CA2124154C - Dental modeling simulator - Google Patents

Dental modeling simulator Download PDF

Info

Publication number
CA2124154C
CA2124154C CA002124154A CA2124154A CA2124154C CA 2124154 C CA2124154 C CA 2124154C CA 002124154 A CA002124154 A CA 002124154A CA 2124154 A CA2124154 A CA 2124154A CA 2124154 C CA2124154 C CA 2124154C
Authority
CA
Canada
Prior art keywords
impression
teeth
mandibular
plane
maxillary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002124154A
Other languages
French (fr)
Other versions
CA2124154A1 (en
Inventor
Chuang-Jy Wu
Christopher L.B. Lavelle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2124154A1 publication Critical patent/CA2124154A1/en
Application granted granted Critical
Publication of CA2124154C publication Critical patent/CA2124154C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0046Data acquisition means or methods
    • A61C9/0053Optical means or methods, e.g. scanning the teeth by a laser or light beam
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images

Abstract

A three-dimensional model of the teeth of a patient is prepared by taking molded impressions of the mandibular and maxillar teeth, placing separately the impressions on a support table define an X-Y plane and detecting the Z distance from a probe by directing a beam of laser light onto the impression and calculating from the pattern of reflected light a centre of the light falling on an area array. The scanning in the X-Y plane is effected continuously and is limited by datum points defining a dental arch. The impression is then tilted and the process repeated and information correlated to provide the three-dimensional model. A partial impression is then taken of both mandibular and maxillar teeth in comparison with datum points to provide information concerning the bite (occlusal) positions of the teeth.
This information is then compared with the full impression to simulate using the digital images movement of the jaw from an open position to the bite (occlusal) position.

Description

DENTAL MODELING SIMULATOR
This invention relates to a method for generating a three-dimensional model of the teeth and dental arch of a patient.
BACKGROUND OF THE INVENTION
Whereas in the past, material advances and improved professional manpower training largely determined improvements in the delivery of dental care, now the progressively sophisticated service demands of the public require the introduction of new technologies. To this end, an innovative technique has been developed to improve the quality and efficiency of dental diagnosis, treatment planning and evaluation, in addition to patient communication. In this technique, conventional dental impressions are digitized by a computer-controlled laser scanner.
Subsequently these data are transformed by customized computer graphics software, so that the derived three-dimensional electronic models of the teeth and dental arches can be viewed on a computer terminal from any perspective or magnification. Additional software has been developed so that these models can be modified interactively to simulate the effects of treatment prior to actual commencement on a patient. In addition, these models can be readily transmitted to others for advice and/or treatment planning approval, stored on a computer disk for future reference, and integrated with other computer-derived diagnostic data (e.g. digital radiographic or periodontal assessments) thereby facilitating the development of 'expert' systems.
Traditional hydrocolloid casts of the maxillary or mandibular dental arches are ubiquitous to many forms of dental service, due to difficulties in intraoral diagnosis, treatment planning and evaluation.
Derived from alginate, silicone or rubber-base impressions, the main applications of study casts are summarized below.
( 1 ). Orthodontics (a) Diagnosis, (i). dental arch evaluations, including relative tooth alignment and orientation (ii). functional occlusal analyses between maxillary and mandibular dentition's, including analysis of wear facets and attrition (iii). evaluations of maxillary and mandibular skeletal base relationships (b) Treatment planning (i). timing of orthodontic treatment (ii). decision analysis between orthodontic and/or orthognathic surgical cases (iii). orthodontic appliance design (c) Treatment progress evaluation (d) Treatment case records (2). Prosthetic dentistry (a) Diagnosis, including the evaluation of wear and attrition facets L
(b) Treatment planning (i). Fixed or removable appliance selection (ii). Pre-prosthetic treatment for remaining natural teeth (iiil. Pretreatment orthodontic tooth realignment (c) Appliance design (i). Abutment tooth selection (ii). Identification of potential rest seat and clasp locations (iii). Clasp design and abutment tooth location (iv). Pontic design (d) Appliance evaluation (e) Treatment case records (31. Restorative dentistry (a) Treatment planning (i). Complex cavity design (ii). Restorative material selection (b) Treatment case records (4). Pedodontic dentistry (a) Diagnosis (b) Treatment planning (c) Treatment case records (5). Periodontics (a) Diagnosis (b) Treatment planning (b) Treatment case records (6). Patient communication (a1 Status of present dentition and treatment needs (b) Treatment options (c) Treatment progress (d) Treatment case records (7). Third Party communication la) Pre-authorization insurance company assessment (b) Medico-legal documentation.
Yet reliance on study casts has hampered significant improvements to dental service quality and cost efficiency. For instance, visual appraisals of their morphologic form primarily hinge on the biased experience of the observer, whereas the alternatives of ruler, protractor or grid measurements are too restrictive to offer significant improvements to their evaluation. Whereas study cast evaluations are necessary to compensate for difficulties with in situ appraisals of the teeth and dental arches, only a fraction of their component data can be delineated by existing evaluative techniques. Dental diagnosis, treatment planning and 1 1!
evaluation therefore remains largely subjective, and this restricts their objective appraisals required for significant improvements in service quality assurance and cost containment. The primary deficiency of study cast evaluations stems from difficulties in their measurement.
Other deficiencies arise from difficulties in their storage and retrieval due to their physical bulk. Traditional study casts are also static and cannot be readily manipulated, which restricts their applications when evaluating potential treatment options and their presentation to patients.
For example, cutting and repositioning teeth on a cast is conventionally used to simulate potential orthodontic realignment options, whereas trial wax-ups on a study cast are often components of complex restorative treatment planning, including abutment tooth selection and pontic design.
In cases requiring complex occlusal rehabilitation, spot grinding or other forms of adjustment are often simulated first on study casts prior to commencing treatment on an actual patient. But all techniques involving traditional study casts are relatively crude, subjective and time-consuming, primarily due to difficulties in their precise measurement.
The complex morphologic forms of teeth and dental arches are difficult to measure with any degree of precision. Nevertheless, many techniques have been developed to measure individual or groups of teeth very accurately as a component of CAD/CAM technology applied to dentistry.
Well established in the aerospace, automotive and large manufacturing industries, computer aided manufacturing and computer aided design (CAD/CAM) have significant potential for improved quality and cost efficiency when applied to dentistry. Unfortunately the lack of accurate measurement techniques restricts their application to small complicated biological bodies such as a tooth. Since the accuracy requirements for dental diagnosis, treatment planning and evaluation are similar to precision manufacturing standards, data acquisition is the principal deficiency of current CAD/CAM dental applications. The five measurement techniques reported for CAD/CAM dental applications thus far include the following:
i. Laser probes using structured light principle, ii. Photogrammetric methods, iii. Laser range measuring probes with X-Y-Z tables, iv. Scanning laser range probes, v. Traditional mechanical coordinate measuring machines.
The CEREC System which has been developed by Brains -Brandestini Instruments of Zollikan, Switzerland (Moermann and Brandestini 1986) and is currently marketed by Siemens Dental Division, FRG (Siemens 19891 and Dr. F. Duret (1988) are both employing a specially designed hand-held probe to measure the three dimensional coordinates of a prepared tooth. The measurement probe design embraces the structured light principle. But in order to eliminate possible image artifacts from dark garnishes on the tooth's surface, saliva, debris etc., a talc and titanium oxide powder mixture combined with a wetting agent must be applied to the area to be measured. Methods to control powder thickness and the resultant masking effect on the fine cavity preparation details have yet to be reported. Due to difficulties in data acquisition and processing from the in situ use of a hand-held optical probe, a modification is using a mechanical arm to hold the probe and a partial study cast of the prepared tooth is actually measured.
The Photogrammetric principle to measure the profile of a prepared tooth cavity is a component of the proposed system developed at the University of Minnesota (Rekow 19871. A pair of stereo images are recorded on the standard film using a modified 35 mm camera with a single-rod lens attached to a laryngopharyngoscope. Major difficulties of this system include saliva and other image contaminants and the automation of tooth profile measurements from stereo images.
The commercial coordinate measuring machine (CMM) has been proposed and a very few examples have been manufactured and used in research establishments. This uses a laser range probe for non contact measurement of a cast model of the teeth of the patient. It has data acquisition rate of only a few points per minutes and more than 12 hours is required to measure a complete cast. An optical CMM (Yamamoto, 1988) with data sampling speed of 25 ms (i.e. 40 data points per sec.l has been reported with measurement accuracy in the range of 100 mm.
Approximately 1 hour is required to measure an impression. These devices are therefore of little practical value.
The scanning laser probe described by Rioux ( 1984) has very high data acquisition rate but is unfortunately very expensive. This has not been proposed for dental modeling but only for industrial operations. This device uses a highly complex moving mirror arrangement to effect the scanning and this leads to the very high cost which makes it completely impractical for the present requirements.
Using traditional coordinate measuring machine or a miniature mechanical arm to capture data from stone dies has been proposed by many researchers (Rekow, 1992). Major disadvantages of a mechanical probe include slow data acquisition speed and limited measurement resolution.
Surfaces which have radii of curvature or depression less than the mechanical probe tip radius cannot be detected. With probe tip diameters less than 0.5 mm, their mechanical integrity difficult to maintain, in addition to their potential for surface damage.
As all reported measurement systems suffer from serious deficiencies, none can be considered a viable clinical instrument. Capital costs (laser scanning probe), difficulty in usage (mechanical probe), inaccuracy (optical probe and mechanical probe) or speed (mechanical CMM) limit their routine application for diagnosis, treatment planning or evaluation.
There remains therefore a high requirement for a dental modeling system in view of the following major advantages:
(1). Prior treatment planning simulation (a). Simulation of major and minor orthodontic tooth movement facilitates objective appliance design and subsequent evaluation ~1~ ~~
of treatment progress (b1. Simulation of occlusal rehabilitation with/or without simultaneous orthodontic or prosthodontic treatment would facilitate discrimination between organic and functional occlusal disharmonies and enhance quality assurance in treatment planning (c). Simulation of cosmetic, restorative or prosthodontic treatment would enhance the potential for quality assurance of the adjacent hard and soft tissues (d). Simulation of potential orthodontic and/or periodontal relapse prior to treatment would provide quality checks in appliance design (2). Communication (a). Electronic storage of detailed dental arch measurements would facilitate instantaneous model referral for advice and consultation (Third Party, specialist etc.) (b). Dental arch three-dimensional simulations would provide excellent professional patient communication media to explain potential treatment options and their rationale for selection (3). Overhead cost reduction (a). As detailed dental arch dimensions can be stored on an office computer, the tatter's increased utilization will facilitate service _ 212415 to cost containment - The planned system for laser scanning and model simulations will be designed to utilize a standard dental office computer system (b). Enhanced quality assurance prior to treatment will reduce the potential for relapse and/or failure (c). By elimination the need for model storage, electronic dental arch data storage will facilitate record retrieval and archiving efficiency.
SUMMARY OF THE INVENTION
It is one object of the present invention to provide a method for generating a three-dimensional model of the teeth and dental arch of a patient.
According to the invention therefore there is provided a method of generating for manipulation a three-dimensional model of the teeth and dental arch of a patient comprising taking a molded impression of the teeth, placing the impression on a support table defining an X-Y plane, directing a beam of laser light onto the impression at a point of impact, relatively translating the beam of light and the impression in the X-Y plane so as to scan the impression with the beam to provide a plurality of points of impact each having a predetermined location in the X-Y plane, determining the distances of the points of impact of the beam with the impression in the Z
direction by detecting a pattern of light reflected from the point, and generating the digital image by correlating the locations and the distances.
One embodiment of the invention will now be described in 21~~~.~
n conjunction with the accompanying drawings, in which:
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic illustration of the modeling system of the present invention, taken in side elevational view.
Figure 2 is a similar schematic illustration taken in plan view.
Figure 3 is a top plan view of an alignment tray for taking alignment impressions of the mandibular and maxillar teeth of the patient.
Figure 4 is across-sectional view along the lines 4-4 of figure 3.
Figure 5 is a schematic plan view of a holding jig for an alignment tray.
DETAILED DESCRIPTION
In Figures 1 and 2 a conventional dental arch impression tray is indicated at 10 with the tray being filled by a conventional impression mold material in which the impression of the teeth is indicated at 11. The tray is mounted on a holder 12 carried in a pivot mount member 13. The pivot mount member 13 is carried on an X-table 14 of an X-Y table system generally indicated at 15 and including a Y-table 16. The X-table includes a drive system 14A allowing carefully controlled movement in an X direction 14B. The Y table includes a drive system 16A acting to drive the Y table in a controlled manner in the Y direction 16B. The X-way table system is driven from a central control unit 17 which acts as a data acquisition and X-Y-Z controlling computer system.
The impression of the dental arch is thus scanned by using the X-Y table under very accurate control from the control system. Thus the - 21~4~~~

dental arch can be scanned by moving the Y table in discreet depth while scanning the X table back and forth within the bounds of the dental arch.
In order to set up these bounds, the operator can initially set a number of datum points indicated at 20 by moving the X-Y table under manual control.
This ensures that the scanning takes place only over the area of the dental arch.
During this scanning movement, the movement in one direction is effectively continuous so there is no need for stopping and starting of the table during the scanning action.
The measurement of the impression is effected in the Z
direction by a laser range finding system schematically indicated at 21. This comprises a laser light source 22 which generates a beam 23 of laser light directed onto the impression in the Z direction that is at right angles to the X-Y plane. A detector 24 receives light scattered from the impact of the beam with the impression. The detector includes an area array of CCD
detector elements 25 as described in more detail hereinafter. The detector elements provide information by way of a readout to the data acquisition and control system 17. In view of the continuous movement of the scanning action, the laser source is pulsed and the detection effected only during the very short pulse. As the pulse width (i.e. time span) is short and the table movement is slow, the amount of movement of the table during the pulse is very small and thus does not affect the accuracy of the detection, within reasonable bounds. For example, for a table movement speed of 25 mm/sec. which is a relative high speed for a precisiion X-Y

_ 2~24~~

table, and a pulse width 0.05 msec. which is a relative long plulse for the system, the table moves 1.25 pm only during the pulse. The typical table movement speed is 15 mm/sec and the pulse width is 0.02 msec.
The present system requires conventional dental arch impressions taken in stock or customized trays. Following conventional antiseptic procedures, the impressions are the inserted into the 12 shown schematically in Figure 1. The digitization process is subsequently automated, requiring key-board or mouse instructions to control, modify or change the resultant three-dimensional simulation on the computer terminal.
Both hard and soft-ware components are compatible with a PC-486 computer, and provision has been made for future additional input from digital radiographs and periodontal probes, in addition to other electronic patient records.
The coordinate measuring subsystem has a measurement volume of 100 x 100 x 25 mm. This volume is designed to embrace dental arch impressions from adults and children, although provision has been made to accommodate more limited dental impressions. The measuring subsystem comprises an X-Y table with 100 x 100 mm travel, whereas Z-axis measurements are derived from the laser range measuring probe mounted on a stationary platform independent from the X-Y table. The laser range measuring probe has continuous movement and position readout capability of 25 mm, although provision has been made to modify this capability to the range of 10-40 mm. The measurement region and positioning of the laser range measuring probe on the Z-axis are adjusted automatically based on feedback from the dental impression video image.
Thus the operator is required to position a targeting device on 4 to 6 points delineating the boundaries of the impression, prior to initiating the automated digitization process. Simple key-board instructions may also be required to change the specifications of the laser range measuring probe e.g. the dynamic measurement range, the measurement accuracy and the standoff, depending on the required precision of the subsequent simulation.
Since the dental impression is mounted in a standardized location on the X-Y table, the contained surface coordinates are automatically obtained from the X-Y table position indicator and the laser range data. The data acquisition rate is greatly increased by the application of customized 'measure by fly' techniques and the automatic adjustment of the X-Y table traveling speed during the continuous scanning action. This can be modulated by the operator, depending on the measurement accuracy required. The response time of the laser range measuring probe can be modified by key-board controls, in addition to tilting the X-Y table to facilitate measurement of 'obstructed' areas.
The resultant 3D data can then be stored in a computer disk, or transferred directly to a graphics software package for subsequent translation into a 3D simulation to be viewed on a computer terminal either in the dental office or some other central location.
The measured 3D dental impression coordinates are converted to simulated three-dimensional models of the maxillary or mandibular dental arches using a commercial solid modeling software package such as Auto ~~2~~~
CAD (Product of Autodesk, Inc.), but a customized solid modeling graphic software package is preferred because of unique user requirements. Such models can be viewed from any perspective or magnification by simple key-board or mouse controls, and any aspect can be printed on an office printer to facilitate appraisal by the dentist or patient. The software also allows for subsequent customized model segmentation: this facilitates the simulation of any component tooth movement determined by operator input, including extraction.
Software has also been developed whereby the maxillary and mandibular arch models can be aligned by key-board instructions so that centric relation coincides with centric occlusion. At this relationship, the points of maxillary and mandibular tooth contact can be identified with a color-code if required. There is again the potential for record keeping for future reference if required.
Further software modifications permit maxillary and mandibular arch simulations to be positioned in centric, protrusive and lateral excursive locations. This entails the use of the DMS to digitize the superior and inferior surfaces of conventional wax, polysulfone or silicone bite registrations from these three positions taken in situ. The maxillary and mandibular arch simulations can then be positioned into their respective locations on the digitized bite registration through key-board control.
Other software adaptations facilitate the following:-- ~~.~~~1~~.~

i. The translation from static to dynamic dental arch simulations.
This facility enables an operator to change the location or orientation of any tooth in the simulation, and then to move any or all other teeth independently to simulate potential treatment options for a particular patient. This facility has the potential to be included in an 'expert system'.
ii. The three-dimensional simulation derived from one impression can be subtracted from an analogous simulation derived from a subsequent impression of the same patient through simple key-board inputs. This facility enables the effects of treatment progress or relapse on a patient to be objectively delineated.
iii. By simple key-board or mouse controls, various occlusal adjustments and/or dental restorations can be included in the 3D
simulations, to facilitate potential treatment option evaluations and their communication to patients.
iv. Various options for inclusion of data derived from potential future sources have been provided for this software, i.e. the software is both versatile and user friendly. Operator manipulation options include a computer pointing device such as mouse, window icon, voice control etc., whereas the display terminal is controlled by an appropriate personnel computer such as PC-486 or equivalent.
Since the laser spot beam is generally conical in shape (circular or elliptical) with a Gaussian intensity distribution, the spot beam image will also be approximately conical shaped. When a CCD area array is used as an imaging detector, the image center can be determined more accurately by using prior knowledge of the image shape instead of the signal peak intensity position.
The detector used is an area CCD array of 512 x 32 elements.
The amplitude of each CCD element is stored at the appropriate memory using a frame grabble. The signal from the center column CCD array is processed by a voltage comparator, so that an approximate image center position is obtained. Using the approximate position as the data array center, a rectangular array, say 41 x 31, is selected, assuming that the whole spot beam image is within the selected rectangular array. The rectangular array size depends on the spot beam image size and shape.
Since the laser beam spot intensity is a Gaussian distribution function, the image will have similar distribution function, except that the amplitude at each CCD cell is proportional to the total illumination on the cell. Three different threshold levels or predetermined levels of light intensity are used to process the image and lead to three concentric images of similar shape. Each image edge is then fitted to the theoretical shape and the image center of the fitted image obtained. The resultant image center is then the average of three fitted image centers.
A special circuit board incorporating the digital signal processing chips is constructed to process the image. The laser probe using this board can measure more than 1000 points per second.

A unique, economical and fast data acquisition rate optical arrangement has therefore been designed for any dental application by using a specially designed laser range probe and a small and accurate X-Y table.
The tilt mechanism 13 is actuated after an initial scanning action to tilt the dental arch about the axis of the holder 12 which raises one side of the arch relative to the opposed side vertically away from the X-Y plane. After tilting through a predetermined distance, the scanning action is repeated following which the tilt mechanism 13 is actuated to move the dental arch to a further tilted position generally opposed to the second tilted position. A third scanning action is then completed. These three scanning actions can then be compared and the data correlated to provide a more accurate calculation of the shape of the impression. In addition the tilting action can expose areas of the impression which are obscured by overhang.
The potential applications of the present system can then be summarized in point form:
(i1. Laser scan digitization of dental arch form from dental impressions precludes the need for conventional study models.
(ii). More precise arch form and tooth orientation appraisals are facilitated by digitized dental impressions compared with traditional study casts. The component maxillary and mandibular teeth can be viewed from any perspective and/or magnification, and any dimensions can be determined from point location of the simulation.

(iii). Subtraction of digitized sequential dental impressions facilitates evaluations of treatment progress: this opens the potential for the institution of prompt remedial treatment.
(iv).The capability of modifying the three-dimensional dental arch simulations interactively facilitates prior evaluations of potential treatment options and their presentation to patients.
(v). Electronic dental models can be readily stored on computer disk, thereby facilitating filing and retrieval in addition to facilitating their communication to third parties.
(vi). An interactive modeling capabilities potentiate the develop-ment of expert diagnostic and evaluative systems for dentistry.
(vii).The specific advantages of this technology can only be cursorily summarized:
(a). Orthodontics The effects of extracting specific teeth and realignment of the remainder of the arch can be readily simulated on the computer. In addition to aiding patient communication, this capability facilitates the specific orthodontic appliance design.
Subtraction or overlay of digitized sequential impressions not only provides objective appraisals of orthodontic treatment progress, (i.e. comparison with original simulation of final arch form) but also the prompt detection of abnormalities for their remedial treatment.
(b). Occlusal rehabilitation Viewing dental arch simulations from any perspective or magnification facilitates delineation of premature cuspal interferences. The interactive modeling capability also enables the effects of cuspal modulation to be verified prior to in vivo transfer.
lc). Restorative dental treatment Veneers or other complex restorations can be planned on the three-dimensional simulations prior to commencement. In addition, success of final treatment can then be verified by subtraction of the digitized final impression from the original simulation.
(d1. Prosthodontic treatment Fixed or removable prosthodontic appliances can be designed and evaluated on the three dimensional simulation prior to construction. This capability will facilitate the delivery of cost-effective prosthodontic treatment.
(e1. Pedodontic treatment Pedodontic treatment largely involves preservation of the deciduous dentition to permit the orderly eruption of the permanent teeth. In this regard, digitization of mz~~~~~

sequential impressions will not only facilitate the early detection or premature drifting and/or rotation but also the prompt institution of remedial therapy.
(f). Periodontal treatment The ability to measure tooth movement from sequential impressions facilitates the detection of differential tooth drifting and rotation that complicates advanced periodontal destruction.
Dental study casts are traditionally aligned by using wax or other bite registrations in addition to partially integrated maxillary and mandibular dental impressions. Whereas existing clinical techniques are difficult to adapt for dental CAD systems, two modified techniques have been devised for the present system where the prime objective is precision.
Turning therefore to Figures 3 and 4, there is shown an alignment impression tray 30 with predefined identification marks 31 at upper and lower sides.
The alignment tray comprises disposable non-transparent plastic or appropriate metal with an "H" shaped cross section. The horizontal partition wall 32 of the "H" channel is extended slightly at the outside of the vertical walls 33 and the thickness of the extension is known.
Appropriate circular (or square or other simple shapes) cylindrical identification marks are positioned on the extension as shown in Figure 2.
The size, the height and the relative horizontal positions of each mark are 2~~~~~~

known. The tray thus provides upper and lower containers for the mold material 34 into which the impression 35 is made by the patient biting into the material. This acts to generate a partial impression of both the mandibular and maxillar teeth of the patient. By measuring the partial maxillary dental impression with respect to the observable marks and the partial mandibular dental impression with respect to other set of observable marks, the relative positions between partial maxillary and mandibular dental impressions can be established. The teeth used in the partial dental impression are identified, and this information is used to compare with the full impressions previously taken so that the maxillary and mandibular dental arch can be aligned from the partial impression data. this has the advantage that the measurement setup for the alignment maxillary dental impression and the alignment mandibular dental impression is independent. It has the disadvantage that the alignment dental impression tray production cost will be high.
In a second arrangement shown in Figure 5, a partial dental impression holding jig 40 is provided with predefined identification marks 41 at upper and lower sides.
Since the partial impression 43 is mounted on a measuring jig 40 both the partial mandibular impression and the partial maxillary impression can be measured by rotating the holding jig approximately 180 degree with respect to the horizontal axis. The identification marks are positioned on the holding jig 40 rotating platform surfaces since the partial dental impression does not move with respect to the platform surface during the measurement. The impression 43 is mounted in an opening 46 within the platform and is held in place by a spring 44 and a clamping nut 45. The use of the jig avoids the necessity for special alignment trays.
Since various modifications can be made in our invention as herein above described, and many apparently widely different embodiments of same made within the spirit and scope of the claims without departing from such spirit and scope, it is intended that all matter contained in the accompanying specification shall be interpreted as illustrative only and not in a limiting sense.

Claims

CLAIMS:

(1) A method of generating for manipulation a three-dimensional digital image, suitable for display and dimensional calculation of teeth and dental arch of a patient comprising taking a molded impression of the teeth, placing the impression on a support table defining an X-Y plane, directing a beam of laser light onto the impression at a point of impact, relatively translating the beam of light and the impression in the X-Y plane so as to scan the impression with the beam to provide a plurality of points of impact each having a predetermined location in the X-Y plane, determining the distances of the points of impact of the beam with the impression in the Z direction by detecting a pattern of light reflected from the point, and generating the digital image by correlating the locations and the distances.

(2) The method according to Claim 1 wherein the relative translation is effected continuously and wherein the beam is pulsed, the pattern being detected for a respective location during the each pulse of the beam.

(3) The method according to Claim 1 wherein the beam is directed along a fixed first line transverse to the X-Y plane onto the impression so as to be confined to a limited region of the impression at the point of impact and wherein the impression is moved relative to the line.

(4) The method according to Claim 3 wherein the distance of each point is determined by providing an area array of detector elements at a predetermined position spaced from the region along a second line at an angle to the first line, the area array being arranged at a predetermined distance from the X-Y plane, and detecting on the area array light scattered by the region of the impression from the beam.

(5) The method according to Claim 4 including calculating from a pattern of the scattered light detected on the area array a theoretical center of the pattern and determining the position of the center on the array.

(6) The method according to Claim 5 wherein the center is calculated by determining a locus of predetermined light intensity less than a maximum value and by calculating a theoretical center of the locus.

(7) The method according to Claim 6 wherein a second theoretical center is calculated using a second predetermined light intensity and is compared to said theoretical center.

(8) The method according to Claim 1 including tilting the impression relative to the X-Y plane about an axis lying in the X-Y plane and repeating the steps of relatively translating the beam of light and the impression in the X-Y plane so as to scan the impression with the beam to provide a plurality of points of impact each having a predetermined location in the X-Y plane, determining the distances of the points of impact of the beam with the impression in the Z direction by detecting a pattern of light reflected from the point, and generating data relating to the three-dimensional digital image by correlating the locations and the distances.

(9) The method according to Claim 8 including tilting the impression a second time and correlating the data from three separate scans of the impression to generate said three-dimensional digital image.

(10) The method according to Claim 1 including defining in the X-Y plane a plurality of datum points relative to a dental arch shape of the impression and limiting the movement in the X-Y plane to scan substantially only the dental arch shape.

(11) The method according to Claim 1 including locating a light source and detector array in fixed position in a Z direction.

(12) The method according to Claim 1 including taking maxillary and mandibular dental impressions of the teeth of the patient, generating a digital image of each of the mandibular and maxillary impressions, taking a partial impression containing teeth from both the mandibular and maxillary teeth of the patient, generating a three-dimensional digital image of the teeth of the partial impression in association with a plurality of datum points located relative to both the teeth of the mandibular and maxillary teeth, and comparing the three-dimensional digital image of the partial impression with the three-dimensional digital image of the mandibular and maxillary impressions to locate the datum points relative to the three-dimensional digital image of the mandibular and maxillary impressions to determine the relative locations of the teeth in a bit (occlusal) position of the patient of the three-dimensional digital image of the mandibular and maxillary impressions.

(13) The method according to Claim 12 wherein the datum points are located on a dental tray carrying the impression.

(14) The method according to Claim 12 wherein the datum points are located on a support plate and wherein the impression is carried on the support plate, the impression being rotatable through an angle of the order of 180 degrees to locate the datum points firstly relative to the mandibular teeth and secondly relative to the maxillary teeth.

(15) The method according to Claim 12 including manipulating the three-dimensional digital images of the mandibular and maxillary teeth in conjunction with the datum points so as to stimulate jaw movement from an open position of the teeth to the bite (occlusal) position of the teeth.
CA002124154A 1993-11-22 1994-05-24 Dental modeling simulator Expired - Fee Related CA2124154C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/155,134 US5338198A (en) 1993-11-22 1993-11-22 Dental modeling simulator
US155,134 1993-11-22

Publications (2)

Publication Number Publication Date
CA2124154A1 CA2124154A1 (en) 1995-05-23
CA2124154C true CA2124154C (en) 2002-07-23

Family

ID=22554230

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002124154A Expired - Fee Related CA2124154C (en) 1993-11-22 1994-05-24 Dental modeling simulator

Country Status (2)

Country Link
US (1) US5338198A (en)
CA (1) CA2124154C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412834A (en) * 2020-04-08 2020-07-14 昆明超泰经贸有限公司 Tobacco bale paper indentation data detection system and detection method thereof

Families Citing this family (394)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623582A (en) 1994-07-14 1997-04-22 Immersion Human Interface Corporation Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects
CA2156141A1 (en) * 1994-09-28 1996-03-29 Kaveh Azar Interactive scanning device or system
US5766006A (en) * 1995-06-26 1998-06-16 Murljacic; Maryann Lehmann Tooth shade analyzer system and methods
JPH09238963A (en) * 1996-03-07 1997-09-16 Nikon Corp Simulation method for motion of jaws
US6929481B1 (en) 1996-09-04 2005-08-16 Immersion Medical, Inc. Interface device and method for interfacing instruments to medical procedure simulation systems
US6106301A (en) * 1996-09-04 2000-08-22 Ht Medical Systems, Inc. Interventional radiology interface apparatus and method
US7815436B2 (en) 1996-09-04 2010-10-19 Immersion Corporation Surgical simulation interface device and method
ES2113327B1 (en) * 1996-11-06 1999-01-01 Navimetric S L DENTAL SCANNING PROCEDURE.
US6217334B1 (en) * 1997-01-28 2001-04-17 Iris Development Corporation Dental scanning method and apparatus
US6705863B2 (en) * 1997-06-20 2004-03-16 Align Technology, Inc. Attachment devices and methods for a dental appliance
US5975893A (en) 1997-06-20 1999-11-02 Align Technology, Inc. Method and system for incrementally moving teeth
US7063532B1 (en) * 1997-06-20 2006-06-20 Align Technology, Inc. Subdividing a digital dentition model
US6409504B1 (en) * 1997-06-20 2002-06-25 Align Technology, Inc. Manipulating a digital dentition model to form models of individual dentition components
US6450807B1 (en) 1997-06-20 2002-09-17 Align Technology, Inc. System and method for positioning teeth
AU744385B2 (en) * 1997-06-20 2002-02-21 Align Technology, Inc. Method and system for incrementally moving teeth
US8496474B2 (en) 1997-06-20 2013-07-30 Align Technology, Inc. Computer automated development of an orthodontic treatment plan and appliance
US6471511B1 (en) 1997-06-20 2002-10-29 Align Technology, Inc. Defining tooth-moving appliances computationally
US7247021B2 (en) * 1997-06-20 2007-07-24 Align Technology, Inc. Subdividing a digital dentition model
US6152731A (en) 1997-09-22 2000-11-28 3M Innovative Properties Company Methods for use in dental articulation
IL122807A0 (en) 1997-12-30 1998-08-16 Cadent Ltd Virtual orthodontic treatment
US9084653B2 (en) * 1998-01-14 2015-07-21 Cadent, Ltd. Methods for use in dental articulation
US6470302B1 (en) 1998-01-28 2002-10-22 Immersion Medical, Inc. Interface device and method for interfacing instruments to vascular access simulation systems
EP1103041B1 (en) 1998-01-28 2016-03-23 Immersion Medical, Inc. Interface device and method for interfacing instruments to medical procedure simulation system
US6089868A (en) * 1998-05-14 2000-07-18 3M Innovative Properties Company Selection of orthodontic appliances
IL125659A (en) * 1998-08-05 2002-09-12 Cadent Ltd Method and apparatus for imaging three-dimensional structure
EP1042994A4 (en) * 1998-09-24 2006-08-09 Nissan Digital Process Ltd Tooth shape impression recording member and method of using it
US6514074B1 (en) 1999-05-14 2003-02-04 Align Technology, Inc. Digitally modeling the deformation of gingival
US11026768B2 (en) * 1998-10-08 2021-06-08 Align Technology, Inc. Dental appliance reinforcement
US6802713B1 (en) 1998-10-08 2004-10-12 Align Technology, Inc. Defining tooth-moving appliances computationally
JP3641208B2 (en) 1998-10-08 2005-04-20 アライン テクノロジー, インコーポレイテッド Computerized dental treatment planning and instrument development
US6227850B1 (en) * 1999-05-13 2001-05-08 Align Technology, Inc. Teeth viewing system
EP1043959A4 (en) 1998-11-03 2003-07-02 Shade Analyzing Technologies Inc Interactive dental restorative network
US8790118B2 (en) * 1998-11-03 2014-07-29 Shade Analyzing Technologies, Inc. Interactive dental restorative network
WO2000032132A1 (en) 1998-11-30 2000-06-08 Align Technology, Inc. Attachment devices and methods for a dental appliance
US20020192617A1 (en) * 2000-04-25 2002-12-19 Align Technology, Inc. Embedded features and methods of a dental appliance
US7121825B2 (en) * 1998-11-30 2006-10-17 Align Technology, Inc. Tooth positioning appliances and systems
US6406292B1 (en) 1999-05-13 2002-06-18 Align Technology, Inc. System for determining final position of teeth
US6572372B1 (en) 2000-04-25 2003-06-03 Align Technology, Inc. Embedded features and methods of a dental appliance
US7108508B2 (en) * 1998-12-04 2006-09-19 Align Technology, Inc. Manipulable dental model system for fabrication of a dental appliance
US7357636B2 (en) * 2002-02-28 2008-04-15 Align Technology, Inc. Manipulable dental model system for fabrication of a dental appliance
WO2000033759A1 (en) 1998-12-04 2000-06-15 Align Technology, Inc. Reconfigurable dental model system for fabrication of dental appliances
US6488499B1 (en) * 2000-04-25 2002-12-03 Align Technology, Inc. Methods for correcting deviations in preplanned tooth rearrangements
US6123544A (en) * 1998-12-18 2000-09-26 3M Innovative Properties Company Method and apparatus for precise bond placement of orthodontic appliances
AU2506800A (en) * 1999-01-15 2000-08-01 Align Technology, Inc. System and method for producing tooth movement
US6431870B1 (en) 1999-11-30 2002-08-13 Ora Metrix, Inc. Method and apparatus for generating a desired three-dimensional digital model of an orthodontic structure
US6512994B1 (en) 1999-11-30 2003-01-28 Orametrix, Inc. Method and apparatus for producing a three-dimensional digital model of an orthodontic patient
US7068825B2 (en) * 1999-03-08 2006-06-27 Orametrix, Inc. Scanning system and calibration method for capturing precise three-dimensional information of objects
US6851949B1 (en) 1999-11-30 2005-02-08 Orametrix, Inc. Method and apparatus for generating a desired three-dimensional digital model of an orthodontic structure
KR100338974B1 (en) * 1999-03-15 2002-05-31 최은백, 이찬경 Simulation method for identifying bone density of mandible or maxilla and recording media storing program to perform the same
US6318994B1 (en) 1999-05-13 2001-11-20 Align Technology, Inc Tooth path treatment plan
US6602070B2 (en) * 1999-05-13 2003-08-05 Align Technology, Inc. Systems and methods for dental treatment planning
DE19950780C2 (en) * 1999-10-21 2003-06-18 Sirona Dental Systems Gmbh Method and device for detecting medical objects, in particular models of prepared teeth
AU1476101A (en) 1999-11-10 2001-06-06 Implant Innovations, Inc. Healing components for use in taking impressions and methods for making the same
US6790040B2 (en) 1999-11-10 2004-09-14 Implant Innovations, Inc. Healing components for use in taking impressions and methods for making the same
US7003472B2 (en) * 1999-11-30 2006-02-21 Orametrix, Inc. Method and apparatus for automated generation of a patient treatment plan
US6688885B1 (en) 1999-11-30 2004-02-10 Orametrix, Inc Method and apparatus for treating an orthodontic patient
US6648640B2 (en) * 1999-11-30 2003-11-18 Ora Metrix, Inc. Interactive orthodontic care system based on intra-oral scanning of teeth
US7234937B2 (en) * 1999-11-30 2007-06-26 Orametrix, Inc. Unified workstation for virtual craniofacial diagnosis, treatment planning and therapeutics
US6587828B1 (en) 1999-11-30 2003-07-01 Ora Metrix, Inc. Method and apparatus for automated generation of a patient treatment plan
US7160110B2 (en) * 1999-11-30 2007-01-09 Orametrix, Inc. Three-dimensional occlusal and interproximal contact detection and display using virtual tooth models
US6736638B1 (en) 2000-04-19 2004-05-18 Orametrix, Inc. Method and apparatus for orthodontic appliance optimization
US6632089B2 (en) * 1999-11-30 2003-10-14 Orametrix, Inc. Orthodontic treatment planning with user-specified simulation of tooth movement
US7802987B1 (en) 1999-12-17 2010-09-28 Align Technology, Inc. Methods and systems for lubricating dental appliances
US7373286B2 (en) 2000-02-17 2008-05-13 Align Technology, Inc. Efficient data representation of teeth model
US6633789B1 (en) * 2000-02-17 2003-10-14 Align Technology, Inc. Effiicient data representation of teeth model
US6463344B1 (en) 2000-02-17 2002-10-08 Align Technology, Inc. Efficient data representation of teeth model
US20020188478A1 (en) * 2000-03-24 2002-12-12 Joe Breeland Health-care systems and methods
US7904307B2 (en) 2000-03-24 2011-03-08 Align Technology, Inc. Health-care e-commerce systems and methods
WO2001074268A1 (en) * 2000-03-30 2001-10-11 Align Technology, Inc. System and method for separating three-dimensional models
US6971873B2 (en) * 2000-04-19 2005-12-06 Orametrix, Inc. Virtual bracket library and uses thereof in orthodontic treatment planning
US6582229B1 (en) * 2000-04-25 2003-06-24 Align Technology, Inc. Methods for modeling bite registration
US6454565B2 (en) 2000-04-25 2002-09-24 Align Technology, Inc. Systems and methods for varying elastic modulus appliances
WO2001082192A1 (en) 2000-04-25 2001-11-01 Align Technology, Inc. Treatment analysis systems and methods
US6947038B1 (en) 2000-04-27 2005-09-20 Align Technology, Inc. Systems and methods for generating an appliance with tie points
US6621491B1 (en) 2000-04-27 2003-09-16 Align Technology, Inc. Systems and methods for integrating 3D diagnostic data
US7245977B1 (en) 2000-07-20 2007-07-17 Align Technology, Inc. Systems and methods for mass customization
US7383198B1 (en) 2000-07-24 2008-06-03 Align Technology, Inc. Delivery information systems and methods
US7092784B1 (en) 2000-07-28 2006-08-15 Align Technology Systems and methods for forming an object
US7040896B2 (en) 2000-08-16 2006-05-09 Align Technology, Inc. Systems and methods for removing gingiva from computer tooth models
US6386878B1 (en) 2000-08-16 2002-05-14 Align Technology, Inc. Systems and methods for removing gingiva from teeth
US6915178B2 (en) 2000-09-06 2005-07-05 O'brien Dental Lab, Inc. Dental prosthesis manufacturing process, dental prosthesis pattern & dental prosthesis made thereby
US6497574B1 (en) * 2000-09-08 2002-12-24 Align Technology, Inc. Modified tooth positioning appliances and methods and systems for their manufacture
US6607382B1 (en) * 2000-09-21 2003-08-19 Align Technology, Inc. Methods and systems for concurrent tooth repositioning and substance delivery
KR100382905B1 (en) * 2000-10-07 2003-05-09 주식회사 케이씨아이 3 Dimension Scanner System for Tooth modelling
US6386867B1 (en) * 2000-11-30 2002-05-14 Duane Milford Durbin Method and system for imaging and modeling dental structures
US7736147B2 (en) 2000-10-30 2010-06-15 Align Technology, Inc. Systems and methods for bite-setting teeth models
US6726478B1 (en) 2000-10-30 2004-04-27 Align Technology, Inc. Systems and methods for bite-setting teeth models
ATE555743T1 (en) 2000-11-08 2012-05-15 Straumann Inst Ag (DENTAL) SURFACE CAPTURE AND CREATION
US6783360B2 (en) * 2000-12-13 2004-08-31 Align Technology, Inc. Systems and methods for positioning teeth
US6579095B2 (en) * 2000-12-22 2003-06-17 Geodigm Corporation Mating parts scanning and registration methods
US7074038B1 (en) * 2000-12-29 2006-07-11 Align Technology, Inc. Methods and systems for treating teeth
US7580846B2 (en) 2001-01-09 2009-08-25 Align Technology, Inc. Method and system for distributing patient referrals
US7156655B2 (en) * 2001-04-13 2007-01-02 Orametrix, Inc. Method and system for comprehensive evaluation of orthodontic treatment using unified workstation
US7717708B2 (en) * 2001-04-13 2010-05-18 Orametrix, Inc. Method and system for integrated orthodontic treatment planning using unified workstation
US7202851B2 (en) 2001-05-04 2007-04-10 Immersion Medical Inc. Haptic interface for palpation simulation
US7362890B2 (en) * 2001-05-24 2008-04-22 Astra Tech Inc. Registration of 3-D imaging of 3-D objects
US7056123B2 (en) 2001-07-16 2006-06-06 Immersion Corporation Interface apparatus with cable-driven force feedback and grounded actuators
US20040202983A1 (en) * 2001-09-28 2004-10-14 Align Technology, Inc. Method and kits for forming pontics in polymeric shell aligners
JP2005505396A (en) * 2001-10-16 2005-02-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ How to design a template that fits detachably on the surface of an object
US7771195B2 (en) * 2001-10-29 2010-08-10 Align Technology, Inc. Polar attachment devices and method for a dental appliance
EP1449489A4 (en) * 2001-10-31 2009-03-11 Imagnosis Inc Medical simulation apparatus and method for controlling 3-dimensional image display in the medical simulation apparatus
US6851909B2 (en) * 2001-12-28 2005-02-08 Storage Technology Corporation Lateral cross-cabinet access for horizontal storage library
US6767208B2 (en) * 2002-01-10 2004-07-27 Align Technology, Inc. System and method for positioning teeth
US7155373B2 (en) * 2002-02-22 2006-12-26 3M Innovative Properties Company Selection of orthodontic brackets
US8013853B1 (en) 2002-03-06 2011-09-06 Regents Of The University Of Minnesota Virtual dental patient
US6854973B2 (en) 2002-03-14 2005-02-15 Orametrix, Inc. Method of wet-field scanning
US6830450B2 (en) 2002-04-18 2004-12-14 Align Technology, Inc. Systems and methods for improved engagement between aligners and teeth
DE10218435B4 (en) * 2002-04-25 2010-03-04 Zebris Medical Gmbh Method and device for 3-dimensional movement analysis of tooth surfaces of the upper jaw in relation to the lower jaw
US7716024B2 (en) * 2002-04-29 2010-05-11 Geodigm Corporation Method and apparatus for electronically generating a color dental occlusion map within electronic model images
US20030220778A1 (en) * 2002-04-29 2003-11-27 Hultgren Bruce Willard Method and apparatus for electronically simulating jaw function within electronic model images
US20030207227A1 (en) * 2002-05-02 2003-11-06 Align Technology, Inc. Systems and methods for treating patients
US7255558B2 (en) 2002-06-18 2007-08-14 Cadent, Ltd. Dental imaging instrument having air stream auxiliary
US6979196B2 (en) * 2002-06-21 2005-12-27 Align Technology, Inc. Systems and methods for automated bite-setting of tooth models
US20040243361A1 (en) * 2002-08-19 2004-12-02 Align Technology, Inc. Systems and methods for providing mass customization
US7077647B2 (en) * 2002-08-22 2006-07-18 Align Technology, Inc. Systems and methods for treatment analysis by teeth matching
US7156661B2 (en) * 2002-08-22 2007-01-02 Align Technology, Inc. Systems and methods for treatment analysis by teeth matching
US20040197728A1 (en) * 2002-09-10 2004-10-07 Amir Abolfathi Architecture for treating teeth
US20040152036A1 (en) * 2002-09-10 2004-08-05 Amir Abolfathi Architecture for treating teeth
US7220124B2 (en) 2002-10-03 2007-05-22 Cadent Ltd. Method for preparing a physical plaster model
FR2845767B1 (en) * 2002-10-09 2005-12-09 St Microelectronics Sa INTEGRATED DIGITAL TEMPERATURE SENSOR
US20040121282A1 (en) * 2002-10-09 2004-06-24 Sildve Peter O. Apparatus and method for positioning dental arch to dental articulator
DE10394004D2 (en) * 2002-10-18 2005-09-08 Willytec Gmbh Facilities and methods for the production of dental prostheses
AU2003300135B2 (en) 2002-12-31 2009-07-16 D4D Technologies, Llc Laser digitizer system for dental applications
DE10304757B4 (en) * 2003-02-05 2005-07-21 Heraeus Kulzer Gmbh Device and method for the production of dentures
DE10307436A1 (en) * 2003-02-20 2004-09-02 Polytec Gmbh Method and device for the optical measurement of a dental cast model in restorative dentistry
US7600999B2 (en) * 2003-02-26 2009-10-13 Align Technology, Inc. Systems and methods for fabricating a dental template
US20040166462A1 (en) 2003-02-26 2004-08-26 Align Technology, Inc. Systems and methods for fabricating a dental template
US7658610B2 (en) * 2003-02-26 2010-02-09 Align Technology, Inc. Systems and methods for fabricating a dental template with a 3-D object placement
US20040166463A1 (en) * 2003-02-26 2004-08-26 Align Technology, Inc. Systems and methods for combination treatments of dental patients
AU2004223469B2 (en) * 2003-03-24 2009-07-30 D4D Technologies, Llc Laser digitizer system for dental applications
EP1610708B1 (en) 2003-04-03 2019-11-27 Align Technology, Inc. Method and system for fabricating a dental coping
EP1617759A4 (en) * 2003-04-30 2009-04-22 D4D Technologies Llc Intra-oral imaging system
US20050038669A1 (en) * 2003-05-02 2005-02-17 Orametrix, Inc. Interactive unified workstation for benchmarking and care planning
US7228191B2 (en) * 2003-05-02 2007-06-05 Geodigm Corporation Method and apparatus for constructing crowns, bridges and implants for dental use
US7695278B2 (en) 2005-05-20 2010-04-13 Orametrix, Inc. Method and system for finding tooth features on a virtual three-dimensional model
JP4571625B2 (en) * 2003-05-05 2010-10-27 ディーフォーディー テクノロジーズ エルエルシー Imaging by optical tomography
US7648360B2 (en) * 2003-07-01 2010-01-19 Align Technology, Inc. Dental appliance sequence ordering system and method
US7004754B2 (en) * 2003-07-23 2006-02-28 Orametrix, Inc. Automatic crown and gingiva detection from three-dimensional virtual model of teeth
US7030383B2 (en) 2003-08-04 2006-04-18 Cadent Ltd. Speckle reduction method and apparatus
US7342668B2 (en) * 2003-09-17 2008-03-11 D4D Technologies, Llc High speed multiple line three-dimensional digitalization
US7474932B2 (en) * 2003-10-23 2009-01-06 Technest Holdings, Inc. Dental computer-aided design (CAD) methods and systems
US7361020B2 (en) * 2003-11-19 2008-04-22 Align Technology, Inc. Dental tray containing radiopaque materials
DE10357699A1 (en) * 2003-12-09 2005-07-28 Degudent Gmbh Method for determining the shape of a residual tooth area
US7118375B2 (en) * 2004-01-08 2006-10-10 Duane Milford Durbin Method and system for dental model occlusal determination using a replicate bite registration impression
US20050182654A1 (en) * 2004-02-14 2005-08-18 Align Technology, Inc. Systems and methods for providing treatment planning
US20050186524A1 (en) * 2004-02-24 2005-08-25 Align Technology, Inc. Arch expander
US7333874B2 (en) 2004-02-24 2008-02-19 Cadent Ltd. Method and system for designing and producing dental prostheses and appliances
US7904308B2 (en) 2006-04-18 2011-03-08 Align Technology, Inc. Method and system for providing indexing and cataloguing of orthodontic related treatment profiles and options
US8874452B2 (en) 2004-02-27 2014-10-28 Align Technology, Inc. Method and system for providing dynamic orthodontic assessment and treatment profiles
US11298209B2 (en) 2004-02-27 2022-04-12 Align Technology, Inc. Method and system for providing dynamic orthodontic assessment and treatment profiles
US9492245B2 (en) 2004-02-27 2016-11-15 Align Technology, Inc. Method and system for providing dynamic orthodontic assessment and treatment profiles
DE102005009549B4 (en) * 2004-03-02 2014-03-13 Institut Straumann Ag Surface detection fixture and surface detection method
US7702492B2 (en) * 2004-03-11 2010-04-20 Geodigm Corporation System and method for generating an electronic model for a dental impression having a common coordinate system
US7824346B2 (en) * 2004-03-11 2010-11-02 Geodigm Corporation Determining condyle displacement utilizing electronic models of dental impressions having a common coordinate system
US7241142B2 (en) * 2004-03-19 2007-07-10 Align Technology, Inc. Root-based tooth moving sequencing
US8260591B2 (en) 2004-04-29 2012-09-04 Align Technology, Inc. Dynamically specifying a view
US20050244791A1 (en) * 2004-04-29 2005-11-03 Align Technology, Inc. Interproximal reduction treatment planning
US7319529B2 (en) 2004-06-17 2008-01-15 Cadent Ltd Method and apparatus for colour imaging a three-dimensional structure
CA2571110C (en) * 2004-06-18 2012-03-20 Dentsply International Inc. Prescribed orthodontic activators
KR100672819B1 (en) 2004-06-24 2007-01-22 주식회사 케이씨아이 Driving Apparatus for 3-Dimension Scanning System and 3-Dimension Scanning System for Tooth Modelling Using the Same
DE102004035090A1 (en) * 2004-07-20 2006-02-16 Sirona Dental Systems Gmbh Compensation part and method for the measurement of dental restorations
CA2575258C (en) 2004-07-26 2014-04-01 Dentsply International Inc. Two phase invisible orthodontics
EP1629793A1 (en) * 2004-08-25 2006-03-01 Remedent NV Dental appliances
CA2839708C (en) * 2004-09-14 2017-11-28 Dentsply International Inc. Notched pontic and system for fabricating dental appliance for use therewith
US8899976B2 (en) 2004-09-24 2014-12-02 Align Technology, Inc. Release agent receptacle
US20060199145A1 (en) * 2005-03-07 2006-09-07 Liu Frank Z Producing physical dental arch model having individually adjustable tooth models
US20060127858A1 (en) * 2004-12-14 2006-06-15 Huafeng Wen Producing accurate base for a dental arch model
US7309230B2 (en) 2004-12-14 2007-12-18 Align Technology, Inc. Preventing interference between tooth models
US8636513B2 (en) 2004-12-14 2014-01-28 Align Technology, Inc. Fabricating a base compatible with physical tooth models
US20070092853A1 (en) * 2005-10-24 2007-04-26 Liu Frank Z Multi-layer casting methods and devices
US20060199142A1 (en) * 2005-03-07 2006-09-07 Liu Frank Z Dental aligner for providing accurate dental treatment
US7384266B2 (en) * 2004-11-02 2008-06-10 Align Technology, Inc. Method and apparatus for manufacturing and constructing a physical dental arch model
US20060093993A1 (en) * 2004-11-02 2006-05-04 Huafeng Wen Producing a base for physical dental arch model
US7335024B2 (en) * 2005-02-03 2008-02-26 Align Technology, Inc. Methods for producing non-interfering tooth models
US7922490B2 (en) * 2004-12-14 2011-04-12 Align Technology, Inc. Base for physical dental arch model
US20060093987A1 (en) * 2004-11-02 2006-05-04 Huafeng Wen Producing an adjustable physical dental arch model
US20060127860A1 (en) * 2004-12-14 2006-06-15 Huafeng Wen Producing a base for accurately receiving dental tooth models
US20060093982A1 (en) * 2004-11-02 2006-05-04 Huafeng Wen Method and apparatus for manufacturing and constructing a dental aligner
US7357634B2 (en) * 2004-11-05 2008-04-15 Align Technology, Inc. Systems and methods for substituting virtual dental appliances
US20060097422A1 (en) * 2004-11-08 2006-05-11 Diamond Andrew J Method for performing surgery and appliances produced thereby
US7862336B2 (en) 2004-11-26 2011-01-04 Cadent Ltd. Method and system for providing feedback data useful in prosthodontic procedures associated with the intra oral cavity
US20060115785A1 (en) 2004-11-30 2006-06-01 Chunhua Li Systems and methods for intra-oral drug delivery
US7819662B2 (en) * 2004-11-30 2010-10-26 Geodigm Corporation Multi-component dental appliances and a method for constructing the same
US7236842B2 (en) 2004-12-02 2007-06-26 Cadent Ltd. System and method for manufacturing a dental prosthesis and a dental prosthesis manufactured thereby
US7448514B2 (en) * 2005-02-03 2008-11-11 Align Technology, Inc. Storage system for dental devices
US7819659B2 (en) 2005-04-25 2010-10-26 Align Technology, Inc. System for organizing dental aligners
US7229283B2 (en) * 2005-02-09 2007-06-12 Pou Yuen Technology Co., Ltd. Dental cast scanning apparatus
JP5154955B2 (en) 2005-03-03 2013-02-27 カデント・リミテツド Oral scanning system and method
AU2006220803A1 (en) 2005-03-07 2006-09-14 Align Technology, Inc. Variations of dental aligners
US8337199B2 (en) * 2005-03-07 2012-12-25 Align Technology, Inc. Fluid permeable dental aligner
US8684729B2 (en) * 2005-03-07 2014-04-01 Align Technology, Inc. Disposable dental aligner
US7831322B2 (en) * 2005-03-07 2010-11-09 Align Technology, Inc. Producing wrinkled dental aligner for dental treatment
US20060275736A1 (en) * 2005-04-22 2006-12-07 Orthoclear Holdings, Inc. Computer aided orthodontic treatment planning
US20060275731A1 (en) 2005-04-29 2006-12-07 Orthoclear Holdings, Inc. Treatment of teeth by aligners
DE15161961T1 (en) 2005-06-30 2015-11-26 Biomet 3I, Llc Process for the preparation of components of a dental implant
US20070003900A1 (en) * 2005-07-02 2007-01-04 Miller Ross J Systems and methods for providing orthodontic outcome evaluation
US7555403B2 (en) 2005-07-15 2009-06-30 Cadent Ltd. Method for manipulating a dental virtual model, method for creating physical entities based on a dental virtual model thus manipulated, and dental models thus created
US20070026358A1 (en) * 2005-07-26 2007-02-01 Schultz Charles J Two-phase invisible orthodontics
US11219511B2 (en) 2005-10-24 2022-01-11 Biomet 3I, Llc Methods for placing an implant analog in a physical model of the patient's mouth
CN101370441B (en) 2005-10-24 2013-11-13 拜奥美特3i有限责任公司 Methods for manufacturing dental implant components
US8257083B2 (en) 2005-10-24 2012-09-04 Biomet 3I, Llc Methods for placing an implant analog in a physical model of the patient's mouth
US7413597B2 (en) * 2005-11-03 2008-08-19 Elaine Lewis Imaging powder for CAD/CAM device
JP5237106B2 (en) * 2005-11-30 2013-07-17 3シェイプ アー/エス Impression scanning for the production of dental restorations
EP1991939B1 (en) * 2006-02-28 2018-09-05 Ormco Corporation Software and methods for dental treatment planning
US7613527B2 (en) * 2006-03-16 2009-11-03 3M Innovative Properties Company Orthodontic prescription form, templates, and toolbar for digital orthodontics
WO2008014461A2 (en) * 2006-07-28 2008-01-31 Optimet, Optical Metrology Ltd. Double-sided measurement of dental objects using an optical scanner
US8038444B2 (en) 2006-08-30 2011-10-18 Align Technology, Inc. Automated treatment staging for teeth
US9326831B2 (en) 2006-10-20 2016-05-03 Align Technology, Inc. System and method for positioning three-dimensional brackets on teeth
WO2008051129A1 (en) 2006-10-27 2008-05-02 Nobel Biocare Services Ag A dental impression tray for use in obtaining an impression of a dental structure
WO2008058191A2 (en) * 2006-11-07 2008-05-15 Geodigm Corporation Sprue formers
DE102006061134A1 (en) * 2006-12-22 2008-06-26 Aepsilon Rechteverwaltungs Gmbh Process for the transport of dental prostheses
DE102006061143A1 (en) * 2006-12-22 2008-07-24 Aepsilon Rechteverwaltungs Gmbh Method, computer-readable medium and computer relating to the manufacture of dental prostheses
US8200462B2 (en) 2007-01-11 2012-06-12 Geodigm Corporation Dental appliances
US20090148816A1 (en) * 2007-01-11 2009-06-11 Geodigm Corporation Design of dental appliances
US8382686B2 (en) * 2007-04-17 2013-02-26 Gnath Tech Dental Systems, Llc Apparatus and method for recording mandibular movement
EP1982652A1 (en) 2007-04-20 2008-10-22 Medicim NV Method for deriving shape information
US8206153B2 (en) 2007-05-18 2012-06-26 Biomet 3I, Inc. Method for selecting implant components
US7878805B2 (en) 2007-05-25 2011-02-01 Align Technology, Inc. Tabbed dental appliance
US9060829B2 (en) 2007-06-08 2015-06-23 Align Technology, Inc. Systems and method for management and delivery of orthodontic treatment
US8562338B2 (en) 2007-06-08 2013-10-22 Align Technology, Inc. Treatment progress tracking and recalibration
US8591225B2 (en) 2008-12-12 2013-11-26 Align Technology, Inc. Tooth movement measurement by automatic impression matching
US8075306B2 (en) 2007-06-08 2011-12-13 Align Technology, Inc. System and method for detecting deviations during the course of an orthodontic treatment to gradually reposition teeth
US10342638B2 (en) 2007-06-08 2019-07-09 Align Technology, Inc. Treatment planning and progress tracking systems and methods
US20090087808A1 (en) * 2007-09-28 2009-04-02 Reika Ortho Technologies, Inc. Methods And Systems For Moving Teeth
US8738394B2 (en) 2007-11-08 2014-05-27 Eric E. Kuo Clinical data file
US8777612B2 (en) 2007-11-16 2014-07-15 Biomet 3I, Llc Components for use with a surgical guide for dental implant placement
US7914283B2 (en) 2007-12-06 2011-03-29 Align Technology, Inc. Activatable dental appliance
US8899977B2 (en) 2008-01-29 2014-12-02 Align Technology, Inc. Orthodontic repositioning appliances having improved geometry, methods and systems
US8439672B2 (en) 2008-01-29 2013-05-14 Align Technology, Inc. Method and system for optimizing dental aligner geometry
US8108189B2 (en) 2008-03-25 2012-01-31 Align Technologies, Inc. Reconstruction of non-visible part of tooth
US20090254299A1 (en) * 2008-04-04 2009-10-08 Optimet, Optical Metrology Ltd. Dental Prosthesis Fabrication Based on Local Digitization of a Temporary
KR101485882B1 (en) 2008-04-15 2015-01-26 바이오메트 쓰리아이 엘엘씨 Method of creating an accurate bone and soft-tissue digital dental model
EP2276416B1 (en) 2008-04-16 2015-12-16 Biomet 3i, LLC Method for pre-operative visualization of instrumentation used with a surgical guide for dental implant placement
US9492243B2 (en) 2008-05-23 2016-11-15 Align Technology, Inc. Dental implant positioning
US8092215B2 (en) 2008-05-23 2012-01-10 Align Technology, Inc. Smile designer
US9119691B2 (en) 2008-05-23 2015-09-01 Align Technology, Inc. Orthodontic tooth movement device, systems and methods
US8172569B2 (en) 2008-06-12 2012-05-08 Align Technology, Inc. Dental appliance
US9408679B2 (en) 2008-07-03 2016-08-09 Align Technology, Inc. Method, apparatus and system for use in dental procedures
US8509932B2 (en) 2008-07-17 2013-08-13 Cadent Ltd. Methods, systems and accessories useful for procedures relating to dental implants
US20100055635A1 (en) 2008-09-02 2010-03-04 Align Technology, Inc. Shape engineered aligner - auto shaping
US8152518B2 (en) 2008-10-08 2012-04-10 Align Technology, Inc. Dental positioning appliance having metallic portion
EP3406222B1 (en) 2008-11-20 2021-11-10 Align Technology, Inc. Orthodontic systems and methods including parametric attachments
US20100129763A1 (en) 2008-11-24 2010-05-27 Align Technology, Inc. Sequential sports guard
US8936463B2 (en) 2008-11-24 2015-01-20 Align Technology, Inc. Dental appliance with simulated teeth and method for making
US8401686B2 (en) 2008-12-18 2013-03-19 Align Technology, Inc. Reduced registration bonding template
US9642678B2 (en) 2008-12-30 2017-05-09 Align Technology, Inc. Method and system for dental visualization
US8382474B2 (en) 2008-12-31 2013-02-26 Cadent Ltd. Dental articulator
US8936464B2 (en) 2009-02-24 2015-01-20 Cadent Ltd. Method, system and model for indirect bonding
US8292617B2 (en) 2009-03-19 2012-10-23 Align Technology, Inc. Dental wire attachment
US8765031B2 (en) 2009-08-13 2014-07-01 Align Technology, Inc. Method of forming a dental appliance
GB0919352D0 (en) * 2009-11-05 2009-12-23 Third Dimension Software Ltd Optical metrology apparatus and method
US8708697B2 (en) 2009-12-08 2014-04-29 Align Technology, Inc. Tactile objects for orthodontics, systems and methods
US9211166B2 (en) 2010-04-30 2015-12-15 Align Technology, Inc. Individualized orthodontic treatment index
US20110269092A1 (en) 2010-04-30 2011-11-03 Align Technology, Inc. Reinforced aligner hooks
US9241774B2 (en) 2010-04-30 2016-01-26 Align Technology, Inc. Patterned dental positioning appliance
ES2665997T3 (en) * 2010-07-12 2018-04-30 Centre De Recherche Medico Dentaire Am Inc. Method and system of dental analysis
ES2848157T3 (en) 2010-07-19 2021-08-05 Align Technology Inc Procedures and systems for creating and interacting with three-dimensional virtual models
EP2462893B8 (en) 2010-12-07 2014-12-10 Biomet 3i, LLC Universal scanning member for use on dental implant and dental implant analogs
WO2012095851A2 (en) 2011-01-13 2012-07-19 Cadent Ltd. Methods, systems and accessories useful for procedures relating to dental implants
US9108338B2 (en) * 2011-04-13 2015-08-18 Align Technology, Inc. Methods and systems for thermal forming an object
EP3777760A1 (en) 2011-05-16 2021-02-17 Biomet 3I, LLC Temporary abutment with combination of scanning features and provisionalization features
US9125709B2 (en) 2011-07-29 2015-09-08 Align Technology, Inc. Systems and methods for tracking teeth movement during orthodontic treatment
JP4997340B1 (en) * 2011-08-23 2012-08-08 株式会社松風 Wear evaluation device, wear evaluation method, and wear evaluation program
US9403238B2 (en) 2011-09-21 2016-08-02 Align Technology, Inc. Laser cutting
US8641414B2 (en) 2011-10-10 2014-02-04 Align Technology, Inc. Automatic placement of precision cuts
US8602783B2 (en) 2011-10-21 2013-12-10 Zvi Fudim Impression gingival cuff for dental implants
US9452032B2 (en) 2012-01-23 2016-09-27 Biomet 3I, Llc Soft tissue preservation temporary (shell) immediate-implant abutment with biological active surface
US9089382B2 (en) 2012-01-23 2015-07-28 Biomet 3I, Llc Method and apparatus for recording spatial gingival soft tissue relationship to implant placement within alveolar bone for immediate-implant placement
US9375300B2 (en) 2012-02-02 2016-06-28 Align Technology, Inc. Identifying forces on a tooth
US9022781B2 (en) 2012-02-15 2015-05-05 Align Technology, Inc. Orthodontic appliances that accommodate incremental and continuous tooth movement, systems and methods
US9375298B2 (en) 2012-02-21 2016-06-28 Align Technology, Inc. Dental models and related methods
US9220580B2 (en) 2012-03-01 2015-12-29 Align Technology, Inc. Determining a dental treatment difficulty
US9655691B2 (en) 2012-05-14 2017-05-23 Align Technology, Inc. Multilayer dental appliances and related methods and systems
US9414897B2 (en) 2012-05-22 2016-08-16 Align Technology, Inc. Adjustment of tooth position in a virtual dental model
US20140067334A1 (en) 2012-09-06 2014-03-06 Align Technology Inc. Method and a system usable in creating a subsequent dental appliance
US8986003B2 (en) 2012-09-13 2015-03-24 Orthoaccel Technologies, Inc. Pearlescent white aligners
US10813729B2 (en) 2012-09-14 2020-10-27 Biomet 3I, Llc Temporary dental prosthesis for use in developing final dental prosthesis
DE102012022830A1 (en) 2012-11-23 2014-05-28 Florian Draenert Device for automated individual bending of osteosynthesis plate for bone surgery, has data processing system including software that is adapted to bone structure for controlling machine, where surface of plate is bent with respect to data
US10617489B2 (en) 2012-12-19 2020-04-14 Align Technology, Inc. Creating a digital dental model of a patient's teeth using interproximal information
US9668829B2 (en) 2012-12-19 2017-06-06 Align Technology, Inc. Methods and systems for dental procedures
US8926328B2 (en) 2012-12-27 2015-01-06 Biomet 3I, Llc Jigs for placing dental implant analogs in models and methods of doing the same
US9384580B2 (en) * 2013-02-13 2016-07-05 Dental Imaging Technologies Corporation Multiple image generation from a single patient scan
US9839496B2 (en) 2013-02-19 2017-12-12 Biomet 3I, Llc Patient-specific dental prosthesis and gingival contouring developed by predictive modeling
US20160015488A1 (en) 2013-02-20 2016-01-21 Gc Europe Precalibrated dental implant aid
ES2910276T3 (en) 2013-04-09 2022-05-12 Biomet 3I Llc Method of using scan data of a dental implant
US9393087B2 (en) 2013-08-01 2016-07-19 Align Technology, Inc. Methods and systems for generating color images
GB201320745D0 (en) * 2013-11-25 2014-01-08 Darwood Alastair A method and apparatus for the intraoperative production of a surgical guide
WO2015094700A1 (en) 2013-12-20 2015-06-25 Biomet 3I, Llc Dental system for developing custom prostheses through scanning of coded members
EP3900664A1 (en) 2014-01-31 2021-10-27 Align Technology, Inc. Orthodontic appliances with elastics
US10555792B2 (en) 2014-01-31 2020-02-11 Align Technology, Inc. Direct fabrication of orthodontic appliances with elastics
US10537406B2 (en) 2014-02-21 2020-01-21 Align Technology, Inc. Dental appliance with repositioning jaw elements
US9844424B2 (en) 2014-02-21 2017-12-19 Align Technology, Inc. Dental appliance with repositioning jaw elements
US10299894B2 (en) 2014-02-21 2019-05-28 Align Technology, Inc. Treatment plan specific bite adjustment structures
WO2015140614A1 (en) 2014-03-21 2015-09-24 Align Technology, Inc. Segmented orthodontic appliance with elastics
MX2016014099A (en) 2014-04-27 2017-07-28 Univ New York State Res Found Enamel products and methods of use.
US10016262B2 (en) 2014-06-16 2018-07-10 Align Technology, Inc. Unitary dental model
PL3157459T3 (en) 2014-06-20 2021-11-22 Align Technology, Inc. Elastic-coated orthodontic appliance
CN114652466A (en) 2014-06-20 2022-06-24 阿莱恩技术有限公司 Orthotic with elastic layer
US9261358B2 (en) 2014-07-03 2016-02-16 Align Technology, Inc. Chromatic confocal system
US9261356B2 (en) 2014-07-03 2016-02-16 Align Technology, Inc. Confocal surface topography measurement with fixed focal positions
US9439568B2 (en) 2014-07-03 2016-09-13 Align Technology, Inc. Apparatus and method for measuring surface topography optically
US10772506B2 (en) 2014-07-07 2020-09-15 Align Technology, Inc. Apparatus for dental confocal imaging
US9693839B2 (en) 2014-07-17 2017-07-04 Align Technology, Inc. Probe head and apparatus for intraoral confocal imaging using polarization-retarding coatings
US9675430B2 (en) 2014-08-15 2017-06-13 Align Technology, Inc. Confocal imaging apparatus with curved focal surface
US9724177B2 (en) 2014-08-19 2017-08-08 Align Technology, Inc. Viewfinder with real-time tracking for intraoral scanning
US9700390B2 (en) 2014-08-22 2017-07-11 Biomet 3I, Llc Soft-tissue preservation arrangement and method
US9660418B2 (en) 2014-08-27 2017-05-23 Align Technology, Inc. VCSEL based low coherence emitter for confocal 3D scanner
US10449016B2 (en) 2014-09-19 2019-10-22 Align Technology, Inc. Arch adjustment appliance
US9610141B2 (en) 2014-09-19 2017-04-04 Align Technology, Inc. Arch expanding appliance
US11147652B2 (en) 2014-11-13 2021-10-19 Align Technology, Inc. Method for tracking, predicting, and proactively correcting malocclusion and related issues
US9744001B2 (en) 2014-11-13 2017-08-29 Align Technology, Inc. Dental appliance with cavity for an unerupted or erupting tooth
US20160193014A1 (en) 2015-01-05 2016-07-07 Align Technology, Inc. Method to modify aligner by modifying tooth position
US10537463B2 (en) 2015-01-13 2020-01-21 Align Technology, Inc. Systems and methods for positioning a patient's mandible in response to sleep apnea status
US10588776B2 (en) 2015-01-13 2020-03-17 Align Technology, Inc. Systems, methods, and devices for applying distributed forces for mandibular advancement
US10517701B2 (en) 2015-01-13 2019-12-31 Align Technology, Inc. Mandibular advancement and retraction via bone anchoring devices
US10504386B2 (en) 2015-01-27 2019-12-10 Align Technology, Inc. Training method and system for oral-cavity-imaging-and-modeling equipment
AU2016225169B2 (en) 2015-02-23 2020-05-14 Align Technology, Inc. Primer aligner stages for lag issue resolution in low-stage clear aligner treatments
EP3261578B1 (en) 2015-02-23 2023-08-16 Align Technology, Inc. System and method to manufacture aligner by modifying tooth position
US10449018B2 (en) 2015-03-09 2019-10-22 Stephen J. Chu Gingival ovate pontic and methods of using the same
US11850111B2 (en) 2015-04-24 2023-12-26 Align Technology, Inc. Comparative orthodontic treatment planning tool
DE202015003678U1 (en) 2015-05-26 2015-07-06 Powerpore Gmbh Device for positioning wires for implant prosthetic superstructures
US10492888B2 (en) 2015-07-07 2019-12-03 Align Technology, Inc. Dental materials using thermoset polymers
US11571278B2 (en) 2015-07-07 2023-02-07 Align Technology, Inc. Systems, apparatuses and methods for dental appliances with integrally formed features
US11045282B2 (en) 2015-07-07 2021-06-29 Align Technology, Inc. Direct fabrication of aligners with interproximal force coupling
US10743964B2 (en) 2015-07-07 2020-08-18 Align Technology, Inc. Dual aligner assembly
US11419710B2 (en) 2015-07-07 2022-08-23 Align Technology, Inc. Systems, apparatuses and methods for substance delivery from dental appliance
US10874483B2 (en) 2015-07-07 2020-12-29 Align Technology, Inc. Direct fabrication of attachment templates with adhesive
US10959810B2 (en) 2015-07-07 2021-03-30 Align Technology, Inc. Direct fabrication of aligners for palate expansion and other applications
US10248883B2 (en) 2015-08-20 2019-04-02 Align Technology, Inc. Photograph-based assessment of dental treatments and procedures
CA3001070C (en) * 2015-10-06 2023-04-04 Radix Inc. System and method for generating digital information and altering digital models of components with same
US11554000B2 (en) 2015-11-12 2023-01-17 Align Technology, Inc. Dental attachment formation structure
US11931222B2 (en) 2015-11-12 2024-03-19 Align Technology, Inc. Dental attachment formation structures
US11596502B2 (en) 2015-12-09 2023-03-07 Align Technology, Inc. Dental attachment placement structure
US11103330B2 (en) 2015-12-09 2021-08-31 Align Technology, Inc. Dental attachment placement structure
US10045835B2 (en) 2016-02-17 2018-08-14 Align Technology, Inc. Variable direction tooth attachments
WO2017218947A1 (en) 2016-06-17 2017-12-21 Align Technology, Inc. Intraoral appliances with sensing
US10383705B2 (en) 2016-06-17 2019-08-20 Align Technology, Inc. Orthodontic appliance performance monitor
KR20230154476A (en) 2016-07-27 2023-11-08 얼라인 테크널러지, 인크. Intraoral scanner with dental diagnostics capabilities
US10507087B2 (en) 2016-07-27 2019-12-17 Align Technology, Inc. Methods and apparatuses for forming a three-dimensional volumetric model of a subject's teeth
CN109640869A (en) 2016-08-24 2019-04-16 阿莱恩技术有限公司 The method for visualizing rectifier by modifying tooth position and manufacturing rectifier
DE102016012130A1 (en) * 2016-10-11 2018-04-12 Shin-Etsu Silicones Europe B.V. Optical scanner for dental impression, digitizing and dental model system
CN117257492A (en) 2016-11-04 2023-12-22 阿莱恩技术有限公司 Method and apparatus for dental imaging
WO2018102702A1 (en) 2016-12-02 2018-06-07 Align Technology, Inc. Dental appliance features for speech enhancement
EP3824843A1 (en) 2016-12-02 2021-05-26 Align Technology, Inc. Palatal expanders and methods of expanding a palate
US11376101B2 (en) 2016-12-02 2022-07-05 Align Technology, Inc. Force control, stop mechanism, regulating structure of removable arch adjustment appliance
CA3043049A1 (en) 2016-12-02 2018-06-07 Align Technology, Inc. Methods and apparatuses for customizing rapid palatal expanders using digital models
US10548700B2 (en) 2016-12-16 2020-02-04 Align Technology, Inc. Dental appliance etch template
WO2018118769A1 (en) 2016-12-19 2018-06-28 Align Technology, Inc. Aligners with enhanced gable bends
US11071608B2 (en) 2016-12-20 2021-07-27 Align Technology, Inc. Matching assets in 3D treatment plans
US10456043B2 (en) 2017-01-12 2019-10-29 Align Technology, Inc. Compact confocal dental scanning apparatus
US10779718B2 (en) 2017-02-13 2020-09-22 Align Technology, Inc. Cheek retractor and mobile device holder
EP3600130B1 (en) 2017-03-20 2023-07-12 Align Technology, Inc. Generating a virtual depiction of an orthodontic treatment of a patient
US10613515B2 (en) 2017-03-31 2020-04-07 Align Technology, Inc. Orthodontic appliances including at least partially un-erupted teeth and method of forming them
US11045283B2 (en) 2017-06-09 2021-06-29 Align Technology, Inc. Palatal expander with skeletal anchorage devices
US10639134B2 (en) 2017-06-26 2020-05-05 Align Technology, Inc. Biosensor performance indicator for intraoral appliances
WO2019006416A1 (en) 2017-06-30 2019-01-03 Align Technology, Inc. Computer implemented method and system for designing and/or manufacturing orthodontic appliances for treating or preventing temporomandibular joint dysfunction
US11793606B2 (en) 2017-06-30 2023-10-24 Align Technology, Inc. Devices, systems, and methods for dental arch expansion
US10885521B2 (en) 2017-07-17 2021-01-05 Align Technology, Inc. Method and apparatuses for interactive ordering of dental aligners
WO2019018784A1 (en) 2017-07-21 2019-01-24 Align Technology, Inc. Palatal contour anchorage
US11633268B2 (en) 2017-07-27 2023-04-25 Align Technology, Inc. Tooth shading, transparency and glazing
US10517482B2 (en) 2017-07-27 2019-12-31 Align Technology, Inc. Optical coherence tomography for orthodontic aligners
WO2019035979A1 (en) 2017-08-15 2019-02-21 Align Technology, Inc. Buccal corridor assessment and computation
WO2019036677A1 (en) 2017-08-17 2019-02-21 Align Technology, Inc. Dental appliance compliance monitoring
EP3668443B1 (en) 2017-08-17 2023-06-07 Align Technology, Inc. Systems and methods for designing appliances for orthodontic treatment
US10813720B2 (en) 2017-10-05 2020-10-27 Align Technology, Inc. Interproximal reduction templates
WO2019084326A1 (en) 2017-10-27 2019-05-02 Align Technology, Inc. Alternative bite adjustment structures
CN111295153B (en) 2017-10-31 2023-06-16 阿莱恩技术有限公司 Dental appliance with selective bite loading and controlled tip staggering
US11737857B2 (en) 2017-11-01 2023-08-29 Align Technology, Inc. Systems and methods for correcting malocclusions of teeth
US11096763B2 (en) 2017-11-01 2021-08-24 Align Technology, Inc. Automatic treatment planning
US11534974B2 (en) 2017-11-17 2022-12-27 Align Technology, Inc. Customized fabrication of orthodontic retainers based on patient anatomy
CN114948315A (en) 2017-11-30 2022-08-30 阿莱恩技术有限公司 Sensor for monitoring oral appliance
WO2019118876A1 (en) 2017-12-15 2019-06-20 Align Technology, Inc. Closed loop adaptive orthodontic treatment methods and apparatuses
US10980613B2 (en) 2017-12-29 2021-04-20 Align Technology, Inc. Augmented reality enhancements for dental practitioners
KR20200115580A (en) 2018-01-26 2020-10-07 얼라인 테크널러지, 인크. Oral diagnostic scan and tracking
EP3743007A1 (en) 2018-01-26 2020-12-02 Align Technology, Inc. Visual prosthetic and orthodontic treatment planning
US11937991B2 (en) 2018-03-27 2024-03-26 Align Technology, Inc. Dental attachment placement structure
JP7374121B2 (en) 2018-04-11 2023-11-06 アライン テクノロジー, インコーポレイテッド releasable palatal expander
CN112074262B (en) 2018-05-04 2024-01-16 阿莱恩技术有限公司 Curable composition for high Wen Guangke-based photopolymerization process and method of preparing crosslinked polymer therefrom
US11026766B2 (en) 2018-05-21 2021-06-08 Align Technology, Inc. Photo realistic rendering of smile image after treatment
US11553988B2 (en) 2018-06-29 2023-01-17 Align Technology, Inc. Photo of a patient with new simulated smile in an orthodontic treatment review software
WO2020005386A1 (en) 2018-06-29 2020-01-02 Align Technology, Inc. Providing a simulated outcome of dental treatment on a patient
US10835349B2 (en) 2018-07-20 2020-11-17 Align Technology, Inc. Parametric blurring of colors for teeth in generated images
CN116650153A (en) 2019-01-03 2023-08-29 阿莱恩技术有限公司 Automatic appliance design using robust parameter optimization method
US11478334B2 (en) 2019-01-03 2022-10-25 Align Technology, Inc. Systems and methods for nonlinear tooth modeling
US11779243B2 (en) 2019-01-07 2023-10-10 Align Technology, Inc. Customized aligner change indicator
RU2722739C1 (en) * 2019-02-06 2020-06-03 Общество с ограниченной ответственностью "Ай Ти Эс" (ООО "Ай Ти Эс") Diagnostic technique for current dental health
WO2020231984A1 (en) 2019-05-14 2020-11-19 Align Technology, Inc. Visual presentation of gingival line generated based on 3d tooth model
CN110559091B (en) * 2019-09-29 2021-02-02 中国人民解放军陆军军医大学第一附属医院 Dental handpiece with auxiliary distance measuring and depth fixing functions
US11622836B2 (en) 2019-12-31 2023-04-11 Align Technology, Inc. Aligner stage analysis to obtain mechanical interactions of aligners and teeth for treatment planning
GB2611627A (en) 2020-02-26 2023-04-12 Get Grin Inc Systems and methods for remote dental monitoring
US20220392645A1 (en) * 2021-06-08 2022-12-08 Exocad Gmbh Automated treatment proposal
WO2023133297A2 (en) * 2022-01-09 2023-07-13 Get-Grin Inc. Collapsible dental scope
US11580883B1 (en) 2022-01-26 2023-02-14 NotCo Delaware, LLC Compact dynamic simulator of the human gastrointestinal system
US11735067B1 (en) 2022-03-22 2023-08-22 NotCo Delaware, LLC In vitro dynamic mouth simulator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2525103B1 (en) * 1982-04-14 1985-09-27 Duret Francois IMPRESSION TAKING DEVICE BY OPTICAL MEANS, PARTICULARLY FOR THE AUTOMATIC PRODUCTION OF PROSTHESES
US4663720A (en) * 1984-02-21 1987-05-05 Francois Duret Method of and apparatus for making a prosthesis, especially a dental prosthesis
CH672722A5 (en) * 1986-06-24 1989-12-29 Marco Brandestini
DE3723555C2 (en) * 1987-07-16 1994-08-11 Steinbichler Hans Process for the production of dentures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412834A (en) * 2020-04-08 2020-07-14 昆明超泰经贸有限公司 Tobacco bale paper indentation data detection system and detection method thereof
CN111412834B (en) * 2020-04-08 2022-02-08 昆明超泰经贸有限公司 Method for detecting cigarette packet paper indentation data

Also Published As

Publication number Publication date
CA2124154A1 (en) 1995-05-23
US5338198A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
CA2124154C (en) Dental modeling simulator
US4575805A (en) Method and apparatus for the fabrication of custom-shaped implants
US6579095B2 (en) Mating parts scanning and registration methods
JP4563178B2 (en) Equipment for manufacturing denture parts
Kattadiyil et al. CAD/CAM complete dentures: a review of two commercial fabrication systems
US8922635B2 (en) Surface mapping and generating devices and methods for surface mapping and surface generation
Shah et al. The use of a 3D laser scanner using superimpositional software to assess the accuracy of impression techniques
US5131844A (en) Contact digitizer, particularly for dental applications
US8043091B2 (en) Computer machined dental tooth system and method
US3983628A (en) Dental articulator, new bite registration guide, and diagnostic procedure associated with stereodont orthodontic study model
US8366442B2 (en) Dental apparatus for radiographic and non-radiographic imaging
Schneider et al. Comparison between clinical and digital soft tissue measurements
Rekow et al. CAD/CAM for dental restorations-some of the curious challenges
US20070264609A1 (en) Method and apparatus for the 3-Dimensional analysis of movement of the tooth surfaces of the maxilla in relation to the mandible
JP2006502817A5 (en)
Yamamoto et al. Measurements of dental cast profile and three-dimensional tooth movement during orthodontic treatment
US20110143307A1 (en) Stent, a reproducing method using the stent, and a method for positioning a wire
Pröschel et al. Articulator-related registration--a simple concept for minimizing eccentric occlusal errors in the articulator.
Claus et al. Generation of 3D digital models of the dental arches using optical scanning techniques
Abad-Coronel et al. Intraoral scanning devices applied in fixed prosthodontics
Bowley et al. Reliability of a facebow transfer procedure
Lowey The development of a new method of cephalometric and study cast mensuration with a computer controlled, video image capture system. Part II: Study cast mensuration
JPH09159419A (en) Three-dimensional measuring system for tooth model
Okuyama et al. Quantitative evaluation of axial wall taper in prepared artificial teeth
Culwick et al. The size of occlusal rest seats prepared for removable partial dentures

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed