EP0397672B1 - Verfahren und vorrichtung zur schnellen, hochauflösenden, dreidimensionalen abbildung eines gegenstandes an einer untersuchungsstation - Google Patents

Verfahren und vorrichtung zur schnellen, hochauflösenden, dreidimensionalen abbildung eines gegenstandes an einer untersuchungsstation Download PDF

Info

Publication number
EP0397672B1
EP0397672B1 EP89900111A EP89900111A EP0397672B1 EP 0397672 B1 EP0397672 B1 EP 0397672B1 EP 89900111 A EP89900111 A EP 89900111A EP 89900111 A EP89900111 A EP 89900111A EP 0397672 B1 EP0397672 B1 EP 0397672B1
Authority
EP
European Patent Office
Prior art keywords
light
detector
signal
lens
light signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89900111A
Other languages
English (en)
French (fr)
Other versions
EP0397672A1 (de
Inventor
Donald J. Svetkoff
Brian L. Doss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYNTHETIC VISION SYSTEMS Inc
Original Assignee
SYNTHETIC VISION SYSTEMS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYNTHETIC VISION SYSTEMS Inc filed Critical SYNTHETIC VISION SYSTEMS Inc
Publication of EP0397672A1 publication Critical patent/EP0397672A1/de
Application granted granted Critical
Publication of EP0397672B1 publication Critical patent/EP0397672B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • This invention relates to a method and system for imaging an object at a vision station to develop dimensional information associated with the object and, in particular, to a method and system for the high-speed, high resolution imaging of an object at a vision station to develop dimensional information associated with the object by projecting a beam of controlled light at the object.
  • a high-speed, high resolution (i.e. approximately .025mm (.001 inch) and finer) 3-D laser scanning system for inspecting miniature objects such as circuit board components, solder, leads and pins, wires, machine tool inserts, etc., can greatly improve the capabilities of machine vision systems. In fact, most problems in vision are 3-D in nature and two-dimensional problems are rarely found.
  • a laser beam is scanned across the object to be inspected with a deflector and the diffusely scattered light is collected and imaged onto a position sensitive detector.
  • the scanner can be a rotating polygon, galvanometer, resonant scanner, holographic deflector, or acousto-optic deflector.
  • the position sensitive detector can be a linear or area array sensor, a lateral effect photodiode, a bi-cell, or an electro-optic position sensing device.
  • a pair of position detectors are used to reduce shadowing. With linear arrays or area cameras there is severe trade off between shadows, light sensitivity and field of view.
  • the position sensing system described in the above-noted patent application is preferred.
  • lateral effect photodiodes can be used at data rates up to about 1 MHz and are inexpensive, commercially available devices.
  • Conventional triangulation based scanners or structured light systems often utilize conventional imaging lenses (i.e., reduction lenses, 35 mm lenses, or cylinder lenses designed for long line detectors) to deliver light to large area position sensitive detectors such as area sensor, linear arrays or large area position sensitive detectors.
  • imaging lenses i.e., reduction lenses, 35 mm lenses, or cylinder lenses designed for long line detectors
  • large area position sensitive detectors such as area sensor, linear arrays or large area position sensitive detectors.
  • the large area detectors have several limitations: low speed due to large detector capacitance, high dark currents, and a much higher noise floor than what is found with small area devices.
  • a 20 mm x 20 mm P-I-N lateral photodiode (equivalent to the approximate area of a typical 25mm (1 inch) video camera tube) has a capacitance of several hundred picofarads and a dark current of several microamps.
  • a 2 mm x 2 mm device will have capacitance of about 5 pf and a dark current of about 50 nanoamps.
  • Both the speed and noise performance of the smaller detectors can be orders of magnitude better than the performance achievable with large area devices.
  • the improvement in speed is directly proportional to the reduction in capacitance and the improvement in signal-to-noise is at least as large as the square root of the reduction in capacitance.
  • a "synchronized scanning” approach can be used to overcome this problem as described in U.S. Patent No. 4,553,844 to Nakagawa et al.
  • This scanning approach is commonly implemented with polygonal or galvanometer driven mirrors.
  • this approach requires that the sensor head contain moving parts in the form of a rotating mirror (for example, in the Fourier plane or telecentric stop position) or a pair of mirrors.
  • a second mirror is used to follow the spot which is scanning by means of the first mirror.
  • These high speed moving parts are often not desirable, particularly if the sensor is to be subjected to the type of acceleration found with x-y tables and robotic arms in industrial environments.
  • a swept aperture profiler is described. It too measures a time displacement for determining position.
  • a galvanometer driven mirror is used to scan a line of data (i.e. x,y coordinates).
  • An acousto-optic deflector is used to scan the position sensing dimension and the instant at which the light is received by the photodetection device indicates depth.
  • the use of the A-O deflector for the z dimension scanning represents an improvement over the previous technology.
  • the use of a photomultiplier as a detection device allows for a much improved dynamic range.
  • the U.S. patent to Balusubramanian, 4,355,904 describes a triangulation-based method which incorporates a position sensing device in the form of a variable density filter together with a system for sweeping the laser beam and controlling the position of the measurement probe.
  • the tolerance on the density of typical variable filters, whether fabricated with a metallic coating on glass or with photographic film plate, is typically ⁇ 5% at any single point.
  • the U.S. patent to Satoshi Ido, et al., 4,589,773 describes a position sensing method and system for inspection of wafers which utilizes a commercially available position detector.
  • a reduction lens is used to focus the light into a small spot on the surface of the object with a 10X reduction.
  • a magnification lens is used in the receiver (10X) to deliver light to a detector.
  • the triangulation angle is 45 degrees with the receiver and detector at complementary angles (90 degrees). This is fine for wafer inspection.
  • the method is deficient for several other types of inspection tasks because (1) unacceptable shadows and occlusion effects would occur for tall objects; (2) the field of view of the probe is very small; (3) a reduction of the angle to 15 degrees (to reduce shadows) would degrade the height sensitivity significantly; and (4) the detector area is relatively large which limits speed and the signal to noise ratio as the speed of the system is increased.
  • the U.S. patent to Haugen, 4,593,967, assigned to Honeywell describes a triangulation-based scanning system utilizing a holographic deflection device to reduce the size and weight of the scanning system and a digital mask for detection of position.
  • the digital mask is in the form of binary grey code and requires a detector for each bit (i.e. 8 detectors for an 8 bit code).
  • a single cylinder lens is used in the receiver to convert a spot of light into a thin line which must be sharply focused onto a series of photodetectors. In other words, the spot is converted into a line to deliver the light to the series of long thin detectors. Spatial averaging is not performed in the system nor is the centroid of the light spot determined.
  • U.S. Patent No. 4,634,879 discloses the use of optical triangulation for determining the profile of a surface utilizing a prism and two photomultiplier tubes in a flying spot camera system. These are arranged in a "bi-cell" configuration. The bi-cell, however, does not compute the centroid of the received light spot and is therefore sensitive to the distribution of intensity within the received light spot. As an anti-noise feature, amplitude modulation is impressed upon the laser beam and a filter network is used to filter photomultiplier response so as to exclude response to background optical noise.
  • US Patent No. 4,796,997 and the EP-A-0 247 833 discloses a method for the high-speed, high-resolution, 3-D imaging of an object at a vision station to develop dimensional information associated with the object, the method including the steps of: scanning a beam of controlled light in a scanning direction at the surface of the object at a first predetermined angle to generate a corresponding reflected light signal; receiving said reflected light signal at a second angle with a set of optical components for creating a focused spot of light from the reflected light signal, the set of optical components including first and second lenses; measuring the amount of radiant energy in the reflected light signal with a small area position detector having a detector area and having a position-sensing direction substantially orthogonal to the scanning direction and producing at least one electrical signal proportional to the measurement; and computing a centroid value for the reflected light signal from at least one electrical signal.
  • a method for the high-speed, high-resolution, 3-D imaging of an object at a vision station to develop dimensional information associated with the object including the steps of: scanning a beam of controlled light along a scan line in a scanning direction at the surface of the object at a first predetermined angle to generate a corresponding reflected light signal; receiving said reflected light signal at a second angle with a set of optical components for creating a focused spot of light from the reflected light signal, the set of optical components including first and second lenses and measuring the amount of radiant energy in the reflected light signal with a small area position detector having a detector area and having a position-sensing direction substantially orthogonal to the scanning direction and producing at least one electrical signal proportional to the measurement; and computing a centroid value for the reflected light signal from the at least one electrical signal, the method being characterised by: converting the focused spot of light into an enlarged, elongated spot of light and imaging the received light signal to the small area position detector with an ana
  • an imaging system for the high-speed, high-resolution 3-D imaging of an object at a vision station to develop dimensional information associated with the object
  • the system including: a source for scanning a beam of controlled light along a scan line in a scanning direction at the surface of the object at a first predetermined angle to generate a corresponding reflected light signal; a first set of optical components for creating a focused spot of light from the reflected light signal, the set of optical components including first and second lenses and for receiving the reflected light signal at a second angle; measuring means, including a small area position detector having a detector area and having a position-sensing direction substantially orthogonal to the scanning direction for measuring the amount of radiant energy in the reflected light signal and producing at least one electrical signal proportional to the measurement; and signal processing means for computing a centroid value for the reflected light signal from the at least one electrical signal, the system being characterised by: an anamorphic optical system into which, in use, the scan line is imaged, and for converting
  • the second anamorphic lens is specially made to have a speed of f/.5 to f/.7 and a focal length in the range of 20 to 30 mm.
  • the source preferably includes a solid state (i.e. acousto-optic) laser light deflector and the set of optical components preferably includes a mask to control the polarization and acceptance angles of the collected light.
  • a solid state laser light deflector i.e. acousto-optic
  • the set of optical components preferably includes a mask to control the polarization and acceptance angles of the collected light.
  • the measuring means includes a highly sensitive photodetector such as a lateral effect photodiode for converting the radiant energy into at least one electrical current.
  • a highly sensitive photodetector such as a lateral effect photodiode for converting the radiant energy into at least one electrical current.
  • the field of view of the filtered light signal is translated across the position detector by translation means to expand the range of dimensional information associated with the object.
  • Such a method and system provide high resolution, quasi-video rate, full 3-D imaging at a relatively low cost.
  • a long scan line i.e. field of view
  • the present invention overcomes many of the problems of the prior art by utilizing an anamorphic magnification and field lens system to deliver light to a small area position sensor in conjunction with the benefits of utilizing an all solid state light deflection system (i.e. compact, rugged, easy to interface with, etc.)
  • FIGURE 1 there are illustrated the major components of a 3-D imaging system constructed in accordance with the present invention and generally indicated at 10.
  • the system 10 is positioned at a vision station and includes a controlled source of light such as a laser, modulator and optical feedback circuit 12.
  • a scanner in the form of an acousto-optic deflector 14 and beam shaping and focusing optics in the form of various lens elements 16 produce a telecentric, flat field scan by projecting a series of laser beams at the reflective surface 18 of an object, generally indicated at 20.
  • the object is supported on a reference, planar surface 22 at the vision station.
  • a laser is coupled to a modulator to shift the information to a higher frequency where system noise characteristics are better.
  • the modulator may perform one of many types of modulation, including sine wave, pulse amplitude, pulse position, etc.
  • the laser is a solid state laser diode and is "shuttered” with a TTL signal (i.e. TTL modulation).
  • TTL modulation i.e. TTL modulation
  • the laser signal is encoded so as to allow separate signal processing functions to be performed during "on” and “off” intervals as described in detail in the above-noted application.
  • power levels are 20-30 mW (Class III-B) which are well suited for machine vision applications.
  • a solid state acousto-optic (i.e. A-O) deflector 14 such as one commercially available from Newport Electro-Optics, is preferably used.
  • the deflector is easy to interface with, is very rugged and compact. This presents numerous advantages.
  • the size of the system 10 can be about the size of a video camera. No moving parts are present in the system 10. Long term stability is easy to maintain.
  • the system 10 can be made rugged enough to mount on a translator like an x-y table or robotic arm with relatively little effort. Therefore, producing the unit in large quantities is relatively easy.
  • Most A-O deflectors produce about 500 spots/scan line which provides a very convenient interface to digitizers and image processing equipment.
  • the duty cycle is also very high compared to other types of scanners (95% vs. 50%).
  • the A-O deflector 14 has the advantage of being all solid state as previously discussed. However, due to the nature of diffractive scanning, a smooth illumination gradient of about 10-30% of the average value in the field of view results. Although this type of gradient can sometimes be tolerated, it is undesirable because it offsets a potentially large advantage of laser scanning in general: the ability to deliver the same quantity of light at the same angle of incidence to every point in the field of view.
  • An optical and electronic feedback loop generally indicated at 24, is utilized to correct this slowly varying gradient (i.e. for flat field correction).
  • the A-O deflector 14 produces both a scanning beam and a "DC" beam which is normally blocked with a spatial filter. This DC beam will contain about 30% of the laser power. By sensing the variations in this beam it is possible to infer the variations in the illumination because the total light is the sum of the scanning (i.e. 1st order) light and the DC beam (0th order).
  • the DC beam is sensed by a photodetector 26 of the loop 24.
  • the resulting electrical signal is used by an automatic gain control circuit 28 (i.e. including an amplifier and an integrator) of the loop 24 to attenuate or amplify the RF power applied to the A-O deflector 14 at a balanced mixer.
  • the resulting intensity distribution is flat to about 1% which provides a significant advantage for greyscale inspection and a modest dynamic range improvement for 3-D inspection.
  • the optical system 38 includes a set of optical components, including a telecentric receiver lens 40 to collect scattered light from the object 20 at a position approximately one focal length from the object 20.
  • a reduction focusing lens 42 operates as a telescope objective.
  • the lenses 40 and 42 operates as a preferred conjugate.
  • the reduction lens 42 can be interchanged to accommodate various reduction and magnification ratios.
  • the reduction lens 42 is placed directly behind a mask 44.
  • the mask 44 is located at one focal length from the receiver lens 40 and functions as a telecentric stop to provide a spatial and polarization filtering plane.
  • the mask forms a rectangular aperture (i.e. spatial filter) positioned at the intermediate spatial filtering plane to reject light received from unwanted angles (i.e. off-axis or stray light) which often arises from secondary reflections from objects outside of the desired instantaneous field of view of the system 10.
  • the mask 44 may be a fixed aperture 46 or electromechanical shutter, or, preferably, is a liquid crystal, binary, spatial light modulator or valve which is dynamically reconfigured under software control.
  • Such a configuration is useful for inspection of very shiny objects (reflowed solder, wire bond, loops, pin grids, etc.) which are in close proximity from which multiple reflections will be created. Consequently, both the acceptance angle (through stop size) and polarization of the input light can be digitally controlled prior to delivery to a detector.
  • the spatial filter or strip can be programmed in a chosen pattern of opaque and transmissive patterns correlated and matched to the height profile of the object to be detected. For example, a height measurement of shiny pins placed on a shiny background will be more reliable if only a narrow strip corresponding to the height range over which properly positioned pins is viewed. Otherwise, multiple reflections may produce a signal return which is significantly larger than the return produced by useful light. If properly placed, the position of the pin will be reported. If defective, no pin will be found.
  • the aperture 46 of the mask 44 is no larger than necessary for detection of a specified height range, but is still preferably programmable.
  • the optical system 38 further includes an anamorphic magnification and field lens system, generally indicated at 48.
  • the lens systems 48 includes a pair of anamorphic elements or lenses 50 and 52.
  • the lens 50 is a very long focal length, precision negative cylinder lens to magnify the image in the position-sensing direction.
  • the focal length of the lens 50 is typically between about -300 mm and -1000 mm.
  • the lens 52 is a custom short focal length cylinder lens having a preferred speed of about f/.5 or f/.7 which is used to expand the field of view and light gathering capability of the system 38.
  • the lens 52 has a preferred focal length of about 25 mm and may have a focal length in the range of 20 to 30 mm.
  • FIGURE 2a illustrates the profile of a "step object" wherein several positions on the stop object are labelled.
  • FIGURE 2b illustrates the labelled positions of Figure 2a as seen in a large area detector as a laser spot is scanned along the object. This represents the prior art.
  • FIGURE 2c shows the same labelled positions of Figure 2a, and also shows the effect of using the pair of lenses 50 and 52.
  • the lenses 50 and 52 convert a small focused spot of light into a smooth, enlarged rectangular or elliptical spot which uniformly illuminates an extended region of a single position sensitive detector 53 and averages spatial noise resulting from variations in sensitivity from point to point.
  • the combination of the lenses 42 and 50 serve to provide magnification in the position sensing dimension.
  • the magnification in the position sensing direction is usually greater than 1:1, thereby yielding microscopic magnification.
  • the lens 52 serves as an anamorphic field lens into which the scan line is imaged.
  • the length of the imaged scan line can be almost as large as the lens 52 (i.e. 40 mm) but is clearly much larger than the dimension of the detector 53. Hence, it serves as the reduction optic.
  • the lens 52 can be fabricated in the form of a double convex singlet, a plano convex "hemi-cylinder" or with a gradient index optic having a radial gradient or a combination thereof. A double convex design, however, is preferable.
  • a tracking mirror 54 is included and can be placed at any of several convenient positions provided it is behind the mask 44 to maintain telecentricity.
  • a small angle deflector can be used but will deviate rather than translate the light beam.
  • the translating mirror 54 is mounted on a precision miniature stage which is displaced under software control via a control or controller 56 which, in turn, is coupled to a signal processing circuit 58.
  • the mirror 54 is useful because it can significantly extend the measurement range of the system 10.
  • the position sensor or detector at any instant can discriminate about 256 levels or height.
  • Several inspection tasks may demand an extension of this height range.
  • the leads may extend upward about 6.4 mm (.25 inch) or more to the body of the component. This exceeds the linear measurement range of lateral photodiodes.
  • wire loops are very thin and require high spatial and depth resolution for an accurate measurement. However, these wires may also extend up to 6.4 mm (.25 inch) and a sensor which is to accommodate this entire range at the required 0.005 mm (.0002 inch) height and spatial resolution is not practical.
  • the translating mirror 54 alleviates this problem.
  • the only requirement is that the lens 40 receive the light.
  • the lens 40 can be expected to provide an image size (in the position sensing dimension) which is somewhat larger than the detector 53.
  • Displacing the mirror 54 has the effect of translating the total field of view (constrained by the lens 40) across the detector 53 so that many more levels of height can be sensed while still utilizing the small area detector 53.
  • a single detector element is utilized as a small area position sensitive detector 53 of the system 10.
  • the system 10 can obtain quite accurate z (i.e. height) measurements with a lateral effect photodiode (LEP), the internal resistance of which provides the depth sensing and centroid computation capability through attenuation of signal currents.
  • the position detector 53 can be a lateral effect photodiode like the Si-Tek 2L2 or 2L4 but is preferably a special rectangular lateral effect detector having an approximate 6 mm width and a 2 mm dimension along the position sensing direction.
  • These position sensitive devices have substantial speed and depth range advantages over linear arrays. Bi-cells or digital masks (i.e. optical encoder) are not preferred.
  • the detector 53 is coupled to a pre-amplifier 58 which, in turn, is coupled to the signal processing circuit 58 which computes the centroid of the light spot thereby allowing for non-uniform and directional intensity distributions.
  • the signal processing circuit or unit 58 expands/compresses the variable data in order to obtain the proper Z value, grey scale information and special values indicating incorrect height information.
  • the signal processing circuit 58 is described in greater detail in the above-noted application.
  • system 10 is designed to support a scanning mechanism with no moving parts, it can also be used in the synchronized scanning geometry approach to provide additional benefits, namely increasing resolution using a very small point detector and spatial averaging over the detector.
  • imaging can be performed at high resolution and at quasi-video rates to obtain full 3-D information.
  • a large scan line i.e. field of view
  • such a method and system offer the potential of accurate, quasi-video frame rate depth sensing at low cost.

Claims (21)

  1. Verfahren zur schnellen, hochauflösenden, dreidimensionalen Abbildung eines Gegenstandes (20) an einer Sichtstation zur Entwicklung von mit dem Gegenstand zusammenhängender Größeninformation, wobei das Verfahren die folgenden Schritte aufweist: Ablenken eines Strahls gesteuerten Lichtes entlang einer Abtastzeile in einer Abtastrichtung an der Oberfläche (18) des Gegenstandes unter einem ersten vorbestimmten Winkel zur Erzeugung eines entsprechenden reflektierten Lichtsignals; Empfangen des reflektierten Lichtsignals unter einem zweiten Winkel mit einem Satz optischer Elemente zur Erzeugung eines fokussierten Lichtpunktes aus dem reflektierten Lichtsignal, wobei der Satz optischer Elemente erste und zweite Linsen (40 und 42) aufweist; Messen der Menge der Strahlungsenergie in dem reflektierten Lichtsignal mit einem Kleinflächen-Positionsdetektor (53), der eine Detektorfläche und eine zur Abtastrichtung im wesentlichen orthogonale Positionserfassungsrichtung aufweist und wenigstens ein zu der Meßgröße proportionales elektrisches Signal erzeugt; und Berechnen eines Schwerpunktswertes für das reflektierte Lichtsignal aus dem wenigstens einen elektrischen Signal, wobei das Verfahren gekennzeichnet ist durch:
    Umwandeln des fokussierten Lichtpunktes in einen vergrößerten, länglichen Lichtpunkt und Abbilden des empfangenen Lichtsignals zu dem Kleinflächen-Positionsdetektor mit einem anamorphotischen optischen System (48), in das die Abtastzeile abgebildet wird und das aufweist: eine erste anamorphotische Linse (50) zum Vergrößern des fokussierten Lichtpunktes in der Positionserfassungsrichtung des Positionsdetektors und eine zweite anamorphotische Linse (52) mit einer kurzen Fokallänge zum Verkleinern des fokussierten Lichtpunktes in der Abtastrichtung zum Bilden des länglichen Lichtpunktes und zum Verringern der Länge der Abtastzeile derart, daß sie auf den Detektor paßt, wobei der Positionsdetektor (53) ein einzelnes Detektorelement aufweist, das die Detektorfläche enthält und eine geringe Kapazität und geringen Dunkelstrom aufweist, und wobei der gesamte längliche Lichtpunkt gleichmäßig auf der Detektorfläche abgebildet wird, um ein hohes Signal-Rausch-Verhältnis zu erzielen, wobei das räumliche Rauschen, das aus Empfindlichkeitsveränderungen von Punkt zu Punkt in der Detek torfläche resultiert, gemittelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Strahl gesteuerten Lichts moduliert wird und das Verfahren den Schritt des Demodulierens des wenigstens einen elektrischen Signales aufweist und der Schwerpunktswert aus dem wenigstens einen demodulierten Signal berechnet wird.
  3. Abbildungssystem (10) zur schnellen, hochauflösenden, dreidimensionalen Abbildung eines Gegenstandes (20) an einer Sichtstation zur Entwicklung von mit dem Gegenstand zusammenhängender Größeninformation, wobei das System aufweist eine Quelle zum Ablenken eines Strahls gesteuerten Lichtes entlang einer Abtastzeile in einer Abtastrichtung an der Oberfläche (18) des Gegenstandes unter einem ersten vorbestimmten Winkel zur Erzeugung eines entsprechenden reflektierten Lichtsignals; einen ersten Satz optischer Elemente zur Erzeugung eines fokussierten Lichtpunktes aus dem reflektierten Lichtsignal, wobei der Satz optischer Elemente erste und zweite Linsen (40 und 42) zum Empfang des reflektierten Lichtsignals unter einem zweiten Winkel aufweist; eine Meßeinrichtung mit einem Kleinflächen-Positionsdetektor (53) mit einer Detektorfläche und einer zur Abtastrichtung im wesentlichen orthogonalen Positionserfassungsrichtung zum Messen der Menge der Strahlungsenergie in dem reflektierten Lichtsignal und zum Erzeugen wenigstens eines zu der Meßgröße proportionalen elektrischen Signales; und eine Signalverarbeitungseinrichtung (58) zum Berechnen eines Schwerpunktswertes für das reflektierte Lichtsignal aus dem wenigstens einen elektrischen Signal, wobei das System gekennzeichnet ist durch:
    ein anamorphotisches optisches System (48), in das im Betrieb die Abtastzeile abgebildet wird und das zum Umwandeln des fokussierten Lichtpunktes in einen vergrößerten länglichen Lichtpunkt dient, wobei das anamorphotische optische System aufweist: eine erste anamorphotische Linse (50) zum Vergrößern des fokussierten Lichtpunktes in der Positionserfassungsrichtung des Positionsdetektors und eine zweite anamorphotische Linse (52) mit einer kurzen Fokallänge zum Verkleinern des fokussierten Lichtpunktes in der Abtastrichtung zum Bilden des länglichen Lichtpunktes und zum Verringern der Länge der Abtastzeile derart, daß sie auf den Detektor paßt, wobei der Positionsdetektor (53) ein einzelnes Detektorelement aufweist, das die Detektorfläche enthält und eine relativ geringe Kapazität und geringen Dunkelstrom aufweist.
  4. System nach Anspruch 3, dadurch gekennzeichnet, daß die zweite anamorphotische Linse (52) eine Fokallänge im Bereich von 20 bis 30 mm aufweist.
  5. System nach Anspruch 4, dadurch gekennzeichnet, daß die zweite anamorphotische Linse (52) eine Geschwindigkeit im Bereich von f/0,5 bis f/0,7 aufweist.
  6. System nach Anspruch 4, dadurch gekennzeichnet, daß die erste anamorphotische Linse (50) eine negative Zylinderlinse mit einer langen Fokallänge ist.
  7. System nach Anspruch 6, dadurch gekennzeichnet, daß die erste anamorphotische Linse (50) eine Fokallänge im Bereich von -300 bis -1.000 mm aufweist.
  8. System nach Anspruch 4, dadurch gekennzeichnet, daß die zweite anamorphotische Linse (52) eine bikonvexe Feldlinse ist.
  9. System nach Anspruch 4, dadurch gekennzeichnet, daß die zweite Linse (42) und die erste anamorphotische Linse (50) zur Vergrößerung des empfangenen Lichtsignals in der Positionserfassungsrichtung des Positionsdetektors (53) zusammenwirken.
  10. System nach Anspruch 3, dadurch gekennzeichnet, daß der Satz optischer Elemente eine zu einem Höhenprofil des Gegenstandes (20) korrelierte programmierbare Maske (44) zum Filtern des empfangenen Lichtsignals aufweist.
  11. System nach Anspruch 3, dadurch gekennzeichnet, daß der Satz optischer Elemente eine Maske (44) mit fester Blende (46) zum Filtern des empfangenen Lichtsignals aufweist.
  12. System nach Anspruch 10, dadurch gekennzeichnet, daß die erste Linse (40) eine erste Fokallänge aufweist und in einem Abstand von dem Gegenstand (20) angeordnet ist, der ungefähr gleich der ersten Fokallänge ist.
  13. System nach Anspruch 12, dadurch gekennzeichnet, daß die Maske (44) in einem Abstand von der ersten Linse (40) angeordnet ist, der ungefähr gleich der ersten Fokallänge ist.
  14. System nach Anspruch 3, dadurch gekennzeichnet, daß die Detektorfläche geringer als 20 mm² ist.
  15. System nach Anspruch 3, dadurch gekennzeichnet, daß der Strahl gesteuerten Lichts ein Laserabtaststrahl ist.
  16. System nach Anspruch 15, dadurch gekennzeichnet, daß der Laserabtaststrahl von einer akusto-optischen Ablenkeinrichtung (14) geliefert wird.
  17. System nach Anspruch 16, dadurch gekennzeichnet, daß die Lichtablenkeinrichtung (14) ferner einen DC-Strahl liefert, der zur Erzeugung eines zu der Meßgröße proportionalen Steuersignals bemessen ist, wobei das Steuersignal zur Steuerung der Lichtablenkeinrichtung (14) verwendet wird, so daß die Lichtablenkeinrichtung den Gegenstand (20) im wesentlichen gleichmäßig beleuchtet.
  18. System nach Anspruch 3, dadurch gekennzeichnet, daß das Sichtfeld des empfangenen Lichtsignals von einer Übertragungseinrichtung zur Ausdehnung der zu dem Gegenstand (20) gehörenden Größeninformation über den Positionsdetektor (53) übertragen wird.
  19. System nach Anspruch 18, dadurch gekennzeichnet, daß die Übertragungseinrichtung einen Nachlaufspiegel (54) zum Reflektieren des gefilterten Lichtsignals und eine Steuereinrichtung (56) zur Steuerung der Bewegung des Nachlaufspiegels aufweist.
  20. System nach Anspruch 3, dadurch gekennzeichnet, daß die Quelle ein Flying Spot-Laserscanner mit einer Lichtablerkeinrichtung (14) zum Ablenken des Strahls gesteuerten Lichts in der Abtastrichtung auf der Oberfläche des Gegenstandes (20) unter einem ersten Triangulationswinkel zur Erzeugung des entsprechenden reflektierten Lichtsignals ist.
  21. System nach Anspruch 3, dadurch gekennzeichnet, daß der erste vorbestimmte Triangulationswinkel kleiner als 20 Grad ist.
EP89900111A 1988-01-29 1988-11-14 Verfahren und vorrichtung zur schnellen, hochauflösenden, dreidimensionalen abbildung eines gegenstandes an einer untersuchungsstation Expired - Lifetime EP0397672B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/150,135 US5024529A (en) 1988-01-29 1988-01-29 Method and system for high-speed, high-resolution, 3-D imaging of an object at a vision station
US150135 1988-01-29
PCT/US1988/004035 WO1989007238A1 (en) 1988-01-29 1988-11-14 Method and system for high-speed, high-resolution, 3-d imaging of an object at a vision station

Publications (2)

Publication Number Publication Date
EP0397672A1 EP0397672A1 (de) 1990-11-22
EP0397672B1 true EP0397672B1 (de) 1995-01-25

Family

ID=22533252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89900111A Expired - Lifetime EP0397672B1 (de) 1988-01-29 1988-11-14 Verfahren und vorrichtung zur schnellen, hochauflösenden, dreidimensionalen abbildung eines gegenstandes an einer untersuchungsstation

Country Status (8)

Country Link
US (2) US5024529A (de)
EP (1) EP0397672B1 (de)
JP (1) JPH03500332A (de)
BR (1) BR8807464A (de)
CA (1) CA1287486C (de)
DE (1) DE3852890T2 (de)
ES (1) ES2012221A6 (de)
WO (1) WO1989007238A1 (de)

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179287A (en) * 1990-07-06 1993-01-12 Omron Corporation Displacement sensor and positioner
NL9002869A (nl) * 1990-12-27 1992-07-16 Philips Nv Inrichting voor het optisch meten van de hoogte van een oppervlak.
US5309222A (en) * 1991-07-16 1994-05-03 Mitsubishi Denki Kabushiki Kaisha Surface undulation inspection apparatus
US5237167A (en) * 1991-12-18 1993-08-17 Eastman Kodak Company Autofocussing system having anamorphic optics
JP2943499B2 (ja) * 1992-04-22 1999-08-30 日本電気株式会社 高さ測定方法および装置
US5412420A (en) * 1992-10-26 1995-05-02 Pheno Imaging, Inc. Three-dimensional phenotypic measuring system for animals
US5652658A (en) * 1993-10-19 1997-07-29 View Engineering, Inc. Grid array inspection system and method
US6407817B1 (en) 1993-12-20 2002-06-18 Minolta Co., Ltd. Measuring system with improved method of reading image data of an object
US5668631A (en) * 1993-12-20 1997-09-16 Minolta Co., Ltd. Measuring system with improved method of reading image data of an object
US5684582A (en) * 1994-03-18 1997-11-04 Lucid Technologies, Inc. Spectrophotometry
US5742389A (en) * 1994-03-18 1998-04-21 Lucid Technologies Inc. Spectrophotometer and electro-optic module especially suitable for use therein
US5654799A (en) * 1995-05-05 1997-08-05 Measurex Corporation Method and apparatus for measuring and controlling the surface characteristics of sheet materials such as paper
FR2735859B1 (fr) * 1995-06-23 1997-09-05 Kreon Ind Procede d'acquisition et de numerisation d'objets au travers d'une paroi transparente et systeme de mise en oeuvre d'un tel procede
US5666325A (en) * 1995-07-31 1997-09-09 Nordson Corporation Method and apparatus for monitoring and controlling the dispensing of materials onto a substrate
US20010041843A1 (en) * 1999-02-02 2001-11-15 Mark Modell Spectral volume microprobe arrays
US5644141A (en) * 1995-10-12 1997-07-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus and method for high-speed characterization of surfaces
US6141105A (en) 1995-11-17 2000-10-31 Minolta Co., Ltd. Three-dimensional measuring device and three-dimensional measuring method
US6028671A (en) * 1996-01-31 2000-02-22 General Scanning, Inc. Method and system for suppressing unwanted reflections in an optical system
US6049385A (en) 1996-06-05 2000-04-11 Minolta Co., Ltd. Three dimensional measurement system and pickup apparatus
US5859924A (en) * 1996-07-12 1999-01-12 Robotic Vision Systems, Inc. Method and system for measuring object features
CN1609593B (zh) * 1996-08-16 2012-04-25 Ge保健尼亚加拉公司 用于分析井板、凝胶和斑点的数字成像系统
US5815272A (en) * 1996-10-23 1998-09-29 Harding; Kevin G. Filter for laser gaging system
JP3873401B2 (ja) * 1996-11-19 2007-01-24 コニカミノルタセンシング株式会社 3次元計測システム
US6556783B1 (en) * 1997-01-16 2003-04-29 Janet L. Gelphman Method and apparatus for three dimensional modeling of an object
US6118540A (en) * 1997-07-11 2000-09-12 Semiconductor Technologies & Instruments, Inc. Method and apparatus for inspecting a workpiece
US5956134A (en) * 1997-07-11 1999-09-21 Semiconductor Technologies & Instruments, Inc. Inspection system and method for leads of semiconductor devices
US6134013A (en) * 1997-09-15 2000-10-17 Optimet, Optical Metrology Ltd. Optical ball grid array inspection system
US6072898A (en) 1998-01-16 2000-06-06 Beaty; Elwin M. Method and apparatus for three dimensional inspection of electronic components
US6366357B1 (en) * 1998-03-05 2002-04-02 General Scanning, Inc. Method and system for high speed measuring of microscopic targets
US6098031A (en) * 1998-03-05 2000-08-01 Gsi Lumonics, Inc. Versatile method and system for high speed, 3D imaging of microscopic targets
US6233049B1 (en) * 1998-03-25 2001-05-15 Minolta Co., Ltd. Three-dimensional measurement apparatus
US6181472B1 (en) * 1998-06-10 2001-01-30 Robotic Vision Systems, Inc. Method and system for imaging an object with a plurality of optical beams
US6424422B1 (en) * 1998-06-18 2002-07-23 Minolta Co., Ltd. Three-dimensional input device
WO2000003198A1 (en) * 1998-07-08 2000-01-20 Ppt Vision, Inc. Machine vision and semiconductor handling
US7353954B1 (en) 1998-07-08 2008-04-08 Charles A. Lemaire Tray flipper and method for parts inspection
US6956963B2 (en) * 1998-07-08 2005-10-18 Ismeca Europe Semiconductor Sa Imaging for a machine-vision system
DE19849793C1 (de) * 1998-10-28 2000-03-16 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur berührungslosen Erfassung von Unebenheiten in einer gewölbten Oberfläche
DE19855478B4 (de) * 1998-12-01 2006-01-12 Steinbichler Optotechnik Gmbh Verfahren und Vorrichtung zur optischen Erfassung einer Kontrastlinie
US6553138B2 (en) 1998-12-30 2003-04-22 New York University Method and apparatus for generating three-dimensional representations of objects
US6483345B1 (en) * 1999-06-23 2002-11-19 Nortel Networks Limited High speed level shift circuit for low voltage output
US6788411B1 (en) 1999-07-08 2004-09-07 Ppt Vision, Inc. Method and apparatus for adjusting illumination angle
US7034272B1 (en) 1999-10-05 2006-04-25 Electro Scientific Industries, Inc. Method and apparatus for evaluating integrated circuit packages having three dimensional features
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US6956348B2 (en) 2004-01-28 2005-10-18 Irobot Corporation Debris sensor for cleaning apparatus
DE10026830A1 (de) * 2000-05-30 2001-12-06 Zeiss Carl Jena Gmbh Optischer Sensor zur Messung des Abstands und/oder der Neigung einer Fläche
US6501554B1 (en) 2000-06-20 2002-12-31 Ppt Vision, Inc. 3D scanner and method for measuring heights and angles of manufactured parts
US6624899B1 (en) * 2000-06-29 2003-09-23 Schmitt Measurement Systems, Inc. Triangulation displacement sensor
US6870611B2 (en) * 2001-07-26 2005-03-22 Orbotech Ltd. Electrical circuit conductor inspection
EP1220596A1 (de) * 2000-12-29 2002-07-03 Icos Vision Systems N.V. Verfahren und Einrichtung zur Lageerfassung der Anschlusskontakte elektronischer Bauelemente
US6690134B1 (en) 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
US7571511B2 (en) 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US7429843B2 (en) 2001-06-12 2008-09-30 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US6750974B2 (en) 2002-04-02 2004-06-15 Gsi Lumonics Corporation Method and system for 3D imaging of target regions
US20030222143A1 (en) * 2002-06-04 2003-12-04 Mitchell Phillip V. Precision laser scan head
US7202965B2 (en) * 2002-07-16 2007-04-10 Stanley Korn Method of using printed forms to transmit the information necessary to create electronic forms
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
EP1652154B1 (de) * 2003-08-01 2008-08-06 Cummins-Allison Corporation Einrichtung und verfahren zum verarbeiten von banknoten
US7030383B2 (en) * 2003-08-04 2006-04-18 Cadent Ltd. Speckle reduction method and apparatus
US7332890B2 (en) 2004-01-21 2008-02-19 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US7535071B2 (en) * 2004-03-29 2009-05-19 Evolution Robotics, Inc. System and method of integrating optics into an IC package
EP1751970A4 (de) * 2004-05-01 2010-04-21 Eliezer Jacob Digitalkamera mit ungleichförmiger bildauflösung
EP1776623B1 (de) 2004-06-24 2011-12-07 iRobot Corporation Fernbediente ablaufsteuerung und verfahren für eine autonome robotervorrichtung
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8670866B2 (en) 2005-02-18 2014-03-11 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US7620476B2 (en) 2005-02-18 2009-11-17 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US7345752B1 (en) * 2005-06-22 2008-03-18 Kla-Tencor Technologies Corp. Multi-spot illumination and collection optics for highly tilted wafer planes
US7385688B1 (en) 2005-06-22 2008-06-10 Kla-Tencor Technologies Corp. Multi-spot illumination and collection optics for highly tilted wafer planes
US7365862B2 (en) * 2005-10-24 2008-04-29 General Electric Company Methods and apparatus for inspecting an object
EP2816434A3 (de) 2005-12-02 2015-01-28 iRobot Corporation Roboter mit autonomem Wirkungsbereich
EP2466411B1 (de) 2005-12-02 2018-10-17 iRobot Corporation Robotersystem
ES2623920T3 (es) 2005-12-02 2017-07-12 Irobot Corporation Sistema de robot.
ES2334064T3 (es) 2005-12-02 2010-03-04 Irobot Corporation Robot modular.
KR101300492B1 (ko) 2005-12-02 2013-09-02 아이로보트 코퍼레이션 커버리지 로봇 이동성
US7483151B2 (en) * 2006-03-17 2009-01-27 Alpineon D.O.O. Active 3D triangulation-based imaging method and device
US7564544B2 (en) * 2006-03-22 2009-07-21 3i Systems Corporation Method and system for inspecting surfaces with improved light efficiency
EP2548492B1 (de) 2006-05-19 2016-04-20 iRobot Corporation Müllentfernung aus Reinigungsrobotern
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
WO2008124397A1 (en) 2007-04-03 2008-10-16 David Fishbaine Inspection system and method
KR101345528B1 (ko) 2007-05-09 2013-12-27 아이로보트 코퍼레이션 자동 로봇
JP5027735B2 (ja) * 2007-05-25 2012-09-19 サッポロビール株式会社 発泡性アルコール飲料の製造方法
CN101413789B (zh) * 2007-10-18 2010-09-29 鸿富锦精密工业(深圳)有限公司 表面轮廓检测装置及其检测方法
WO2009063670A1 (ja) * 2007-11-14 2009-05-22 Hamamatsu Photonics K.K. レーザ加工装置およびレーザ加工方法
RU2008101723A (ru) * 2008-01-16 2009-07-27 ООО Крейф (RU) Способ ввода с помощью дистанционного указателя, комплекс дистанционный указатель его реализующий и способ идентификации с их помощью
US20100226114A1 (en) * 2009-03-03 2010-09-09 David Fishbaine Illumination and imaging system
WO2011103198A1 (en) 2010-02-16 2011-08-25 Irobot Corporation Vacuum brush
US8314938B2 (en) * 2010-07-30 2012-11-20 Canon Kabushiki Kaisha Method and apparatus for measuring surface profile of an object
US8416403B2 (en) 2010-10-29 2013-04-09 GII Acquisitiom, LLC Method and system for high-speed, high-resolution 3-D imaging of manufactured parts of various sizes
US10088431B2 (en) 2011-05-17 2018-10-02 Gii Acquisition, Llc Method and system for optically inspecting headed manufactured parts
US10094785B2 (en) 2011-05-17 2018-10-09 Gii Acquisition, Llc Method and system for optically inspecting headed manufactured parts
US9575013B2 (en) 2011-05-17 2017-02-21 Gii Acquisition, Llc Non-contact method and system for inspecting a manufactured part at an inspection station having a measurement axis
US9370799B2 (en) 2011-05-17 2016-06-21 Gii Acquisition, Llc Method and system for optically inspecting a manufactured part at a single inspection station having a measurement axis
US9228957B2 (en) 2013-05-24 2016-01-05 Gii Acquisition, Llc High speed method and system for inspecting a stream of parts
US9697596B2 (en) 2011-05-17 2017-07-04 Gii Acquisition, Llc Method and system for optically inspecting parts
US9042963B2 (en) * 2012-01-09 2015-05-26 Given Imaging Ltd. System and method for acquiring images from within a tissue
AU2013284446B2 (en) 2012-06-27 2017-07-13 Pentair Water Pool And Spa, Inc. Pool cleaner with laser range finder system and method
GB2506106A (en) * 2012-08-14 2014-03-26 Light Blue Optics Ltd Touch sensing systems using a pair of beam deflectors controlled in tandem
US8993914B2 (en) 2012-12-14 2015-03-31 Gii Acquisition, Llc High-speed, high-resolution, triangulation-based, 3-D method and system for inspecting manufactured parts and sorting the inspected parts
US9486840B2 (en) * 2013-05-24 2016-11-08 Gii Acquisition, Llc High-speed, triangulation-based, 3-D method and system for inspecting manufactured parts and sorting the inspected parts
US9539619B2 (en) 2013-05-24 2017-01-10 Gii Acquisition, Llc High speed method and system for inspecting a stream of parts at a pair of inspection stations
US10207297B2 (en) 2013-05-24 2019-02-19 GII Inspection, LLC Method and system for inspecting a manufactured part at an inspection station
US10300510B2 (en) * 2014-08-01 2019-05-28 General Inspection Llc High speed method and system for inspecting a stream of parts
TWI595445B (zh) * 2016-08-31 2017-08-11 致茂電子股份有限公司 抗雜訊之立體掃描系統
EP3324194B1 (de) * 2016-11-22 2019-06-26 Anton Paar GmbH Abbildung eines spalts zwischen probe und sonde eines rastersondenmikroskops in einer im wesentlichen horizontalen seitenansicht
ES2907575T3 (es) * 2017-02-28 2022-04-25 Phenospex B V Procedimiento para caracterizar un objeto
CN107218903B (zh) * 2017-05-09 2019-05-17 中国科学院上海光学精密机械研究所 隐性结构光三维成像方法
EP3441712A1 (de) * 2017-08-08 2019-02-13 Klingelnberg AG Koordinaten-messvorrichtung mit optischem sensor und entsprechendes verfahren
CN111521993B (zh) * 2020-05-27 2023-07-28 深圳力策科技有限公司 一种无源纳米天线阵列接收器及三维成像系统
WO2021237506A1 (zh) 2020-05-27 2021-12-02 深圳力策科技有限公司 一种无源纳米天线阵列接收器及三维成像系统
FR3139895A1 (fr) 2022-09-16 2024-03-22 Constellium Neuf Brisach Dispositif et procédé de contrôle de planéité d’une tôle métallique.

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355904A (en) * 1978-09-25 1982-10-26 Balasubramanian N Optical inspection device for measuring depthwise variations from a focal plane
US4299491A (en) * 1979-12-11 1981-11-10 United Technologies Corporation Noncontact optical gauging system
US4473750A (en) * 1980-07-25 1984-09-25 Hitachi, Ltd. Three-dimensional shape measuring device
US4534650A (en) * 1981-04-27 1985-08-13 Inria Institut National De Recherche En Informatique Et En Automatique Device for the determination of the position of points on the surface of a body
US4627734A (en) * 1983-06-30 1986-12-09 Canadian Patents And Development Limited Three dimensional imaging method and device
JPS60117102A (ja) * 1983-11-30 1985-06-24 Hitachi Ltd 溶接線倣い検出装置
JPS61169822A (ja) * 1985-01-23 1986-07-31 Hoya Corp 直交偏波型光周波数シフタ
US4643578A (en) * 1985-03-04 1987-02-17 Robotic Vision Systems, Inc. Arrangement for scanned 3-D measurement
US4732485A (en) * 1985-04-17 1988-03-22 Olympus Optical Co., Ltd. Optical surface profile measuring device
US4798469A (en) * 1985-10-02 1989-01-17 Burke Victor B Noncontact gage system utilizing reflected light
US4796997A (en) * 1986-05-27 1989-01-10 Synthetic Vision Systems, Inc. Method and system for high-speed, 3-D imaging of an object at a vision station
US4758093A (en) * 1986-07-11 1988-07-19 Robotic Vision Systems, Inc. Apparatus and method for 3-D measurement using holographic scanning

Also Published As

Publication number Publication date
JPH0585845B2 (de) 1993-12-09
DE3852890D1 (de) 1995-03-09
DE3852890T2 (de) 1995-08-03
BR8807464A (pt) 1990-05-15
WO1989007238A1 (en) 1989-08-10
JPH03500332A (ja) 1991-01-24
EP0397672A1 (de) 1990-11-22
USRE36560E (en) 2000-02-08
CA1287486C (en) 1991-08-13
ES2012221A6 (es) 1990-03-01
US5024529A (en) 1991-06-18

Similar Documents

Publication Publication Date Title
EP0397672B1 (de) Verfahren und vorrichtung zur schnellen, hochauflösenden, dreidimensionalen abbildung eines gegenstandes an einer untersuchungsstation
EP1579171B1 (de) Digitalisierungssystem mit einem laser für zahntechnische anwendungen
US4796997A (en) Method and system for high-speed, 3-D imaging of an object at a vision station
US5546189A (en) Triangulation-based 3D imaging and processing method and system
US5812269A (en) Triangulation-based 3-D imaging and processing method and system
US6825454B2 (en) Automatic focusing device for an optical appliance
EP0997748B1 (de) Chromatischer optischer Sensor zum Entfernungsmessen
US4708483A (en) Optical measuring apparatus and method
JP2510786B2 (ja) 物体の形状検出方法及びその装置
US5329358A (en) Device for optically measuring the height of a surface
US4657393A (en) Pattern optimization when measuring depth to a surface using lens focusing
JPS61111402A (ja) 位置検出装置
CA2034017C (en) Scanning device for optically scanning a surface along a line
CN102346384B (zh) 将硅片调整至最佳焦平面的方法及其曝光装置
GB2204947A (en) Method and system for high speed, 3-D imaging of an object at a vision station
US5631738A (en) Laser ranging system having reduced sensitivity to surface defects
Horijon et al. Optical system of an industrial 3D laser scanner for solder paste inspection
JP4176320B2 (ja) 走査光学系ビーム測定装置および方法
CN101329513B (zh) 双扫描式硅片调焦调平测量装置及系统
KR0138313B1 (ko) 레이저를 이용한 비접촉식 높이 측정장치
JP2597711B2 (ja) 3次元位置測定装置
Costa Use of CCD arrays versus PSD detectors in an optical triangulation-based microtopographer
KR100482586B1 (ko) 차량 투영면적 측정 시스템
JP2004327818A (ja) 固体撮像素子の反り量の測定方法、及び反り量の測定方法
JP3182746B2 (ja) 位置検出装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17Q First examination report despatched

Effective date: 19921113

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950125

REF Corresponds to:

Ref document number: 3852890

Country of ref document: DE

Date of ref document: 19950309

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021017

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021106

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021202

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040602

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST