US20030201611A1 - Method of making a segmented gasket having a continuous seal member - Google Patents

Method of making a segmented gasket having a continuous seal member Download PDF

Info

Publication number
US20030201611A1
US20030201611A1 US10/395,468 US39546803A US2003201611A1 US 20030201611 A1 US20030201611 A1 US 20030201611A1 US 39546803 A US39546803 A US 39546803A US 2003201611 A1 US2003201611 A1 US 2003201611A1
Authority
US
United States
Prior art keywords
retainer
segment
retainer member
segments
gasket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/395,468
Inventor
Douglas Schenk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/395,468 priority Critical patent/US20030201611A1/en
Publication of US20030201611A1 publication Critical patent/US20030201611A1/en
Priority to US10/799,991 priority patent/US20040172824A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/067Split packings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49297Seal or packing making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49888Subsequently coating

Definitions

  • the present invention relates broadly to a sealing construction for providing a fluid seal intermediate a pair of opposed, mating parts or structures, and more particularly to a combination metal and elastomer gasket construction adapted to provide a fluid seal on large or a complex interface surface such as between an oil pan and an engine or chassis in a vehicle.
  • Sealing gaskets of the type herein involved are employed in a variety of commercial and industrial fluid transport applications for compression between the opposing or faying surfaces of a pair of mating parts or structures to provide a fluid-tight interface sealing thereof.
  • gaskets are typically are formed of a relatively compressible, annular seal member having a central aperture configured for registration with the corresponding margins of the surfaces.
  • the seal member optionally may be supported by a generally annular metal or plastic retainer.
  • the retainer is stamped or molded, with the seal member being molded-in-place in a groove formed into one or both sides of the retainer, or about the inner and/or outer periphery of the retainer to form an integral gasket structure.
  • the gasket is clamped between the mating surfaces to effect the compression and deformation of the seal member and to develop a fluid-tight interface with each of the surfaces of the pipe flanges.
  • the compressive force is supplied using a circumferentially spaced-apart arrangement of bolts or other fastening members, each of which is received through an indexed pair of bores formed within the surfaces.
  • the fastening members also may index through corresponding apertures formed within the seal or retainer member of the gasket.
  • the present invention is directed to a method for making a gasket construction of a variety which includes a retainer and an integral sealing element molded-in-place on or otherwise attached to the retainer.
  • the method involves stamping or otherwise fabricating the retainer as a series of individual segments, each of which is mechanically or otherwise interlocked with an adjacent segment to form a retainer assembly which may having a generally closed geometry.
  • a sealing element then is molded in a continuous bead onto the retainer assembly.
  • the fabrication of the retainer in individual segments conserves material and otherwise facilitates its construction.
  • joints within the sealing element are eliminated for more assuredly reliable sealing performance.
  • a feature of a disclosed embodiment of the invention to provide a method of making a gasket of a variety which includes a generally annular retainer member having an inner and outer diametric extent which define a perimeter of a closed geometric shape, and at least one generally annular seal member formed of an elastomeric material and supported on the retainer member to be compressible intermediate a pair of interface surfaces for providing a fluid-tight seal therebetween.
  • At least a first and a second retainer segment each is provided as extending intermediate a first end and a second end, and as having an inner periphery and an outer periphery.
  • each of the retainer segments is connected to the second end of an adjacent segment such that the inner periphery of each segment defines a portion of the inner diametric extent of the retainer member, with the outer periphery of each segment defining a portion of the outer diametric extent of the retainer member.
  • the seal member then is attached to the retainer member so formed as a continuous ring of elastomeric material which extends along the perimeter of the retainer member.
  • Advantages of the present invention include a sealing gasket construction which exhibits reliable sealing properties and torque retention with a minimum of compression set. Additional advantages include a gasket construction which is economical to manufacture, and which may be fabricated in complex shapes and large-size geometries. These and other advantages will be readily apparent to those skilled in the art based upon the disclosure contained herein.
  • FIG. 1 is a plan view of one embodiment of a gasket according to the present invention which includes a segmented retainer member and a generally continuous seal member which is molded-in-place thereon;
  • FIG. 2 is a plan view showing the assembly of the retainer member of FIG. 1;
  • FIG. 3 is a magnified cross-sectional view of the retainer member of FIG. 2 taken through line 3 - 3 of FIG. 2;
  • FIG. 4 is a plan view of a first segment of the retainer member of FIG. 1;
  • FIG. 5 is a plan view of a second segment of the retainer member of FIG. 1;
  • FIG. 6 is a magnified cross-sectional view of the first retainer segment of FIG. 4 taken through line 6 - 6 of FIG. 4;
  • FIG. 7 is a magnified cross-sectional view of the second retainer segment of FIG. 5 taken through line 7 - 7 of FIG. 5;
  • FIG. 8 is a magnified cross-sectional view of gasket of FIG. 1 taken through line 8 - 8 of FIG. 1;
  • FIG. 9 is a magnified cross-sectional view of gasket of FIG. 1 taken through line 9 - 9 of FIG. 1;
  • FIG. 10 is a magnified cross-sectional view of gasket of FIG. 1 taken through line 10 - 10 of FIG. 1;
  • FIG. 11 is a magnified view of the gasket of FIG. 1 showing a first joint thereof in enhanced detail
  • FIG. 12 is another magnified view of the gasket of FIG. 1 showing a second joint thereon in enhanced detail.
  • the precepts of the gasket of the present invention are described in connection with the configuration thereof for use as a seal between a transmission pan and the engine or chassis of a vehicle. With the interface surface of these structures registered in confronting opposition, the gasket of the invention may be compressed therebetween by means of a plurality of bolts or other fastening members received through registered pairs of openings spaced circumferentially about the interface surfaces.
  • aspects of the present invention may find utility in other fluid sealing applications requiring a retainer gasket of the type herein involved. Use within those such other applications therefore should be considered to be expressly within the scope of the present invention.
  • FIG. 1 a representative segmented gasket according to the present invention is shown generally at 10 in FIG. 1 as including at least one generally annular seal member, 12 , which is supported on a generally annular and generally planar retainer member, 14 , to be compressible intermediate a mating pair of interface surfaces (not shown in FIG. 1) for providing a fluid-tight sealing thereof.
  • retainer member 14 is formed having an inner diametric extent, referenced at 15 , and an outer diametric extent, referenced at 16 , which together define a closed geometric shape which, in turn, defines the annular perimeter of the retainer member.
  • shape of the perimeter of retainer member 14 is shown for illustrative purposes to be substantially irregular, such shape alternatively may be circular, elliptical, polygonal, or otherwise regular depending upon the intended application.
  • retainer member 14 further is formed relative to a central longitudinal axis, 17 thereof as having mutually-opposing upper and lower radial surfaces, 18 a - b , respectively, which extend generally perpendicular to axis 17 intermediate the inner and the outer periphery 15 and 16 of the retainer member 14 , and as having mutually-opposing inner and outer axial surfaces, 19 a - b , respectively, which extend generally parallel to axis 17 in defining the corresponding inner or outer diametric extent 15 or 16 of the retainer member.
  • retainer member 14 is constructed in segments and includes, with reference again to FIG. 2, a first segment, 20 a , and a second segment, 20 b , although any number of segments 20 may be provided depending upon the diametric extent of retainer member 14 or other considerations.
  • each segment 20 may be seen to extend intermediate a first end, referenced at 22 a in FIG. 3 for segment 20 a and at 22 b in FIG. 4 for segment 20 b , and a second end, referenced at 24 a in FIG. 4 for segment 20 a and at 24 b in FIG.
  • Each segment 20 also may be seen to have an inner periphery, referenced at 26 a in FIG. 4 for segment 20 a and at 26 b in FIG. 5 for segment 20 a , and an opposing outer periphery, referenced at 28 a in FIG. 4 for segment 20 a and at 28 b in FIG. 5 for segment 20 b.
  • each of the segments 20 further may be seen to have an inner surface, referenced at 30 a in FIG. 6 for segment 20 a and at 30 b in FIG. 7 for segment 20 b , which defines the corresponding inner periphery 26 a or 26 b (shown in phantom) of the segment 20 , and an opposing outer surface, referenced at 32 a in FIG. 6 for segment 20 a and at 32 b in FIG. 7 for segment 20 b , which defines the corresponding outer periphery 28 a or 28 b (also shown in phantom) of the segment 20 .
  • Each of the segments 20 additionally has an upper surface, referenced at 34 a in FIG.
  • segment 20 a and at 34 b in FIG. 7 for segment 20 b which extends intermediate the corresponding inner and outer peripheries 26 a and 28 a , or 26 b and 28 b , of the segment 20
  • a lower surface, referenced at 36 a in FIG. 6 for segment 20 a and at 36 b in FIG. 7 for segment 20 b which also extends intermediate the corresponding inner and outer peripheries 26 a and 28 a , or 26 b and 28 b , of the segment 20 as disposed opposite the corresponding upper surface 34 a or 34 b.
  • retainer member 14 may be seen to be formed as having a continuous perimeter by connecting the first end 22 of each of the retainer segments 20 with the second end 24 of the next immediately adjacent segment 20 .
  • the inner periphery 26 of each of the segments 20 defines a portion of the inner diametric extent 15 of the retainer member, with the outer periphery 28 of each of the segments 20 defining a portion of the outer diametric extent 16 of the retainer member.
  • first end 22 a of first segment 20 a is connected to the second end 24 b of second segment 20 b to form a first joint which is referenced at 34 a
  • first end 22 b of the second segment 20 b being connected to second end 24 a of first segment 20 a to form a second joint which is referenced at 40 b .
  • the inner peripheries 26 a - b and surfaces 30 a - b of the corresponding segments 20 a - b thereby each define, respectively, a portion of the inner diametric extent 15 and inner axial surface 19 a of the retainer member 14 , with the outer peripheries 28 a - b and surfaces 32 a - b of the corresponding segments 20 a - b thereby each defining, respectively, a portion of the outer diametric extent 16 and outer axial surface 19 b of the retainer member.
  • the upper surfaces 34 a - b of the corresponding segments 20 a - b thereby each define a portion of the upper radial surface 18 a of the retainer member 14
  • the lower surfaces 36 a - b of the corresponding segments 20 - b thereby each defining a portion of the lower radial surface 18 b of the retainer member.
  • each of the joints 40 being provided as a mechanical interlocking engagement.
  • the first ends 22 of segments 20 each may be mutually configured as having a ball portion which is referenced at 50 a in FIG. 4 for segment 20 a and at 50 b in FIG. 5 for segment 20 b
  • the second ends 24 each being mutually configured as having a socket portion which is referenced at 52 a in FIG. 4 for segment 20 a and at 52 b in FIG. 5 for segment 20 b
  • each of the joints 30 may be seen to be formed via the first end ball portions 50 of each of the segments 20 being received within a corresponding second end socket portion 52 of an adjacent segment 20 .
  • the inner and outer diametric extents 15 and 16 of the retainer member 14 generally are sized such that the gasket 10 (FIG. 1) is receivable intermediate the interface surfaces to be sealed.
  • retainer member 14 additionally may be provided as shown in FIG. 2 as including a plurality of axial throughbores, one of which is referenced at 60 a as formed into segment 20 a to extend through the upper and lower surfaces 34 a and 34 b (FIG. 6) thereof, and another of which is referenced at 60 b as formed into segment 20 b to extend through the upper and lower surfaces 34 b and 36 b (FIG. 7) thereof.
  • Throughbores 60 may be spaced-apart along the retainer perimeter and employed for receiving the bolts or other fasteners which are conventionally employed for coupling the interface surfaces under a predetermined torque load.
  • throughbores 60 in conjunction with retainer 14 additionally provide a positive stop delimiting the compression of the gasket in avoiding the over-compression thereof during installation or maintenance.
  • Retainer member 14 further may be provided as is shown in FIG. 2 as having a series of peripheral notches, one of which is referenced at 62 a as formed into the inner surface 30 a (FIG. 6), and another of which is referenced at 62 b as formed into the inner surface 30 b (FIG. 7) of segment 20 b , disposed along the inner diametric extent 15 thereof.
  • Notches 62 assist in the development of a mechanical interlocking of the seal member 12 (FIG. 1) to the retainer member 14 .
  • the notches 62 alternatively may be disposed along the outer diametric extent 16 of the retainer member 14 as formed into the outer surfaces 32 (FIGS. 6 and 7) of segments 20 .
  • Each of the segments 20 of retainer member 14 may be stamped or molded of a metal or plastic material as two separate components. Suitable metal materials include aluminum, steel, stainless steel, copper, brass, titanium, nickel, and alloys thereof, with low carbon steel being economical and thereby preferred for many applications. The steel may be plated with zinc or otherwise treated for increased corrosion resistance. Depending upon its material of construction and the intended application, retainer member 14 may have an axial thickness of between about ⁇ fraction (1/32) ⁇ -1 ⁇ 2 inch.
  • seal member 14 may be molded, bonded, or otherwise attached thereto as a continuous ring, bead, or other annulus of an elastomeric material to complete the construction of gasket 10 .
  • seal member 14 has an outboard side, 66 , and an opposing inboard side, 68 , which defines the inner periphery of the gasket 10 .
  • the outboard side 66 of the seal member 12 is attached to each of the inner surfaces 30 a (FIGS. 8 - 9 ) and 30 b (FIG.
  • seal member 14 may be molded, bonded, or otherwise attached as is shown in phantom at 12 ′ in FIGS. 8 - 10 to each of the outer surfaces 32 a (FIGS. 8 - 9 ) and 32 b (FIG. 10) of segments 20 a - b to extend continuously about the outer axial surface 19 b of the assembled retainer member 14 .
  • the bead portion, referenced at 70 in the cross-sectional views of FIGS. 8 - 10 , of the seal member 12 may be provided, depending upon the geometry of the interface surfaces to extend beyond the corresponding radial surfaces 18 of retainer member 14 . That is, seal member 12 may be provided to have a nominal axial cross-sectional thickness that is from about 1-100 mils more than the nominal axial thickness of retainer member 14 .
  • Bead 70 may be shaped, as is shown, to have a generally circular cross-sectional geometry, but alternatively may be configured as being elliptical, polygonal, or lobe or otherwise shaped. Bead portion 70 may be of any radial size, but typically will be between about 0.030-0.125 inch for most applications.
  • seal member 12 presents oppositely disposed, generally hemispherical bearing surfaces, 72 a - b , which define upper and lower sealing surfaces of the gasket 10 .
  • Seal member 12 is shown in FIG. 1 to extend about the periphery of retainer member 14 for generally coaxial registration with the margins of the interface faces of the application, although it will be appreciated that different geometries of gasket 10 may be envisioned depending upon the configuration of the corresponding interface surfaces of the intended application.
  • the corresponding axial or radial surface 18 and/or 19 of the assembled retainer member may be primed with a bonding agent to assist in the chemical bonding of the seal member 12 thereto.
  • the primed retainer 14 then may be placed into a heated molded cavity for the injection, compression, or transfer molding of an uncured rubber compound forming the seal members 12 .
  • Each of the elastomeric seal members 12 thereby may be formed and cured-in-place as vulcanized directly onto retainer member 12 .
  • the mold flash which is shown on the inboard side 68 of seal member 14 in the cross-sectional views of FIGS. 8 - 10 need not be removed as having no effect on the sealing performance of the gasket 10 .
  • the elastomeric elements may be molded in a separate operation and bonded to retainer member 14 using an adhesive or the like.
  • thermoplastic or thermosetting elastomers such as polyurethanes, silicones, fluorosilicones, styrene-isoprene-styrene (SIS), and styrene-butadiene-styrene (SBS), as well as other polymers which exhibit rubber-like properties such as plasticized nylons, polyesters, ethylene vinyl acetates, and polyvinyl chlorides.
  • the term “elastomeric” is ascribed its conventional meaning of exhibiting rubber-like properties of compliancy, resiliency or compression deflection, low compression set, flexibility, and an ability to recover after deformation, i.e., stress relaxation.
  • seal member 12 exhibits a reduced yield stress as compared to the metal or plastic retainer member 14 and, accordingly, is thereby deformable for conforming to any irregularities between the interface surfaces of the structures being sealed.
  • a given compressive load is applied by the tightening of the bolts which may be used to fasten those interface surfaces, an increased bearing stress is provided about along the margins thereof by virtue of the reduced surface area contact of the bearing surfaces 72 (FIGS. 8 - 10 ) of the seal members on the interface surfaces.
  • This increased stress will be sufficient to exceed the reduced yield stress of the seal member for the deformation thereof effecting the fluid-tight sealing of the interfacing surfaces.
  • seal member 12 advantageously facilitates the installation and replacement of the gasket 10 in accommodating for tolerances or other minor differences in the torque load of the bolts or other fastening members conventionally employed to join the interfacing surface of the application. That is, by virtue of the resiliency of elastomeric member 12 , the fluid integrity of the gasket 10 may be maintained to some degree even if the joint spacing between the interface surface is less than exactly uniform.
  • a relatively incompressible retainer member 14 and a relatively compressible seal member 12 further provides a gasket construction which minimizes torque loss and thereby obviates much of the need for the periodic retorquing of the fastening members used to secure the interfacing surfaces. That is, it is well-known that gaskets of the type herein involved may develop a compression set which is manifested by fluid leaks as the tension in the bolts is relaxed and the fluid-tight sealing of the interfacing surfaces is compromised.
  • seal member 12 ensures positive sealing, with retainer member 14 , in turn, synergistically providing generally non-yielding contact in establishing an alternative load torque path minimizing the compression set and leak potential of the gasket 10 .
  • a metal retainer 14 such contact additionally affords improved heat transfer between the interface surfaces, and also develops relatively high seal stresses for assured fluid-tight sealing of the interfacing structures.

Abstract

A method of making a gasket of a variety which includes a generally annular retainer member having an inner and outer diametric extent which define a perimeter of a closed geometric shape, and at least one generally annular seal member formed of an elastomeric material and supported on the retainer member to be compressible intermediate a pair of interface surfaces for providing a fluid-tight seal therebetween. At least a first and a second retainer segment each is provided as extending intermediate a first end and a second end, and as having an inner periphery and an outer periphery. To form the retainer member, the first end of each of the retainer segments is connected to the second end of an adjacent segment such that the inner periphery of each segment defines a portion of the inner diametric extent of the retainer member, with the outer periphery of each segment defining a portion of the outer diametric extent of the retainer member. The seal member then is attached to the retainer member so as to formed a continuous ring of elastomeric material which extends along the perimeter of the retainer member.

Description

    RELATED CASES
  • This application is a continuation of U.S. patent application Ser. No. 09/467,000; filed Dec. 17, 1999, now U.S. Pat. No. ______, the disclosure of which is expressly incorporated herein by reference.[0001]
  • BACKGROUND OF THE INVENTION
  • The present invention relates broadly to a sealing construction for providing a fluid seal intermediate a pair of opposed, mating parts or structures, and more particularly to a combination metal and elastomer gasket construction adapted to provide a fluid seal on large or a complex interface surface such as between an oil pan and an engine or chassis in a vehicle. [0002]
  • Sealing gaskets of the type herein involved are employed in a variety of commercial and industrial fluid transport applications for compression between the opposing or faying surfaces of a pair of mating parts or structures to provide a fluid-tight interface sealing thereof. In basic construction, such gaskets are typically are formed of a relatively compressible, annular seal member having a central aperture configured for registration with the corresponding margins of the surfaces. [0003]
  • The seal member optionally may be supported by a generally annular metal or plastic retainer. In such an arrangement, the retainer is stamped or molded, with the seal member being molded-in-place in a groove formed into one or both sides of the retainer, or about the inner and/or outer periphery of the retainer to form an integral gasket structure. [0004]
  • In use, the gasket is clamped between the mating surfaces to effect the compression and deformation of the seal member and to develop a fluid-tight interface with each of the surfaces of the pipe flanges. Typically, the compressive force is supplied using a circumferentially spaced-apart arrangement of bolts or other fastening members, each of which is received through an indexed pair of bores formed within the surfaces. Depending upon the geometry of the gasket, the fastening members also may index through corresponding apertures formed within the seal or retainer member of the gasket. [0005]
  • Particularly for gasket constructions involving metal retainers, it is sometimes impractical to fabricate unitary gaskets. In this regard, the layout of the retainer as a single piece unit requires the use of a metal sheetstock having dimensions at least as large as the largest outer diametric extent of the retainer. For retainers which are of a relatively large size or of a complex geometry, a significant portion of the sheetstock in not utilized for the retainer itself but instead is essentially extraneous material. Although, of course, this material may be utilized elsewhere, it generally is preferred from a cost standpoint to use smaller sheetstock sizes if at all possible. [0006]
  • One approach to this problem has been to fabricate the gasket in a plurality of segments or sections, each of which is mechanically or otherwise interlocked with another segment to form the desired geometry. Representative gaskets of such type are described further in U.S. Pat. Nos. 1,986,465; 2,722,043; 3,738,670; 4,293,135; 4,380,856; 4,572,522; 4,690,413; 5,149,108; 5,149,109; 5,161,808; 5,236,203; 5,513,603; and 5,536,023. [0007]
  • Heretofore, individual seal members were molded onto each of the retainer segments. Such construction, however, necessities the provision of a joint between the seal member of each of the segments. Typically, these joints are provided by the abutment of the ends of each seal member with a corresponding end of the member on the adjacent segment. As each of these joints presents a potential leak path, it would be preferred to eliminate them if the application would permit. [0008]
  • In view of the foregoing, it is apparent that improvements in the manufacture of segmented metal and elastomer gaskets would be well-received by industry. A preferred gasket construction would be economical to manufacture, but also would exhibit reliable sealing performance. Such a gasket additionally would be capable of providing fluid sealing with a minimum of compression set and resultant torque loss. [0009]
  • BROAD STATEMENT OF THE INVENTION
  • The present invention is directed to a method for making a gasket construction of a variety which includes a retainer and an integral sealing element molded-in-place on or otherwise attached to the retainer. The method involves stamping or otherwise fabricating the retainer as a series of individual segments, each of which is mechanically or otherwise interlocked with an adjacent segment to form a retainer assembly which may having a generally closed geometry. A sealing element then is molded in a continuous bead onto the retainer assembly. Advantageously, the fabrication of the retainer in individual segments conserves material and otherwise facilitates its construction. However, by molding the sealing element in a continuous bead onto the assembled retainer, joints within the sealing element are eliminated for more assuredly reliable sealing performance. [0010]
  • It is, therefore, a feature of a disclosed embodiment of the invention to provide a method of making a gasket of a variety which includes a generally annular retainer member having an inner and outer diametric extent which define a perimeter of a closed geometric shape, and at least one generally annular seal member formed of an elastomeric material and supported on the retainer member to be compressible intermediate a pair of interface surfaces for providing a fluid-tight seal therebetween. At least a first and a second retainer segment each is provided as extending intermediate a first end and a second end, and as having an inner periphery and an outer periphery. To form the retainer member, the first end of each of the retainer segments is connected to the second end of an adjacent segment such that the inner periphery of each segment defines a portion of the inner diametric extent of the retainer member, with the outer periphery of each segment defining a portion of the outer diametric extent of the retainer member. The seal member then is attached to the retainer member so formed as a continuous ring of elastomeric material which extends along the perimeter of the retainer member. [0011]
  • Advantages of the present invention include a sealing gasket construction which exhibits reliable sealing properties and torque retention with a minimum of compression set. Additional advantages include a gasket construction which is economical to manufacture, and which may be fabricated in complex shapes and large-size geometries. These and other advantages will be readily apparent to those skilled in the art based upon the disclosure contained herein.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawings wherein: [0013]
  • FIG. 1 is a plan view of one embodiment of a gasket according to the present invention which includes a segmented retainer member and a generally continuous seal member which is molded-in-place thereon; [0014]
  • FIG. 2 is a plan view showing the assembly of the retainer member of FIG. 1; [0015]
  • FIG. 3 is a magnified cross-sectional view of the retainer member of FIG. 2 taken through line [0016] 3-3 of FIG. 2;
  • FIG. 4 is a plan view of a first segment of the retainer member of FIG. 1; [0017]
  • FIG. 5 is a plan view of a second segment of the retainer member of FIG. 1; [0018]
  • FIG. 6 is a magnified cross-sectional view of the first retainer segment of FIG. 4 taken through line [0019] 6-6 of FIG. 4;
  • FIG. 7 is a magnified cross-sectional view of the second retainer segment of FIG. 5 taken through line [0020] 7-7 of FIG. 5;
  • FIG. 8 is a magnified cross-sectional view of gasket of FIG. 1 taken through line [0021] 8-8 of FIG. 1;
  • FIG. 9 is a magnified cross-sectional view of gasket of FIG. 1 taken through line [0022] 9-9 of FIG. 1;
  • FIG. 10 is a magnified cross-sectional view of gasket of FIG. 1 taken through line [0023] 10-10 of FIG. 1;
  • FIG. 11 is a magnified view of the gasket of FIG. 1 showing a first joint thereof in enhanced detail; and [0024]
  • FIG. 12 is another magnified view of the gasket of FIG. 1 showing a second joint thereon in enhanced detail.[0025]
  • The drawings will be described further in connection with the following Detailed Description of the Invention. [0026]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Certain terminology may be employed in the description to follow for convenience rather than for any limiting purpose. For example, the terms “forward,” “rearward,” “right,” “left,” “upper,” and “lower” designate directions in the drawings to which reference is made, with the terms “inward,” “inner,” or “inboard” and “outward,” “outer,” or “outboard” referring, respectively, to directions toward and away from the center of the referenced element, and the terms “radial” and “axial” referring, respectively, to directions perpendicular and parallel to the central longitudinal axis of the referenced element. Terminology of similar import other than the words specifically mentioned above likewise is to be considered as being used for purposes of convenience rather than in any limiting sense. [0027]
  • For the illustrative purposes of the discourse to follow, the precepts of the gasket of the present invention are described in connection with the configuration thereof for use as a seal between a transmission pan and the engine or chassis of a vehicle. With the interface surface of these structures registered in confronting opposition, the gasket of the invention may be compressed therebetween by means of a plurality of bolts or other fastening members received through registered pairs of openings spaced circumferentially about the interface surfaces. In view of the discourse to follow, however, it will be appreciated that aspects of the present invention may find utility in other fluid sealing applications requiring a retainer gasket of the type herein involved. Use within those such other applications therefore should be considered to be expressly within the scope of the present invention. [0028]
  • Referring then to the figures wherein corresponding reference characters are used to designate corresponding elements throughout the several views, a representative segmented gasket according to the present invention is shown generally at [0029] 10 in FIG. 1 as including at least one generally annular seal member, 12, which is supported on a generally annular and generally planar retainer member, 14, to be compressible intermediate a mating pair of interface surfaces (not shown in FIG. 1) for providing a fluid-tight sealing thereof.
  • As may be seen best with reference to FIG. 2, [0030] retainer member 14 is formed having an inner diametric extent, referenced at 15, and an outer diametric extent, referenced at 16, which together define a closed geometric shape which, in turn, defines the annular perimeter of the retainer member. Although the shape of the perimeter of retainer member 14 is shown for illustrative purposes to be substantially irregular, such shape alternatively may be circular, elliptical, polygonal, or otherwise regular depending upon the intended application. As may be seen with momentary reference to the cross-sectional view of FIG. 3, retainer member 14 further is formed relative to a central longitudinal axis, 17 thereof as having mutually-opposing upper and lower radial surfaces, 18 a-b, respectively, which extend generally perpendicular to axis 17 intermediate the inner and the outer periphery 15 and 16 of the retainer member 14, and as having mutually-opposing inner and outer axial surfaces, 19 a-b, respectively, which extend generally parallel to axis 17 in defining the corresponding inner or outer diametric extent 15 or 16 of the retainer member.
  • In accordance with the precepts of the present invention, [0031] retainer member 14 is constructed in segments and includes, with reference again to FIG. 2, a first segment, 20 a, and a second segment, 20 b, although any number of segments 20 may be provided depending upon the diametric extent of retainer member 14 or other considerations. With continued reference to the assembly view of FIG. 2 and with additional reference to FIGS. 4 and 5 wherein segments 20 a-b are respectively shown, each segment 20 may be seen to extend intermediate a first end, referenced at 22 a in FIG. 3 for segment 20 a and at 22 b in FIG. 4 for segment 20 b, and a second end, referenced at 24 a in FIG. 4 for segment 20 a and at 24 b in FIG. 5 for segment 20 b. Each segment 20 also may be seen to have an inner periphery, referenced at 26 a in FIG. 4 for segment 20 a and at 26 b in FIG. 5 for segment 20 a, and an opposing outer periphery, referenced at 28 a in FIG. 4 for segment 20 a and at 28 b in FIG. 5 for segment 20 b.
  • With momentary reference to the cross-sectional views of FIGS. 6 and 7, each of the segments [0032] 20 further may be seen to have an inner surface, referenced at 30 a in FIG. 6 for segment 20 a and at 30 b in FIG. 7 for segment 20 b, which defines the corresponding inner periphery 26 a or 26 b (shown in phantom) of the segment 20, and an opposing outer surface, referenced at 32 a in FIG. 6 for segment 20 a and at 32 b in FIG. 7 for segment 20 b, which defines the corresponding outer periphery 28 a or 28 b (also shown in phantom) of the segment 20. Each of the segments 20 additionally has an upper surface, referenced at 34 a in FIG. 6 for segment 20 a and at 34 b in FIG. 7 for segment 20 b, which extends intermediate the corresponding inner and outer peripheries 26 a and 28 a, or 26 b and 28 b, of the segment 20, and a lower surface, referenced at 36 a in FIG. 6 for segment 20 a and at 36 b in FIG. 7 for segment 20 b, which also extends intermediate the corresponding inner and outer peripheries 26 a and 28 a, or 26 b and 28 b, of the segment 20 as disposed opposite the corresponding upper surface 34 a or 34 b.
  • Returning to the assembly view of [0033] 2, retainer member 14 may be seen to be formed as having a continuous perimeter by connecting the first end 22 of each of the retainer segments 20 with the second end 24 of the next immediately adjacent segment 20. In this way, the inner periphery 26 of each of the segments 20 defines a portion of the inner diametric extent 15 of the retainer member, with the outer periphery 28 of each of the segments 20 defining a portion of the outer diametric extent 16 of the retainer member.
  • Specifically with respect to the embodiment shown in FIGS. [0034] 2-7, the first end 22 a of first segment 20 a is connected to the second end 24 b of second segment 20 b to form a first joint which is referenced at 34 a, with the first end 22 b of the second segment 20 b being connected to second end 24 a of first segment 20 a to form a second joint which is referenced at 40 b. The inner peripheries 26 a-b and surfaces 30 a-b of the corresponding segments 20 a-b thereby each define, respectively, a portion of the inner diametric extent 15 and inner axial surface 19 a of the retainer member 14, with the outer peripheries 28 a-b and surfaces 32 a-b of the corresponding segments 20 a-b thereby each defining, respectively, a portion of the outer diametric extent 16 and outer axial surface 19 b of the retainer member. Similarly, the upper surfaces 34 a-b of the corresponding segments 20 a-b thereby each define a portion of the upper radial surface 18 a of the retainer member 14, with the lower surfaces 36 a-b of the corresponding segments 20-b thereby each defining a portion of the lower radial surface 18 b of the retainer member.
  • Although any number of different interconnections between the ends of segments [0035] 20 may be envisioned, the illustrated arrangement involves each of the joints 40 being provided as a mechanical interlocking engagement. In this regard, and as may be seen with additional reference to FIGS. 4 and 5, the first ends 22 of segments 20 each may be mutually configured as having a ball portion which is referenced at 50 a in FIG. 4 for segment 20 a and at 50 b in FIG. 5 for segment 20 b, with the second ends 24 each being mutually configured as having a socket portion which is referenced at 52 a in FIG. 4 for segment 20 a and at 52 b in FIG. 5 for segment 20 b. Returning to FIG. 2, each of the joints 30 may be seen to be formed via the first end ball portions 50 of each of the segments 20 being received within a corresponding second end socket portion 52 of an adjacent segment 20.
  • The inner and outer [0036] diametric extents 15 and 16 of the retainer member 14 generally are sized such that the gasket 10 (FIG. 1) is receivable intermediate the interface surfaces to be sealed. For the location and alignment of the gasket 10 between those surfaces, retainer member 14 additionally may be provided as shown in FIG. 2 as including a plurality of axial throughbores, one of which is referenced at 60 a as formed into segment 20 a to extend through the upper and lower surfaces 34 a and 34 b (FIG. 6) thereof, and another of which is referenced at 60 b as formed into segment 20 b to extend through the upper and lower surfaces 34 b and 36 b (FIG. 7) thereof. Throughbores 60 may be spaced-apart along the retainer perimeter and employed for receiving the bolts or other fasteners which are conventionally employed for coupling the interface surfaces under a predetermined torque load. Advantageously, throughbores 60 in conjunction with retainer 14 additionally provide a positive stop delimiting the compression of the gasket in avoiding the over-compression thereof during installation or maintenance.
  • [0037] Retainer member 14 further may be provided as is shown in FIG. 2 as having a series of peripheral notches, one of which is referenced at 62 a as formed into the inner surface 30 a (FIG. 6), and another of which is referenced at 62 b as formed into the inner surface 30 b (FIG. 7) of segment 20 b, disposed along the inner diametric extent 15 thereof. Notches 62 assist in the development of a mechanical interlocking of the seal member 12 (FIG. 1) to the retainer member 14. Depending upon the area of attachment of seal member 12, the notches 62 alternatively may be disposed along the outer diametric extent 16 of the retainer member 14 as formed into the outer surfaces 32 (FIGS. 6 and 7) of segments 20.
  • Each of the segments [0038] 20 of retainer member 14 may be stamped or molded of a metal or plastic material as two separate components. Suitable metal materials include aluminum, steel, stainless steel, copper, brass, titanium, nickel, and alloys thereof, with low carbon steel being economical and thereby preferred for many applications. The steel may be plated with zinc or otherwise treated for increased corrosion resistance. Depending upon its material of construction and the intended application, retainer member 14 may have an axial thickness of between about {fraction (1/32)}-½ inch.
  • With [0039] retainer member 14 being assembled as has been described in connection with FIGS. 2-7, seal member 14 may be molded, bonded, or otherwise attached thereto as a continuous ring, bead, or other annulus of an elastomeric material to complete the construction of gasket 10. In the illustrated configuration of FIG. 1, and as may be seen in the cross-sectional views of FIGS. 8-10, seal member 14 has an outboard side, 66, and an opposing inboard side, 68, which defines the inner periphery of the gasket 10. The outboard side 66 of the seal member 12 is attached to each of the inner surfaces 30 a (FIGS. 8-9) and 30 b (FIG. 10) of segments 20 a-b such that the seal extends continuously about the inner axial surface 19 a of the assembled retainer member 14. Advantageously, and as may be seen best in FIG. 10, the seal member 12 is secured within each of the notches 62 to effect a mechanical interlocking with the retainer member 14.
  • In an exemplary alternatively configuration, [0040] seal member 14 may be molded, bonded, or otherwise attached as is shown in phantom at 12′ in FIGS. 8-10 to each of the outer surfaces 32 a (FIGS. 8-9) and 32 b (FIG. 10) of segments 20 a-b to extend continuously about the outer axial surface 19 b of the assembled retainer member 14. Also, and as is shown in phantom at 12″ and 12′″, seal member 12 also may be attached to one or both the upper and lower surfaces 34 a-b and 36 a-b surfaces of segments 20 a-b either directly thereon or as interference fit, adhesively bonded, or molded within a mounting groove which is machined or otherwise recessed into the surfaces 34 and 36.
  • For the axial compression of [0041] seal member 12 between the mating interface surfaces of the intended application, the bead portion, referenced at 70 in the cross-sectional views of FIGS. 8-10, of the seal member 12 may be provided, depending upon the geometry of the interface surfaces to extend beyond the corresponding radial surfaces 18 of retainer member 14. That is, seal member 12 may be provided to have a nominal axial cross-sectional thickness that is from about 1-100 mils more than the nominal axial thickness of retainer member 14. Bead 70 may be shaped, as is shown, to have a generally circular cross-sectional geometry, but alternatively may be configured as being elliptical, polygonal, or lobe or otherwise shaped. Bead portion 70 may be of any radial size, but typically will be between about 0.030-0.125 inch for most applications.
  • With continued referenced to FIGS. [0042] 8-10, as attached to retainer member 14, the bead portion 70 of seal member 12 presents oppositely disposed, generally hemispherical bearing surfaces, 72 a-b, which define upper and lower sealing surfaces of the gasket 10. Seal member 12 is shown in FIG. 1 to extend about the periphery of retainer member 14 for generally coaxial registration with the margins of the interface faces of the application, although it will be appreciated that different geometries of gasket 10 may be envisioned depending upon the configuration of the corresponding interface surfaces of the intended application.
  • In the manufacture of [0043] gasket 10, the corresponding axial or radial surface 18 and/or 19 of the assembled retainer member may be primed with a bonding agent to assist in the chemical bonding of the seal member 12 thereto. The primed retainer 14 then may be placed into a heated molded cavity for the injection, compression, or transfer molding of an uncured rubber compound forming the seal members 12. Each of the elastomeric seal members 12 thereby may be formed and cured-in-place as vulcanized directly onto retainer member 12. The mold flash which is shown on the inboard side 68 of seal member 14 in the cross-sectional views of FIGS. 8-10 need not be removed as having no effect on the sealing performance of the gasket 10. Alternatively, the elastomeric elements may be molded in a separate operation and bonded to retainer member 14 using an adhesive or the like.
  • Advantageously, and as may be seen best in the magnified views of FIGS. 11 and 12 wherein the retainer joints [0044] 40 a-b reappear at 80 a-b, respectively, the molding or other attachment of seal member 12 in a continuous ring about the periphery of the retainer member seals both the joints 40 a-b and the throughbores 60. That is, the seal member 12 extends continuously across the joints 40 and along a portion, referenced at 81, of the outer perimeter of the bores 60. Additionally with respect to the molding of seal member 12, any gaps in the joints, as at 82 a-b, may be filled during the molding process with the elastomeric material of the seal member to provided an additional bond between the retainer segments 20 a-b.
  • [0045] Seal member 12 preferably is formed of a rubber or other elastomeric material, but specifically as selected for high temperature performance or otherwise for compatibility with any fluid being handled. Suitable materials include natural rubbers such as Hevea, as well as thermoplastic, i.e., melt-processible, or thermosetting, i.e., vulcanizable, synthetic rubbers such as fluoropolymers, chlorosulfonate, polybutadiene, SBR, polybutadiene, buna-N, butyl, neoprene, ntrite, polyisoprene, silicone, fluorosilicone, copolymer rubbers such as ethylene-propylene (EPR), ethylene-propylene-diene monomer (EPDM), nitrile-butadiene (NBR) and styrene-butadiene (SBR), or blends such as ethylene or propylene-EPDM, EPR, or NBR. The term “synthetic rubbers” also should be understood to encompass materials which alternatively may be classified broadly as thermoplastic or thermosetting elastomers such as polyurethanes, silicones, fluorosilicones, styrene-isoprene-styrene (SIS), and styrene-butadiene-styrene (SBS), as well as other polymers which exhibit rubber-like properties such as plasticized nylons, polyesters, ethylene vinyl acetates, and polyvinyl chlorides. As used herein, the term “elastomeric” is ascribed its conventional meaning of exhibiting rubber-like properties of compliancy, resiliency or compression deflection, low compression set, flexibility, and an ability to recover after deformation, i.e., stress relaxation.
  • Advantageously, [0046] seal member 12 exhibits a reduced yield stress as compared to the metal or plastic retainer member 14 and, accordingly, is thereby deformable for conforming to any irregularities between the interface surfaces of the structures being sealed. As a given compressive load is applied by the tightening of the bolts which may be used to fasten those interface surfaces, an increased bearing stress is provided about along the margins thereof by virtue of the reduced surface area contact of the bearing surfaces 72 (FIGS. 8-10) of the seal members on the interface surfaces. This increased stress will be sufficient to exceed the reduced yield stress of the seal member for the deformation thereof effecting the fluid-tight sealing of the interfacing surfaces.
  • In use, [0047] seal member 12 advantageously facilitates the installation and replacement of the gasket 10 in accommodating for tolerances or other minor differences in the torque load of the bolts or other fastening members conventionally employed to join the interfacing surface of the application. That is, by virtue of the resiliency of elastomeric member 12, the fluid integrity of the gasket 10 may be maintained to some degree even if the joint spacing between the interface surface is less than exactly uniform.
  • Moreover, the combination of a relatively [0048] incompressible retainer member 14 and a relatively compressible seal member 12 further provides a gasket construction which minimizes torque loss and thereby obviates much of the need for the periodic retorquing of the fastening members used to secure the interfacing surfaces. That is, it is well-known that gaskets of the type herein involved may develop a compression set which is manifested by fluid leaks as the tension in the bolts is relaxed and the fluid-tight sealing of the interfacing surfaces is compromised. In this regard, the provision of seal member 12 ensures positive sealing, with retainer member 14, in turn, synergistically providing generally non-yielding contact in establishing an alternative load torque path minimizing the compression set and leak potential of the gasket 10. In the case of a metal retainer 14, such contact additionally affords improved heat transfer between the interface surfaces, and also develops relatively high seal stresses for assured fluid-tight sealing of the interfacing structures.
  • Thus, a unique segmented gasket construction for oil pans and other applications is described which exhibits reliable sealing properties and torque retention with a minimum of compression set. Additional advantages include a gasket construction which is economical to manufacture even in complex shapes and large-size geometries. [0049]
  • As it is anticipated that certain changes may be made in the present invention without departing from the precepts herein involved, it is intended that all matter contained in the foregoing description shall be interpreted in as illustrative rather than in a limiting sense. All references cited herein are expressly incorporated by reference. [0050]

Claims (9)

What is claimed is:
1. A method of making a sealing gasket of a variety which includes a generally annular retainer member having an inner and outer diametric extent which define a perimeter of a closed geometric shape, and at least one compressible seal member formed of an elastomeric material which is supported on the retainer member, said method comprising the steps of:
(a) providing at least a first and a second retainer segment, each said retainer segment extending intermediate a first end and a second end, and having an inner periphery and an outer periphery;
(b) connecting the first end of each said retainer segment of step (a) to the second end of an adjacent said retainer segment to form said retainer member, the inner periphery of each said segment defining a portion of the inner diametric extent of said retainer member, and the outer periphery of each said segment defining a portion of the outer diametric extent of said retainer member; and
(c) attaching said seal member to said retainer member of step (b) as a continuous ring of said elastomeric material which extends along the perimeter of said retainer member.
2. The method of claim 1 wherein:
each said retainer segment is provided in step (a) as having an inner surface which defines the inner periphery thereof, and an outer surface which defines the outer periphery thereof;
said retainer member is formed in step (b) as having an inner axial surface which defines the inner diametric extent of said retainer member, and an outer axial surface which defines the outer diametric extent of said retainer member, the inner surface of each of the retainer segments of step (a) defining a portion of the inner axial surface of said retainer member, and the outer surface of each of the retainer segments of step (a) defining a portion of the outer axial surface of said retainer member; and
said seal member is attached to said retainer member in step (c) by being molded in place on the inner surface of each said retainer segment to extend continuously about the inner axial surface of said retainer member.
3. The method of claim 1 wherein:
each said retainer segment is provided in step (a) as having an inner surface which defines the inner periphery thereof, and an outer surface which defines the outer periphery thereof;
said retainer member is formed in step (b) as having an inner axial surface which defines the inner diametric extent of said retainer member, and an outer axial surface which defines the outer diametric extent of said retainer member, the inner surface of each of the retainer segments of step (a) defining a portion of the inner axial surface of said retainer member, and the outer surface of each of the retainer segments of step (a) defining a portion of the outer axial surface of said retainer member; and
said seal member is attached to said retainer member in step (c) by being molded in place on the outer surface of each said retainer segment to extend continuously about the outer axial surface of said retainer member.
4. The method of claim 1 wherein:
each said retainer segment is provided in step (a) as having an upper surface extending intermediate the inner and the outer periphery thereof, and a lower surface disposed opposite the upper surface and extending intermediate the inner and the outer periphery of said retainer segment;
said retainer member is formed in step (b) as having an upper radial surface which extends intermediate the inner and outer diametric extent of said retainer member, and a lower radial surface disposed opposite of the upper radial surface and which extends intermediate the inner and outer diametric extent of said retainer member, the upper surface of each of the retainer segments of step (a) defining a portion of the upper radial surface of said retainer member, and the lower surface of each of the retainer segments of step (a) defining a portion of the lower radial surface of said retainer member; and
said seal member is attached to said retainer member in step (c) by being molded in place on the upper surface of each said retainer segment to extend continuously about the upper radial surface of said retainer member.
5. The method of claim 1 wherein:
each said retainer segment is provided in step (a) as having an upper surface extending intermediate the inner and the outer periphery thereof, and a lower surface disposed opposite the upper surface and extending intermediate the inner and the outer periphery of said retainer segment;
said retainer member is formed in step (b) as having an upper radial surface which extends intermediate the inner and outer diametric extent of said retainer member, and a lower radial surface disposed opposite of the upper radial surface and which extends intermediate the inner and outer diametric extent of said retainer member, the upper surface of each of the retainer segments of step (a) defining a portion of the upper radial surface of said retainer member, and the lower surface of each of the retainer segments of step (a) defining a portion of the lower radial surface of said retainer member; and
said seal member is attached to said retainer member in step (c) by being molded in place on the lower surface of each said retainer segment to extend continuously about the lower radial surface of said retainer member.
6 The gasket of claim 1 wherein said retainer member is formed of a metal material selected from the group consisting of aluminum, steel, stainless steel, copper, brass, titanium, nickel, and alloys thereof.
7. The gasket of claim 1 wherein said seal member is formed of a natural or synthetic rubber.
8. The gasket of claim 1 wherein:
the first end of each said retainer segment of step (a) is configured to be interlocked with the corresponding second end of said adjacent said retainer segment of step (b); and
the first end of each said retainer segment is interlocked in step (b) to the second end of said adjacent said retainer segment.
9. The gasket of claim 8 wherein:
the first end of each said retainer segment of step (a) is configured as a ball portion and the second end of each said retainer segment of step (a) is configured as a socket portion; and
the ball portion of each said retainer segment is received in step (b) in the socket portion of said adjacent said retainer segment.
US10/395,468 1999-12-17 2003-03-21 Method of making a segmented gasket having a continuous seal member Abandoned US20030201611A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/395,468 US20030201611A1 (en) 1999-12-17 2003-03-21 Method of making a segmented gasket having a continuous seal member
US10/799,991 US20040172824A1 (en) 1999-12-17 2004-03-12 Method of making a segmented gasket having a continuous seal member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/467,000 US6553664B1 (en) 1999-12-17 1999-12-17 Method of making a segmented gasket having a continuous seal member
US10/395,468 US20030201611A1 (en) 1999-12-17 2003-03-21 Method of making a segmented gasket having a continuous seal member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/467,000 Continuation US6553664B1 (en) 1999-12-17 1999-12-17 Method of making a segmented gasket having a continuous seal member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/799,991 Continuation US20040172824A1 (en) 1999-12-17 2004-03-12 Method of making a segmented gasket having a continuous seal member

Publications (1)

Publication Number Publication Date
US20030201611A1 true US20030201611A1 (en) 2003-10-30

Family

ID=23853939

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/467,000 Expired - Lifetime US6553664B1 (en) 1999-12-17 1999-12-17 Method of making a segmented gasket having a continuous seal member
US10/395,468 Abandoned US20030201611A1 (en) 1999-12-17 2003-03-21 Method of making a segmented gasket having a continuous seal member
US10/799,991 Abandoned US20040172824A1 (en) 1999-12-17 2004-03-12 Method of making a segmented gasket having a continuous seal member

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/467,000 Expired - Lifetime US6553664B1 (en) 1999-12-17 1999-12-17 Method of making a segmented gasket having a continuous seal member

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/799,991 Abandoned US20040172824A1 (en) 1999-12-17 2004-03-12 Method of making a segmented gasket having a continuous seal member

Country Status (3)

Country Link
US (3) US6553664B1 (en)
EP (1) EP1238217A1 (en)
WO (1) WO2001044699A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050110223A1 (en) * 2001-09-28 2005-05-26 Michel Pepin Cylinder-head gasket comprising an edge-to-edge stop ring which is connected by means of stapling
US20080137320A1 (en) * 2006-12-06 2008-06-12 Shelby Ball EMI shielding gaskets
US7681890B2 (en) * 2004-02-12 2010-03-23 International Engine Intellectual Property Company, Llc Gasket
US20110101623A1 (en) * 2008-06-21 2011-05-05 Rolf Prehn Flat seal
WO2011083595A1 (en) * 2010-01-08 2011-07-14 Nok株式会社 Gasket
US20130038027A1 (en) * 2011-08-09 2013-02-14 Michael Peter Feldner Manifold Gasket Assembly

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6553664B1 (en) * 1999-12-17 2003-04-29 Parker-Hannifin Corporation Method of making a segmented gasket having a continuous seal member
US7203421B2 (en) * 2001-09-28 2007-04-10 Optical Research Associates Littrow grating based OADM
JP2007503316A (en) * 2003-08-26 2007-02-22 パーカー−ハニフイン・コーポレーシヨン Structure of gasket with holder
US20050046121A1 (en) * 2003-08-26 2005-03-03 Jones Jay M. Retainer gasket construction
WO2006004926A1 (en) * 2004-06-30 2006-01-12 Bally Gaming International, Inc. Playing cards with separable components
US20060038357A1 (en) * 2004-08-23 2006-02-23 Kamibayashiyama Julian F Wedging retainer gasket construction
US20110072634A1 (en) * 2005-04-08 2011-03-31 Kamibayashiyama Julian F Wedging retainer gasket construction
JP4887037B2 (en) * 2005-12-07 2012-02-29 内山工業株式会社 Gasket manufacturing method and gasket
DE102007009807A1 (en) * 2007-02-28 2008-09-04 Man Nutzfahrzeuge Ag Multi-part flat gasket
JP2010121715A (en) * 2008-11-20 2010-06-03 Toyota Motor Corp Gasket
JP2012097896A (en) * 2010-10-08 2012-05-24 Primearth Ev Energy Co Ltd Seal structure using gasket
US20120187638A1 (en) * 2011-01-20 2012-07-26 Freudenberg-Nok General Partnership Cast Gasket
JP2012225435A (en) * 2011-04-20 2012-11-15 Uchiyama Manufacturing Corp Gasket
US9701388B2 (en) 2011-05-11 2017-07-11 Aviation Devices & Electronic Components, Llc Gasket having a pliable resilient body with a perimeter having characteristics different than the body
EP2721914A4 (en) 2011-06-17 2015-07-22 Aviat Devices & Electronic Components Llc Single-sided sticky gasket
US8863625B2 (en) 2011-06-21 2014-10-21 Aviation Devices & Electronics Components, LLC Elastomeric gasket squeeze out removal method and kit
US8691033B1 (en) 2011-07-06 2014-04-08 Aviation Devices & Electronic Components, Llc Positioning a workpiece on a sticky gasket
US9702464B1 (en) 2011-10-03 2017-07-11 The Patent Well LLC Non-planar stick gaskets for receipt between a base and a workpiece
DE102012206626B4 (en) * 2012-04-23 2015-05-28 Federal-Mogul Sealing Systems Gmbh Carrier frame seal with reduced space requirement
US9303447B1 (en) 2012-05-15 2016-04-05 Aviation Devices & Electronic Components LLC Elastomeric gasket for fuel access door of an aircraft wing and a method for making the same
US9751244B2 (en) 2012-05-15 2017-09-05 The Patent Well LLC Elastomeric gasket for fuel access door of an aircraft wing and a method for making the same
US9016697B2 (en) 2012-07-10 2015-04-28 Aviation Devices & Electronic Components, Llc Spacer and gasket assembly for use on an aircraft
US9671023B2 (en) 2012-07-10 2017-06-06 Aviation Devices & Electronic Components, Llc Spacer and gasket assembly for use on an aircraft
JP2014092191A (en) * 2012-11-01 2014-05-19 Nok Corp Base material integrated type seal and metal mold for manufacturing the same
EP3280933B1 (en) 2015-04-08 2022-08-31 The Patent Well LLC A metal mesh with a low electrical resistance conversion coating for use with aircraft structures
US9759327B2 (en) 2015-08-18 2017-09-12 Parker-Hannifin Corporation Large perimeter segmented seals
US10612657B2 (en) * 2015-09-14 2020-04-07 Caterpillar Inc. Space plate with seal for joint assembly
DE102018204085A1 (en) * 2018-03-16 2019-09-19 Elringklinger Ag Sealing arrangement, battery or control box, motor vehicle and method for producing a seal assembly
DE102019213614A1 (en) * 2019-09-06 2021-03-11 Elringklinger Ag Sealing arrangement, battery or control box, motor vehicle and method for producing a sealing arrangement
US11621453B2 (en) * 2020-07-08 2023-04-04 Reinz-Dichtungs-Gmbh Foldable gasket with continuous sealing contour
DE102021106636A1 (en) * 2021-03-18 2022-09-22 Carl Freudenberg Kg flat gasket
JP2023102693A (en) * 2022-01-12 2023-07-25 内山工業株式会社 gasket

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719065A (en) * 1985-11-21 1988-01-12 Jmk International, Inc. Method of bonding silicone rubber to metal
US5428895A (en) * 1992-11-13 1995-07-04 Chrysler Corporation Method of manufacturing sealing gasket with hard interior backbone and integral crush limiters
US5970612A (en) * 1995-12-08 1999-10-26 Fel-Pro Incorporated Method of making head gasket with improved armoring
US6241256B1 (en) * 1998-07-23 2001-06-05 Acadia Elastomers Corporation Gasket for heat exchanger and method and apparatus for manufacturing same
US6553664B1 (en) * 1999-12-17 2003-04-29 Parker-Hannifin Corporation Method of making a segmented gasket having a continuous seal member

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1986465A (en) 1933-12-20 1935-01-01 Westinghouse Air Brake Co Gasket construction
US2722043A (en) 1953-07-27 1955-11-01 Mathewson Corp Sealing strip
US3738670A (en) 1971-09-27 1973-06-12 Parker Hannifin Corp Sectional gasket
US4380856A (en) 1980-02-25 1983-04-26 Parker-Hannifin Corporation Segmented seal
US4293135A (en) 1980-02-25 1981-10-06 Parker-Hannifin Corporation Segmented seal
GB8422193D0 (en) 1984-09-03 1984-10-10 Klinger Ltd Richard Gaskets
US4572522A (en) 1985-05-06 1986-02-25 Felt Products Mfg. Co. Interlocking sectional gasket assembly and method of making same
FR2659122B1 (en) 1990-03-02 1993-10-22 Procal FLAT GASKET.
US5161808A (en) 1991-02-12 1992-11-10 Great Gasket Concepts, Inc. Collapsible sealing gasket
US5149108A (en) 1991-02-15 1992-09-22 Great Gasket Concepts, Inc. Multi-piece gasket joint
AU660458B2 (en) 1991-05-17 1995-06-29 Tokyo Gasket Co. Ltd. Split-type gasket
US5149109A (en) 1991-09-18 1992-09-22 Parker-Hannifin Corporation Interlocking segmented seal
US5536023A (en) 1994-10-31 1996-07-16 Indian Head Industries, Inc. One piece gasket for complex oil pan configuration
US5618047A (en) 1995-03-14 1997-04-08 Dana Corporation Molded gasket with a multiple component reinforcing element
US5513603A (en) 1995-08-11 1996-05-07 Chrysler Corporation Seal and fastener isolator system for a valve cover

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719065A (en) * 1985-11-21 1988-01-12 Jmk International, Inc. Method of bonding silicone rubber to metal
US5428895A (en) * 1992-11-13 1995-07-04 Chrysler Corporation Method of manufacturing sealing gasket with hard interior backbone and integral crush limiters
US5970612A (en) * 1995-12-08 1999-10-26 Fel-Pro Incorporated Method of making head gasket with improved armoring
US6241256B1 (en) * 1998-07-23 2001-06-05 Acadia Elastomers Corporation Gasket for heat exchanger and method and apparatus for manufacturing same
US6553664B1 (en) * 1999-12-17 2003-04-29 Parker-Hannifin Corporation Method of making a segmented gasket having a continuous seal member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050110223A1 (en) * 2001-09-28 2005-05-26 Michel Pepin Cylinder-head gasket comprising an edge-to-edge stop ring which is connected by means of stapling
US7681890B2 (en) * 2004-02-12 2010-03-23 International Engine Intellectual Property Company, Llc Gasket
US20080137320A1 (en) * 2006-12-06 2008-06-12 Shelby Ball EMI shielding gaskets
US7504590B2 (en) 2006-12-06 2009-03-17 Laird Technologies, Inc. EMI shielding gaskets
US20110101623A1 (en) * 2008-06-21 2011-05-05 Rolf Prehn Flat seal
WO2011083595A1 (en) * 2010-01-08 2011-07-14 Nok株式会社 Gasket
JPWO2011083595A1 (en) * 2010-01-08 2013-05-13 Nok株式会社 gasket
US20130038027A1 (en) * 2011-08-09 2013-02-14 Michael Peter Feldner Manifold Gasket Assembly

Also Published As

Publication number Publication date
US6553664B1 (en) 2003-04-29
US20040172824A1 (en) 2004-09-09
WO2001044699A1 (en) 2001-06-21
EP1238217A1 (en) 2002-09-11

Similar Documents

Publication Publication Date Title
US6553664B1 (en) Method of making a segmented gasket having a continuous seal member
US6598883B1 (en) Resilient elastomer and metal retainer gasket for sealing between curved surfaces
US6761360B2 (en) Interference-fit retainer gasket
EP2334959B1 (en) Hygienic tube fitting gasket
US6695357B2 (en) Threaded pipe connection having a retainer gasket with pressure relief vents
CA3022687C (en) Coupling having tabbed retainer
EP0457845B1 (en) Unitized oil seal and method of making a unitized oil seal
US6669205B2 (en) Retainer gasket with pressure relief vents
US7401404B2 (en) Retainer gasket construction
US6536775B1 (en) Boundary gasket with integral bolt thread seals
US20170074401A1 (en) Press-in-place gasket
US20050046121A1 (en) Retainer gasket construction
US20110072634A1 (en) Wedging retainer gasket construction
US7048279B2 (en) Laminated carrier gasket with off-set elastomeric sealing
JP2005226692A (en) Seal washer
JPH0571542U (en) Sealing device
WO2005033559A1 (en) Retainer gasket construction
EP3153747A1 (en) Variable compression height integrated seal
JP3052890U (en) Ring for sealing
KR100228144B1 (en) Metal flat gasket
KR200179794Y1 (en) Ring plate gasket
JPH0651626U (en) Cylindrical seal member
JP2005273845A (en) Intake manifold gasket
AU2016228258A1 (en) Variable compression height integrated seal

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION