Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN1997324 A
Publication typeApplication
Application numberCN 200580013836
PCT numberPCT/US2005/007701
Publication date11 Jul 2007
Filing date8 Mar 2005
Priority date19 Mar 2004
Also published asCA2560187A1, CA2560187C, CN1997324B, EP1729666A2, EP1729666A4, EP1729666B1, US7241142, US20050208449, WO2005094436A2, WO2005094436A3
Publication number200580013836.4, CN 1997324 A, CN 1997324A, CN 200580013836, CN-A-1997324, CN1997324 A, CN1997324A, CN200580013836, CN200580013836.4, PCT/2005/7701, PCT/US/2005/007701, PCT/US/2005/07701, PCT/US/5/007701, PCT/US/5/07701, PCT/US2005/007701, PCT/US2005/07701, PCT/US2005007701, PCT/US200507701, PCT/US5/007701, PCT/US5/07701, PCT/US5007701, PCT/US507701
Inventors阿米尔阿博尔法西, 安德鲁C比尔斯
Applicant矫正技术公司
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Root-based tooth moving sequencing
CN 1997324 A
Abstract
The invention provides a system for repositioning the teeth of a patient, which comprises a device for providing a digital model of each tooth of the patient; a device for determining one or more root parameters from the digital model; and a device for digitally moving one or more tooth models and evaluating a treatment outcome based on one or more root movement clinical constraints.
Claims(27)  translated from Chinese
1.一种计算机实现的矫正患者牙齿的方法,包括:为患者的每颗牙齿提供数字模型;根据所述数字模型确定一个或多个牙根参数;以及数字地移动一个或多个牙齿模型,并基于一个或多个牙根移动的临床约束来评估一个或多个治疗量度。 Correction patients teeth A computer-implemented method, comprising: providing a patient digital model of each tooth; determining one or more parameters of the digital model root; and digitally moving one or more tooth models, and based on one or more root movement clinical constraints to evaluate one or more therapeutic measure.
2.根据权利要求1所述的方法,进一步包括生成多个具有选定几何结构以逐步矫正牙齿的器械,其中所述器械包括具有空腔的聚合物壳体,并且其中连续壳体的空腔具有不同的几何结构,将所述几何结构的形状调整为容纳牙齿和弹性地将牙齿从一个排列矫正为后续排列。 2. A method according to claim 1, further comprising generating a plurality of selected geometry having a stepwise straightening teeth instrument, wherein the instrument comprises a polymeric shell having a cavity, and wherein the continuous cavity of the housing having different geometries, the geometry of the shape of the teeth and is adjusted to accommodate the resiliently arranged teeth from one arrangement for subsequent correction.
3.根据权利要求1所述的方法,其中所述临床约束包括牙根移动临床约束。 3. The method according to claim 1, wherein the clinical constraints include root moving clinical constraints.
4.根据权利要求1所述的方法,进一步包括确定每个牙齿模型的表面积。 4. The method according to claim 1, further comprising determining the surface area of each tooth of the model.
5.根据权利要求1所述的方法,进一步包括:确定牙弓上所有要移动的牙齿模型的表面积的第一总和;确定所述牙弓上所有牙齿模型的表面积的第二总和;在移动所述牙齿模型的同时满足预定的面积约束。 In the movement; determining a first sum of the surface area of the arch of all tooth models to be moved; determining a second sum of the surface areas of all tooth models on the arch of: 5. The method according to claim 1, further comprising while said tooth model satisfies a predetermined area constraint.
6.根据权利要求5所述的方法,进一步包括将所述第一总和限制为小于所述第二总和的一半。 6. The method according to claim 5, further comprising the sum of said first limit is less than the sum of the second half.
7.根据权利要求1所述的方法,确定每个牙齿模型的体积。 7. The method according to claim 1, determine the volume of each tooth of the model.
8.根据权利要求1所述的方法,进一步包括:确定牙弓上所有要移动的牙齿模型的体积的第一总和;确定所述牙弓上所有牙齿模型的体积的第二总和;在移动所述牙齿模型的同时满足预定的体积约束。 In the movement; determining a first sum of the volumes of the arch of all tooth models to be moved; determining a second sum of the volumes of all tooth models on the arch of: 8. The method according to claim 1, further comprising said dental model while satisfying a predetermined volume constraint.
9.根据权利要求8所述的方法,进一步包括将所述第一总和限制为小于所述第二总和的一半。 9. The method according to claim 8, further comprising the sum of said first limit is less than the sum of the second half.
10.根据权利要求2所述的方法,其中器械的序列包括矫正器配置的序列,所述矫正器包括支架和牙弓线。 10. The method according to claim 2, wherein the sequence comprises a correction device configuration sequence, the appliance comprises a bracket and arch wire.
11.根据权利要求2所述的方法,其中器械的序列包括聚合物壳体的序列,所述聚合物壳体通过将聚合物片配合到与患者牙齿对应的正模型上来制造。 11. The method according to claim 2, wherein the device comprises a sequence of sequences polymeric shell, the polymer shell by the polymer sheet to fit the patient with a positive model corresponding to the teeth up manufacturing.
12.根据权利要求1所述的方法,其中器械的序列包括聚合物壳体的序列,所述聚合物壳体根据数字模型进行立体造型来制造。 12. The method according to claim 1, wherein the device comprises a sequence of sequences polymeric shell, the polymer shell three-dimensional shape is manufactured according to the digital model.
13.根据权利要求1所述的方法,其中所述临床约束包括牙齿的最大位移速率,牙齿上的最大的力,以及牙齿的期望结果位置。 13. The method according to claim 1, wherein the clinical constraints include a maximum rate of displacement of the teeth, the teeth on the maximum force, as well as the desired result of the position of the teeth.
14.根据权利要求13所述的方法,其中所述最大的力是线性力或扭转力。 14. The method according to claim 13, wherein said maximum force is a linear force or a torsional force.
15.根据权利要求13所述的方法,其中所述最大位移速率是线性位移速率或角位移速率。 15. The method according to claim 13, wherein the displacement rate is the maximum rate of linear displacement or angular displacement rate.
16.根据权利要求1所述的方法,其中所述临床约束包括牙齿的最大位移速率。 16. The method according to claim 1, wherein the clinical constraints include a maximum rate of displacement of teeth.
17.根据权利要求1所述的方法,其中所述临床约束包括牙齿的最大线性位移速率。 17. The method according to claim 1, wherein the clinical constraints include a maximum rate of linear displacement of a tooth.
18.根据权利要求1所述的方法,其中所述临床约束包括牙齿的最大转动位移速率。 18. The method according to claim 1, wherein the clinical constraints include a maximum rate of rotational displacement of a tooth.
19.根据权利要求1所述的方法,其中器械序列的最后一个器械是结束并维持牙齿位置的定位器。 19. The method according to claim 1, wherein the sequence of the last instrument device and maintaining tooth positions are end locator.
20.根据权利要求1所述的方法,进一步包括确定所述牙齿模型的一部分的表面积。 20. The method according to claim 1, further comprising determining the surface area of a portion of the dental model.
21.根据权利要求1所述的方法,确定所述牙齿模型的一部分的体积。 21. The method according to claim 1, determining the volume of a portion of the dental model.
22.根据权利要求1所述的方法,进一步包括:确定牙弓上所有要移动的牙齿模型的牙根表面积的第一总和;确定所述牙弓上所有牙齿模型的牙根表面积的第二总和;在移动所述牙齿模型的同时满足预定的面积约束。 22. The method according to claim 1, further comprising: determining a first sum of the arch to be moved all the tooth root surface area of the model; determining the sum of the second dental arch model all root surface area; the while moving the tooth models satisfies a predetermined area constraint.
23.根据权利要求22所述的方法,进一步包括将所述第一总和限制为小于所述第二总和的一半。 23. The method according to claim 22, further comprising the sum of said first limit is less than the sum of the second half.
24.根据权利要求1所述的方法,确定每个牙齿模型的牙根体积。 24. The method according to claim 1, determining the volume of each tooth root model.
25.根据权利要求1所述的方法,进一步包括:确定牙弓上所有要移动的牙齿模型的牙根体积的第一总和;确定所述牙弓上所有牙齿模型的牙根体积的第二总和;在移动所述牙齿模型的同时满足预定的体积约束。 25. The method according to claim 1, further comprising: determining a first sum of the volumes of all arch root tooth models to be moved; determining a second sum of the volumes of all the tooth root dental arch model; in while moving the tooth models satisfies a predetermined volume constraint.
26.根据权利要求1所述的方法,确定所述牙齿模型的一部分所位移的体积。 26. The method according to claim 1, determining the volume of a portion of the tooth model by displacement.
27.根据权利要求1所述的方法,进一步包括:确定牙弓上所有要移动的牙齿模型的位移体积的第一总和;确定所述牙弓上所有牙齿模型的牙根体积的第二总和;在移动所述牙齿模型的同时满足预定的体积约束。 27. The method according to claim 1, further comprising: determining a first sum of the displacement volume of the arch all tooth models to be moved; determining a second sum of the volumes of all the tooth root dental arch model; in while moving the tooth models satisfies a predetermined volume constraint.
Description  translated from Chinese
基于牙根的牙齿移动定序 Root tooth movement based sequencer

技术领域 Technical Field

本发明涉及计算畸齿矫正术(computational orthodontics)。 The present invention relates to the calculation of Orthodontics (computational orthodontics).

背景技术 Background

在畸齿矫正治疗中,使用多种器械中的任意器械将患者的牙齿从初始位置移动到最终位置。 In orthodontic treatment, using a variety of devices in any instrument the patient's teeth move from the initial position to a final position. 根据治疗的阶段,器械在牙齿上施加适当的力使一颗或多颗牙齿移动或固定在正确位置。 Depending on the phase of treatment, equipment applying an appropriate force to move one or more teeth or fixed in the correct position on the teeth.

发明内容 DISCLOSURE

此处公开的系统和方法用于:通过提供患者的每颗牙齿的数字模型来矫正(reposition)患者的牙齿;根据该数字模型确定一个或多个牙根参数;以及数字地移动一个或多个牙齿模型,并基于一个或多个牙根移动临床约束来评估治疗结果。 The systems and methods disclosed herein for: by providing a digital model of a patient to correct each tooth (reposition) a patient's teeth; determining one or more parameters of the digital model root; and digitally moving one or more teeth model, and based on one or more of the root move bound to assess the clinical treatment outcomes.

本发明还提供了用来限定在将牙齿从初始牙齿排列矫正到最终牙齿排列的处理的步骤中器械配置的方法和设备。 The present invention also provides for defining teeth from an initial tooth arrangement to a method and apparatus for correcting steps of the process of the final tooth arrangement in the instrument configuration. 本发明可以操作为限定如何通过一系列器械或通过对配置为逐步矫正各个牙齿的器械的一系列调整来完成矫正。 The present invention can be operated through a series of instruments to define how, or by the configuration for the gradual correction of each tooth devices to complete a series of adjustments to correct. 本发明可以有利地应用于规定一系列器械,这些器械形成具有容纳牙齿的空腔的聚合物壳体,该聚合物壳体就是上述美国专利No.5,975,893中描述的那种壳体。 The present invention can be advantageously applied to a predetermined range of devices, these devices form a polymer having a housing accommodating a tooth cavity, the case that the above-described polymer casing is described in U.S. Patent No.5,975,893.

通过使用根据本发明而规定的器械进行一系列逐步的位置调整,将患者的牙齿从最初的牙齿排列矫正为最终的牙齿排列。 By using the device of the present invention and a series of stepwise predetermined position adjustment, the correction of the patient's teeth from the initial tooth arrangement to a final tooth arrangement. 在一种实现中,本发明用来规定上述聚合物壳体器械的形状。 In one implementation, the present invention is used to define the shape of the polymeric shell instrument. 一系列器械中的第一器械将选取一种能将牙齿从最初的牙齿排列矫正为第一中间排列的几何结构。 The series of devices to choose a first device capable of teeth from the initial tooth arrangement to a first intermediate arrangement to correct geometry. 当达到或实现第一中间排列时,第一器械就不能再用了,接下来一个或多个另外的(中间)器械会被相继安放到牙齿上。 When you reach or achieve a first intermediate arrangement, the first instrument will not be used again, then one or more additional (intermediate) instrument will be successively placed on the teeth. 最后一个器械要选取一种能将牙齿从最后一个中间排列逐渐矫正为期望的最终牙齿排列的几何结构。 The last instrument to be able to choose a correct arrangement of teeth gradually into the desired final tooth arrangement of geometry from the last intermediate.

本发明对器械进行规定,使得它们施加具有可接受水平的力,造成的不适仅在可接受的范围内,并且在一段可接受的时间内实现期望的牙齿矫正增量。 Devices of the present invention is predetermined, so that they have an acceptable level of force is applied, causing discomfort in the acceptable range, and to achieve the desired increase in orthodontics within an acceptable period of time only. 本发明可以实现为与计算畸齿矫正系统的其他部分相互作用,特别是与路径限定模块相互作用,这种模块计算牙齿在治疗期间矫正的路径。 The present invention may be implemented as part of the calculation interact with other orthodontic systems, especially with the path-defining module interaction, this module calculates the path of the teeth during treatment Correction.

该系统的优点可以包括下面的一项或多项:根据本发明而规定的器械施加的力不会超过畸齿矫正所能接受的水平,对患者造成的不适不会超出可接受的量,以及在一段可接受的时间内实现期望的牙齿矫正增量。 The advantage of this system may include one or more of the following: the force exerted by the instrument according to the present invention and the provisions of orthodontics can not exceed acceptable levels, causing the patient discomfort does not exceed the acceptable amount, and to achieve the desired period of time acceptable orthodontic increment. 本发明通过保证所考虑的器械能够在用户可选的有效的畸齿矫正实践的约束之内实现所提出的路径,可以用于改进用在畸齿矫正治疗中限定牙齿路径的计算的或手工的处理。 The present invention is considered by guarantee instrument to achieve the proposed path within the user selectable effective orthodontic practice be bound, it can be used to improve orthodontic treatment used in the calculation as defined in the path of the teeth or manual deal with. 使用本发明进行校准器设计使得设计者(人工或者自动化)可以针对特定约束精准地调节校准器的性能。 Use of the present invention is designed to calibrate allows designers (manually or automated) can precisely adjust the calibrator's performance against specific constraints. 同样,可以实现对校准器效果的更精确的畸齿矫正控制,而且可以比其他情况下更好地预测校准器的行为。 Similarly, the effect can be achieved on the calibrator more precise control of orthodontics, and can better predict the behavior of the calibrator than other cases. 另外,用计算方式限定校准器的几何结构方便了校准器在数字控制下的直接制造。 In addition, the calculation is defined by the geometry of the calibrator facilitates the calibration directly manufactured under digital control.

在下面的附图和描述中将阐明本发明的一个或多个实施例的细节。 In the following drawings and description of the invention in elucidating one or more embodiments of. 根据说明书、附图和权利要求,本发明的其他特征和优点将变得明显。 According to the specification, drawings and claims, other features and advantages of the invention will become apparent.

附图说明 Brief Description

图1是根据本发明的规定治疗过程的处理的流程图,该处理包括用于计算校准器形状的子处理。 Figure 1 is a flowchart in accordance with the present invention the treatment process, the process includes a calibration device for calculating the shape of the sub-process.

图2是用于计算校准器形状的处理的流程图。 Figure 2 is a flow chart for calculating the shape of the calibration process.

图3是用于创建有限元模型的子处理的流程图。 3 is a flowchart for creating finite element models child process.

图4是用于计算校准器改动的子处理的流程图。 4 is a flowchart for calculating the calibrator sub process changes.

图5A是用于计算校准器形状改动的子处理的流程图。 5A is a flowchart showing the calculation of calibration changes shape sub processing.

图5B是用于计算校准器形状改动的子处理的流程图。 5B is a flowchart showing the calculation of calibration changes shape sub processing.

图5C是用于计算校准器形状改动的子处理的流程图。 5C is a flowchart of calculation of the calibration shape changes for a sub-process.

图5D是说明图5B中子处理的操作的示意图。 5D is a schematic diagram illustrating the processing of FIG. 5B neutron operation.

图6是用于计算成组的校准器的形状的处理的流程图。 6 is a flowchart for calculating groups of the shape of the calibration process.

图7是牙根统计模型的示例性示图。 FIG. 7 is a diagram of an exemplary statistical root model.

图8示出了牙根建模的示例性示图。 Figure 8 shows the root exemplary diagram modeling.

图9示出了牙齿的CT(计算机断层摄影)扫描的示例性示图。 Figure 9 shows a dental CT (computed tomography) scans exemplary diagram.

图10示出了显示牙齿的示例性用户界面。 Figure 10 shows an exemplary display of a user interface teeth.

图11示出了带有牙根数据的图10的示例性示图。 Figure 11 shows a diagram of an exemplary data with root 10 of FIG.

图12示出了另一组与所计划的牙齿移动有关的量度。 Figure 12 shows a measure of tooth movement related to another group plan.

图13示出了用于基于牙根数据对牙齿进行治疗的示例性处理。 Figure 13 shows a data based on the tooth root treatment exemplary process.

在各附图中,相似的参考标号和标记表示相似的单元。 In the drawings, like reference numerals and denote similar elements.

具体实施方式 DETAILED DESCRIPTION

在本发明中,提供了用于限定用来逐步移动牙齿的器械配置或对器械配置的改动的系统和方法。 In the present invention, there is provided a system and method for defining instruments to gradually move the teeth configuration or changes to the instrument configuration. 牙齿移动指那些通常与畸齿矫正治疗有关联的移动,包括相对于垂直中心线的全部三个正交方向上的平移,牙齿中心线在两个畸齿矫正方向(“牙根成角”和“转矩”)上的转动,以及围绕中心线的转动。 Those tooth movement and orthodontic treatment is usually associated movement, including with respect to the translation of all three orthogonal directions perpendicular to the center line on the tooth centerline in the two orthodontic directions ("root angulation" and " rotational torque ") on and around the center line of the rotation.

图1说明了为对患者的畸齿矫正治疗限定并生成矫正器械的示例性处理100。 Figure 1 illustrates the patient's orthodontic treatment define and generate orthotic exemplary process 100. 如下面所述,处理100包括本发明的方法,并且适用于本发明的设备。 As described below, the present invention includes a method 100 handle and is suitable for apparatus of the present invention. 该处理的计算步骤可以有利地实现为用于在一台或多台常规数字计算机上执行的计算机程序模块。 Calculation step in the process can advantageously be realized as a computer program modules for execution on one or more conventional digital computer.

作为初始步骤,要获取患者牙齿或口腔组织的模子或扫描(步骤110)。 As an initial step, to get the patient's teeth or mouth tissue mold or scan (step 110). 该步骤通常涉及为患者的牙齿和牙龈进行塑模(cast),并且可能涉及取蜡咬模(wax bite),直接接触扫描,X射线成像,断层摄影,超声波成像,以及用于获取关于牙齿、颌、牙龈和其他与畸齿矫正有关的组织的位置和结构的信息的其他方法。 This step usually involves the patient's teeth and gums mold (cast), and may involve taking wax bites mold (wax bite), direct contact scanning, X-ray imaging, tomography, ultrasound imaging, and for obtaining on the teeth, Other methods of information location and structure of the jaw, gums and other orthodontic-related organizations. 根据如此得到的信息就可以得到表示患者牙齿和其他组织的初始(也就是治疗前的)排列的数字数据集。 According to the information thus obtained indicating that the patient can get an initial dental and other organizations (ie pre-treatment) digital data set order.

初始数据集可能包括来自扫描操作的原始数据和根据原始数据得来的表示表面模型的数据,初始数据集要经过处理以用分段的方式将组织成分彼此分开(步骤120)。 The initial data set may include raw data from the scanning operation and based on data from the original data obtained shows the surface model of the initial data set to be treated to a stepwise manner with the tissue components apart from each other (step 120). 特别地,在本步骤中,产生数字地表示各个齿冠的数据结构。 In particular, in this step, generate digitally represented the crown of each data structure. 可以有利地生成整个牙齿的数字模型,包括测量或推断出的隐藏面和牙根结构。 It can advantageously generate a digital model of the entire tooth, including measured or inferred hidden surfaces and root structures.

期望的最终牙齿位置,也就是畸齿矫正治疗想要达到的期望和预期的最终结果,可以由临床医生以处方的形式给出,可以根据基本畸齿矫正原理计算得出,或者可以用计算方式从临床处方中推断出来(步骤130)。 The desired final tooth position, that is the end result of orthodontic treatment trying to achieve the desired and expected, can be given in the form prescribed by the clinician, it can be calculated according to the basic principles of orthodontics, or may be calculated inferred from clinical prescription out (step 130). 有了对期望的牙齿最终位置的规定和牙齿本身的数字表示,就可以规定每颗牙齿的最终位置和表面几何结构(步骤140),以便形成牙齿的期望治疗结果的完整模型。 With the provisions of teeth and tooth desired final position own figures indicate, it may provide the final position and geometry of the surface of each tooth (step 140) to form a complete model of the desired therapeutic outcome teeth. 一般而言,在本步骤中,会规定每颗牙齿的位置。 In general, this step will be a predetermined position of each tooth. 本步骤的结果是一组数字数据结构,其表示相对于假设稳定的组织而对所模拟的牙齿进行的在畸齿矫正学上正确的矫正。 The results of this step is a set of digital data structure, which represents the right to correct with respect to the assumption that a stable organization and for the simulation of teeth in Orthodontics. 牙齿和组织都被表示为数字数据。 Teeth and organizations are represented as digital data.

有了每颗牙齿的开始位置和最终位置,接下来该处理为每颗牙齿的运动限定牙齿路径。 With the starting position of each tooth and a final position, then the process of restricting the movement of each tooth tooth paths. 牙齿路径要以整体进行优化,这样牙齿可以以最快的方式移动,以最少的迂回(round-tripping)量将牙齿从其初始位置移动到其期望的最终位置。 Tooth paths To optimize overall, so their teeth can be the fastest way to move with minimal roundabout (round-tripping) amount of tooth movement from its initial position to its desired final position. (迂回指除了直接朝向期望的最终位置这一方向之外,牙齿在任意方向上的任意移动。迂回有时是必需的,以使得牙齿可以彼此交错经过。)要对牙齿路径进行分段。 (Except roundabout means directed towards the desired final position in this direction, the teeth move in any arbitrary direction. Detour sometimes necessary, so that the tooth can pass each other staggered.) To tooth path segments. 对分段进行计算,以使得分段内的每颗牙齿的运动保持在线性平移和转动平移的阈限(threshold limit)之内。 Of the segment is calculated so that each tooth of the segment within the movement remain online translation translational and rotational threshold (threshold limit) within. 这样,每个路径段的终点可以构成临床上可行的矫正,并且分段终点的集合构成了临床上可行的牙齿位置序列,从而序列中一点到下一点的移动不会引起牙齿的碰撞。 Thus, the end of each path segment may constitute clinically feasible correction, and the end of a collection of sub-clinically feasible on the position of the teeth sequences to sequence one point to the next point of collision does not cause movement of teeth.

在一种实现中,使用基于所用器械的性质得出的默认值来对线性平移和转动平移的阈限进行初始化。 In one implementation, the default value is based on the nature of the instruments used to initialize derived linear translational and rotational translation threshold. 更个性化定制的(tailored)极限值可以使用患者特定(patient-specific)的数据来计算。 More customization (tailored) limit may be calculated using the patient specific (patient-specific) data. 还可以基于器械计算的结果对极限值进行更新(步骤170,如下文所述),器械计算可以确定在一条或多条牙齿路径上的一个或多个点上,器械生成的作用于当时的牙齿和组织的配置的力不会影响由一个或多个路径段表示的矫正。 Devices can also be calculated based on the result of the limits to be updated (step 170, as described below), the instrument can determine the calculation of one or more teeth in the path of one or more points, the instrument generates effects at the time of tooth and the organization will not affect the correct configuration of force by one or more path segments represented. 有了该信息,限定分段路径的子处理(步骤150)就可以重新计算路径或受影响的子路径。 With this information, defining segmented paths of sub-processing (step 150), you can recalculate the route or affected sub-paths.

在处理的各阶段,特别是在分段路径已经被限定后,处理可以并且通常会与负责该患者的治疗的临床医生交互(步骤160)。 At each stage of the process, particularly after the segmented paths have been defined, the process can be and often is responsible for the clinician to interact with the patient's treatment (step 160). 与临床医生的交互可以使用客户端处理来实现,该客户端处理可以被编程为从实现了处理100中的其他步骤的服务器计算机或处理处接收牙齿位置和模型以及路径信息。 Interaction with the clinician can use the client process to achieve the client process can be programmed to receive tooth position and model and path information from the implementation of the process in step 100 server computers or other processing office. 客户端处理可以有利地编程为使得临床医生可以显示位置和路径的动态影像,并且使得临床医生可以重新设置一颗或多颗牙齿的最终位置并规定应用于分段路径的约束。 Client process may advantageously be programmed so that the clinician can display the location and path of motion pictures, and so the clinician can reset one or more teeth and a predetermined final position constraint applied to the segmented paths. 如果临床医生进行了任意这样的改动,那么限定分段路径的子处理(步骤150)就会被再次执行。 If a clinician any such changes, the sub-defining segmented paths (step 150) is executed again.

分段牙齿路径和有关联的牙齿位置数据可以用来计算临床可接受的器械配置(或器械配置的连续改动),其将在由路径段规定的步骤中使牙齿在限定的治疗路径上移动(步骤170)。 Segmented tooth paths and associated tooth position data can be used to calculate clinically acceptable instrument configuration (continuous or device configuration changes), which in step path segments defined by the manipulation in the treatment of tooth movement path defined ( Step 170). 每个器械配置代表患者治疗路径上的一个步骤。 Each instrument configuration represents a step on the patient treatment path. 限定和计算这些步骤,使得每个牙齿位置可以通过从由前一离散步骤达到的牙齿位置进行直线牙齿移动或简单转动来到达,并且使得每个步骤中需要的矫正量只会对患者的齿系施加畸齿矫正学上最优的力量(amount of force)。 Define and calculate these steps so that each tooth position can be moved from straight teeth from the previous step to achieve a discrete teeth or simply rotated to reach the position, and make the correction amount required for each step of the patient's dentition only optimal power (amount of force) on applying Orthodontics. 如同路径限定步骤,该器械计算步骤可以包括与临床医生的相互作用,甚至与临床医生的反复的相互作用(步骤160)。 As a path-defining step, the instrument calculating step may include interaction with clinicians, even with repeated clinician interaction (step 160). 下面将更全面地描述实现该步骤的处理200(图2)的操作。 Described more fully below realization process 200 (FIG. 2) of the step operation.

计算了器械限定之后,处理100可以向前继续到制造步骤(步骤180),其中制造该处理所限定的器械,或者产生电子信息或印刷信息,该信息可以被手工处理或自动化处理用来对器械配置或器械配置的改动进行限定。 After calculating the defined equipment, process 100 may continue to forward the manufacturing step (step 180), wherein the process of manufacturing a device as defined, or printed or electronic information generating information that can be processed by hand or automated processing equipment used to configuration or device configuration changes to be limited.

图2说明了实现对上述美国专利No.5,975,893中所描述的那种聚合物壳体校准器的器械计算步骤(图1,步骤170)的处理200。 Figure 2 illustrates the kind of polymer to achieve the above-mentioned housing the calibrator as described in U.S. Patent No.5,975,893 instrument calculation step (FIG. 1, step 170) the process 200. 该处理的输入包括初始校准器形状202,各种控制参数204,以及在当前治疗路径段的终点206处的期望结果牙齿配置。 Enter the initial calibration process includes shape 202, various control parameters 204, as well as the desired result in the end of the current 206 dental treatment path segment configuration. 其他输入包括定位在颌中的牙齿的数字模型、颌组织的模型,以及对初始校准器形状和校准器材料的规定。 Other inputs include the positioning of the teeth in the jaw in the digital model, model jaw organization and shape of the initial calibration and the calibrator material requirements. 在校准器安装到牙齿上的正确位置(步骤210)的情况下,该处理使用这些输入数据创建校准器、牙齿和组织的有限元模型。 In the case of calibrator into the correct position of the teeth (step 210), the processing using these input data to create a calibrator, a finite element model of teeth and organizations. 接下来,处理对校准器、牙齿和组织的复合有限元模型进行有限元分析(步骤220)。 Next, the process of the composite calibrators, teeth and tissue finite element model of the finite element analysis (step 220). 分析一直运行至到达到退出条件为止,此时该处理评估牙齿是否已经到达当前治疗路径段的期望结果位置,或到达足够接近期望结果位置的位置(步骤230)。 Analysis has been running to the exit condition is reached, at which point the process to assess whether the teeth have reached the desired result of the current treatment path segment position, or close enough to reach the desired result of the position of the position (step 230). 如果牙齿没有到达可接受的结果位置,则该处理会计算新的候选校准器形状(步骤240)。 If the tooth does not reach an acceptable position result, the process calculates a new candidate calibrator shape (step 240). 如果牙齿达到了可接受的结果位置,则评估通过有限元分析计算出的牙齿运动,以确定这些运动是否是畸齿矫正学上可接受的(步骤232)。 If the tooth has reached an acceptable position result, the evaluation and analysis of tooth movement calculated by the finite element, in order to determine whether these movements are on Orthodontics acceptable (step 232). 如果这些运动不是畸齿矫正学上可接受的,则该处理还要向前继续到计算新的候选校准器形状(步骤240)。 If these movements are not Orthodontics acceptable, the process continues to move forward but also to calculate the shape of a new candidate calibrator (step 240). 如果这些运动是畸齿矫正学上可接受的,并且牙齿已经到达了可接受的位置,则将当前校准器形状与先前计算出的校准器形状相比较。 If these movements are on Orthodontics acceptable and teeth have reached an acceptable position, the current calibration shape compared with the previously calculated calibration shape. 如果当前形状是目前最好的(判断步骤250),则它被作为目前最好的候选而保存(步骤260)。 If the current shape is the best (decision step 250), then it is rather saved (step 260) as the best candidate. 如果当前形状不是目前最好的,则在可选步骤中将它作为可能的中间结果而保存(步骤252)。 If the current shape is not the best, then it will be an optional step in as a possible intermediate results and stored (step 252). 如果当前校准器形状是目前最好的,则处理会确定它是否好到足以被接受(判断步骤270)。 If the current shape is the best calibration, the process will determine whether it is good enough to be accepted (decision step 270). 如果它好到足以被接受,则处理退出。 If it's good enough to be accepted, the process exits. 否则,处理继续并计算另一个候选形状(步骤240)以便进行分析。 Otherwise, the process continues and calculates another candidate shape (step 240) for analysis.

有限元模型可以用多个厂商提供的计算机程序应用软件来创建。 The computer program application software finite element model can be used to create multiple vendors. 对创建立体几何模型而言,可以使用计算机辅助工程(CAE)或计算机辅助设计(CAD)程序,例如加利福尼州亚圣拉斐尔市(San Rafael)的Autodesk公司提供的AutoCADTM软件产品。 For create three-dimensional geometry, you can use the computer-aided engineering (CAE) or computer-aided design (CAD) programs, such as California State AutoCADTM software products 亚圣拉斐尔 City (San Rafael) of Autodesk companies. 对创建有限元模型并对其进行分析而言,可以使用多个厂商的程序产品,包括爱荷华州(Iowa)科拉维尔市(Coralville)的CADSI公司提供的PolyREM,麻萨诸塞州沃尔瑟姆市(Waltham)的Parametric Technology公司(参数技术公司)提供的Pro/Mechanica仿真软件,俄亥俄州辛辛那提市的StructuralDynamics Research公司(SDRC,结构动力学研究公司)提供的I-DEAS设计软件产品,以及加利福尼亚州洛杉矶市的MacNeal-Schwendler公司提供的MSC/NASTRAN产品。 To create a finite element model and its analysis, the program can use multiple vendors products, including PolyREM Iowa (Iowa) Coralville City (Coralville) of CADSI company provides fertile Massachusetts Ursem City (Waltham) of Parametric Technology Corporation (Parametric Technology Corporation) to provide Pro / Mechanica simulation software, Cincinnati, Ohio StructuralDynamics Research Company (SDRC, Structural Dynamics Research Corporation) provided by I-DEAS software product design, and MSC / NASTRAN product of Los Angeles, California MacNeal-Schwendler companies.

图3示出了创建可用于执行处理200的步骤210(图2)的有限元模型的处理300。 Figure 3 shows a creation that can be used to perform the process of step 200, 210 (FIG. 2) of the FEM model of the process 300. 模型创建处理300的输入包括描述牙齿和组织的输入数据302和描述校准器的输入数据304。 Model creation process 300 includes a description of the input data input data input teeth and tissue 302 and 304 describe the calibrator. 描述牙齿的输入数据302包括牙齿的数字模型;刚性组织结构的数字模型,如果可获得的话;在牙齿嵌入其中并与之相连的基底组织的特定模型不存在时,对模拟该组织的高黏度流体的形状和黏度的规定;以及规定模型单元的不可移动边界的边界条件。 Description of the input data 302 includes teeth tooth digital model; digital model of rigid organizational structure, if available, then; tooth embedded in a specific model substrate and connected organizations which do not exist, to simulate the organization of high-viscosity fluid and the provisions of the model unit of immovable boundary boundary conditions; the shape and viscosity requirements. 在一种实现中,模型单元只包括牙齿的模型、高黏度的嵌入基底流体的模型,以及有效限定容纳所模拟的流体的刚性容器的边界条件。 In one implementation, the model elements include only models of the teeth, the embedded base of high viscosity fluid model, and the boundary conditions effective to define a fluid receiving simulated rigid container.

创建牙齿和组织的初始配置的有限元模型(步骤310),并可选地进行缓存以备处理中后面的迭代使用(步骤320)。 Creating teeth and tissue finite element model of the initial configuration (step 310), and optionally cached for disposal later in the iteration (step 320). 如同对牙齿和组织所做的一样,创建聚合物壳体校准器的有限元模型(步骤330)。 As did with the teeth and tissue, create polymeric shell finite element model of the calibrator (step 330). 该模型的输入数据包括规定制造校准器的材料和校准器形状的数据(数据输入304)。 Input data for the model include provision for the manufacturer of the calibrator and the calibrator shape material (data input 304).

接下来以计算方式操纵模型校准器来将它安放到模型颌中的所模拟的牙齿上,以创建已在正确位置上的校准器的复合模型(步骤340)。 Then manipulate the model to calculate the calibrator to set it up on the model of the simulated jaw teeth, to create in the right place on the calibrator composite model (step 340). 可选地,对使校准器发生形变以安装到牙齿(包括连接到牙齿上的任何硬件)上所需的力进行计算,并将其用作衡量特定校准器配置的可接受性的品质因数。 Alternatively, to make the calibrator is mounted to the teeth to deform (including any hardware connected to the tooth) on the force required is calculated and used as a measure of the specific configuration of the acceptability of the calibration of the quality factor. 但是,在一种更简单的替代性方案中,对校准器的形变进行建模的过程为,在其内部施加足够的力以使其大到足以安装到牙齿上,在复合模型中将模型校准器安放到模型牙齿上,将模型牙齿和组织条件设定为具有无穷大的刚性,并且使得模型校准器可以松弛地安装在被固定的牙齿上的位置上。 However, in a simpler alternatives, the process calibrator modeling of deformation, sufficient force is applied in the interior to make it large enough to be installed on the teeth, in the composite model in the model calibration It is placed on the model teeth model teeth and organizational conditions are set to have infinite stiffness and makes the model calibration can be loosely fixed on the mounting position of the teeth. 在该阶段中校准器的表面和牙齿的表面被建模为无摩擦地相互作用,这样,在有限元分析开始求复合模型的解并计算牙齿在变形的校准器影响下的移动之前,校准器模型就实现了对模型牙齿的正确的初始配置。 At this stage, the tooth surfaces and the calibrator is modeled as frictionless interaction, so that in the beginning of finite element analysis model and solving complex computing tooth before moving under the influence of deformation of the calibrator, calibrator model to achieve the correct initial configuration of the model teeth.

图4示出了用于计算下一个校准器的形状的处理400,该下一个校准器形状可以用到校准器计算,即处理200的步骤240(图2)中。 Figure 4 shows a calibration used to calculate the shape of the handle 400, the next shape calibration can be used to calculate the calibrator, i.e., the process of step 200 in 240 (FIG. 2). 各种输入被用于计算下一个候选校准器形状。 Various inputs are used to calculate the shape of a candidate calibrator. 这些输入包括由对复合模型的有限元分析解生成的输入数据402和由当前牙齿路径限定的数据404。 These inputs include composite model by the finite element analysis solution generating input data 402 and tooth paths defined by the current data 404. 根据有限元分析导出的数据402包括发生被仿真的牙齿的矫正实际耗费的时间量,该分析计算出的实际结果牙齿位置,施加到每颗牙齿上的最大线性力和扭转力,以及每颗牙齿的最大线速度和角速度。 The amount of time the exported data 402 including the occurrence of the simulated actual cost of dental correction, this analysis to calculate the actual results tooth positions, applied to the maximum linear power and torsional forces on each tooth, and each tooth of finite element analysis The maximum linear and angular velocities. 根据输入路径信息,输入数据404包括当前路径段的初始牙齿位置,当前路径段结束时的期望牙齿位置,每颗牙齿的最大可允许位移速度,以及每颗牙齿的每种最大可允许的力。 Based on the input path information, the input data 404 includes an initial tooth position of the current path segment, it is desirable position of the teeth when the end of the current path segment, the maximum allowable displacement velocity of each tooth, as well as the maximum allowable power of each of each tooth.

如果发现先前所评估的校准器违背了一条或多条约束,则处理400可以可选地使用附加的输入数据406。 If previously assessed against the calibrator one or more constraints, the process 400 can optionally use additional input data 406. 该数据406可以包括识别先前所评估的校准器所违背的约束的信息,以及该校准器的任意已识别的次优性能。 The data 406 may include information identifying constraints previously assessed calibrator breached, and any of the calibrator has identified sub-optimal performance. 另外,处理400可以使用与先前的牙齿设备所违背的约束以及该牙齿设备的次优性能有关的输入数据408。 In addition, the process 400 can be used with previous dental equipment contrary to suboptimal performance constraints and dental equipment input data related to 408.

收到初始输入数据(步骤420)后,该处理就在模型中对可移动牙齿进行迭代。 After receiving initial input data (step 420), the process in the model of the movable tooth iteration. (有些牙齿可以被标识为或约束为不可移动。)如果由先前所选的校准器实现的当前所选牙齿的结果位置和移动的动力特性是可接受的(判断步骤440的“是”分支),则该处理继续选择考虑下一颗牙齿(步骤430),直到所有牙齿都已被考虑过(从步骤430到步骤470的“完成”分支)。 (Some of the teeth may be identified as a non-removable or constraints.) If the previously selected calibrator achieved results currently selected tooth position and movement of the dynamic characteristics are acceptable (decision step "YES" branch of 440) , the process continues to select a tooth under consideration (step 430) until all the teeth have been considered (from step 430 to step "Finish" branch 470). 否则(步骤440中的“否”分支),在当前所选牙齿的区域中计算对校准器的改动(步骤450)。 Otherwise (step 440, "NO" branch), the calculation of the calibrator changes (step 450) in the area of the currently selected tooth. 接下来该处理返回以选择下一个当前牙齿(步骤430),如前所述。 Next, the process returns to select the next current tooth (step 430), as previously described.

当所有的牙齿都已考虑过时,针对先前限定的约束对已对校准器进行的整体改动进行评估(步骤470),此前已经提到过这种评估的例子。 When all the teeth have been considered obsolete for the previously defined constraints on the overall changes have been carried out to assess the calibrator (step 470), had already mentioned the example of such an assessment. 可以参考各种进一步的考虑来限定约束,诸如可制造性。 You can refer to a variety of further consideration to define constraints such as manufacturability. 例如,可以将约束限定为设定校准器材料的最大或最小厚度,或者限定为设定校准器对齿冠的最大或最小覆盖率。 For example, the constraint is limited to setting the calibrator maximum or minimum material thickness, or be limited to setting the calibrator to crown the maximum or minimum coverage. 如果满足校准器约束,就应用这些改动以得到新的校准器形状(步骤490)。 If the calibration is bound to apply these changes to give new shape calibration (step 490). 否则,就修改对校准器的改动以满足约束(步骤480),并应用这些经过修改的改动以限定新的校准器形状(步骤490)。 Otherwise, changes to the calibrator changes to satisfy the constraint (step 480), and apply these changes modified to define a new aligner shape (step 490).

图5A说明了在当前牙齿的区域中计算校准器改动的步骤(步骤450)的一种实现。 5A illustrates the step of calculating the calibrator changes in the region of the current tooth (step 450) an implementation. 该实现中,使用基于规则的推断引擎456来处理前述输入数据(输入454)和规则的规则库452中的一组规则452a-452n。 In this implementation, a rule-based inference engine 456 to process said input data (input 454) and rules in the rule base 452 a set of rules 452a-452n. 推断引擎456和规则452限定了产生系统,当应用于实际输入数据时,该产生系统会产生规定了在当前牙齿的区域中要对校准器进行的改动的一组输出结论(输出458)。 Inference engine 456 and Rule 452 defines a generation system, when applied to the actual input data, the system will generate generating sets out in a region of a current tooth to the calibrator changes to the conclusions of a group of output (output 458).

规则452a...452n具有常规的两部分的形式:一个部分限定条件,而另一个部分限定条件满足时声明的结论或行为。 Rules 452a ... 452n have the form of a conventional two-part: A part of qualification, while the other portion defines conditions stated conclusions or behavior. 条件可以是简单的,或者条件可以是复杂的多个声明的逻辑与或逻辑或。 Conditions can be simple or complex conditions can be more than a statement of logical and or logical or. 限定要对校准器进行的改动的一组示例性规则包括下面几项:如果牙齿的运动速度太快,则与期望运动方向相反地向校准器添加驱动材料;如果牙齿运动速度太慢,则添加驱动材料来使牙齿的位置过矫正;如果牙齿离期望位置太远,则添加驱动材料来实现过矫正;如果牙齿已经运动得超过期望结果位置太远,则在牙齿移动到与校准器相接的地方添加用来硬化校准器的材料;如果已经添加了最大量的驱动材料,则添加用来使牙齿矫正变得过矫正的材料,并且不添加驱动材料;如果牙齿的运动方向不是期望的方向,则去除或添加材料以便为牙齿进行重定向。 An exemplary set of rules defining changes to the calibrator includes the following items: If the velocity of the tooth is too fast, then the desired movement direction contrary to add material to the calibrator drive; if the tooth movement is too slow, then add drive materials to make the position of the teeth overcorrected; If the tooth is too far away from the desired location, then add the driver overcorrected material to achieve; if the tooth has moved too far over the location of the desired outcome, then move to the teeth in contact with the calibrator Add local calibrators used to harden the material; If you have added the maximum amount of drive material, is added to enable the orthodontist become overcorrected material, and the material does not add the drive; if the direction of movement of the teeth is not the desired direction, the removal or addition of material in order to redirect the tooth.

在替代性实施例中,如图5B和图5C所示,计算校准器的绝对配置,而不是增量差值。 In an alternative embodiment, shown in FIG. 5B and 5C, the calibration is calculated absolute configuration, rather than an incremental difference. 如图5B所示,处理460计算在当前牙齿的区域中校准器的绝对配置。 5B, the process 460 to calculate the area of a current tooth calibrator absolute configuration. 使用上述输入数据,该处理计算出当前牙齿已实现的结果位置和期望结果位置之间的差值(步骤462)。 Using the above input data, the processing to calculate the difference (step 462) the current position of the teeth and the results have been achieved between the position desired result. 使用牙齿中心线和牙龈组织平面的交点作为参考点,该处理计算出在运动的所有六个自由度上的差值的补数(complement)(步骤464),六个自由度即三个平移自由度和三个转动自由度。 Use the teeth and gum tissue centerline plane of intersection as a reference point, the process to calculate the complement of motion in all six degrees of freedom of a difference (complement) (step 464), six degrees of freedom that is three translational freedom degree and three rotational degrees of freedom. 接下来,将模型牙齿位移到离其期望结果位置为差值补数的量处(步骤466),如图5D所示。 Next, the model tooth is displaced to result from its desired position at the difference between the amount of complement (step 466), as shown in Figure 5D.

图5D示出了示例性模型牙齿62上的示例性模型校准器60的平面视图。 5D shows an exemplary model of an exemplary calibration model tooth 62 on the plan view 60. 牙齿在其期望结果位置上,而且该校准器形状是由该结果位置上的牙齿限定的。 Tooth in its desired position on the results, and the calibration tooth shape is the result of a defined position. 通过有限元模型计算出的牙齿的实际运动被示出为将牙齿安放到位置64上,而不是期望位置62上。 The finite element model to calculate the actual movement of the teeth is shown mounted to the tooth position 64, instead of the expected 62 on location. 计算出的结果位置的补数被示出为位置66。 Complement the calculated result of the position is shown as position 66. 使用在前述步骤(步骤466)中计算出的发生位移的模型牙齿的位置,处理460的下一步骤(图5B)限定了在处理的该迭代中当前牙齿的区域中的校准器(步骤468)。 Using the position calculated in the previous step (step 466) is displaced model tooth, the processing of the next step 460 (FIG. 5B) defined in the region of the iterative process of calibration current tooth (step 468) . 当前牙齿的区域中的该计算出的校准器配置在图5D中示出为形状68,该形状由位置66上的经矫正的模型牙齿限定。 The current area of the tooth is calculated calibration configuration shown in Fig. 5D shape 68, the shape defined by the model teeth, a corrected position 66 on.

图5C中示出了处理460中的进一步的步骤,该步骤可以实现为规则452(图5A)。 Figure 5C shows a further processing step 460, this step may be implemented as a rule 452 (FIG. 5A). 要在当前牙齿中心轴的方向上移动该牙齿,则在该处理已决定从中移动牙齿的区域中,使得限定校准器的这个区域的模型牙齿大小或者校准器内部留给牙齿的空间量变小。 To move the current tooth in the direction of the center axis of the teeth, at which the process has decided to move the tooth in the area, so that the size of the model tooth defining calibrator or calibrator left inside the region of the tooth space becomes small.

如图6所示,在治疗路径的某一步骤中计算校准器形状的处理200(图2)是计算一系列校准器的形状的处理600的一个步骤。 As shown in Figure 6, the shape of the calculated calibration step at a treatment path in process 200 (FIG. 2) is a step of calculating a series of calibration process 600 of the shape. 处理600以初始化步骤602开始,在步骤602中会得到初始的数据、控制和约束值。 Process 600 to begin initialization step 602, initial data obtained in the step 602, the control and constraint values.

当针对治疗路径中每个步骤或分段得到校准器配置(步骤604)时,处理600确定是否所有校准器都是可接受的(步骤606)。 When calibrated configuration (step 604) for the treatment path or section for each step, the process 600 determines whether all the calibrator is acceptable (step 606). 如果所有校准器都是可接受的,则处理完成。 If all of the calibrator is acceptable, then the process is completed. 否则,处理可选地执行一组步骤610来尝试计算出一组可接受的校准器。 Otherwise, the process optionally performed a set of 610 steps to try to calculate a set of acceptable calibrator. 首先,放松对校准器的一条或多条约束(步骤612)。 First, the relaxation of the one or more calibration constraint (step 612). 接下来,对于具有不可接受校准器的每个路径段,以新的约束执行对校准器塑形的处理200(图2)。 Next, for each path segment having an unacceptable calibrator to perform new constraints calibrator shaping process 200 (Figure 2). 如果现在所有的校准器都是可接受的,则处理600退出(步骤616)。 If we all calibrator is acceptable, the process 600 exits (step 616).

校准器可能会因为各种原因不可接受,其中有些原因是由处理操控的。 Calibration may be unacceptable for various reasons, some of which is caused by manipulation of the process. 例如,如果需要某种不可能的移动(判断步骤620),也就是说形状计算处理200(图2)需要实现没有任何可用的规则或调整的运动,则处理600会继续前进到执行一个模块,该模块计算到所处理的牙齿的硬件连接的配置,其中该牙齿可以被施加力以实现所需的运动(步骤640)。 For example, if you need some kind of movement is not possible (decision step 620), i.e. the shape calculation process 200 (FIG. 2) does not need to implement any available rule or adjustment movement, the process 600 will proceed to execute a module, The module calculates the tooth being processed hardware connection configuration in which force may be applied to the teeth in order to achieve the desired movement (step 640). 因为添加硬件会带来额外的影响,因此当将硬件添加到模型中时,会再次执行处理600的外部循环(步骤642)。 Because adding hardware will bring additional influence, so when you add hardware to the model performs outer loop process 600 again (step 642).

如果不需要不可能的移动(步骤620中的“否”分支),则该处理将控制转移到路径限定处理(诸如图1的步骤150)来重新限定具有不可接受校准器的那部分治疗路径(步骤630)。 If no movement is not possible (step 620 "NO" branch), the process transfers control to that portion of the path defining processing (such as shown in step 1 of 150) to redefine the treatment path having unacceptable calibrator ( Step 630). 该步骤可以包括改变牙齿在治疗路径上运动的增量,也就是改变分段,可以包括改变一颗或多颗牙齿在治疗路径中所沿循的路径,或两者都包括。 This step may include changing the incremental movement of the teeth in the treatment path, the segment is changed, it may include changing one or more teeth in the treatment path along which path, or both. 重新限定治疗路径后,再次执行该处理的外部循环(步骤632)。 Re-defining the treatment path, perform the external circulation of the process again (step 632). 重新计算被有利地限制为只重新计算已重新限定的那部分治疗路径上的那些校准器。 Recalculated is advantageously restricted to recalculate only those that have been re-defined calibrator part of the treatment path. 如果现在所有的校准器都是可接受的,则处理退出(步骤634)。 If we all calibrator is acceptable, then the process exits (step 634). 如果还有不可接受的校准器,则可以重复该处理直至找到一组可接受的校准器或超出迭代极限(步骤650)。 If there is an unacceptable calibrator, you can repeat the process until you find a set of acceptable calibration limits or beyond iteration (step 650). 此时,以及在本说明书中所描述的处理中的其他时候,诸如在计算附加硬件(步骤640)时,该处理可以与人类操作者,诸如临床医生或技师交互,来请求协助(步骤652)。 In this case, and at other times in the process described in the present specification, such as the calculation of the additional hardware (step 640), the process may be a human operator, such as a clinician or technician interaction, to request assistance (step 652) . 操作者提供的协助可能包括限定或选取连接到牙齿或骨头的合适的附加设备,限定添加的弹性单元以便为治疗路径中的一个或多个分段提供所需的力,在牙齿的运动路径方面或在治疗路径的分段方面对治疗路径提出改动建议,以及认可对操作约束的修改或放宽。 Provided to assist the operator may include defining or selecting the tooth or the bone is connected to the appropriate additional equipment added to the elastic element defining the path for the treatment of one or more segments to provide the required power, in terms of the path of movement of the teeth or in the treatment path segment of the treatment path for the alteration of the recommendations, as well as recognition of modifying operational constraints or relaxed.

如上所述,通过各项输入数据来对处理600进行限定和参数化(步骤602)。 As described above, the input data to be defined and parameters (step 602) to process 600. 在一种实现中,该初始化和限定数据包括以下各项:处理的外部循环的迭代极限;对被计算以确定校准器是否足够优良(参见图2,步骤270)的品质因数的规定;对校准器材料的规定;对约束的规定,校准器的形状及配置必须满足这些约束以便可接受;对畸齿矫正学上可接受的力、位置运动和速度的规定;初始治疗路径,其包括每颗牙齿的移动路径和将治疗路径分成分段的分段方法,其中每个分段由一个校准器完成;对装到牙齿上或采取其他方式的任意锚的形状和位置的规定;以及对牙齿位于其中或其上的颌骨及其他组织的模型的规定(在所描述的实现中,该模型包括黏性基底流体的模型,牙齿嵌入其中,并且其中具有基本上限定了用于该流体的容器的边界条件)。 In one implementation, the initialization and defining data include the following: iteration limit processing of the outer loop; to be calculated in order to determine whether good enough calibration (see Fig. 2, step 270), the provisions of merit; calibration Material provisions; the provisions of constraint, shape and configuration of the calibrator must satisfy in order acceptable; for the orthodontics acceptable force, position and speed requirements; initial treatment path, which includes every single tooth movement path and the treatment path segment into segments, wherein each segment is done by a calibrator; attached to the teeth or to take a predetermined shape and position of any other means of anchor; and the teeth located which provides that the jaw and other organizations or a model (in the realization described, the base model includes viscous fluid model, teeth embedded therein and having substantially defining a container for the fluids boundary conditions).

图7是统计牙根模型的示例性示图。 FIG. 7 is a diagram of an exemplary statistical root model. 如图中所示,使用上述的扫描处理,可以识别扫描的牙齿的上半部分700。 As shown, the use of the above-described scanning process can be identified on the scanned half tooth portion 700. 接下来用模拟的3D(三维)牙根来补足经扫描的上半部分,包括齿冠。 Followed by the simulation 3D (three-dimensional) root to make up the top half of scanned, including the crown. 可以用统计方法来模拟牙根的3D模型。 Statistical methods can be used to simulate the root of the 3D model. 牙根702的3D模型和上半部分700的3D模型合起来形成了牙齿的完整3D模型。 Root 3D model 702 and the upper part of the 3D model 700 together form a complete 3D model of the teeth.

图8示出了的牙根建模的示例性示图,其中使用附加的牙齿信息对其进行了增强。 Figure 8 shows an example of root modeling diagram in which the additional information be enhanced tooth. 在图8中,附加的牙齿信息指X射线信息。 In Figure 8, the additional dental X-ray information refers to information. 扫描牙齿的X射线图像710来提供整个牙齿形状的2D(二维)视图。 Scanning dental X-ray image of teeth 710 to provide the entire shape of 2D (two-dimensional) view. 目标牙齿的轮廓用X射线图像来识别。 Profile target tooth X-ray images to identify. 根据附加信息对图7中开发出的模型712进行修改。 According to additional information in Figure 7 developed model 712 modified. 在一个实施例中,将图7中的牙齿模型进行变体来形成与X射线数据一致的新模型714。 In one embodiment, the dental model in Fig. 7 variants were consistent with the formation of a new X-ray data model 714.

图9示出了牙齿的CT扫描的示例性示图。 Figure 9 shows a diagram of an exemplary CT scan of teeth. 在该实施例中,根据对患者的高分辨率CBCT(锥束计算机断层摄影)扫描直接得到牙根。 In this embodiment, based on the patient's high resolution CBCT (cone beam computed tomography) scans directly from the root. 扫描得到的牙根接下来可以应用于印模(impression)得来的齿冠,或结合根据锥束计算机断层摄影(CBCT)数据提取而来的现有齿冠而使用。 Scanned stamp may be applied to the next root (impression) come crown, or a combination according to the cone-beam computed tomography (CBCT) data extracted from existing crowns used. CBCT扫描可以独自给出3D数据和多种形式的X射线类数据。 3D CBCT scan can be given various forms of X-ray data and class data alone. 这样PVS(聚乙烯硅氧烷)印模就不需要了。 Such PVS (polyvinyl siloxane) stamp is not required.

在一个实施例中,用锥束X射线源和2D面积探测器扫描患者的牙齿的解剖学构造,优选地在360度角范围内并且沿着牙齿的整个长度进行,使用各种方法中的任意一种方法来进行扫描,在该方法中,面积探测器相对于源固定,并且源和目标之间的相对转动和平移会形成扫描(放射能量对目标的辐射)。 In one embodiment, with cone beam X-ray source and a 2D area detector scanning the patient's tooth anatomy, preferably within the range of 360 degrees and along the entire length of the teeth, use it in any of the various methods One way to scan, in this method, the area detector is fixed relative to the source and between the source and the target relative rotation and translation will form a scan (radiation energy radiation on the target). 锥束源沿扫描路径相对于多个源位置(即视图)的相对移动的结果就是,探测器获得了相应的顺序的多组锥束投影数据(这里也称为锥束数据或投影数据),每组数据表示目标在各个源位置上引起的X射线衰减。 Cone-beam source with respect to the results of the scan path along a plurality of source positions relative movement (i.e., the view) is that the detector sequence to obtain the corresponding plurality of sets of cone beam projection data (also referred to as cone beam data or projection data), each set of data shows the X-ray target due to the attenuation at each source location.

图10示出了显示突出来的牙齿的示例性用户界面图,而图11示出了图10牙齿连同牙根信息的示例性示图。 Figure 10 shows a display protruding teeth exemplary user interface while Figure 11 shows a 10 tooth root information along with exemplary diagram. 可以使用合适的手柄来单独调整每颗牙齿。 You can use the handles to adjust the individual right of each tooth. 在图10和图11的实施例中,允许操作者使用手柄使牙齿在具有六个自由度的三个维度上进行移动。 In the embodiment of FIGS. 10 and 11, allows the operator to use the handle to move the teeth in three dimensions with six degrees of freedom.

牙齿的移动部分地使用基于牙根的定序系统来引导。 Moving part of the tooth root-based sequencing system to boot. 在一个实施例中,移动受到表面积约束的限制。 In one embodiment, the surface area is limited by constraints of the mobile. 另一个实施例中,移动受到体积约束的限制。 Another embodiment, the movement is limited by the volume constraints.

在一个实施例中,系统确定每个牙齿模型的表面积。 In one embodiment, the system determines the surface area for each tooth model. 接下来系统把所有要移动的牙齿模型的所有表面积都加起来。 The system then all you want to move all the surface area of the tooth models are combined. 接下来,系统把牙弓上所有牙齿模型的所有表面积加起来。 Next, the system all the surface area of all the dental arch model together. 在牙齿移动的每个阶段中,在牙齿模型移动的同时,系统都会检查是否满足预先确定的面积比率或约束。 At each stage of tooth movement, the movement of the tooth model, the system checks whether satisfies a predetermined area ratio or constraint. 在一个实施例中,该约束可能是保证正在移动的牙齿的表面积小于支撑正在移动的牙齿的牙弓上所有牙齿的总表面积。 In one embodiment, this constraint may be to ensure that the total surface area of all the teeth on the surface area of the tooth being moved less than support moving teeth arch. 如果该比率大于特定数值,诸如50%,则系统会向操作者发出报错信号以表明牙齿应该以更缓慢的方式移动。 If the ratio is greater than a certain value, such as 50%, the system will issue an error signal to the operator to indicate the tooth should move at a slower manner.

在另一个实施例中,系统确定每个牙齿模型的体积。 In another embodiment, the system determines the volume of each tooth of the model. 接下来系统把所有正在移动的牙齿模型的体积加起来。 The system then the volume of all tooth models are moving together. 接下来,系统确定牙弓上所有牙齿模型的总体积。 Next, the system determines the total volume of all dental arch model. 对于牙齿移动的每个阶段,在牙齿模型移动的同时,系统都会检查是否满足预先确定的体积比率或约束。 For each stage of teeth movement, while moving in the dental model, the system checks whether the volume ratio satisfies a predetermined or constraints. 在一个实施例中,该约束可能是保证正在移动的牙齿的体积小于支撑正在移动的牙齿的牙弓上所有牙齿的总体积。 In one embodiment, this constraint may be to ensure that the total volume of all the teeth on the volume of moving teeth is less than the support being moved teeth arch. 如果该比率大于特定数值,诸如50%,则系统会向操作者发出报错信号以表明牙齿应该以更缓慢的方式移动。 If the ratio is greater than a certain value, such as 50%, the system will issue an error signal to the operator to indicate the tooth should move at a slower manner.

可选地,可以在牙齿模型数据集里添加其他特性,从而在校准器中产生期望的特性。 Alternatively, you can add other features to the tooth model data set to produce the desired properties in the calibrator. 例如,可能期望添加数字蜡补片(patch)来限定保持校准器和牙齿或颌特定区域之间的间隔的空腔或凹陷。 For example, it may be desirable to add digital wax patches (patch) to define and maintain the spacing of teeth or jaw alignment between specific regions of the cavity or depression. 还可能期望添加蜡补片来限定波纹或其他结构形式,以创建具有特定硬度或其他结构性质的区域。 It may also be desirable to add wax patches to define corrugated or other structure, to create a zone with a specific hardness, or other structural properties. 在通过生成正模型来产生矫正器械的制造过程中,为数字模型添加蜡补片可以生成具有相同的蜡补片几何结构的正塑模(mold)。 In to generate orthotics by generating positive model the manufacturing process, the digital model to add wax patches can be generated with the same positive mold wax patch geometry (mold). 这可以在限定校准器的基准形状时整体进行,或者可以在计算特定校准器形状时进行。 This whole during limited calibrator reference shape, or can be calibrated in the calculation of specific shapes. 一个可以添加的特征是围绕牙龈线的镶边,它可以通过在数字模型牙齿的牙龈线上添加数字模型线来产生,校准器就是根据数字模型牙齿制造的。 A feature that can be added is the trim around the gum line, it can be a digital model of the teeth at the gum line to add the line to generate a digital model, the calibrator is based on a digital model of dental manufacture. 当通过将聚合物材料压配在数字牙齿的正物理模型上来制造校准器时,沿牙龈线的那条线使得校准器有一条镶边,该镶边围绕该校准器,沿着牙龈线提供额外的硬度。 When pressed by the polymer material with the digital dental manufacturing up positive physical model calibrators, along the gum line of the line so that the calibrator has a trim, the trim around the calibrator, along the gum line to provide additional hardness.

在另一种可选的制造技术中,两片材料被压配到正牙齿模型上,其中一片沿着校准器的顶部弓形切割,并且另一片覆盖在顶部。 In an alternative manufacturing technique, two sheets of the material to be press-fitted to the positive tooth model, wherein a cut along the top of the calibrator arcuate, and the other cover sheet at the top. 这样可以沿着牙齿的竖壁提供两倍厚度的校准器材料。 This provides twice the thickness of the material calibrator teeth along the vertical wall.

可以对校准器设计进行的改动受到将用于生产该校准器的制造技术的约束。 It can change the design of the calibrator are bound to be used for the production of the calibration standard manufacturing techniques. 例如,如果要通过在正模型上压配聚合物片来制造校准器,则校准器的厚度就取决于片的厚度。 For example, if you want to pass on a positive model for press-fitting polymer sheet to make calibrator, the calibration depends on the thickness of the sheet thickness. 因而,系统一般会通过改变模型牙齿的朝向、模型牙齿的各部分的大小、附加设备的位置和选取及材料的添加和去除(例如添加线或创建凹进(dimple))来改变校准器的结构,从而调节校准器的性能。 Thus, the system usually by changing the model of the teeth facing position, the size of each part of the model teeth, additional equipment and materials selection and addition and removal (such as adding a line or create a recess (dimple)) to change the structure of the calibrator , thereby adjusting the performance of the calibrator. 系统可以可选地通过规定校准器中的一个或多个校准器由非标准厚度的片制造来调节校准器,以向牙齿提供更大和更小的力。 System may optionally be adjusted by a predetermined calibrator calibrator of one or more calibration is made of non-standard sheet thickness, in order to provide greater and less force to the teeth. 另一方面,如果校准器通过立体造型处理制造,则校准器的厚度就可以局部地改变,并且不用修改牙齿的数字模型就可以添加诸如镶边、凹进和波纹等结构特征。 On the other hand, if the calibration process through three-dimensional modeling of manufacturing, the thickness of the calibrator can be changed locally, and without modifying the digital model of the tooth structure you can add features such as trim, recessed and ripple like.

图12示出了另一组与所计划的牙齿移动有关的量度。 Figure 12 shows a measure of tooth movement related to another group plan. 在该实施例中,要移动的牙齿800的体积是确定的。 In this embodiment, the teeth 800 of the volume to be moved is determined. 经过一次移动后,系统确定在牙齿模型(牙根)的一部分移动时正在发生位移的体积802。 After a move, the system determines the portion of the dental model (root) of the moving displacement volume is 802. 系统确定牙弓上所有要移动的牙齿模型的位移体积的第一总和,确定牙弓上所有牙齿模型的牙根体积的第二总和,并保证在移动牙齿模型的同时满足预定的体积约束。 The system determines the displacement volume of the first sum on the arch of teeth to be moved all models, determining a second sum of the arch root volume for all tooth models, and to ensure at the same time moving the tooth model satisfies a predetermined volume constraints.

用于确定位移体积的示例性伪代码如下:计算位移体积的程序(牙齿位置1,牙齿位置2)把空间分为体积元素(体元)限定牙齿模型中受关注的区域(诸如只有牙根)将牙齿移动到位置1元素集1=限定受关注区域内的体积元素集体积=元素集1中的元素的数目将牙齿移动到位置2元素集2=限定受关注区域内的体积元素集体积=体积+元素集2中元素的数目元素集3=限定元素集1和元素集2之间公共的体积元素集共享=元素集3中元素的数目体积=体积-共享图13示出根据牙根数据治疗牙齿的示例性处理。 Exemplary pseudo-code is used to determine the displacement volume of the following: program (1, 2 tooth position tooth position) the space into volume elements (voxels) dental model defines the area of interest (such as only root) calculates the displacement volume of the tooth element set to a position 1 1 = the number of volume elements defining element set = set volume within a region of interest in the subject of the tooth element is moved to position 2 = 2 is defined by the set of elements set of volume elements within the region of interest volume = Volume + set of elements number of elements in the set of elements defining element set 2 3 = 1 and the set of elements common set of volume elements between two elements sharing = number of elements in the set of three volume = Volume - Figure 13 illustrates the shared data according to the treatment of teeth root The exemplary process. 该处理首先计算关于所有牙齿模型的一个或多个基于牙根的量度(步骤850)。 The process first calculates all the teeth on one or more of the model-based root of metric (step 850). 接下来该处理确定哪些牙齿正在移动(步骤852)。 Next, the process determines which tooth is moving (step 852). 接下来,该处理确定关于移动牙齿的量度(步骤854)。 Next, the process determines a measure on tooth movement (step 854). 该处理针对临床约束来评估一个或多个量度(步骤856)。 The process for the clinical constraints to evaluate one or more metrics (step 856). 接下来该处理检查是否已经违背了一条或多条约束(步骤858)。 Next, check whether the process has violated one or more constraints (step 858). 如果没有违背约束,则处理结束。 If you do not violate the constraint, the process ends. 作为替代,从步骤858开始,该处理调整移动牙齿的移动(步骤860),并针对是否违背了约束而进行重复检查。 As an alternative, starting from step 858, the process of adjusting the movement of the mobile tooth (step 860), and is contrary to the constraints for the repetitive inspections.

该系统还可以用于对诸如固定器和矫正器之类的更传统的器械的效果进行建模,从而为特定患者生成最优的设计和治疗程序。 The system can also be used, such as the effects of more traditional instruments and appliances fixed such modeling, to generate optimal designs and treatment programs for a particular patient.

本发明的数据处理方面可以用数字电路实现,或者用计算机硬件、固件、软件或它们的组合实现。 Data processing aspect of the present invention may be realized by a digital circuit, or in computer hardware, firmware, software, or a combination thereof. 本发明的数据处理设备可以用计算机程序产品来实现,该计算机程序产品实际体现在用于由可编程的处理器来执行的机器可读的存储设备中;并且本发明的数据处理方法步骤可以由可编程处理器来执行,该可编程处理器用于执行用以通过操作输入数据并生成输出来执行本发明的功能的指令程序。 The data processing apparatus of the present invention may be implemented using a computer program product, the computer program product actually embodied in a machine-readable storage device for execution by a programmable processor in; and the data processing method steps of the present invention can be represented by a programmable processor executing, for the execution by a programmable processor for operating on input data and generating output to perform functions of the present invention is a program of instructions. 本发明的数据处理方面可以有利地在可在可编程系统上执行的一个或多个计算机程序中实现,该可编程系统包括:耦合为从数据存储系统接收数据和指令并向数据存储系统发送数据和指令的至少一个可编程处理器;至少一个输入设备;以及至少一个输出设备。 One or more computer programs data processing of the present invention may advantageously be performed on a programmable system is implemented, the programmable system comprising: a storage system coupled to the data from the data storage system receives data and instructions to send data and instruction at least one programmable processor; at least one input device; and at least one output device. 每个计算机程序可以用高级程序或面向对象编程语言来实现,或者在期望的时候用汇编语言或机器语言实现;并且无论在何种情况下,该语言都既可以是编译型语言也可以是解释性语言。 Each computer program can be a high-level program or object oriented programming language to achieve, or at a desired time in assembly language or machine language; and no matter under what circumstances, the language can be either a compiled language may be interpreted language. 合适的处理器包括例如通用微处理器和专用微处理器。 Suitable processors include, for example, general and special purpose microprocessors. 一般而言,处理器要从只读存储器和/或随机存取存储器中接收指令和数据。 Generally, a processor memory and / or random access memory will receive instructions and data from a read-only. 适合于实际体现计算机程序指令和数据的存储设备包括各种形式的非易失性存储器,包括例如半导体存储设备,诸如EPROM(可擦除可编程只读存储器),EEPROM(电可擦除可编程只读存储器),以及闪存设备;磁盘,诸如内置硬盘和可移动盘;磁-光盘;以及CD-ROM光盘。 Adapted to reflect the actual computer program instructions and data storage devices include various forms of non-volatile memory, a semiconductor memory device including, for example, such as an EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable read-only memory), and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto - optical disks; and CD-ROM discs. 所有上述设备都可以用ASIC(专用集成电路)来作为补充或包含在ASIC中。 All these devices can be used ASIC (Application Specific Integrated Circuit) as a supplement or contained in an ASIC.

为了提供与用户的交互,可以使用计算机系统来实现本发明,该计算机系统具有用于向用户显示信息的显示设备,诸如显示器或LCD(液晶显示器),以及用户可以用来向计算机系统提供输入的输入设备,诸如键盘,鼠标或轨迹球等二维指示设备,或者数据手套或回转鼠标等三维指示设备。 In order to provide interaction with the user, you can use the computer system to implement the present invention, the computer system having a display device for displaying information to the user, such as a monitor or LCD (liquid crystal display), and the user can be used to provide input to the computer system input devices such as a keyboard, mouse or trackball, and other two-dimensional pointing device, or data gloves or rotating three-dimensional mouse and other pointing device. 可以将计算机系统编程为提供图形用户界面,计算机程序通过该图形用户界面与用户交互。 The computer system can be programmed to provide a graphical user interface, a computer program through the graphic user interface and user interaction. 可以将计算机系统编程为提供虚拟现实的三维显示界面。 The computer system can be programmed to provide a three-dimensional virtual reality display.

已经针对特定的实施例对本发明进行了描述。 Has been for a specific embodiment of the present invention has been described. 其他实施例在所附权利要求的范围内。 Other embodiments are within the scope of the appended claims. 例如,可以按照不同的顺序执行本发明的步骤,并且仍然实现期望的结果。 For example, you can perform the steps of the present invention in a different order and still achieve desirable results.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
CN101951854B17 Dec 200818 Dec 20133M创新有限公司Methods of preparing virtual dentition model and fabricating dental retainer therefrom
CN102016854B *12 May 200925 Nov 2015矫正技术公司笑容设计器
Classifications
International ClassificationA61C5/00, A61C11/00, A61C7/00, A61C3/00
Cooperative ClassificationB33Y80/00, A61C7/00, A61C7/002
European ClassificationA61C7/00
Legal Events
DateCodeEventDescription
11 Jul 2007C06Publication
5 Sep 2007C10Entry into substantive examination
16 Jan 2013C14Grant of patent or utility model