CA2651447A1 - Bend-capable stent prosthesis - Google Patents

Bend-capable stent prosthesis Download PDF

Info

Publication number
CA2651447A1
CA2651447A1 CA002651447A CA2651447A CA2651447A1 CA 2651447 A1 CA2651447 A1 CA 2651447A1 CA 002651447 A CA002651447 A CA 002651447A CA 2651447 A CA2651447 A CA 2651447A CA 2651447 A1 CA2651447 A1 CA 2651447A1
Authority
CA
Canada
Prior art keywords
prosthesis
ring
stent
points
inflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002651447A
Other languages
French (fr)
Other versions
CA2651447C (en
Inventor
Thilo Wack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angiomed GmbH and Co Medizentechnik KG
Original Assignee
Angiomed GmbH & Co. Medizintechnik KG.
Thilo Wack
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angiomed GmbH & Co. Medizintechnik KG., Thilo Wack filed Critical Angiomed GmbH & Co. Medizintechnik KG.
Publication of CA2651447A1 publication Critical patent/CA2651447A1/en
Application granted granted Critical
Publication of CA2651447C publication Critical patent/CA2651447C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/89Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements comprising two or more adjacent rings flexibly connected by separate members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/844Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents folded prior to deployment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/825Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having longitudinal struts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91516Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a change in frequency along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91525Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • A61F2002/91541Adjacent bands are arranged out of phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped

Abstract

Normally, when stents are bent, inside the body of the stented patient, there is head-to-head collision between facing V-points on the inside of the bend. However, by alternating between two whole numbers the number of struts between successive connectors around the circumference of each of the stenting rings, the V-points are caused to veer circumferentially in opposite directions as they approach each other on the inside of the bend, so allowing them to pass by each other without collision, thereby allowing in the same stent both close packing of the ring stack, and an enhanced ability to tolerate severe bending, after placement in the body.

Description

Bend-capable stent prosthesis Field of the invention This invention relates to a stent prosthesis which is tubular and has a matrix of struts that provide a stenting action that holds bodily tissue radially away from any lumen defined by the stent matrix, around a longitudinal axis of the prosthesis. One such prosthesis is disclosed in applicant's WO
01/32102.

Background Currently, the great majority of stents delivered transluminally and percutaneously to a stenting site in a human body are made of a biologically compatible material which is a metal. Many stents are made of stainless steel, and many others are made of nickel titanium shape memory alloy.
The nickel titanium stents are invariably self-expanding stents that utilise a shape memory effect for moving between a radially compact transluminal delivery disposition and a radially larger stenting disposition after placement in the body. Stainless steel stents are often delivered on a balloon catheter, with inflation of the balloon causing plastic deformation of the material of the struts, but other stainless steel stents rely on the resilience of the steel to spring open when a surrounding sheath is retracted relative to the stent being deployed.

However, in all cases, it is difficult to endow the stent strut matrix with a degree of flexibility that comes anywhere near the degree of flexibility of the natural bodily tissue at the stenting site. The strength and resilience of the stent matrix, that serves to push radially outwardly the bodily tissue at the stenting site, is difficult to reconcile with the flexibility in bending that the natural tissue around the stent is capable of exhibiting, in normal life of the patient carrying the stent. It is one object of the present invention to improve the performance of a stent prosthesis in bending, after it has been deployed in the body of a patient.

To explain the problem, reference will now be made to applicant's WO 01/32102, specifically drawing Figures 3 and 4, and the text, of WO 01/32102. Indeed, accompanying drawing Figures 1 and 2 are the same as Figures 3 and 4 of WO
01/32102.

Looking at accompanying Figure 1, we see part of the circumference of a tubular workpiece of nickel titanium shape memory alloy, in side view. The tube has a diameter D and a multiplicity of slits 20, 22 and 24, through the wall thickness of the tubular workpiece, all parallel to each other and to the longitudinal axis of the workpiece and creating out of the original solid tubular workpiece a lattice which can be expanded radially outwardly, (for example on a mandrel) to the expanded configuration of drawing Figure 2 (again in side view). Out of the multitude of parallel slits can now be recognised as a sequence of 10 stenting rings, all displaying a zig-zag advance around the circumference of the prosthesis.
Terminal zig-zag rings 30 are composed of 24 struts 32 interspersed by points of inflection 34, giving the end view of the prosthesis the appearance of a crown with twelve points.

The eight zig-zag rings at intermediate points along the length of the stent, between the two end rings 30, are referenced 36. They are made up of struts 38 which are all much the same length, somewhat shorter than end struts 32.
Between any two struts of any of the zig-zag stenting rings there is a point of inflection 40. In the two end rings 30, all twelve of these points of inflection remote from the crown end of the terminal ring 30 are connected to a corresponding point of inflection 40, head to head, in the next adjacent internal stenting ring 36. However, between any two internal stenting rings 36, not all the twelve points of inflection, found spaced around the circumference of the prosthesis, are joined to corresponding points of inflection on the next adjacent stenting ring 36. Indeed, reverting to Fig. 1, it is easy to see that there will be only four connector portions 42, linking any two adjacent internal stenting rings 36.
Thinking about advance of the prosthesis of Fig. 1, in its compact disposition, along a tortuous, transluminal, delivery path to the stenting site, as the stent bends around a sharp bend in the delivery path, on the inside of any such bend, for example at point 44 on Fig. 1, the points of inflection facing each other across the gap 60 will approach one another.
Depending on the length of the diametrically opposed connector portions 42 connecting stenting rings 36B and 36C, the two unconnected points of inflection will come into contact with each other in the middle of the gap 60, in dependence upon how sharp is the bend that the stent is negotiating in the tortuous path at that time. The longer the axial gap between adjacent stenting rings, the greater the capability of the stent for negotiating ever tighter bends in the delivery path lumen.

But what of the performance of the stent in bending, after it has been deployed at the stenting site.

We can see from Fig. 2 that the pattern of connector portions 42 is symmetrical. That is to say, standing on one of these connector portions, and looking along the length of the prosthesis, the pattern of connectors to the left of the line of view is a mirror image of the pattern of connectors to the right of that line of view. If we switch to consideration of drawing Figure 3, which shows a portion of the strut network of the stent of Figs. 1 and 2, this is more readily evident.
Just as points of inflection on the inside of a tight bend of the stent in its compact disposition of Fig. 1 can butt up against each other face to face, so can the same phenomenon occur when the expanded stent of Fig. 2 is subject to sharp bending. Any such intermittent abutment of otherwise free points of inflection is liable to have negative effects including, for example, irritation or injury to bodily tissue caught between the abutting points of inflection, or even incipient buckling of the stent with the potential to reduce flow of bodily fluid through the stent lumen to dangerously low levels.

It is one object of the present invention to mitigate these risks.

Summary of the invention The matrix of struts of a radially expandable stent can be looked upon as a two dimensional lattice (when the tubular stent is opened out flat on a plane) and if the lattice has a regular structure (which it invariably does) then it is possible to define the lattice using a concept familiar in crystallography, namely, the "unit cell" characteristic of a space lattice of points, with each point of the space lattice corresponding to one of the connector portions in the stent matrix. Conventionally, as in the structure shown in Figs. 1 to 3 discussed above, the unit cell is aligned with the longitudinal axis of the prosthesis. In accordance with one aspect of the present invention, however, the axially adjacent stenting rings are separated only by a small gap, and the unit cell is deliberately "skewed" with respect to the longitudinal axis of the prosthesis. This has the consequence that, when the expanded stent prosthesis is sharply bent, points of inflection that would otherwise approach each other head to head are prompted by the stresses arising in the lattice of struts to shear sideways, in opposite directions around the circumference of the stent prosthesis so that, when the tightness of the bend is finally such as to bring the points of inflection close to each other, they pass side by side rather than impact head to head.

Note that the axial gap between two radially expanded rings of a straight stent is virtually identical to the length of the gap between the same two rings in the compressed stent n the delivery catheter. But the points of inflection are much further away from the longitudinal axis, with the consequence that the amount of axial movement of facing points of inflection, for any particular degree of bending of the axis, is much greater with the stent radially expanded. A small axial gap might therefore suffice, in the delivery disposition of a stent while being inadequate to prevent head to head impact in the expanded disposition.

The small gap between axially adjacent stenting rings is important for the establishment of usefully high radially outwardly directed stenting forces. It is the tendency of the points of inflection (peaks) to pass by each other, when the stent bends, in overlapping side-by-side relationship, that opens up the possibility to keep the gap so small.

A relatively simple way to accomplish this desirable result is to arrange that, when the number of struts "N" of any stenting ring B lying between any two adjacent connector portions is such that N/2 is an even number, so that the connector portions at one axial end of ring B cannot lie circumferentially halfway between any two connector portions on the other axial end of ring B. Note that in Fig. 2 above, there are six struts of any particular stenting ring 36 between adjacent connector portions 42 on the same axial end of that stenting ring 36. Half of six is three, and three is not an even number. Proceeding from any particular connector portion 42 of the matrix of Fig. 2, it takes three struts to reach the next adjacent connector portion, whichever path one takes when departing from the base connector portion 42. In accordance with the present invention, the number of struts taken to reach the next adjacent connector portion 42 is not always the same. In consequence, the stresses imposed on the struts by bending the prosthesis sharply (into a banana shape) are going to be distributed asymmetrically with respect to any particular connecter portion 42 and it is this asymmetric stress distribution that will skew the free points of inflection relative to those facing them in the next adjacent stenting ring, so that they do not abut each other head to head on the inside of the bend of the banana shape.

Thus , in accordance with another aspect of the invention, there is provided a prosthesis that is expandable from a radially compact delivery disposition to a radially expanded stenting disposition, and is composed of a stack of zig-zag stenting rings of struts that end in points of inflection spaced around the circumference of a stenting lumen that is itself on a longitudinal axis of the stent, each of the points of inflection being located at one or the other of the two axial ends of each ring, with adjacent rings A, B, C in the stack being connected by straight connectors linking selected facing pairs of points of inflection of each two adjacent rings, circumferentially intervening pairs of facing points of inflection being unconnected, and with progress from strut to strut via the points of inflection, around the full circumference of one of the stenting rings B, namely one that is located axially between adjacent rings A and C in the stack, the connector ends encountered during such progress connect ring B alternately, first to ring A, then to ring C, then to ring A again, and so on characterised in that the connectors are parallel to the longitudinal axis and are shorter than said strut length the pairs of unconnected points of inflection remain facing, in the radially expanded disposition, for as long as the longitudinal axis remains a straight line the number of struts in ring B that lie between successive said connector ends that join ring B alternately to ring A, then ring C, is a whole number that alternates between two different values; and the connectors are so short that, when the stent functioning as a stent is caused to bend, such that the longitudinal axis becomes arcuate, the facing pairs of unconnected points of inflection that are on the inside of the bend eventually pass axially past each other, side by side, circumferentially spaced from each other, rather than impacting on each other, head to head.

A stent construction in accordance with the invention is only marginally more complex than the simple and "classic" zig-zag stenting ring construction evident from drawing Figures 1 to 3. The stenting rings can be a simple zig-zag construction of struts all the same length, and the connector portions can be nothing more than a plane of abutment between abutting points of inflection in adjacent zig-zag stenting rings, or simple, short, straight portions aligned with the longitudinal axis of the prosthesis. This is advantageous, when it comes to modelling the fatigue performance of the stent, something of significant importance for government regulatory authorities and for optimising stent performance long term.

There is another valuable performance enhancement that the present invention can deliver, namely attainment of full performance of any particular "theoretical" stent matrix. In reality, every placement of a stent is an individual unique event. To some extent, every stent of shape memory alloy has had its remembered shape set in a unique heat treatment step.
Referring back, once again, to WO 01/32102, we set the remembered shape before removing bridges of "scrap" material between stenting rings. In consequence, remembered shapes are highly orderly and regular, much closer to the "theoretical"
zig-zag shape than can be attained when the rings are only connected by a minimum of connectors during the shape-setting step. We can have this advantage also with stents in accordance with the present invention, to optimise the bending performance of the stents, and the fatigue resistance that comes from having stress distributions close to optimal, every time.

For a clear understanding of the invention definitions are useful for "strut length" and "connector length". Fortunately, such definitions are more or less self-evident, after consideration of how stents are made.

Normally, one begins with a tubular workpiece and creates in it a multitude of slits that extend through the wall thickness. They have their length direction more or less lengthwise along the tube. Circumferentially, adjacent slits are axially staggered. This is not unlike the way of making a simple "expanded metal" sheet having diamond-shaped apertures, familiar to structural engineers, and those who clad dangerous machinery in see-through metal sheet material to serve as safety guards.

For stent making, a useful extra step is to remove many of the residual links between adjacent diamonds. See again WO
01/32102, mentioned above.

The slit creation step can be by a chemical process such as etching or a physical process such as laser cutting. For nickel titanium shape memory alloys, the usual method is laser cutting.

So, now, how to define strut length and connector length?
These lengths emerge quite simply from an inspection of the axial lengths by which circumferentially adjacent slits overlap. For a strut length one would measure axially from the end of one slit (that is defining one of the two flanks surfaces of the strut under consideration) to the end of the circumferentially next adjacent slit that has, as one of its defining long walls, the other flank surface of the strut whose length is to be ascertained. This method yields relatively short lengths. It is as if one were a tailor, and were to measure arm length from the armpit rather than from a point on top of the shoulder of the person being fitted.

The same logic applies when determining connector lengths.
They correspond to the length of the gap that is created, when material is moved from the stent workpiece, in the unslitted material between two co-linear slits through the wall of the workpiece, said removal of material revealing two axially facing points of inflection when the stent matrix is subject to radial expansion. Thus, in the limiting case, the connector length is the same as the width of the laser beam that removed material to create that gap. Again, see WO 01/32102 mentioned above.

Of course, connector lengths and strut lengths can vary over the stent. Some of its stenting rings may have longer struts than others. However, except for very special cases, a stent is indifferent to rotation about is long axis, so that changes in the rotational orientation of the stent relative to the bodily lumen being stented, during advancement of the stent along the lumen to the stenting site, do not render the stent unfit for placement. Thus, for purposes of clarity in the here-claimed invention, it will always be possible to divine clearly a strut length and a connector length, for testing whether the definition of the invention is met in any particular zone of a stent that corresponds to two adjacent stenting rings and the gap in between.

With the published state of the art there are disclosures, such as in US2004/0117002 and US 2003/0225448, of stents composed of zig-zag stenting rings with straight connectors that join adjacent stenting rings peak-to-peak and with alternating whole numbers of struts lying between circumferentially adjacent connectors terminating in any one ring of such struts. Such stents exhibit face to face (otherwise here called "peak to peak") facing points of inflection in the radially compact pre-expanded disposition of the stent. Such stents are relatively easy to make by laser cutting of a precursor tube of raw material. Whether such stents still exhibit face to face points of inflection after expansion is unclear. What happens when the stents bend is also unclear. What is clear is that the writers of these prior publications did not include any teaching about how facing points of inflecting may tend to move in opposite circumferential directions on bending of the stent, and thereby ease away from head to head collision. A failure to recognise this phenomenon results in a failure to appreciate the scope to reduce the length of the connectors connecting adjacent stenting rings, thereby missing a chance to maximise radially stenting force and strut coverage of the wall of the bodily lumen that has been stented.

The disclosure of W098/20810 is instructive. It describes laser cut stents of nickel titanium shape memory alloy, with zig-zag stenting rings that expand to a stenting diameter. It teaches that the straight connectors linking axially adjacent stenting rings are to be at a slant to the longitudinal axis so that what would otherwise be the facing points of the "V-shaped segments" are circumferentially staggered, to minimise contact between these peaks when the expanded stent is bent such that the longitudinal axis becomes arcuate. Another reason for staggering the V-points around the circumferences is to improve the homogeneity of coverage of the lumen wall with the strut matrix of the stent, to leave no zones of coverage of the lumen wall tissue that are more sparse than other zones. The connectors shown in the drawings do appear to be quite long and it is of course self-evident that, the longer the connectors, the longer are the gaps between axially adjacent zig-zag rings, such gaps corresponding to sparse coverage of the lumen wall bodily tissue in the zones of tissue in the gaps between the rings. In other words, the shorter the connectors, the less need there is to stagger the V-point peaks circumferentially, in order to maintain lumen wall coverage by the matrix of struts of the stent.

When assimilating the disclosure value of W098/20810 it is instructive to imagine the stent in radially fully expanded disposition. The circumferential arc between two points of inflection is multiple times more than in the radially compressed delivery, and multiple times more than the circumferential distance between the opposite ends of a slanting connector. This has the consequence that the degree by which peak to peak impact is alleviated, by a short slanting connector, is disappointingly small, and gets relatively smaller with every increase in diameter of the expanded stent. By contrast, with the present invention, the greater the diameter of the expanded stent, the more powerful the effect to circumferentially stagger the points of inflection.

It will be evident to the skilled reader that the term "stenting ring" can be understood also to include in its scope successive turns around a stent lumen of a spiral that is composed of struts in a zig-zag arrangement which spiral advances along the stent lumen away form one of the stent and towards the other.

Struts need not be of constant cross-section. Indeed, for optimisation of stress distribution within the struts, and hence of the fatigue performance of the stent the cross-section will indeed change, along the length of each strut.
The struts need not al be the same as each other. There could be different strut species, either from ring to ring or, indeed, within a stenting ring. A common arrangement is to have rings of longer struts at each end of the stent, the shorter struts at a mid-length portion, providing greater radially outward stenting force.

The stent can be a bare stent or a covered stent such as a stent graft. The stent may be a drug-eluting stent. The stent may have a function other than to hold a bodily lumen open against stenosis. For example, the stent could be part of a filter device for temporary placement in a bodily lumen, or an anchor for some other device that is to perform a therapeutic function within a bodily lumen.

Brief description of the drawings For a better understanding of the present invention, and to show more clearly how the same may be carried into effect, reference will now be made, by way of example, to the accompanying drawings, in which:

Figs. 1 and 2 are side views of the stent described in WO
01/32102, with Fig. 1 in the compact delivery disposition and Fig. 2 in the radially expanded deployed disposition of the prosthesis.

Fig. 3 is a diagram of symmetrical matrix of connector portions (not unlike the embodiment of Figs. 1 and 2), opened out flat on a plane, and Fig. 4 is a diagram corresponding to that of Fig. 3, but with a matrix of struts and connectors in accordance with the present invention Fig. 5 is a photographic side view of a stent prosthesis which exhibits the strut and connector matrix of Fig. 4, expanded but not subject to any bending stresses; and Fig. 6 is a photographic side view of part of the stent prosthesis of Fig. 5, but bent into a "banana" shape to reveal how the points of inflection move relative to each other and relative to the addressed unbent configuration of Fig. 5.
Detailed description What is shown in Figs. 1, 2 has been described above and in applicant's earlier WO 01/32102. The reader is referred to the passages above and to the prior publication.

Fig. 3 is not unlike the embodiment of Figures 1 and 2, but the length of the elongate connectors 42 helps to reveal the pattern of connectors in the lattice.

Fig. 4 reveals a matrix of struts 38 and connectors 42 spacing apart a succession of zig-zag stenting rings 36 (four are visible in Fig. 4). Starting from connector 42A, we can reach adjacent connector 42B via a sequence of three struts 38ABC.
But not all adjacent connectors are as close. Consider adjacent connector 42C. It takes five struts, namely struts 38D to H, to reach connector 42C. The pattern is repeated throughout the matrix. Note that the connector 42D that links zig-zag rings 36C and 36D is displaced circumferentially sideways from connector 42A, unlike the arrangement in Fig. 3.
If we imagine in Fig. 4 connectors 42A and 42D lying on the inside of a severe bend of the expanded stent matrix, so that the points of inflection 40X on zig-zag ring 36B, and the points of inflection 40Y on zig-zag ring 36C, are moving towards each other, the stresses imposed by connector 42A on stenting ring 36B and those imposed on stenting ring 36C by connector 42D will be unsymmetrical. It does not require a great exercise of imagination to visualise points of inflection 40X and points of inflection 40Y failing to meet each other face to face when the bend is tight enough but, instead, sliding past each other, with spacing.

Turning to drawing Figures 5 and 6, we see occurring in practice exactly what one can, with a degree of imagination, visualise occurring from the diagram of Fig. 4. Whereas the free points of inflection in Fig. 5, the unstressed configuration of the expanded stent, are bravely facing each other without any circumferential staggering, as soon as the prosthesis is subject to external stresses that bend it into the banana shape evident from Fig. 6, what was previously and orderly face to face configuration of points of inflection has now become a staggered configuration, not just on the exact inside of the bend but also on the flanks of the bend that are facing the viewer in the side view of Fig. 6.

Self-evidently, the construction of Fig. 5 is hardly more complex than that of Fig. 2. Likewise, the construction of Fig. 4 is self-evidently hardly more complicated than the Fig.
3 matrix. It is one advantage of the present invention that the useful result evident in Fig. 6 can be achieved with a lattice that is barely more complicated than that of the classic lattice of WO 01/32102. That is of course not to say that the benefits of the invention are not achievable with more complicated constructions. There is now an enormous multitude of stent lattice possibilities and those who are promulgating relatively complicated lattices would doubtless assert that their specific constructions bring useful benefits. Doubtless the simple principle of the present invention can be incorporated into these more complicated arrangements, as skilled and experienced stent design readers will appreciate.

As increasing sophistication of design of stents allows them to perform in ever more demanding locations in the body, the need for stent flexibility in bending continues to increase.
for maximum flexibility, one would wish for a minimum of connector portions between stenting rings. However, the point about connectors is that they do serve to keep apart from each other portions of stenting rings that might otherwise collide.
There is therefore a tension between the objective of preventing collisions and the objective of greater flexibility. The present invention aims to make a contribution to this delicate contradiction, by using just a few connectors to encourage approaching points of inflection to, as it were, politely step to one side, in opposite directions, as they approach each other, rather than confronting each other head to head. Given the strength that effective stents need to exhibit, to keep bodily tissue displaced radially outwardly from the bodily lumen being stented, there should be enough strength in even just a few connectors to ease the points of inflection past each other, because only a relatively small "push" on the points of inflection, in circumferentially opposite directions, should be enough to prevent a peak-to-peak confrontation. Otherwise, when the stent in the body is not called upon to bend, then the connectors do not have to go to work to urge the facing points of inflection to move in opposite circumferential directions. The stresses in the stent matrix are those that arise anyway, when the surrounding tissue is urging the stent matrix to bend from a straight tube to a banana shape. Accordingly, the stresses within the stent matrix are in harmony with the stresses that the surrounding body tissue is experiencing, and imposing on the stent. This harmony should be of assistance in matching the performance of the metal stent matrix to the resilient properties of the surrounding bodily tissue.

There is no requirement that the skewed arrangement, that the present invention proposes, be reproduced throughout the stent lattice. For example, it may be desirable to make one portion of a stent more bend-capable than other parts. In such a case, it may be useful to confine the skewed connector distribution to those parts of the stent which are to be relatively more bend-capable. It hardly needs to be observed that the bend capability of a stent portion, before it begins to buckle, should be high enough to incur the risk of abutment of approaching points of inflection in adjacent stenting rings, to make incorporation of the skewed distribution of the invention worthwhile. Generally, the sparser the population of connector portions between the population of connector portions between stenting rings, the more bend-capability will be available.

Fig 3 shows 6 struts between adjacent connectors in the same circle, and Fig. 4 shows 8. With 10 connectors, an unsymmetrical arrangement of the present invention suggests a heavily skewed split of 3/7 in the number of struts between each connector and the nearest one in the axially next adjacent ring of connectors (with the symmetrical arrangement being 5/5). 12 connectors seem scarcely more attractive because then the split is 4/8, still somewhat heavily skewed relative to a symmetrical 6/6 split of struts between connectors, but 14 connectors seems more attractive because that permits a 6/8 split which is close to the symmetrical 7/7 split of a symmetrical arrangement. One seeks an arrangement that is skewed enough to urge the approaching points of inflection on the inside of the bend to pass each other elegantly, but not such a pronounced skew that stresses in the stent lattice show pronounced differences, depending where in the lattice one is measuring them.

Generally, there will be up to 6 connectors in each circle of connectors. 3 or 4 connectors per ring are presently favoured but the number of connectors falls to be determined in harmony with many other design aspects of the stent lattice, as stent designers well know.

The radially outwardly directed force that a stent can exert against the bodily tissue forming the walls of the stented bodily lumen will inevitably be somewhat reduced, with increasing length of the gaps between axially adjacent stenting rings of the stent. Clearly then, one would choose short connectors to maximise stenting radial force. In a high flex location for the stent measures must be taken, to prevent collisions between adjacent stenting rings when the stent is subjected to serve bending. A particularly useful technical effect of the present invention is that the short connector portions allow close proximity of axially adjacent stenting rings (and so a high stenting force) yet no collisions between the closely adjacent rings when the stent suffers severe bending.

Example To assist readers to grasp the physical dimensions of stents that are preferred embodiments of the present invention, we set out in the Table below some representative dimensions for stents studied by the Applicant. It is to be understood that these dimensions are provided not to signify precise dimensions that work better than others but merely dimensions within the ranges here contemplated.

Table Product Each zig-zag ring Connector Connector Number of Strut Strut length extended length struts (um) width (mm) length (mm) (mm)*
A 24 160 1.95 0.8 1.4 B 36 100 1.45 0.5 1.0 C 30 100 1.45 0.5 1.0 D 32 135 1.55 0.5 1.0 * This is the full length that lies between the ends of two co-linear slits axially spaced from each other that create the two axially-facing V-points of inflection of two adjacent zig-zag rings One message to be taken from the Table is that strut lengths are going to be, in general, significantly more than lmm while connectors are going to exhibit a length significantly below lmm. The points of inflection, in themselves, typically have an axial length of 0.25mm or 0.30mm, which is typically around two or three times the width (in the circumferential direction) of one of the struts. Thinking of a point of inflection as a zone where the material of two struts comes together in an unslitted block of material, that block will have the width of two struts and an axial length that is similar to, or a bit longer than, such width.

In general, connectors lengths will be 0.8mm or less, likely 0.6mm or less. Strut lengths will likely be more than 1.25mm, likely is a range of from 1.3 to 2.2mm or more specifically 1.4 to 2.0mm. One favoured construction has 32 struts per ring, such as in Product D in the Table.

For the sake of clarity, and the avoidance of doubt, the "points of inflection" referred to in this specification are not a reference to the point of inflection that each strut exhibits, mid-way along its length, which more or less inevitably appears when the slitted stent precursor tube is radially expanded form its original diameter to its working stenting diameter.

Claims (18)

1. A prosthesis that is expandable from a radially compact delivery disposition to a radially expanded stenting disposition, and is composed of a stack of zig-zag stenting rings of struts that end in points of inflection spaced around the circumference of a stenting lumen that is itself on a longitudinal axis of the stent, each of the points of inflection being located at one or the other of the two axial ends of each ring, with adjacent rings A, B, C in the stack being connected by straight connectors linking selected facing pairs of points of inflection of each two adjacent rings, circumferentially intervening pairs of facing points of inflection being unconnected, and with progress from strut to strut via the points of inflection, around the full circumference of one of the stenting rings B, namely one that is located axially between adjacent rings A and C in the stack, the connector ends encountered during such progress connect ring B alternately, first to ring A, then to ring C, then to ring A again, and so on:
characterised in that the connectors are parallel to the longitudinal axis and are shorter than said strut length the pairs of unconnected points of inflection remain facing, in the radially expanded disposition, for as long as the longitudinal axis remains a straight line the number of struts in ring B that lie between successive said connector ends that join ring B alternately to ring A, then ring C, is a whole number that alternates between two different values; and the connectors are so short that, when the stent functioning as a stent is caused to bend, such that the longitudinal axis becomes arcuate, the facing pairs of unconnected points of inflection that are on the inside of the bend eventually pass axially past each other, side by side, circumferentially spaced from each other, rather than impacting on each other, head to head.
2. Prosthesis as claimed in claim 1, wherein the number of struts "N" of ring B lying between any two adjacent A-B
connector portions is such that N/2 is an even number, so that the B-C connectors cannot be placed circumferentially on ring B half way between any two of the A-B connectors.
3. Prosthesis as claimed in claim 1, wherein the number of struts "N" of ring B lying between any two adjacent A-B
connector portions is such that N/2 is an odd number and N is more than 10.
4. Prosthesis as claimed in claim 1, 2 or 3, wherein the lattice points of the connectors together exhibit a helical path that is coaxial with the longitudinal axis of the prosthesis.
5. Prosthesis as claimed in any one of the preceding claims, wherein each of the stenting rings is composed of struts that have all the same length, such that each of the points of inflection in such a ring lie in one of two circles transverse to the longitudinal axis of the prosthesis.
6. Prosthesis as claimed in any one of the preceding claims, wherein all the struts in rings A, B and C have the same cross-section and length.
7. Prosthesis as claimed in any one of the preceding claims and made of a shape memory alloy.
8. Prosthesis as claimed in any one of claims 1 to 6, which undergoes plastic deformation expansion to its stenting disposition.
9. Prosthesis as claimed in any one of the preceding claims which is a peripheral vascular stent.
10. Prosthesis as claimed in any one of claims 1 to 8 which is a biliary stent.
11. Prosthesis as claimed in any one of the preceding claims, wherein the connectors in rings A, B, C have a length which is less than 1mm.
12. Prosthesis as claimed in claim 11, which is not more than 0.8mm.
13. Prosthesis as claimed in claim 12, which is less than 0.6mm.
14. Prosthesis as claimed in any one of the preceding claims, with a strut length of more than 1.25mm within the rings A, B, C.
15. Prosthesis as claimed in claim 14, with a strut length in a range of from 1.3 to 2.2mm
16. Prosthesis as claimed in claim 15, with a strut length in a range of from 1.4 to 2.0mm.
17. Prosthesis as claimed in any one of the preceding claims, with 32 struts in each of the zig-zag rings A, B, C.
18. Prosthesis as claimed in any one of the preceding claims, with 4 evenly spaced connectors between ring A and ring B.
CA2651447A 2006-05-18 2007-05-18 Bend-capable stent prosthesis Active CA2651447C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB0609911.3A GB0609911D0 (en) 2006-05-18 2006-05-18 Bend-capable stent prosthesis
GB0609911.3 2006-05-18
PCT/EP2007/054822 WO2007135090A1 (en) 2006-05-18 2007-05-18 Bend-capable stent prosthesis

Publications (2)

Publication Number Publication Date
CA2651447A1 true CA2651447A1 (en) 2007-11-29
CA2651447C CA2651447C (en) 2014-10-21

Family

ID=36660432

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2651447A Active CA2651447C (en) 2006-05-18 2007-05-18 Bend-capable stent prosthesis

Country Status (5)

Country Link
US (3) US8574286B2 (en)
EP (1) EP2029063B1 (en)
CA (1) CA2651447C (en)
GB (1) GB0609911D0 (en)
WO (1) WO2007135090A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10213327B2 (en) 2000-08-17 2019-02-26 Angiomed Gmbh & Co. Medizintechnik Kg Implant with attached element and method of making such an implant
US10231854B2 (en) 2006-05-18 2019-03-19 C. R. Bard, Inc. Bend-capable stent prosthesis
US10500075B2 (en) 2006-11-10 2019-12-10 C. R. Bard, Inc. Stent
US10849770B2 (en) 2006-05-17 2020-12-01 C. R. Bard, Inc. Bend-capable tubular prosthesis

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0616579D0 (en) * 2006-08-21 2006-09-27 Angiomed Ag Self-expanding stent
GB0616999D0 (en) * 2006-08-29 2006-10-04 Angiomed Ag Annular mesh
WO2008028964A2 (en) 2006-09-07 2008-03-13 Angiomed Gmbh & Co. Medizintechnik Kg Helical implant having different ends
GB0624419D0 (en) 2006-12-06 2007-01-17 Angiomed Ag Stenting ring with marker
GB0706499D0 (en) 2007-04-03 2007-05-09 Angiomed Ag Bendable stent
GB0717481D0 (en) 2007-09-07 2007-10-17 Angiomed Ag Self-expansible stent with radiopaque markers
US8128677B2 (en) 2007-12-12 2012-03-06 Intact Vascular LLC Device and method for tacking plaque to a blood vessel wall
US20120022578A1 (en) * 2010-07-20 2012-01-26 Cook Medical Technologies Llc Frame-based vena cava filter
WO2012057587A2 (en) * 2010-10-29 2012-05-03 메디소스플러스(주) Stent wires, and method for manufacturing such stent wires and stents
GB2488165B (en) 2011-02-18 2013-08-07 Cook Medical Technologies Llc Prosthesis and method of manufacturing the same
CN105769400A (en) * 2014-12-23 2016-07-20 深圳市金瑞凯利生物科技有限公司 Vascular stent
US9433520B2 (en) 2015-01-29 2016-09-06 Intact Vascular, Inc. Delivery device and method of delivery
US9375336B1 (en) 2015-01-29 2016-06-28 Intact Vascular, Inc. Delivery device and method of delivery
CN205144805U (en) * 2015-10-23 2016-04-13 李雷 Blood vessel support
CN105662666B (en) * 2015-12-30 2018-01-30 先健科技(深圳)有限公司 Intraluminal stent
US10993824B2 (en) 2016-01-01 2021-05-04 Intact Vascular, Inc. Delivery device and method of delivery
US10258488B2 (en) 2016-11-14 2019-04-16 Covidien Lp Stent
US10449069B2 (en) 2016-11-14 2019-10-22 Covidien Lp Stent
US10905572B2 (en) * 2016-11-14 2021-02-02 Covidien Lp Stent
EP3576803A1 (en) * 2017-02-03 2019-12-11 Zorion Medical, Inc. Wire-formed bio-absorbable implants and methods for assembly
US10695817B2 (en) 2017-04-24 2020-06-30 Ford Global Technologies, Llc Thirty-six-cornered strengthening member
US20180311927A1 (en) * 2017-04-26 2018-11-01 Ford Global Technologies, Llc Cellular structure
US20180311926A1 (en) * 2017-04-26 2018-11-01 Ford Global Technologies, Llc Cellular structure
US11660218B2 (en) 2017-07-26 2023-05-30 Intact Vascular, Inc. Delivery device and method of delivery
CN112972083B (en) * 2019-12-17 2022-11-11 北京迈迪顶峰医疗科技股份有限公司 Pulmonary artery stent for children
WO2022128757A1 (en) * 2020-12-16 2022-06-23 Koninklijke Philips N.V. Laser cut stent
CN112773585B (en) * 2020-12-30 2023-11-14 杭州唯强医疗科技有限公司 Implant holder

Family Cites Families (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB453944A (en) 1935-04-10 1936-09-22 John Walter Anderson Improvements in couplings for vehicles
US3597578A (en) 1967-03-16 1971-08-03 Nat Res Dev Thermal cutting apparatus and method
US3943324A (en) 1970-12-14 1976-03-09 Arthur D. Little, Inc. Apparatus for forming refractory tubing
FR2626046A1 (en) 1988-01-18 1989-07-21 Caoutchouc Manuf Plastique Device for joining panels or for producing conduits and its applications
US5091205A (en) 1989-01-17 1992-02-25 Union Carbide Chemicals & Plastics Technology Corporation Hydrophilic lubricious coatings
DE9014230U1 (en) 1990-10-13 1991-11-21 Angiomed Ag, 7500 Karlsruhe, De
DE4130431A1 (en) 1991-09-13 1993-03-18 Liselotte Dr Sachse Plastics urethral prosthesis - consists of tube and reinforced with metal rings placed in tube mould or fitted within plastics layers of tube
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5383926A (en) 1992-11-23 1995-01-24 Children's Medical Center Corporation Re-expandable endoprosthesis
CA2152594C (en) 1993-01-19 1998-12-01 David W. Mayer Clad composite stent
DE4303181A1 (en) 1993-02-04 1994-08-11 Angiomed Ag Implantable catheter
NL9300500A (en) 1993-03-22 1994-10-17 Industrial Res Bv Expandable hollow sleeve for locally supporting and / or strengthening a body vessel, as well as a method for manufacturing it.
US5345057A (en) 1993-03-25 1994-09-06 Lasag Ag Method of cutting an aperture in a device by means of a laser beam
EP0662806B1 (en) 1993-07-23 2001-04-11 Cook Incorporated A flexible stent having a pattern formed from a sheet of material
US5527353A (en) 1993-12-02 1996-06-18 Meadox Medicals, Inc. Implantable tubular prosthesis
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
EP0679372B1 (en) 1994-04-25 1999-07-28 Advanced Cardiovascular Systems, Inc. Radiopaque stent markers
JPH07315147A (en) 1994-05-23 1995-12-05 Nishikawa Rubber Co Ltd Attachment structure for drip weather strip
US5636641A (en) * 1994-07-25 1997-06-10 Advanced Cardiovascular Systems, Inc. High strength member for intracorporeal use
IL115755A0 (en) 1994-10-27 1996-01-19 Medinol Ltd X-ray visible stent
CA2163824C (en) 1994-11-28 2000-06-20 Richard J. Saunders Method and apparatus for direct laser cutting of metal stents
CA2186029C (en) 1995-03-01 2003-04-08 Brian J. Brown Improved longitudinally flexible expandable stent
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6579314B1 (en) 1995-03-10 2003-06-17 C.R. Bard, Inc. Covered stent with encapsulated ends
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
WO1997014375A1 (en) 1995-10-20 1997-04-24 Bandula Wijay Vascular stent
AU690862B2 (en) 1995-12-04 1998-04-30 Target Therapeutics, Inc. Fibered micro vaso-occlusive devices
US5645532A (en) 1996-03-04 1997-07-08 Sil-Med Corporation Radiopaque cuff peritoneal dialysis catheter
US6334871B1 (en) 1996-03-13 2002-01-01 Medtronic, Inc. Radiopaque stent markers
US5824042A (en) 1996-04-05 1998-10-20 Medtronic, Inc. Endoluminal prostheses having position indicating markers
DE19614160A1 (en) 1996-04-10 1997-10-16 Variomed Ag Stent for transluminal implantation in hollow organs
US5855596A (en) 1996-06-25 1999-01-05 International Business Machines Corporation Modular wire band stent
US5922020A (en) 1996-08-02 1999-07-13 Localmed, Inc. Tubular prosthesis having improved expansion and imaging characteristics
US6174329B1 (en) 1996-08-22 2001-01-16 Advanced Cardiovascular Systems, Inc. Protective coating for a stent with intermediate radiopaque coating
US6099561A (en) 1996-10-21 2000-08-08 Inflow Dynamics, Inc. Vascular and endoluminal stents with improved coatings
WO1998020810A1 (en) * 1996-11-12 1998-05-22 Medtronic, Inc. Flexible, radially expansible luminal prostheses
DE29621207U1 (en) 1996-12-06 1997-01-30 Roland Man Druckmasch Fastening a heat sink on a printed circuit board
DE19653720A1 (en) 1996-12-10 1998-06-18 Biotronik Mess & Therapieg Stent
IT1291001B1 (en) 1997-01-09 1998-12-14 Sorin Biomedica Cardio Spa ANGIOPLASTIC STENT AND ITS PRODUCTION PROCESS
US5858556A (en) 1997-01-21 1999-01-12 Uti Corporation Multilayer composite tubular structure and method of making
US5810872A (en) 1997-03-14 1998-09-22 Kanesaka; Nozomu Flexible stent
US5902475A (en) 1997-04-08 1999-05-11 Interventional Technologies, Inc. Method for manufacturing a stent
US5868783A (en) 1997-04-16 1999-02-09 Numed, Inc. Intravascular stent with limited axial shrinkage
US5741327A (en) 1997-05-06 1998-04-21 Global Therapeutics, Inc. Surgical stent featuring radiopaque markers
DE19728337A1 (en) 1997-07-03 1999-01-07 Inst Mikrotechnik Mainz Gmbh Implantable stent
US5824059A (en) 1997-08-05 1998-10-20 Wijay; Bandula Flexible stent
ES2290995T3 (en) 1997-09-24 2008-02-16 Med Institute, Inc. RADIALLY EXPANDABLE ENDOPROTESIS.
US6086611A (en) 1997-09-25 2000-07-11 Ave Connaught Bifurcated stent
US6022374A (en) 1997-12-16 2000-02-08 Cardiovasc, Inc. Expandable stent having radiopaque marker and method
US6503271B2 (en) 1998-01-09 2003-01-07 Cordis Corporation Intravascular device with improved radiopacity
US6113627A (en) 1998-02-03 2000-09-05 Jang; G. David Tubular stent consists of horizontal expansion struts and contralaterally attached diagonal-connectors
US6241762B1 (en) 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
FR2777771B1 (en) 1998-04-27 2000-08-25 Microval TUBULAR AND FLEXIBLE VASCULAR ENDOPROSTHESIS
US6261319B1 (en) 1998-07-08 2001-07-17 Scimed Life Systems, Inc. Stent
US6273909B1 (en) 1998-10-05 2001-08-14 Teramed Inc. Endovascular graft system
US6355057B1 (en) 1999-01-14 2002-03-12 Medtronic, Inc. Staggered endoluminal stent
EP1154735A1 (en) 1999-02-26 2001-11-21 Advanced Cardiovascular Systems, Inc. Stent with customized flexibility
US7029492B1 (en) 1999-03-05 2006-04-18 Terumo Kabushiki Kaisha Implanting stent and dilating device
DE29904817U1 (en) 1999-03-16 1999-05-27 Amg Handelsgesellschaft Fuer A Blood vessel support device
US6464723B1 (en) 1999-04-22 2002-10-15 Advanced Cardiovascular Systems, Inc. Radiopaque stents
US6551351B2 (en) 1999-07-02 2003-04-22 Scimed Life Systems Spiral wound stent
US6379381B1 (en) 1999-09-03 2002-04-30 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6585757B1 (en) 1999-09-15 2003-07-01 Advanced Cardiovascular Systems, Inc. Endovascular stent with radiopaque spine
US6387123B1 (en) 1999-10-13 2002-05-14 Advanced Cardiovascular Systems, Inc. Stent with radiopaque core
DE19952295A1 (en) 1999-10-29 2001-05-23 Angiomed Ag Method of making a stent
US6471721B1 (en) 1999-12-30 2002-10-29 Advanced Cardiovascular Systems, Inc. Vascular stent having increased radiopacity and method for making same
GB0003387D0 (en) 2000-02-14 2000-04-05 Angiomed Ag Stent matrix
GB0009030D0 (en) 2000-04-12 2000-05-31 Angiomed Ag Self-expanding metal stent and method of making it
US20030114918A1 (en) 2000-04-28 2003-06-19 Garrison Michi E. Stent graft assembly and method
AU2001261801A1 (en) 2000-05-22 2001-12-03 Orbus Medical Technologies Inc. Self-expanding stent
DE10026307A1 (en) 2000-05-26 2001-11-29 Variomed Ag Balzers Stent, positioning element and insertion catheter
GB0020491D0 (en) 2000-08-18 2000-10-11 Angiomed Ag Stent with attached element and method of making such a stent
US6699278B2 (en) 2000-09-22 2004-03-02 Cordis Corporation Stent with optimal strength and radiopacity characteristics
US20070276474A1 (en) 2000-09-29 2007-11-29 Llanos Gerard H Medical Devices, Drug Coatings and Methods for Maintaining the Drug Coatings Thereon
US6547818B1 (en) 2000-10-20 2003-04-15 Endotex Interventional Systems, Inc. Selectively thinned coiled-sheet stents and methods for making them
US6758859B1 (en) 2000-10-30 2004-07-06 Kenny L. Dang Increased drug-loading and reduced stress drug delivery device
AU2002231058A1 (en) 2000-12-19 2002-07-01 Vascular Architects, Inc. Biologically active agent delivery apparatus and method
US6565599B1 (en) 2000-12-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Hybrid stent
US6540777B2 (en) 2001-02-15 2003-04-01 Scimed Life Systems, Inc. Locking stent
US20020138136A1 (en) 2001-03-23 2002-09-26 Scimed Life Systems, Inc. Medical device having radio-opacification and barrier layers
DE60209583T2 (en) 2001-03-30 2006-12-21 Terumo K.K. stent
US6629994B2 (en) 2001-06-11 2003-10-07 Advanced Cardiovascular Systems, Inc. Intravascular stent
US8197535B2 (en) 2001-06-19 2012-06-12 Cordis Corporation Low profile improved radiopacity intraluminal medical device
US20020198589A1 (en) 2001-06-22 2002-12-26 Leong Veronica Jade Tessellated stent and method of manufacture
US6605110B2 (en) 2001-06-29 2003-08-12 Advanced Cardiovascular Systems, Inc. Stent with enhanced bendability and flexibility
US6979346B1 (en) 2001-08-08 2005-12-27 Advanced Cardiovascular Systems, Inc. System and method for improved stent retention
US20030055485A1 (en) 2001-09-17 2003-03-20 Intra Therapeutics, Inc. Stent with offset cell geometry
WO2003055414A1 (en) 2001-10-18 2003-07-10 Advanced Stent Technologies, Inc. Stent for vessel support, coverage and side branch accessibility
US20050182477A1 (en) 2001-12-20 2005-08-18 White Geoffrey H. Intraluminal stent and graft
DE10201151B4 (en) 2002-01-15 2007-10-04 Qualimed Innovative Medizinprodukte Gmbh Stent with marker
GB0206061D0 (en) 2002-03-14 2002-04-24 Angiomed Ag Metal structure compatible with MRI imaging, and method of manufacturing such a structure
US7691461B1 (en) 2002-04-01 2010-04-06 Advanced Cardiovascular Systems, Inc. Hybrid stent and method of making
EP1507494A2 (en) * 2002-05-06 2005-02-23 Abbott Laboratories Endoprosthesis for controlled contraction and expansion
EP2529707B1 (en) * 2002-05-08 2015-04-15 Abbott Laboratories Endoprosthesis having foot extensions
US7195648B2 (en) 2002-05-16 2007-03-27 Cordis Neurovascular, Inc. Intravascular stent device
US20030225448A1 (en) 2002-05-28 2003-12-04 Scimed Life Systems, Inc. Polar radiopaque marker for stent
US20040015229A1 (en) 2002-07-22 2004-01-22 Syntheon, Llc Vascular stent with radiopaque markers
US6969402B2 (en) 2002-07-26 2005-11-29 Syntheon, Llc Helical stent having flexible transition zone
US6878162B2 (en) 2002-08-30 2005-04-12 Edwards Lifesciences Ag Helical stent having improved flexibility and expandability
AU2003254132A1 (en) 2002-08-30 2004-03-19 Advanced Cardiovascular Systems, Inc. Stent with nested rings
US7135038B1 (en) 2002-09-30 2006-11-14 Advanced Cardiovascular Systems, Inc. Drug eluting stent
US7331986B2 (en) 2002-10-09 2008-02-19 Boston Scientific Scimed, Inc. Intraluminal medical device having improved visibility
US7223283B2 (en) 2002-10-09 2007-05-29 Boston Scientific Scimed, Inc. Stent with improved flexibility
US8105373B2 (en) 2002-12-16 2012-01-31 Boston Scientific Scimed, Inc. Flexible stent with improved axial strength
EA010169B1 (en) 2002-12-17 2008-06-30 Флуор Корпорейшн Configurations and methods for acid gas and contaminant removal with near zero emission
US20050033410A1 (en) 2002-12-24 2005-02-10 Novostent Corporation Vascular prothesis having flexible configuration
US7771463B2 (en) 2003-03-26 2010-08-10 Ton Dai T Twist-down implant delivery technologies
US6846323B2 (en) 2003-05-15 2005-01-25 Advanced Cardiovascular Systems, Inc. Intravascular stent
US20040236409A1 (en) 2003-05-20 2004-11-25 Pelton Alan R. Radiopacity intraluminal medical device
ES2364555T3 (en) 2003-05-23 2011-09-06 Boston Scientific Limited CANNULAS WITH INCORPORATED LOOP TERMINATIONS.
DE10325678A1 (en) 2003-06-02 2004-12-23 Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin Connection system for connecting a stent to a radio-opaque marker and method for establishing a connection between a stent and two or more radio-opaque markers
US20040254637A1 (en) 2003-06-16 2004-12-16 Endotex Interventional Systems, Inc. Sleeve stent marker
US7479157B2 (en) 2003-08-07 2009-01-20 Boston Scientific Scimed, Inc. Stent designs which enable the visibility of the inside of the stent during MRI
US20050060025A1 (en) 2003-09-12 2005-03-17 Mackiewicz David A. Radiopaque markers for medical devices
US7175654B2 (en) 2003-10-16 2007-02-13 Cordis Corporation Stent design having stent segments which uncouple upon deployment
US20050149168A1 (en) 2003-12-30 2005-07-07 Daniel Gregorich Stent to be deployed on a bend
US7021893B2 (en) 2004-01-09 2006-04-04 United Technologies Corporation Fanned trailing edge teardrop array
GB0400571D0 (en) 2004-01-12 2004-02-11 Angiomed Gmbh & Co Implant
US7572289B2 (en) 2004-01-27 2009-08-11 Med Institute, Inc. Anchoring barb for attachment to a medical prosthesis
US7243408B2 (en) 2004-02-09 2007-07-17 Boston Scientific Scimed, Inc. Process method for attaching radio opaque markers to shape memory stent
TW200528463A (en) 2004-02-19 2005-09-01 Chung Shan Inst Of Science A method for preparing an bifunctional arylphosphonite antioxidant
US8034096B2 (en) 2004-03-31 2011-10-11 Cook Medical Technologies Llc Stent-graft with graft to graft attachment
US7722659B2 (en) 2004-05-05 2010-05-25 Invatec S.R.L. Endoluminal prosthesis
US20050278017A1 (en) 2004-06-09 2005-12-15 Scimed Life Systems, Inc. Overlapped stents for scaffolding, flexibility and MRI compatibility
EP1767240B1 (en) 2004-06-25 2014-05-21 Zeon Corporation Stent
US7763066B2 (en) 2004-07-28 2010-07-27 Cook Incorporated Stent with an end member having a lateral extension
GB0417078D0 (en) 2004-07-30 2004-09-01 Angiomed Ag Flexible implant
GB0417077D0 (en) 2004-07-30 2004-09-01 Angiomed Ag Medical implant such as a stent
US20060060266A1 (en) 2004-09-01 2006-03-23 Pst, Llc Stent and method for manufacturing the stent
DE102004043166A1 (en) 2004-09-03 2006-03-09 Carl Baasel Lasertechnik Gmbh & Co. Kg Intravascular stent and method for its production
US20060054604A1 (en) 2004-09-10 2006-03-16 Saunders Richard J Laser process to produce drug delivery channel in metal stents
DE102004045994A1 (en) 2004-09-22 2006-03-30 Campus Gmbh & Co. Kg Stent for implantation in or around a hollow organ with marker elements made from a radiopaque material
DE202004014789U1 (en) 2004-09-22 2005-01-27 Campus Medizin & Technik Gmbh Stent for implantation into or onto a hollow organ comprises a cutout serving as receptacle for a conical marker element which is X-ray opaque and is oriented radially relative to the stent axis
WO2006036912A2 (en) 2004-09-27 2006-04-06 Echobio Llc Systems, apparatus and methods related to helical, non-helical or removable stents with rectilinear ends
US20060085065A1 (en) 2004-10-15 2006-04-20 Krause Arthur A Stent with auxiliary treatment structure
FR2879131B1 (en) 2004-12-14 2010-12-17 Saint Gobain COMPLEX GLAZING CONSISTS OF AT LEAST TWO CONTIGUOUS GLASS ELEMENTS AND METHOD FOR PRODUCING THE COMPLEX GLAZING.
US20060216431A1 (en) 2005-03-28 2006-09-28 Kerrigan Cameron K Electrostatic abluminal coating of a stent crimped on a balloon catheter
US7854760B2 (en) 2005-05-16 2010-12-21 Boston Scientific Scimed, Inc. Medical devices including metallic films
US20060265049A1 (en) 2005-05-19 2006-11-23 Gray Robert W Stent and MR imaging process and device
US20070112421A1 (en) 2005-11-14 2007-05-17 O'brien Barry Medical device with a grooved surface
US7381217B2 (en) 2005-12-23 2008-06-03 Boston Scientific Scimed, Inc. Serpentine stent pattern
GB0609841D0 (en) 2006-05-17 2006-06-28 Angiomed Ag Bend-capable tubular prosthesis
GB0609911D0 (en) 2006-05-18 2006-06-28 Angiomed Ag Bend-capable stent prosthesis
GB0613670D0 (en) 2006-07-10 2006-08-16 Angiomed Ag Tubular metal prosthesis and method of making it
GB0616579D0 (en) 2006-08-21 2006-09-27 Angiomed Ag Self-expanding stent
GB0616729D0 (en) 2006-08-23 2006-10-04 Angiomed Ag Method of welding a component to a shape memory alloy workpiece
GB0616999D0 (en) * 2006-08-29 2006-10-04 Angiomed Ag Annular mesh
WO2008028964A2 (en) 2006-09-07 2008-03-13 Angiomed Gmbh & Co. Medizintechnik Kg Helical implant having different ends
FR2907587B1 (en) 2006-10-23 2008-12-26 Commissariat Energie Atomique MAGNETIC DEVICE WITH PERPENDICULAR ANIMATION AND INTERCOUNTING COMPENSATORY INTERCONNECTIVE LAYER.
GB0622465D0 (en) 2006-11-10 2006-12-20 Angiomed Ag Stent
GB0624419D0 (en) 2006-12-06 2007-01-17 Angiomed Ag Stenting ring with marker
GB0703379D0 (en) 2007-02-21 2007-03-28 Angiomed Ag Stent with radiopaque marker
GB0706499D0 (en) 2007-04-03 2007-05-09 Angiomed Ag Bendable stent
GB0717481D0 (en) 2007-09-07 2007-10-17 Angiomed Ag Self-expansible stent with radiopaque markers
US20090204203A1 (en) 2008-02-07 2009-08-13 Medtronic Vascular, Inc. Bioabsorbable Stent Having a Radiopaque Marker
JP5806289B2 (en) 2010-04-06 2015-11-10 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Endoprosthesis
WO2011163236A2 (en) 2010-06-21 2011-12-29 Zorion Medical, Inc. Bioabsorbable implants
US8992761B2 (en) 2012-07-13 2015-03-31 Abbott Cardiovascular Systems, Inc. Methods for passivating metallic implantable medical devices including radiopaque markers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10213327B2 (en) 2000-08-17 2019-02-26 Angiomed Gmbh & Co. Medizintechnik Kg Implant with attached element and method of making such an implant
US10849770B2 (en) 2006-05-17 2020-12-01 C. R. Bard, Inc. Bend-capable tubular prosthesis
US10231854B2 (en) 2006-05-18 2019-03-19 C. R. Bard, Inc. Bend-capable stent prosthesis
US10500075B2 (en) 2006-11-10 2019-12-10 C. R. Bard, Inc. Stent

Also Published As

Publication number Publication date
US10231854B2 (en) 2019-03-19
US20140067045A1 (en) 2014-03-06
EP2029063B1 (en) 2016-02-17
US8574286B2 (en) 2013-11-05
US20090204201A1 (en) 2009-08-13
US9364353B2 (en) 2016-06-14
GB0609911D0 (en) 2006-06-28
EP2029063A1 (en) 2009-03-04
WO2007135090A1 (en) 2007-11-29
US20160256299A1 (en) 2016-09-08
CA2651447C (en) 2014-10-21

Similar Documents

Publication Publication Date Title
CA2651447C (en) Bend-capable stent prosthesis
EP2508151B1 (en) Bendable stent with radiopaque markers in recesses flanked by circumferentially adjacent struts
US9956098B2 (en) Bend-capable tubular prosthesis
US20060248698A1 (en) Tubular stent and methods of making the same
EP1703859B1 (en) Stent to be deployed on a bend
EP2289465B1 (en) Stent with tapered segments
US8623070B2 (en) Tapered helical stent and method for manufacturing the stent
US20030187498A1 (en) Chamfered stent strut and method of making same
EP2178472B1 (en) Radially expansible stent
EP3242641B1 (en) Endoluminal stent
JP2014226353A (en) Stent

Legal Events

Date Code Title Description
EEER Examination request