 2019-09-24 Ulthera, Inc. Devices and methods for multi-focus ultrasound therapy
US10537304B2 (en) 2008-06-06 2020-01-21 Ulthera, Inc. Hand wand for ultrasonic cosmetic treatment and imaging
US10561862B2 (en) 2013-03-15 2020-02-18 Guided Therapy Systems, Llc Ultrasound treatment device and methods of use
US10603521B2 (en) 2014-04-18 2020-03-31 Ulthera, Inc. Band transducer ultrasound therapy
US10639502B2 (en) 2010-10-12 2020-05-05 Smith & Nephew, Inc. Medical device
US10864385B2 (en) 2004-09-24 2020-12-15 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US11207548B2 (en) 2004-10-07 2021-12-28 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US11224895B2 (en) 2016-01-18 2022-01-18 Ulthera, Inc. Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof
US11235179B2 (en) 2004-10-06 2022-02-01 Guided Therapy Systems, Llc Energy based skin gland treatment
US11241218B2 (en) 2016-08-16 2022-02-08 Ulthera, Inc. Systems and methods for cosmetic ultrasound treatment of skin
US11317892B2 (en) 2015-08-12 2022-05-03 Muffin Incorporated Over-the-wire ultrasound system with torque-cable driven rotary transducer
US11717661B2 (en) 2007-05-07 2023-08-08 Guided Therapy Systems, Llc Methods and systems for ultrasound assisted delivery of a medicant to tissue
US11724133B2 (en) 2004-10-07 2023-08-15 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US11883688B2 (en) 2004-10-06 2024-01-30 Guided Therapy Systems, Llc Energy based fat reduction
US11944849B2 (en) 2018-02-20 2024-04-02 Ulthera, Inc. Systems and methods for combined cosmetic treatment of cellulite with ultrasound

Families Citing this family (416)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US8485412B2 (en) 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8701958B2 (en) 2007-01-11 2014-04-22 Ethicon Endo-Surgery, Inc. Curved end effector for a surgical stapling device
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
EP2207241A3 (en) * 2008-12-23 2013-04-03 Einam Yizhak Amotz Apparatus and method for transferring power from a stationary unit to a mobile unit
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
JP2012517287A (en) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド Improvement of driven surgical stapler
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US10009582B2 (en) * 2009-02-13 2018-06-26 Seesoon, Inc. Pipe inspection system with replaceable cable storage drum
CN102598118B (en) * 2009-11-09 2014-12-10 皇家飞利浦电子股份有限公司 Curved ultrasonic HIFU transducer with air cooling passageway
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
EP3267060B1 (en) * 2010-08-20 2021-01-06 SeeScan, Inc. Asymmetric drag force bearings for use with push-cable storage drums
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9113865B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a layer
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
KR101644011B1 (en) * 2011-02-01 2016-08-01 주식회사 하이로닉 High Intensity Focused Ultrasonic Medical Instrument with Dual Transducers
CN102138809A (en) * 2011-02-15 2011-08-03 福建师范大学 Opto-acoustic scan imaging method and device for detecting prostate
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
KR101355532B1 (en) * 2011-11-21 2014-01-24 알피니언메디칼시스템 주식회사 Transducer for HIFU
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
RU2644272C2 (en) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Limitation node with tissue thickness compensator
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
CN104870033B (en) * 2012-12-21 2018-07-03 爱尔康研究有限公司 Box body clamping device
BR112015021098B1 (en) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc COVERAGE FOR A JOINT JOINT AND SURGICAL INSTRUMENT
RU2669463C2 (en) 2013-03-01 2018-10-11 Этикон Эндо-Серджери, Инк. Surgical instrument with soft stop
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
US9265482B2 (en) * 2013-07-18 2016-02-23 Siemens Medical Solutions Usa, Inc. Ultrasound transducer connector
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
JP6229431B2 (en) * 2013-10-28 2017-11-15 セイコーエプソン株式会社 Ultrasonic device, ultrasonic probe head, ultrasonic probe, electronic device and ultrasonic imaging apparatus
CN103751002B (en) * 2014-01-22 2015-05-13 深圳市德迈科技有限公司 Manufacturing process and device for massage physical therapy head
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US20150272580A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Verification of number of battery exchanges/procedure count
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US20150297222A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
RU2703684C2 (en) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
EP3369145B1 (en) * 2015-10-27 2023-08-30 Conextivity Group SA Multipolar connector
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10312640B2 (en) * 2017-01-20 2019-06-04 Philip Giampi Magnetically activated power socket and plug combination
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11564686B2 (en) * 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US10716614B2 (en) * 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
CN108105731B (en) * 2017-12-16 2020-10-20 宁波禹瑞科技咨询有限公司 Electronic ballast mounting structure
CN108131649B (en) * 2017-12-16 2020-09-08 新沂市时集建设发展有限公司 Lamp ballast with improved connection structure
CN108105730B (en) * 2017-12-16 2020-09-04 新沂市时集建设发展有限公司 Ballast for lamp
US10116103B1 (en) * 2017-12-17 2018-10-30 Satyajit Patwardhan Power connector with integrated disconnect
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
KR102050749B1 (en) * 2017-12-28 2019-12-04 주식회사 메타바이오메드 Ultrasonic surgical instrument and method for uising ultrasonic surgical instrument
DE102018103381B3 (en) * 2018-02-15 2019-03-21 Insta Gmbh Electric light
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11403386B2 (en) 2018-08-31 2022-08-02 Bausch Health Ireland Limited Encrypted memory device
US10892573B1 (en) 2019-01-04 2021-01-12 Verily Life Sciences Llc Thin-film connectors for data acquisition system
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11888262B2 (en) * 2020-01-03 2024-01-30 Aptiv Technologies Limited Automotive electrical connector features for robotic installation
CN111407313B (en) * 2020-04-03 2022-05-10 深圳先进技术研究院 Ultrasonic transducer and ultrasonic imaging device
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
JP2022100547A (en) * 2020-12-24 2022-07-06 株式会社Kelk Electrode connection structure and detection device
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US20220378426A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002221A (en) * 1972-09-19 1977-01-11 Gilbert Buchalter Method of transmitting ultrasonic impulses to surface using transducer coupling agent
US4211949A (en) * 1978-11-08 1980-07-08 General Electric Company Wear plate for piezoelectric ultrasonic transducer arrays
US4291578A (en) * 1978-06-15 1981-09-29 Siemens Aktiengesellschaft Apparatus for ultrasonic scanning of objects
US4326418A (en) * 1980-04-07 1982-04-27 North American Philips Corporation Acoustic impedance matching device
US4368410A (en) * 1980-10-14 1983-01-11 Dynawave Corporation Ultrasound therapy device
US4437033A (en) * 1980-06-06 1984-03-13 Siemens Aktiengesellschaft Ultrasonic transducer matrix having filler material with different acoustical impedance
US4459854A (en) * 1981-07-24 1984-07-17 National Research Development Corporation Ultrasonic transducer coupling member
US4501557A (en) * 1982-07-26 1985-02-26 Kabushiki Kaisha Morita Seisakusho Balancing device for dental arm
US4865042A (en) * 1985-08-16 1989-09-12 Hitachi, Ltd. Ultrasonic irradiation system
US4960107A (en) * 1987-09-30 1990-10-02 Kabushiki Kaisha Toshiba Ultrasonic medical treatment apparatus
US5125827A (en) * 1990-07-27 1992-06-30 Gellert Jobst U Injection molding apparatus having an insulative and resilient spacer member
US5143063A (en) * 1988-02-09 1992-09-01 Fellner Donald G Method of removing adipose tissue from the body
US5151085A (en) * 1989-04-28 1992-09-29 Olympus Optical Co., Ltd. Apparatus for generating ultrasonic oscillation
US5219401A (en) * 1989-02-21 1993-06-15 Technomed Int'l Apparatus for selective destruction of cells by implosion of gas bubbles
US5291090A (en) * 1992-12-17 1994-03-01 Hewlett-Packard Company Curvilinear interleaved longitudinal-mode ultrasound transducers
US5301660A (en) * 1992-04-16 1994-04-12 Siemens Aktiengesellschaft Therapy apparatus for treating a subject with focused acoustic waves
US5352301A (en) * 1992-11-20 1994-10-04 General Motors Corporation Hot pressed magnets formed from anisotropic powders
US5382286A (en) * 1992-07-22 1995-01-17 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Acoustic gel
US5391144A (en) * 1990-02-02 1995-02-21 Olympus Optical Co., Ltd. Ultrasonic treatment apparatus
US5419761A (en) * 1993-08-03 1995-05-30 Misonix, Inc. Liposuction apparatus and associated method
US5419327A (en) * 1992-12-07 1995-05-30 Siemens Aktiengesellschaft Acoustic therapy means
US5434208A (en) * 1992-07-10 1995-07-18 Akzo Nobel N.V. Optically non-linear active waveguiding material comprising a dopant having multiple donor-n-acceptor systems
US5505206A (en) * 1991-10-11 1996-04-09 Spacelabs Medical, Inc. Method and apparatus for excluding artifacts from automatic blood pressure measurements
US5526815A (en) * 1993-01-29 1996-06-18 Siemens Aktiengesellschat Therapy apparatus for locating and treating a zone located in the body of a life form with acoustic waves
US5568810A (en) * 1995-11-28 1996-10-29 General Electric Company Ultrasound coupling medium warmer and storage means
US5618275A (en) * 1995-10-27 1997-04-08 Sonex International Corporation Ultrasonic method and apparatus for cosmetic and dermatological applications
US5623928A (en) * 1994-08-05 1997-04-29 Acuson Corporation Method and apparatus for coherent image formation
US5626554A (en) * 1995-02-21 1997-05-06 Exogen, Inc. Gel containment structure
US5669150A (en) * 1995-05-16 1997-09-23 Brown & Sharpe Manufacturing Company Coordinate measuring machine having articulated arm
US5676159A (en) * 1996-11-05 1997-10-14 Janin Group Ultrasound cover
US5738635A (en) * 1993-01-22 1998-04-14 Technomed Medical Systems Adjustable focusing therapeutic apparatus with no secondary focusing
US5738098A (en) * 1995-07-21 1998-04-14 Hewlett-Packard Company Multi-focus ultrasound lens
US5755753A (en) * 1995-05-05 1998-05-26 Thermage, Inc. Method for controlled contraction of collagen tissue
US5769790A (en) * 1996-10-25 1998-06-23 General Electric Company Focused ultrasound surgery system guided by ultrasound imaging
US5820623A (en) * 1995-06-20 1998-10-13 Ng; Wan Sing Articulated arm for medical procedures
US5827204A (en) * 1996-11-26 1998-10-27 Grandia; Willem Medical noninvasive operations using focused modulated high power ultrasound
US5871446A (en) * 1992-01-10 1999-02-16 Wilk; Peter J. Ultrasonic medical system and associated method
US5928169A (en) * 1994-12-23 1999-07-27 Siemens Aktiengesellschaft Apparatus for treating a subject with focused ultrasound waves
US5928194A (en) * 1997-04-07 1999-07-27 Maget; Henri J. R. Self-contained liquid microdispenser
US5931836A (en) * 1996-07-29 1999-08-03 Olympus Optical Co., Ltd. Electrosurgery apparatus and medical apparatus combined with the same
US5938922A (en) * 1997-08-19 1999-08-17 Celgard Llc Contactor for degassing liquids
US6019775A (en) * 1997-06-26 2000-02-01 Olympus Optical Co., Ltd. Ultrasonic operation apparatus having a common apparatus body usable for different handpieces
US6039689A (en) * 1998-03-11 2000-03-21 Riverside Research Institute Stripe electrode transducer for use with therapeutic ultrasonic radiation treatment
US6039048A (en) * 1998-04-08 2000-03-21 Silberg; Barry External ultrasound treatment of connective tissue
US6039694A (en) * 1998-06-25 2000-03-21 Sonotech, Inc. Coupling sheath for ultrasound transducers
US6056735A (en) * 1996-04-04 2000-05-02 Olympus Optical Co., Ltd. Ultrasound treatment system
US6063035A (en) * 1997-07-24 2000-05-16 Fuji Photo Optical Co., Ltd. Coupling adaptor for endoscopically inserting ultrasound probe
US6071239A (en) * 1997-10-27 2000-06-06 Cribbs; Robert W. Method and apparatus for lipolytic therapy using ultrasound energy
US6085749A (en) * 1996-02-26 2000-07-11 Ethicon Endo-Surgery, Inc. Articulating guide arm for medical applications
US6113558A (en) * 1997-09-29 2000-09-05 Angiosonics Inc. Pulsed mode lysis method
US6217515B1 (en) * 1998-09-04 2001-04-17 Ge Yokogawa Medical Systems, Limited Image display method and ultrasonic diagnostic apparatus
US6233476B1 (en) * 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
US6241753B1 (en) * 1995-05-05 2001-06-05 Thermage, Inc. Method for scar collagen formation and contraction
US6261249B1 (en) * 1998-03-17 2001-07-17 Exogen Inc. Ultrasonic treatment controller including gel sensing circuit
US6264605B1 (en) * 1998-01-23 2001-07-24 United States Surgical Corporation Surgical instrument
US6266551B1 (en) * 1996-02-15 2001-07-24 Biosense, Inc. Catheter calibration and usage monitoring system
US6302848B1 (en) * 1999-07-01 2001-10-16 Sonotech, Inc. In vivo biocompatible acoustic coupling media
US6306146B1 (en) * 2000-04-06 2001-10-23 Ohio Medical Instrument Company, Inc. Surgical instrument support and method
US6309355B1 (en) * 1998-12-22 2001-10-30 The Regents Of The University Of Michigan Method and assembly for performing ultrasound surgery using cavitation
US6350245B1 (en) * 1998-12-22 2002-02-26 William W. Cimino Transdermal ultrasonic device and method
US20020030423A1 (en) * 2000-03-22 2002-03-14 Todd Fjield Ultrasound transducer unit and planar ultrasound lens
US6366831B1 (en) * 1993-02-23 2002-04-02 Faro Technologies Inc. Coordinate measurement machine with articulated arm and software interface
US20020043499A1 (en) * 2000-03-14 2002-04-18 Hammen Richard F. Composite matrices with interstitial polymer networks
US20020055680A1 (en) * 1999-06-29 2002-05-09 Miele Frank R. Method and apparatus for the noninvasive assessment of hemodynamic parameters including blood vessel location
US6387380B1 (en) * 1995-05-05 2002-05-14 Thermage, Inc. Apparatus for controlled contraction of collagen tissue
US20020082528A1 (en) * 2000-12-27 2002-06-27 Insight Therapeutics Ltd. Systems and methods for ultrasound assisted lipolysis
US6419648B1 (en) * 2000-04-21 2002-07-16 Insightec-Txsonics Ltd. Systems and methods for reducing secondary hot spots in a phased array focused ultrasound system
US6423077B2 (en) * 1994-09-30 2002-07-23 Ohio Medical Instrument Company, Inc. Apparatus and method for surgical stereotactic procedures
US6425867B1 (en) * 1998-09-18 2002-07-30 University Of Washington Noise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy
US20020107538A1 (en) * 2000-07-28 2002-08-08 Norikiyo Shibata Ultrasonic operation system
US20020128592A1 (en) * 2001-01-03 2002-09-12 Ultra Shape, Inc. Method and apparatus for non-invasive body contouring by lysing adipose tissue
US20020138007A1 (en) * 2001-03-20 2002-09-26 An Nguyen-Dinh Ultrasonic probe including pointing devices for remotely controlling functions of an associated imaging system
US20030004439A1 (en) * 1999-02-02 2003-01-02 Transurgical, Inc. Intrabody HIFU applicator
US6506171B1 (en) * 2000-07-27 2003-01-14 Insightec-Txsonics, Ltd System and methods for controlling distribution of acoustic energy around a focal point using a focused ultrasound system
US6511428B1 (en) * 1998-10-26 2003-01-28 Hitachi, Ltd. Ultrasonic medical treating device
US20030076591A1 (en) * 1998-04-21 2003-04-24 Shigeto Ohmori Lens optical system
US6554826B1 (en) * 2000-04-21 2003-04-29 Txsonics-Ltd Electro-dynamic phased array lens for controlling acoustic wave propagation
US20030083536A1 (en) * 2001-10-29 2003-05-01 Ultrashape Inc. Non-invasive ultrasonic body contouring
US6561389B1 (en) * 2001-07-31 2003-05-13 Walter R. Earle Dispenser apparatus for medical grade ultrasound gel
US6575906B1 (en) * 2001-04-19 2003-06-10 Acuson Corporation Rapid-heating ultrasound gel warmer
US6618620B1 (en) * 2000-11-28 2003-09-09 Txsonics Ltd. Apparatus for controlling thermal dosing in an thermal treatment system
US6623423B2 (en) * 2000-02-29 2003-09-23 Olympus Optical Co., Ltd. Surgical operation system
US6679875B2 (en) * 2001-02-20 2004-01-20 Olympus Corporation Medical treatment system
US6775388B1 (en) * 1998-07-16 2004-08-10 Massachusetts Institute Of Technology Ultrasonic transducers
US20050016769A1 (en) * 2003-07-22 2005-01-27 Pathfinder Energy Services, Inc. Electrical connector useful in wet environments
US20050027195A1 (en) * 2003-08-01 2005-02-03 Assaf Govari Calibration data compression
US20050101945A1 (en) * 2001-10-16 2005-05-12 Olympus Corporation Treating apparatus and treating device for treating living-body tissue
US20050154314A1 (en) * 2003-12-30 2005-07-14 Liposonix, Inc. Component ultrasound transducer
US20050187495A1 (en) * 2003-12-30 2005-08-25 Liposonix, Inc. Ultrasound therapy head with movement control
US7011520B2 (en) * 2000-08-04 2006-03-14 Hu-Friedy Mfg. Co., Inc. Two part ultrasonic swivel insert, with one part rotatable relative to the other
US20070035201A1 (en) * 2003-03-31 2007-02-15 Liposonix, Inc. Medical ultrasound transducer having non-ideal focal region
US20070167825A1 (en) * 2005-11-30 2007-07-19 Warren Lee Apparatus for catheter tips, including mechanically scanning ultrasound probe catheter tip
US7255678B2 (en) * 2002-10-10 2007-08-14 Visualsonics Inc. High frequency, high frame-rate ultrasound imaging system
US7258674B2 (en) * 2002-02-20 2007-08-21 Liposonix, Inc. Ultrasonic treatment and imaging of adipose tissue

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3016612A (en) * 1958-04-17 1962-01-16 Ibm Recording device
US4059098A (en) 1975-07-21 1977-11-22 Stanford Research Institute Flexible ultrasound coupling system
JPS59201621A (en) * 1983-04-30 1984-11-15 動力炉・核燃料開発事業団 Airtight type power supplying unit for glove box and its exchanging method
US4593699A (en) 1983-06-13 1986-06-10 Poncy Richard P Sterile cover for intraoperative ultrasonic diagnostic devices and method and kit for providing same
US4556066A (en) 1983-11-04 1985-12-03 The Kendall Company Ultrasound acoustical coupling pad
US4567895A (en) 1984-04-02 1986-02-04 Advanced Technology Laboratories, Inc. Fully wetted mechanical ultrasound scanhead
US4874326A (en) * 1988-09-20 1989-10-17 The United States Of America As Represented By The Secretary Of The Navy Elastomeric electrical isolation membrane
DE3932364A1 (en) * 1989-09-28 1991-04-11 Wolf Gmbh Richard DEVICE FOR SPACIOUS LOCATION AND DESTRUCTION OF INTERIOR OBJECTS
US5076276A (en) 1989-11-01 1991-12-31 Olympus Optical Co., Ltd. Ultrasound type treatment apparatus
US5163433A (en) 1989-11-01 1992-11-17 Olympus Optical Co., Ltd. Ultrasound type treatment apparatus
DE9012429U1 (en) 1990-08-30 1990-10-31 Johnson & Johnson Medical Gmbh, 2000 Norderstedt, De
DE4408110A1 (en) 1993-03-11 1994-09-15 Zentralinstitut Fuer Biomedizi Method and device for neuromagnetic stimulation
US5599345A (en) 1993-11-08 1997-02-04 Zomed International, Inc. RF treatment apparatus
US5412180A (en) * 1993-12-02 1995-05-02 The Regents Of The University Of California Ultra high vacuum heating and rotating specimen stage
EP0659387B1 (en) * 1993-12-24 2003-04-16 Olympus Optical Co., Ltd. Ultrasonic diagnosis and therapy system in which focusing point of therapeutic ultrasonic wave is locked at predetermined position within observation ultrasonic scanning range
US5477736A (en) 1994-03-14 1995-12-26 General Electric Company Ultrasonic transducer with lens having electrorheological fluid therein for dynamically focusing and steering ultrasound energy
US5498164A (en) * 1994-05-09 1996-03-12 Ward; Mark C. Automotive steering column electrical connector
US5840572A (en) 1994-10-11 1998-11-24 United States Of America As Represented By The Secretary Of The Navy Bioluminescent bioassay system
US5851188A (en) 1994-10-12 1998-12-22 Bullard; Kelli M. Device for holding medical instrumentation sensors at and upon the cervix os of a human female, particularly for holding the ultrasonic transducers of an ultrasonic transit time, real-time, cervical effacement and dilatation monitor
US6152137A (en) 1995-01-23 2000-11-28 Schwartz; Alan N. Pliable and resilient sealing pad
DE19507478C1 (en) 1995-03-03 1996-05-15 Siemens Ag Therapy device for treatment with focused ultrasound
US5626486A (en) * 1995-03-10 1997-05-06 The Whitaker Corporation High voltage low current connector interface with compressible terminal site seal
CA2176047C (en) * 1995-05-22 2000-04-11 Mohi Sobhani Spring loaded rotary connector
US5575664A (en) * 1995-05-30 1996-11-19 Hughes Aircraft Company Ball contact rotary connector
US5775920A (en) * 1995-09-01 1998-07-07 Methode Electronics, Inc. Rolling elastomer contact clockspring
US5687717A (en) 1996-08-06 1997-11-18 Tremont Medical, Inc. Patient monitoring system with chassis mounted or remotely operable modules and portable computer
US5851120A (en) * 1997-02-27 1998-12-22 Raytheon Company Rotary conduit/ball connector
FR2778573B1 (en) 1998-05-13 2000-09-22 Technomed Medical Systems FREQUENCY ADJUSTMENT IN A HIGH INTENSITY FOCUSED ULTRASOUND TREATMENT APPARATUS
US6132219A (en) * 1998-12-15 2000-10-17 Raytheon Company Planetary connector
US6142748A (en) 1999-08-18 2000-11-07 Eastman Chemical Company Degas piping for pumps
US6613004B1 (en) 2000-04-21 2003-09-02 Insightec-Txsonics, Ltd. Systems and methods for creating longer necrosed volumes using a phased array focused ultrasound system
US20040073115A1 (en) * 2000-08-24 2004-04-15 Timi 3 Systems, Inc. Systems and methods for applying ultrasound energy to increase tissue perfusion and/or vasodilation without substantial deep heating of tissue
KR100948543B1 (en) 2001-01-03 2010-03-18 울트라쉐이프 엘티디 Non-invasive ultrasonic body contouring
GB2374735B (en) * 2001-04-20 2003-10-08 Kettle Solutions Ltd Electrical connector
US6962498B2 (en) * 2001-12-12 2005-11-08 Ran Kohen Revolvable plug and socket
US7192303B2 (en) * 2001-05-31 2007-03-20 Ran Kohen Quick connect device for electrical fixtures
US6612847B2 (en) * 2001-10-11 2003-09-02 Florencio Canizales, Jr. Slip plate assembly and method for conductively supplying electrical current under rotational and translational force applications
US6663395B2 (en) * 2002-02-28 2003-12-16 Raytheon Company Electrical joint employing conductive slurry
US6921269B2 (en) * 2003-07-30 2005-07-26 Honeywell International Inc. Relative rotation signal transfer assembly
JP4220880B2 (en) * 2003-10-17 2009-02-04 住友重機械工業株式会社 Waterproof terminal block unit
US7771418B2 (en) * 2005-03-09 2010-08-10 Sunnybrook Health Sciences Centre Treatment of diseased tissue using controlled ultrasonic heating
WO2008012875A1 (en) * 2006-07-26 2008-01-31 Harmonic Drive Systems Inc. Rotary terminal mechanism
WO2008032298A1 (en) * 2006-09-11 2008-03-20 Wind Concepts Limited An alternator
US20090240146A1 (en) * 2007-10-26 2009-09-24 Liposonix, Inc. Mechanical arm
US7771202B2 (en) * 2008-01-07 2010-08-10 Einam Yitzhak Amotz Apparatus for transferring alternating current electrical power
US7435112B1 (en) * 2008-02-08 2008-10-14 Tyco Electronics Corporation Electrical connector having a mechanical mating cycle limitation
CN101685936A (en) * 2008-09-25 2010-03-31 鸿富锦精密工业(深圳)有限公司 Rotary connection device
GB2465223A (en) 2008-11-14 2010-05-19 Cambridge Resonant Technologies Ltd Tuned resonant circuits
TW201103205A (en) * 2009-05-01 2011-01-16 Paul Lo Lighting connector devices and uses thereof

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002221A (en) * 1972-09-19 1977-01-11 Gilbert Buchalter Method of transmitting ultrasonic impulses to surface using transducer coupling agent
US4291578A (en) * 1978-06-15 1981-09-29 Siemens Aktiengesellschaft Apparatus for ultrasonic scanning of objects
US4211949A (en) * 1978-11-08 1980-07-08 General Electric Company Wear plate for piezoelectric ultrasonic transducer arrays
US4326418A (en) * 1980-04-07 1982-04-27 North American Philips Corporation Acoustic impedance matching device
US4437033A (en) * 1980-06-06 1984-03-13 Siemens Aktiengesellschaft Ultrasonic transducer matrix having filler material with different acoustical impedance
US4368410A (en) * 1980-10-14 1983-01-11 Dynawave Corporation Ultrasound therapy device
US4459854A (en) * 1981-07-24 1984-07-17 National Research Development Corporation Ultrasonic transducer coupling member
US4501557A (en) * 1982-07-26 1985-02-26 Kabushiki Kaisha Morita Seisakusho Balancing device for dental arm
US4865042A (en) * 1985-08-16 1989-09-12 Hitachi, Ltd. Ultrasonic irradiation system
US4960107A (en) * 1987-09-30 1990-10-02 Kabushiki Kaisha Toshiba Ultrasonic medical treatment apparatus
US5143063A (en) * 1988-02-09 1992-09-01 Fellner Donald G Method of removing adipose tissue from the body
US5219401A (en) * 1989-02-21 1993-06-15 Technomed Int'l Apparatus for selective destruction of cells by implosion of gas bubbles
US5151085A (en) * 1989-04-28 1992-09-29 Olympus Optical Co., Ltd. Apparatus for generating ultrasonic oscillation
US5391144A (en) * 1990-02-02 1995-02-21 Olympus Optical Co., Ltd. Ultrasonic treatment apparatus
US5125827A (en) * 1990-07-27 1992-06-30 Gellert Jobst U Injection molding apparatus having an insulative and resilient spacer member
US5505206A (en) * 1991-10-11 1996-04-09 Spacelabs Medical, Inc. Method and apparatus for excluding artifacts from automatic blood pressure measurements
US5871446A (en) * 1992-01-10 1999-02-16 Wilk; Peter J. Ultrasonic medical system and associated method
US5301660A (en) * 1992-04-16 1994-04-12 Siemens Aktiengesellschaft Therapy apparatus for treating a subject with focused acoustic waves
US5434208A (en) * 1992-07-10 1995-07-18 Akzo Nobel N.V. Optically non-linear active waveguiding material comprising a dopant having multiple donor-n-acceptor systems
US5382286A (en) * 1992-07-22 1995-01-17 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Acoustic gel
US5352301A (en) * 1992-11-20 1994-10-04 General Motors Corporation Hot pressed magnets formed from anisotropic powders
US5419327A (en) * 1992-12-07 1995-05-30 Siemens Aktiengesellschaft Acoustic therapy means
US5291090A (en) * 1992-12-17 1994-03-01 Hewlett-Packard Company Curvilinear interleaved longitudinal-mode ultrasound transducers
US5738635A (en) * 1993-01-22 1998-04-14 Technomed Medical Systems Adjustable focusing therapeutic apparatus with no secondary focusing
US5526815A (en) * 1993-01-29 1996-06-18 Siemens Aktiengesellschat Therapy apparatus for locating and treating a zone located in the body of a life form with acoustic waves
US6366831B1 (en) * 1993-02-23 2002-04-02 Faro Technologies Inc. Coordinate measurement machine with articulated arm and software interface
US5419761A (en) * 1993-08-03 1995-05-30 Misonix, Inc. Liposuction apparatus and associated method
US5623928A (en) * 1994-08-05 1997-04-29 Acuson Corporation Method and apparatus for coherent image formation
US6423077B2 (en) * 1994-09-30 2002-07-23 Ohio Medical Instrument Company, Inc. Apparatus and method for surgical stereotactic procedures
US5928169A (en) * 1994-12-23 1999-07-27 Siemens Aktiengesellschaft Apparatus for treating a subject with focused ultrasound waves
US5626554A (en) * 1995-02-21 1997-05-06 Exogen, Inc. Gel containment structure
US6340352B1 (en) * 1995-04-06 2002-01-22 Olympus Optical Co., Ltd. Ultrasound treatment system
US6387380B1 (en) * 1995-05-05 2002-05-14 Thermage, Inc. Apparatus for controlled contraction of collagen tissue
US5755753A (en) * 1995-05-05 1998-05-26 Thermage, Inc. Method for controlled contraction of collagen tissue
US6241753B1 (en) * 1995-05-05 2001-06-05 Thermage, Inc. Method for scar collagen formation and contraction
US5669150A (en) * 1995-05-16 1997-09-23 Brown & Sharpe Manufacturing Company Coordinate measuring machine having articulated arm
US5820623A (en) * 1995-06-20 1998-10-13 Ng; Wan Sing Articulated arm for medical procedures
US5738098A (en) * 1995-07-21 1998-04-14 Hewlett-Packard Company Multi-focus ultrasound lens
US5618275A (en) * 1995-10-27 1997-04-08 Sonex International Corporation Ultrasonic method and apparatus for cosmetic and dermatological applications
US5568810A (en) * 1995-11-28 1996-10-29 General Electric Company Ultrasound coupling medium warmer and storage means
US6266551B1 (en) * 1996-02-15 2001-07-24 Biosense, Inc. Catheter calibration and usage monitoring system
US6085749A (en) * 1996-02-26 2000-07-11 Ethicon Endo-Surgery, Inc. Articulating guide arm for medical applications
US6056735A (en) * 1996-04-04 2000-05-02 Olympus Optical Co., Ltd. Ultrasound treatment system
US5931836A (en) * 1996-07-29 1999-08-03 Olympus Optical Co., Ltd. Electrosurgery apparatus and medical apparatus combined with the same
US5769790A (en) * 1996-10-25 1998-06-23 General Electric Company Focused ultrasound surgery system guided by ultrasound imaging
US5676159A (en) * 1996-11-05 1997-10-14 Janin Group Ultrasound cover
US5827204A (en) * 1996-11-26 1998-10-27 Grandia; Willem Medical noninvasive operations using focused modulated high power ultrasound
US5928194A (en) * 1997-04-07 1999-07-27 Maget; Henri J. R. Self-contained liquid microdispenser
US6019775A (en) * 1997-06-26 2000-02-01 Olympus Optical Co., Ltd. Ultrasonic operation apparatus having a common apparatus body usable for different handpieces
US6063035A (en) * 1997-07-24 2000-05-16 Fuji Photo Optical Co., Ltd. Coupling adaptor for endoscopically inserting ultrasound probe
US5938922A (en) * 1997-08-19 1999-08-17 Celgard Llc Contactor for degassing liquids
US6113558A (en) * 1997-09-29 2000-09-05 Angiosonics Inc. Pulsed mode lysis method
US6071239A (en) * 1997-10-27 2000-06-06 Cribbs; Robert W. Method and apparatus for lipolytic therapy using ultrasound energy
US6264605B1 (en) * 1998-01-23 2001-07-24 United States Surgical Corporation Surgical instrument
US6039689A (en) * 1998-03-11 2000-03-21 Riverside Research Institute Stripe electrode transducer for use with therapeutic ultrasonic radiation treatment
US6261249B1 (en) * 1998-03-17 2001-07-17 Exogen Inc. Ultrasonic treatment controller including gel sensing circuit
US6039048A (en) * 1998-04-08 2000-03-21 Silberg; Barry External ultrasound treatment of connective tissue
US20030076591A1 (en) * 1998-04-21 2003-04-24 Shigeto Ohmori Lens optical system
US6039694A (en) * 1998-06-25 2000-03-21 Sonotech, Inc. Coupling sheath for ultrasound transducers
US6775388B1 (en) * 1998-07-16 2004-08-10 Massachusetts Institute Of Technology Ultrasonic transducers
US6217515B1 (en) * 1998-09-04 2001-04-17 Ge Yokogawa Medical Systems, Limited Image display method and ultrasonic diagnostic apparatus
US6425867B1 (en) * 1998-09-18 2002-07-30 University Of Washington Noise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy
US6511428B1 (en) * 1998-10-26 2003-01-28 Hitachi, Ltd. Ultrasonic medical treating device
US6309355B1 (en) * 1998-12-22 2001-10-30 The Regents Of The University Of Michigan Method and assembly for performing ultrasound surgery using cavitation
US6350245B1 (en) * 1998-12-22 2002-02-26 William W. Cimino Transdermal ultrasonic device and method
US20030004439A1 (en) * 1999-02-02 2003-01-02 Transurgical, Inc. Intrabody HIFU applicator
US6233476B1 (en) * 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
US20020055680A1 (en) * 1999-06-29 2002-05-09 Miele Frank R. Method and apparatus for the noninvasive assessment of hemodynamic parameters including blood vessel location
US6302848B1 (en) * 1999-07-01 2001-10-16 Sonotech, Inc. In vivo biocompatible acoustic coupling media
US7063692B2 (en) * 2000-02-29 2006-06-20 Olympus Corporation Surgical operation system
US6623423B2 (en) * 2000-02-29 2003-09-23 Olympus Optical Co., Ltd. Surgical operation system
US20020043499A1 (en) * 2000-03-14 2002-04-18 Hammen Richard F. Composite matrices with interstitial polymer networks
US20020030423A1 (en) * 2000-03-22 2002-03-14 Todd Fjield Ultrasound transducer unit and planar ultrasound lens
US6306146B1 (en) * 2000-04-06 2001-10-23 Ohio Medical Instrument Company, Inc. Surgical instrument support and method
US6419648B1 (en) * 2000-04-21 2002-07-16 Insightec-Txsonics Ltd. Systems and methods for reducing secondary hot spots in a phased array focused ultrasound system
US6554826B1 (en) * 2000-04-21 2003-04-29 Txsonics-Ltd Electro-dynamic phased array lens for controlling acoustic wave propagation
US6506171B1 (en) * 2000-07-27 2003-01-14 Insightec-Txsonics, Ltd System and methods for controlling distribution of acoustic energy around a focal point using a focused ultrasound system
US6761698B2 (en) * 2000-07-28 2004-07-13 Olympus Corporation Ultrasonic operation system
US20020107538A1 (en) * 2000-07-28 2002-08-08 Norikiyo Shibata Ultrasonic operation system
US7011520B2 (en) * 2000-08-04 2006-03-14 Hu-Friedy Mfg. Co., Inc. Two part ultrasonic swivel insert, with one part rotatable relative to the other
US6618620B1 (en) * 2000-11-28 2003-09-09 Txsonics Ltd. Apparatus for controlling thermal dosing in an thermal treatment system
US20020082528A1 (en) * 2000-12-27 2002-06-27 Insight Therapeutics Ltd. Systems and methods for ultrasound assisted lipolysis
US20020128592A1 (en) * 2001-01-03 2002-09-12 Ultra Shape, Inc. Method and apparatus for non-invasive body contouring by lysing adipose tissue
US6607498B2 (en) * 2001-01-03 2003-08-19 Uitra Shape, Inc. Method and apparatus for non-invasive body contouring by lysing adipose tissue
US6679875B2 (en) * 2001-02-20 2004-01-20 Olympus Corporation Medical treatment system
US20020138007A1 (en) * 2001-03-20 2002-09-26 An Nguyen-Dinh Ultrasonic probe including pointing devices for remotely controlling functions of an associated imaging system
US6575906B1 (en) * 2001-04-19 2003-06-10 Acuson Corporation Rapid-heating ultrasound gel warmer
US6561389B1 (en) * 2001-07-31 2003-05-13 Walter R. Earle Dispenser apparatus for medical grade ultrasound gel
US20050101945A1 (en) * 2001-10-16 2005-05-12 Olympus Corporation Treating apparatus and treating device for treating living-body tissue
US20030083536A1 (en) * 2001-10-29 2003-05-01 Ultrashape Inc. Non-invasive ultrasonic body contouring
US7258674B2 (en) * 2002-02-20 2007-08-21 Liposonix, Inc. Ultrasonic treatment and imaging of adipose tissue
US7255678B2 (en) * 2002-10-10 2007-08-14 Visualsonics Inc. High frequency, high frame-rate ultrasound imaging system
US20070035201A1 (en) * 2003-03-31 2007-02-15 Liposonix, Inc. Medical ultrasound transducer having non-ideal focal region
US7273459B2 (en) * 2003-03-31 2007-09-25 Liposonix, Inc. Vortex transducer
US20050016769A1 (en) * 2003-07-22 2005-01-27 Pathfinder Energy Services, Inc. Electrical connector useful in wet environments
US20050027195A1 (en) * 2003-08-01 2005-02-03 Assaf Govari Calibration data compression
US20050154314A1 (en) * 2003-12-30 2005-07-14 Liposonix, Inc. Component ultrasound transducer
US20050187495A1 (en) * 2003-12-30 2005-08-25 Liposonix, Inc. Ultrasound therapy head with movement control
US20070167825A1 (en) * 2005-11-30 2007-07-19 Warren Lee Apparatus for catheter tips, including mechanically scanning ultrasound probe catheter tip

Cited By (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9272162B2 (en) 1997-10-14 2016-03-01 Guided Therapy Systems, Llc Imaging, therapy, and temperature monitoring ultrasonic method
US9907535B2 (en) 2000-12-28 2018-03-06 Ardent Sound, Inc. Visual imaging system for ultrasonic probe
US9011336B2 (en) 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
US10039938B2 (en) 2004-09-16 2018-08-07 Guided Therapy Systems, Llc System and method for variable depth ultrasound treatment
US9114247B2 (en) 2004-09-16 2015-08-25 Guided Therapy Systems, Llc Method and system for ultrasound treatment with a multi-directional transducer
US11590370B2 (en) 2004-09-24 2023-02-28 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US10864385B2 (en) 2004-09-24 2020-12-15 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US10328289B2 (en) 2004-09-24 2019-06-25 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US9895560B2 (en) 2004-09-24 2018-02-20 Guided Therapy Systems, Llc Methods for rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US9095697B2 (en) 2004-09-24 2015-08-04 Guided Therapy Systems, Llc Methods for preheating tissue for cosmetic treatment of the face and body
US9707412B2 (en) 2004-10-06 2017-07-18 Guided Therapy Systems, Llc System and method for fat and cellulite reduction
US9283409B2 (en) 2004-10-06 2016-03-15 Guided Therapy Systems, Llc Energy based fat reduction
US9827450B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. System and method for fat and cellulite reduction
US11883688B2 (en) 2004-10-06 2024-01-30 Guided Therapy Systems, Llc Energy based fat reduction
US8444562B2 (en) 2004-10-06 2013-05-21 Guided Therapy Systems, Llc System and method for treating muscle, tendon, ligament and cartilage tissue
US8523775B2 (en) 2004-10-06 2013-09-03 Guided Therapy Systems, Llc Energy based hyperhidrosis treatment
US10046181B2 (en) 2004-10-06 2018-08-14 Guided Therapy Systems, Llc Energy based hyperhidrosis treatment
US8636665B2 (en) 2004-10-06 2014-01-28 Guided Therapy Systems, Llc Method and system for ultrasound treatment of fat
US8641622B2 (en) 2004-10-06 2014-02-04 Guided Therapy Systems, Llc Method and system for treating photoaged tissue
US8663112B2 (en) 2004-10-06 2014-03-04 Guided Therapy Systems, Llc Methods and systems for fat reduction and/or cellulite treatment
US8672848B2 (en) 2004-10-06 2014-03-18 Guided Therapy Systems, Llc Method and system for treating cellulite
US8690779B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Noninvasive aesthetic treatment for tightening tissue
US8690780B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Noninvasive tissue tightening for cosmetic effects
US8690778B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Energy-based tissue tightening
US11717707B2 (en) 2004-10-06 2023-08-08 Guided Therapy Systems, Llc System and method for noninvasive skin tightening
US9833640B2 (en) 2004-10-06 2017-12-05 Guided Therapy Systems, L.L.C. Method and system for ultrasound treatment of skin
US11697033B2 (en) 2004-10-06 2023-07-11 Guided Therapy Systems, Llc Methods for lifting skin tissue
US10238894B2 (en) 2004-10-06 2019-03-26 Guided Therapy Systems, L.L.C. Energy based fat reduction
US8915853B2 (en) 2004-10-06 2014-12-23 Guided Therapy Systems, Llc Methods for face and neck lifts
US8915854B2 (en) 2004-10-06 2014-12-23 Guided Therapy Systems, Llc Method for fat and cellulite reduction
US8915870B2 (en) 2004-10-06 2014-12-23 Guided Therapy Systems, Llc Method and system for treating stretch marks
US8920324B2 (en) 2004-10-06 2014-12-30 Guided Therapy Systems, Llc Energy based fat reduction
US11400319B2 (en) 2004-10-06 2022-08-02 Guided Therapy Systems, Llc Methods for lifting skin tissue
US8932224B2 (en) 2004-10-06 2015-01-13 Guided Therapy Systems, Llc Energy based hyperhidrosis treatment
US11338156B2 (en) 2004-10-06 2022-05-24 Guided Therapy Systems, Llc Noninvasive tissue tightening system
US11235179B2 (en) 2004-10-06 2022-02-01 Guided Therapy Systems, Llc Energy based skin gland treatment
US11235180B2 (en) 2004-10-06 2022-02-01 Guided Therapy Systems, Llc System and method for noninvasive skin tightening
US9039619B2 (en) 2004-10-06 2015-05-26 Guided Therapy Systems, L.L.C. Methods for treating skin laxity
US11207547B2 (en) 2004-10-06 2021-12-28 Guided Therapy Systems, Llc Probe for ultrasound tissue treatment
US10010724B2 (en) 2004-10-06 2018-07-03 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US11179580B2 (en) 2004-10-06 2021-11-23 Guided Therapy Systems, Llc Energy based fat reduction
US11167155B2 (en) 2004-10-06 2021-11-09 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US10960236B2 (en) 2004-10-06 2021-03-30 Guided Therapy Systems, Llc System and method for noninvasive skin tightening
US10888716B2 (en) 2004-10-06 2021-01-12 Guided Therapy Systems, Llc Energy based fat reduction
US9283410B2 (en) 2004-10-06 2016-03-15 Guided Therapy Systems, L.L.C. System and method for fat and cellulite reduction
US10046182B2 (en) 2004-10-06 2018-08-14 Guided Therapy Systems, Llc Methods for face and neck lifts
US9320537B2 (en) 2004-10-06 2016-04-26 Guided Therapy Systems, Llc Methods for noninvasive skin tightening
US10888718B2 (en) 2004-10-06 2021-01-12 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US9421029B2 (en) 2004-10-06 2016-08-23 Guided Therapy Systems, Llc Energy based hyperhidrosis treatment
US9427601B2 (en) 2004-10-06 2016-08-30 Guided Therapy Systems, Llc Methods for face and neck lifts
US9427600B2 (en) 2004-10-06 2016-08-30 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US9440096B2 (en) 2004-10-06 2016-09-13 Guided Therapy Systems, Llc Method and system for treating stretch marks
US10888717B2 (en) 2004-10-06 2021-01-12 Guided Therapy Systems, Llc Probe for ultrasound tissue treatment
US10610705B2 (en) 2004-10-06 2020-04-07 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US10610706B2 (en) 2004-10-06 2020-04-07 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US9522290B2 (en) 2004-10-06 2016-12-20 Guided Therapy Systems, Llc System and method for fat and cellulite reduction
US9533175B2 (en) 2004-10-06 2017-01-03 Guided Therapy Systems, Llc Energy based fat reduction
US10245450B2 (en) 2004-10-06 2019-04-02 Guided Therapy Systems, Llc Ultrasound probe for fat and cellulite reduction
US10603519B2 (en) 2004-10-06 2020-03-31 Guided Therapy Systems, Llc Energy based fat reduction
US9694211B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US9694212B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, Llc Method and system for ultrasound treatment of skin
US9700340B2 (en) 2004-10-06 2017-07-11 Guided Therapy Systems, Llc System and method for ultra-high frequency ultrasound treatment
US10603523B2 (en) 2004-10-06 2020-03-31 Guided Therapy Systems, Llc Ultrasound probe for tissue treatment
US9713731B2 (en) 2004-10-06 2017-07-25 Guided Therapy Systems, Llc Energy based fat reduction
US10532230B2 (en) 2004-10-06 2020-01-14 Guided Therapy Systems, Llc Methods for face and neck lifts
US9827449B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US8333700B1 (en) 2004-10-06 2012-12-18 Guided Therapy Systems, L.L.C. Methods for treatment of hyperhidrosis
US10525288B2 (en) 2004-10-06 2020-01-07 Guided Therapy Systems, Llc System and method for noninvasive skin tightening
US10265550B2 (en) 2004-10-06 2019-04-23 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US9833639B2 (en) 2004-10-06 2017-12-05 Guided Therapy Systems, L.L.C. Energy based fat reduction
US10252086B2 (en) 2004-10-06 2019-04-09 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US9974982B2 (en) 2004-10-06 2018-05-22 Guided Therapy Systems, Llc System and method for noninvasive skin tightening
US10010721B2 (en) 2004-10-06 2018-07-03 Guided Therapy Systems, L.L.C. Energy based fat reduction
US10010725B2 (en) 2004-10-06 2018-07-03 Guided Therapy Systems, Llc Ultrasound probe for fat and cellulite reduction
US10010726B2 (en) 2004-10-06 2018-07-03 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US11207548B2 (en) 2004-10-07 2021-12-28 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US11724133B2 (en) 2004-10-07 2023-08-15 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US8868958B2 (en) 2005-04-25 2014-10-21 Ardent Sound, Inc Method and system for enhancing computer peripheral safety
US9566454B2 (en) 2006-09-18 2017-02-14 Guided Therapy Systems, Llc Method and sysem for non-ablative acne treatment and prevention
US11717661B2 (en) 2007-05-07 2023-08-08 Guided Therapy Systems, Llc Methods and systems for ultrasound assisted delivery of a medicant to tissue
US9216276B2 (en) 2007-05-07 2015-12-22 Guided Therapy Systems, Llc Methods and systems for modulating medicants using acoustic energy
US20090240146A1 (en) * 2007-10-26 2009-09-24 Liposonix, Inc. Mechanical arm
US11723622B2 (en) 2008-06-06 2023-08-15 Ulthera, Inc. Systems for ultrasound treatment
US11123039B2 (en) 2008-06-06 2021-09-21 Ulthera, Inc. System and method for ultrasound treatment
US10537304B2 (en) 2008-06-06 2020-01-21 Ulthera, Inc. Hand wand for ultrasonic cosmetic treatment and imaging
US20100242590A1 (en) * 2009-03-27 2010-09-30 Daniel Measurement And Control, Inc. Flow Meter and Temperature Stabilizing Cover Therefor
US20110072970A1 (en) * 2009-09-29 2011-03-31 Medicis Technologies Corporation Liquid degas system
US8425435B2 (en) 2009-09-29 2013-04-23 Liposonix, Inc. Transducer cartridge for an ultrasound therapy head
US20110077556A1 (en) * 2009-09-29 2011-03-31 Medicis Technologies Corporation Cartridge for use with an ultrasound therapy head
US7946986B2 (en) 2009-09-29 2011-05-24 Medicis Technologies Corporation Cartridge for use with an ultrasound therapy head
US8932238B2 (en) 2009-09-29 2015-01-13 Liposonix, Inc. Medical ultrasound device with liquid dispensing device coupled to a therapy head
US8152904B2 (en) 2009-09-29 2012-04-10 Liposonix, Inc. Liquid degas system
US20110077557A1 (en) * 2009-09-29 2011-03-31 Medicis Technologies Corporation Medical ultrasound device with liquid dispensing device coupled to a therapy head
US20110077555A1 (en) * 2009-09-29 2011-03-31 Medicis Technologies Corporation Transducer cartridge for an ultrasound therapy head
US10010722B2 (en) 2009-09-29 2018-07-03 Liposonix, Inc. Transducer cartridge for an ultrasound therapy head
US20110077514A1 (en) * 2009-09-29 2011-03-31 Medicis Technologies Corporation Variable treatment site body contouring using an ultrasound therapy device
US9039617B2 (en) 2009-11-24 2015-05-26 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
US9345910B2 (en) 2009-11-24 2016-05-24 Guided Therapy Systems Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
WO2012018562A1 (en) 2010-07-24 2012-02-09 Medicis Technologies Corporation Apparatus and methods for non-invasive body contouring
US9149658B2 (en) 2010-08-02 2015-10-06 Guided Therapy Systems, Llc Systems and methods for ultrasound treatment
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
US10183182B2 (en) 2010-08-02 2019-01-22 Guided Therapy Systems, Llc Methods and systems for treating plantar fascia
US20120067750A1 (en) * 2010-09-22 2012-03-22 Medicis Technologies Corporation Modified atmosphere packaging for ultrasound transducer cartridge
US8573392B2 (en) * 2010-09-22 2013-11-05 Liposonix, Inc. Modified atmosphere packaging for ultrasound transducer cartridge
US10639502B2 (en) 2010-10-12 2020-05-05 Smith & Nephew, Inc. Medical device
US11565134B2 (en) 2010-10-12 2023-01-31 Smith & Nephew, Inc. Medical device
US20120215136A1 (en) * 2010-10-22 2012-08-23 Smith & Nephew, Inc. Medical device
US8857438B2 (en) 2010-11-08 2014-10-14 Ulthera, Inc. Devices and methods for acoustic shielding
US9452302B2 (en) 2011-07-10 2016-09-27 Guided Therapy Systems, Llc Systems and methods for accelerating healing of implanted material and/or native tissue
US8858471B2 (en) 2011-07-10 2014-10-14 Guided Therapy Systems, Llc Methods and systems for ultrasound treatment
US9011337B2 (en) 2011-07-11 2015-04-21 Guided Therapy Systems, Llc Systems and methods for monitoring and controlling ultrasound power output and stability
US9263663B2 (en) 2012-04-13 2016-02-16 Ardent Sound, Inc. Method of making thick film transducer arrays
US9510802B2 (en) 2012-09-21 2016-12-06 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
US9802063B2 (en) 2012-09-21 2017-10-31 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
US9579080B2 (en) 2012-10-16 2017-02-28 Muffin Incorporated Internal transducer assembly with slip ring
US10420960B2 (en) 2013-03-08 2019-09-24 Ulthera, Inc. Devices and methods for multi-focus ultrasound therapy
US11517772B2 (en) 2013-03-08 2022-12-06 Ulthera, Inc. Devices and methods for multi-focus ultrasound therapy
US20140276076A1 (en) * 2013-03-15 2014-09-18 Muffin Incorporated Internal ultrasound assembly fluid seal
US10595823B2 (en) * 2013-03-15 2020-03-24 Muffin Incorporated Internal ultrasound assembly fluid seal
US10561862B2 (en) 2013-03-15 2020-02-18 Guided Therapy Systems, Llc Ultrasound treatment device and methods of use
US10603521B2 (en) 2014-04-18 2020-03-31 Ulthera, Inc. Band transducer ultrasound therapy
US11351401B2 (en) 2014-04-18 2022-06-07 Ulthera, Inc. Band transducer ultrasound therapy
US11317892B2 (en) 2015-08-12 2022-05-03 Muffin Incorporated Over-the-wire ultrasound system with torque-cable driven rotary transducer
US11224895B2 (en) 2016-01-18 2022-01-18 Ulthera, Inc. Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof
US11241218B2 (en) 2016-08-16 2022-02-08 Ulthera, Inc. Systems and methods for cosmetic ultrasound treatment of skin
US11944849B2 (en) 2018-02-20 2024-04-02 Ulthera, Inc. Systems and methods for combined cosmetic treatment of cellulite with ultrasound

Also Published As

Publication number Publication date
CA2681410A1 (en) 2008-10-02
KR20100015724A (en) 2010-02-12
US8142200B2 (en) 2012-03-27
WO2008118917A2 (en) 2008-10-02
AU2008230830A1 (en) 2008-10-02
EP2131744A2 (en) 2009-12-16
EP2131744A4 (en) 2014-12-31
WO2008118917A3 (en) 2008-12-04
MX2009010349A (en) 2009-12-08
JP2010522618A (en) 2010-07-08
US20080243003A1 (en) 2008-10-02
BRPI0809303A2 (en) 2014-10-14
CN101677811A (en) 2010-03-24
IL200932A0 (en) 2010-05-17

Similar Documents

Publication Publication Date Title
US8142200B2 (en) Slip ring spacer and method for its use
US20090240146A1 (en) Mechanical arm
EP2527828B1 (en) Ultrasound probe
CN101959556B (en) Therapy head for use with ultrasound system
CN102802499B (en) In vivo sensing device with a flexible circuit board and method of assembly thereof
KR101173276B1 (en) Ultrasound probe
JP2010522618A5 (en)
US20070167813A1 (en) Apparatuses Comprising Catheter Tips, Including Mechanically Scanning Ultrasound Probe Catheter Tip
US10085717B2 (en) Ultrasonic probe
US11540814B2 (en) Systems, methods, and apparatuses for active thermal management of ultrasound transducers
CN102544794A (en) System for interconnection between electronic boards
JP5462332B2 (en) Ultrasonic sensor device
JP2015522329A (en) Capsule endoscope docking system
AU2017373887A1 (en) High intensity focused ultrasound (HIFU) device and system
KR20210136133A (en) handheld ultrasound imaging device
JP5727499B2 (en) Curved ultrasonic HIFU transducer formed by tiled segments
US20210030360A1 (en) Physiological signal monitoring device
AU2020294357A1 (en) Physiological signal monitoring device
JP2014514951A (en) Spherical ultrasonic HIFU transducer with modular cavitation sensing element
KR102210023B1 (en) Connector assembly
JP2006303874A (en) Ultrasonic probe
CN111318441A (en) Ultrasonic transducer

Legal Events

Date Code Title Description
AS Assignment

Owner name: LIPOSONIX, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CRUNKILTON, JEFFREY ROBERT;REEL/FRAME:020849/0978

Effective date: 20080422

AS Assignment

Owner name: MEDICIS TECHNOLOGIES CORPORATION, WASHINGTON

Free format text: CHANGE OF NAME;ASSIGNOR:LIPOSONIX, INC.;REEL/FRAME:022597/0363

Effective date: 20090407

Owner name: MEDICIS TECHNOLOGIES CORPORATION,WASHINGTON

Free format text: CHANGE OF NAME;ASSIGNOR:LIPOSONIX, INC.;REEL/FRAME:022597/0363

Effective date: 20090407

AS Assignment

Owner name: LIPOSONIX, INC., WASHINGTON

Free format text: CHANGE OF NAME;ASSIGNOR:MEDICIS TECHNOLOGIES CORPORATION;REEL/FRAME:027595/0307

Effective date: 20111101

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:LIPOSONIX, INC.;REEL/FRAME:030147/0642

Effective date: 20121031

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY INTEREST - MEZZANINE LOAN;ASSIGNOR:LIPOSONIX, INC.;REEL/FRAME:030249/0268

Effective date: 20120829

AS Assignment

Owner name: CAPITAL ROYALTY PARTNERS II L.P., TEXAS

Free format text: SHORT-FORM PATENT SECURITY AGREEMENT;ASSIGNOR:LIPOSONIX, INC.;REEL/FRAME:031674/0454

Effective date: 20131114

Owner name: PARALLEL INVESTMENT OPPORTUNITIES PARTNERS II L.P.

Free format text: SHORT-FORM PATENT SECURITY AGREEMENT;ASSIGNOR:LIPOSONIX, INC.;REEL/FRAME:031674/0454

Effective date: 20131114

Owner name: CAPITAL ROYALTY PARTNERS II ? PARALLEL FUND ?A? L.

Free format text: SHORT-FORM PATENT SECURITY AGREEMENT;ASSIGNOR:LIPOSONIX, INC.;REEL/FRAME:031674/0454

Effective date: 20131114

Owner name: CAPITAL ROYALTY PARTNERS II - PARALLEL FUND "A" L.

Free format text: SHORT-FORM PATENT SECURITY AGREEMENT;ASSIGNOR:LIPOSONIX, INC.;REEL/FRAME:031674/0454

Effective date: 20131114

AS Assignment

Owner name: LIPOSONIX, INC., CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNORS:CAPITAL ROYALTY PARTNERS II L.P.;CAPITAL ROYALTY PARTNERS II - PARALLEL FUND "A" L.P.;PARALLEL INVESTMENT OPPORTUNITIES PARTNERS II L.P.;REEL/FRAME:032126/0370

Effective date: 20140123

Owner name: LIPOSONIX, INC., CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:032126/0531

Effective date: 20140123

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION