CN102036615B - 用于对外科植入体进行设计和成形的方法 - Google Patents

用于对外科植入体进行设计和成形的方法 Download PDF

Info

Publication number
CN102036615B
CN102036615B CN200980115946.XA CN200980115946A CN102036615B CN 102036615 B CN102036615 B CN 102036615B CN 200980115946 A CN200980115946 A CN 200980115946A CN 102036615 B CN102036615 B CN 102036615B
Authority
CN
China
Prior art keywords
bending
coupling arrangement
connecting rod
curve
connection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980115946.XA
Other languages
English (en)
Other versions
CN102036615A (zh
Inventor
R·E·伊萨克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuvasive Inc
Original Assignee
Nuvasive Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/098,375 external-priority patent/US20090254097A1/en
Application filed by Nuvasive Inc filed Critical Nuvasive Inc
Priority to CN201410335982.XA priority Critical patent/CN104116554B/zh
Publication of CN102036615A publication Critical patent/CN102036615A/zh
Application granted granted Critical
Publication of CN102036615B publication Critical patent/CN102036615B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7011Longitudinal element being non-straight, e.g. curved, angled or branched
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8863Apparatus for shaping or cutting osteosynthesis equipment by medical personnel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/04Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods
    • B21D39/048Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods using presses for radially crimping tubular elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/06Bending rods, profiles, or tubes in press brakes or between rams and anvils or abutments; Pliers with forming dies
    • B21D7/063Pliers with forming dies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B2017/568Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor produced with shape and dimensions specific for an individual patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/108Computer aided selection or customisation of medical implants or cutting guides
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/901Method of manufacturing prosthetic device

Abstract

本发明提供了一种方法,其用于基于多个接合到脊柱等机体骨结构上的连接元件的数字化位置而确定出将被连接到机体骨结构上的外科联接装置的形状。该方法是借助于计算机系统来实施的,系统通过GUI来生成用于与多个连接元件匹配的初始弯曲曲线。可基于用户向GUI的输入来简化初始弯曲曲线,由此来减少形成配合良好的联接装置所必须的弯曲部数目,且初始弯曲曲线可被进行改动以助于实现外科手术的目标。

Description

用于对外科植入体进行设计和成形的方法
相关申请的交叉引用
本申请是2008年10月7日提交的共同待定的第12/246,581号美国专利申请的部分继续申请,该申请是于2008年4月4日提交的第12/098,375号美国专利申请的部分继续申请,该申请的内容通过参考结合到本申请中。 
背景技术
本发明涉及与诸如外科联接装置的外科植入体的设计及成形有关的系统与装置。尤其是,本发明提供了这样的系统和装置:它们用于对外科植入体进行成形或造形,以使植入体能以六自由度连接方法顺应于两个或多个选定的连接点(包括表面解剖体)。 
在矫形外科手术中经常要用到一些固定系统,用于将患者骨体的各个部分以理想的空间相互关系或者局部地或者刚性地对齐、调整或固定。例如,在用于对椎骨进行修复或位置调整的脊椎外科手术中,往往必须要用外科方法对多个椎骨进行操作。由于脊椎外科手术所需要动用的骨科元件(bony element)通常要多于其它区域的矫形外科手术,所以,联接装置的设计和植入面对非常大的挑战。对诸如脊柱侧凸、脊骨损伤、椎间盘问题等疾患状况进行治疗时通常要用到脊连杆固定系统,该系统用于对椎骨进行定位并支撑脊椎运动节(motion segment)。 
脊连杆需要在六个自由度上进行定向,以对特定患者脊柱的解剖学结构及特殊的连接点进行补偿,或者对用于将连杆连接到椎骨上的方法进行补偿。此外,正在被治疗的生理问题与医生的偏爱选择将确定所必需的确切构造。因此,各个脊连杆的尺寸、长度、以及特定弯曲部将取决于要被约束的各个椎骨的尺寸、数目、以及位置,并取决于这些脊连杆的相互空间关系以及用于对与各个椎骨相连的连杆进行保持的紧固装置,如肉蒂螺钉(pedicle screw)。对于不同的患者而言,椎骨的相 互关系是不同的,对于安装连杆时患者所处的不同定位状态,椎骨的关系也是不同的。脊柱与椎骨在外科手术过程中的定向可能与患者处于直立姿态时的对应位置存在很大的不同。为了将连杆配合到两个或多个椎骨锚固件中,需要在一个或多个解剖学平面内对连杆进行弯曲,这些弯曲被表征为距离各个弯曲部的距离、弯曲的角度、以及相对于其它弯曲点的转动量。 
可利用多种方法来完成脊连杆的弯曲。用于在手术过程中人工弯曲连杆的历史最悠久、应用最广泛的方法是采用被称为法国式弯折器(French Bender)的三点式弯折器,在该方法中,人工操作弯钳类型的装置来在连杆上形成一个或多个弯曲部。法国式弯折器需要用两手来进行操作,并根据手柄的长度而形成杠杆作用。尽管该装置能相对容易地对脊连杆进行弯曲,但使用该装置所确定的弯曲部的位置、角度、以及转角却往往是任意性的。因而,可能由于如下的操作而造成问题:对某一装置进行了弯折,然后为了修正错误而再次进行弯折,多次弯折会造成金属疲劳,或者在连杆中产生应力集中,这都会增大出现机械失效的风险。为了实现对连杆的最佳弯曲就需要增大手术室(OR)中的工作时间,这会增大致病几率。 
脊连杆通常是由不锈钢、钛、或其他类似的硬质金属制成的,而且如果不借助于杠杆类型的弯折器,这些材料都难于进行弯折。此外,在使用法国式弯折器的过程中,由于必须要对几项空间关系进行保持,所以这一过程将花费非常长的时间,且需要医生具有高超的使用技能,以制得精确的最终产品。使用法国式弯折器来制得形状良好的连杆则更是困难的。因而,人们已尝试了多种方式来消除此现有技术中的不足。 
本领域已公开了多种手动弯折器。在1992年5月19日授予Asher等人的第5,113,685号美国专利中,公开了一种用于对连杆和板件进行弯曲使其顺应于脊柱的设备,该设备包括具有多个弯曲角度的纵长杆棒,以便于能比法国式弯折器弯折出更多的角度。但是,该设备难于使用,且不带有任何装置来确定空间关系的六个自由度,而各个弯曲部都必须要确定出这六个自由度。在2006年7月13日公开的发明人为 Garner等人的第2006/0150699号美国专利申请中,披露了一种用于对连杆进行弯折的器械和方法,该发明使用了具有支承表面的杠杆钳类型装置。此外,使用了可指示出由握夹运动量所弯折角度的量计,由此能确定出弯曲角度。尽管该装置易于使用,但在对其它自由度进行计算或形成最终的弯折部时,该装置无助于确定出其它的自由度。 
在2005年12月1日公开的属于Dankowicz等人的第2005/0262911号美国专利申请中披露了一种自动化的方法,其用于在手术前对脊连杆进行成型。对来自于输入机械的连杆实施一系列自动化的造形步骤,以制出所需的多维弯曲形状。这种装置的一个问题在于:其依赖于在手术前对弯曲发生点的确定,由此来确定出连杆的最终形状。尽管预测出锚固件理想的安置位置是可能的,且预测结果偶尔也是正确的,但连接位置点的外科植入术更像是艺术而不像科学,因而,预先成型的连杆与要被实际安装到脊柱中的锚固装置相比,其不会被精确地制成。这就会造成了问题高发的局面:在这些局面中,手术部位已被切开了,而外科医生拿到的连杆却与连接位置点不匹配。另外的缺陷在于上述装置是很大的,某些外科医生仍然喜欢使用人工装置来在手术过程中制造连杆,这是因为能在手术过程中基于反馈的情况而作出一些细微的调整。 
目前的努力方向已经转为对脊连杆实施计算机辅助设计或造形,但这些努力尚未取得很大的成功,这是因为既缺乏弯折装置、也未能全面地认识外科装置弯折操作中涉及的所有事项。例如,刊登在Computer aided Surgery(计算机辅助外科),1999;4(6):305-13上的标题为“A pilot study on computer-assisted optimal contouring of orthopedic fixation devices”(对计算机辅助的矫形固定装置优化塑形的先导研究)的文章就指出:解决上述这些问题如果不是不可能的,也将是困难的。 
本行业中已经出现了由图像引导的外科系统和三维数字转换仪,且某些此类设备已获FDA批准而可在手术过程中使用,其中的图像引导的外科系统例如是由BrainLAB生产的装置。对于某些医生而言,这些装置在手术环境中得到了相当普遍的使用。通过在整个空间内移动数字化转换仪、或者输入空间中的某个特定点,就可形成关于空间关系的地 图。在2002年12月31日授予Leitner等人的第6,400,131号美国专利中,公开了一种轮廓制图系统,其可被用作脊柱分析仪和探测器。此装置被公开为用来确定脊柱的弯度,且能以无创(非手术)的方式获得患者脊柱的直立轮廓图。 
因而,在矫形植入手术一例如脊柱手术期间,如果存在着对外科联接装置进行设计并成形的装置,则将是非常有价值的,其中的联接装置尤其用于联接人体中的骨部件,联接装置被用在外科矫形手术中-例如用在脊连杆的连接操作中,并且其是精确而快捷的并考虑到了特定植入装置实际需要的各个输入特性。 
发明内容
在本发明的一种实施方式中,提供了一种用于对外科联接装置进行造形的系统,其中联接装置被连接到选定的机体骨结构上,该骨结构具有至少两个用于联接装置的连接元件,该系统包括: 
a)用于确定连接元件与骨结构至少之一的相对空间位置的装置; 
b)用于将相对空间位置转换为数字格式的装置; 
c)计算机,其能接收该数字格式并利用相对空间位置来在外科联接装置上确定出一个或多个造形位置,每个造形位置都具有位于各个造形位置处的造形角度和造形扭转度中的一个或多个,由此,对外科联接装置的造形将使得外科联接装置能利用连接元件连接到机体的骨结构上;以及 
d)用于将确定出的造形信息发送到计算机输出的装置。 
在另一种实施方式中,本发明提供了一种外科联接装置,其位于选定的机体骨结构上,该联接装置包括: 
a)将至少两个用于联接装置的连接元件布置到机体骨结构上的所需位置处; 
b)以数字方式确定骨结构与连接元件中至少之一的相对空间位置; 
c)将数字化的信息传输给计算机,计算机确定出如下信息中的一个或多个: 
i)可被制得的选定外科联接装置上的造形位置、造形角度、 以及造形扭转度中的一个或多个,以便利用连接元件将联接装置连接到骨结构上; 
ii)对可制得的连接元件的位置的一项或多项调整、或者另增连接元件,从而可利用连接元件将选定的预成型、局部预成型、或经过最低限度造形的外科联接装置连接到骨结构上; 
iii)对以数字形式提交的连接元件的位置进行一项或多项数学调整,以使得最终成形的外科联接装置在被连接到骨结构上之后将修正或改变骨结构的形状; 
d)将计算机确定出的信息发送给计算机输出; 
e)利用从计算机输出得到的信息执行如下的一项或多项操作: 
i)选择预成型或局部预成型的外科联接装置; 
ii)利用对造形位置、造形角度、和造形扭转度中的一个或多个进行测量的装置对外科联接装置进行造形;和 
iii)对连接元件的位置进行调整或增加连接元件;以及 
f)将外科联接装置连接到连接元件上。 
另一种实施方式包括一种用于对外科联接装置进行弯曲的装置,其中,该弯曲装置特别适于手动操作,其包括: 
a)用于对联接装置进行弯曲的杠杆;以及 
b)至少两个弯曲测量装置,其是从包括如下装置的组类中选出的:弯曲位置测量装置、弯曲角度测量装置、以及弯曲扭转度测量装置。 
本发明的另一实施方式包括一种扭转度确定装置,其确定出扭转度以利于在外科联接装置上形成弯曲部,该扭转度确定装置包括: 
a)指示扭转度的圆形量具;以及 
b)定位装置,其用于将扭转度确定装置定位在外科联接装置上、或定位在用于对联接装置进行弯曲的装置上,以使得量具与联接装置上的任何弯曲部对正。 
本发明的再一种实施方式涉及一种用于选择确定预成型外科联接装置的装置,其中外科联接装置被用来连接到选定的机体骨结构上,骨结构上具有至少两个用于联接装置的连接元件,该确定装置包括: 
a)用于确定各个连接元件的相对空间位置的装置; 
b)用于将相对空间位置转换为数字格式的装置; 
c)多个预成型的外科联接装置; 
d)计算机,其具有关于预成型联接装置的选定的空间信息,其中,该计算机能接收b)中的数字格式并利用该数字格式来判断是否有某个预成型的外科联接装置与连接元件匹配、以及是否没有任何一个联接装置能匹配,并判断是否可对一个或多个连接元件的相对位置进行调整,以使得某个预成型外科联接装置可被选用并与该连接元件进行配合;以及 
e)用于将确定出的连接元件调整信息、以及选定的预成型联接装置信息输送到计算机输出的装置。 
另一个实施方式涉及一种用于在外科联接装置上设置多个6自由度弯曲部的方法,该方法包括步骤: 
a)在联接装置上建立起始点; 
b)将联接装置相对于起始点进行保持; 
c)移动联接装置并测量离开起始点的距离,以便于在联接装置上设立用于布置6自由度弯曲部的第二点; 
d)或者利用起始点、或者利用第二点进行保持,并重复步骤b)和c),直至制出了多个弯曲部为止。 
本发明的又一实施方式提供了一种用于在外科联接装置上制造一个或多个造形的方法,其包括步骤: 
a)用于确定所要制出的造形的理想空间参数的数字过程;以及 
b)与数字过程相关联的造形过程,其中,该造形过程将空间参数应用到外科联接装置上,且该造形过程特别适于在外科手术室中人工执行。 
在再一种实施方式中,提供了一种用于对外科联接装置进行造形的方法,其中外科联接装置与接合到选定的机体骨结构中的多个连接元件进行接合,每个连接元件都具有用于与造形后的联接装置进行接合的接合部分,其中,该方法包括步骤: 
(a)为多个连接元件的位置提供数字化的数据; 
(b)确定出容限范围,该容限范围对应于造形后联接装置相距各个连接元件上接合部分的可接受距离; 
(c)形成曲线函数,以逼近多个连接元件的各自位置; 
(d)计算出按照曲线函数进行造形的联接装置在各个连接元件位置处的对应位置; 
(e)基于计算得到的联接装置的位置与各个连接元件的位置之间的差值计算出误差; 
(f)判断该误差是否超出容限范围,如果超出,则确定更高阶的曲线函数; 
(g)当误差处于容限认为内时,利用曲线函数生成弯曲曲线,该曲线具有多个离散的弯曲点,多个离散的弯曲点以预定的间距分布; 
(h)通过取消掉某些弯曲点、并用位于下一个紧邻的剩余弯曲点之间的直线取代取消掉的弯曲点来减少弯曲点的数目; 
(i)利用剩余的弯曲点生成修正后的弯曲曲线;以及 
(j)生成弯曲指令,在各个剩余的弯曲点处,由弯曲工具对联接装置执行这些指令。 
在本发明的另一方面,提供了一种数字转换探测仪,其用来与植入体的头部临时性地进行配对。该探测仪具有超出植入体的、可操作的杆轴,当为连杆、板件或纵长构件确定弯曲方案以与植入体接合时,该杆轴可被用来对植入体的位置进行固定。 
附图说明
图1a到图1d表示了外科连杆和具有6个自由度的各个弯曲部; 
图2表示出了三节椎骨,每节椎骨都带有外科连杆的连接螺钉; 
图3表示出了三节椎骨,在图中,弯曲的外科连杆被连接到三个连杆连接螺钉上; 
图4是用于连接到外科连杆上的扭转度量具的前视图; 
图5a和图5b表示了带有标记刻度的外科连杆; 
图6表示了一种小型的手动装置,其用于对外科连杆进行弯曲,且 该手动装置具有用于测量位置、扭转度、以及弯曲角度的装置; 
图7中的轴测图表示了双杠杆型外科连杆弯曲装置; 
图8是双杠杆型外科连杆弯曲装置的侧视图; 
图9是双杠杆型外科连杆弯曲装置在其杠杆处于张开状态时的视图; 
图10是端部方向的轴测图,从该图可看到支点机构; 
图11中的流程图表示了用于确定弯曲信息的实施方式; 
图12a到12h表示了对于示例型的植入体在XY平面(冠状面)内理想的螺钉位置与按照本发明的曲线拟合方法的一种实例而计算出的位置之间的比较; 
图13a到13f表示了对于示例型的植入体在XZ平面(矢状面)内理想的螺钉位置与按照本发明的曲线拟合方法的一种实例而算出的位置之间的比较; 
图14表示了计算出的弯曲曲线与按照本发明一个方面经过“平滑化”处理之后的曲线之间的比较; 
图15a到图15k表示了在XY平面和XZ平面内的一系列弯曲曲线,且其中的弯曲点被依次地取消,以对该弯曲曲线进行简化; 
图16表示了图形化的用户界面(GUI),在对本发明的系统进行操作期间,该界面允许用户输入信息并向用户显示信息; 
图17表示了在计算得到特定脊柱结构的弯曲曲线之后、图16所示GUI的状态; 
图18a到18d表示了使用图7所示弯曲工具执行的具体弯曲指令; 
图19表示了按照图16中GUI所示弯曲指令进行弯曲后的连杆; 
图20中的侧视图表示了根据本发明一种实施方式的、其上接合有数字转换探测仪的多轴植入体; 
图21中的俯视图表示了数字转换探测仪与图20所示植入体的头部之间的界面结构; 
图22中的俯视图表示了数字转换探测仪与图20所示植入体的头部之间的备选界面结构; 
图23中的侧视图表示了数字转换探测仪与备选植入体之间的界面结构;以及 
图24是根据本发明另一实施方式的、接合到植入体上的数字转换探测仪的侧视图。 
具体实施方式
本发明涉及一种用于例如通过弯曲改善外科联接装置造形的方法。首先,通过以数字形式计算出合适的形状结构-例如6自由度(三维的)的弯曲部,然后将该信息输出给医生、其他医务人员、或弯曲装置,就可利用铸造、弯曲等操作容易而快捷地对联接装置进行造形。其次,本发明公开了一种装置,其用于快速而容易地从数字计算装置或其它类似装置获得输入信息,并对精确弯曲或经过造形后的联接装置执行人工造形。因而,可极大地缩短手术中花在联接装置弯曲操作上的时间,因而提高了无并发症的成功手术的几率,并降低了弯曲操作的成本-例如降低了对第二个装置执行弯曲和重新弯曲的操作成本。由于大部分时间被用在对联接装置进行弯曲的操作上,且在某些情况下还要花在重新弯曲操作上,所以,在本行业内,能将正确弯曲联接装置的时间缩短几分钟到一个小时或更多时间将具有很重要的优势。 
尽管本发明会受到许多不同形式的实施方式的影响,且本申请的附图和文字详细地描述了这些具体的实施方式,但可以理解:对这些实施方式的描述应当被认为是对本发明原理的示例说明,这些描述无意于将本发明限定为所示和所述的具体实施方式。在下文的描述中,采用相同的附图标记在附图中的几个视图内指代相同、类似或对应的部件。 
需要理解的是:文中使用的词语“结合”被定义为“连接”的含义,尽管该连接不必是直接连接,也不必是机械性连接。词语“弯曲”是指将联接装置施加作用力或类似的作用,以在三维空间内将联接装置在特定点处从第一位置变换到该点处的第二弯角或弯曲位置。在对特定的某个装置进行弯曲时,一旦弯曲部的位置被确定之后,就要考虑六个自由度。一般情况下,一旦确定了弯曲部的设置位置之后,则也能确定出弯曲的角度,且在很多情况下,还能确定出围绕中心轴线的扭转度。在很 多情况下,简单的折角造形操作已足够了,而在另外一些情况下-例如通常对于外科连杆的情况,必须要进行偏轴的扭转。 
在下文介绍的附图中示例性地表示了弯曲操作。文中使用的词语“造形”不仅是指弯曲操作,而且指基于本发明所生成的六自由度信息所进行的其它方法、以及制造经过造形的装置的过程。除了弯曲操作之外,可考虑采用挤出、铸造、变形、模制等工艺作为对特定装置进行造形的措施,并利用本发明所生成的信息。例如可参见2004年6月15日授予Teitelbaum等人的第6,749,614号美国专利,其所公开的材料示例可由本发明的方法用来对联接装置进行造形。 
文中所用的“外科联接装置”一词是指一些被用在外科手术期间的装置:其被用来结合到选定的人体骨结构上,以对骨结构进行修复、稳定、移动、重新造形,或者修正骨结构的变形或增强结构件,其例如是制到骨上的附件。例如,在外科手术中使用外科连杆、外科板条、外科横向连接杆、外科连线、或外科缆线等装置在选定的骨结构上进行修补、稳定或修正断裂、修正变形等处理,其中,通过将这些装置连接到两个或多个连接点处来完成处理。这些板条和杆件通常被供货为多种长度的直条、或者被预成型为弧形,所以必须要被进行弯曲来符合其最终的应用(例如可参见V2-Evren 2008在线目录www.v2evren.com.tr,其列出了外科领域的各种脊骨连杆、连接器、以及其它的矫形装置)。一般情况下,这些装置是由钛或其它非常耐用、刚挺、且非常难于弯曲的材料制成的。可使用诸如钛、商用级纯钛、不锈钢、钴铬合金等刚性材料。其它的材料包括柔性的材料,其例如是由PEEK或其它合适的塑料、石墨等制成的材料,还包括单一直径或多直径类型的带有缓冲的系统和装置。如果采用了铸造或其它的造形措施,则在这些情况下可采用任何适于用在外科场合的刚性材料。 
此外,形状记忆合金、改变形状的装置、刚性可变材料、生物材料、以及任何具有生物活性的合成材料也是可用的。特别是,利用本申请中描述的方法,可发挥出形状记忆材料的优势,特别是在将这些方法多次应用在同一联接装置上的情况下。形状记忆材料能基于固定点的位置而 确定出初始时的形状,或者便于连杆的植入,并便于从改变的位置确定出最终的形状。这样,可使用联接装置来改变骨结构的定向,这有助于实现手术的目的。其它的外科联接装置可包括连接到具体的人体部位上的板条、以及用于固定到牙齿上并改变牙齿及其排列的缆线或刚性夹具,其中的人体部位可以是在四肢的骨骼上、也可以是在中轴的骨骼上。 
目前,法国式弯折器可作为对这些材料进行弯曲的外科器械的一种选项,但其在进行弯折时却不能以任何的形式对运动的六个自由度进行测量。因而,利用法国式弯折器对外科连杆进行弯曲的操作是费力的,需要具备一定程度的技巧,而且往往需要返工。 
“联接装置的连接元件”是指被连接到人体结构上的装置,其被用于接纳外科联接装置,并将联接装置保持就位。外科夹具和螺钉是此类装置的常见实例。在外科连杆的情况下,可将多种外科螺钉、螺栓、卡钩旋拧到骨头中,并且/或者可用这些装置将连杆保持就位。这些连接元件包括多轴型螺钉、单轴型螺钉、定角度的螺钉、髂骨螺钉、骶骨螺钉、侧向平衡螺钉、螺栓、层间卡钩、以及肉蒂卡钩。此外,诸如U形钉、板条等用于保持某一机体部分的器件可被用作锚固件,利用这些锚固件可将联接装置固定到脊柱上-尤其是利用前照版系统(anterior plating system)。所有这些系统都可被一起使用,且还可连接到类似的锚固板件上。 
通常,在用锁止螺钉将联接装置保持就位的同时,还使用诸如轴向、侧向、横向连接器等的连接器。甚至更进一步,可在连接元件上增加用于改变连接位置的装置。例如可使用螺纹连接件或“侧支”连接件。在实施本发明时,本发明中装置和方法的预期使用状况是:对应于各个外科联接装置,设置有至少两个、往往是三个或更多个连接元件。可在单次安装操作中使用多个不同类型的连接元件。此外,对于板条的情况,可以在对板条进行造形之后,基于板条的形状来安装连接元件,而不是按照其它方式来进行安装。 
文中“确定各个连接元件与骨结构的相对位置”是指:知晓骨结构与连接元件上任何点之间的空间关系,从而,在联接装置具有正确形状 的情况下,可将诸如外科连杆等联接装置连接到各个连接点之间。可利用目前已有的图像引导装置-例如三维数字转换仪(譬如Polhemus Patriot)来获得该相对位置,通过将图像引导装置接合到几个连接点上、或者贴着骨结构进行接合,就能简单地使用该装置,并由装置中或其他处的计算机来对得到的信息进行数字化处理。例如利用X射线或常规摄像等成像装置来实施部分人工的操作方法,并确定出距离患者的空间关系。这样的方法可能需要多次成像,但对于本领域人员来讲,上述的介绍已经是足够的了。 
在确定出相对空间位置之后,可容易地对该信息进行数字化,该操作或者是自动完成的,例如在使用三维数字转换仪的情况下;或者可通过将计算得到的信息手工输入到计算机等设备中来完成上述操作,计算机等设备然后就将该信息以数字形式存储起来。不论能采用那种方式,信息都被转换成了可由计算机进行处理的数字格式。其它的装置可以是光学装置、EM装置、图像引导系统、Shape TapeTM装置、超声装置、CAT扫描设备、以及其他X光线照相设备。关键在于:关于空间关系的信息需要被收集到,且该信息能被按照多种方式获得。显然的是:本领域技术人员可使用列举的装置或任何其它能确定出空间关系的装置。在某些实施方式中,语句“确定各个连接元件和骨结构的相对位置”还指如下的含义:在对安装操作进行调整或制出连接装置之后,进行多次确定操作。本领域人员知晓在何时进行这样的多次确定、以及如何进行多次确定。 
由于在确定弯曲的型廓时还需要考虑患者解剖体形状、骨结构等结构以及该区域内的其它装置等,所以本发明还考虑以数字格式来生成其它的结构信息,以利于由计算机进行传输、使用。在一种实施方式中,轮廓形状或结构自身可作为输入信息-例如利用任何照版系统获得,且该输入信息是该机体部分的表面形貌,可利用该输入信息来对植入体的造形操作进行引导。既然仅从表面解剖结构就能确定出信息,而非从连接点确定信息,故在将板条造形之后-而非之前,可驱使连接点穿过板条。 
诸如笔记本电脑、手持设备、桌上型电脑或其它电脑设备等的计算机可接收数字格式的、关于连接元件和/或骨结构相对位置的信息。然后,利用空间信息实施编程控制的计算机可确定出最好的方式来对联接装置执行造形、弯曲等操作,以便于使联接装置适应于连接元件。对弯曲部进行确定的这一操作还考虑到了如下的事实:其它的结构或者正在进行连接的结构的形状可能形成障碍。例如在脊柱手术的过程中,就还必须要考虑到椎骨的形状。 
在确定输出结果或联接装置的最终形状时,计算机可被编程控制以接纳任何数目的参数。按照这样的方式,可通过改变联接装置的形状来协助完成外科手术的目标。而在一种实施方式中,由上述信息标定的、未经过进一步改动的形状可被用来制成联接装置,对该装置的形状的进一步改动将有助于解决、拉直或改变某些机体部分在位置对正方面的异常;对装置的形状的进一步改动还将有助于减轻或消除变形、减小或增大排列定位的改变、或者增大或消除应力。可以将不同平面内的改变结合到一起,或者仅是在某一平面内进行修正、而不是在另一直交平面内进行。可利用多种途径对输出的造形信息进行这些改动,其中的各种途径例如是视觉型的、解剖型的、由X射线成像引导的(手术中进行的、手术前进行的、定位相片等)、由联接装置的材料特性和塑性和/或被改变机体部分的相对位置进行引导。 
在一种实施方式中,计算机不必与用来执行弯曲操作的装置直接相互作用。在另外一些实施方式中,可利用屏幕或其它装置向造形装置直接输入信息,从而在造形操作之前设置细节。计算机根据连接元件和机体骨结构的空间位置、螺钉的头部、机体骨件表面等信息用数学方法定义出一曲线,在所选定外科联接装置的要求条件及性能范围内,该曲线能够在三维空间内逼近上述的各个点。确定出的信息可被用来选择具体的联接装置、在未经弯曲或预弯曲(或者根据需要进行了造形)的联接装置上布置弯曲部、或者根据需要对连接元件进行调整。此外,可提供一定数目的不同形状方案,以便于外科医生在选择最佳的形状方案方面进行个人的调整。 
计算机还对弯曲信息的输出进行用户化订制。如果需要的话,可最小化弯曲部的数目(例如,在较少几个弯曲点处具有较大弯曲角度的、更快捷的“之”字形设计,但这样的设计潜在地可能造成较大的应力集中)。在另外一些实施方式中,可增大弯曲位置的数目,以形成更为顺缓的设计,这是因为弯曲点越多、弯曲部越顺缓。可将程序或装置限制为具体的角度值,从而所有的角度都将高于、等于或小于特定的数值。还可将选择项设定为步进的增量选项,例如弯曲或扭转的步进增量为5度、或者距离的增量为几个毫米。可实现简单的连接点设计,如果需要的话,更为复杂的设计也能实现。计算机能确定出装置的尺寸,可判断是否可对连接装置进行调整、或者增加偏移装置(因而将增加或减少要被连接到各个位置点上的弯曲部的数目)。在一种实施方式中,可使用程序来判断连接点能否与预弯曲的联接装置进行配套-或者是无需改动、或者是对连接元件进行调整、或者是增加空间偏移装置。计算机还可选择能使联接装置的形状简化、或者改善其生物力学的形状。 
对联接装置进行弯曲的第一步骤是确定弯曲的位置。弯曲位置是联接装置上将发生弯曲的位置点。可从起始点进行测量来确定弯曲位置,例如,从外科连杆的远端起1.5cm处,或者可通过从联接装置上的一组固定点中选择某个点来进行确定。例如,连杆或其它装置上以厘米为单位的标尺刻度可被标记为点1、2;或者标记为1cm、2cm等,且计算机的输出信息中表达了该固定点。在另一种实施方式中,联接装置被保持就位,且相对于作为基准起始点的位置点移动给定的距离。 
弯曲角度是指联接装置偏离特定轴线或平面的弯转程度。如上所述,弯曲部可被制成单个弯曲部、或者可以是多重弯曲。一般情况下,弯曲部偏离直线的角度在刚刚大于零度到180度之间。在许多实施方式中,弯曲角度是90度或更小。通常情况下,最大弯曲角度是由多个因素决定的,这些因素包括特定的应用、外科医生的典型实践、所采用的材料等因素。此外,可确定出偏离装置延伸方向的扭转角度。从而,除了存在弯曲之外,相对于连杆原始方向的零度轴线,外科连杆可偏转的角度在0度到360度之间。因而,弯曲部相对于起始点例如可有45度 的弯曲、15度的扭转、2厘米的距离,由此形成了特定的弯曲输出信息。然后,将确定出的距离、扭转度、以及弯曲角度发送给计算机输出。输出可以是纸件输出、GUI(图形用户界面)等形式,使得使用者可读取这些信息,并开始执行对联接装置进行弯曲的操作。在一种实施方式中,信息被直接发送给弯曲装置。 
在一种实施方式中,用于在外科联接装置上形成弯曲部的措施是由一个或多个手动装置实现的。可利用三个相互作用的装置来完成手动测量距离、操作扭转盘(如图4所示)、然后操作弯曲装置将联接装置弯曲到一定角度的操作。类似地,可使用图7所示的装置在同一装置上设置所有这三个参数。对于只需要四个自由度的装置而言,计算机仅需要生成距离和弯曲角度的信息,且或者是可单独地使用上述的各个装置,或者是只使用某个单个装置即可。在此情况下,可将扭转度设定为零。另外,例如对于系统输出信息确定出可能使用预弯曲连的情况,则除了距离之外,所有的输出参数都可被设置为零。系统仅需要确定出选择哪个联接装置即可,无需(或也可)对螺钉的位置作进一步的操作、或者增加额外的偏移装置。在此情况下,无需进行任何的弯曲操作。 
在一种实施方式中,在外科手术方面,根据本发明的、用于将外科联接装置安装到机体骨结构上的方法可通过如下的操作开始:将至少两个联接装置的连接元件布置在机体机构上的理想位置处。然后,可按照数字格式确定出连接元件的空间关系。经过数字化处理的信息被传送给计算机(包括由计算机进行运算),计算机确定出如下各项的之一或多者:一个或多个弯曲部的位置、弯曲角度、以及弯曲扭转度,从而,在制造弯曲部后,联接装置将与已安装好的连接元件相匹配;还可进行如下的判断操作:对连接元件的位置进行一项或多项调整、或者另外添加位置,从而可选用预成型或部分预成型的联接装置、或者可被弯曲较少个弯曲部的联接装置、或者不需任何弯曲就能与连接元件相配的联接装置。计算机计算出信息并将信息输送给计算机输出。在外科手术期间,该输出信息可被用来完成一项或多项功能,也即是:选择预成型或部分预成型的外科联接装置;如上述那样在联接装置上设置一个或多个弯曲 部、或者对连接元件的位置进行调整、或者另外设置额外的连接元件。在经过正确的选择和弯曲之后,将外科联接装置连接到连接元件上。 
采用计算机辅助的装置来确定外科联接装置形状的优点在于几个方面。这样的方案利于对预成型的整个连杆或段节进行植入,且能确定多部件联接装置中各个组成部件的尺寸和形状。这样的联接装置有助于外科医生达到理想的最终结果,而不是面对着目前的情况。可基于该最终理想结果、解剖结构的当前状态、以及固定点位置的交集对联接装置进行设计和成形。通过限定平移量、转动量、或角度修正量,并改变能实现理想结果的联接装置的形状,该方案能对断裂与变形的减少起到控制作用。另外,可使用上述方案来修正脊椎前移的病患。 
在另一实施方式中,可使用这种方法来定义所制得的连杆,因而,在执行截骨术或外科手术中其它类型的矫正处理时,这将有助于形成、获得和/或保持所需的修正量。可在不向机体施加任何静态载荷的条件下、或者施加预定载荷的条件下将联接装置植入,其中的预定载荷有助于对变形进行调整、或者设定柔性系统的位置。操作人员可确定出解剖体是如何移动的、或者已经如何移动或改变,并确定出获得所希望的解剖结构改变所需的植入调整量。(例如利用手术室中的X射线,并将成像与手术之前所拍的图像进行比较,这样就能找出应当对联接装置的形状作多大的改变,从而通过弯曲使患者在身体结构上实现拉直)。在一种实施方式中,可制出一个联接装置,其能完全地实现所需的最终结果。在另一实施方式中,可进行一些顺次的干涉步骤(即多个联接装置具有逐渐增大的变形修正量),以便于更为缓慢而逐步地将变形修正。由于所有人的解剖结构当躺在手术台上时与处于直立状态时相比都会发生一定程度的改变,故本发明也考虑到了这一改变。 
尽管在一种实施方式中是在手术时快速地对连杆进行成形,但这并非是必需的。可以立即进行植入,或者延迟联接装置的植入,以便于在发生组织向上生长(ongrowth)或向内生长之后再将成形后的连杆以延迟的方式植入。另外,对于用户订制的、大型的经皮植入体,该系统是理想的。同样,本发明的系统还可被用来设计横向的连接器,这样的连 接器将两个或多个联接装置或任何其它类型的受益于联接的植入体接合到一起。另外,还可采用本发明、以容易的方式将联接装置延长,将来可能会存在这样的需求,由于在进行制造时该装置一种实施方式的最终构造和角度是已知的,因而还可增加另外一些步骤(在长达几个月到几年的延期手术模式下,这样作通常是有用的)。 
优选地是,弯曲操作是在手术现场利用现有的装置人工完成的,但在备选的情况下,可利用本发明的新型设备来完成该操作。本发明的新型弯曲装置都包括至少一个杠杆,即围绕着特定枢轴点的杆棒或长臂形式的构件,其可被用来对物体进行弯曲。利用一根杠杆,要被弯曲的物体将在该杠杆的作用下受到作用力。在其它一些实施方式中,设置有一对杠杆,它们可围绕着支点进行弯曲,其中的支点是某个位置点或装置,该支点有助于将联接装置弯曲过来。 
在对外科联接装置进行弯曲时,诸如法国式弯折器等的装置没有任何措施来确定上文讨论的任何弯曲参数。本发明的弯曲装置具有用于确定这些参数中至少两个参数的装置。在一种实施方式中,这两个参数是位置和弯曲角度。在另外一种实施方式中,弯曲装置对位置、弯曲角度、以及弯曲扭转度进行测量。每个杠杆都具有位于远端的把手,其有助于在使用过程中对杠杆进行抓握、以及对杠杆施加杠杆作用。 
测量空间参数的装置可对连续的位置或角度进行测量,或者在其它一些实施方式中,测量装置可步进地进行测量(即非连续地)。从而,例如可按照半厘米、一厘米、或其它的步长对位置进行测量,而弯曲角度或扭转角度可按照五度的步长等进行测量。每个测量装置都可根据需要单独或混合地执行连续测量或间断卡挡(click stop)测量。连续测量比步进测量能获得更高的测量精度,但选择权取决于使用者以及所采用弯曲装置的类型。 
此外,弯曲装置能牢固地保持联接装置。按照这种方式,弯曲装置可采用其它的装置来将联接装置进给向由连续或间断卡挡测量装置得到的下一弯曲位置。通过牢固地保持联接装置,可从特定的起始点开始精确地进行测量,其中,对于其中的起始点,在完成每次弯曲之后可增 加新的起始点,或者是使用最先的起始点。例如,可在距离起始点一厘米和三厘米处设置弯曲部。在另外一种实施方式中,在起始点处设置弯曲部,并在相距起始点为固定距离的位置处设置下一弯曲部。在另外的实施方式中,通过保持住联接装置,可基于联接装置上的刻度标尺-而不是弯曲装置上的刻度标尺来进给联接装置。而在弯曲装置上可设置规则的止动位置,止动位置是固定的,或者在备选形式中,这些位置的距离是连续调整的。 
总体而言,本发明的其中一种实施方式是用于在外科联接装置上形成弯曲部的过程,该过程是由两个相互联系的、分开的过程构成的。第一过程是用于确定一个或多个弯曲部的空间参数的数字过程。第二过程是对外科联接装置执行造形的人工过程,其应用了第一过程中确定出的位置、角度、扭转度参数。通过引入本发明的新型装置,有利于将这两个过程完整地联系起来。这一联系可以是外科医生或其他人员,其取得计算机的输出结果,并将该结果应用到联接装置上-不论是人工实施、还是利用自动化的弯折器或轮廓造形装置。例如,在另外的实施方式中,用于对联接装置进行确定的过程和方法包括选择、变更固定点或位置等操作,该过程和方法可被应用到新型装置的任何主机上,对实际装置的成形而言,其中的新型装置将是必要的。由于用在矫形外科中的材料随着时间而改变-例如2004年6月15日如授予Teitelbaum等人的第6,749,614号美国专利中所描述的那样,所以这样的方案将是理想的。 
下面参见附图,图1a到图1d表示出了位于外科连杆联接装置上的多个弯曲部。图1a表示了带有第一弯曲部11和第二弯曲部12的连杆。该视图中的连杆10被放置在一个平面上,弯曲部11与弯曲部12之间的距离被表示为D。通过指出距离弯曲部11的距离D,就能知道第二弯曲部12的位置。测量所用的起始点可以基于位置点13、连杆第一端部、或弯曲部11。确定弯曲位置的起始点可以停留在初始位置点,以利于在随后确定弯曲部的位置,或者可在每次确定出弯曲位置后移动。从而,例如弯曲部12可作为下次弯曲位置确定的起始点。在图1b中,表示出了角度为A的单个弯曲部15。该角度A是本发明中的第二个要被 确定的参数。图1c和图1d表示了一种弯曲的连杆,其至少一个弯曲部被相对于连杆所在的初始平面扭转了角度R。第二端部19也在图中表示出了,在图1d中,观察的方向面对着弯曲连杆10的中间段。尽管在图中为了清楚起见而绘制了外科连杆10,但也可按照类似的方式对外科板条或其它外科联接装置进行定向和弯曲、或造形。 
图2中的轴测图表示了机体中椎骨结构20的布局。每个椎骨20上都安装有连接元件-椎骨螺钉21,安装这些螺钉是为了安装外科连杆。需要说明的是:尽管通常情况下连杆是成对进行安装的,但为了简明只表示出了一组螺钉21。图3表示出了已被连接到连接元件21上的弯曲的外科连杆30。图中还表示出了弯曲角度A和扭转角度R,该连杆已被进行了弯曲以适应连接螺钉21的位置。 
图4表示了一种扭转量具40,其可被装配到外科联接装置的端部上、或者围绕着联接装置进行安装,其中的联接装置例如是图1中的连杆10。连杆10装配到孔41中,然后,如果连杆被扭转到角度标记42处,就能实现选定角度的扭转弯曲。如下文进一步教导的那样,该装置可被固定地连接到弯曲装置上。 
在图5a和图5b中表示出了外科连杆50。这些连杆通常为圆柱形,但其第一端51被加工成方形,以与工具或抓夹器等装置相配接。此外,可采用任意数目的其它端头结构,只要其能被牢固地保持或抓夹即可。图4中所示的量具40也可被连接到这一端上。图中可见,这些外科连杆50或者还带有距离标尺55,用于指示弯曲位置的距离。在图5b所示的情况中,扭转标尺56不仅能用于测量距离,而且能测量扭转度。 
图6表示了一种简单的手动弯曲装置60。通过握捏手柄61和62,就能使连杆10围绕着支点弯曲(图中未示出)。连杆并未被保持定位,相反,连杆10是可被移动的,通过将装置60上的距离刻度63与连杆上的距离刻度55对正,就能确定出连杆10上的明确位置。安装有扭转量具40,通过手动地转动连杆10,就能获得所需的扭转度。尽管扭转度以一定间隔标注,但该实施方式允许自由地转动连杆10,因而能获得无穷多的扭转角度。弯曲角度是由角度量具65来进行测量的。在对连 杆10进行弯曲的过程中,角度量具65根据手柄61和62的相互接近程度来测量出角度。 
图7中的轴测图更为详细地表示了一种弯曲装置70,其对连杆10需要较少的人工操作。图中表示出了第一杠杆71以及杠杆手柄73,手柄73便于由人工把握住杠杆71。同样地,图中表示出了带有抓握手柄74的杠杆72。手柄74具有便于连杆穿过的通孔78,从而这种特殊的手柄能与无限长的连杆10配套使用,且在利用该弯折器70进行弯曲的过程中,能稳固地保持着连杆。该装置的使用者抓握住两个手柄,并将手柄张开,从而,通过在角度量具上选择好角度、并将两手柄71、72握夹到一起,就能对特定的外科连杆10进行弯曲。在其它一些实施方式中,该弯曲装置也可被制成这样:在将手柄张开的过程中,对连杆进行弯曲。连杆10移动穿过心轴80,并伸入到活动模81与固定模82之间。从图10可更清楚地观察这两个模具。 
在两模具81、82之间对外科连杆进行弯曲。装置上的量具使得使用者能对外科连杆10进行操作,以便于确定出弯曲的位置、弯曲的角度、以及扭转度。外科连杆10被夹紧元件保持就位,其中的夹紧元件例如是夹套75。通过将滑块76沿着手柄72进行移动,可将外科连杆10在弯曲装置70上移向远端或近端。利用沿手柄72以规则间距分布的一系列棘齿或卡挡77来测量距离。沿着手柄72,每个卡挡77的距离都是测定的,因而,移动经过了一定数目的卡挡77就指示出了外科连杆10上弯曲部的精确位置。 
利用角度量具85来测量弯曲的角度。量具85上具有以恒定间隔分布的棘齿86。每个棘齿都代表了五度的弯曲角度。因而,随着手柄71、72的张开和闭合,使用者可利用这种特定的弯曲角度量具85、以五度的步长节距对外科连杆10进行弯曲。弯曲部的扭转度是由夹套旋钮90形式的拨盘来进行控制的。通过以顺时针或逆时针方向转动夹套旋钮90,使用者就能设定具体的扭转角度。夹套旋钮90上标有等间距的刻度91,但由于该特定的实施方式是可以连续转动的,故该旋钮具有无穷的设定值。一旦使用者开始转动旋钮90之后,就可将旋钮90设定在特 定的刻度91处、或者位于两刻度之间等位置,从而高精度地确定出具体的扭转角度。 
在这种具体的实施方式中,一旦利用夹套75将连杆10锁定就位之后,杠杆72上就有了足够的空间允许滑块76向远端或近端移动,这样就能将连杆10牢固地连接保持在夹套75上。如果需要较长的区域来进行弯曲,则可将连杆10解锁,移动后再次锁紧,并从新位置起进行测量。利用由计算机输出端提供的信息,仅将这些位置加到一起的操作对于本发明而言是容易的任务。 
图8是弯曲装置70的侧视图。从该视图可清楚地看出连杆10上带有弯曲部92。在图9的侧视图中,手柄71被张开,准备在连杆10上制造第二个弯曲部。弯曲量具的示窗96露出了弯曲角度卡销97,该卡销接合着两个齿牙86,准备形成第二个弯曲部。从该图中可看出,由于滑块76所处的位置比图7、8所示位置更靠近远端,故连杆10被移向远端侧了。第一弯曲部92也被移向远端了,在将手柄71、72闭合之后,将在连杆10上形成第二弯曲部。 
图10表示了装置70的头部。从该视图可清楚地看到连杆10上位于活动模81与固定模82之间的弯曲位置。活动模81使得连杆10可自由地移动,而固定模82则能较为容易地对连杆10进行弯曲。 
图11中的流程图表示了对与本发明装置相结合的计算机装置的工作过程的一种特定实施方式。该过程中的第一步骤110是在机体结构上安装联接装置的连接元件。在其它一些实施方式中,例如在与外科板条配套使用的实施方式中,第一步骤是确定机体结构的表面空间关系,然后利用该空间信息来确定外科板条的形状。一旦将板条置于骨结构上之后,就通过板条对连接元件进行定位,以将连接元件定位到骨结构中。这样,联接装置就能确定出联接装置应当定位的位置,其中的联接装置例如是与外科连杆配套使用的螺钉,其在一定程度上是可调节的。 
下一步骤111是以数字格式确定出连接元件的空间关系。这一工作不仅考虑到了连接点的位置,而且考虑到了该过程中可能干涉到的任何机体结构。如果椎骨的某一部分阻碍了具体的弯曲方案,则其可能是无 用的,这是因为:由于机体结构的干涉,制得的弯曲连杆可能无法配合到连接点处。本领域技术人员可以容易地基于本申请所公开的内容对计算机的运算结果作出合适的调整。 
然后,在步骤112中,具备数字格式信息的计算机确定出弯曲的参数,或者确定出连接元件的调整参数。这一步骤还包括选择操作,选择具体的联接装置、选择联接装置应当具备的尺寸、或者从预弯曲的联接装置的列表中进行选择。一旦根据计算机的输出参数选出了联接装置,则如果必要的话,就在步骤113对联接装置进行弯曲或造形,或者对连接元件进行调整。在已制出合适的弯曲部之后,在步骤114中将联接装置连接到连接元件上。 
图11所示流程图中的步骤112完成了对联接装置(例如连杆或板条)数学表达的第一次确定,该联接装置将与处于现场的各个连接元件实现配合。因而,根据一种实施方式,软件程序执行曲线拟合算法,该算法适于近似拟合出跨接在连接点之间的光滑曲线,且在各个连接点处,该曲线处于可接受的误差范围内。该软件程序从数字化的数据开始,其中的数据能确定出各个连接点的三维位置。为了简化曲线拟合的规则,本发明设想如下方案:使用三维数据来在两个正交的平面内建立连接点,其中的两个正交平面即为矢状面或XZ平面与冠状面或XY平面。如本领域内公知的那样,矢状面对应于从患者前方向后方穿过脊柱的垂直平面。冠状面是与矢状面垂直的平面,其从患者的一侧贯穿地延伸向另一侧。如文中详细介绍的那样,在一种实施方式中,将三维坐标系统分割到两个二维平面内,但这并非是系统实现功能所需要的。在另外的实施方式中,采用了单个三维曲线拟合程序。 
因而,该软件程序的目的是在各个平面内推导出曲线,该曲线与位于现场的各个连接点的实际位置相拟合。在大多数情况下,位于矢状面和冠状面内的曲线是复杂的,这就意味着曲线通常将包含多个拐点。因而,不难理解:直线-甚至弧线通常无法胜任对连接点的实际位置进行拟合的任务-尤其是在连接点数目增大的情况下。从而可以认识到:任一个平面内的一阶或二阶多项式表达的曲线将几乎无法为三维表达式 进行建模。进而可认识到:准确的曲线拟合是不可能的,即使将多项式延展到非常高的阶数。 
本发明通过在连接点的实际三维位置与其数学表达之间设置可接受的误差限而解决了这些困难。该误差如果处于一定的约束条件内就是可接受的,这是因为:在完成脊柱构造时,外科医生具有对联接装置进行操作的能力,连接点和联接装置-甚至脊柱都具有固有的特性。例如,在连接点为双轴或多轴骨螺钉的情况下,螺钉的头部可被摆转(toggle)或枢转,从而使得螺钉上用于接纳连杆的沟槽可被定向为能接纳诸如脊连杆等的联接装置。此外,在许多联接装置中,交界点是轭形或鞍形结构的沟槽,这使得连杆与骨螺钉头部之间的角度是可变的。在某些装置中,允许螺钉相对于骨结构的垂直定向进行一定的变化。这些因素都对可接受的误差或者容限具有影响。推导出可接受误差时要考虑的其它因素包括:骨螺钉以及联接装置的材料、连接元件的截面形状、连接点之间的距离、以及骨螺钉以及连接元件的尺寸。 
根据本实施方式中的两平面解析方案,在各个平面内都建立误差或更为适当的误差容限。为了便于表述,可将这些误差容限标为容限XY和容限XZ。在一种实施方式中,容限XY可由下式表达: 
容限XY=tan(0.5*头部最大角度)*(从螺钉固定杆轴的端部到连杆理想位置的距离) 
其中,“头部最大角度”对应于骨螺钉头部可摆转或扭转的最大角度。对于典型的多轴型螺钉,该角度可在50°的范围内。上式中的后一项大体上对应于三角形的一个侧边,该侧边指代了可容纳联接装置的螺钉的凹陷深度。 
容限XZ对应于螺钉头部可容许的垂直平移的固有量。例如,如果螺钉头部具有深的轭形沟槽,则垂直平移量可高达几个毫米,且在某些系统-尤其是在头部类似于桩钉的系统中,该数值可能更大。 
为每个连接点-即每个骨螺钉都确定出这两个容限值-容限XY和容限XZ。误差容限值为判断连杆形状的特定多项式表达是否足够提供了度量。此外,这些容限值还考虑到了上文讨论所有因素。 
根据本发明的一个方面,各个平面内的曲线逼近运算都是从第一阶的多项式开始的,其是可能的最低阶的多项式,从最低阶逐渐增大阶数,直至所得到的曲线能满足所有误差容限值为止。因而,初始时的曲线逼近拟合是从如下的等式开始的: 
y=P1*x1+P2,其中,x和y定义了曲线在冠状面或侧平面内的位置,y代表了曲线函数在左右方向上的位置,x代表了沿着脊柱的长度从头到脚方向上的位置,Pi是系数。 
采用类似的关系式来求得z数值-即曲线在矢状面或前后平面内的位置。另外,在本发明的其它实施方式中,采用其它的曲线拟合算法来为联接装置建立等式,由于其它的算法最小化了确定出的曲线与连接点之间的误差,所有这些算法的复杂性都增加了。 
情况总是如此,第一阶多项式将不足以形成连接所有连接点的曲线。因而,按照下式逐渐地增大多项式的阶数: 
y=P1xN+P2xN-1+…+PNx+PN+1。 
对于每个N阶的多项式,都可利用最小方差逼近来计算出两个平面(XY和XZ)内的误差。为了确定这一误差,获得各个连接点的理想螺钉位置-即(xscrew,yscrew,zscrew),其对应于位于螺钉头部中的脊连杆的理想位置。在一种实施方式中,以如上所述的方式,理想的螺钉位置值可能对应着位于现场的各个螺钉的数字化数据。根据本发明的一个方面,两个误差ErrorXY和ErrorXZ被定义为计算出的曲线函数上位于理想螺钉位置两侧的点与理想螺钉位置之间的距离,该误差被表达为下面的关系式: 
ErrorXY = ( ( y curve 1 - y curve 2 ) * x screw + ( x curve 2 - x curve 1 ) * y screw + ( y curve 2 * x curve 1 - x curve 2 * y curve 1 ) ) ( ( x curve 2 - x curve 1 ) 2 + ( y curve 2 - y curve 1 ) 2 ) 1 / 2
ErrorXZ = ( ( z curve 1 - z curve 2 ) * x screw + ( x curve 2 - x curve 1 ) * z screw + ( z curve 2 * x curve 1 - x curve 2 * z curve 1 ) ) ( ( x curve 2 - x curve 1 ) 2 + ( z curve 2 - z curve 1 ) 2 ) 1 / 2
如果这两个误差值中的任一个超出容限值(植入容限XY或植入容限XZ),则就增大多项式的阶数,并重新运算最小均方差函数和误差 计算。在某些实施方式中,容限值被扩增较小的尺寸,例如1mm,以有助于简化曲线函数,因而当形成最终的弯曲曲线时可取消一些弯曲点。换言之,通常希望能减少为适应植入位置所需的弯曲部数目-尤其是在手工执行操作的情况下。当实施其它方案时-例如在某些实施方式中使用非手工弯曲装置或备选材料时,减少弯曲点数目所能获得的益处可能是不需要的,或者被认为有利于获得非常光滑的结果。扩大的容限值可取消某些弯曲部,而对于容限严格的曲线运算,则会出现这些弯曲部。 
在本发明方法的另一方面,可采用一些步骤来确保连杆与螺钉头部的相互作用落入到预定的角度内。该预定角度是基于最大头部角度的数值得出的,其中的最大头部角度在上文中被表述为紧固件/螺钉的头部可摆转的最大允许角度。可以确定,连杆穿过螺钉头部的角度可被定义为: 
Rod2ScrewAngle=arcsin(Vscrew·Vrod),其中运算符″·″代表两个向量的点积,这两个向量对应于螺钉的定向、以及连杆的接近角度。 
在连杆穿过螺钉头部的角度太锐的情况下(即超出了由最大头部角度设定的边界),则在螺钉的紧邻区域内,利用在正确角度范围内穿过的段节连杆形态来对所生成的曲线进行改动。具体而言,利用一个数量R来对曲线函数进行改动,以使得函数Rod2ScrewAngle等于最大头部角度数值的一半。换言之: 
Vrequired rod=Vrod+(R×Vscrew),以及 
(1/2×最大头部角度)=arcsin(Vscrew·Vrequired rod)。 
然后,如下式那样,对曲线进行改动,使其在特定的螺钉附近经过小的段节: 
D=Vrequired rod×(x2-x1); 
y1new=y1+D 
y2new=y2-D 
还可考虑这样的情况:在利用上述的最小均方差方法来确定连杆曲线的过程中,所形成的连杆可能在某些区域与周围的解剖组织发生冲突。在极端的情况下,可通过在确定螺钉位置的同时简单地限定出那些 所涉及的解剖学点来部分地消除这样的冲突。换言之,与几个骨紧固件/螺钉的位置一起,在开始时就确定出那些必须要避开的解剖组织。 
但是,在通常的情况下,不会遇到奇怪的解剖组织。在此情况下,常见的情况是:骨紧固件的头部从该紧固件锚固嵌入的骨解剖组织上突伸出一定距离,该距离通常约为1cm。当定义弯曲曲线时,所需要的全部要求是:所形成的连杆位置落入到“安全区域”中,该区域可被预先定义为在连接各个依次的理想螺钉位置的直线上方或下方的几个毫米。如果曲线函数导致计算出的连杆位置落到该“安全区域”之外,则将曲线改得靠近所述直线。在一种特定实施方式中,如果计算得出的曲线上的任何点超出位置点(xscrew1,yscrew1,zscrew1)和(xscrew2,yscrew2,zscrew2)处螺钉之间斜率为M的连线并超出规定的量,则将这两个螺钉位置之间(xcurve1,ycurve1,zcurve1)到(xcurveN,ycurveN,zcurveN)的整个曲线段置为靠近直线。因而: 
M=(zscrew2-zscrew1)/(xscrew2-xscrew1);以及 
Zcurve(1到N)=1/2×(zcurve(1到N)+zcurve1+[0 M 2M...(N-1)M]) 
在另一种实施方式中,可应用其它的光滑函数来进一步对所得到联接装置的总体形状进行平滑化处理。 
作为举例,图12a-12h表示了根据本发明一种实施方式的多项式曲线拟合结果与所需植入结构的理想螺钉位置进行比较的情况。为冠状平面或XY平面进行的曲线拟合按照如下等式进行:y=P1*xN+P2*xN-1...PN*x+PN+1。按照该特定实施方式,多项式中依次各阶的系数是: 
第一阶0.0692    1.5576 
第二阶-.0315    0.5285    0.9663 
第三阶0.0003    -.0374    0.5573    0.9579 
第四阶0.0007    -.0199    0.1381    0.1302    0.9334 
第五阶0.0000    0.0021    -.0374    0.2179    0.0385    0.8989 
第六阶0.0000    -.0008    0.0133    -.1119    0.4007    0.0014    0.8104 
第七阶0.0000    0.0001    -.0024    0.0282    -.1744    0.4974    0.0174    0.7641 
第八阶0.0000   0.0001   -.0018   0.0214   -.1312   0.3593   -.1697   -.1664   1.0883 
在矢状面或XZ平面内的曲线拟合多项式与上文给出的XY平面内的相同,只是用变量z取代变量Y。对于该具体实例,计算所得曲线与理想螺钉位置之间的对比情况表示在图13a-13f中,且XZ平面内多项式曲线的系数如下: 
第一阶-0.0979   0.3041 
第二阶0.0395    -0.6738   1.0455 
第三阶-0.0010   0.0603    -0.7752   1.0749 
第四阶-0.0011   0.0295    -0.2050   -0.1293    1.1120 
第五阶0.0001    -0.0049   0.0769    -0.4205    0.1183     1.2052 
第六阶0.0000    -0.0012   0.0148    -0.0548    -0.0972    0.0526    1.0486 
可以注意到:为冠状面XY进行的曲线逼近需要八阶的多项式,而矢状面XZ的逼近却只需要六阶的多项式。可以理解:两个平面内逼近理想螺钉位置所必需的多项式阶数通常是不同的。 
对于XZ曲线,图14表示出了上述的曲线光滑化的效果。特别是,在位于螺钉位置9.5与最后一个螺钉位置15.0之间的曲线区段,计算得到的曲线在该区域内为四个螺钉提供了合适的拟合轮廓。但是,螺钉位置9.5到13.0之间的曲线区段则比所必需的情况夸张了-也就是说,计算所得的曲线显著地超出了围绕经过四个螺钉位置的直线的“安全区域”。类似地,位于倒数第二螺钉位置与最后一个螺钉位置之间的曲线区段也略微夸张地超出了必要。 
因而,利用上述的曲线光滑化方法,可将头两个螺钉位置之间的曲线显著地平直化,而最后两个螺钉位置之间的曲线则被略微地平直化。在这两种情况中,所得到的、经过光滑化处理的曲线更为接近地顺应着穿过四个螺钉位置的、斜率为M的直线段。可以理解:本发明也可采用其它的曲线拟合方法和曲线光滑化方法。因而,尽管上文已对最小均方差方法进行了描述,但也可采用样条函数算法或其它插值算法来形成曲线,使得曲线更近地逼近多个连接元件的实际位置。 
利用XY和XZ平面内经过光滑化处理的近似曲线,下一步就是确 定出在什么位置对直线连杆进行弯曲、如何进行弯曲,以实现所需的形状。根据本发明的一个方面,设置了基于计算机的系统,其能产生出一系列弯曲指令。在该优选实施方式中,这些指令适应于特定的弯曲工具-例如上文结合图7到图9所述的工具70。因而,在所示的实施方式中,本发明的系统生成了关于弯曲部的列表,列表中列出了:沿着连杆的轴向位置、围绕连杆轴线的扭转量、以及弯曲的幅度。 
为了适应于弯曲工具,本发明的系统寻求将上述形成的曲线函数破断为可通过弯折器方便地进行加工处理的直线段。当然,在弯曲工具所能制造的弯曲部的属性方面,每个弯曲工具都具有其自身固有的误差限。例如,某些弯曲工具只能在连杆上制造分开1-2cm的弯曲部。根据当前所示的实施方式,弯曲工具可允许弯曲部的步长是1/2cm。因而,该系统的软件可确定出在这些1/2cm步长处必须的弯曲角度。根据一种实施方式,软件的确为最小的容许步长-此情况下为1/2cm求得了弯曲数据。但是,可以预料:每1/2cm制造一个弯曲部是太麻烦了,也太耗时间了,且这样的方案对于便于植入的、拟合良好的连杆的制造通常也不是必需的。在许多情况下,外科医生倾向于采用“简单的”弯曲-即弯曲点最少的方案,而不是采用最“光滑”的弯曲-即可形成轮廓光滑化的连杆的方案,这样的方案必然需要更多的弯曲点。按照本发明的一个特点,GUI允许外科医生确定弯曲的类型-是简单的、还是光滑的,且在某些实施方式中,对位于最简单弯曲类型与最光滑弯曲类型之间的滑动尺进行选择。 
在确定“最为简单”的弯曲方案时,目标在于取消掉尽可能多的弯曲点,且不会影响连杆的总体形状,并具有对连杆的型廓进行设计的能力、以使连杆与植入的骨螺钉相配合。在第一步骤中,弯曲角度最小的弯曲点被取消。在备选的实施方式中,首先选定其它的弯曲点,该选择或者是随机的,以将弯曲点分散开,或者是在连接点及其附近限制弯曲部的数目和尺寸,以及诸如此类的方法。不论如何,都在随后将其余的邻近弯曲点用直线连接起来。但是,并非所有的小弯曲角度的弯曲点都能被取消。因而,该系统区别开那些不能被取消的小弯曲角度的弯曲点, 取消该具体的弯曲点将造成: 
1)使得连杆远离任意螺钉的距离量超过植入容限XY或植入容限XZ。该判定是利用上述的ErrorXZ和ErrorXY等式、利用螺钉位置(xscrew,yscrew,zscrew)任一侧的最近的剩余弯曲点(x1,y1,z1)和(x2,y2,z2)来完成的; 
2)造成任意弯曲角度超过最大理想弯曲角度。弯曲角度是由向量V12和V23的点积结果的arc-cosine函数确定的,其中的两向量分别是在邻近的弯曲点(x1,y1,z1)-(x2,y2,z2)以及(x2,y2,z2)-(x3,y3,z3)之间形成的; 
3)造成连杆与螺钉之间的相互作用超过最大头部角度值允许的范围,该范围可利用上文为计算函数Rod2ScrewAngle而给出的等式来计算。 
不难理解:“最为简单”弯曲情况中的最大允许弯曲角度可能大于“最为光滑”弯曲情况中的最大允许弯曲角度。相反地,较光滑的弯曲情况必然要在沿连杆长度方向上出现更多的干涉弯曲点。 
图15a-15j中的各个视图示例性地表示了一种减少弯曲点的过程。在图15a中表示了XZ和XY平面内计算出的连杆轮廓图,弯曲点的间隔是每1/2cm。在图15b中,将位于9.5cm处的一个弯曲点去除。在图15c中,将位于9.0cm处的紧邻弯曲点去掉。可容易地认识到:取消这两个弯曲点不会显著地改变连杆的总体轮廓形状。在图15d中,将位置8.5cm处的弯曲点也取消,这也不会对总体轮廓形状造成显著影响。 
从图15d还可看出,位置1.5cm处的弯曲点也被取消了。如图15e所示,在随后的步骤中,位置2.0、2.5、3.0、3.5处的弯曲点被取消,并用直线段取代。随着这一过程的继续,其它的弯曲点也被取消了,并被邻近剩余弯曲点之间的直线段取代了。因而,本系统的运作结果是形成了图15f-15j所示的改动后连杆弯曲轮廓形状。将图15a所示弯曲图与图15j所示弯曲图进行对比可发现:弯曲点的数目被从32个弯曲点显著地减少到7个弯曲点。尽管在最终得到的缩减结构中并未表现出计算轮廓的各个细微处,但连杆的总体形状是符合计算出的设计要求的,且 肯定充分地接近最优的设计,由此可与植入的螺钉容易地进行适配。 
如上文解释的那样,减少弯曲点数目的过程部分地基于最大理想弯曲角度。在图15j所示的最终形式中,最大的弯曲角度是38度。对于较小的最大弯曲角度-22度,轮廓线将需要数目更多的弯曲点(12个)。 
还可以认识到:该系统产生出了一系列弯曲点的改型,这些改型被表示在图15a到15j中。如果外科医生选择最简单的弯曲样式,系统将输出与图15j相对应的弯曲数据。如果外科医生选择最为光滑的弯曲类型,则输出数据将对应于图15a所示的初始弯曲曲线。但是,外科医生也可在包括简单弯曲情况与光滑弯曲情况的连续集内选择弯曲的类型。更具体而言,图15b到15i所示的任一改动弯曲结构都可被选择,这些弯曲结构对应着简单与光滑的比例关系,并可作为对其它一些弯曲点位置进行选择的考虑选项。最终,所选择的最大允许弯曲角度的数值将造成某些弯曲位置被取消,而另一些却不被取消。较大的弯曲点数目与较小的最大允许弯曲角度相关联,且最终造形的输出结果在总体上较为光滑。 
根据本发明的一种实施方式,为外科医生提供了GUI来输入数据、并对制造弯曲部的数据进行选择。应当认识到:由弯曲的联接装置或连杆所实现的手术目的将决定了弯曲数据的最终属性。这些手术目的包括:解决、拉直、或改变患者机体部件在对位排列方面的异常,并形成、减小、或消除变形、在对位排列方面减小或施加改变,或者增加或消除应力。 
图16表示了一种具体实施方式中的GUI。该GUI可包括下拉式菜单,该菜单用于输入反映特定情况的信息,例如:连杆的类型(rod type)和尺寸(rod size)、情况的类型(case type)、植入系统(system)、测量仪器的水平范围、以及连杆超出上位水平(upper level)和下位水平(lower level)的悬垂量(overhang)。GUI还可包括用于选择上述弯曲类型的滑动尺(bend type)。消息面板指示出要在GUI上执行的动作-例如“按压启动按钮来开始(press the‘start’button to begin)”,并识别出在对弯曲型廓进行数字化处理和运算的过程中螺钉位置数据 的定向。 
如图17所示,通过GUI输入用于植入螺钉的位置x,y,z,从而,在靠近“获取点(get point)”按钮旁边的数据框内显示出螺钉位置数据。如上所述,该螺钉位置信息可按照常规的方式获得-例如使用现有的三维数字转换仪。在某些情况中,利用带有常规三维数字转换仪系统的探针难于获得精确的数据。特别困难的是:获得连杆或板条在造形之后所要接合的紧固件头部的角度的精确指示。因而,本发明的一个方面提出了一种数字转换探测仪,其与先前系统中的数字化转换设备结合为一体。在一种实施方式中,如图20所示,该数字转换探测仪200包括纵长的本体201,其具有末端202。优选地是,该本体沿着部分206锥缩向末端202。本体的近端部分为杆轴204的形式,该杆轴的近端205被设计成与数字化设备相配接。作为备选方案,探测仪200可被制成数字化设备上的一体部件。 
探测仪200被设计成与紧固件-例如图20所示的多轴紧固件190的头部192、或图23所示紧固件290的头部292相配接。紧固件的头部具有用于接纳驱动工具的工具凹陷194。在通常的紧固件中,凹陷被设计成六角凹头或TORX凹头的形式。探测仪的末端202被设计成紧密地配合到凹陷194中。如图21所示,在一种实施方式中,末端202的横截面为圆形,且末端的半径略小于凹陷194的平坦面尺寸。如图22所示,在一种备选的实施方式中,末端202’被设计成与凹陷是互补的。在该实施方式中,末端202’具有六角构造,以与六角凹头194相配接。在紧固件的位置已被确定出并与驱动工具接合之后,带有末端202’的探测仪200可与数字化转换仪脱离开。 
末端202的长度足以完全进入到凹陷194(或图23所示螺钉290上的凹陷294)中。这样的交接状况有助于确保探测仪200与紧固件190对正,从而能精确地确定出紧固件的转角定向。在某些情况中,紧固件上带有轭部195,用于与紧固连杆实现多轴连接。轭部的侧臂196形成了U形结构,其用于接纳紧固连杆。侧臂196还为探测仪200的对位提供引导-特别是通过与锥缩部分206接触来实现引导。因而,锥缩部分 确保了探测仪能稳定地与紧固件194实现接合-即使在末端202未完全落座在凹陷194中的情况下也是如此。 
图24所示的探测仪210被设计成与多轴型的紧固件190相接合。探测仪210具有主体211,其限定了中心轴毂212和外翼部214。本体还具有杆轴216,其尺寸和结构被设计成与数字化设备结合到一起。轴毂与翼部被设计成与轭部195侧臂196的相对表面并置到一起。中心轴毂212可被设计成大体为矩形体,其沿着轭部的U形开口延伸。作为备选方案,在轭部195的侧臂196之间形成圆筒形空腔的情况下-例如与定位螺钉进行接合的情况下,中心轴毂212的横截面可以是圆形,以与空腔进行配合。同样地,翼部214被设计成与轭部侧臂196的外表面是互补的。在一种常规的情况下,轭部的侧臂具有圆筒形的外表面,从而翼部214的内表面也类似地是圆筒形。这种结构使得探测仪210可被用作将轭部195相对于紧固件190重新进行定向或转动的工具。 
中心轴毂212的远端213可被设计成与骨螺钉头部192的上表面接合。作为备选方案,轴毂与翼部可形成环周的沟槽218,其被用来与轭部195的侧臂196的顶部进行接触。在任一情况中,远端213或沟槽218都能在探测仪210与紧固件190进行接合时使探测仪210实现稳定,从而确保探测仪具有精确的转角定向。可以认识到:在该实施方式中,探测仪210可与轭部195——而不是与螺钉的头部192——的位置和定向实现键合。在此情况下,中心轴毂的远端213的尺寸被设计成与头部的上表面形成间隙。 
可考虑将探测仪200和210的结构设置成与具体的紧固件类型相适配。另外,探测仪200从其末端202到杆轴206近端的长度(或者在图24所示的实施方式中,是从远端213或沟槽218到杆轴216端部的长度)是精确已知的。该长度可被标定到数字化程序中,以产生出关于紧固件六个自由度位置的精确数据-包括紧固件配接特征的转角定向度。还可考虑这样的方案:探测仪200/210本身就可用来识别连接元件相对于脊柱的转角定向状态。在这种方案中,数字化设备可在探测仪的近端、以及靠近探测仪与连接元件界面的已知点处与探测仪进行接触。然后可使 用这两个点的三维位置数据来计算连接元件的空间角度。特别是,该空间角度可被用来判断某些连接元件的轭部195是否被正确定向以接纳连接元件-例如脊连杆。 
探测仪200、210可由任何生物适合型材料制成,该材料应当具有足够的刚性以便于在数字化操作过程中耐受弯曲作用。在探测仪兼备“工具”属性的情况下-例如如图22所示末端结构的情况下,探测仪必须要能向紧固件传递足够的扭矩。 
返回参见图16及后续图,本发明考虑到外科医生可能希望能达到预定的变形修正目的。但是,数字化后的数据对应的却是紧固件上配接元件的实际位置。在某些情况下,这一数据是需要的,因为目的在于对弯曲后的连杆进行适配,使其与紧固件在这些位置处实现接合。但是,在某些情况下,外科医生可能需要对脊柱的现有曲度施加预定的修正。例如,在脊柱侧凸的情况下,希望将某些椎骨在横向上移位,以减小脊柱侧凸的曲度。本系统的GUI允许外科医生将紧固件的位置数据相对于原始的数字化位置进行改动。在该过程的后续步骤中,脊连杆的弯曲构造被确定下来,且外科医生对所得到的预期曲度或形状进行评价,以判断是否能达到所需的修正效果。如果必需的话,外科医生可重复执行设立紧固件位置的初始步骤,并调整改动量,以获得所希望的最终形状。 
在所有的螺钉位置数据都被输入之后,系统将基于上述的算法、以及外科医生对弯曲类型的选择而计算出弯曲的数据。如图17所示,在GUI上输出一系列弯曲数据。在图示的实施方式中,弯曲数据被调整得适应于文中所述的弯曲工具70。在该实施方式中,弯曲的幅度由字母来代表-在此情况下为字母“F”到“I”,弯曲的幅度对应着在弯曲工具70上预定出的具体弯曲角度。例如,“I”级弯曲大于“H”级弯曲,以此类推。 
一旦设定了弯曲点之后,该系统就将弯曲点的数据转换为弯曲工具的指令。如上文指出的那样,对于文中介绍的工具70,只有三个数据点是必须的-所有的数据都可从相距最后一个弯曲点的距离、相比于最后一个弯曲点的弯曲角度的连杆扭转度、以及弯曲量来推导出。这些数值 可从下文描述的关系式求得。 
弯曲点之间的距离被表达为((x2-x1)2+(y2-y1)2+(z2-z1)2)1/2。弯曲点的位置是弯曲点之间距离的累加值。 
弯曲点之间的扭转度可由包含各个顺次弯曲点的平面的法线之间的夹角来确定。例如,对于弯曲点2与弯曲点3之间的扭转度,确定出平面N123的法线与平面N234的法线之间的夹角,其中平面N123经过了三个弯曲点x1y1z1,x2y2z2以及x3y3z3,平面N234经过了三个弯曲点x2y2z2,x3y3z3以及x4y4z4。然后,利用N123与N234点积的arc-cosine函数来表达这些弯曲点之间的扭转度。 
弯曲量是指包含弯曲点的向量之间的夹角。因而,例如对于弯曲点2和3,利用向量V12和V23之间点积的arc-cosine函数来求得弯曲量。 
应当认识到:各个弯曲点处的弯曲量可能需要改动,以补偿材料的回弹。对于一般的情况,可从线性函数来求得回弹量,对于5.5mm规格的不锈钢连杆,回弹约为14度,对于5.5mm的钛连杆,回弹约为13度,这可根据两种材料的弹性系数求得。因而,本发明的系统适量地增大计算出的弯曲度,以抵消回弹效应。 
在图18a-18d中表示了利用弯曲工具70来实施这些弯曲数据的方式。在图18a中,利用工具制出第一弯曲部。在连杆10被夹套75(见图7)保持就位的情况下,将滑块76沿手柄72移向弯曲数据中标定的轴向位置“24”。除了上文介绍的卡挡77之外,手柄72上还带有数字标记77a,这些标记对应于GUI上显示的弯曲数据中的轴向位置数。 
通过将夹套旋钮90转动到合适的标记90a处,实现弯曲数据中的弯曲扭转度数据“300”。如上文详细介绍的那样,旋转夹套旋钮的操作将使连杆10相对于弯曲模81、82扭转。最后,利用角度量具85来设定与弯曲数据中数值“I”对应的弯曲幅度或弯曲角度。在该视图中,除了用于形成五度转角步长的棘齿86之外,角度量具85还带有与弯曲数据中弯曲值“F”-“I”相对应的刻度86a。该量具可带有许多更细分的弯曲角度刻度,在图18a所示的实施方式中,这些刻度从“A”到“N”,由此形成了14个离散的弯曲角度。在其它实施方式中,可采用非离散 或连续的弯曲角度,因而可在角度选项之间设置更大或更小的步长。一旦根据计算出的弯曲数据设定了弯曲工具的各个操作分量,就如附图所示那样制出弯曲部。 
图18b表示了制出第二弯曲部的情况。在此情况下,将滑块76进给到轴向位置“35”,将夹套旋钮90旋转到20度位置,并在角度量具85上选择弯曲角度“H”。然后制出第二弯曲部。图18c表示了制出第三、第四弯曲部的效果,可以理解,如上所述,弯曲工具70是按照弯曲数据进行操作的。图18d中制出了最后一个弯曲部,由此制得了最终的连杆10,其被按照计算出的三维轮廓进行了弯曲,以便于与植入患者脊柱中的一系列螺钉进行配接一如图19所示。 
在某些手术中,脊柱上设置了多个联接装置。例如,可在棘突的两侧都布置连接元件和纵长的连杆。通常情况下,利用横向连接器将两个连杆互连起来,从而形成牢固的“脚手架”以对脊柱进行支撑。上述的方法可被用来形成形状合适的连杆,该连杆被定位在脊中线的两侧。为各个连杆计算出的弯曲曲线可被用来确定横向连接器或可使用的任何联接装置的尺寸。 
上述的实例及特定实施方式无意于对后附的权利要求进行限定。在本发明的范围内,可对量具、杠杆、以及用于确定造形参数的装置和方法作出多种改动。 

Claims (21)

1.一种用于对外科联接装置进行造形的方法,其中外科联接装置用于与接合到选定机体骨结构中的多个连接元件进行接合,每个连接元件都具有用于与造形后的联接装置进行接合的接合部分,该方法包括步骤:
(a)为多个连接元件的位置提供数字化的数据;
(b)确定出容限范围,该容限范围对应于造形后的联接装置相距各个连接元件的接合部分的可接受距离;
(c)形成曲线函数,以逼近多个连接元件的各自位置;
(d)计算出按照曲线函数进行造形的联接装置在多个连接元件中的每一个连接元件的位置处的位置;
(e)基于计算得到的联接装置的位置与各个连接元件的位置之间的差值计算出误差;
(f)判断该误差是否超出容限范围,并且如果超出,则确定更高阶的曲线函数;
(g)当误差处于容限范围内时,利用曲线函数生成弯曲曲线,该弯曲曲线具有沿着联接装置长度分布的多个离散弯曲点;
(h)通过取消掉某些弯曲点并用位于下一个紧邻的剩余弯曲点之间的直线取代取消掉的弯曲点来减少弯曲点数目;
(i)利用剩余的弯曲点生成修正后的弯曲曲线;以及
(j)生成针对弯曲部的弯曲指令,在各个剩余的弯曲点处,由弯曲工具对联接装置执行这些指令。
2.根据权利要求1所述的方法,其特征在于:计算误差的步骤包括对所有连接元件的位置应用最小均方差近似法。
3.根据权利要求1所述的方法,其特征在于:在两个非共面的平面各者内都使用步骤(b)—(g)来形成弯曲曲线。
4.根据权利要求3所述的方法,其特征在于:两个平面是正交的。
5.根据权利要求1所述的方法,其特征在于:联接装置是连杆,且所述连接元件的头部包括用于接纳连杆的沟槽,其中确定容限范围的步骤是基于所述头部可相对于骨结构枢转的最大角度进行的。
6.根据权利要求1所述的方法,其特征在于:所述连接元件的头部是多轴型头部,所述容限值是利用正切函数从所述多轴型头部的角度范围确定出的距离。
7.根据权利要求1所述的方法,其特征在于:曲线函数是符合P1xN+P2xN-1+…+PNx+PN+1形式的多项式,其中,Pi=1...N+1是选择用于使曲线最接近地逼近多个连接元件的位置的系数。
8.根据权利要求1所述的方法,其特征在于:确定更高阶曲线函数的步骤(f)包括逐步增加多项式的阶数。
9.根据权利要求1所述的方法,其特征在于:为位于多个连接元件之间且当联接装置接合到连接元件上时必须要避开的解剖学位置点提供数字化数据。
10.根据权利要求9所述的方法,其特征在于:减少弯曲点数目的步骤包括:取消一些弯曲点,除非取代特定弯曲点的直线将造成所形成的弯曲曲线与解剖学位置点冲突。
11.根据权利要求1所述的方法,其特征在于:减少弯曲点数目的步骤包括:取消一些弯曲点,除非取代特定弯曲点的直线造成所形成的弯曲曲线超出预定的容限范围。
12.根据权利要求11所述的方法,其特征在于:预定的容限范围包括步骤(b)中推导出的容限。
13.根据权利要求11所述的方法,其特征在于:预定的容限范围包括所需的最大弯曲角度,该角度是用来对联接装置进行弯曲的弯曲工具的函数。
14.根据权利要求11所述的方法,其特征在于:预定的容限范围包括联接装置能够与连接元件的头部接合的最大角度。
15.根据权利要求1所述的方法,其特征在于:在步骤(h)和(i)中,针对已被取消的各个顺次弯曲点形成新的修改后的弯曲曲线。
16.根据权利要求15所述的方法,其特征在于:使用者的输入是从如下选项中作出的选择:被取消的弯曲点数目最少的弯曲曲线、被取消的弯曲点数目最大的弯曲曲线、以及它们之间的连续集。
17.根据权利要求1所述的方法,其特征在于:弯曲曲线适于解决、拉直、或改变患者机体部件在对位排列方面的异常;形成、减小、或消除变形;在对位排列方面减小或施加改变;或者增加或消除应力。
18.根据权利要求1所述的方法,其特征在于:对曲线函数使用光滑函数,光滑函数有助于避开解剖体、使弯曲部平滑、或简化联接装置的几何结构。
19.根据权利要求1所述的方法,其特征在于:提供数字化数据的步骤包括为连接元件附近的解剖学位置点提供对应的数字化数据。
20.根据权利要求1所述的方法,其特征在于:生成弯曲指令的步骤包括在剩余弯曲点中的选定点处增大弯曲以补偿联接装置的弹性回复。
21.根据权利要求1所述的方法,其特征在于:提供数字化数据的步骤包括:对与多个连接元件的预定所需位置相对应的数字化数据进行改动,以便于在连接元件与所制得的造形后的联接装置进行接合之后提供变形修正。
CN200980115946.XA 2008-04-04 2009-04-03 用于对外科植入体进行设计和成形的方法 Active CN102036615B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410335982.XA CN104116554B (zh) 2008-04-04 2009-04-03 用于对脊连杆进行弯曲的装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US12/098375 2008-04-04
US12/098,375 US20090254097A1 (en) 2008-04-04 2008-04-04 System and device for designing and forming a surgical implant
US12/246,581 US7957831B2 (en) 2008-04-04 2008-10-07 System and device for designing and forming a surgical implant
US12/246581 2008-10-07
PCT/US2009/039452 WO2009124245A1 (en) 2008-04-04 2009-04-03 System and method for designing and forming a surgical implant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201410335982.XA Division CN104116554B (zh) 2008-04-04 2009-04-03 用于对脊连杆进行弯曲的装置

Publications (2)

Publication Number Publication Date
CN102036615A CN102036615A (zh) 2011-04-27
CN102036615B true CN102036615B (zh) 2014-08-13

Family

ID=41134048

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200980115946.XA Active CN102036615B (zh) 2008-04-04 2009-04-03 用于对外科植入体进行设计和成形的方法
CN201410335982.XA Active CN104116554B (zh) 2008-04-04 2009-04-03 用于对脊连杆进行弯曲的装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201410335982.XA Active CN104116554B (zh) 2008-04-04 2009-04-03 用于对脊连杆进行弯曲的装置

Country Status (10)

Country Link
US (1) US7957831B2 (zh)
EP (2) EP3461444B1 (zh)
JP (1) JP5572898B2 (zh)
KR (1) KR101710932B1 (zh)
CN (2) CN102036615B (zh)
BR (2) BR122019006679B8 (zh)
CA (1) CA2720639A1 (zh)
DK (1) DK2273944T3 (zh)
ES (1) ES2702042T3 (zh)
WO (1) WO2009124245A1 (zh)

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10758283B2 (en) 2016-08-11 2020-09-01 Mighty Oak Medical, Inc. Fixation devices having fenestrations and methods for using the same
US8549888B2 (en) * 2008-04-04 2013-10-08 Nuvasive, Inc. System and device for designing and forming a surgical implant
US9642633B2 (en) 2010-06-29 2017-05-09 Mighty Oak Medical, Inc. Patient-matched apparatus and methods for performing surgical procedures
US11806197B2 (en) 2010-06-29 2023-11-07 Mighty Oak Medical, Inc. Patient-matched apparatus for use in spine related surgical procedures and methods for using the same
US11039889B2 (en) 2010-06-29 2021-06-22 Mighty Oak Medical, Inc. Patient-matched apparatus and methods for performing surgical procedures
WO2017066518A1 (en) 2010-06-29 2017-04-20 Mighty Oak Medical, Inc. Patient-matched apparatus and methods for performing surgical procedures
US11376073B2 (en) 2010-06-29 2022-07-05 Mighty Oak Medical Inc. Patient-matched apparatus and methods for performing surgical procedures
WO2012062464A1 (en) * 2010-11-10 2012-05-18 Spontech Spine Intelligence Group Ag Spine fixation installation system
US9636162B2 (en) 2011-12-05 2017-05-02 Dignity Health Surgical rod bending system and method
FR2988583B1 (fr) 2012-04-02 2014-03-14 Safe Orthopaedics Cintreuse a came
US11589771B2 (en) 2012-06-21 2023-02-28 Globus Medical Inc. Method for recording probe movement and determining an extent of matter removed
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US10624710B2 (en) 2012-06-21 2020-04-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US20170258535A1 (en) * 2012-06-21 2017-09-14 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US10758315B2 (en) 2012-06-21 2020-09-01 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US11786324B2 (en) 2012-06-21 2023-10-17 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11896446B2 (en) 2012-06-21 2024-02-13 Globus Medical, Inc Surgical robotic automation with tracking markers
US10799298B2 (en) 2012-06-21 2020-10-13 Globus Medical Inc. Robotic fluoroscopic navigation
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US20130345757A1 (en) * 2012-06-22 2013-12-26 Shawn D. Stad Image Guided Intra-Operative Contouring Aid
US9839463B2 (en) * 2012-09-06 2017-12-12 Stryker European Holdings I, Llc Instrument for use in bending surgical devices
US9757160B2 (en) 2012-09-28 2017-09-12 Globus Medical, Inc. Device and method for treatment of spinal deformity
US9872715B2 (en) 2012-12-05 2018-01-23 Dignity Health Surgical rod bending system and method
US10452238B2 (en) 2013-03-15 2019-10-22 Blue Belt Technologies, Inc. Systems and methods for determining a position for placing of a joint prosthesis
US9414859B2 (en) * 2013-04-19 2016-08-16 Warsaw Orthopedic, Inc. Surgical rod measuring system and method
US10786283B2 (en) * 2013-08-01 2020-09-29 Musc Foundation For Research Development Skeletal bone fixation mechanism
FR3010628B1 (fr) 2013-09-18 2015-10-16 Medicrea International Procede permettant de realiser la courbure ideale d'une tige d'un materiel d'osteosynthese vertebrale destinee a etayer la colonne vertebrale d'un patient
WO2015054543A1 (en) * 2013-10-09 2015-04-16 Nuvasive, Inc. Surgical spinal correction
US9848922B2 (en) * 2013-10-09 2017-12-26 Nuvasive, Inc. Systems and methods for performing spine surgery
FR3012030B1 (fr) 2013-10-18 2015-12-25 Medicrea International Procede permettant de realiser la courbure ideale d'une tige d'un materiel d'osteosynthese vertebrale destinee a etayer la colonne vertebrale d'un patient
US10709509B2 (en) 2014-06-17 2020-07-14 Nuvasive, Inc. Systems and methods for planning, performing, and assessing spinal correction during surgery
US9913669B1 (en) * 2014-10-17 2018-03-13 Nuvasive, Inc. Systems and methods for performing spine surgery
JP6633353B2 (ja) * 2014-11-06 2020-01-22 国立大学法人北海道大学 脊柱変形矯正固定術支援装置、脊柱変形矯正固定術支援方法、プログラム、及び脊柱変形矯正固定術に使用するロッド製造方法
EP3226790B1 (en) 2014-12-04 2023-09-13 Mazor Robotics Ltd. Shaper for vertebral fixation rods
US20160262800A1 (en) * 2015-02-13 2016-09-15 Nuvasive, Inc. Systems and methods for planning, performing, and assessing spinal correction during surgery
US10406054B1 (en) 2015-02-18 2019-09-10 Nuvasive, Inc. Systems and methods for facilitating surgical procedures
DE102015102776A1 (de) * 2015-02-26 2016-09-01 Aesculap Ag Medizinisches Instrumentarium und Verfahren
US10390884B2 (en) 2015-06-30 2019-08-27 DePuy Synthes Products, Inc. Methods and templates for shaping patient-specific anatomical-fixation implants
JP6949828B2 (ja) * 2015-08-31 2021-10-13 ケービー メディカル エスアー 脊椎ロッド曲げ加工のためのロボット外科用システム
AU2016349705B2 (en) 2015-11-04 2021-07-29 Medicrea International Methods and Apparatus for spinal reconstructive surgery and measuring spinal length and intervertebral spacing, tension and rotation
AU2015414802B2 (en) * 2015-11-19 2020-12-24 Eos Imaging Method of preoperative planning to correct spine misalignment of a patient
AU2017210124B2 (en) 2016-01-22 2021-05-20 Nuvasive, Inc. Systems and methods for facilitating spine surgery
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US10463433B2 (en) 2016-03-02 2019-11-05 Nuvasive, Inc. Systems and methods for spinal correction surgical planning
USD810096S1 (en) 2016-05-02 2018-02-13 General Electric Company Display screen portion with animated graphical user interface of C-arm machine
USD810097S1 (en) 2016-05-02 2018-02-13 General Electric Company Display screen portion with graphical user interface of C-arm machine
WO2017221257A1 (en) 2016-06-23 2017-12-28 Mazor Robotics Ltd. Minimally invasive intervertebral rod insertion
US10743890B2 (en) 2016-08-11 2020-08-18 Mighty Oak Medical, Inc. Drill apparatus and surgical fixation devices and methods for using the same
DE102016115605A1 (de) 2016-08-23 2018-03-01 Aesculap Ag Medizinisches Instrumentarium und Verfahren
WO2018067794A1 (en) 2016-10-05 2018-04-12 Nuvasive, Inc. Surgical navigation system and related methods
WO2018109556A1 (en) 2016-12-12 2018-06-21 Medicrea International Systems and methods for patient-specific spinal implants
US10582968B2 (en) 2017-04-04 2020-03-10 Warsaw Orthopedic, Inc. Surgical implant bending system and method
US10646259B2 (en) 2017-04-05 2020-05-12 Warsaw Orthopedic, Inc. Surgical implant bending system and method
US10405935B2 (en) * 2017-04-05 2019-09-10 Warsaw Orthopedic, Inc. Surgical implant bending system and method
US10524846B2 (en) 2017-04-05 2020-01-07 Warsaw Orthopedic, Inc. Surgical implant bending system and method
US10349986B2 (en) 2017-04-20 2019-07-16 Warsaw Orthopedic, Inc. Spinal implant system and method
WO2018193316A2 (en) 2017-04-21 2018-10-25 Medicrea International A system for developing one or more patient-specific spinal implants
DE102017122143A1 (de) 2017-09-25 2019-03-28 Aesculap Ag Medizintechnische Verformungseinrichtung, Verformungssystem und Verfahren zum Verformen eines Artikels
USD858765S1 (en) 2017-10-26 2019-09-03 Mighty Oak Medical, Inc. Cortical surgical guide
USD857893S1 (en) 2017-10-26 2019-08-27 Mighty Oak Medical, Inc. Cortical surgical guide
US11357548B2 (en) 2017-11-09 2022-06-14 Globus Medical, Inc. Robotic rod benders and related mechanical and motor housings
EP3492032B1 (en) * 2017-11-09 2023-01-04 Globus Medical, Inc. Surgical robotic systems for bending surgical rods
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
US10918422B2 (en) 2017-12-01 2021-02-16 Medicrea International Method and apparatus for inhibiting proximal junctional failure
WO2019167305A1 (ja) * 2018-02-28 2019-09-06 国立大学法人北海道大学 ロッド群、弓状ロッド、s字状ロッド、脊柱安定化システム、およびロッドの製造方法
EP3766147A4 (en) * 2018-03-15 2022-03-16 Oetiker Tool Corporation CRIMPING TOOL
US10702323B2 (en) * 2018-03-29 2020-07-07 Aesculap Ag Spinal fixation rod bending instrument
US11376054B2 (en) 2018-04-17 2022-07-05 Stryker European Operations Limited On-demand implant customization in a surgical setting
USD895111S1 (en) 2018-06-04 2020-09-01 Mighty Oak Medical, Inc. Sacro-iliac guide
USD948717S1 (en) 2018-06-04 2022-04-12 Mighty Oak Medical, Inc. Sacro-iliac guide
CN111000632B (zh) * 2018-10-08 2023-04-18 格罗伯斯医疗有限公司 具有跟踪标记的手术机器人自动化
EP3946128A4 (en) 2019-03-26 2022-11-23 Mighty Oak Medical, Inc. PATIENT-CUSTOMIZED DEVICE FOR USE IN AUGMENTED REALITY ASSISTED SURGICAL PROCEDURES AND METHODS OF USE THEREOF
WO2020201353A1 (en) 2019-04-02 2020-10-08 Medicrea International Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures
US11925417B2 (en) 2019-04-02 2024-03-12 Medicrea International Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures
CN112438806A (zh) * 2019-09-04 2021-03-05 格罗伯斯医疗有限公司 提供用于弯曲手术杆的机器人弯曲的系统
US11612440B2 (en) 2019-09-05 2023-03-28 Nuvasive, Inc. Surgical instrument tracking devices and related methods
US11769251B2 (en) 2019-12-26 2023-09-26 Medicrea International Systems and methods for medical image analysis
FR3106972B1 (fr) 2020-02-10 2022-02-18 S M A I O Procédé de conception d’un couple de tiges d’union destiné à être implanté sur le rachis d’un patient, et procédé de fabrication d’une telle tige
CN112765777B (zh) * 2020-12-29 2022-12-23 中车长春轨道客车股份有限公司 一种基于廓形的轨道客车轮对镟修方法及评价方法
US20220296326A1 (en) 2021-03-22 2022-09-22 Nuvasive, Inc. Multi-user surgical cart
US20230225765A1 (en) * 2022-01-18 2023-07-20 Medos International Sarl Spinal fixation rod having a core and an outer layer
EP4275640A1 (en) * 2022-05-12 2023-11-15 Stryker European Operations Limited Technique for guiding a surgeon on how to adapt a pre-planned position of at least one implant interface

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365804A (en) * 1964-04-27 1968-01-30 Fjellstrom Bengt Gottfrid Pipe gauging device
CN1113744A (zh) * 1994-05-09 1995-12-27 苏发莫丹内克集团有限公司 用于脊柱固定和矫正脊柱变形的装置和方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257184A (en) 1990-04-10 1993-10-26 Mushabac David R Method and apparatus with multiple data input stylii for collecting curvilinear contour data
US5113685A (en) 1991-01-28 1992-05-19 Acromed Corporation Apparatus for contouring spine plates and/or rods
AU659912B2 (en) * 1992-03-10 1995-06-01 Bristol-Myers Squibb Company Perpendicular rod connector for spinal fixation device
US5806521A (en) 1996-03-26 1998-09-15 Sandia Corporation Composite ultrasound imaging apparatus and method
GB9709498D0 (en) 1997-05-09 1997-07-02 Switched Reluctance Drives Ltd Transducer offset compensation
US6035691A (en) 1999-08-10 2000-03-14 Lin; Ruey-Mo Adjustable rod bending device for a corrective spinal rod which is used in a surgical operation
CN1148152C (zh) * 1999-12-15 2004-05-05 邹德威 复位固定骨科矫形器
US6772026B2 (en) * 2000-04-05 2004-08-03 Therics, Inc. System and method for rapidly customizing design, manufacture and/or selection of biomedical devices
US6701174B1 (en) 2000-04-07 2004-03-02 Carnegie Mellon University Computer-aided bone distraction
US20040068187A1 (en) 2000-04-07 2004-04-08 Krause Norman M. Computer-aided orthopedic surgery
US6749614B2 (en) 2000-06-23 2004-06-15 Vertelink Corporation Formable orthopedic fixation system with cross linking
ES2374265T3 (es) 2000-09-20 2012-02-15 Bridgestone Corporation Aparato detector del centro de un agujero, aparato medidor de rectilineidad y aparato medidor de torsión residual.
US6554832B2 (en) * 2001-04-02 2003-04-29 Endius Incorporated Polyaxial transverse connector
US6612143B1 (en) * 2001-04-13 2003-09-02 Orametrix, Inc. Robot and method for bending orthodontic archwires and other medical devices
US6906724B2 (en) 2001-10-17 2005-06-14 Lntel Corporation Generating a shadow for a three-dimensional model
WO2003077101A2 (en) 2002-03-06 2003-09-18 Z-Kat, Inc. System and method for using a haptic device in combination with a computer-assisted surgery system
US8010180B2 (en) 2002-03-06 2011-08-30 Mako Surgical Corp. Haptic guidance system and method
JP3904993B2 (ja) 2002-08-16 2007-04-11 ファナック株式会社 曲線補間方法
US20050262911A1 (en) 2004-02-06 2005-12-01 Harry Dankowicz Computer-aided three-dimensional bending of spinal rod implants, other surgical implants and other articles, systems for three-dimensional shaping, and apparatuses therefor
US7454939B2 (en) 2005-01-12 2008-11-25 Depuy Spine, Inc. Instrument for bending spinal rods used in a spinal fixation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365804A (en) * 1964-04-27 1968-01-30 Fjellstrom Bengt Gottfrid Pipe gauging device
CN1113744A (zh) * 1994-05-09 1995-12-27 苏发莫丹内克集团有限公司 用于脊柱固定和矫正脊柱变形的装置和方法

Also Published As

Publication number Publication date
BR122019006679B1 (pt) 2020-10-20
BR122019006679B8 (pt) 2021-06-22
CN102036615A (zh) 2011-04-27
ES2702042T3 (es) 2019-02-27
US7957831B2 (en) 2011-06-07
EP2273944A1 (en) 2011-01-19
EP2273944B1 (en) 2018-12-05
KR101710932B1 (ko) 2017-03-02
EP3461444A1 (en) 2019-04-03
WO2009124245A1 (en) 2009-10-08
CN104116554B (zh) 2016-08-24
EP3461444B1 (en) 2022-01-19
DK2273944T3 (en) 2019-02-18
JP5572898B2 (ja) 2014-08-20
KR20110021744A (ko) 2011-03-04
EP2273944A4 (en) 2013-07-03
CN104116554A (zh) 2014-10-29
JP2011517594A (ja) 2011-06-16
CA2720639A1 (en) 2009-10-08
US20090254326A1 (en) 2009-10-08
BRPI0911078A2 (pt) 2016-07-26

Similar Documents

Publication Publication Date Title
CN102036615B (zh) 用于对外科植入体进行设计和成形的方法
US11701703B2 (en) Systems, devices, and methods for designing and forming a surgical implant
JP6949172B2 (ja) 外科的脊椎矯正
US10433893B1 (en) Systems and methods for performing spine surgery
US20220071709A1 (en) Systems and methods for performing spinal surgery
US20090254097A1 (en) System and device for designing and forming a surgical implant
Seide et al. A hexapod robot external fixator for computer assisted fracture reduction and deformity correction
US11717350B2 (en) Methods for robotic assistance and navigation in spinal surgery and related systems
Dobbe et al. Minimizing the translation error in the application of an oblique single-cut rotation osteotomy: Where to cut?
US11931795B2 (en) Systems, devices, and methods for designing and forming a surgical implant
US20240008880A1 (en) Apparatus, system, and method for patient-specific systems, methods, and instrumentation
EP4134013A1 (en) Surgical distractor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: NUVASIVE INC.

Free format text: FORMER OWNER: VILASPINE LTD.

Effective date: 20130624

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20130624

Address after: American California

Applicant after: Nuvasive Inc

Address before: Bahamas Nassau

Applicant before: Vilaspine Ltd.

C14 Grant of patent or utility model
GR01 Patent grant