Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN106662434 A
Publication typeApplication
Application numberCN 201580047365
PCT numberPCT/IB2015/054904
Publication date10 May 2017
Filing date30 Jun 2015
Priority date3 Jul 2014
Also published asEP3164670A1, US9261356, US9675429, US20160003610, US20160113742, US20170248412, WO2016001835A1
Publication number201580047365.2, CN 106662434 A, CN 106662434A, CN 201580047365, CN-A-106662434, CN106662434 A, CN106662434A, CN201580047365, CN201580047365.2, PCT/2015/54904, PCT/IB/15/054904, PCT/IB/15/54904, PCT/IB/2015/054904, PCT/IB/2015/54904, PCT/IB15/054904, PCT/IB15/54904, PCT/IB15054904, PCT/IB1554904, PCT/IB2015/054904, PCT/IB2015/54904, PCT/IB2015054904, PCT/IB201554904
Inventors埃雷兹兰伯特, 阿迪莱文, 塔勒维科尔
Applicant阿莱恩技术有限公司
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Confocal surface topography measurement with a focal plane inclined with respect to the direction of the relative movement of confocal apparatus and sample
CN 106662434 A
Abstract
An apparatus is described for measuring surface topography of a three-dimensional structure. In many embodiments, the apparatus is configured to focus each of a plurality of light beams to a respective fixed focal position relative to the apparatus. The apparatus measures a characteristic of each of a plurality of returned light beams that are generated by illuminating the three-dimensional structure with the light beams. The characteristic is measured for a plurality of different positions and/or orientations between the apparatus and the three-dimensional structure. Surface topography of the three-dimensional structure is determined based at least in part on the measured characteristic of the returned light beams for the plurality of different positions and/or orientations between the apparatus and the three-dimensional structure.
Claims(23)  translated from Chinese
1.一种用于测量三维结构的表面形貌的设备,所述设备被配置为:(a)将多个光束中的每个光束均相对于所述设备聚焦到各自的固定的焦点位置;(b)测量多个返回光束中的每个返回光束的特性,通过用所述光束照射所述三维结构而产生所述多个返回光束,针对所述设备与所述三维结构之间的多个不同位置和/或朝向测量所述特性;并且(C)针对所述设备与所述三维结构之间的多个所述不同位置和/或朝向,至少部分地基于测量的所述返回光束的所述特性,来确定所述三维结构的表面形貌。 1. A surface topography of the apparatus for measuring a three-dimensional structure, the device is configured to: (a) each of the plurality of light beams focused onto the device are relative to the respective fixed focus position; (b) measuring a plurality of characteristics of each of the return beam of the return beam, the three-dimensional structure is irradiated with the light beam generated by said plurality of return beams, between the device for the plurality of the three-dimensional structure different locations and / or orientation of the measuring characteristic; and (C) for a plurality of different locations between the device and the three-dimensional structure and / or orientation, at least in part on the measurement of the return beam said characteristic to determine the surface topography of the three-dimensional structure.
2.—种用于测量三维结构的表面形貌的设备,所述设备包括: 光学探头,该光学探头被配置为相对于所述三维结构移动; 照射单元,该照射单元被配置为产生多个入射光束,每个所述入射光束均包含第一波长组分; 光学系统,该光学系统被配置为将所述多个入射光束的每个入射光束的所述第一波长组分相对于所述光学探头聚焦至各自的固定的焦点位置; 检测器单元,该检测器单元被配置为测量多个返回光束中的每个返回光束的特性,所述返回光束通过利用所述入射光束照射所述三维结构而产生;以及处理单元,该处理单元与检测器单元连接,并且被配置为针对所述光学探头与所述三维结构之间的多个不同的相对位置和/或朝向,至少部分地基于测量的所述多个返回光束的所述特性,来确定所述三维结构的表面形貌。 2.- kinds of apparatus for measuring the surface topography of the three-dimensional structure, the apparatus comprising: an optical probe, the optical probe configured to move relative to the three-dimensional structure; irradiation unit, the irradiation unit configured to generate a plurality of incident beam, each of said incident light beam contains a first wavelength component; optical system, the optical system is configured with respect to the incident light beam to each of said first plurality of wavelength components of the incident light beam focusing the optical probe to the respective fixed focus position; detector unit, the detector unit is configured to measure a plurality of characteristics of each of the return beam of the return beam, said return beam incident beam irradiation by using the three-dimensional generating structure; and a processing unit, the processing unit connected to the detection unit, and configured for a plurality of different relative positions between the optical probe and the three-dimensional structure and / or orientation, at least in part on measured the characteristics of said plurality of return beam to determine the surface topography of the three-dimensional structure.
3.根据权利要求2所述的设备,其中,所述特性是强度。 3. The apparatus according to claim 2, wherein the characteristic is an intensity.
4.根据权利要求2所述的设备,其中,所述检测器单元包括传感器元件的二维阵列,每个传感器元件均被配置为根据所述多个返回光束中的相应的返回光束测量所述特性。 4. The apparatus according to claim 2, wherein the detector unit comprises a two dimensional array of sensor elements, each sensor element being configured to respective return beam of the measuring beam in accordance with said plurality of return characteristic.
5.根据权利要求4所述的设备,其中,所述光学系统被配置为利用由所述照射单元产生的光形成所述入射光束的二维图案,所述入射光束的二维图案与由所述传感器元件的二维阵列所测量的所述返回光束相对应。 5. The apparatus as claimed in claim 4, wherein said optical system is configured to form a two-dimensional pattern light generated by the irradiation unit of the incident light beam, said incident light beam and a two-dimensional pattern of the the two-dimensional array of said transducer element measured return beam corresponds.
6.根据权利要求5所述的设备,其中,所述光学系统包括光学扩束器单元,该光学扩束器单元被配置为扩展由所述照射单元产生的光,以形成所述入射光束的二维图案。 6. The apparatus as claimed in claim 5, wherein the beam expander optical system includes an optical unit, the optical beam expander unit is configured to expand the light generated by the illumination unit to form said incident beam two-dimensional pattern.
7.根据权利要求4所述的设备,其中,所述照射单元被配置为产生所述入射光束的二维图案,所述入射光束的二维图案与由所述传感器元件的二维阵列所测量的所述返回光束相对应。 7. The apparatus as claimed in claim 4, wherein said irradiation unit configured to generate a two-dimensional pattern of the incident light beam, the measured two-dimensional pattern of the incident light beam by a two-dimensional array of the sensor element corresponding to the return beam.
8.根据权利要求4所述的设备,其中, 所述入射光束被布置为具有第一行和最后一行的多行; 各行中的所述入射光束被聚焦到各自的共同焦距;并且所述第一行和所述最后一行的焦距相差预定长度。 8. The apparatus of claim 4, wherein said incident beam is arranged to have a first and last rows of the plurality of rows; each row of said incident light beam is focused to a focal length of the respective common; and the second row and the last row by a predetermined focal length.
9.根据权利要求8所述的设备,其中,所述预定长度是5mm至25mm。 9. The apparatus of claim 8, wherein said predetermined length is 5mm to 25mm.
10.根据权利要求4所述的设备,其中,所述传感器元件被布置在平面中,该平面被定向为相对于所述入射光束的所述第一波长组分的焦距对所述返回光束进行共焦感测。 10. The apparatus as claimed in claim 4, wherein said sensor element is disposed in a plane, which plane is oriented to the return beam with respect to the focal length of the first incident light beam of wavelength components confocal sensing.
11.根据权利要求10所述的设备,其中,所述传感器元件的所述平面与所述返回光束正交。 11. The apparatus according to claim 10, wherein the plane of the sensor element and the return beam orthogonal.
12.根据权利要求4所述的设备,其中,所述处理单元包括一个以上的处理器,并且包括有形非暂时性存储装置,该有形非暂时性存储装置存储能够由所述一个以上的处理器执行的指令,以使得所述一个以上的处理器处理测量的所述特性的数据,使用所述检测器单元针对所述光学探头与所述三维结构之间的所述多个不同的相对位置和/或朝向而生成测量的所述特性的数据,以确定所述光学探头与所述三维结构之间的相对位置和/或朝向。 12. The apparatus of claim 4, wherein the processing unit comprises one or more processors, and storage means comprising a non-transitory tangible, non-transitory tangible storage device which can be stored by the processor the one or more the characteristic data of instructions executed, cause the processor to process the one or more measured using a detector unit for the plurality of different relative positions between the optical probe and the three-dimensional structure and / orientation data or the generated characteristic measured to determine the relative position and / or orientation between the optical probe and the three-dimensional structure.
13.根据权利要求4所述的设备,还包括:运动跟踪装置,该运动跟踪装置被配置为采集运动数据,并且其中,所述处理单元包括一个以上的处理器,并且包括有形非暂时性存储设备,该有形非暂时性存储设备存储由所述一个以上的处理器执行的指令,以使得所述一个以上的处理器处理所述运动数据,以确定所述光学探头与所述三维结构之间的相对位置和/或朝向。 13. The apparatus as claimed in claim 4, further comprising: a motion tracking means tracking the moving means is configured to acquire the motion data, and wherein said processing unit comprises one or more processors, memory and includes a non-transitory tangible device, the non-transitory tangible storage device storing instructions by more than one processor to perform so that more than one processor of said processing said motion data to determine the optical probe and the three-dimensional structure between relative position and / or orientation.
14.根据权利要求13所述的设备,其中,所述运动跟踪装置包括摄像机,并且所述运动数据包括图像数据。 14. The apparatus according to claim 13, wherein said tracking means comprises a camera motion, and the motion data includes image data.
15.根据权利要求13所述的设备,其中,所述运动跟踪装置包括陀螺仪和/或加速度计。 15. The apparatus according to claim 13, wherein said motion tracking means comprises a gyroscope and / or accelerometer.
16.根据权利要求13所述的设备,其中,所述运动跟踪装置包括电磁传感器。 16. The apparatus according to claim 13, wherein said motion tracking means comprises an electromagnetic sensor.
17.根据权利要求2所述的设备,其中,所述光学系统被配置为将所述光束的所述第一波长组分聚焦到相对于扫描仪的至少10个不同的焦距,并且其中,所述焦距具有至少1mm的范围。 17. The apparatus according to claim 2, wherein said optical system is arranged to focus the light beam with respect to the first wavelength components of at least 10 different focal lengths of the scanner, and wherein the said focal length range of at least 1mm.
18.一种测量三维结构的表面形貌的方法,该方法包括: 产生多个入射光束,每个所述入射光束均包括第一波长组分; 将每个所述入射光束的所述第一波长组分聚焦到相对于光学探头的各自的固定的焦点位置; 针对所述光学探头与所述三维结构之间的多个不同的相对位置和/或朝向,测量通过用所述入射光束照射所述三维结构而产生的多个返回光束中的每个返回光束的特性; 处理针对所述光学探头与所述三维结构之间的所述多个不同相对位置和/或朝向测量的所述特性,以生成所述三维结构的表面形貌数据;以及使用所述表面形貌数据生成所述三维结构的表面形貌。 18. A method of three-dimensional structure of the surface topography measurement, the method comprising: generating a plurality of incident beam, each of said incident light beam comprises a first wavelength component; said each of said first incident light beam focusing the respective wavelength components fixed relative to the focal position of the optical probe; for a plurality of different relative positions between the optical probe and the three-dimensional structure and / or orientation, of the incident light beam measured with irradiation by said plurality of three-dimensional structures and returns the resulting beam characteristics of each return beams; processing for the plurality of different relative positions between the optical probe and the three-dimensional structure and / or the orientation characteristic measured, to generate surface topography data of the three-dimensional structure; and using the surface topography of the surface topography data generating three-dimensional structure.
19.根据权利要求18所述的方法,其中,所述特性是强度。 19. The method of claim 18, wherein the characteristic is an intensity.
20.根据权利要求18所述的方法,包括跟踪所述光学探头与所述三维结构之间的相对位置和/或朝向的变化。 20. The method of claim 18, the relative position between the optical probe and the three-dimensional structure comprises the tracking and / or orientation change.
21.根据权利要求20所述的方法,其中, 所述入射光束被布置为具有第一行和最后一行的多行; 各行中的所述入射光束被聚焦到各自的共同的焦距;并且所述第一行和所述最后一行的焦距相差预定长度。 21. The method of claim 20, wherein said incident beam is arranged to have a first and last rows of the plurality of rows; each row of said incident light beam is focused to a focal length of the respective common; and the the first row and the last row by a predetermined focal length.
22.根据权利要求21所述的方法,其中,所述预定长度是至少10_。 22. The method according to claim 21, wherein said predetermined length is at least 10_.
23.根据权利要求20所述的方法,其中,所述光束的波长组分相对于扫描仪聚焦到至少10个不同的焦距,并且其中,所述焦距具有至少1mm的范围。 23. The method according to claim 20, wherein the wavelength component of the light beam with respect to focusing the scanner at least 10 different focal lengths, and wherein, having a focal length range of at least 1mm.
Description  translated from Chinese
共焦平面相对于共焦设备与样品的相对移动方向倾斜的共焦表面形貌测量 Common focal plane with respect to the surface topography confocal confocal measurement device relative moving direction of the sample is inclined

背景技术 Background technique

[0001] 已经开发了各种方法用于光学测量表面形貌。 [0001] Various methods have been developed for an optical surface topography measurement. 例如,已经开发和采用了能够用于光学测量患者的牙齿的表面形貌的光学系统和方法。 For example, it has been developed and adopted an optical system and method for an optical surface topography can measure the patient's teeth. 例如,测得的牙齿的表面形貌能够用于设计和制造义齿,以及/或者用于确定正畸治疗计划以矫正咬合不正。 For example, the measured surface topography of the tooth can be used to design and manufacture the denture, and / or for determining a treatment plan to correct orthodontic malocclusion.

[0002] —种用于光学测量表面形貌的技术采用了激光三角法来测量牙齿表面与光学距离探头之间的距离,该探头插入到患者的口腔中。 [0002] - Optical techniques for measuring surface topography using laser triangulation to measure the distance between the surface of the tooth and the optical distance probe which is inserted into the patient's mouth. 然而,由于例如来自牙齿表面的次优的反射率,导致经由激光三角法而测得的表面形貌可能比期望的精度低。 However, since e.g. suboptimal reflectance from the tooth surface, resulting in surface topography by laser triangulation and measured may be lower than the desired accuracy.

[0003] 在能够从西门子公司(Siemens GmbH)或西诺德牙科设备公司(Sirona DentalSystems)市售的CEREC-1和CEREC-2系统中实施的用于光学测量表面形貌的其他技术分别使用光切法和相移法。 [0003] Other techniques are used for the light of the optical surface topography measurement can be implemented (Sirona DentalSystems) commercially available CEREC-1 and CEREC-2 systems from Siemens (Siemens GmbH) or Sirona Dental Company cut method and phase shift method. 两个系统均采用特殊设计的手持探头测量准备的牙齿的三维坐标。 Both systems use a handheld probe is specially designed to measure the three-dimensional coordinates of the prepared teeth. 然而,这两种方法均要求在牙齿上沉积特定的被覆物(即,分别为测量粉末和白色颜料悬浮液)。 However, both methods require a specific coating material is deposited on the teeth (i.e., measured respectively and the white pigment powder suspension). 被覆层的厚度应该满足特定的并且难以控制的需求,这可能导致测量数据的不准确。 The thickness of the coating layer should meet specific and difficult to control, which may result in inaccurate measurements.

[0004] 在另一技术中,基于利用探头对表面的物理扫描和通过例如利用光学器件或其他遥感装置确定探头的位置而进行牙齿表面形貌的测绘。 [0004] In another technique, based on the scanned surface by using a physical probe and the surface topography of the tooth is carried out by, for example placement of the probe or other optical device telemetry mapping pairs.

[0005] 美国专利N0.5372502公开了一种用于三维测量的光学探头。 [0005] U.S. Patent No. N0.5372502 discloses an optical probe for three-dimensional measurement.

[0006] 将各种图案投射到待测量的牙齿上,并且利用光学探头捕获相应的多个扭曲的图案。 [0006] The various patterns onto the tooth to be measured, and an optical sensor to capture a respective plurality of distorted patterns. 每个捕获的图案均能够用于细化形貌测量。 Each pattern are captured can be used to refine the shape measurement.

发明内容 SUMMARY

[0007] 提供了用于测量三维结构的表面形貌的设备和方法。 [0007] Providing the apparatus and method for measuring the surface topography of the three-dimensional structure. 在多个实施例中,用于测量表面形貌的设备被配置为针对设备的光学探头与三维结构之间的多个不同位置和/或朝向而利用光束照亮三维结构(例如,患者的齿列)。 In various embodiments, a surface topography measuring device is configured for a plurality of different optical probe positions between the apparatus and three-dimensional structures and / or orientation of a light beam to illuminate the three-dimensional structure (e.g., the patient's teeth column). 公开的设备和方法采用了在不相对于光学探头而光学地移动光束的焦点位置的情况下的三维结构的共焦扫描,而是使用光学探头相对于结构的移动,从而实现了更小、更快并且更具成本效益的光学器件。 Disclosed apparatus and methods employ a confocal scanning three-dimensional structure in a case where the optical phase without moving the focal position of the beam relative to the optical probe, but the use of an optical probe with respect to the mobile structure, thereby realizing a smaller and more faster and more cost-effective optical device.

[0008] 从而,在一个方面中,描述一种设备用于测量三维结构的表面形貌。 [0008] Thus, in one aspect, there is described an apparatus for measuring the surface topography of the three-dimensional structure. 设备被配置为测量多个返回光束中的每个返回光束的特性,所述返回光束通过利用多个光束照射三维结构而产生。 Apparatus configured to measure a plurality of characteristics of each of the return beam of the return beam, said return beam is generated by irradiating the three-dimensional structures using a plurality of light beams. 针对设备与三维结构之间的多个不同位置和/或朝向测量特性。 For a plurality of different positions between the device and the three-dimensional structure and / or towards the measuring characteristic.

[0009] 在另一方面中,描述一种设备用于测量三维结构的表面形貌。 [0009] In another aspect, there is described an apparatus for measuring a three-dimensional structure of the surface topography. 在多个实施例中,设备包括光学探头、光学系统以及处理单元。 Embodiment, the device includes an optical sensor, an optical system and a processing unit in a plurality of embodiments. 光学探头相对于三维结构移动。 The optical probe relative to the three-dimensional structure of the mobile. 光学系统将多个入射光束中的每个入射光束聚焦到相对于光学探头并且远离光学探头的各自的焦点位置。 The optical system of each of the plurality of incident beam focuses the incident beam in the respective focal position with respect to the optical probe and away from the optical probe. 通过利用入射光束照射三维结构而产生返回光束。 By using the three dimensional structure of the incident beam is irradiated to generate a return beam. 针对光学探头与三维结构之间的多个不同相对位置和/或朝向,至少部分地基于测量的返回光束的特性,处理单元确定三维结构的表面形貌。 For a plurality of different relative positions and / or orientation between the optical probe and a three-dimensional structure, at least in part based on measured characteristics of the return beam, the processing unit determines the three dimensional structure of the surface topography.

[0010] 在另一方面中,描述一种用于测量三维结构的表面形貌的方法。 [0010] In another aspect, there is described a method of measuring the surface topography of the three-dimensional structure is provided. 方法包括将多个入射光束中的每个入射光束聚焦到相对于光学探头并且远离光学探头的各自的焦点。 The method comprises a plurality of each of the incident beam for focusing the incident beam relative to the optical probe and away from the respective focus of the optical probe. 通过利用入射光束照射三维结构而产生返回光束。 By using the three dimensional structure of the incident beam is irradiated to generate a return beam. 针对光学探头与三维结构之间的多个不同的相对位置和/或朝向测量返回光束的特性,以生成三维结构的表面形貌数据。 For a plurality of different relative positions between the optical probe and a three-dimensional structure and / or the return beam towards the measuring characteristic, the surface topography data generated three-dimensional structure.

[0011] 通过阅读说明书、权利要求书和附图,本发明的其它目的和特征将变得显而易见。 [0011] reading of the specification, claims and drawings of, other objects and features of the invention will become apparent.

附图说明 BRIEF DESCRIPTION

[0012] 在所附权利要求中具体阐述本发明的新颖特征。 [0012] The novel features of the present invention is set forth with particularity in the appended claims. 通过参考以下详细说明将获得对本发明的特征和优点的更好理解,所述详细说明阐述了使用本发明的原理的说明性实施例,并且其附图为: By reference to the following detailed description and obtain a better understanding of the features and advantages of the present invention, the detailed description of embodiments of the present invention using the principles set forth in an illustrative, and the accompanying drawings as follows:

[0013]图1A和IB利用方框图示意性地示出了根据多个实施例的共焦表面形貌测量设备(图1B是图1A的延续); [0013] FIGS. 1A and IB schematically illustrates a block diagram of the use of a plurality of embodiments according to the embodiment of the confocal surface topography measuring apparatus (FIG. 1B is a continuation of FIG. 1A);

[0014]图2A是根据实施例的共焦表面形貌测量设备的探测部件的顶视图; [0014] FIG. 2A is a top view of the detection member surface topography measuring device confocal embodiment;

[0015]图2B是穿过图2A的探测部件的纵截面图,描绘了穿过其中的示例性光线; [0015] FIG. 2B is a longitudinal sectional view through the probe member. 2A depicts the exemplary light rays passing through therein;

[0016]图2C和2D是根据多个实施例的图2A的探测部件的端视图; [0016] FIGS. 2C and 2D is an end view of the probe member according to FIG. 2A a plurality of embodiments;

[0017]图3A示出了根据多个实施例的使用固定焦点位置来扫描结构的光学探头; [0017] Figure 3A shows an optical scanning probe according to a fixed focal position of the plurality of embodiments of the structure;

[0018]图3B示出图3A的光学探头在使用固定焦点位置扫描结构期间的另一视图; [0018] FIG 3B shows another view of the optical probe of FIG. 3A during a fixed focal position of the scanning structure;

[0019]图4A示出根据多个实施例的被配置为将多个光束聚焦到各自的焦点位置的光学组件; [0019] FIG 4A shows a plurality of light beams focused onto the respective focal position of the optical assembly is configured as a plurality of embodiments according to the embodiment;

[0020]图4B示出根据多个实施例的被配置为将多个光束聚焦到斜的焦平面的另一光学组件; [0020] Figure 4B illustrates another optical component beam is focused onto a plurality of focal plane obliquely more embodiments is configured to calculate;

[0021]图5示出根据多各实施例的用于将光束阵列聚焦到斜的焦平面的微透镜阵列; [0021] FIG. 5 shows a plurality of embodiments of the array for focusing a light beam to the microlens array obliquely focal plane;

[0022]图6A示出根据多个实施例的被配置为将多个光束聚焦到斜的焦平面的另一光学组件; [0022] FIG 6A shows another optical assembly to focus the plurality of light beams in the focal plane of the swash more embodiments is configured to calculate;

[0023]图6B示出根据多个实施例的通过图6A的光学组件的返回光束的光学路径; [0023] FIG 6B shows a return beam through an optical assembly embodiment of FIG. 6A plurality of optical paths;

[0024]图7A示出根据多个实施例的被配置为将多个光束聚焦到斜的焦平面的另一光学组件; [0024] FIG 7A shows a plurality of embodiments in accordance with another embodiment of the optical assembly is configured to focus the beam to a plurality of oblique focal plane;

[0025] 图7B示出图7A的光学组件的展开配置;以及 [0025] FIG 7B illustrates the optical assembly in expanded configuration of FIG. 7A; and

[0026]图8是简化的方框图,描述了根据多个实施例的使用固定焦点位置测量表面形貌的方法的步骤。 [0026] FIG. 8 is a simplified block diagram, the steps of the method described in Example embodiments a plurality of fixed focal position of the measured surface topography.

具体实施方式 detailed description

[0027] 本文描述了采用表面形貌的共焦测量的设备和方法。 [0027] The apparatus and methods described herein using a confocal measuring surface topography. 在一些方法中,诸如其公开内容全部通过参考并入本文的美国专利N0.6697164描述的方法中,测量设备产生的入射光束用于确定三维结构的表面形貌。 In some methods, such as methods which disclosures are all incorporated herein by reference U.S. Patent No. N0.6697164 described, the incident light beam generated by the measuring device for determining a three-dimensional structure of the surface topography. 设备包括光学探头,光束从该光学探头发出以照亮该结构。 Apparatus includes an optical probe to illuminate the light beams emitted from the optical probe structure. 光束通过聚焦光学器件聚焦到光学探头外部的各个交点(还称为焦点位置)。 The beam focused by the focusing optics to respective intersections of the outside optical probe (also referred to as focus position). 为了测量三维表面形貌,通过相对于光学探头的多个位置而光学扫描焦点位置。 To measure the three-dimensional surface topography, through a plurality of positions with respect to the optical probe and the focal position of the optical scanning. 焦点位置沿着入射光束的传播方向相对于光学探头移动(轴向扫描)。 The focal position along the propagation direction of the incident light beam relative to the optical probe movement (axial scan). 焦点位置还能够与传播方向正交地移动(横向扫描)。 The focal position can also be moved orthogonal to the propagation direction (horizontal scanning). 本文中关于光的方向的任何描述能够被认为是指光的主射线(主光线)的方向。 Any description herein regarding the direction of the light can be taken to mean the direction of the principal ray of the light (principal ray) of. 类似地,本文中关于光的传播方向的任何描述能够被认为是光的主射线的传播方向。 Similarly, any description herein concerning the propagation direction of light can be considered as the main direction of propagation of the light rays. 通常,通过例如经由诸如电流计镜、电动机和/或伸缩式扫描机构这样的适当装置而机械移动光学元件,来实现相对于光学探头的轴向扫描和/或横向扫描。 Typically, for example, via a suitable means such galvanometer mirror, a motor and / or telescopic scanning mechanism, such as a mechanically moving the optical element, is achieved with respect to the axial direction of the optical scanning probe and / or by horizontal scanning. 然而,使用这样的轴向扫描或横向扫描构件可能增加测量设备的尺寸、重量和成本。 However, the use of such an axial scan or horizontal scanning component may increase the size, weight and cost of measurement device.

[0028] 相比之下,本公开的设备和方法在不光学移动焦点位置相对于光学探头的位置的情况下进行三维表面形貌的共焦测量。 [0028] In contrast, the method and apparatus of the present disclosure confocal measuring three-dimensional optical surface topography without moving the focal position with respect to the case where the optical probe. 与以上描述的光学扫描相对于光学探头的焦点位置的方法相比,本文描述的方法将各光束聚焦至各自的焦点,所述各自的交点相对于光学探头具有固定空间布置。 The optical scanning as described above with respect to the focal position of the optical probe method compared to the method described herein will focus the beam to each respective focal point, said respective point of intersection with respect to the optical probe has a fixed spatial arrangement. 光学探头与三维结构之间的相对移动用于使焦点相对于结构移动。 Relative movement between the optical probe and the three-dimensional structure for moving the focus relative to the structure. 测量光学探头与三维结构之间的距离用于光学探头与三维结构之间的多个不同位置和/或朝向。 Distance between the optical probe and the three-dimensional structure for measuring a plurality of different positions between the optical probe and a three-dimensional structure and / or orientation. 然后结合关于探头与三维结构之间的相对位置的数据来处理数据,以确定被测量的结构的表面形貌。 Binding data and the relative position between the probe and the three-dimensional structure to process the data to determine the surface topography is measured. 通过避免使用光学扫描机构,本文公开的设备和方法相对于现有的光学测量系统可以是更小、更快并且更有成本效益的。 By avoiding the use of the optical scanning mechanism, apparatus and methods herein disclosed with respect to conventional measuring optical system may be smaller, faster, and more cost-effective.

[0029] 在多个实施例中,通过测量用入射光束照明结构所产生的返回光束的一个以上的特性来确定光学探头与三维结构之间的距离。 [0029] In various embodiments, one or more of the return beam characteristic by measuring incident light beam generated by the illumination structure to determine the distance between the optical probe and a three-dimensional structure. 这样的特性能够包括例如返回光束的强度、波长、偏振、相移、干涉和/或色散。 Such characteristics can include, for example, the intensity of the return light beam, wavelength, polarization, phase shift interference and / or dispersion. 本文关于光强的任何描述也能够适用于光的其他合适的特性,反之亦然。 Other suitable features described herein on any of the light intensity can be applied to light, and vice versa. 特性的测量能够用于检测入射光束是否聚焦在结构的表面上,并且从而确定光学探头与三维结构之间的距离。 The measured characteristics can be used to detect whether the incident light beam focused on the surface of the structure, and thereby determines the distance between the optical probe and a three-dimensional structure.

[0030] 例如,能够基于测量返回光束的强度而确定结构的表面形貌。 [0030] For example, the surface topography can be determined based on the measured intensity of the return beam. 在多个实施例中,设备配置为使得当入射光束聚焦在结构的表面时,从结构返回的任意特定光束的强度是最大的。 In various embodiments, the apparatus is configured such that when the incident light beam is focused on the surface of the structure, the strength of any particular configuration of the light beam returning from the largest. 通过相对于结构移动探头,能够通过识别相应返回反射光束的强度何时为最大值,确定对于特定光束的探头与结构之间的距离以及探头相对于结构的位置和朝向。 By moving the probe relative to the structure, it is possible to return the reflected beam corresponding to the intensity when the maximum value by identifying, determining the position and orientation relative to the structure of the distance between the probe and the structure of the particular light beam and the probe. 然后能够基于测量的返回光束的强度以及光学探头相对于结构的位置和/或朝向而确定结构的表面形貌。 Structure can then be the position and / or orientation of the topography of the surface is determined based on the measured intensity of the return beam and the optical probe phase.

[0031]作为另一实例,能够通过使用空间频率分析以识别结构的哪些区域在焦点上,来确定表面形貌。 [0031] As another example, it is possible to identify which areas of the structure in focus, the surface topography is determined by using the spatial frequency analysis. 在多个实施例中,聚焦区域将包含比非聚焦区域更高的空间频率。 In various embodiments, the focus area comprises a non-focusing area is higher than the spatial frequency. 因此,能够通过识别区域的空间频率何时为最大,从而针对探头相对于结构的特定位置和朝向,确定探头与结构上的特定区域之间的距离。 Accordingly, when the maximum frequency of the spatial recognition area, so for the probe relative to a particular position and orientation of the structure, determining the distance between the specific areas on the probe with the structure. 该方法能够用于确定具有空间细节的结构的表面形貌。 This method can be used to determine the surface topography structure having spatial detail.

[0032] 本文描述的设备和方法能够用于测量任意合适的三维结构的表面形貌。 [0032] The apparatus and methods described herein can be used to measure the surface topography of any suitable three-dimensional structure. 在多个实施例中,进行光学测量以产生表示患者牙列的三维表面形貌的数据。 In various embodiments, optical measurement to generate data representing a three-dimensional surface topography of the patient's dentition. 例如,数据能够用于产生能够被显示和操纵的牙列的三维虚拟模型。 For example, the data to be displayed can be used to generate and manipulate three-dimensional virtual model of the dentition. 三维虚拟模型能够用于例如定义患者牙列的空间关系,其用于为患者创建牙修复体(例如,齿冠或齿桥),提供数字模型或物理模型用于记录保存目的,建立治疗计划,制造正畸矫正器或任何其他牙科目的。 Three-dimensional virtual model can be used to define spatial relationships such as the patient's dentition, which is used to create a dental prosthesis (eg, tooth crown or bridge) for patients, providing digital model or physical model for record-keeping purposes, the establishment of a treatment plan, manufactured orthodontic appliances or any other dental purposes. 表面形貌数据能够被存储和/或传输或输出到诸如制造装置,该制造装置能够用于例如制造患者牙列的物理模型,牙科技师使用该物理模型来为患者创建牙修复体。 Surface topography data can be stored and / or transmitted to or output, such as a manufacturing apparatus, the manufacturing apparatus can be used, for example for producing a physical model of the patient's dentition, dental technician using the physical model to create dental restoration for the patient.

[0033] 在一个方面中,提供一种设备,用于测量三维结构的表面形貌。 [0033] In one aspect, there is provided an apparatus for measuring the surface topography of the three-dimensional structure. 该设备能够被配置为:(a)将多个光束中的每个光束均相对于设备聚焦到各自固定的焦点位置;(b)测量通过用光束照射三维结构而产生的多个返回光束中的每一个返回光束的特性,所述特性是针对设备与三维结构之间的多个不同位置和/或朝向所测量的;并且(C)对于装置与三维结构之间的多个不同位置和/或朝向,至少部分地基于测量的返回光束的特性来确定三维结构的表面形貌。 The device can be configured to: (a) each of the plural light beams are thus relative to the respective fixed focusing apparatus focal position; (b) measuring the return beam is irradiated by a plurality of three-dimensional structures with a light beam generated each return beam characteristic, the characteristic is different for a plurality of positions between the device and the three-dimensional structure and / or orientation measured; and (C) for a plurality of different positions and / or between the device and the three-dimensional structure orientation, at least in part based on the measured characteristics of the return beam to determine the surface topography of the three-dimensional structure.

[0034] 在另一方面中,提供一种设备,用于测量三维结构的表面形貌。 [0034] In another aspect, there is provided an apparatus for measuring the surface topography of the three-dimensional structure. 该设备包括被配置为相对于三维结构移动的光学探头。 The apparatus comprises an optical probe configured with respect to movement of the three-dimensional structure. 设备包括照射单元,该照射单元被配置为产生多个入射光束,每个入射光束均包含第一波长组分。 Apparatus comprises an irradiation unit, the irradiation unit configured to generate a plurality of incident light beams, each wavelength of the incident beam contains a first component. 该设备包括光学系统,该光学系统被配置为将多个入射光束的每个入射光束的第一波长组分相对光学探头聚焦至各自固定的焦点位置。 The apparatus includes an optical system, the optical system configured to focus the first incident light beam of each wavelength component of the plurality of the incident light beam relative to the optical probe to the respective fixed focus position. 该设备包括检测器单元,该检测器单元被配置为测量多个返回光束中的每个返回光束的特性,所述返回光束通过利用入射光束照射三维结构而产生。 The apparatus comprises a detector unit, the detector unit is configured to measure a plurality of characteristics of each of the return beam of the return beam, said return beam incident beam using a three dimensional structure generated by the irradiation. 设备包括与检测器单元结合的处理单元,该处理单元被配置为针对光学探头与三维结构之间的多个不同的相对位置和/或朝向,至少部分地基于测量的多个返回光束的特性来确定三维结构的表面形貌。 The device comprising a processing unit in combination with a detector unit, the processing unit is configured for a plurality of different relative positions between the optical probe and a three-dimensional structure and / or orientation, at least partially based on a plurality of return beam characteristics measured determining the three dimensional structure of the surface topography. 在多个实施例中,特性是强度。 In various embodiments, the characteristic is a strength.

[0035] 在多个实施例中,检测器单元包括传感器元件的二维阵列。 [0035] In various embodiments, the detector unit comprises a two dimensional array of sensor elements. 每个传感器元件均能够被配置为测量多个返回光束的相应返回光束的特性。 Are each sensor element can be configured to measure a plurality of characteristics of the respective return beam returning light beam. 光学系统能够被配置为根据由照明单元产生的光形成入射光束的二维图案,入射光束的二维图案与由传感器元件的二维阵列测量的返回光束相对应。 The optical system can be configured to form a two-dimensional pattern light incident beam generated by the illumination unit, a two-dimensional pattern of the incident light beam and the return beam measured by the two-dimensional array of sensor elements, respectively. 光学系统能够包括光学扩束器单元,光学扩束器单元被配置为扩展由照射单元产生的光,以形成入射光束的二维图案。 The optical system can include an optical beam expander unit, an optical beam expander unit is configured to expand the light generated by the irradiation unit to form a two-dimensional pattern of the incident beam. 照射单元能够被配置为产生入射光束的二维图案,该入射光束的二维图案与由传感器元件的二维阵列所测量的返回光束相对应。 Irradiating unit can be configured to generate a two-dimensional pattern of the incident beam, the incident beam by the two-dimensional pattern of the two-dimensional array of sensor elements and the return beam are measured, respectively.

[0036] 入射光束能够相对于光学探头聚焦到多个相应的焦距。 [0036] The incident light beam can be focused onto the optical probe with respect to a plurality of respective focal lengths. 在多个实施例中,入射光束能够被布置在具有第一行和最后一行的多行中。 In various embodiments, the incident beam can be arranged in a plurality of rows having a first row and the last row. 各行中的入射光束能够被聚焦到相应的共同焦距。 Each row of the incident beam can be focused to a respective common focus. 第一行和最后一行的焦距能够相差预定长度。 The first and last rows of the focal length can be predetermined phase difference. 例如,预定长度能够是5mm至25mm。 For example, the predetermined length is capable of 5mm to 25mm. 传感器元件能够布置在一个平面中,该平面被定向为关于入射光束的第一波长组分的焦距对返回光束进行共焦传感。 The sensor element can be arranged in one plane, the plane is oriented on the focal length of the first wavelength component of the return beam incident beam confocal sensor. 在一些实施例中,传感器元件的平面与返回光束是非正交的。 In some embodiments, the return beam with a plane non-orthogonal sensor element.

[0037] 在多个实施例中,光学探头通过相对于结构的多个不同的位置和/或朝向而移动。 [0037] embodiment, the optical probe is moved by the relative positions of a plurality of different configuration and / or orientation in the plurality of embodiments. 从而,能够至少部分地基于光学探头相对于三维结构的位置和/或朝向,根据测量的特性重建三维表面形貌。 Thus, it is possible relative to the part and / or towards the three dimensional structure based on at least the optical probe, according to the characteristics reconstructed surface topography measurements. 能够使用任意合适的方法确定光学探头与结构之间的相对位置和/或朝向。 Any suitable method may be used to determine the relative position and / or orientation between the optical probe with the structure. 在多个实施例中,处理单元包括一个以上的处理器,以及有形非暂时性存储装置。 In various embodiments, the processing unit includes more than one processor, a tangible and non-transitory storage devices. 有形非暂时性存储装置能够存储可以由一个以上的处理器执行的指令,以使得一个以上的处理器处理测量性能的数据,使用检测单元针对光学探头与三维结构之间的多个不同的相对位置和/或朝向而产生测量性能的数据。 Tangible, non-transitory storage device capable of storing instructions executable by one or more processors, such that one or more measured properties data processor, with a detector unit for a plurality of different relative positions between the optical probe and a three-dimensional structure and / or orientation data generated by the measurement performance. 数据能够由一个以上的处理器处理,以确定光学探头与三维结构之间的相对位置和/或朝向。 Data can be processed by more than one processor, to determine the relative position and / or orientation between the optical probe and a three-dimensional structure.

[0038] 在多个实施例中,设备还包括被配置为收集运动数据的运动跟踪装置。 [0038] In various embodiments, the apparatus further comprises a motion tracking means configured to collect movement data. 处理单元能够包括一个以上的处理器,以及有形非暂时的存储装置。 The processing unit can comprise more than one processor, a tangible and non-transitory storage devices. 有形非暂时性存储设备能够存储由一个以上的处理器执行的指令,以使得一个以上的处理器处理使运动数据,以确定光学探头与三维结构之间的相对位置和/或朝向。 Tangible, non-transitory storage device capable of storing instructions executed by one or more processors, such that more than one processor so that movement data to determine the relative position and / or orientation between the optical probe and a three-dimensional structure. 例如,运动跟踪装置能够包括摄像机,并且运动数据能够包括图像数据。 For example, motion tracking means can comprise a camera, and the motion data can include image data. 在另一实例中,运动跟踪装置能够包括陀螺仪和/或加速度计。 In another example, movement tracking can comprise gyroscopes and / or accelerometers. 作为另一实例,运动跟踪装置能够包括电磁传感器。 As another example, a motion tracking device can include an electromagnetic sensor.

[0039]能够使用多个入射光束的任何合适的配置。 [0039] Any suitable configuration may be used a plurality of the incident light beam. 例如,光学系统能够被配置为将光束的第一波长组分聚焦到相对于扫描仪的至少10个不同的焦距,并且焦距能够具有至少1mm的范围。 For example, the optical system can be configured to focus the first wavelength component beam with respect to at least the scanner 10 different focal lengths, and the focal length can have a range of at least 1mm.

[0040] 在另一方面中,提供用于测量三维结构的表面形貌的方法。 [0040] In another aspect, there is provided a method for measuring the surface topography of the three-dimensional structure. 该方法能够包括产生多个入射光束,每个入射光束包括第一波长组分。 The method can include generating a plurality of incident light beams, each comprising a first wavelength component of the incident beam. 每个入射光束的第一波长组分能够聚焦到相对于光学探头的各焦点位置。 Each of the first wavelength component of the incident light beam can be focused to the focal position with respect to the respective optical probe. 针对光学探头与三维结构之间的多个不同的相对位置和/或朝向,能够测量通过用入射光束照射三维结构而产生的多个返回光束中的每一个返回光束的特性。 For a plurality of different relative positions between the optical probe and a three-dimensional structure and / or orientation, each capable of measuring a return beam returned beams by the plurality of characteristics with the incident light beam is generated by a three-dimensional structure. 能够处理针对光学探头与三维结构之间的多个不同相对位置和/或朝向的测量特性,以生成三维结构的表面形貌数据。 It can be processed for a plurality of different relative positions between the optical probe and measurement of three-dimensional structural characteristics and / or orientation, to generate a three-dimensional structure of the surface topography data. 能够使用表面形貌数据生成三维结构的表面形貌。 It can be used to generate surface topography of the surface topography data of the three-dimensional structure. 在多个实施例中,测量的特性是强度。 In various embodiments properties embodiment, the measured intensity. 在多个实施例中,方法包括跟踪光学探头与三维结构之间的相对位置和/或朝向中的变化。 In various embodiments, the method includes tracking a relative position and orientation of the variations between the optical probe and a three dimensional structure / or.

[0041] 入射光束能够被布置在具有第一行和最后一行的多行中。 [0041] The incident light beam can be arranged in a plurality of rows having a first row and the last row. 例如,各行中的入射光束能够被聚焦到相应的共同焦距。 For example, each row of the incident beam can be focused to a respective common focus. 第一行和最后一行的焦距能够相差预定长度。 The first and last rows of the focal length can be predetermined phase difference. 例如,预定长度能够是至少10_。 For example, the predetermined length can be at least 10_. 入射光束能够相对于探头聚焦到任意合适的相应固定位置。 With respect to the incident probe beam is focused onto any suitable fixed location. 例如,光束的波长组分能够相对于扫描仪聚焦到至少10个不同的焦距,并且焦距可以具有至少1mm的范围。 For example, wavelength components of the light beam with respect to focusing the scanner at least 10 different focal lengths, and the focal length may have a range of at least 1mm.

[0042] 现在转到附图,其中在各个附图中相同的附图标记表示相同的元件,图1A和IB示出用于光学测量表面形貌的设备20。 [0042] Turning now to the drawings, wherein like reference numerals in the various figures indicate like elements, FIGS. 1A and IB illustrate an apparatus 20 for optical measurement of surface topography. 设备20包括结合到处理器24的光学装置22。 Device 20 comprises a processor 24 coupled to the optical device 22. 示出的实施例对于测量患者牙齿26的表面形貌是特别有益的。 Illustrated embodiment the measuring surface topography of the patient's tooth 26 is particularly advantageous. 例如,设备20能够被用于测量患者牙齿的至少一个牙齿或者牙齿的一部分缺失这样的部分的表面形貌,以产生用于随后在针对患者的假体(例如,齿冠或齿桥)的设计和/或制造中使用的表面形貌数据。 For example, the device 20 can be used for the surface topography of a portion of such portions at least one tooth missing tooth or teeth of the patient is measured in order to generate a subsequent design for a patient in a prosthesis (e.g., the bridge or crown) of surface topography data and / or used in the production. 然而,应注意,本发明不限于测量牙齿的表面形貌,并且,加以必要的修改,也适用于对象的三维结构的成像的各种其他应用(例如,用于考古学对象的记录,用于任何合适项目的三维结构的成像,诸如生物组织等)。 However, it should be noted that the present invention is not limited to measuring surface topography of the tooth, and, mutatis mutandis, also apply to various other application objects imaged three-dimensional structure (e.g., an object record for archeology, for any suitable three-dimensional structure of the imaging items, such as biological tissues).

[0043] 在示出的实施例中,光学装置22包括发射光的光源(例如,半导体激光单元28),如箭头30所表示的。 [0043] In the illustrated embodiment, the light source 22 (e.g., a semiconductor laser unit 28) comprises an optical light emitting device, as indicated by arrow 30. 光束30能够包括单一波长组分或者多个波长组分。 Beam 30 can comprise a single or a plurality of wavelength components wavelength components. 在一些情况下,具有多个波长组分的光可以由多个光源产生。 In some cases, the optical component having a plurality of wavelengths may be generated by a plurality of light sources. 光通过偏光器32,这使得通过偏光器32的光具有一定的偏振。 Light passes through the polarizer 32, which allows light passing through the polarizer 32 has a certain polarization. 然后光进入光学扩束器34,这增加了光束30的直径。 The light then enters the optical beam expander 34, which increases the diameter of the beam 30. 然后光束30通过模块38,该模块例如可以是将母光束30分成多个光束36的光栅或微透镜阵列,此处,为了易于图示,将光束36用单线表示。 The light beam 30 through the module 38, the module may be, for example, the parent beam 30 into a grating or microlens array 36 of a plurality of light beams, here, for ease of illustration, the beam 36 is represented by a single line.

[0044] 光学装置22还包括部分透明镜40,其具有小中心孔径。 [0044] The optical device 22 further comprises a partially transparent mirror 40, which has a small central aperture. 镜40允许光从激光单元28传输通过下游的光学器件,但是反射在相反方向上行进的光。 Mirror unit 40 allows the laser light transmitting through the optical device 28 downstream from, but is reflected in the opposite direction of travel of light. 应注意,原则上,可以使用具有类似功能的其他光学器件(例如,分束器)而不是部分透明镜。 It is noted that, in principle, other optical devices (e.g., beam splitters) instead of the partly transparent mirror having a similar function. 镜40中的孔径提高了设备的测量精度。 The aperture mirror 40 improves the measurement accuracy of the device. 由于该镜结构,只要区域不对焦,光束就在被成像的对象的照射区域上产生光环。 Since the mirror structure, as long as the area of focus, the beam is generated in the irradiated region halo imaged object. 当光束相对于成像对象聚焦时,光环变成强烈聚焦的照明点。 When the focus beam relative to the imaged object, halo become Qiang Lie focused illumination spot. 因此,在离焦与对焦时的测量强度之间的差较大。 Thus, the larger the difference between the measured intensity when defocus and focus. 该类镜的另一优点在于,与分束器相反,避免了在分束器中发生的内部反射,因此信噪比更大。 Another advantage is that such a mirror, and the beam splitter opposite to avoid the occurrence of internal reflection in the beam splitter, and therefore a greater signal to noise ratio.

[0045] 光学装置22还包括聚焦光学器件42、中继光学器件44和内窥镜探头部件46。 [0045] The optical device 22 further comprises a focusing optics 42, 44 and relay optics 46 endoscopic probe member. 聚焦光学器件42能够包括合适的光学器件,用于将光束36相对于探头部件46聚焦到固定空间位置处的多个相应的焦点,如下所述。 The focusing optics 42 can include suitable optics for light beam 36 relative to the probe member 46 to focus at the focal point of the respective plurality of fixed spatial positions, as described below. 在多个实施例中,聚焦光学器件42是静态的,使得光学装置22不采用机构来相对于探头部件46扫描焦点(例如,轴向或横向)。 In various embodiments, the focusing optics 42 is static, so that the optical device 22 without using the scanning mechanism 46 relative to the focal point of the probe member (e.g., axial or transverse). 在多个实施例中,中继光学器件44被配置为保持光束的传播的特定数值孔径。 In various embodiments, the relay optical device 44 is configured to maintain a certain numerical aperture of the beam propagation.

[0046]内窥镜探头部件46能够包括透光介质,其可以是在其内限定了光透射路径的中空物体或者由透光材料(例如,玻璃体或管)制成的物体。 [0046] The endoscopic probe member 46 can include a light-transmitting medium, which may be a hollow object defining a light transmission path or an object in which the light-transmissive material (e.g., glass body or tube) made. 透光介质可以是刚性的或柔性的(例如,光纤)。 Light-transmitting medium may be rigid or flexible (e.g., optical fiber). 在多个实施例中,内窥镜探头部件46包括确保全内反射并将入射光束朝向患者的牙齿26引导的这样类型的镜。 In various embodiments, the endoscopic probe member 46 includes an incident beam and to ensure total internal reflection toward the patient's teeth 26 of such guided type mirror. 从而内窥镜46发射照射在患者的牙齿26的表面上的多个入射光束48。 The endoscope 46 thus emitted is irradiated on a surface of a plurality of teeth 26 of the patient 48 to the incident beam.

[0047]内窥镜46能够包括一个以上的运动跟踪元件47 (例如,陀螺仪、加速度计、用于光学跟踪的目标以及电磁传感器)。 [0047] The endoscope 46 can comprise one or more motion tracking element 47 (e.g., a gyroscope, an accelerometer, an optical target tracking and electromagnetic sensor). 在多个实施例中,运动跟踪元件47响应于内窥镜46的移动而生成运动跟踪信号。 Embodiment, the motion tracking element 47 in response to movement of the endoscope 46 generates a plurality of motion tracking signal in Fig. 在多个实施例中,运动跟踪信号由处理器24处理,以跟踪内窥镜46在六个自由度(即,三个平移自由度和三个旋转自由度)中的空间布置的变化。 Embodiment, the motion tracking signal is processed by the processor 24 in a plurality of embodiments, the endoscope 46 to track changes in six degrees of freedom in space (i.e., three translational and three rotational degrees of freedom) of the arrangement.

[0048] 在多个实施例中,入射光束48形成相对于笛卡尔参考系50布置在平面中并沿着Z轴传播的光束的二维阵列。 [0048] In various embodiments, a two-dimensional array of the incident beam 48 with respect to a Cartesian reference system in the plane and the beam propagating along the Z axis 50 is arranged. 光束48能够被聚焦到限定了合适的焦平面的各焦点,所述焦平面例如是与Z轴正交的平面(例如,XY平面)或非正交平面。 Beam 48 can be focused to respective focal points defining the focal plane suitable, for example, the focal plane is a plane perpendicular to the Z-axis (e.g., XY plane) or non-orthogonal plane. 当入射光束48入射到不平坦表面上时,所产生的照明点52的阵列在不同的(XnY1)位置处沿着Z轴彼此移位。 When the incident light beam 48 is incident on an uneven surface, an array of illumination spot 52 generated along the Z axis is shifted from each other at a different (XnY1) position. 从而,虽然在一个位置处的照明点52可以针对内窥镜46与牙齿26之间的给定相对空间布置而聚焦,但是在其他位置处的照明点52可能是离焦的。 Thus, while the focus can be set for a relative spatial arrangement between the endoscope 46 and the teeth 26 in the illumination point 52 at one location, but at the illumination point 52 at other positions may be out of focus.

[0049]因此,聚焦点的返回光束的光强度将处于其峰值,而其他点处的光强度将不处于峰值。 [0049] Thus, the light intensity of the return beam focal point will be at its peak, and the light intensity at the other points will not be at a peak. 从而,对于各个照明点,测量光强用于内窥镜46与牙齿26之间的不同的相对空间布置。 Thus, for each illuminated spot, measuring light intensity for different relative space between the endoscope 46 and the tooth 26 is arranged. 通常,将求出强度对时间的导数,并且其中导数等于零的内窥镜46与牙齿26之间的相对空间布置可以用于产生数据,该数据与内窥镜26与牙齿26之间的相对空间布置关联使用,以确定牙齿的表面形貌。 Typically, the determined time derivative of the intensity, and wherein the derivative equal to zero and the endoscope 46 relative spatial arrangement between the teeth 26 may be used to generate the data, the data relative to the space between the teeth 26 and the endoscope 26 used in association arrangement to determine the surface topography of the tooth. 如上所述,由于使用具有孔径的镜40,入射光在离焦时在表面上形成光盘,并且仅在聚焦时形成强烈聚焦的光斑。 As described above, since the mirror 40 having an aperture, the incident light is formed on the surface of the optical disc when the defocus, and only Qiang Lie focusing spot is formed upon focusing. 结果,当接近对焦位置时,距离导数将表现出较大的数值变化,从而提高了测量的精度。 As a result, when the proximity-focus position, the distance derivative will exhibit a large change in value, thereby improving the measurement accuracy.

[0050] 从每个照明点52反射的光包括在由入射光束行进的光路的相反方向上的、最初在Z轴上行进的光束。 [0050] The light reflected from each of the illumination spot 52 includes the optical path in the opposite direction of the incident light beam traveling initially in the Z-axis light beam travels. 每个返回光束54都对应于一个入射光束36。 Each returned light beam 54 corresponds to an incident light beam 36. 鉴于镜40的不对称性质,返回光束54被反射到检测组件60的方向上。 Given the nature of asymmetric mirror 40, the return beam 54 is reflected onto the detection direction 60 of the assembly. 检测组件60包括偏光器62,偏光器62具有与偏光器32的偏振平面垂直定向的优选偏振平面。 Detecting assembly 60 includes a polarizer 62, a polarizer 62 having a polarization oriented perpendicular to the plane of preferred polarization plane of the polarizer 32. 返回的偏振光束54通过通常为透镜或多个透镜的成像光学器件64,并且然后通过针孔阵列66。 54 by the polarization beam returned normal imaging optics is a lens or plurality of lenses 64, 66 and then through a pinhole array. 每个返回光束54至少部分地穿过针孔阵列66的各个针孔。 Each return beam 54 at least partially through each pinhole of a pinhole array 66. 可以是电荷耦合装置(CCD)或任何其它合适的图像传感器的传感器阵列68包括传感元件的矩阵。 It may be a charge coupled device (CCD) sensor array, or any other suitable image sensor 68 comprises a sensing element of the matrix. 在多个实施例中,各个传感元件代表图像的像素,并且各个感测元件与阵列66中的一个针孔相对应。 Embodiment, the representative pixels of each image sensing element in a plurality of embodiments, and a pinhole array and the respective sensing elements 66, respectively.

[0051] 传感器阵列68连接到处理器单元24的图像捕捉模块80。 [0051] The sensor array 68 is connected to the processor unit 80 of the image capture module 24. 利用处理器24以下面描述的方式分析由传感器阵列68的各个传感元件所测量的光强。 With the processor 24 in the manner described by the following analysis of the light intensity sensor array 68 of individual sensing elements are measured. 虽然在图1A和IB中将光学装置22描述为测量光强,但是装置22还能够被配置为测量其他合适的特性(例如,波长、偏振、相移、干扰和色散),如本文前面所述。 Although FIGS. 1A and IB in the optical device 22 will be described to measure light intensity, the apparatus 22 can also be configured to measure other suitable characteristics (e.g., wavelength, polarization, phase shift, and dispersion interference), as described previously herein . 在多个实施例中,传感器阵列68的平面与返回光束54正交(例如,与返回光束的传播方向正交)。 Embodiment, a plane perpendicular to the beam 54 to return the sensor array 68 (e.g., perpendicular to the propagation direction of the return beam) in a plurality of embodiments. 在一些实施例中,传感器阵列68的平面不与返回光束54正交,如下文所述。 In some embodiments, a planar sensor array 68 is not orthogonal to the return beam 54, as described below.

[0052] 光学装置22包括控制半导体激光器28的操作的控制模块70。 [0052] The optical device 22 includes a control module to control the operation of the semiconductor laser 28 is 70. 在从每个传感元件获取代表光强度(或其他特性)的数据期间,控制模块70使图像捕获模块80的操作与激光器28的操作同步。 During data acquisition representative of light intensity (or other properties) from each sensing element, the control module 70 so that the image capturing operation of the laser module 80 of the 28 sync operation. 由处理器24经处理软件82处理强度数据以及内窥镜46与牙齿26之间的相对空间布置的数据,以获得代表牙齿26的外表面的三维形貌的数据。 Processed by the processor 24 via data processing software 82 and the intensity data corresponding space between the teeth 26 of the endoscope 46 and arranged to obtain data representative of an outer surface of the tooth 26 of the three-dimensional topography. 下面描述用于处理特性数据和相对空间布置数据的方法的示例性实施例。 The following description of exemplary embodiments of methods of treating characteristic data and the relative spatial arrangement of data. 测量的结构的所得的三维表示能够显示在显示器84上,并且通过用户控制模块85 (通常为计算机键盘)操作用以观看(例如,从不同角度观看,放大或缩小)。 Measuring the resulting three-dimensional structure can be represented on the display 84, and control module 85 by the user (typically a computer keyboard) operable to viewing (e.g., viewing from different angles, enlarged or reduced). 另外,代表表面形貌的数据能够通过诸如调制解调器88或任意合适的通信网络(例如,电话网络,互联网)这样的适当的数据端口传输到接受者(例如,到异地CAD/CAM设备)ο Further, data representing the surface topography can be through to the receiver 88 such as a modem or any suitable communication network (e.g., a telephone network, the Internet) so that appropriate data transmission port (e.g., off-site CAD / CAM apparatus) o

[0053] 通过捕获针对内窥镜46与结构之间的不同的相对空间布置(例如,在牙齿区段的情况下,从颊侧方向、舌侧方向和/或可选地从牙齿上方)而测量的内窥镜46与结构之间的相对距离数据,能够生成结构的精确的三维表示。 [0053] By capturing arrangement (e.g., in the case of the tooth section, a direction from the buccal, lingual direction and / or optionally from above the teeth) and for different relative space between the endoscope 46 and the structure the relative distance between the measured data and the structure of the endoscope 46, can generate a precise three-dimensional structure of FIG. 三维数据和/或所得到的三维表示能够用于创建在计算机环境中的三维结构的虚拟模型和/或以任何合适的方式(例如,经由计算机控制铣床,诸如立体光刻设备或3D打印设备这样的快速成型设备)制造的物理模型。 Three-dimensional data and / or the resulting three-dimensional representation can be used to create a virtual model of the three-dimensional structure in a computer environment and / or in any suitable manner (e.g., via a computer controlled milling machine, so the stereolithography apparatus or a printing apparatus such as a 3D rapid prototyping apparatus) manufactured by the physical model.

[0054] 现在参考图2A和2B,示出了根据多个实施例的探测部件90。 [0054] Referring now to FIGS. 2A and 2B, illustrate a plurality of embodiments of the detection member 90. 在多个实施例中,探测部件90形成内窥镜46的至少一部分。 In various embodiments, the detection member 90 is formed of at least a portion 46 of the endoscope. 探测部件90能够由透光材料(例如,玻璃、水晶、塑料等)制成,并且包括远端段91和近端段92,该远端段91和近端段92在93处以透光的方式紧密粘合在一起。 Detecting member 90 can be made of light-transmissive material (e.g., glass, quartz, plastic, etc.), and includes a distal section 91 and proximal section 92, distal section 91 and the proximal section 92 in a light-tight manner impose 93 closely bonded. 倾斜面94被反射镜层95覆盖。 The inclined surface 94 is covered by mirror layer 95. 限定了传感表面97的透明盘96 (例如,由玻璃、水晶、塑料或任何其它合适的透明材料制成)沿着光路远离反射镜层95安置,以在透明盘96与远端段91之间留出空气间隙98。 Defining a sensing surface 97 of the transparent disk 96 (e.g., made of glass, quartz, plastic or any other suitable transparent material) along an optical path away from the mirror layer 95 is disposed to the transparent disk 96 and distal segment 91 of the leaving an air gap 98 between. 透明盘96利用保持结构(未示出)固定在适当位置。 Transparent disk 96 by the holding structure (not shown) is fixed in position. 示意性地呈现了三条光线99。 Schematically presents the three rays 99. 可以看出,光线99以探测部件90的壁全反射的角度从探测部件90的壁反射,从反射镜层95反射,然后通过传感表面97传播。 As can be seen, the light detecting member 99 to the wall 90 of the total reflection angle of reflection from the walls of the probe member 90, reflected from the mirror layer 95, and then propagates through the sensing surface 97. 虽然光线99能够以各焦距的任意合适的组合聚焦到探测部件90外部,但是在多个实施例中,光线99聚焦在探测部件90外部的焦平面100上。 Although the light can be any suitable combination of the focal length of each of the probe 99 is focused onto the outer member 90, in the embodiment, the light 99 focused at the focal plane 90 of the outer probe member 100, but a plurality of embodiments. 例如,如图2C所示,其示出了探测部件90的端视图1I1-1II,光线99聚焦至共同的焦距,从而被聚焦在探测部件90外部的焦平面100上,该焦平面100与光线99的传播方向(本文中还称为Z轴)垂直。 For example, shown in Figure 2C, which shows an end view of 1I1-1II detecting member 90, the light 99 focused to a common focal length, so as to be focused on the focal plane 90 the outer probe member 100, the focal plane 100 and the light 99 in the propagation direction (also referred to herein as the Z-axis) perpendicular. 作为另一实例,如图2D所示,其示出了探测部件90的端视图1I1-1II,光线99聚焦到不同的焦距,从而被聚焦在不与Z轴垂直的焦平面100上。 As another example, shown in Figure 2D, which shows an end view of 1I1-1II detecting member 90, the light 99 focused to a different focal lengths so as to be focused on the Z-axis is not perpendicular to the focal plane 100. 虽然示出并描述了焦点位置的两种配置,但是能够采用焦点位置的任意合适的配置。 Although illustrated and described two configurations of the focus position, the focus position can be adopted any suitable configuration.

[0055]图3A和3B示出根据多个实施例的在全局笛卡尔坐标系204中扫描结构202的光学探头200。 [0055] Figures 3A and 3B illustrate the structure of scanning the global Cartesian coordinate system over 204 embodiment of an optical probe 202 200. (图3B示出图3A中定义的截面1-Ι)。 (FIG. 3A 3B shows a sectional view as defined in 1-Ι). 光学探头200能够与本文描述的任意合适的扫描装置或系统一起使用,诸如光学装置22。 Used with any suitable scanning device or system 200 to the optical probe described herein, such as an optical device 22. 从光学探头200发出的入射光束206的二维阵列被布置于在X方向上延伸的多行中,包括第一行208和最后一行210。 Emitted from the optical probe 200 incident light beam 206 is a two-dimensional array arranged in a plurality of rows extending in the X direction, it includes a first row 208 and the last row 210. 光束206的阵列的各行都沿着Z轴聚焦到各个共同的焦距,从而形成了斜的焦平面212。 Each row of the array 206 focus the light beam along the Z axis common to the respective focal lengths, thereby forming a focal plane 212 obliquely. 第一行208与最后一行210的焦距在Z方向上相差预定长度214。 The focal length of the first row and the last row of 208 210 214 by a predetermined length in the Z direction. 光学探头200能够相对结构202移动,以利用光束206扫描结构202。 The optical probe 200 to be relatively movable structures 202 to 206 by using the structure of the scanning beam 202. 例如,如图3B所描述的,光学探头200能够在Y方向上从第一位置216平移到第二位置218。 For example, as described in FIG. 3B, the optical probe 200 can be moved from a first position 218 second position 216 level in the Y direction.

[0056] 在多个实施例中,光束206阵列中的各行均沿着Z方向聚焦到不同的深度,从而产生不与Z轴正交的焦平面212。 [0056] In various embodiments, the array 206 each line beams are focused in the Z direction to different depths, resulting in a focal plane perpendicular to the Z-axis is not 212. 因此,随着光学探头200相对于结构202移动,光束206的焦平面212扫过结构202的三维体积。 Thus, as the optical probe 200 with respect to the movable structure 202, the beam 212 sweeps the focal plane 206 of the three-dimensional volume of the structure 202. 例如,随着光学探头200从位置216平移到位置218,焦平面212扫过具有Z深度214的三维体积。 For example, as the optical probe 200 is moved from position 216 flat position 218, the focal plane 212 having a three-dimensional volume swept Z-depth 214. 因此,通过光学探头200相对于结构202的连续移动,光学探头200能够在Z方向上扫描结构202,同时保持了光束206的各个焦距恒定。 Thus, by the optical probe 200 with respect to the structure 200 can be scanned in the Z-direction of the structure 202 is continuously moved, the optical probe 202 while maintaining a constant focal length of each beam 206. 虽然图3B描述了光学探头200在Y方向上的移动,但是在多个实施例中,光学探头200可以在六个自由度上移动(例如,三个平移自由度和三个旋转自由度)到光学探头200与结构202之间的多个不同的相对位置和/或朝向。 While FIG. 3B depicts a mobile optical probe 200 in the Y direction, but the embodiment, the optical probe 200 may be moved in six degrees of freedom in a plurality of embodiments (e.g., three translational and three rotational degrees of freedom) to the optical probe plurality of different relative positions between the structures 200 and 202 and / or orientation.

[0057] 能够以任意合适的配置设置光束206的阵列。 [0057] can be suitably disposed array of beam 206 is disposed at an arbitrary. 例如,光束206的阵列能够被聚焦到相对于光学探头200的任意合适的数量的不同焦距,诸如3、5、10、50或100个或者更多个不同的焦距。 For example, an array of beam 206 can be focused onto the optical probe 200 with respect to any suitable number of different focal lengths, such as 3,5,10,50, or 100 or more different focal lengths. 光束206的阵列的焦距能够被配置为具有任意合适的范围,诸如至少5mm、7.5mm或1mm以上。 The focal length of the array of beam 206 can be configured to have any suitable range, such as at least 5mm, 7.5mm, or more than 1mm. 光束206的阵列中的第一行208与最后一行210的焦距可以相差任意合适的长度,诸如5mm以下、I Omm、15mm或25mm以上。 The first row of the array 206 of light beam 208 and the focal length of the last line 210 may differ in any suitable length, such as 5mm or less, I Omm, 15mm or 25mm more. 例如,焦距的差可以在5mm至25mm的范围的长度内。 For example, the difference in focal length may be in the range of 5mm to 25mm.

[0058]能够由适用于将各个光束的波长组分聚焦到各自的焦点位置(例如,斜的焦平面212)的任意系统或装置产生光束206的阵列。 [0058] can be adapted to the respective wavelength components of the light beam focused to respective focal position (e.g., the swash focal plane 212) to any system or device 206 generates an array of beams. 在多个实施例中,光学装置22的一个以上的光学器件能够用于将光束的阵列聚焦到相对探头的多个固定的焦点位置。 In various embodiments, one or more optical device of the optical device 22 can be used to focus the beam array to a plurality of fixed focus position relative to the probe. 例如,本文描述的光学器件的合适的实施例能够包括在光栅或微透镜阵列38、聚焦光学器件42、中继光学器件44、内窥镜46内的光学器件或者它们的合适的组合中。 For example, a suitable embodiment of the optical device described herein can be included in a grating or microlens array 38, focusing optics 42, relay optics 44, an optical device 46 in the endoscope or any suitable combination thereof. 光学器件能够被配置为与远心和/或非远心共焦聚焦光学器件一起使用。 The optical device can be configured and / or confocal telecentric focusing optics used together with telecentric.

[0059]图4A示出根据多个实施例的用于将多个光束聚焦到各自的焦点位置的光学组件300。 [0059] FIG. 4A illustrates an optical assembly of a plurality of embodiments for focusing the beam to a plurality of respective focal position 300. 在光学组件300中,从光源阵列304 (例如,微透镜阵列)发出的光束302的阵列由聚焦光学器件306聚焦,并且从镜308 (例如,设置在内窥镜探测部件内的镜)反射以形成焦平面310。 In the optical module 300, an array of light beams emitted from the light source array 304 (e.g., a microlens array) 302 is focused by focusing optics 306, and 308 from the mirror (e.g., a mirror disposed in the endoscope detecting member) reflected at forming the focal plane 310. 镜308能够被定位为相对于光轴的45角,以产生正交的焦平面310。 Mirror 308 can be positioned at 45 angle with respect to the optical axis, perpendicular to the focal plane 310 to produce.

[0060]图4B示出根据多个实施例的用于将多个光束聚焦到斜的焦平面的光学组件320。 [0060] FIG. 4B illustrates an optical assembly for focusing a plurality of light beams obliquely focal plane 320 of a plurality of embodiments. 与光学组件300相似,系统320包括产生光束阵列322的光源阵列324、聚焦光学器件326、以及镜328。 300 is similar to the optical assembly, the beam generating system 320 comprises an array 322 of light source array 324, focusing optics 326, and a mirror 328. 镜328以相对于光轴的合适的角度倾斜,诸如30角,以产生相对于扫描仪332倾斜的焦平面330。 Mirror 328 with respect to the optical axis is inclined a suitable angle, such as a 30 angle to produce the scanner 332 is inclined with respect to the focal plane 330. 焦平面330能够用于使用本文描述的固定焦点位置扫描三维结构,诸如牙齿334。 Fixed focus position of the focal plane 330 is capable of scanning three-dimensional structures described herein using such as teeth 334.

[0061]图5示出根据多个各实施例的用于将光束阵列聚焦到斜的焦平面的微透镜阵列400。 [0061] FIG. 5 shows an array of a plurality of light beams for focusing the focal plane of the microlens array 400 of the swash various embodiments. 微透镜阵列400的微透镜(例如,微透镜兀件402)被布置在包括第一行406和最后一行408的多行404中。 A microlens array of microlenses 400 (e.g., Wu microlens 402) is arranged in a first row and the last row 406 of the plurality of rows 408 404. 每行微透镜均配置为将光束聚焦到不同的焦距,从而产生斜的焦平面。 Each row microlenses are configured to focus the beam to a different focal length, the focal plane to produce a ramp.

[0062]图6A示出根据多个实施例的用于将多个光束聚焦到斜的焦平面的光学组件500。 [0062] FIG. 6A illustrates an optical assembly for focusing a plurality of light beams obliquely focal plane 500 of the various embodiments. 光学组件500包括倾斜的光源阵列502,光源阵列502可以是以相对于光轴的合适的角度倾斜的微透镜阵列。 The optical assembly 500 includes a light source array 502 is inclined, the microlens array light source array 502 may be a suitable angle with respect to the optical axis is inclined. 倾斜的光源阵列502所产生的光束504的阵列通过聚焦光学器件506,并且从镜508反射以形成斜的焦平面501,如本文所述地适用于以固定的焦点位置扫描结构512。 An array of inclined light source array 502 generated by the light beam 504 by focusing optics 506, and is reflected from the mirror 508 to form an inclined focal plane 501, as described herein adapted to a fixed focal position of the scanning structure 512. 图6B示出返回光束514通过光学组件500的光路。 6B illustrates the optical path of the return beam 514 by the optical assembly 500. 从结构512反射的返回光束514通过聚焦光学器件506返回,并且被扩束器516引导在传感器阵列518上。 Return light beam reflected from the structure 512 to return 514 through focusing optics 506, beam expander 516 and is guided on the sensor array 518. 如前所述,传感器阵列518能够包括布置在平面中的多个传感器元件。 As described above, the sensor array 518 can include a plurality of sensor elements arranged in a plane. 在多个实施例中,传感器阵列518相对于返回光束514是非正交的,使得传感器元件的平面相对于返回光束514的传播方向是倾斜的。 Embodiment, the sensor array 518 with respect to the return beam 514 is non-orthogonal, so that the plane of the sensor element with respect to the propagation direction of the beam 514 returns is inclined in a plurality of embodiments. 平面能够以与光源阵列502相同的量倾斜,以便允许返回光束502的共焦传感。 Plane of the light source array 502 can be the same amount as the inclination, so as to allow the return beam 502 confocal sensor.

[0063]图7A示出根据多个实施例的用于将多个光束聚焦到斜的焦平面的光学组件600。 [0063] FIG 7A illustrates an optical assembly for focusing a plurality of light beams obliquely focal plane 600 of the various embodiments. 图7B示出光学组件600的展开配置。 7B shows an optical assembly 600 deployed configuration. 在光学组件600中,从光源阵列602发出的光束604的阵列通过聚焦光学器件606。 In the optical component 600, array 602 emitted from the light source array 604 through beam focusing optics 606. 非对称光学器件608被安置在聚焦光学器件606与镜610之间,并且被配置为将光束聚焦到斜的焦平面612,该斜的焦平面612适于用如本文描述的固定焦点位置扫描结构614。 Asymmetric optic 608 is disposed between the focusing optics 606 and the mirror 610, and is configured to focus the beam to a focal plane 612 obliquely, the obliquely fixed focal plane 612 is adapted to scan the focal position of the structure as described herein 614. 任何合适的光学元件或光学元件的组合均能够用作为非对称光学器件608。 Any suitable combination of optical elements or optical element can be used as both asymmetric optic 608. 例如,非对称光学器件608能够包括以相对于光轴的合适的角度倾斜的离轴透镜。 For example, asymmetric optic 608 can comprise a suitable angle of inclination with respect to the optical axis of the off-axis lens. 作为代替或者组合,非对称光学器件608能够包括菲涅耳透镜,菲涅耳透镜包括多个区段,该多个区段被配置为将多个光束中的每一个光束折射到各自的焦点位置,以便产生合适的斜的焦平面。 Instead or in combination, of asymmetric optics 608 can include a Fresnel lens, the Fresnel lens comprising a plurality of segments, the plurality of segments are configured to each of the plurality of light beams refracted to the focal position of the respective to produce a suitable focal plane obliquely.

[0064]能够通过将局部强度数据在空间上彼此匹配来重建结构的全局表面形貌。 [0064] data through the local intensity spatially match each other to reconstruct the global topography of the surface. 在多个实施例中,在扫描过程期间的光学探头与结构之间的相对位置和/或朝向用于确定强度数据之间的空间关系,并且从而匹配数据。 In various embodiments, the relative position between the optical probe and structure during the scanning process and / or orientation for determining the spatial relationship between the intensity data, and to match the data. 任意合适的方法或者方法的组合能够用于跟踪光学探头或者光学探头的合适部分(例如,内窥镜46的扫描尖端或探测部件90)相对于结构的位置和/或朝向,诸如合适的运动估计或运动跟踪方法。 Suitable moiety (e.g., scanning or probe tip member 90 of the endoscope 46) suitable method or combination of methods can be used to track any optical probe or an optical probe with respect to the structure and / or orientation, such as a suitable motion estimation or motion tracking method. 例如,一个以上的运动跟踪装置能够用于产生适用于确定光学探头相对于三维结构的位置和/或朝向的运动数据。 For example, one or more can be used to generate motion tracking means suitable for determining the position of the optical probe with respect to the three-dimensional structure and motion data and / or orientation.

[0065] 在多个实施例中,光学跟踪方法用于确定探头相对于结构的关于六个自由度的空间布置。 [0065] In various embodiments, the optical tracking method for determining on space probe relative to six degrees of freedom of the arrangement. 例如,运动跟踪装置能够包括外置摄像机(或任意其它合适的图像传感器),以随着其在扫描过程期间在多个不同的位置和/或朝向之间移动而产生探头的图像数据。 For example, an external device can include a motion tracking cameras (or any other suitable image sensor), as it moves to different positions between a plurality of and / or orientation during the scanning process to generate image data of the probe. 摄像机能够捕获探头的任意合适部分的图像,诸如位于患者口腔外部的部分。 Any suitable portion of the image The camera captures the probe, such as a portion located outside the patient's mouth. 作为代替或组合,摄像机能够捕获放置于探头的一个以上的合适部分上的一个以上的合适的标记(例如,包括在运动跟踪元件47中)的图像。 Alternatively or in combination, the camera can capture one or more suitable label (e.g., included in the motion tracking element 47) an image on a suitable portion of the probe is placed in more than one. 能够使用任何合适的机器视觉方法(例如,运动算法的结构,摄影测量方法,图像配准/对准方法和/或光流估计方法,例如Lucas-Kanade方法)来处理图像以估计探头相对于结构的位置和/或朝向。 You can use any suitable machine vision methods (e.g., structural movement algorithm, photogrammetric methods, image registration / alignment method and / or optical flow estimation method, e.g. Lucas-Kanade method) to process the image to estimate the probe relative to the structure position and / or orientation. 可选地,摄像机能够集成到探头中或与探头结合,使得能够使用诸如本文所述的机器视觉方法这样的合适的自我运动估计方法,来分析由摄像机捕获的图像数据,以确定探头相对于结构的位置和/或朝向。 Alternatively, the camera can be integrated or bound to the probe and the probe enables the use of a suitable self-motion estimation method such as a machine vision methods described herein such as, for analyzing image data captured by the camera, to determine the relative configuration of the probe position and / or orientation.

[0066]作为代替或组合,运动跟踪装置能够使用基于惯性的估计方法来确定探头的相对位置和/或朝向。 [0066] Alternatively or in combination, movement tracking is possible to use for determining the relative position of the probe and / or inertia based orientation estimation methods. 例如,运动传感器能够包括惯性测量单元,诸如惯性传感器。 For example, the motion sensor can comprise an inertial measurement unit, such as an inertial sensor. 惯性传感器能够是微机电系统(MEMS)装置。 The inertial sensor can be a microelectromechanical system (MEMS) device. 在多个实施例中,惯性传感器包括多个加速度计和/或多个陀螺仪,其被配置为检测探头关于三个平移度和/或三个旋转度的运动。 In various embodiments, the inertial sensor includes a plurality of accelerometers and / or a plurality of gyroscopes, which is configured to detect movement of the probe on three translational and / or three rotational degrees.

[0067] 在另一实施例中,能够使用电磁跟踪(EMT)系统来跟踪探头相对于结构的位置和/或朝向。 [0067] In another embodiment, it is possible to use an electromagnetic tracking (EMT) system to track the position of the structure and / or orientation with respect to the probe. 例如,EMT场能够由合适的发生器或发射器提供,并且能够基于由传感器检测的电磁信号来确定EMT传感器在场内的位置和/或朝向(例如,相对于最多三个旋转自由度和三个平移自由度)。 For example, EMT field can be provided by a suitable generator or transmitter, and can be determined the position of the sensor field of EMT and / or orientation (e.g., with respect to the electromagnetic signal detected by the sensor based on up to three rotational degrees of freedom and three translational degrees of freedom). 能够使用任何合适数量和配置的EMT场发生器和EMT传感器。 It can be any suitable number and configuration of EMT EMT field generator and the sensor. 例如,EMT场发生器能够位于扫描过程的场地处的固定位置(例如,结合到手术台或患者座椅),并且EMT传感器能够被安置在探头上(例如,包括在运动跟踪元件47中),以跟踪探头的运动。 For example, the field generator is capable of EMT in a fixed position at the site of the scanning process (e.g., a patient coupled to the operating table or chair), and EMT sensor can be positioned on the probe (e.g., including elements 47 in the motion tracking), to track the movement of the probe. 在多个实施例中,EMT传感器还被放置在三维结构上或三位结构附近(例如,在患者的头、脸、颂和/或牙齿上),以在测量过程期间考虑结构的任何运动。 In various embodiments, the EMT sensor is further disposed in the vicinity of the three-dimensional structure or three structures (e.g., the face, or on the patient's head and Chung / tooth), during the measurement process to take into account any movement of the structure. 作为代替或组合,EMT场发生器能够被放置在结构上,并且用于跟踪具有结合的EMT传感器的探头的相对运动。 Alternatively or in combination, EMT field generator can be placed on the structure, and a sensor for tracking a probe having bound EMT relative movement. 相反,EMT场发生器能够位于探头上,并且EMT传感器能够位于结构上。 Instead, EMT field generator can be located on the probe and sensor can be located on the EMT structure.

[0068]能够使用任意合适的方法处理运动数据,以确定探头相对于结构的位置和/或朝向。 [0068] Any suitable method can be used processing the motion data to determine the relative position of the probe and / or orientation of the structure. 例如,能够与卡尔曼滤波器组合使用运动跟踪算法来处理数据。 For example, it is possible to process the data using the motion tracking algorithm in combination with a Kalman filter. 可选地,处理可以使用从本文描述的多个不同类型的运动跟踪系统和设备接收的运动数据。 Alternatively, the process may use the motion data received from a plurality of different types of motion tracking herein described systems and devices.

[0069]图8是简化的方框图,描述了根据多个实施例的用于测量三维结构的表面形貌的方法700的步骤。 [0069] FIG. 8 is a simplified block diagram, in accordance with step 700 described a method for measuring the surface topography of the three-dimensional structure of the various embodiments. 诸如本文描述的实施例这样的任意合适的光学装置或系统能够用于实践方法700。 Such as the embodiments described herein in any suitable embodiment of such an optical device or system 700 can be used to practice the method.

[0070] 在步骤710中,产生了多个入射光束。 [0070] In step 710, generating a plurality of incident beam. 在多个实施例中,本文所述的光学装置22能够用于形成光束的二维图案。 In various embodiments, the optical device 22 described herein can be used to form a beam in two-dimensional pattern.

[0071] 在步骤720中,多个入射光束中的每个入射光束均聚焦到相对于光学探头的各自的焦点位置。 [0071] In step 720, each of the plurality of incident light beams incident beam was focused to a focal position with respect to a respective optical probe. 能够使用任意合适的聚焦机构,诸如本文描述的实施例。 It can be used in any suitable focusing means such as the embodiment described herein. 在多个实施例中,光束被聚焦以形成斜的焦平面,以利用探头的运动提供Z扫描,如前文所述。 In various embodiments, the beam is focused to form an inclined plane of focus movement of the probe using Z-scan is provided, as previously described.

[0072] 在步骤730中,对于探头与结构之间的多个相对位置和/或朝向,用入射光束照射三维结构。 [0072] In step 730, for a plurality of relative position between the probe and the structure and / or orientation, of the incident light beam with the three dimensional structure. 在多个实施例中,光束被聚焦到斜的焦平面,使得探头通过相对于结构的多个位置和/或朝向的移动能够实现结构的三维扫描,如本文所述。 In various embodiments, the beam is focused to a focal plane obliquely, so that a plurality of positions of the probe structure and a moving / or orientation relative to the three-dimensional scanning can be achieved by the structure as described herein. 通过利用入射光束照射结构产生了多个返回光束,每个返回光束均与入射光束相对应。 Generating a plurality of return beam incident beam is irradiated by using the structure, each of the return beam are incident beam, respectively.

[0073] 在步骤740中,测量了从三维结构返回的多个光束的每个光束的特性。 [0073] In step 740, the measured characteristic to the beam from a three-dimensional structure of each of the plurality of light beams. 如前文所述,特性可以是光束的任何合适的可测量参数,例如强度、波长、偏振、相移、干涉或色散。 As previously described, it may be any suitable characteristic measurable parameter beams, such as intensity, wavelength, polarization, phase shift interferometry or dispersion. 能够使用被配置为测量各个光束的特性的任意合适的装置。 Any suitable device configured to measure various beam characteristics can be used. 例如,能够使用诸如包括传感器元件的二维阵列的传感器(例如,传感器阵列68)这样的合适的检测器单元,如前文所述。 For example, it is possible to use a sensor such as a two-dimensional array comprising a sensor element (e.g., the sensor array 68) of such suitable detector means, as previously described. 基于聚焦光学器件和光源阵列的配置,传感器阵列可以与返回光束正交或者非正交。 Based on the return beam may be perpendicular to the focusing optics and a light source array configuration, or a non-orthogonal sensor array.

[0074] 在步骤750中,处理(例如,利用处理器24)测量的特性以及相应的光学探头与结构之间的相对位置和/或朝向,以对于结构生成表面形貌数据。 [0074] In step 750, process (e.g., using the processor 24) the measured characteristic and the relative position between the optical probe and the corresponding structures and / or orientation, the surface topography data for generating structures. 能够使用用于处理测量的特性的数据的任意合适的方法,诸如本文描述的实施例。 Any suitable method may be used for data processing of the measured characteristics, such as the embodiments described herein. 在多个实施例中,基于通过如本文所述跟踪光学探头的相对位置和/或朝向而获得的数据(例如,运动数据和/或图像数据),来匹配测量的特性的数据。 In various embodiments, based on the data (e.g., motion data and / or image data) relative to the position of the optical probe by tracking as described herein and / or orientation is obtained, to match the characteristics of the measured data.

[0075] 在步骤760中,例如使用本文描述的处理器24产生用于三维结构的表面形貌。 [0075] At step 760, described herein, for example using processor 24 for generating three-dimensional structure of the surface topography. 得到的结构的三维表示能够用于任意合适的应用,诸如本文描述的牙齿和正畸过程。 It represents a three-dimensional structure can be obtained for any suitable applications, such as dental and orthodontic processes described herein.

[0076] 虽然本文已经示出和描述了本发明的优选实施例,但是对于本领域技术人员来说明显的是,这样的实施例仅以示例的方式提供。 [0076] Although described herein have been shown and described a preferred embodiment of the present invention, but for the person skilled in the art obvious that such embodiments are provided by way of example. 在不脱离本发明的情况下,本领域技术人员将会想到多种变化、改变和替换。 Without departing from the present invention will occur to those skilled in the art that numerous variations, changes and substitutions. 应当理解,在实施本发明时可以采用本文所述的本发明实施例的各种替代方案。 It should be understood that in the practice of the present invention may assume various alternative embodiments of the invention described herein. 意图是以下权利要求限定本发明的范围,并且由此涵盖这些权利要求的范围内的方法和结构及其等同物。 It is intended to define the scope of the present invention, and thus encompasses methods and structures within the scope of these claims and their equivalents of the following claims.

Legal Events
DateCodeEventDescription
10 May 2017PB01
6 Jun 2017SE01