CN102532756A - 有机/无机复合薄膜及其制造方法 - Google Patents

有机/无机复合薄膜及其制造方法 Download PDF

Info

Publication number
CN102532756A
CN102532756A CN2010106164473A CN201010616447A CN102532756A CN 102532756 A CN102532756 A CN 102532756A CN 2010106164473 A CN2010106164473 A CN 2010106164473A CN 201010616447 A CN201010616447 A CN 201010616447A CN 102532756 A CN102532756 A CN 102532756A
Authority
CN
China
Prior art keywords
organic
composite film
sheet material
inorganic composite
nano sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010106164473A
Other languages
English (en)
Other versions
CN102532756B (zh
Inventor
苏俊玮
吕奇明
杨智仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN102532756A publication Critical patent/CN102532756A/zh
Application granted granted Critical
Publication of CN102532756B publication Critical patent/CN102532756B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds

Abstract

本发明提供一种有机/无机复合薄膜,包括:聚偏二氟乙烯;以及分散于此聚偏二氟乙烯中的无机纳米片材,其中此聚偏二氟乙烯与此无机纳米片材的重量比为约97∶3至20∶80,此无机纳米片材的尺寸为约20-80nm,其中此有机/无机复合薄膜在380至780nm的波长下的透过率大于约85%。此外,本发明亦提供此有机/无机复合薄膜的制造方法。

Description

有机/无机复合薄膜及其制造方法
【技术领域】
本发明涉及有机/无机复合薄膜,且特别是涉及一种具有高透过率的有机/无机复合薄膜。
【背景技术】
有机/无机复合材料可将有机及无机材料的优点相加成,形成兼具两者特性的新型材料。通常,可在高分子内加入一些如玻璃、纤维、粘土、碳黑等无机物来作为填充物或补强剂,以降低成本及提升材料的物理性质。然而,无机物的分散程度及尺寸大小亦会影响其在高分子材料中所能达到的补强效果,或甚至亦会影响到高分子材料原本的特性。
聚偏二氟乙烯(poly(vinylidene fluoride),PVDF)是氟树脂中机械强度最优异的材料,在高温及高压下仍能保持良好的强度,且韧性佳、硬度大、耐磨性好、具有突出的抗紫外线及耐气候老化的性能,以及具有良好的化学稳定性及热稳定性。同时,聚偏二氟乙烯易于加工,因而具有极佳的应用性。一般而言,利用粘土加入聚偏二氟乙烯高分子形成复合材料具有以下几个优点:1.优良的压电特性、2.优良的机械性质、3.低热膨胀系数、4.高耐热性、5.低吸水率、6.低透气率、7.优良的耐候性。聚偏二氟乙烯主要可分为3种结晶型态:α相、β相及γ相,其中α相最为常见,而γ相系由α相及β相混合而成。在这3种晶相中,以β相的压电特性及机械性质较佳。在通常情况下,β相不能从聚偏二氟乙烯熔体直接获得,仅能由α相经固相转变获得。
聚偏二氟乙烯/粘土复合材料的传统制造方法为将聚偏二氟乙烯及粘土熔融射出(melt-mixing)成型,藉由粘土的添加导致聚偏二氟乙烯产生相变化,例如由α相转变为β相,以增加聚偏二氟乙烯的压电特性及机械性质。然而,依照此种方法所得到的偏二氟乙烯/粘土复合材料为光学特性不佳的薄膜,且粘土添加量仅约5-10wt%。
此外,亦有另一种方法为利用透明且非结晶型的聚甲基丙烯酸甲酯(Polymethylmethacrylate;PMMA)与聚偏二氟乙烯(PVDF)混成制作成复合材料,其优点为利用高透明的聚甲基丙烯酸甲酯来改善聚偏二氟乙烯的光学特性。然而,由于未加入无机物,其物性将不具有上述有机/无机混成复合材料的优点,且该复合材料的透过率将会受所添加的聚甲基丙烯酸甲酯及聚偏二氟乙烯的比例影响,当聚偏二氟乙烯的比例越高时,该复合材料的透过率将越低。
因此,业界需要的是一种新颖的聚偏二氟乙烯/粘土复合材料,其兼具有良好的光学特性。
【发明内容】
本发明提供一种有机/无机复合薄膜,包括:聚偏二氟乙烯;以及分散于此聚偏二氟乙烯中的无机纳米片材,其中此聚偏二氟乙烯与此无机纳米片材的重量比为约97∶3至20∶80,此无机纳米片材的尺寸为约20-80nm,其中此有机/无机复合薄膜在380至780nm的波长下的透过率大于约85%。
本发明亦提供一种有机/无机复合薄膜的制造方法:提供无机纳米片材的有机分散液,此有机分散液包含有机溶剂及氢离子型无机纳米片材,其尺寸为约20-80nm;混合聚偏二氟乙烯与此有机分散液,并涂布成薄膜;以及烘烤此薄膜,形成此有机/无机复合薄膜,其中此氢离子型无机纳米片材与此聚偏二氟乙烯的重量比为约97∶3至20∶80,且此复合薄膜在380至780nm的波长下的透过率大于约85%。
为让本发明的上述和其他目的、特征、和优点能更明显易懂,下文特举出优选实施例,并结合附图,作详细说明如下:
【附图说明】
图1显示依照本发明一实施例的聚偏二氟乙烯/粘土复合薄膜及纯聚偏二氟乙烯薄膜的X射线衍射(XRD)图。
图2显示依照一实施例的聚偏二氟乙烯/粘土复合薄膜与纯聚偏二氟乙烯薄膜的热膨胀系数。
图3显示纯聚偏二氟乙烯薄膜的透射电子显微镜图(TEM)。
图4显示实施例1的聚偏二氟乙烯/粘土聚偏二氟乙烯/粘土复合薄膜薄膜的透射电子显微镜图(TEM)。
图5显示实施例2的聚偏二氟乙烯/粘土聚偏二氟乙烯/粘土复合薄膜薄膜的透射电子显微镜图(TEM)。
图6显示通过原子力显微镜(AFM)观察到的实施例2的偏二氟乙烯薄膜的图像。
【具体实施方式】
本发明提供一种有机/无机复合薄膜,其包含聚偏二氟乙烯及无机纳米片材,其中由于无机纳米片材尺寸小且均匀分散,使此有机/无机复合薄膜亦具有极佳的光学特性,例如高亮度、高穿透度、低色偏(b*color)、低雾度(haze)。此外,当无机纳米尺寸的含量较高时,聚偏二氟乙烯实质上为纯β相的聚偏二氟乙烯(不含α相)。
本发明的有机/无机复合薄膜由无机纳米片材的有机分散液与聚偏二氟乙烯混合制得。此无机纳米片材有机分散液系以直接离子交换的方式,以氢离子取代无机纳米片材中的金属阳离子,且在制程中未加入任何分散剂或改性剂,因而无机纳米片材中可在转相至有机溶剂后,仍维持无机纳米片材的形状及粒径,以及具有高的固含量。
无机纳米片材有机分散液的制造方法如下:首先,提供无机纳米片材的水性分散液,无机纳米片材可为天然或合成的纳米粘土,其尺寸介于约5~500nm之间,优选为约20~300nm。在一实施方式中,片状粘土的径长比最小不小于10,优选的径长比约在50~10000之间,片状粘土可为绿土粘土(smectite clay)、蛭石(vermiculite)、埃洛石(halloysite)、绢云母(sericite)、云母(mica)、合成云母(synthetic mica)、合成水滑石(layered double hydroxide;LDH)、合成绿土粘土、或前述的组合。其中,绿土粘土包括:蒙脱土(montmorillonite)、皂石(saponite)、贝保石(beidellite)、绿脱石(nontronite)、水辉石(hectorite)、富镁蒙脱石(stevensite)、或前述的组合。上述的片状粘土可以单独或混合使用。此水性分散液的固含量为约1~20wt%。
接着,加入H型阳离子交换树脂及OH型阴离子交换树脂至上述无机纳米片材的水性分散液中,将无机纳米片材中的阳离子替换成氢离子。在一实施方式中,H型阳离子交换树脂及OH型离子交换树脂优选为约1∶1,以维持阴离子交换树脂反应时所释放的氢离子与阳离子交换树脂反应时所释放的氢氧根离子等量。H型阳离子交换树脂可例如为Dowex H form。OH型阴离子交换树脂可例如为Dowex OH form。
经离子交换程序后,水性分散液中的无机纳米片材均已被替换成氢离子型的无机纳米片材。如此,例如粘土的无机纳米片材的双层结构即已被拆开,所形成的氢离子无机纳米片材得以以较小的粒径完全分散在水中。
接着,将该氢离子型无机纳米片材的水性分散液加入至转相溶剂及有机分散液的有机溶剂中均匀混合,使氢离子型无机纳米片材能均匀分散于转相溶剂中,以转相至有机分散液的有机溶剂中。在一实施方式中,转相溶剂可包含与水互溶的醇类、乙醚、丙酮或前述的组合。在优选实施例中,转相溶剂可包含异丙醇。有机分散液的有机溶剂可包含N-甲基-2-吡咯烷酮(N-methyl-2-pyrrolidone;NMP)、N,N-二甲基乙酰胺(N,N-dimethylacetamide;DMAc)、γ-丁内酯(γ-butyrolactone;GBL)、N,N-二甲基甲酰胺(N,N-Dimethylformamide;DMF)、二甲基亚砜(Dimethyl sulfoxide;DMSO)、二甲苯(Xylene)、甲苯(Toluene)、或前述的组合。本领域技术人员可知的是,转相溶剂与有机分散液的有机溶剂的比例可依溶液种类而任意变换。
接着,以例如减压浓缩或真空抽取的方式去除该转相溶剂及水,得到氢离子型无机纳米片材的有机分散液。在本发明的实施方式中,所得到的氢离子型无机纳米片材的有机分散液,具有固含量为约1~20wt%,无机纳米颗粒仍为片状,粒径大小约在20~80nm之间。
接着,将此氢离子型无机纳米片材的有机分散液与聚偏二氟乙烯均匀混合,其中聚偏二氟乙烯系溶于例如N-甲基-2-吡咯烷酮、N,N-二甲基乙酰胺、γ-丁内酯、N,N-二甲基甲酰胺、二甲基亚砜、二甲苯、甲苯、或前述的组合的有机溶剂中,且此有机溶剂优选与氢离子型无机纳米片材的有机分散液的有机溶剂相同。聚偏二氟乙烯与此氢离子型无机纳米片材的重量比例为约97/3至20/80,优选为约90/10至30/70,更优选为约80/20至40/60。
随后,将此混合溶液静置脱泡后,以例如旋转涂布、刮刀涂布或网印涂布方式形成湿膜。随后,分别在50~70℃烘烤5~15分钟,及在120~180℃下烘烤10~60分钟,得到本发明的有机/无机复合薄膜。值得注意的是,在有机/无机复合薄膜中,尽管加入了高含量的无机纳米片材,聚偏二氟乙烯薄膜仍可维持较小的晶体尺寸,例如小于至少约100nm,因而可具有优异的光学特性。此外,由于此有机/无机复合薄膜中未加入例如聚甲基丙烯酸甲酯(PMMA)等高分子,在无机纳米片材含量较高时,例如当聚偏二氟乙烯与无机纳米片材的重量比大于约90∶10时,可使原先为α相的聚偏二氟乙烯相大体上完全转换至β相(不包含α相)。在一实施方式中,此该有机/无机复合薄膜的厚度为约1~50μm。
由于无机纳米片材的尺寸小且以均匀分散于有机溶剂中,因而与聚偏二氟乙烯薄膜混合后分散性极佳,此外,聚偏二氟乙烯薄膜的结晶相的晶体尺寸小于至少约100nm。因此,经上述步骤所得到的有机/无机复合薄膜的光学特性极佳,例如雾度小于1.0,优选小于0.7;在380至780nm的波长下的透过率大85%,优选大于90%;亮度大于90,优选大于约95;以及低色偏(b*color)小于约3,优选小于约1.5。
【实施例1】
(a)将25g粘土(Laponite RDS,粒径大小20nmx20nmx1nm)分散于1000g去离子水中。接着,取300g的H型阳离子交换树脂(Dowex H form)及300g的OH型阴离子交换树脂(Dowex OH form)加入至水性分散液中。接着,加入1440g的异丙醇并减压蒸馏得到2.5%的异丙醇,再加入287.5g的N,N-二甲基乙酰胺(DMAc)并减压蒸馏至8wt%的粘土有机分散液。
(b)将50g聚偏二氟乙烯(PVDF)溶于450g N,N-二甲基乙酰胺(DMAc)内,形成10wt%的PVDF-DMAc溶液。
(c)取2.78g的(a)步骤得到的粘土有机分散液与20g的(b)步骤得到的PVDF-DMAc溶液混合,以超声波震荡2小时,静置隔夜后以刮刀涂布成膜,接着分别在60℃下烘烤15分钟及在180℃下烘烤30分钟,得到10wt%的聚偏二氟乙烯/粘土复合薄膜。
【实施例2】
如实施例1的相同方式进行,但步骤(c)的粘土有机分散液的量为6.25g,得到20wt%的聚偏二氟乙烯/粘土复合薄膜。
【实施例3】
如实施例1的相同方式进行,但步骤(c)的粘土有机分散液的量为1.39g,得到5wt%的聚偏二氟乙烯/粘土复合薄膜。
【实施例4】
如实施例1的相同方式进行,但步骤(c)的粘土有机分散液的量为0.773g,得到3wt%的聚偏二氟乙烯/粘土复合薄膜。
【实施例5】
如实施例1的相同方式进行,但步骤(c)的粘土有机分散液的量为29.17g,得到70wt%的聚偏二氟乙烯/粘土复合薄膜。
图1显示实施例1的聚偏二氟乙烯/粘土复合薄膜及纯聚偏二氟乙烯薄膜的X射线衍射(XRD)图。如图1所示,实施例1的聚偏二氟乙烯/粘土复合薄膜中的聚偏二氟乙烯结晶相系仅有β相,但纯聚偏二氟乙烯薄膜系同时具有α相及β相。
表1显示实施例1、2的聚偏二氟乙烯/粘土复合薄膜与纯聚偏二氟乙烯薄膜的光学性质的比较。由表1可得知,实施例1、2的聚偏二氟乙烯/粘土复合薄膜无论在亮度、穿透度及雾度等光学性质方面均优于纯聚偏二氟乙烯薄膜,且b*色度亦皆维持在约3以下(低于肉眼可辨别的程度)。
表1
Figure BDA0000042104370000061
表2显示实施例2的聚偏二氟乙烯/粘土复合薄膜与纯聚偏二氟乙烯薄膜的抗UV老化性质的比较。实施例2的聚偏二氟乙烯/粘土复合薄膜与纯聚偏二氟乙烯薄膜分别在强度0.45W/m2及波长340nm的UV下照射500小时至4000小时。如表2所示,实施例2的聚偏二氟乙烯/粘土复合薄膜在经长时间UV照射后,反而具有更佳的色偏(b*color)及黄化指数(yellow index),且远低于纯聚偏二氟乙烯薄膜。
表2
图2显示实施例1、2的聚偏二氟乙烯/粘土复合薄膜与纯聚偏二氟乙烯薄膜的热膨胀系数(温度测量区间为40~105度),其各自为134.4μm/(m*℃)、104.97μm/(m*℃)、192.6μm/(m*℃)。由上述结果得知,随着粘土的加入,聚偏二氟乙烯/粘土复合薄膜明显具有较佳的热稳定性,且随粘土含量越高越佳。
图3~5分别显示纯聚偏二氟乙烯薄膜、实施例1及实施例2的聚偏二氟乙烯/粘土聚偏二氟乙烯/粘土复合薄膜的偏光显微镜图(POM)。参见图3,纯聚偏二氟乙烯薄膜具有较大的结晶尺寸。参见图4和5,可得知粘土的加入确实可抑制聚偏二氟乙烯薄膜的结晶尺寸。另外,由图6显示的原子力显微镜(AFM)图可观察到实施例2的偏二氟乙烯薄膜的晶体尺寸小于100nm。
虽然本发明已以多个优选实施例披露如上,然其并非用以限定本发明,任何本发明所属技术领域中的技术人员,在不脱离本发明的精神和范围内,应可作任意更改与润饰。因此,本发明的保护范围应以所附权利要求书限定的范围为准。

Claims (15)

1.一种有机/无机复合薄膜,包括:
聚偏二氟乙烯;以及
分散于该聚偏二氟乙烯中的无机纳米片材,其中该聚偏二氟乙烯与该无机纳米片材的重量比为97∶3至20∶80,该无机纳米片材的尺寸为20-80nm,
其中该有机/无机复合薄膜在380至780nm的波长下的透过率大于85%。
2.如权利要求1所述的有机/无机复合薄膜,其中该无机纳米片材包含经氢离子交换后的绿土粘土、蛭石、埃洛石、绢云母、云母、合成云母、合成水滑石、合成绿土粘土、或前述的组合。
3.如权利要求1所述的有机/无机复合薄膜,其中该无机纳米片材为氢离子型无机纳米片材。
4.如权利要求1所述的有机/无机复合薄膜,其中该有机/无机复合薄膜的雾度小于1.0。
5.如权利要求1所述的有机/无机复合薄膜,其中该聚偏二氟乙烯的晶体尺寸小于100nm。
6.如权利要求1所述的有机/无机复合薄膜,其中该有机/无机复合薄膜的厚度为1-100μm。
7.一种有机/无机复合薄膜的制造方法:
提供无机纳米片材的有机分散液,该有机分散液包含有机溶剂及氢离子型无机纳米片材,其尺寸为20-80nm;
混合聚偏二氟乙烯与该有机分散液,并涂布成薄膜;以及
烘烤该薄膜,形成该有机/无机复合薄膜,其中该聚偏二氟乙烯与氢离子型无机纳米片材的重量比为97∶3至20∶80,且该复合薄膜在380至780nm的波长下的透过率大于85%。
8.如权利要求7所述的有机/无机复合薄膜的制造方法,其中该无机纳米片材包含经氢离子交换后的绿土粘土、蛭石、埃洛石、绢云母、云母、合成云母、合成水滑石、合成绿土粘土、或前述的组合。
9.如权利要求7所述的有机/无机复合薄膜的制造方法,其中该有机溶剂包括N-甲基-2-吡咯烷酮、N,N-二甲基乙酰胺、γ-丁内酯、N,N-二甲基甲酰胺、二甲基亚砜、二甲苯、甲苯、或前述的组合。
10.如权利要求7所述的有机/无机复合薄膜的制造方法,其中该有机/无机复合薄膜的雾度为小于1.0。
11.如权利要求7所述的有机/无机复合薄膜的制造方法,其中该复合薄膜中的聚偏二氟乙烯的晶体尺寸小于100nm。
12.如权利要求7所述的有机/无机复合薄膜的制造方法,其中该有无机纳米片材的有机分散液的固含量为1~20wt%。
13.如权利要求7所述的有机/无机复合薄膜的制造方法,其中该无机纳米片材的有机分散液的形成包含下列步骤:
(a)对无机纳米片材的水性分散液进行离子交换,得到氢离子型无机纳米片材的水性分散液;
(b)加入该氢离子型无机纳米片材的水性分散液至含该有机溶剂及转相溶剂的混合溶液中;及
(c)去除该转相溶剂及水,以使该氢离子型无机纳米片材分散于该有机溶剂中,形成该有机分散液。
14.如权利要求13所述的有机/无机复合薄膜的制造方法,其中该转相溶剂包括包含醇类、丙酮、乙醚或前述的组合。
15.如权利要求7所述的有机/无机复合薄膜的制造方法,其中该有机/无机复合薄膜的厚度为1-100μm。
CN201010616447.3A 2010-12-22 2010-12-31 有机/无机复合薄膜及其制造方法 Active CN102532756B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW099145156A TWI405664B (zh) 2010-12-22 2010-12-22 有機/無機混成薄膜及其製造方法
TW99145156 2010-12-22

Publications (2)

Publication Number Publication Date
CN102532756A true CN102532756A (zh) 2012-07-04
CN102532756B CN102532756B (zh) 2014-12-10

Family

ID=46317566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010616447.3A Active CN102532756B (zh) 2010-12-22 2010-12-31 有机/无机复合薄膜及其制造方法

Country Status (3)

Country Link
US (1) US8865826B2 (zh)
CN (1) CN102532756B (zh)
TW (1) TWI405664B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103865311A (zh) * 2012-12-07 2014-06-18 财团法人工业技术研究院 有机分散液及其制法及应用其的涂层组合物
CN105694610A (zh) * 2016-04-14 2016-06-22 大连理工大学 一种可满足在极端苛刻条件下应用的超疏水涂层的制备方法
US10392493B2 (en) 2015-12-25 2019-08-27 Industrial Technology Research Institute Dispersion solution, organic/inorganic hybrid material and preparation method thereof
CN112717709A (zh) * 2020-12-09 2021-04-30 山东大学 一种高通量、高稳定性掺杂二维云母的超滤膜的制备方法
CN112755805A (zh) * 2020-12-09 2021-05-07 山东大学 一种水下超疏油二维纳米级云母片油水分离膜及其制备方法与应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM472252U (zh) * 2013-10-22 2014-02-11 Ind Tech Res Inst 觸控面板
US10144815B2 (en) 2015-09-29 2018-12-04 Portland State University Modified nano-clays and coating compositions including the same
TWI655097B (zh) 2017-12-27 2019-04-01 財團法人工業技術研究院 光波導元件及其製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1914264A (zh) * 2004-01-30 2007-02-14 日东电工株式会社 多孔质膜及其制备方法
CN101053784A (zh) * 2007-02-05 2007-10-17 哈尔滨工业大学 一种聚偏氟乙烯/有机粘土纳米复合超低压超滤膜及其制备方法
US20100081732A1 (en) * 2003-10-14 2010-04-01 National Taiwan University Method of using hyperbranched polyamine to exfoliate inorganic clay into random form of nanosilicate platelet

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2060994B (en) 1979-10-12 1984-01-25 Marconi Co Ltd Piezoelectric/pyroelectric elements
US4419209A (en) 1981-07-20 1983-12-06 Dorr-Oliver Incorporated Solid polymeric electrolyte
US4513032A (en) 1981-07-20 1985-04-23 Dorr-Oliver Producing a solid polymeric electrolyte
FR2538551B1 (fr) 1982-12-27 1988-11-10 Asahi Chemical Ind Procede et installation de deshydratation d'une substance contenant de l'eau par electro-osmose
JPS6040137A (ja) 1983-08-15 1985-03-02 Kureha Chem Ind Co Ltd フツ化ビニリデン共重合体フイルム
GB2158257B (en) 1984-03-09 1987-12-31 Canon Kk Developing an electrophotographic latent image
JPS62138533A (ja) 1985-12-13 1987-06-22 Dainippon Ink & Chem Inc 透明なポリふつ化ビニリデン系フイルムの製造方法
JPH03128903A (ja) 1989-07-13 1991-05-31 Fine Kurei:Kk 合成樹脂の改質方法および改質合成樹脂
US5575940A (en) * 1992-05-26 1996-11-19 Eastman Kodak Company Inverse limited coalescence process
JP3155849B2 (ja) 1993-01-29 2001-04-16 キヤノン株式会社 静電荷像現像用現像剤
JPH07248582A (ja) 1994-03-09 1995-09-26 Fuji Photo Film Co Ltd 写真処理廃液の処理方法および除銀装置ならびに写真処理装置
US5618647A (en) 1994-09-02 1997-04-08 Canon Kabushiki Kaisha Magnetic toner and image forming method
JPH1121469A (ja) 1997-07-03 1999-01-26 Ishihara Sangyo Kaisha Ltd 無機化合物の製造方法
WO2002024756A2 (en) 2000-09-21 2002-03-28 Rohm And Haas Company Hydrophobically modified clay polymer nanocomposites
JP3625433B2 (ja) 2001-04-27 2005-03-02 キヤノン株式会社 粒状構造体及びその製造方法
US6914040B2 (en) 2001-05-04 2005-07-05 Procter & Gamble Company Process for treating a lipophilic fluid in the form of a siloxane emulsion
CN1320076C (zh) 2002-06-17 2007-06-06 积水化学工业株式会社 有机电致发光元件密封用粘接剂及其应用
EP1516071A4 (en) 2002-06-27 2005-11-30 Memry Corp PROCESS FOR MANUFACTURING SUPERELASTIC TITANIUM ARTICLES AND DERIVED ARTICLES
US20040261912A1 (en) 2003-06-27 2004-12-30 Wu Ming H. Method for manufacturing superelastic beta titanium articles and the articles derived therefrom
US20090238811A1 (en) 2002-09-09 2009-09-24 Mcdaniel C Steven Enzymatic Antimicrobial and Antifouling Coatings and Polymeric Materials
TW586248B (en) 2002-12-26 2004-05-01 Jiunn-Jer Hwang Polymer-based nanoscale organophilic clay for gel polymer electrolytes and lithium rechargeable battery
US7475587B2 (en) 2003-01-16 2009-01-13 Methode Electronics, Inc Omni-directional crash sensor
AU2004213401A1 (en) 2003-02-14 2004-09-02 Avery Dennison Corporation Differential release system for a self-wound multilayer dry paint decorative laminate having a pressure sensitive adhesive
US7026085B2 (en) 2003-03-20 2006-04-11 Fuji Xerox Co., Ltd. Dry toner for electrostatic latent image developer, developer and image forming method
US7157025B2 (en) 2003-03-27 2007-01-02 Toda Kogyo Corporation Transparent coloring composition and color filter
US20060249705A1 (en) 2003-04-08 2006-11-09 Xingwu Wang Novel composition
US20050029194A1 (en) 2003-08-07 2005-02-10 Hall David Bruce Method for removal of guanidine compound from aqueous media
US7419542B2 (en) 2003-11-13 2008-09-02 Ciba Specialty Chemicals Corporation 2,9-dichloro-quinacridone as α-quinacridone crystal phase inhibitor
US7101428B2 (en) 2003-11-13 2006-09-05 Ciba Specialty Chemicals Corporation 2,9-Dichloro-quinacridone as alpha-quinacridone crystal phase inhibitor
EP1715997A1 (en) 2004-02-13 2006-11-02 The Procter and Gamble Company Discoloration-resistant articles for applying color on surfaces and methods of reducing discoloration in articles for applying color on surfaces
EP1745525A4 (en) 2004-05-10 2011-03-16 Nippon Catalytic Chem Ind MATERIAL FOR AN ELECTROLYTIC SOLUTION, ION MATERIAL CONTAINING COMPOSITION AND USE THEREOF
US7795363B2 (en) 2004-05-12 2010-09-14 Canon Kabushiki Kaisha Polymer having a sulfonic group or a sulfonate group and an amide group and method of producing same
EP1770069B1 (en) 2004-05-18 2016-05-04 Mitsubishi Rayon Co., Ltd. Detachable water purifier
EP1798253B8 (en) 2004-08-11 2014-06-18 Kaneka Corporation Method for producing a vinylidene fluoride-based resin multilayered film
KR20080031010A (ko) 2005-07-15 2008-04-07 코니카 미놀타 옵토 인코포레이티드 광학 필름의 처리 방법, 광학 필름의 처리 장치 및 광학필름의 제조 방법
US7466377B2 (en) 2005-08-26 2008-12-16 Konica Minolta Opto, Inc. Retardation film, manufacturing method thereof, polarizing plate and liquid crystal display apparatus
CN100427302C (zh) * 2005-10-17 2008-10-22 上海申达科宝新材料有限公司 聚偏二氟乙烯建筑用膜材料及其生产方法
US7993791B2 (en) 2005-10-26 2011-08-09 Nanotek Instruments, Inc. Self-humidifying proton exchange membrane, membrane-electrode assembly, and fuel cell
JP4997773B2 (ja) 2006-02-03 2012-08-08 ダイキン工業株式会社 アクチュエータ素子
US20070275291A1 (en) 2006-05-10 2007-11-29 Horizon Fuel Cell Technologies Pte. Ltd Novel membrane electrode assembly and its manufacturing process
TWI280261B (en) 2006-06-29 2007-05-01 Univ Nat Taiwan Highly branched poly amine organic exfoliation agent with multiple functional groups and amorphous nano silicate platelet prepared by its exfoliation inorganic clay
EP2046888B1 (en) 2006-08-04 2018-02-21 Arkema France Photovoltaic modules having a polyvinylidene fluoride surface
JP5065646B2 (ja) 2006-10-06 2012-11-07 住友電工ファインポリマー株式会社 ガスケット、およびリチウムイオン二次電池
CN100519635C (zh) * 2007-04-12 2009-07-29 中国科学院长春应用化学研究所 一种β相聚偏氟乙烯复合薄膜及其制备方法
DE102007029263A1 (de) 2007-06-22 2008-12-24 Evonik Röhm Gmbh PMMA/PVDF-Folie mit besonders hoher Witterungsbeständigkeit und hoher UV-Schutzwirkung
US20090140219A1 (en) 2007-07-13 2009-06-04 Air Products And Chemicals, Inc. Selenium Containing Electrically Conductive Polymers and Method of Making Electrically Conductive Polymers
MX2010009182A (es) 2008-02-25 2010-10-25 Arkema France Aleacion acrilica transparente resistente a productos quimicos e impactos.
JP5701474B2 (ja) 2008-06-13 2015-04-15 富士フイルム株式会社 無機微粒子分散液、有機無機複合組成物、成形体および光学部品
WO2012074300A2 (ko) * 2010-11-30 2012-06-07 주식회사 엘지화학 리튬 이차전지
TWI427034B (zh) * 2010-12-22 2014-02-21 Ind Tech Res Inst 無機奈米片材之有機分散液及其製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100081732A1 (en) * 2003-10-14 2010-04-01 National Taiwan University Method of using hyperbranched polyamine to exfoliate inorganic clay into random form of nanosilicate platelet
CN1914264A (zh) * 2004-01-30 2007-02-14 日东电工株式会社 多孔质膜及其制备方法
CN101053784A (zh) * 2007-02-05 2007-10-17 哈尔滨工业大学 一种聚偏氟乙烯/有机粘土纳米复合超低压超滤膜及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103865311A (zh) * 2012-12-07 2014-06-18 财团法人工业技术研究院 有机分散液及其制法及应用其的涂层组合物
US9353272B2 (en) 2012-12-07 2016-05-31 Industrial Technology Research Institute Organic dispersion, method for preparing the same, and coating composition prepared from the same
US10392493B2 (en) 2015-12-25 2019-08-27 Industrial Technology Research Institute Dispersion solution, organic/inorganic hybrid material and preparation method thereof
CN105694610A (zh) * 2016-04-14 2016-06-22 大连理工大学 一种可满足在极端苛刻条件下应用的超疏水涂层的制备方法
CN105694610B (zh) * 2016-04-14 2019-01-01 大连理工大学 一种可满足在极端苛刻条件下应用的超疏水涂层的制备方法
CN112717709A (zh) * 2020-12-09 2021-04-30 山东大学 一种高通量、高稳定性掺杂二维云母的超滤膜的制备方法
CN112755805A (zh) * 2020-12-09 2021-05-07 山东大学 一种水下超疏油二维纳米级云母片油水分离膜及其制备方法与应用
CN112717709B (zh) * 2020-12-09 2022-04-22 山东大学 一种高通量、高稳定性掺杂二维云母的超滤膜的制备方法

Also Published As

Publication number Publication date
US20120164423A1 (en) 2012-06-28
TW201226187A (en) 2012-07-01
US8865826B2 (en) 2014-10-21
TWI405664B (zh) 2013-08-21
CN102532756B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
CN102532756A (zh) 有机/无机复合薄膜及其制造方法
Zhang Interfacial assembly of two-dimensional MXenes
Han et al. Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature
Chen et al. Fabrication of strong nanocomposite films with renewable forestry waste/montmorillonite/reduction of graphene oxide for fire retardant
Sen et al. Electroactive behavior of graphene nanoplatelets loaded cellulose composite actuators
WO2011065371A1 (ja) 膜状体及びその製造方法並びに該膜状体の形成用水性分散液
CN102532956B (zh) 无机纳米片材的有机分散液及其制造方法
Wu et al. Transparent cellulose/Laponite nanocomposite films
CN102634242A (zh) 埃洛石纳米管的改性处理及与水性聚氨酯复合制备复合材料的方法
CN102108123A (zh) 浇铸尼龙6/氧化石墨纳米导电抑菌复合材料的制备方法
Wang et al. Phosphorylated cellulose applied for the exfoliation of LDH: An advanced reinforcement for polyvinyl alcohol
Zhang et al. Liquid crystals of graphene oxide: a route towards solution‐based processing and applications
Zhang et al. Mechanical, thermal stability, and flame retardancy performance of transparent wood composite improved with delaminated Ti 3 C 2 T x (MXene) nanosheets
Cai et al. Bioinspired structure-robust cellulose nanocrystal films with enhanced water resistance, photothermal conversion ability, and fluorescence
Wang et al. Synthesis of nanocrystalline cellulose via ammonium persulfate-assisted swelling followed by oxidation and their chiral self-assembly
Hu et al. Interfacial design of nanocellulose/boron nitride nanosheets composites via calcium ion cross-linking for enhanced thermal conductivity and mechanical robustness
Peng et al. Biomimetic, hierarchical-ordered cellulose nanoclaw hybrid aerogel with high strength and thermal insulation
JP5665487B2 (ja) 膜状体及びその製造方法
Ma et al. Cellulosic nanocomposite membranes from hydroxypropyl cellulose reinforced by cellulose nanocrystals
Xu et al. Sustainable waterborne polyurethane ionomer reinforced poly (vinyl alcohol) composite films
Wu et al. A graphene/poly (vinyl alcohol) hybrid membrane self-assembled at the liquid/air interface: enhanced mechanical performance and promising saturable absorber
Wei et al. High‐strength and tough crystalline polysaccharide‐based materials
Cheng et al. Comparative study on properties of nanocellulose derived from sustainable biomass resources
Liu et al. Quantum-efficiency enhancement and mechanical responsiveness of solid-state photoluminescent flexible materials containing uniaxial cellulose nanocrystal arrays
Lin et al. Properties of polyvinyl alcohol films reinforced by citric acid modified cellulose nanocrystals and silica aerogels

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant