WO2017183567A1 - Calibration system, calibration method, and calibration program - Google Patents

Calibration system, calibration method, and calibration program Download PDF

Info

Publication number
WO2017183567A1
WO2017183567A1 PCT/JP2017/015234 JP2017015234W WO2017183567A1 WO 2017183567 A1 WO2017183567 A1 WO 2017183567A1 JP 2017015234 W JP2017015234 W JP 2017015234W WO 2017183567 A1 WO2017183567 A1 WO 2017183567A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
calibrated
optical
optical measurement
measuring device
Prior art date
Application number
PCT/JP2017/015234
Other languages
French (fr)
Japanese (ja)
Inventor
廣治 山元
政彦 崎本
直樹 鷺坂
彰祐 岡山
横田 聡
憲応 窪田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018513152A priority Critical patent/JP6784292B2/en
Publication of WO2017183567A1 publication Critical patent/WO2017183567A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors

Definitions

  • the present disclosure relates to a technique for calibrating an optical measurement device.
  • ⁇ Optical measuring devices that can measure the color of the measurement object are widespread. When the optical measuring device fails, it is necessary to calibrate the optical measuring device. Calibration refers to correcting measurement data on software when the optical system of the optical measuring device is displaced. The calibrated optical measuring device can output measurement data correctly.
  • Patent Document 1 discloses a colorimeter that performs calibration processing using a plurality of calibration reference samples.
  • Patent Document 2 discloses a spectroscopic measurement device that can be repaired quickly.
  • Patent Laid-Open No. 10-153545 discloses a spectroscopic analyzer that performs automatic calibration as necessary.
  • JP 63-145924 A Japanese Patent Laid-Open No. 10-307062 JP-A-10-153545
  • the calibration procedure varies depending on the type of optical measuring device.
  • various types of optical measuring devices have become widespread, and the calibration processing of the optical measuring devices has become complicated. For this reason, human error has occurred during calibration.
  • the techniques disclosed in Patent Documents 1 to 3 execute a calibration process on a single optical measurement apparatus. Therefore, a calibration system that can appropriately execute the calibration process according to the type of the optical measuring device is desired.
  • the present disclosure has been made to solve the above-described problems, and an object in one aspect is to provide a calibration system that can calibrate an optical measurement device according to the type of the optical measurement device. An object in another aspect is to provide a calibration method capable of calibrating an optical measurement device according to the type of the optical measurement device. Still another object of the present invention is to provide a calibration program that can calibrate an optical measurement device according to the type of the optical measurement device.
  • a calibration system that can calibrate different types of optical measurement devices is an optical system that uses multiple reference objects, a receiver for receiving the type of optical measurement device from the optical measurement device to be calibrated, and a reference object used for calibration processing. Based on calibration information associated with each type of measurement device, a selection unit for selecting a reference object associated with the type of optical measurement device to be calibrated from among the plurality of reference objects, An acquisition unit for outputting a measurement instruction of the reference object selected by the selection unit to the optical measurement apparatus to be calibrated and acquiring measurement data of the reference object from the optical measurement apparatus to be calibrated, and the measurement data And a calibration unit for calibrating the optical measuring device to be calibrated.
  • a calibration method capable of calibrating different types of optical measurement devices using a plurality of reference objects includes a step of receiving the type of the optical measurement device from the optical measurement device to be calibrated, and calibration Based on the calibration information in which the reference object used for processing is associated with each type of optical measurement device, the reference object associated with the type of optical measurement device to be calibrated is selected from the plurality of reference objects.
  • a calibration program capable of calibrating different types of optical measurement devices using a plurality of reference objects receives a type of the optical measurement device from the optical measurement device to be calibrated. Based on the calibration information in which the step and the reference object used for the calibration process are associated with each type of the optical measurement device, the step is associated with the type of the optical measurement device to be calibrated from among the plurality of reference objects.
  • the reference object selected in the selecting step and the measurement instruction of the reference object selected in the selecting step are output to the calibration target optical measurement device, and the measurement data of the reference object is obtained from the calibration target optical measurement device. And a step of calibrating the optical measuring device to be calibrated using the measurement data.
  • the optical measurement device can be calibrated according to the type of the optical measurement device.
  • FIG. 1 is a diagram showing an example of a system configuration in a calibration system 500 according to the first embodiment.
  • the calibration system 500 includes a calibration device 100 and a server 300.
  • the calibration device 100 can communicate with the server 300.
  • the calibration apparatus 100 is provided with an optical measurement apparatus 200 to be calibrated.
  • the optical measuring device 200 is a device for measuring reflected light from an object, for example.
  • the optical measuring device 200 is a hand-held spectrocolorimeter or a hand-held color difference meter.
  • the calibration apparatus 100 includes, for example, a control unit 101 and a box 102.
  • the control unit 101 and each component in the box 102 are electrically connected, and the control unit 101 controls each component in the box 102.
  • the control unit 101 may be provided inside the box 102 or may be provided outside the box 102.
  • the box 102 may be a dark box that cuts out external light, or may be a transparent box.
  • a stand 103 is provided inside the box 102.
  • a storage unit 104, a drive unit 105, a stage 112, and a fixing mechanism 116 are arranged on the table 103.
  • the storage unit 104 stores a calibration reference 110 (reference object) used for the calibration process of the optical measurement apparatus 200.
  • the calibration process is a new process based on the difference between the reference data obtained by photometric measurement of the calibration standard 110 before the failure of the optical measuring apparatus 200 and the measurement data obtained by photometric measurement of the same calibration standard 110 thereafter. This is a process for correcting the measurement data obtained in (1) according to the reference data.
  • the calibration reference 110 includes, for example, a blue reference plate 110B, a red reference plate 110R, a green reference plate 110G, a yellow reference plate 110Y, an orange reference plate 110O, a cyan reference plate 110C, and magenta.
  • the reference plate 110M and the white reference plate 110W are included.
  • the driving unit 105 includes, for example, a robot arm 106 and an electromagnetic coil 108.
  • the drive unit 105 can drive the robot arm 106 in the vertical direction and can drive the robot arm 106 to rotate.
  • the electromagnetic coil 108 attracts a metal plate (not shown) attached to the upper surface of the calibration standard 110 with a magnetic force.
  • the driving unit 105 sets the calibration reference 110 so as to face the measurement port of the optical measuring device 200.
  • the drive unit 105 changes the type of the calibration standard 110 to be installed according to the type of the optical measurement device 200. A method for selecting the calibration standard 110 will be described later.
  • the optical measuring device 200 can be installed on the stage 112.
  • the stage 112 moves up and down in accordance with a control signal from the control unit 101.
  • the fixing mechanism 116 moves up and down in accordance with a control signal from the control unit 101.
  • a hole is formed in the fixing mechanism 116.
  • the control unit 101 drives at least one of the stage 112 and the fixing mechanism 116 so that the measurement port of the optical measuring device 200 fits into the hole of the fixing mechanism 116. Thereby, the optical measuring device 200 is fixed to the calibration device 100.
  • a spacer 118 is provided in the fixing mechanism 116.
  • the number of spacers 118 is three or more.
  • the spacer 118 is provided with a calibration standard 110.
  • a red reference plate 110 ⁇ / b> R is installed on the spacer 118.
  • the control unit 101 drives at least one of the stage 112 and the fixing mechanism 116 so that the spacer 118 and the measurement port of the optical measurement device 200 have the same height.
  • the reference plate 110 ⁇ / b> R contacts the measurement port of the optical measurement device 200.
  • a sensor that detects environmental data indicating the environment around the optical measuring device 200 is provided inside the box 102.
  • the sensors include a temperature sensor 130 and a vibration sensor 132, for example.
  • the temperature sensor 130 detects the temperature inside the box 102. More specifically, the temperature sensor 130 is provided around the optical measurement device 200 and detects the temperature around the optical measurement device 200.
  • the vibration sensor 132 is provided around the optical measurement device 200 and detects the magnitude of vibration applied to the optical measurement device 200.
  • the vibration sensor 132 is, for example, an acceleration sensor, and the magnitude of vibration is represented by acceleration.
  • the calibration system 500 is configured by one calibration device 100, but the calibration system 500 may be configured by a plurality of calibration devices 100.
  • the calibration system 500 is configured by one server 300, but the calibration system 500 may be configured by a plurality of servers 300.
  • one optical measurement device 200 is installed in the calibration device 100, but a plurality of optical measurement devices 200 may be installed in the calibration device 100.
  • FIG. 2 is a diagram illustrating an example of a calibration procedure of the optical measurement apparatus 200.
  • step S10 it is assumed that the calibration apparatus 100 receives a calibration instruction for the optical measurement apparatus 200 from the user. Based on this, the calibration device 100 establishes communication with the optical measurement device 200.
  • step S ⁇ b> 12 the calibration apparatus 100 transmits a request for acquiring the type of the optical measurement apparatus 200 to the optical measurement apparatus 200.
  • the optical measurement device 200 transmits the type of the optical measurement device 200 to the calibration device 100 based on the reception of the acquisition request from the calibration device 100.
  • the type of the optical measuring device 200 is stored in advance in the optical measuring device 200 as identification information 84B (see FIG. 11).
  • the identification information 84B is represented by ID (Identification) etc., for example.
  • step S20 the calibration apparatus 100 selects the calibration standard 110 corresponding to the type of the optical measurement apparatus 200 from the calibration standards 110 (see FIG. 1).
  • FIG. 3 is a diagram showing the contents of the calibration information 84A referred to during the selection process.
  • the calibration information 84A associates calibration standards used for calibration processing for each type of optical measuring device.
  • a reference plate is shown as an example of a calibration reference.
  • One or more reference plates may be associated with each optical measurement device.
  • the calibration apparatus 100 selects a calibration standard associated with the type of the optical measurement apparatus 200 from the calibration standards 110.
  • the calibration apparatus 100 determines the selected calibration standard as a calibration standard used for the calibration process.
  • step S30 calibration apparatus 100 installs the calibration reference selected in step S20 so as to face the measurement port of optical measurement apparatus 200.
  • the procedure for setting the calibration standard will be described.
  • FIG. 4 is a diagram showing an example of the procedure for installing the selected calibration standard.
  • the red reference plate 110R is selected in the selection process of step S20.
  • the control unit 101 (see FIG. 1) of the calibration apparatus 100 outputs a control command to the drive unit 105, and drives the electromagnetic coil 108 provided at the tip of the robot arm 106 onto the reference plate 110R.
  • a metal plate (not shown) is affixed to the upper surface of the reference plate 110R, and the electromagnetic coil 108 attracts the metal plate of the reference plate 110R with a magnetic force.
  • the drive unit 105 drives the robot arm 106 and installs the reference plate 110 ⁇ / b> R so as to face the measurement port of the optical measurement device 200.
  • step S32 the calibration apparatus 100 outputs a photometry command to the optical measurement apparatus 200.
  • the optical measuring device 200 performs photometry on the installed reference plate 110R.
  • measurement data of the reference plate 110R is obtained.
  • step S34 the optical measurement device 200 transmits the measurement data of the reference plate 110R to the calibration device 100.
  • step S36 the calibration apparatus 100 transmits the measurement data received from the optical measurement apparatus 200 to the server 300.
  • step S40 the server 300 executes the calibration process of the optical measurement device 200 based on the measurement data received from the calibration device 100.
  • the calibration process will be described with reference to FIG.
  • FIG. 5 is a diagram showing the contents of the reference data 320A referred to during the calibration process.
  • the reference data 320A is stored in the server 300 in advance.
  • the reference data 320A is prepared for each type of optical measuring device.
  • the server 300 selects the reference data 320A corresponding to the type of the optical measuring device 200 received in step S14.
  • the reference data 320A is obtained by previously measuring the calibration reference 110 for each color.
  • the reference data 320A includes, for example, a spectrum obtained by measuring the calibration reference 110 for each color.
  • the spectral spectrum is expressed by the light intensity for each wavelength.
  • FIG. 6 is a graph showing a reference spectrum 321 obtained by measuring the reference plate 110R in advance and a measurement spectrum 322 obtained by measuring the reference plate 110R in step S36.
  • the reference spectrum 321 is acquired from the reference data 320A shown in FIG.
  • the red reference plate 110R mainly reflects light having a wavelength ⁇ 1 (about 650 nm). Therefore, the light intensity in the reference spectrum 321 becomes maximum at the wavelength ⁇ 1. On the other hand, in the measurement spectrum 322, the light intensity is maximum at the wavelength ⁇ 2. That is, the measurement spectrum 322 is shifted by the wavelength difference ⁇ between the wavelengths ⁇ 1 and ⁇ 2. When the wavelength difference ⁇ is larger than the predetermined value, the server 300 determines that the optical measurement device 200 has failed.
  • the server 300 determines whether or not the optical measurement device 200 has failed based on the reference spectrum 321 and the measurement spectrum 322 has been described. Based on the defined Lab value and the Lab value obtained by photometric measurement of the reference plate, it may be determined whether or not the optical measuring device 200 is out of order.
  • step S42 the server 300 transmits the wavelength difference ⁇ calculated in the calibration process of step S40 to the calibration apparatus 100 as a calibration result.
  • step S44 the calibration apparatus 100 transmits the calibration result received from the server 300 to the optical measurement apparatus 200.
  • step S46 the optical measuring device 200 stores the calibration result received from the calibration device 100.
  • step S50 it is assumed that the optical measuring device 200 receives a photometric instruction from the user.
  • step S52 the optical measurement apparatus 200 performs photometry on the measurement object. As a result, measurement data of the measurement object is obtained.
  • step S54 the optical measuring device 200 shifts the measurement data obtained in step S52 by the wavelength difference ⁇ . Thereby, the measurement data is calibrated.
  • FIG. 7 is a diagram illustrating an example of a configuration for realizing the calibration process.
  • the calibration system 500 includes a calibration apparatus 100 and a server 300.
  • the calibration apparatus 100 includes a storage unit 84, a reception unit 150, a selection unit 152, a drive control unit 154, an acquisition unit 156, and a transmission unit 158.
  • Server 300 includes a storage unit 320, a reception unit 350, and a calibration unit 352.
  • the receiving unit 150 receives the type of the optical measuring device 200 from the optical measuring device 200 to be calibrated.
  • the type of the optical measurement device 200 is output to the selection unit 152 and the transmission unit 158.
  • the selection unit 152 associates the calibration reference 110 (reference object) used in the calibration process with the type of the optical measurement device 200 from the calibration reference 110 based on the calibration information 84A that associates the calibration reference 110 with each type of the optical measurement device.
  • the selected calibration standard 110 is selected. Since the method of selecting the calibration standard is as described with reference to FIG. 3, the description thereof will not be repeated.
  • the calibration reference 110 includes reference plates 110B, 110R, 110G, 110Y, 110O, 110C, 110C, 110M, and 110W (see FIG. 1) of different colors.
  • the selection unit 152 selects a reference plate associated with the type of the optical measurement device 200 from the reference plates 110B, 110R, 110G, 110Y, 110O, 110C, 110C, 110M, and 110W based on the calibration information 84A. To do.
  • the drive control unit 154 controls the drive unit 105 (see FIG. 1). Based on the control signal from the drive control unit 154, the drive unit 105 installs the calibration reference selected by the selection unit 152 so as to face the measurement port of the optical measurement apparatus 200.
  • the acquisition unit 156 outputs a measurement instruction to the optical measurement device 200 based on the setting of the calibration reference 110, and obtains the measurement data of the calibration reference selected by the selection unit 152 from the optical measurement device 200 to be calibrated. get.
  • the acquired measurement data is output to the transmission unit 158.
  • the transmission unit 158 transmits the type of the optical measurement device 200 output from the reception unit 150 and the constant data output from the acquisition unit 156 to the server 300.
  • the receiving unit 350 receives the type of the optical measuring device 200 and the measurement data of the selected calibration standard from the calibration device 100.
  • the calibration unit 352 calibrates the optical measurement apparatus 200 using the measurement data obtained by photometry of the selected calibration standard. Since the calibration process is as described with reference to FIGS. 5 and 6, the description thereof will not be repeated.
  • the processing capability of the calibration device 100 or the optical measurement device 200 is often inferior to that of the server 300. Therefore, the time required for the calibration process is shortened by the server 300 executing the calibration process. Further, when the server 300 executes the calibration process, there is no risk that the calibration algorithm leaks out or the risk that the calibration algorithm is lost.
  • FIG. 8 is a flowchart showing processing executed by calibration system 500.
  • FIG. 9 is a flowchart showing the calibration process.
  • FIG. 10 is a flowchart showing a calibration result output process.
  • the processing in FIGS. 8 to 10 is realized by the control unit 101 (see FIG. 11) of the calibration apparatus 100 or the control unit 301 (see FIG. 11) of the server 300 executing the calibration program. In other aspects, some or all of the processing may be performed by circuit elements or other hardware.
  • step S110 the calibration system 500 determines whether a calibration instruction has been accepted. The determination process is executed by the calibration apparatus 100, for example. If calibration apparatus 100 determines that a calibration instruction has been received (YES in step S110), it switches control to step S112. When that is not right (in step S110 NO), the calibration apparatus 100 performs the process of step S110 again.
  • step S112 the calibration system 500 acquires the type of the optical measuring device 200 to be calibrated from the optical measuring device 200.
  • the acquisition process is executed by the receiving unit 150 (see FIG. 7) of the calibration apparatus 100, for example.
  • the calibration system 500 acquires environmental data when the optical measurement device 200 is used from the optical measurement device 200.
  • the environmental data includes, for example, the temperature when the optical measuring device 200 is used, the magnitude of vibration given when the optical measuring device 200 is used, and the like.
  • the temperature is periodically detected by a temperature sensor (not shown) provided in the optical measurement device 200, and stored in the optical measurement device 200 as a temperature history.
  • the magnitude of vibration applied to the optical measurement apparatus 200 is periodically detected by a vibration sensor (not shown) provided in the optical measurement apparatus 200 and stored in the optical measurement apparatus 200 as vibration information.
  • the calibration system 500 acquires the temperature history and the vibration history from the optical measurement device 200.
  • step S116 the calibration system 500 estimates the cause of the failure of the optical measuring device 200 based on the temperature history and the vibration history.
  • the estimation process is executed by the server 300, for example.
  • the server 300 determines that the failure has occurred due to use in a high-temperature environment.
  • the server 300 determines that the failure is caused by dropping when the vibration history includes a magnitude of vibration equal to or greater than a predetermined value.
  • step S120 the calibration system 500 determines whether or not the failure of the optical measuring device 200 can be handled by the calibration process.
  • the estimation process is executed by the server 300, for example.
  • the calibration system 500 determines that the failure of the optical measurement device 200 can be handled by the calibration process. To do.
  • the calibration system 500 determines that the optical measurement device 200 needs to be repaired. That is, the calibration system 500 determines that the failure of the optical measurement device 200 cannot be handled by the calibration process.
  • the calibration system 500 determines that the failure of the optical measurement apparatus 200 can be handled by the calibration process (YES in step S120)
  • the calibration system 500 switches the control to step S200. Otherwise (NO in step S120), calibration system 500 switches control to step S300.
  • step S200 the calibration system 500 executes the calibration process of the optical measuring device 200.
  • the calibration process in step S200 will be described with reference to FIG.
  • step S210 the calibration system 500 selects a reference plate associated with the type of the optical measuring device 200 from a plurality of reference plates based on the above-described calibration information 84A (see FIG. 3).
  • the selection process is executed by, for example, the selection unit 152 (see FIG. 7) of the calibration apparatus 100. Since the method for selecting the reference plate is as described in FIG. 3, the description thereof will not be repeated.
  • step S212 the calibration system 500 initializes a variable n representing the reference plate number.
  • the variable n is initialized to zero, for example.
  • the plurality of reference plates are uniquely identified by the variable n.
  • step S214 the calibration system 500 installs the nth reference plate so as to face the measurement port of the optical measuring device 200.
  • the installation process is executed by, for example, the drive control unit 154 (see FIG. 7) of the calibration apparatus 100.
  • step S216 the calibration system 500 outputs a photometric command to the optical measuring device 200 based on the installation of the nth reference plate. As a result, the calibration system 500 can obtain measurement data of the nth reference plate.
  • the calibration process is executed by, for example, the calibration unit 352 (see FIG. 7) of the server 300. Since the calibration process is as described with reference to FIGS. 5 and 6, the description thereof will not be repeated.
  • step S220 the calibration system 500 determines whether the calibration process has been executed using all the reference plates (YES in step S220), ends the process in step S200, and switches the control to step S300. Otherwise (NO in step S220), calibration system 500 switches control to step S222.
  • step S222 the calibration system 500 returns the nth reference plate to the original position.
  • the process is executed by, for example, the drive control unit 154 (see FIG. 7) of the calibration apparatus 100.
  • step S224 the calibration system 500 increments the variable n. That is, the calibration system 500 increases the variable n by “1”.
  • step S300 the calibration system 500 displays the calibration result of the optical measuring device 200.
  • the display process of the calibration result in step S300 will be described.
  • step S310 the calibration system 500 determines whether or not the calibration process has been completed normally. If calibration system 500 determines that the calibration process has been completed normally (YES in step S310), it switches control to step S312. Otherwise (NO in step S310), calibration system 500 switches control to step S320.
  • step S312 the calibration system 500 displays that the calibration process has been completed normally.
  • the fact that the calibration process has been completed normally is displayed on the display unit 80 (see FIG. 11) of the calibration apparatus 100, for example.
  • the fact that the calibration process has been completed normally may be notified by voice.
  • step S320 the calibration system 500 displays that the calibration process has ended abnormally.
  • the fact that the calibration process has ended abnormally is displayed on the display unit 80 (see FIG. 11) of the calibration apparatus 100, for example.
  • the display unit 80 preferably displays the cause (contents) of abnormal termination. Note that the fact that the calibration process has ended abnormally may be notified by voice.
  • step S322 the calibration system 500 determines whether or not the optical measuring device 200 needs to be repaired. Whether or not repair is necessary is determined based on, for example, the failure cause estimation result in step S116.
  • the calibration system 500 determines that the optical measuring device 200 needs to be repaired (YES in step S322), the calibration system 500 switches the control to step S324. Otherwise (NO in step S322), calibration system 500 switches control to step S326.
  • step S324 the calibration system 500 displays that the optical measuring device 200 needs to be repaired.
  • the need for repair of the optical measuring device 200 is displayed on the display unit 80 (see FIG. 11) of the calibration device 100, for example.
  • the display unit 80 preferably displays the cause of the failure. Thereby, the time for analyzing the cause of failure of the optical measuring device 200 is shortened. Note that it may be notified by voice that the optical measuring device 200 needs to be repaired.
  • step S326 the calibration system 500 displays that the optical measurement device 200 needs to be recalibrated.
  • the necessity of recalibration of the optical measuring device 200 is displayed on the display unit 80 (see FIG. 11) of the calibration device 100, for example. Alternatively, it is notified by voice that the optical measuring device 200 needs to be recalibrated. Thereafter, the calibration process of step S200 is executed again.
  • FIG. 11 is a block diagram illustrating a main hardware configuration of the calibration apparatus 100.
  • the calibration apparatus 100 includes a display unit 80, an operation unit 82, a storage unit 84, a communication interface 90, a USB (Universal Serial Bus) terminal 92, a control unit 101, and a stage 112.
  • a temperature sensor 130, a calibration reference 110, a temperature sensor 130, and a selection unit 152 Since the stage 112, the temperature sensor 130, and the selection unit 152 are as described in FIG. 1, the description thereof will not be repeated below.
  • the display unit 80 is, for example, an LCD (Liquid Crystal Display), an organic EL (Electro Luminescence) display, or other display device.
  • the display unit 80 includes a display and a touch panel. The display and the touch panel are overlapped with each other, and the display unit 80 receives an operation on the calibration apparatus 100 by a touch operation.
  • the display unit 80 displays, for example, a power supply state (for example, on or off) of the calibration apparatus 100, a calibration mode, a calibration state, a calibration result, a temperature in the calibration apparatus 100, and the like.
  • the operation unit 82 receives an operation on the calibration apparatus 100.
  • the operation unit 82 includes a power button, a calibration mode selection button, a calibration start button, a calibration stop button, an up / down key, and the like. Note that when the display unit 80 is configured as a touch panel, the operation unit 82 may not be provided.
  • the storage unit 84 is a storage medium such as a hard disk or an external storage device.
  • the storage unit 84 stores the above-described calibration information 84A (see FIG. 3), the identification information 84B of the optical measurement device 200 received from the optical measurement device 200, the calibration program 84C according to the present embodiment, and the like.
  • the storage location of the calibration information 84A, the identification information 84B, and the calibration program 84C is not limited to the storage unit 84.
  • the storage area of the control unit 301 for example, a cache), ROM (Read Only Memory), RAM (Random Access Memory) or an external storage device.
  • the calibration program 84C may be provided as a part of an arbitrary program, not as a single program. In this case, control processing according to the present embodiment is realized in cooperation with an arbitrary program. Even such a program that does not include some modules does not depart from the spirit of the server 300 according to the present embodiment. Furthermore, part or all of the functions provided by the calibration program 84C according to the present embodiment may be realized by dedicated hardware. Furthermore, a part or all of the functions provided by the calibration program 84C may be realized by the cooperation of the calibration apparatus 100 and the server 300. Furthermore, the server 300 may be configured in the form of a so-called cloud service in which at least one server realizes processing according to the present embodiment.
  • the communication interface 90 realizes communication between the calibration device 100 and other communication devices.
  • Other communication devices are, for example, the optical measurement device 200 and the server 300.
  • an antenna (not shown) is connected to the communication interface 90, and communication between the calibration apparatus 100 and another communication device is realized by wireless communication via the antenna.
  • a wireless communication standard for example, WiFi Direct, Bluetooth (registered trademark), ZigBee, or the like is adopted.
  • a USB cable can be connected to the USB terminal 92.
  • the calibration device 100 and the optical measurement device 200 are connected to each other via a USB cable, and communication between the calibration device 100 and the optical measurement device 200 is realized by wired communication via the USB cable.
  • the communication between the calibration apparatus 100 and the optical measurement apparatus 200 may be realized by wired communication via a LAN (Local Area Network) cable.
  • the control unit 101 controls the calibration device 100.
  • the control unit 101 is configured by at least one integrated circuit, for example.
  • the integrated circuit includes, for example, at least one CPU (Central Processing Unit), at least one ASIC (Application Specific Integrated Circuit), at least one FPGA (Field Programmable Gate Array), or a combination thereof.
  • the calibration reference 110 includes, for example, at least one of a reference plate 111 and a reference light source 113.
  • the reference plate 111 corresponds to the above-described reference plates 110B, 110R, 110G, 110Y, 110O, 110C, 110C, 110M, and 110W (see FIG. 1).
  • the reference light source 113 has a plurality of light sources 113A to 113C.
  • the number of light sources is arbitrary.
  • the light sources 113A to 113C are, for example, lamps such as mercury lamps and xenon lamps, or LEDs (Light Emitting Diodes). Details of the reference light source 113 will be described later.
  • FIG. 12 is a block diagram illustrating a main hardware configuration of the server 300.
  • the server 300 includes a control unit 301, a ROM 302, a RAM 303, a communication interface 304, a display unit 305, and a storage unit 320.
  • the control unit 301 is configured by at least one integrated circuit, for example.
  • the integrated circuit includes, for example, at least one CPU, at least one ASIC, at least one FPGA, or a combination thereof.
  • the control unit 301 controls the operation of the server 300 by executing various programs such as the calibration program 320B according to the present embodiment.
  • the control unit 301 reads the calibration program 320B from the storage unit 320 to the ROM 302 based on receiving the execution instruction of the calibration program 320B.
  • the RAM 303 functions as a working memory and temporarily stores various data necessary for executing the calibration program 320B.
  • the communication interface 304 transmits / receives data to / from other communication devices via an antenna (not shown).
  • Other communication devices include a communication terminal such as the calibration device 100, for example.
  • Server 300 may be configured to download calibration program 320B according to the present embodiment via communication interface 304.
  • the display unit 305 is, for example, a liquid crystal display, an organic EL (Electro Luminescence) display, or other display device. As an example, the display unit 305 displays the calibration result of the optical measurement apparatus 200 or displays a setting screen for setting parameters during calibration processing.
  • a liquid crystal display for example, a liquid crystal display, an organic EL (Electro Luminescence) display, or other display device.
  • the display unit 305 displays the calibration result of the optical measurement apparatus 200 or displays a setting screen for setting parameters during calibration processing.
  • the storage unit 320 is a storage medium such as a hard disk or an external storage device.
  • the storage unit 320 stores the above-described reference data 320A (see FIG. 5), the calibration program 320B according to the present embodiment, and the like.
  • the storage location of the reference data 320A and the calibration program 320B is not limited to the storage unit 320, and may be stored in, for example, a storage area (for example, a cache) of the control unit 301, the ROM 302, the RAM 303, or an external storage device. .
  • the calibration program 320B may be provided as a part of an arbitrary program, not as a single program. In this case, control processing according to the present embodiment is realized in cooperation with an arbitrary program. Even such a program that does not include some modules does not depart from the spirit of the server 300 according to the present embodiment. Furthermore, part or all of the functions provided by the calibration program 320B according to the present embodiment may be realized by dedicated hardware. Furthermore, the calibration apparatus 100 and the server 300 may cooperate to implement part or all of the functions provided by the calibration program 320B. Furthermore, the server 300 may be configured in the form of a so-called cloud service in which at least one server realizes processing according to the present embodiment.
  • the calibration system 500 selects the calibration standard according to the type of the optical measurement apparatus 200 to be calibrated, and performs the calibration process of the optical measurement apparatus 200 based on the selected calibration standard. Execute. Thereby, the calibration system 500 can execute the calibration process corresponding to various types of optical measurement apparatuses. In addition, since the calibration of the optical measuring device 200 is automatically executed, the time required for the calibration of the optical measuring device 200 is shortened. In addition, human error that occurs during calibration is suppressed.
  • FIG. 13 is a diagram illustrating a state in which a stationary optical measurement device 200A is installed in the calibration device 100 according to the second embodiment.
  • the optical measuring apparatus 200A is, for example, a stationary spectrocolorimeter or a stationary color difference meter.
  • the calibration apparatus 100 calibrates the optical measurement apparatus 200A with the optical measurement apparatus 200A installed on the stage 112. Since the calibration method is as described in the first embodiment, the description thereof will not be repeated.
  • the calibration system 500 can calibrate not only the handheld optical measurement apparatus 200 but also the stationary optical measurement apparatus 200.
  • the calibration system 500 according to the first embodiment calibrates the optical measurement device using the reference plate.
  • the calibration system 500 according to the third embodiment calibrates the optical measurement device using the reference light source.
  • FIG. 14 is a diagram showing an example of a system configuration in the calibration system 500 according to the third embodiment.
  • An optical measuring device 200B can be installed in the calibration device 100.
  • the optical measurement device 200B is a device that can measure light emitted from a light source, for example.
  • the optical measurement device 200B is a color luminance meter.
  • the calibration device 100 can communicate with the optical measurement device 200B.
  • the calibration apparatus 100 includes a control unit 101 and a box 102. Inside the box 102, a reference light source 113 and a light guide 115 are provided.
  • the reference light source 113 includes, for example, light sources 113A to 113C that emit light of different wavelengths.
  • the calibration apparatus 100 selects a light source used for calibration processing from the light sources 113A to 113C according to the type of the optical measurement apparatus 200B. Thereafter, the calibration apparatus 100 is selected to turn on the light source, and the light emitted from the light source enters the light guide unit 115.
  • the light guide 115 is, for example, a reflector.
  • the light guide unit 115 is driven by a drive mechanism (not shown).
  • the light guide unit 115 receives the light emitted from the reference light source 113 and reflects the light to the measurement light of the optical measurement device 200B. Thereby, the optical measuring device 200 ⁇ / b> B can measure the reference light source 113.
  • the light guide unit 115 is not necessarily provided.
  • the reference light source 113 may be driven.
  • the light guide unit 115 is driven so that light emitted from each light source directly enters the measurement port of the optical measurement device 200.
  • FIG. 15 is a flowchart showing a part of processing executed by calibration system 500 according to the third embodiment.
  • the process of FIG. 15 corresponds to the process of step S200 shown in FIG.
  • Other processes other than step S200 are the same as those described in the first embodiment, and thus description thereof will not be repeated.
  • step S210A the calibration system 500 selects a reference light source associated with the type of the optical measuring device 200 from a plurality of reference light sources.
  • the selection process is executed based on the calibration information 84A shown in FIG.
  • FIG. 16 is a diagram showing calibration information 84A according to the third embodiment.
  • the calibration reference 110 used for the calibration process is associated with each type of optical measuring device.
  • the selection unit 152 selects a reference light source associated with the type of the optical measurement device 200B from the plurality of reference light sources based on the calibration information 84A. More specifically, the selection unit 152 searches for the type of the optical measurement device 200B from the types of optical measurement devices defined in the calibration standard 110, and the reference associated with the searched type. Select a light source.
  • the calibration apparatus 100 determines the selected calibration standard as a reference light source used for the calibration process.
  • step S212A the calibration system 500 initializes a variable m representing the reference light source number.
  • the variable m is initialized to zero, for example.
  • the plurality of reference light sources are uniquely identified by the variable m.
  • step S214A the calibration system 500 turns on the mth reference light source. Thereafter, the calibration system 500 drives the light guide 115 (see FIG. 14) so as to guide the light emitted from the mth reference light source to the measurement port of the optical measurement device 200B. Thereby, the light guide part 115 guides the light emitted from the selected light source to the measurement port of the optical measuring device 200B to be calibrated.
  • the drive process of the light guide unit 115 is executed by, for example, the drive control unit 154 (see FIG. 7) of the calibration apparatus 100.
  • step S216A the calibration system 500 outputs a photometry command to the optical measurement device 200.
  • the calibration system 500 can acquire measurement data of the mth reference light source.
  • step S218A the calibration system 500 executes the calibration process of the optical measuring device 200.
  • the calibration process is executed by, for example, the calibration unit 352 (see FIG. 7) of the server 300. Since the calibration process is as described with reference to FIGS. 5 and 6, the description thereof will not be repeated.
  • step S220A the calibration system 500 determines whether or not calibration processing has been executed using all reference light sources (YES in step S220A), ends the processing in step S200, and switches control to step S300. Otherwise (NO in step S220A), calibration system 500 switches control to step S222A.
  • step S222A the calibration system 500 turns off the mth reference light source.
  • step S224A the calibration system 500 increments the variable m. That is, the calibration system 500 increases the variable m by “1”.
  • the calibration system 500 according to the first to third embodiments does not use environmental data such as temperature for the calibration process.
  • the calibration system 500 according to the fourth embodiment executes the calibration process using the environmental data.
  • the calibration system 500 acquires environmental data indicating the environment around the optical measuring device 200 to be calibrated.
  • the environmental data includes the ambient temperature of the optical measurement device 200, the magnitude of vibration applied to the optical measurement device 200, and the like.
  • the temperature around the optical measuring device 200 is detected by, for example, a temperature sensor 130 (see FIG. 1).
  • the magnitude of vibration of the optical measuring device 200 is detected by, for example, a vibration sensor 132 (see FIG. 1).
  • the above-described reference data 320A (see FIG. 5) is prepared in advance for each environmental data. That is, environment data is associated with each of the reference data 320A.
  • the calibration system 500 searches for environmental data that matches or substantially matches the environmental data detected during the calibration process from the environmental data associated with each of the reference data 320A, and associates it with the retrieved environmental data. Select environmental data.
  • the calibration system 500 selects the calibration standard 110 corresponding to the type of the optical measuring device 200. Since the method of selecting the calibration standard 110 is as described with reference to FIG. 3, the description thereof will not be repeated.
  • the calibration system 500 measures the selected calibration standard 110 and obtains photometric data of the calibration standard 110.
  • the calibration system 500 compares the measurement data with the reference data 320A selected according to the environmental data, and executes the calibration process of the optical measurement device 200 based on the comparison result. Since the calibration process is as described with reference to FIGS. 5 and 6, the description thereof will not be repeated.
  • the calibration system 500 includes the environmental data indicating the environment around the optical measurement apparatus 200 to be calibrated and the measurement data obtained by measuring the selected calibration standard.
  • the calibration process of the optical measuring device 200 is executed. By executing the calibration process using the environmental data, the optical measuring device 200 can be calibrated more accurately.
  • a calibration system that can calibrate different types of optical measurement devices is an optical system that uses multiple reference objects, a receiver for receiving the type of optical measurement device from the optical measurement device to be calibrated, and a reference object used for calibration processing. Based on calibration information associated with each type of measurement device, a selection unit for selecting a reference object associated with the type of optical measurement device to be calibrated from among the plurality of reference objects, An acquisition unit for outputting a measurement instruction of the reference object selected by the selection unit to the optical measurement apparatus to be calibrated and acquiring measurement data of the reference object from the optical measurement apparatus to be calibrated, and the measurement data And a calibration unit for calibrating the optical measuring device to be calibrated.
  • the optical measuring device to be calibrated is a device for measuring reflected light from an object.
  • the plurality of reference objects include a plurality of reference plates of different colors.
  • the selection unit selects a reference plate associated with the type of the optical measuring device to be calibrated from the plurality of reference plates based on the calibration information.
  • the calibration system further includes a drive unit for installing the reference plate selected by the selection unit so as to face the measurement port of the optical measurement device to be calibrated.
  • the optical measuring device to be calibrated is a device for measuring light emitted from a light source.
  • the plurality of reference objects include a plurality of light sources that emit light of different wavelengths.
  • the selection unit selects a light source associated with the type of the optical measuring device to be calibrated from the plurality of light sources based on the calibration information.
  • the calibration system further includes a light guide unit for guiding light emitted from the light source selected by the selection unit to a measurement port of the optical measurement device to be calibrated.
  • the calibration system includes a calibration device and a server capable of communicating with the calibration device.
  • the calibration apparatus includes the plurality of reference objects, the reception unit, the selection unit, and the acquisition unit.
  • the server includes the calibration unit.
  • the calibration system further includes a sensor for acquiring environmental data indicating an environment around the optical measuring device to be calibrated.
  • the calibration unit executes a calibration process for the optical measuring device to be calibrated using the environmental data and the measurement data.

Abstract

Provided is a calibration system capable of calibrating an optical measuring device in accordance with the type of the optical measuring device. A calibration system (500) is provided with: a plurality of reference objects; a receiving unit (150) for receiving the type of an optical measuring device to be calibrated, from said optical measuring device; a selecting unit (152) for selecting, from among the plurality of reference objects, a reference object associated with the type of optical measuring device to be calibrated, on the basis of calibration information (84A) which associates the reference objects to be used in a calibration process with each type of optical measuring device; an acquiring unit (156) for outputting to the optical measuring device to be calibrated an instruction to measure the reference object selected by the selecting unit (152), and acquiring measured data relating to the reference object from the optical measuring device to be calibrated; and a calibrating unit (352) for calibrating the optical measuring device to be calibrated, using the measured data.

Description

校正システム、校正方法、および校正プログラムCalibration system, calibration method, and calibration program
 本開示は、光学測定装置を校正するための技術に関する。 The present disclosure relates to a technique for calibrating an optical measurement device.
 測定対象物の色彩を測定することが可能な光学測定装置が普及している。光学測定装置が故障した場合には、光学測定装置を校正する必要がある。校正とは、光学測定装置の光学系がずれている場合などに測定データをソフトウェア上で補正することをいう。校正された光学測定装置は、測定データを正しく出力することができる。 ¡Optical measuring devices that can measure the color of the measurement object are widespread. When the optical measuring device fails, it is necessary to calibrate the optical measuring device. Calibration refers to correcting measurement data on software when the optical system of the optical measuring device is displaced. The calibrated optical measuring device can output measurement data correctly.
 校正処理に関し、特開昭63-145924号公報(特許文献1)は、複数の校正基準試料を用いて校正処理を実行する色彩計を開示している。特開平10-307062号公報(特許文献2)は、修理を迅速に行なうことができる分光測定装置を開示している。特開平10-153545号公報(特許文献3)は、必要に応じて自動校正を実行する分光分析機を開示している。 Regarding calibration processing, Japanese Patent Laid-Open No. 63-145924 (Patent Document 1) discloses a colorimeter that performs calibration processing using a plurality of calibration reference samples. Japanese Patent Application Laid-Open No. 10-307062 (Patent Document 2) discloses a spectroscopic measurement device that can be repaired quickly. Japanese Patent Laid-Open No. 10-153545 (Patent Document 3) discloses a spectroscopic analyzer that performs automatic calibration as necessary.
特開昭63-145924号公報JP 63-145924 A 特開平10-307062号公報Japanese Patent Laid-Open No. 10-307062 特開平10-153545号公報JP-A-10-153545
 校正手順は、光学測定装置の種類に応じて変わる。近年、様々な種類の光学測定装置が普及しており、光学測定装置の校正処理は、複雑化している。そのため、校正時に人為的なミスが発生している。特許文献1~3に開示される技術は、単一の光学測定装置に対して校正処理を実行するものである。したがって、光学測定装置の種類に応じて校正処理を適切に実行できる校正システムが望まれている。 The calibration procedure varies depending on the type of optical measuring device. In recent years, various types of optical measuring devices have become widespread, and the calibration processing of the optical measuring devices has become complicated. For this reason, human error has occurred during calibration. The techniques disclosed in Patent Documents 1 to 3 execute a calibration process on a single optical measurement apparatus. Therefore, a calibration system that can appropriately execute the calibration process according to the type of the optical measuring device is desired.
 本開示は上述のような問題点を解決するためになされたものであって、ある局面における目的は、光学測定装置の種類に応じて光学測定装置を校正できる校正システムを提供することである。他の局面における目的は、光学測定装置の種類に応じて光学測定装置を校正できる校正方法を提供することである。さらに他の局面における目的は、光学測定装置の種類に応じて光学測定装置を校正できる校正プログラムを提供することである。 The present disclosure has been made to solve the above-described problems, and an object in one aspect is to provide a calibration system that can calibrate an optical measurement device according to the type of the optical measurement device. An object in another aspect is to provide a calibration method capable of calibrating an optical measurement device according to the type of the optical measurement device. Still another object of the present invention is to provide a calibration program that can calibrate an optical measurement device according to the type of the optical measurement device.
 異なる種類の光学測定装置を校正できる校正システムは、複数の基準物体と、校正対象の光学測定装置から当該光学測定装置の種類を受信するための受信部と、校正処理に用いられる基準物体を光学測定装置の種類ごとに対応付けている校正情報に基づいて、上記複数の基準物体の中から上記校正対象の光学測定装置の種類に対応付けられている基準物体を選択するための選択部と、上記選択部によって選択された基準物体の測定指示を上記校正対象の光学測定装置に出力し、当該校正対象の光学測定装置から当該基準物体の測定データを取得するための取得部と、上記測定データを用いて上記校正対象の光学測定装置を校正するための校正部とを備える。 A calibration system that can calibrate different types of optical measurement devices is an optical system that uses multiple reference objects, a receiver for receiving the type of optical measurement device from the optical measurement device to be calibrated, and a reference object used for calibration processing. Based on calibration information associated with each type of measurement device, a selection unit for selecting a reference object associated with the type of optical measurement device to be calibrated from among the plurality of reference objects, An acquisition unit for outputting a measurement instruction of the reference object selected by the selection unit to the optical measurement apparatus to be calibrated and acquiring measurement data of the reference object from the optical measurement apparatus to be calibrated, and the measurement data And a calibration unit for calibrating the optical measuring device to be calibrated.
 他の局面に従うと、複数の基準物体を用いて異なる種類の光学測定装置を校正することが可能な校正方法は、校正対象の光学測定装置から当該光学測定装置の種類を受信するステップと、校正処理に用いられる基準物体を光学測定装置の種類ごとに対応付けている校正情報に基づいて、上記複数の基準物体の中から上記校正対象の光学測定装置の種類に対応付けられている基準物体を選択するステップと、上記選択するステップで選択された基準物体の測定指示を上記校正対象の光学測定装置に出力し、当該校正対象の光学測定装置から当該基準物体の測定データを取得するステップと、上記測定データを用いて上記校正対象の光学測定装置を校正するステップとを備える。 According to another aspect, a calibration method capable of calibrating different types of optical measurement devices using a plurality of reference objects includes a step of receiving the type of the optical measurement device from the optical measurement device to be calibrated, and calibration Based on the calibration information in which the reference object used for processing is associated with each type of optical measurement device, the reference object associated with the type of optical measurement device to be calibrated is selected from the plurality of reference objects. A step of selecting, outputting a measurement instruction of the reference object selected in the selecting step to the optical measurement apparatus to be calibrated, and obtaining measurement data of the reference object from the optical measurement apparatus to be calibrated; Calibrating the optical measuring device to be calibrated using the measurement data.
 さらに他の局面に従うと、複数の基準物体を用いて異なる種類の光学測定装置を校正することが可能な校正プログラムは、コンピュータに、校正対象の光学測定装置から当該光学測定装置の種類を受信するステップと、校正処理に用いられる基準物体を光学測定装置の種類ごとに対応付けている校正情報に基づいて、上記複数の基準物体の中から上記校正対象の光学測定装置の種類に対応付けられている基準物体を選択するステップと、上記選択するステップで選択された基準物体の測定指示を上記校正対象の光学測定装置に出力し、当該校正対象の光学測定装置から当該基準物体の測定データを取得するステップと、上記測定データを用いて上記校正対象の光学測定装置を校正するステップとを実行させる。 According to yet another aspect, a calibration program capable of calibrating different types of optical measurement devices using a plurality of reference objects receives a type of the optical measurement device from the optical measurement device to be calibrated. Based on the calibration information in which the step and the reference object used for the calibration process are associated with each type of the optical measurement device, the step is associated with the type of the optical measurement device to be calibrated from among the plurality of reference objects. The reference object selected in the selecting step and the measurement instruction of the reference object selected in the selecting step are output to the calibration target optical measurement device, and the measurement data of the reference object is obtained from the calibration target optical measurement device. And a step of calibrating the optical measuring device to be calibrated using the measurement data.
 ある局面において、光学測定装置の種類に応じて光学測定装置を校正することができる。 In one aspect, the optical measurement device can be calibrated according to the type of the optical measurement device.
 本発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解される本発明に関する次の詳細な説明から明らかとなるであろう。 The above and other objects, features, aspects and advantages of the present invention will become apparent from the following detailed description of the invention which is to be understood in connection with the accompanying drawings.
第1の実施の形態に従う校正システムにおけるシステム構成の一例を示す図である。It is a figure which shows an example of the system configuration | structure in the calibration system according to 1st Embodiment. 光学測定装置の校正手順の一例を示す図である。It is a figure which shows an example of the calibration procedure of an optical measuring device. 校正基準の選択処理時に参照される校正情報の内容を示す図である。It is a figure which shows the content of the calibration information referred at the time of the selection process of a calibration reference | standard. 校正基準の設置手順の一例を示す図である。It is a figure which shows an example of the installation procedure of a calibration reference | standard. 校正処理時に参照される基準データの内容を示す図である。It is a figure which shows the content of the reference | standard data referred at the time of a calibration process. 基準板を予め測光して得られた基準スペクトルと、その後に基準板を測光して得られた測定スペクトルとをグラフで示す図である。It is a figure which shows the reference | standard spectrum obtained by photometrically measuring a reference | standard board, and the measurement spectrum obtained by photometrically measuring a reference | standard board after that with a graph. 校正処理を実現するための構成の一例を示す図である。It is a figure which shows an example of a structure for implement | achieving a calibration process. 第1の実施の形態に従う校正システムが実行する処理を表わすフローチャートである。It is a flowchart showing the process which the calibration system according to 1st Embodiment performs. 第1の実施の形態における校正処理を表わすフローチャートである。It is a flowchart showing the calibration process in 1st Embodiment. 第1の実施の形態における校正結果の出力処理を表わすフローチャートである。It is a flowchart showing the output process of the calibration result in 1st Embodiment. 第1の実施の形態に従う校正装置の主要なハードウェア構成を示すブロック図である。It is a block diagram which shows the main hardware constitutions of the calibration apparatus according to 1st Embodiment. 第1の実施の形態に従うサーバーの主要なハードウェア構成を示すブロック図である。It is a block diagram which shows the main hardware constitutions of the server according to 1st Embodiment. 第2の実施の形態に従う校正装置に据え置き型の光学測定装置を設置している様子を示す図である。It is a figure which shows a mode that the stationary optical measurement apparatus is installed in the calibration apparatus according to 2nd Embodiment. 第3の実施の形態に従う校正システムにおけるシステム構成の一例を示す図である。It is a figure which shows an example of the system configuration | structure in the calibration system according to 3rd Embodiment. 第3の実施の形態に従う校正システムが実行する処理の一部を表わすフローチャートである。It is a flowchart showing a part of process which the calibration system according to 3rd Embodiment performs. 第3の実施の形態に従う校正情報を示す図である。It is a figure which shows the calibration information according to 3rd Embodiment.
 以下、図面を参照しつつ、本発明に従う各実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらについての詳細な説明を繰り返さない。なお、以下で説明される各実施の形態および各変形例は、適宜選択的に組み合わされてもよい。 Embodiments according to the present invention will be described below with reference to the drawings. In the following description, the same parts and components are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated. Each embodiment and each modified example described below may be selectively combined as appropriate.
 <第1の実施の形態>
 [校正システム500]
 図1を参照して、第1の実施の形態に従う校正システム500について説明する。図1は、第1の実施の形態に従う校正システム500におけるシステム構成の一例を示す図である。
<First Embodiment>
[Calibration system 500]
A calibration system 500 according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram showing an example of a system configuration in a calibration system 500 according to the first embodiment.
 校正システム500は、校正装置100と、サーバー300とで構成されている。校正装置100は、サーバー300と通信できる。 The calibration system 500 includes a calibration device 100 and a server 300. The calibration device 100 can communicate with the server 300.
 校正装置100には、校正対象の光学測定装置200が設置される。光学測定装置200は、たとえば、物体からの反射光を測定するための装置である。一例として、光学測定装置200は、ハンディ型の分光測色計またはハンディ型の色彩色差計などである。 The calibration apparatus 100 is provided with an optical measurement apparatus 200 to be calibrated. The optical measuring device 200 is a device for measuring reflected light from an object, for example. As an example, the optical measuring device 200 is a hand-held spectrocolorimeter or a hand-held color difference meter.
 校正装置100は、たとえば、制御部101とボックス102とで構成されている。制御部101とボックス102内の各構成とは電気的に接続されており、制御部101は、ボックス102内の各構成を制御する。制御部101は、ボックス102内に設けられてもよいし、ボックス102外に設けられてもよい。 The calibration apparatus 100 includes, for example, a control unit 101 and a box 102. The control unit 101 and each component in the box 102 are electrically connected, and the control unit 101 controls each component in the box 102. The control unit 101 may be provided inside the box 102 or may be provided outside the box 102.
 ボックス102は、外部の光をカットする暗箱であってもよいし、透明の箱であってもよい。ボックス102の内部には、台103が設けられている。台103には、収納部104と、駆動部105と、ステージ112と、固定機構116とが配置されている。 The box 102 may be a dark box that cuts out external light, or may be a transparent box. A stand 103 is provided inside the box 102. A storage unit 104, a drive unit 105, a stage 112, and a fixing mechanism 116 are arranged on the table 103.
 収納部104は、光学測定装置200の校正処理に用いられる校正基準110(基準物体)を収納する。校正処理とは、光学測定装置200の故障前に校正基準110を測光して得られた基準データと、その後に同一の校正基準110を測光して得られる測定データとの差異に基づいて、新たに得られた測定データを基準データに合わせて補正する処理のことをいう。校正基準110は、たとえば、青の基準板110Bと、赤の基準板110Rと、緑の基準板110Gと、黄の基準板110Yと、オレンジの基準板110Oと、シアンの基準板110Cと、マゼンタの基準板110Mと、白の基準板110Wとを含む。 The storage unit 104 stores a calibration reference 110 (reference object) used for the calibration process of the optical measurement apparatus 200. The calibration process is a new process based on the difference between the reference data obtained by photometric measurement of the calibration standard 110 before the failure of the optical measuring apparatus 200 and the measurement data obtained by photometric measurement of the same calibration standard 110 thereafter. This is a process for correcting the measurement data obtained in (1) according to the reference data. The calibration reference 110 includes, for example, a blue reference plate 110B, a red reference plate 110R, a green reference plate 110G, a yellow reference plate 110Y, an orange reference plate 110O, a cyan reference plate 110C, and magenta. The reference plate 110M and the white reference plate 110W are included.
 駆動部105は、たとえば、ロボットアーム106と、電磁コイル108とで構成されている。駆動部105は、ロボットアーム106を上下方向に駆動できるとともに、ロボットアーム106を回転駆動することができる。 The driving unit 105 includes, for example, a robot arm 106 and an electromagnetic coil 108. The drive unit 105 can drive the robot arm 106 in the vertical direction and can drive the robot arm 106 to rotate.
 電磁コイル108は、校正基準110の上面に貼り付けられた金属板(図示しない)を磁力で吸着する。その後、駆動部105は、校正基準110を光学測定装置200の測定口に対向するように設置する。駆動部105は、光学測定装置200の種類に合わせて設置する校正基準110の種類を変える。校正基準110の選択方法については後述する。 The electromagnetic coil 108 attracts a metal plate (not shown) attached to the upper surface of the calibration standard 110 with a magnetic force. Thereafter, the driving unit 105 sets the calibration reference 110 so as to face the measurement port of the optical measuring device 200. The drive unit 105 changes the type of the calibration standard 110 to be installed according to the type of the optical measurement device 200. A method for selecting the calibration standard 110 will be described later.
 光学測定装置200は、ステージ112上に設置され得る。ステージ112は、制御部101からの制御信号に従って上下方向に移動する。 The optical measuring device 200 can be installed on the stage 112. The stage 112 moves up and down in accordance with a control signal from the control unit 101.
 固定機構116は、制御部101からの制御信号に従って上下方向に移動する。固定機構116には、孔が形成されている。制御部101は、光学測定装置200の測定口が固定機構116の孔に嵌るように、ステージ112および固定機構116の少なくとも一方を駆動する。これにより、光学測定装置200が校正装置100に固定される。 The fixing mechanism 116 moves up and down in accordance with a control signal from the control unit 101. A hole is formed in the fixing mechanism 116. The control unit 101 drives at least one of the stage 112 and the fixing mechanism 116 so that the measurement port of the optical measuring device 200 fits into the hole of the fixing mechanism 116. Thereby, the optical measuring device 200 is fixed to the calibration device 100.
 固定機構116には、スペーサー118が設けられている。好ましくは、スペーサー118の数は、3つ以上である。スペーサー118には、校正基準110が設置される。図1の例では、赤の基準板110Rがスペーサー118に設置されている。制御部101は、スペーサー118と光学測定装置200の測定口とが同じ高さになるように、ステージ112および固定機構116の少なくとも一方を駆動する。その結果、基準板110Rは、光学測定装置200の測定口に接する。 A spacer 118 is provided in the fixing mechanism 116. Preferably, the number of spacers 118 is three or more. The spacer 118 is provided with a calibration standard 110. In the example of FIG. 1, a red reference plate 110 </ b> R is installed on the spacer 118. The control unit 101 drives at least one of the stage 112 and the fixing mechanism 116 so that the spacer 118 and the measurement port of the optical measurement device 200 have the same height. As a result, the reference plate 110 </ b> R contacts the measurement port of the optical measurement device 200.
 好ましくは、ボックス102の内部には、光学測定装置200の周囲の環境を示す環境データを検知するセンサーが設けられる。当該センサーは、たとえば、温度センサー130および振動センサー132を含む。温度センサー130は、ボックス102の内部の温度を検知する。より具体的には、温度センサー130は、光学測定装置200の周囲に設けられ、光学測定装置200の周囲の温度を検知する。振動センサー132は、光学測定装置200の周囲に設けられ、光学測定装置200に与えられる振動の大きさを検知する。振動センサー132は、たとえば加速度センサーであり、振動の大きさは、加速度で表わされる。 Preferably, a sensor that detects environmental data indicating the environment around the optical measuring device 200 is provided inside the box 102. The sensors include a temperature sensor 130 and a vibration sensor 132, for example. The temperature sensor 130 detects the temperature inside the box 102. More specifically, the temperature sensor 130 is provided around the optical measurement device 200 and detects the temperature around the optical measurement device 200. The vibration sensor 132 is provided around the optical measurement device 200 and detects the magnitude of vibration applied to the optical measurement device 200. The vibration sensor 132 is, for example, an acceleration sensor, and the magnitude of vibration is represented by acceleration.
 なお、図1の例では、校正システム500が1つの校正装置100で構成されているが、校正システム500は複数の校正装置100で構成されてもよい。同様に、図1の例では、校正システム500が1つのサーバー300で構成されているが、校正システム500は複数のサーバー300で構成されてもよい。また、図1の例では、1つの光学測定装置200が校正装置100に設置されているが、複数の光学測定装置200が校正装置100に設置されてもよい。 In the example of FIG. 1, the calibration system 500 is configured by one calibration device 100, but the calibration system 500 may be configured by a plurality of calibration devices 100. Similarly, in the example of FIG. 1, the calibration system 500 is configured by one server 300, but the calibration system 500 may be configured by a plurality of servers 300. In the example of FIG. 1, one optical measurement device 200 is installed in the calibration device 100, but a plurality of optical measurement devices 200 may be installed in the calibration device 100.
 [校正手順]
 図2~図5を参照して、光学測定装置200の校正手順について説明する。図2は、光学測定装置200の校正手順の一例を示す図である。
[Proofreading procedure]
The calibration procedure of the optical measuring device 200 will be described with reference to FIGS. FIG. 2 is a diagram illustrating an example of a calibration procedure of the optical measurement apparatus 200.
 ステップS10において、校正装置100は、光学測定装置200の校正指示をユーザーから受け付けたとする。このことに基づいて、校正装置100は、光学測定装置200との通信を確立する。 In step S10, it is assumed that the calibration apparatus 100 receives a calibration instruction for the optical measurement apparatus 200 from the user. Based on this, the calibration device 100 establishes communication with the optical measurement device 200.
 ステップS12において、校正装置100は、光学測定装置200の種類を取得するための要求を光学測定装置200に送信する。 In step S <b> 12, the calibration apparatus 100 transmits a request for acquiring the type of the optical measurement apparatus 200 to the optical measurement apparatus 200.
 ステップS14において、光学測定装置200は、校正装置100から取得要求を受信したことに基づいて、光学測定装置200の種類を校正装置100に送信する。光学測定装置200の種類は、識別情報84B(図11参照)として光学測定装置200に予め格納されている。識別情報84Bは、たとえば、ID(Identification)などで表わされる。 In step S14, the optical measurement device 200 transmits the type of the optical measurement device 200 to the calibration device 100 based on the reception of the acquisition request from the calibration device 100. The type of the optical measuring device 200 is stored in advance in the optical measuring device 200 as identification information 84B (see FIG. 11). The identification information 84B is represented by ID (Identification) etc., for example.
 ステップS20において、校正装置100は、校正基準110(図1参照)の中から、光学測定装置200の種類に対応する校正基準110を選択する。図3を参照して、校正基準110の選択処理について説明する。図3は、選択処理時に参照される校正情報84Aの内容を示す図である。校正情報84Aは、校正処理に用いられる校正基準を光学測定装置の種類ごとに対応付けている。図3の例では、校正基準の一例として基準板が示されている。各光学測定装置に対応付けられる基準板は、1つであってもよいし、複数であってもよい。校正装置100は、校正基準110の中から光学測定装置200の種類に対応付けられている校正基準を選択する。校正装置100は、選択された校正基準を校正処理に用いる校正基準として決定する。 In step S20, the calibration apparatus 100 selects the calibration standard 110 corresponding to the type of the optical measurement apparatus 200 from the calibration standards 110 (see FIG. 1). With reference to FIG. 3, the selection process of the calibration reference | standard 110 is demonstrated. FIG. 3 is a diagram showing the contents of the calibration information 84A referred to during the selection process. The calibration information 84A associates calibration standards used for calibration processing for each type of optical measuring device. In the example of FIG. 3, a reference plate is shown as an example of a calibration reference. One or more reference plates may be associated with each optical measurement device. The calibration apparatus 100 selects a calibration standard associated with the type of the optical measurement apparatus 200 from the calibration standards 110. The calibration apparatus 100 determines the selected calibration standard as a calibration standard used for the calibration process.
 再び図2を参照して、ステップS30において、校正装置100は、ステップS20で選択された校正基準を光学測定装置200の測定口に対向するように設置する。図4を参照して、校正基準の設置手順について説明する。図4は、選択された校正基準の設置手順の一例を示す図である。 Referring to FIG. 2 again, in step S30, calibration apparatus 100 installs the calibration reference selected in step S20 so as to face the measurement port of optical measurement apparatus 200. With reference to FIG. 4, the procedure for setting the calibration standard will be described. FIG. 4 is a diagram showing an example of the procedure for installing the selected calibration standard.
 一例として、ステップS20の選択処理において赤色の基準板110Rが選択されたとする。校正装置100の制御部101(図1参照)は、駆動部105に制御命令を出力し、ロボットアーム106の先端に設けられている電磁コイル108を基準板110R上に駆動する。基準板110Rの上面には金属板(図示しない)が貼り付けられており、電磁コイル108は、基準板110Rの金属板を磁力で吸着する。その後、駆動部105は、ロボットアーム106を駆動し、基準板110Rを光学測定装置200の測定口に対向するように設置する。 As an example, assume that the red reference plate 110R is selected in the selection process of step S20. The control unit 101 (see FIG. 1) of the calibration apparatus 100 outputs a control command to the drive unit 105, and drives the electromagnetic coil 108 provided at the tip of the robot arm 106 onto the reference plate 110R. A metal plate (not shown) is affixed to the upper surface of the reference plate 110R, and the electromagnetic coil 108 attracts the metal plate of the reference plate 110R with a magnetic force. Thereafter, the drive unit 105 drives the robot arm 106 and installs the reference plate 110 </ b> R so as to face the measurement port of the optical measurement device 200.
 再び図2を参照して、ステップS32において、校正装置100は、光学測定装置200に測光命令を出力する。これにより、光学測定装置200は、設置された基準板110Rを測光する。その結果、基準板110Rの測定データが得られる。 Referring to FIG. 2 again, in step S32, the calibration apparatus 100 outputs a photometry command to the optical measurement apparatus 200. Thereby, the optical measuring device 200 performs photometry on the installed reference plate 110R. As a result, measurement data of the reference plate 110R is obtained.
 ステップS34において、光学測定装置200は、基準板110Rの測定データを校正装置100に送信する。 In step S34, the optical measurement device 200 transmits the measurement data of the reference plate 110R to the calibration device 100.
 ステップS36において、校正装置100は、光学測定装置200から受信した測定データをサーバー300に送信する。 In step S36, the calibration apparatus 100 transmits the measurement data received from the optical measurement apparatus 200 to the server 300.
 ステップS40において、サーバー300は、校正装置100から受信した測定データに基づいて、光学測定装置200の校正処理を実行する。図5を参照して、校正処理について説明する。図5は、校正処理時に参照される基準データ320Aの内容を示す図である。 In step S40, the server 300 executes the calibration process of the optical measurement device 200 based on the measurement data received from the calibration device 100. The calibration process will be described with reference to FIG. FIG. 5 is a diagram showing the contents of the reference data 320A referred to during the calibration process.
 基準データ320Aは、サーバー300に予め格納されている。また、基準データ320Aは、光学測定装置の種類ごとに準備されている。サーバー300は、ステップS14で受信した光学測定装置200の種類に対応する基準データ320Aを選択する。 The reference data 320A is stored in the server 300 in advance. The reference data 320A is prepared for each type of optical measuring device. The server 300 selects the reference data 320A corresponding to the type of the optical measuring device 200 received in step S14.
 基準データ320Aは、各色の校正基準110を予め測光して得られたものである。基準データ320Aは、たとえば、各色の校正基準110を測光して得られた分光スペクトルを含む。分光スペクトルは、波長ごとの光強度で表わされる。サーバー300は、ステップS36で校正装置100から受信した測定データが基準データ320Aと異なる場合に、光学測定装置200が故障していると判断し、光学測定装置200の校正処理を実行する。 The reference data 320A is obtained by previously measuring the calibration reference 110 for each color. The reference data 320A includes, for example, a spectrum obtained by measuring the calibration reference 110 for each color. The spectral spectrum is expressed by the light intensity for each wavelength. When the measurement data received from the calibration apparatus 100 in step S36 is different from the reference data 320A, the server 300 determines that the optical measurement apparatus 200 is out of order and executes the calibration process for the optical measurement apparatus 200.
 図6を参照して、校正処理の一例について説明する。図6は、基準板110Rを予め測光して得られた基準スペクトル321と、ステップS36で基準板110Rを測光して得られた測定スペクトル322とをグラフで示す図である。基準スペクトル321は、図5に示される基準データ320Aから取得される。 An example of the calibration process will be described with reference to FIG. FIG. 6 is a graph showing a reference spectrum 321 obtained by measuring the reference plate 110R in advance and a measurement spectrum 322 obtained by measuring the reference plate 110R in step S36. The reference spectrum 321 is acquired from the reference data 320A shown in FIG.
 赤の基準板110Rは、波長λ1(約650nm)の光を主に反射する。そのため、基準スペクトル321における光強度は、波長λ1で最大となる。一方で、測定スペクトル322においては、光強度は波長λ2で最大となっている。すなわち、測定スペクトル322は、波長λ1と波長λ2との波長差Δλの分だけずれている。サーバー300は、波長差Δλが所定値よりも大きい場合には、光学測定装置200が故障していると判断する。 The red reference plate 110R mainly reflects light having a wavelength λ1 (about 650 nm). Therefore, the light intensity in the reference spectrum 321 becomes maximum at the wavelength λ1. On the other hand, in the measurement spectrum 322, the light intensity is maximum at the wavelength λ2. That is, the measurement spectrum 322 is shifted by the wavelength difference Δλ between the wavelengths λ1 and λ2. When the wavelength difference Δλ is larger than the predetermined value, the server 300 determines that the optical measurement device 200 has failed.
 なお、上述では、サーバー300が基準スペクトル321と測定スペクトル322とに基づいて、光学測定装置200が故障しているか否かを判断する例について説明を行なったが、サーバー300は、基準データ320Aに規定されているLab値と、基準板を測光して得られるLab値とに基づいて、光学測定装置200が故障しているか否かを判断してもよい。 In the above description, an example in which the server 300 determines whether or not the optical measurement device 200 has failed based on the reference spectrum 321 and the measurement spectrum 322 has been described. Based on the defined Lab value and the Lab value obtained by photometric measurement of the reference plate, it may be determined whether or not the optical measuring device 200 is out of order.
 再び図2を参照して、ステップS42において、サーバー300は、ステップS40の校正処理で算出された波長差Δλを校正結果として校正装置100に送信する。 Referring to FIG. 2 again, in step S42, the server 300 transmits the wavelength difference Δλ calculated in the calibration process of step S40 to the calibration apparatus 100 as a calibration result.
 ステップS44において、校正装置100は、サーバー300から受信した校正結果を光学測定装置200に送信する。 In step S44, the calibration apparatus 100 transmits the calibration result received from the server 300 to the optical measurement apparatus 200.
 ステップS46において、光学測定装置200は、校正装置100から受信した校正結果を格納する。 In step S46, the optical measuring device 200 stores the calibration result received from the calibration device 100.
 ステップS50において、光学測定装置200は、ユーザーから測光指示を受け付けたとする。 In step S50, it is assumed that the optical measuring device 200 receives a photometric instruction from the user.
 ステップS52において、光学測定装置200は、測定対象物を測光する。その結果、測定対象物の測定データが得られる。 In step S52, the optical measurement apparatus 200 performs photometry on the measurement object. As a result, measurement data of the measurement object is obtained.
 ステップS54において、光学測定装置200は、ステップS52で得られた測定データを波長差Δλの分だけずらす。これにより、測定データが校正される。 In step S54, the optical measuring device 200 shifts the measurement data obtained in step S52 by the wavelength difference Δλ. Thereby, the measurement data is calibrated.
 [機能構成]
 図7を参照して、校正システム500の機能構成について説明する。図7は、校正処理を実現するための構成の一例を示す図である。
[Function configuration]
The functional configuration of the calibration system 500 will be described with reference to FIG. FIG. 7 is a diagram illustrating an example of a configuration for realizing the calibration process.
 図7に示されるように、校正システム500は、校正装置100とサーバー300とで構成されている。校正装置100は、記憶部84と、受信部150と、選択部152と、駆動制御部154と、取得部156と、送信部158とを含む。サーバー300は、記憶部320と、受信部350と、校正部352とを含む。 As shown in FIG. 7, the calibration system 500 includes a calibration apparatus 100 and a server 300. The calibration apparatus 100 includes a storage unit 84, a reception unit 150, a selection unit 152, a drive control unit 154, an acquisition unit 156, and a transmission unit 158. Server 300 includes a storage unit 320, a reception unit 350, and a calibration unit 352.
 受信部150は、校正対象の光学測定装置200から光学測定装置200の種類を受信する。光学測定装置200の種類は、選択部152および送信部158に出力される。 The receiving unit 150 receives the type of the optical measuring device 200 from the optical measuring device 200 to be calibrated. The type of the optical measurement device 200 is output to the selection unit 152 and the transmission unit 158.
 選択部152は、校正処理に用いる校正基準110(基準物体)を光学測定装置の種類ごとに対応付けている校正情報84Aに基づいて、校正基準110の中から光学測定装置200の種類に対応付けられている校正基準110を選択する。校正基準の選択方法は図3で説明した通りであるので、その説明については繰り返さない。 The selection unit 152 associates the calibration reference 110 (reference object) used in the calibration process with the type of the optical measurement device 200 from the calibration reference 110 based on the calibration information 84A that associates the calibration reference 110 with each type of the optical measurement device. The selected calibration standard 110 is selected. Since the method of selecting the calibration standard is as described with reference to FIG. 3, the description thereof will not be repeated.
 好ましくは、校正基準110は、異なる色の基準板110B,110R,110G,110Y,110O,110C,110C,110M,110W(図1参照)を含む。選択部152は、校正情報84Aに基づいて、基準板110B,110R,110G,110Y,110O,110C,110C,110M,110Wの中から光学測定装置200の種類に対応付けられている基準板を選択する。 Preferably, the calibration reference 110 includes reference plates 110B, 110R, 110G, 110Y, 110O, 110C, 110C, 110M, and 110W (see FIG. 1) of different colors. The selection unit 152 selects a reference plate associated with the type of the optical measurement device 200 from the reference plates 110B, 110R, 110G, 110Y, 110O, 110C, 110C, 110M, and 110W based on the calibration information 84A. To do.
 駆動制御部154は、駆動部105(図1参照)を制御する。駆動部105は、駆動制御部154からの制御信号に基づいて、選択部152によって選択された校正基準を光学測定装置200の測定口に対向するように設置する。 The drive control unit 154 controls the drive unit 105 (see FIG. 1). Based on the control signal from the drive control unit 154, the drive unit 105 installs the calibration reference selected by the selection unit 152 so as to face the measurement port of the optical measurement apparatus 200.
 取得部156は、校正基準110が設置されたことに基づいて、光学測定装置200に測定指示を出力し、校正対象の光学測定装置200から、選択部152によって選択された校正基準の測定データを取得する。取得された測定データは、送信部158に出力される。 The acquisition unit 156 outputs a measurement instruction to the optical measurement device 200 based on the setting of the calibration reference 110, and obtains the measurement data of the calibration reference selected by the selection unit 152 from the optical measurement device 200 to be calibrated. get. The acquired measurement data is output to the transmission unit 158.
 送信部158は、受信部150から出力された光学測定装置200の種類と、取得部156から出力された定データとをサーバー300に送信する。 The transmission unit 158 transmits the type of the optical measurement device 200 output from the reception unit 150 and the constant data output from the acquisition unit 156 to the server 300.
 受信部350は、光学測定装置200の種類と、選択された校正基準の測定データとを校正装置100から受信する。 The receiving unit 350 receives the type of the optical measuring device 200 and the measurement data of the selected calibration standard from the calibration device 100.
 校正部352は、選択された校正基準を測光して得られた測定データを用いて光学測定装置200を校正する。校正処理は図5および図6で説明した通りであるので、その説明については繰り返さない。 The calibration unit 352 calibrates the optical measurement apparatus 200 using the measurement data obtained by photometry of the selected calibration standard. Since the calibration process is as described with reference to FIGS. 5 and 6, the description thereof will not be repeated.
 校正装置100または光学測定装置200の処理能力は、サーバー300よりも劣ることが多い。そのため、サーバー300が校正処理を実行することで、校正処理にかかる時間が短縮される。また、サーバー300が校正処理を実行することで、校正アルゴリズムが流出するリスクや、校正アルゴリズムが紛失するリスクが無くなる。 The processing capability of the calibration device 100 or the optical measurement device 200 is often inferior to that of the server 300. Therefore, the time required for the calibration process is shortened by the server 300 executing the calibration process. Further, when the server 300 executes the calibration process, there is no risk that the calibration algorithm leaks out or the risk that the calibration algorithm is lost.
 [制御構造]
 図8~図10を参照して、校正システム500の制御構造について説明する。図8は、校正システム500が実行する処理を表わすフローチャートである。図9は、校正処理を表わすフローチャートである。図10は、校正結果の出力処理を表わすフローチャートである。図8~図10の処理は、校正装置100の制御部101(図11参照)またはサーバー300の制御部301(図11参照)が校正プログラムを実行することにより実現される。他の局面において、処理の一部または全部が、回路素子またはその他のハードウェアによって実行されてもよい。
[Control structure]
The control structure of the calibration system 500 will be described with reference to FIGS. FIG. 8 is a flowchart showing processing executed by calibration system 500. FIG. 9 is a flowchart showing the calibration process. FIG. 10 is a flowchart showing a calibration result output process. The processing in FIGS. 8 to 10 is realized by the control unit 101 (see FIG. 11) of the calibration apparatus 100 or the control unit 301 (see FIG. 11) of the server 300 executing the calibration program. In other aspects, some or all of the processing may be performed by circuit elements or other hardware.
 ステップS110において、校正システム500は、校正指示を受け付けたか否かを判断する。当該判断処理は、たとえば、校正装置100に実行される。校正装置100は、校正指示を受け付けたと判断した場合(ステップS110においてYES)、制御をステップS112に切り替える。そうでない場合には(ステップS110においてNO)、校正装置100は、ステップS110の処理を再び実行する。 In step S110, the calibration system 500 determines whether a calibration instruction has been accepted. The determination process is executed by the calibration apparatus 100, for example. If calibration apparatus 100 determines that a calibration instruction has been received (YES in step S110), it switches control to step S112. When that is not right (in step S110 NO), the calibration apparatus 100 performs the process of step S110 again.
 ステップS112において、校正システム500は、校正対象の光学測定装置200の種類を光学測定装置200から取得する。当該取得処理は、たとえば、校正装置100の受信部150(図7参照)によって実行される。 In step S112, the calibration system 500 acquires the type of the optical measuring device 200 to be calibrated from the optical measuring device 200. The acquisition process is executed by the receiving unit 150 (see FIG. 7) of the calibration apparatus 100, for example.
 ステップS114において、校正システム500は、光学測定装置200の使用時の環境データを光学測定装置200から取得する。当該環境データは、たとえば、光学測定装置200の使用時における温度や光学測定装置200の使用時に与えられた振動の大きさなどを含む。当該温度は、光学測定装置200に備えられる温度センサー(図示しない)によって定期的に検知され、温度履歴として光学測定装置200記憶される。光学測定装置200に与えられる振動の大きさは、光学測定装置200に備えられる振動センサー(図示しない)によって定期的に検知され、振動情報として光学測定装置200に記憶される。校正システム500は、温度履歴と振動履歴とを光学測定装置200から取得する。 In step S <b> 114, the calibration system 500 acquires environmental data when the optical measurement device 200 is used from the optical measurement device 200. The environmental data includes, for example, the temperature when the optical measuring device 200 is used, the magnitude of vibration given when the optical measuring device 200 is used, and the like. The temperature is periodically detected by a temperature sensor (not shown) provided in the optical measurement device 200, and stored in the optical measurement device 200 as a temperature history. The magnitude of vibration applied to the optical measurement apparatus 200 is periodically detected by a vibration sensor (not shown) provided in the optical measurement apparatus 200 and stored in the optical measurement apparatus 200 as vibration information. The calibration system 500 acquires the temperature history and the vibration history from the optical measurement device 200.
 ステップS116において、校正システム500は、温度履歴と振動履歴とに基づいて、光学測定装置200の故障原因を推定する。当該推定処理は、たとえば、サーバー300に実行される。一例として、サーバー300は、所定値以上の温度が温度履歴に含まれている場合に、高温環境下で使用されたことによる故障であると判断する。あるいは、サーバー300は、所定値以上の振動の大きさが振動履歴に含まれている場合に、落下による故障であると判断する。 In step S116, the calibration system 500 estimates the cause of the failure of the optical measuring device 200 based on the temperature history and the vibration history. The estimation process is executed by the server 300, for example. As an example, when the temperature history includes a temperature that is equal to or higher than a predetermined value, the server 300 determines that the failure has occurred due to use in a high-temperature environment. Alternatively, the server 300 determines that the failure is caused by dropping when the vibration history includes a magnitude of vibration equal to or greater than a predetermined value.
 ステップS120において、校正システム500は、光学測定装置200の故障が校正処理で対応可能であるか否かを判断する。当該推定処理は、たとえば、サーバー300に実行される。一例として、校正システム500は、ステップS116で光学測定装置200の故障が高温環境下での使用に起因すると判断された場合には、光学測定装置200の故障が校正処理で対応可能であると判断する。校正システム500は、ステップS116で光学測定装置200の故障が落下に起因すると判断された場合には、光学測定装置200の修理が必要であると判断する。すなわち、校正システム500は、光学測定装置200の故障が校正処理では対応できないと判断する。校正システム500は、光学測定装置200の故障が校正処理で対応可能であると判断した場合(ステップS120においてYES)、制御をステップS200に切り替える。そうでない場合には(ステップS120においてNO)、校正システム500は、制御をステップS300に切り替える。 In step S120, the calibration system 500 determines whether or not the failure of the optical measuring device 200 can be handled by the calibration process. The estimation process is executed by the server 300, for example. As an example, if it is determined in step S116 that the failure of the optical measurement device 200 is caused by use in a high temperature environment, the calibration system 500 determines that the failure of the optical measurement device 200 can be handled by the calibration process. To do. When it is determined in step S116 that the failure of the optical measurement device 200 is caused by the fall, the calibration system 500 determines that the optical measurement device 200 needs to be repaired. That is, the calibration system 500 determines that the failure of the optical measurement device 200 cannot be handled by the calibration process. When the calibration system 500 determines that the failure of the optical measurement apparatus 200 can be handled by the calibration process (YES in step S120), the calibration system 500 switches the control to step S200. Otherwise (NO in step S120), calibration system 500 switches control to step S300.
 ステップS200において、校正システム500は、光学測定装置200の校正処理を実行する。図9を参照して、ステップS200における校正処理について説明する。 In step S200, the calibration system 500 executes the calibration process of the optical measuring device 200. The calibration process in step S200 will be described with reference to FIG.
 ステップS210において、校正システム500は、上述の校正情報84A(図3参照)に基づいて、複数の基準板の中から光学測定装置200の種類に対応付けられている基準板を選択する。当該選択処理は、たとえば、校正装置100の選択部152(図7参照)によって実行される。基準板の選択方法は図3で説明した通りであるので、その説明については繰り返さない。 In step S210, the calibration system 500 selects a reference plate associated with the type of the optical measuring device 200 from a plurality of reference plates based on the above-described calibration information 84A (see FIG. 3). The selection process is executed by, for example, the selection unit 152 (see FIG. 7) of the calibration apparatus 100. Since the method for selecting the reference plate is as described in FIG. 3, the description thereof will not be repeated.
 ステップS212において、校正システム500は、基準板の番号を表わす変数nを初期化する。変数nは、たとえば、ゼロに初期化される。ステップS210で複数の基準板が選択された場合には、当該複数の基準板は、変数nにより一意に識別される。 In step S212, the calibration system 500 initializes a variable n representing the reference plate number. The variable n is initialized to zero, for example. When a plurality of reference plates are selected in step S210, the plurality of reference plates are uniquely identified by the variable n.
 ステップS214において、校正システム500は、光学測定装置200の測定口に対向するようにn番目の基準板を設置する。当該設置処理は、たとえば、校正装置100の駆動制御部154(図7参照)によって実行される。 In step S214, the calibration system 500 installs the nth reference plate so as to face the measurement port of the optical measuring device 200. The installation process is executed by, for example, the drive control unit 154 (see FIG. 7) of the calibration apparatus 100.
 ステップS216において、校正システム500は、n番目の基準板が設置されたことに基づいて、光学測定装置200に測光命令を出力する。その結果、校正システム500は、n番目の基準板の測定データを得ることができる。 In step S216, the calibration system 500 outputs a photometric command to the optical measuring device 200 based on the installation of the nth reference plate. As a result, the calibration system 500 can obtain measurement data of the nth reference plate.
 ステップS218において、校正システム500は、光学測定装置200の校正処理を実行する。当該校正処理は、たとえば、サーバー300の校正部352(図7参照)によって実行される。当該校正処理は図5および図6で説明した通りであるので、その説明については繰り返さない。 In step S218, the calibration system 500 executes the calibration process of the optical measuring device 200. The calibration process is executed by, for example, the calibration unit 352 (see FIG. 7) of the server 300. Since the calibration process is as described with reference to FIGS. 5 and 6, the description thereof will not be repeated.
 ステップS220において、校正システム500は、全ての基準板を用いて校正処理を実行したか否かを判断する(ステップS220においてYES)、ステップS200の処理を終了し、制御をステップS300に切り替える。そうでない場合には(ステップS220においてNO)、校正システム500は、制御をステップS222に切り替える。 In step S220, the calibration system 500 determines whether the calibration process has been executed using all the reference plates (YES in step S220), ends the process in step S200, and switches the control to step S300. Otherwise (NO in step S220), calibration system 500 switches control to step S222.
 ステップS222において、校正システム500は、n番目の基準板を元の位置に戻す。当該処理は、たとえば、校正装置100の駆動制御部154(図7参照)によって実行される。 In step S222, the calibration system 500 returns the nth reference plate to the original position. The process is executed by, for example, the drive control unit 154 (see FIG. 7) of the calibration apparatus 100.
 ステップS224において、校正システム500は、変数nをインクリメントする。すなわち、校正システム500は、変数nを「1」増加する。 In step S224, the calibration system 500 increments the variable n. That is, the calibration system 500 increases the variable n by “1”.
 ステップS300において、校正システム500は、光学測定装置200の校正結果を表示する。図10を参照して、ステップS300における校正結果の表示処理について説明する。 In step S300, the calibration system 500 displays the calibration result of the optical measuring device 200. With reference to FIG. 10, the display process of the calibration result in step S300 will be described.
 ステップS310において、校正システム500は、校正処理が正常終了したか否かを判断する。校正システム500は、校正処理が正常終了したと判断した場合(ステップS310においてYES)、制御をステップS312に切り替える。そうでない場合には(ステップS310においてNO)、校正システム500は、制御をステップS320に切り替える。 In step S310, the calibration system 500 determines whether or not the calibration process has been completed normally. If calibration system 500 determines that the calibration process has been completed normally (YES in step S310), it switches control to step S312. Otherwise (NO in step S310), calibration system 500 switches control to step S320.
 ステップS312において、校正システム500は、校正処理が正常終了したことを表示する。校正処理が正常終了したことは、たとえば、校正装置100の表示部80(図11参照)に表示される。あるいは、校正処理が正常終了したことは、音声により報知されてもよい。 In step S312, the calibration system 500 displays that the calibration process has been completed normally. The fact that the calibration process has been completed normally is displayed on the display unit 80 (see FIG. 11) of the calibration apparatus 100, for example. Alternatively, the fact that the calibration process has been completed normally may be notified by voice.
 ステップS320において、校正システム500は、校正処理が異常終了したことを表示する。校正処理が異常終了したことは、たとえば、校正装置100の表示部80(図11参照)に表示される。このとき、好ましくは、表示部80は、異常終了の原因(内容)を表示する。なお、校正処理が異常終了したことは、音声により報知されてもよい。 In step S320, the calibration system 500 displays that the calibration process has ended abnormally. The fact that the calibration process has ended abnormally is displayed on the display unit 80 (see FIG. 11) of the calibration apparatus 100, for example. At this time, the display unit 80 preferably displays the cause (contents) of abnormal termination. Note that the fact that the calibration process has ended abnormally may be notified by voice.
 ステップS322において、校正システム500は、光学測定装置200の修理が必要であるか否かを判断する。修理が必要であるか否かは、たとえば、ステップS116における故障原因の推定結果に基づいて判断される。校正システム500は、光学測定装置200の修理が必要であると判断した場合(ステップS322においてYES)、制御をステップS324に切り替える。そうでない場合には(ステップS322においてNO)、校正システム500は、制御をステップS326に切り替える。 In step S322, the calibration system 500 determines whether or not the optical measuring device 200 needs to be repaired. Whether or not repair is necessary is determined based on, for example, the failure cause estimation result in step S116. When the calibration system 500 determines that the optical measuring device 200 needs to be repaired (YES in step S322), the calibration system 500 switches the control to step S324. Otherwise (NO in step S322), calibration system 500 switches control to step S326.
 ステップS324において、校正システム500は、光学測定装置200の修理が必要であることを表示する。光学測定装置200の修理が必要であることは、たとえば、校正装置100の表示部80(図11参照)に表示される。このとき、好ましくは、表示部80は、故障原因を表示する。これにより、光学測定装置200の故障原因を解析するための時間が短縮される。なお、光学測定装置200の修理が必要であることは、音声により報知されてもよい。 In step S324, the calibration system 500 displays that the optical measuring device 200 needs to be repaired. The need for repair of the optical measuring device 200 is displayed on the display unit 80 (see FIG. 11) of the calibration device 100, for example. At this time, the display unit 80 preferably displays the cause of the failure. Thereby, the time for analyzing the cause of failure of the optical measuring device 200 is shortened. Note that it may be notified by voice that the optical measuring device 200 needs to be repaired.
 ステップS326において、校正システム500は、光学測定装置200の再校正が必要であることを表示する。光学測定装置200の再校正が必要であることは、たとえば、校正装置100の表示部80(図11参照)に表示される。あるいは、光学測定装置200の再校正が必要であることは、音声により報知される。その後、再びステップS200の校正処理が実行される。 In step S326, the calibration system 500 displays that the optical measurement device 200 needs to be recalibrated. The necessity of recalibration of the optical measuring device 200 is displayed on the display unit 80 (see FIG. 11) of the calibration device 100, for example. Alternatively, it is notified by voice that the optical measuring device 200 needs to be recalibrated. Thereafter, the calibration process of step S200 is executed again.
 [校正装置100のハードウェア構成]
 図11を参照して、校正装置100のハードウェア構成の一例について説明する。図11は、校正装置100の主要なハードウェア構成を示すブロック図である。
[Hardware Configuration of Calibration Apparatus 100]
An example of the hardware configuration of the calibration apparatus 100 will be described with reference to FIG. FIG. 11 is a block diagram illustrating a main hardware configuration of the calibration apparatus 100.
 図11に示されるように、校正装置100は、表示部80と、操作部82と、記憶部84と、通信インターフェイス90と、USB(Universal Serial Bus)端子92と、制御部101と、ステージ112と、温度センサー130と、校正基準110と、温度センサー130と、選択部152とを含む。ステージ112、温度センサー130、および選択部152については、図1で説明した通りであるので、以下ではそれらの説明については繰り返さない。 As shown in FIG. 11, the calibration apparatus 100 includes a display unit 80, an operation unit 82, a storage unit 84, a communication interface 90, a USB (Universal Serial Bus) terminal 92, a control unit 101, and a stage 112. A temperature sensor 130, a calibration reference 110, a temperature sensor 130, and a selection unit 152. Since the stage 112, the temperature sensor 130, and the selection unit 152 are as described in FIG. 1, the description thereof will not be repeated below.
 表示部80は、たとえば、LCD(Liquid Crystal Display)、有機EL(Electro Luminescence)ディスプレイ、またはその他の表示機器である。好ましくは、表示部80は、ディスプレイとタッチパネルとで構成されている。ディスプレイおよびタッチパネルは互いに重ねられており、表示部80は、校正装置100に対する操作をタッチ操作で受け付ける。表示部80は、たとえば、校正装置100の電源状態(たとえば、オンまたはオフ)、校正モード、校正状態、校正結果、校正装置100内の温度などを表示する。 The display unit 80 is, for example, an LCD (Liquid Crystal Display), an organic EL (Electro Luminescence) display, or other display device. Preferably, the display unit 80 includes a display and a touch panel. The display and the touch panel are overlapped with each other, and the display unit 80 receives an operation on the calibration apparatus 100 by a touch operation. The display unit 80 displays, for example, a power supply state (for example, on or off) of the calibration apparatus 100, a calibration mode, a calibration state, a calibration result, a temperature in the calibration apparatus 100, and the like.
 操作部82は、校正装置100に対する操作を受け付ける。一例として、操作部82は、電源ボタン、校正モードの選択ボタン、校正開始ボタン、校正中止ボタン、アップダウンキーなどで構成されている。なお、表示部80がタッチパネルとして構成されている場合には、操作部82は、設けられてなくてもよい。 The operation unit 82 receives an operation on the calibration apparatus 100. As an example, the operation unit 82 includes a power button, a calibration mode selection button, a calibration start button, a calibration stop button, an up / down key, and the like. Note that when the display unit 80 is configured as a touch panel, the operation unit 82 may not be provided.
 記憶部84は、たとえば、ハードディスクや外付けの記憶装置などの記憶媒体である。一例として、記憶部84は、上述の校正情報84A(図3参照)、光学測定装置200から受信した光学測定装置200の識別情報84B、本実施の形態に従う校正プログラム84Cなどを格納する。校正情報84A、識別情報84B、および校正プログラム84Cの格納場所は、記憶部84に限定されず、たとえば、制御部301の記憶領域(たとえば、キャッシュなど)、ROM(Read Only Memory)、RAM(Random Access Memory)、または外部記憶装置などに格納されてもよい。 The storage unit 84 is a storage medium such as a hard disk or an external storage device. As an example, the storage unit 84 stores the above-described calibration information 84A (see FIG. 3), the identification information 84B of the optical measurement device 200 received from the optical measurement device 200, the calibration program 84C according to the present embodiment, and the like. The storage location of the calibration information 84A, the identification information 84B, and the calibration program 84C is not limited to the storage unit 84. For example, the storage area of the control unit 301 (for example, a cache), ROM (Read Only Memory), RAM (Random Access Memory) or an external storage device.
 なお、校正プログラム84Cは、単体のプログラムとしてではなく、任意のプログラムの一部に組み込まれて提供されてもよい。この場合、任意のプログラムと協働して本実施の形態に従う制御処理が実現される。このような一部のモジュールを含まないプログラムであっても、本実施の形態に従うサーバー300の趣旨を逸脱するものではない。さらに、本実施の形態に従う校正プログラム84Cによって提供される機能の一部または全部は、専用のハードウェアによって実現されてもよい。さらに、校正装置100とサーバー300とが協働して、校正プログラム84Cによって提供される機能の一部または全部が実現されてもよい。さらに、少なくとも1つのサーバーが本実施の形態に従う処理を実現する所謂クラウドサービスのような形態でサーバー300が構成されてもよい。 Note that the calibration program 84C may be provided as a part of an arbitrary program, not as a single program. In this case, control processing according to the present embodiment is realized in cooperation with an arbitrary program. Even such a program that does not include some modules does not depart from the spirit of the server 300 according to the present embodiment. Furthermore, part or all of the functions provided by the calibration program 84C according to the present embodiment may be realized by dedicated hardware. Furthermore, a part or all of the functions provided by the calibration program 84C may be realized by the cooperation of the calibration apparatus 100 and the server 300. Furthermore, the server 300 may be configured in the form of a so-called cloud service in which at least one server realizes processing according to the present embodiment.
 通信インターフェイス90は、校正装置100と他の通信機器との間の通信を実現する。他の通信機器は、たとえば、光学測定装置200やサーバー300などである。ある局面において、通信インターフェイス90にはアンテナ(図示しない)が接続され、校正装置100と他の通信機器との間の通信は、当該アンテナ介した無線通信によって実現される。無線通信の規格としては、たとえば、Wifiダイレクト、Bluetooth(登録商標)、ZigBeeなどが採用される。 The communication interface 90 realizes communication between the calibration device 100 and other communication devices. Other communication devices are, for example, the optical measurement device 200 and the server 300. In one aspect, an antenna (not shown) is connected to the communication interface 90, and communication between the calibration apparatus 100 and another communication device is realized by wireless communication via the antenna. As a wireless communication standard, for example, WiFi Direct, Bluetooth (registered trademark), ZigBee, or the like is adopted.
 USB端子92には、USBケーブルが接続され得る。校正装置100と光学測定装置200とはUSBケーブルを介して互いに接続され、校正装置100と光学測定装置200との間の通信は、USBケーブルを介した有線通信によって実現される。あるいは、校正装置100と光学測定装置200との間の通信は、LAN(Local Area Network)ケーブルを介した有線通信によって実現されてもよい。 A USB cable can be connected to the USB terminal 92. The calibration device 100 and the optical measurement device 200 are connected to each other via a USB cable, and communication between the calibration device 100 and the optical measurement device 200 is realized by wired communication via the USB cable. Alternatively, the communication between the calibration apparatus 100 and the optical measurement apparatus 200 may be realized by wired communication via a LAN (Local Area Network) cable.
 制御部101は、校正装置100を制御する。制御部101は、たとえば、少なくとも1つの集積回路によって構成される。集積回路は、たとえば、少なくとも1つのCPU(Central Processing Unit)、少なくとも1つのASIC(Application Specific Integrated Circuit)、少なくとも1つのFPGA(Field Programmable Gate Array)、またはそれらの組み合わせなどによって構成される。 The control unit 101 controls the calibration device 100. The control unit 101 is configured by at least one integrated circuit, for example. The integrated circuit includes, for example, at least one CPU (Central Processing Unit), at least one ASIC (Application Specific Integrated Circuit), at least one FPGA (Field Programmable Gate Array), or a combination thereof.
 校正基準110は、たとえば、基準板111および基準光源113の少なくとも一方を含む。基準板111は、上述の基準板110B,110R,110G,110Y,110O,110C,110C,110M,110W(図1参照)に相当する。 The calibration reference 110 includes, for example, at least one of a reference plate 111 and a reference light source 113. The reference plate 111 corresponds to the above-described reference plates 110B, 110R, 110G, 110Y, 110O, 110C, 110C, 110M, and 110W (see FIG. 1).
 基準光源113は、複数の光源113A~113Cを有する。光源の数は、任意である。光源113A~113Cは、たとえば、水銀ランプやキセンノンランプなどのランプ、またはLED(Light Emitting Diode)である。基準光源113の詳細については後述する。 The reference light source 113 has a plurality of light sources 113A to 113C. The number of light sources is arbitrary. The light sources 113A to 113C are, for example, lamps such as mercury lamps and xenon lamps, or LEDs (Light Emitting Diodes). Details of the reference light source 113 will be described later.
 [サーバー300のハードウェア構成]
 図12を参照して、サーバー300のハードウェア構成の一例について説明する。図12は、サーバー300の主要なハードウェア構成を示すブロック図である。
[Hardware configuration of server 300]
An example of the hardware configuration of the server 300 will be described with reference to FIG. FIG. 12 is a block diagram illustrating a main hardware configuration of the server 300.
 図12に示されるように、サーバー300は、制御部301と、ROM302と、RAM303と、通信インターフェイス304と、表示部305と、記憶部320とを含む。 As shown in FIG. 12, the server 300 includes a control unit 301, a ROM 302, a RAM 303, a communication interface 304, a display unit 305, and a storage unit 320.
 制御部301は、たとえば、少なくとも1つの集積回路によって構成される。集積回路は、たとえば、少なくとも1つのCPU、少なくとも1つのASIC、少なくとも1つのFPGA、またはそれらの組み合わせなどによって構成される。 The control unit 301 is configured by at least one integrated circuit, for example. The integrated circuit includes, for example, at least one CPU, at least one ASIC, at least one FPGA, or a combination thereof.
 制御部301は、本実施の形態に従う校正プログラム320Bなどの各種プログラムを実行することでサーバー300の動作を制御する。制御部301は、校正プログラム320Bの実行命令を受け付けたことに基づいて、校正プログラム320Bを記憶部320からROM302に読み出す。RAM303は、ワーキングメモリとして機能し、校正プログラム320Bの実行に必要な各種データを一時的に格納する。 The control unit 301 controls the operation of the server 300 by executing various programs such as the calibration program 320B according to the present embodiment. The control unit 301 reads the calibration program 320B from the storage unit 320 to the ROM 302 based on receiving the execution instruction of the calibration program 320B. The RAM 303 functions as a working memory and temporarily stores various data necessary for executing the calibration program 320B.
 通信インターフェイス304は、アンテナ(図示しない)を介して、他の通信機器との間でデータを送受信する。他の通信機器は、たとえば、校正装置100などの通信端末を含む。サーバー300は、通信インターフェイス304を介して、本実施の形態に従う校正プログラム320Bをダウンロードできるように構成されてもよい。 The communication interface 304 transmits / receives data to / from other communication devices via an antenna (not shown). Other communication devices include a communication terminal such as the calibration device 100, for example. Server 300 may be configured to download calibration program 320B according to the present embodiment via communication interface 304.
 表示部305は、たとえば、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ、またはその他の表示機器である。一例として、表示部305は、光学測定装置200の校正結果を表示したり、校正処理時のパラメータを設定する設定画面を表示したりする。 The display unit 305 is, for example, a liquid crystal display, an organic EL (Electro Luminescence) display, or other display device. As an example, the display unit 305 displays the calibration result of the optical measurement apparatus 200 or displays a setting screen for setting parameters during calibration processing.
 記憶部320は、たとえば、ハードディスクや外付けの記憶装置などの記憶媒体である。一例として、記憶部320は、上述の基準データ320A(図5参照)や本実施の形態に従う校正プログラム320Bなどを格納する。基準データ320Aおよび校正プログラム320Bの格納場所は、記憶部320に限定されず、たとえば、制御部301の記憶領域(たとえば、キャッシュなど)、ROM302、RAM303、または外部記憶装置などに格納されてもよい。 The storage unit 320 is a storage medium such as a hard disk or an external storage device. As an example, the storage unit 320 stores the above-described reference data 320A (see FIG. 5), the calibration program 320B according to the present embodiment, and the like. The storage location of the reference data 320A and the calibration program 320B is not limited to the storage unit 320, and may be stored in, for example, a storage area (for example, a cache) of the control unit 301, the ROM 302, the RAM 303, or an external storage device. .
 なお、校正プログラム320Bは、単体のプログラムとしてではなく、任意のプログラムの一部に組み込まれて提供されてもよい。この場合、任意のプログラムと協働して本実施の形態に従う制御処理が実現される。このような一部のモジュールを含まないプログラムであっても、本実施の形態に従うサーバー300の趣旨を逸脱するものではない。さらに、本実施の形態に従う校正プログラム320Bによって提供される機能の一部または全部は、専用のハードウェアによって実現されてもよい。さらに、校正装置100とサーバー300とが協働して、校正プログラム320Bによって提供される機能の一部または全部が実現されてもよい。さらに、少なくとも1つのサーバーが本実施の形態に従う処理を実現する所謂クラウドサービスのような形態でサーバー300が構成されてもよい。 Note that the calibration program 320B may be provided as a part of an arbitrary program, not as a single program. In this case, control processing according to the present embodiment is realized in cooperation with an arbitrary program. Even such a program that does not include some modules does not depart from the spirit of the server 300 according to the present embodiment. Furthermore, part or all of the functions provided by the calibration program 320B according to the present embodiment may be realized by dedicated hardware. Furthermore, the calibration apparatus 100 and the server 300 may cooperate to implement part or all of the functions provided by the calibration program 320B. Furthermore, the server 300 may be configured in the form of a so-called cloud service in which at least one server realizes processing according to the present embodiment.
 [小括]
 以上のようにして、本実施の形態に従う校正システム500は、校正対象の光学測定装置200の種類に合わせて校正基準を選択し、選択された校正基準に基づいて、光学測定装置200の校正処理を実行する。これにより、校正システム500は、様々な種類の光学測定装置に対応して校正処理を実行することができる。また、光学測定装置200の校正が自動で実行されるので、光学測定装置200の校正にかかる時間が短縮される。また、校正時に生じる人為的なミスが抑制される。
[Brief Summary]
As described above, the calibration system 500 according to the present embodiment selects the calibration standard according to the type of the optical measurement apparatus 200 to be calibrated, and performs the calibration process of the optical measurement apparatus 200 based on the selected calibration standard. Execute. Thereby, the calibration system 500 can execute the calibration process corresponding to various types of optical measurement apparatuses. In addition, since the calibration of the optical measuring device 200 is automatically executed, the time required for the calibration of the optical measuring device 200 is shortened. In addition, human error that occurs during calibration is suppressed.
 <第2の実施の形態>
 第1の実施の形態においては、校正対象の光学測定装置200がハンディ型の色彩色差計である例について説明を行なったが、校正可能な光学測定装置200は、これに限定されない。
<Second Embodiment>
In the first embodiment, an example in which the optical measurement device 200 to be calibrated is a hand-held color difference meter has been described, but the calibratable optical measurement device 200 is not limited to this.
 図13を参照して、校正可能なその他の光学測定装置について説明する。図13は、第2の実施の形態に従う校正装置100に据え置き型の光学測定装置200Aを設置している様子を示す図である。光学測定装置200Aは、たとえば、据え置き型の分光測色計、または据え置き型の色彩色差計などである。 Referring to FIG. 13, other optical measuring devices that can be calibrated will be described. FIG. 13 is a diagram illustrating a state in which a stationary optical measurement device 200A is installed in the calibration device 100 according to the second embodiment. The optical measuring apparatus 200A is, for example, a stationary spectrocolorimeter or a stationary color difference meter.
 校正装置100は、光学測定装置200Aがステージ112に設置された状態で、光学測定装置200Aを校正する。校正の方法は、第1の実施の形態で説明した通りであるので、その説明については繰り返さない。 The calibration apparatus 100 calibrates the optical measurement apparatus 200A with the optical measurement apparatus 200A installed on the stage 112. Since the calibration method is as described in the first embodiment, the description thereof will not be repeated.
 このように、校正システム500は、ハンディ型の光学測定装置200だけでなく、据え置き型の光学測定装置200も校正することができる。 As described above, the calibration system 500 can calibrate not only the handheld optical measurement apparatus 200 but also the stationary optical measurement apparatus 200.
 <第3の実施の形態>
 [校正システム500]
 第1の実施の形態に従う校正システム500は、基準板を用いて光学測定装置を校正していた。これに対して、第3の実施の形態に従う校正システム500は、基準光源を用いて光学測定装置を校正する。
<Third Embodiment>
[Calibration system 500]
The calibration system 500 according to the first embodiment calibrates the optical measurement device using the reference plate. On the other hand, the calibration system 500 according to the third embodiment calibrates the optical measurement device using the reference light source.
 以下では、図14を参照して、第3の実施の形態に従う校正システム500について説明する。図14は、第3の実施の形態に従う校正システム500におけるシステム構成の一例を示す図である。 Hereinafter, a calibration system 500 according to the third embodiment will be described with reference to FIG. FIG. 14 is a diagram showing an example of a system configuration in the calibration system 500 according to the third embodiment.
 校正装置100には、光学測定装置200Bが設置され得る。光学測定装置200Bは、たとえば、光源から発せられる光を測定することが可能な装置である。一例として、光学測定装置200Bは、色彩輝度計である。校正装置100は、光学測定装置200Bと通信することができる。 An optical measuring device 200B can be installed in the calibration device 100. The optical measurement device 200B is a device that can measure light emitted from a light source, for example. As an example, the optical measurement device 200B is a color luminance meter. The calibration device 100 can communicate with the optical measurement device 200B.
 校正装置100は、制御部101とボックス102とで構成されている。ボックス102の内部には、基準光源113および導光部115が設けられている。 The calibration apparatus 100 includes a control unit 101 and a box 102. Inside the box 102, a reference light source 113 and a light guide 115 are provided.
 基準光源113は、たとえば、異なる波長の光を発する光源113A~113Cを含む。校正装置100は、光学測定装置200Bの種類に合わせて、光源113A~113Cの中から校正処理に用いる光源を選択する。その後、校正装置100は選択され光源を点灯し、当該光源から照射された光は導光部115に入射する。 The reference light source 113 includes, for example, light sources 113A to 113C that emit light of different wavelengths. The calibration apparatus 100 selects a light source used for calibration processing from the light sources 113A to 113C according to the type of the optical measurement apparatus 200B. Thereafter, the calibration apparatus 100 is selected to turn on the light source, and the light emitted from the light source enters the light guide unit 115.
 導光部115は、たとえば反射板である。導光部115は、駆動機構(図示しない)によって駆動される。導光部115は、基準光源113から照射された光を受けて、当該光を光学測定装置200Bの測定光に反射する。これにより、光学測定装置200Bは、基準光源113を測光することができる。 The light guide 115 is, for example, a reflector. The light guide unit 115 is driven by a drive mechanism (not shown). The light guide unit 115 receives the light emitted from the reference light source 113 and reflects the light to the measurement light of the optical measurement device 200B. Thereby, the optical measuring device 200 </ b> B can measure the reference light source 113.
 なお、導光部115は、必ずしも設けられる必要はない。たとえば、導光部115が駆動される代わりに、基準光源113が駆動されてもよい。この場合、導光部115は、各光源から照射された光が光学測定装置200の測定口に直接入射するように駆動される。 Note that the light guide unit 115 is not necessarily provided. For example, instead of the light guide 115 being driven, the reference light source 113 may be driven. In this case, the light guide unit 115 is driven so that light emitted from each light source directly enters the measurement port of the optical measurement device 200.
 [校正処理]
 図15および図16を参照して、第3の実施の形態における校正処理について説明する。図15は、第3の実施の形態に従う校正システム500が実行する処理の一部を表わすフローチャートである。図15の処理は、図8に示されるステップS200の処理に相当する。ステップS200以外のその他の処理については、第1の実施の形態で説明した通りであるので、それらの説明については繰り返さない。
[Proofreading]
With reference to FIG. 15 and FIG. 16, the calibration process in the third embodiment will be described. FIG. 15 is a flowchart showing a part of processing executed by calibration system 500 according to the third embodiment. The process of FIG. 15 corresponds to the process of step S200 shown in FIG. Other processes other than step S200 are the same as those described in the first embodiment, and thus description thereof will not be repeated.
 ステップS210Aにおいて、校正システム500は、複数の基準光源の中から光学測定装置200の種類に対応付けられている基準光源を選択する。当該選択処理は、図16に示される校正情報84Aに基づいて実行される。図16は、第3の実施の形態に従う校正情報84Aを示す図である。 In step S210A, the calibration system 500 selects a reference light source associated with the type of the optical measuring device 200 from a plurality of reference light sources. The selection process is executed based on the calibration information 84A shown in FIG. FIG. 16 is a diagram showing calibration information 84A according to the third embodiment.
 校正情報84Aにおいて、校正処理に用いられる校正基準110が光学測定装置の種類ごとに対応付けられている。選択部152は、校正情報84Aに基づいて、複数の基準光源の中から光学測定装置200Bの種類に対応付けられている基準光源を選択する。より具体的には、選択部152は、校正基準110に規定されている光学測定装置の種類の中から、光学測定装置200Bの種類を探索し、当該探索された種類に対応付けられている基準光源を選択する。校正装置100は、選択された校正基準を校正処理に利用する基準光源として決定する。 In the calibration information 84A, the calibration reference 110 used for the calibration process is associated with each type of optical measuring device. The selection unit 152 selects a reference light source associated with the type of the optical measurement device 200B from the plurality of reference light sources based on the calibration information 84A. More specifically, the selection unit 152 searches for the type of the optical measurement device 200B from the types of optical measurement devices defined in the calibration standard 110, and the reference associated with the searched type. Select a light source. The calibration apparatus 100 determines the selected calibration standard as a reference light source used for the calibration process.
 ステップS212Aにおいて、校正システム500は、基準光源の番号を表わす変数mを初期化する。変数mは、たとえば、ゼロに初期化される。ステップS210Aで複数の基準光源が選択された場合には、当該複数の基準光源は、変数mにより一意に識別される。 In step S212A, the calibration system 500 initializes a variable m representing the reference light source number. The variable m is initialized to zero, for example. When a plurality of reference light sources are selected in step S210A, the plurality of reference light sources are uniquely identified by the variable m.
 ステップS214Aにおいて、校正システム500は、m番目の基準光源を点灯する。その後、校正システム500は、m番目の基準光源から照射された光を光学測定装置200Bの測定口に導くように導光部115(図14参照)を駆動する。これにより、導光部115は、選択された光源から発せられる光を校正対象の光学測定装置200Bの測定口に導く。導光部115の駆動処理は、たとえば、校正装置100の駆動制御部154(図7参照)によって実行される。 In step S214A, the calibration system 500 turns on the mth reference light source. Thereafter, the calibration system 500 drives the light guide 115 (see FIG. 14) so as to guide the light emitted from the mth reference light source to the measurement port of the optical measurement device 200B. Thereby, the light guide part 115 guides the light emitted from the selected light source to the measurement port of the optical measuring device 200B to be calibrated. The drive process of the light guide unit 115 is executed by, for example, the drive control unit 154 (see FIG. 7) of the calibration apparatus 100.
 ステップS216Aにおいて、校正システム500は、光学測定装置200に測光命令を出力する。その結果、校正システム500は、m番目の基準光源の測定データを取得することができる。 In step S216A, the calibration system 500 outputs a photometry command to the optical measurement device 200. As a result, the calibration system 500 can acquire measurement data of the mth reference light source.
 ステップS218Aにおいて、校正システム500は、光学測定装置200の校正処理を実行する。当該校正処理は、たとえば、サーバー300の校正部352(図7参照)によって実行される。当該校正処理については図5および図6で説明した通りであるので、その説明については繰り返さない。 In step S218A, the calibration system 500 executes the calibration process of the optical measuring device 200. The calibration process is executed by, for example, the calibration unit 352 (see FIG. 7) of the server 300. Since the calibration process is as described with reference to FIGS. 5 and 6, the description thereof will not be repeated.
 ステップS220Aにおいて、校正システム500は、全ての基準光源を用いて校正処理を実行したか否かを判断する(ステップS220AにおいてYES)、ステップS200の処理を終了し、制御をステップS300に切り替える。そうでない場合には(ステップS220AにおいてNO)、校正システム500は、制御をステップS222Aに切り替える。 In step S220A, the calibration system 500 determines whether or not calibration processing has been executed using all reference light sources (YES in step S220A), ends the processing in step S200, and switches control to step S300. Otherwise (NO in step S220A), calibration system 500 switches control to step S222A.
 ステップS222Aにおいて、校正システム500は、m番目の基準光源を消灯する。
 ステップS224Aにおいて、校正システム500は、変数mをインクリメントする。すなわち、校正システム500は、変数mを「1」増加する。
In step S222A, the calibration system 500 turns off the mth reference light source.
In step S224A, the calibration system 500 increments the variable m. That is, the calibration system 500 increases the variable m by “1”.
 <第4の実施の形態>
 第1~第3の実施の形態に従う校正システム500は、温度などの環境データを校正処理には用いていなかった。これに対して、第4の実施の形態に従う校正システム500は、環境データを用いて校正処理を実行する。
<Fourth embodiment>
The calibration system 500 according to the first to third embodiments does not use environmental data such as temperature for the calibration process. On the other hand, the calibration system 500 according to the fourth embodiment executes the calibration process using the environmental data.
 以下、第4の実施の形態における校正処理について説明する。
 校正システム500は、校正対象の光学測定装置200の周囲の環境を示す環境データを取得する。環境データは、光学測定装置200の周囲の温度や光学測定装置200に与えられた振動の大きさなどを含む。光学測定装置200の周囲の温度は、たとえば、温度センサー130(図1参照)によって検知される。光学測定装置200の振動の大きさは、たとえば、振動センサー132(図1参照)によって検知される。
Hereinafter, the calibration process in the fourth embodiment will be described.
The calibration system 500 acquires environmental data indicating the environment around the optical measuring device 200 to be calibrated. The environmental data includes the ambient temperature of the optical measurement device 200, the magnitude of vibration applied to the optical measurement device 200, and the like. The temperature around the optical measuring device 200 is detected by, for example, a temperature sensor 130 (see FIG. 1). The magnitude of vibration of the optical measuring device 200 is detected by, for example, a vibration sensor 132 (see FIG. 1).
 第4の実施の形態においては、上述の基準データ320A(図5参照)が、環境データごとに予め準備されている。すなわち、基準データ320Aの各々には環境データが対応付けられている。校正システム500は、基準データ320Aの各々に対応付けられている環境データの中から、校正処理時に検知された環境データに一致または略一致するものを探索し、探索された環境データに対応付けられている環境データを選択する。 In the fourth embodiment, the above-described reference data 320A (see FIG. 5) is prepared in advance for each environmental data. That is, environment data is associated with each of the reference data 320A. The calibration system 500 searches for environmental data that matches or substantially matches the environmental data detected during the calibration process from the environmental data associated with each of the reference data 320A, and associates it with the retrieved environmental data. Select environmental data.
 次に、校正システム500は、光学測定装置200の種類に対応する校正基準110を選択する。校正基準110の選択方法は図3で説明した通りであるので、その説明については繰り返さない。校正システム500は、選択された校正基準110を測光し、校正基準110の測光データを取得する。 Next, the calibration system 500 selects the calibration standard 110 corresponding to the type of the optical measuring device 200. Since the method of selecting the calibration standard 110 is as described with reference to FIG. 3, the description thereof will not be repeated. The calibration system 500 measures the selected calibration standard 110 and obtains photometric data of the calibration standard 110.
 校正システム500は、当該測定データと、環境データに応じて選択された基準データ320Aとを比較し、当該比較結果に基づいて、光学測定装置200の校正処理を実行する。校正処理については図5および図6で説明した通りであるので、その説明については繰り返さない。 The calibration system 500 compares the measurement data with the reference data 320A selected according to the environmental data, and executes the calibration process of the optical measurement device 200 based on the comparison result. Since the calibration process is as described with reference to FIGS. 5 and 6, the description thereof will not be repeated.
 以上のように、第4の実施の形態に従う校正システム500は、校正対象の光学測定装置200の周囲の環境を示す環境データと、選択された校正基準を測光して得られた測定データとを用いて、光学測定装置200の校正処理を実行する。環境データを用いて校正処理が実行されることで、光学測定装置200をより正確に校正することができる。 As described above, the calibration system 500 according to the fourth embodiment includes the environmental data indicating the environment around the optical measurement apparatus 200 to be calibrated and the measurement data obtained by measuring the selected calibration standard. The calibration process of the optical measuring device 200 is executed. By executing the calibration process using the environmental data, the optical measuring device 200 can be calibrated more accurately.
 <まとめ>
 異なる種類の光学測定装置を校正できる校正システムは、複数の基準物体と、校正対象の光学測定装置から当該光学測定装置の種類を受信するための受信部と、校正処理に用いられる基準物体を光学測定装置の種類ごとに対応付けている校正情報に基づいて、上記複数の基準物体の中から上記校正対象の光学測定装置の種類に対応付けられている基準物体を選択するための選択部と、上記選択部によって選択された基準物体の測定指示を上記校正対象の光学測定装置に出力し、当該校正対象の光学測定装置から当該基準物体の測定データを取得するための取得部と、上記測定データを用いて上記校正対象の光学測定装置を校正するための校正部とを備える。
<Summary>
A calibration system that can calibrate different types of optical measurement devices is an optical system that uses multiple reference objects, a receiver for receiving the type of optical measurement device from the optical measurement device to be calibrated, and a reference object used for calibration processing. Based on calibration information associated with each type of measurement device, a selection unit for selecting a reference object associated with the type of optical measurement device to be calibrated from among the plurality of reference objects, An acquisition unit for outputting a measurement instruction of the reference object selected by the selection unit to the optical measurement apparatus to be calibrated and acquiring measurement data of the reference object from the optical measurement apparatus to be calibrated, and the measurement data And a calibration unit for calibrating the optical measuring device to be calibrated.
 好ましくは、上記校正対象の光学測定装置は、物体からの反射光を測定するための装置である。上記複数の基準物体は、異なる色の複数の基準板を含む。上記選択部は、上記校正情報に基づいて、上記複数の基準板の中から上記校正対象の光学測定装置の種類に対応付けられている基準板を選択する。上記校正システムは、上記選択部によって選択された基準板を上記校正対象の光学測定装置の測定口に対向するおように設置するための駆動部をさらに備える。 Preferably, the optical measuring device to be calibrated is a device for measuring reflected light from an object. The plurality of reference objects include a plurality of reference plates of different colors. The selection unit selects a reference plate associated with the type of the optical measuring device to be calibrated from the plurality of reference plates based on the calibration information. The calibration system further includes a drive unit for installing the reference plate selected by the selection unit so as to face the measurement port of the optical measurement device to be calibrated.
 好ましくは、上記校正対象の光学測定装置は、光源から発せられる光を測定するための装置である。上記複数の基準物体は、異なる波長の光を発する複数の光源を含む。上記選択部は、上記校正情報に基づいて、上記複数の光源の中から上記校正対象の光学測定装置の種類に対応付けられている光源を選択する。上記校正システムは、上記選択部によって選択された光源から発せられる光を上記校正対象の光学測定装置の測定口に導くための導光部をさらに備える。 Preferably, the optical measuring device to be calibrated is a device for measuring light emitted from a light source. The plurality of reference objects include a plurality of light sources that emit light of different wavelengths. The selection unit selects a light source associated with the type of the optical measuring device to be calibrated from the plurality of light sources based on the calibration information. The calibration system further includes a light guide unit for guiding light emitted from the light source selected by the selection unit to a measurement port of the optical measurement device to be calibrated.
 好ましくは、上記校正システムは、校正装置と、上記校正装置と通信可能なサーバーとを備える。上記校正装置は、上記複数の基準物体と、上記受信部と、上記選択部と、上記取得部とを含む。上記サーバーは、上記校正部を含む。 Preferably, the calibration system includes a calibration device and a server capable of communicating with the calibration device. The calibration apparatus includes the plurality of reference objects, the reception unit, the selection unit, and the acquisition unit. The server includes the calibration unit.
 好ましくは、上記校正システムは、上記校正対象の光学測定装置の周囲の環境を示す環境データを取得するためのセンサーをさらに備える。上記校正部は、上記環境データおよび上記測定データを用いて上記校正対象の光学測定装置の校正処理を実行する。 Preferably, the calibration system further includes a sensor for acquiring environmental data indicating an environment around the optical measuring device to be calibrated. The calibration unit executes a calibration process for the optical measuring device to be calibrated using the environmental data and the measurement data.
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 80,305 表示部、82 操作部、84,320 記憶部、84A 校正情報、84B 識別情報、84C,320B 校正プログラム、90,304 通信インターフェイス、92 USB端子、100 校正装置、101,301 制御部、102 ボックス、103 台、104 収納部、105 駆動部、106 ロボットアーム、108 電磁コイル、110 校正基準、110B,110C,110G,110M,110O,110R,110W,110Y,111 基準板、112 ステージ、113 基準光源、113A~113C 光源、115 導光部、116 固定機構、118 スペーサー、130 温度センサー、132 振動センサー、150,350 受信部、152 選択部、154 駆動制御部、156 取得部、158 送信部、200,200A,200B 光学測定装置、300 サーバー、302 ROM、303 RAM、320A 基準データ、321 基準スペクトル、322 測定スペクトル、352 校正部、500 校正システム。 80, 305 display unit, 82 operation unit, 84, 320 storage unit, 84A calibration information, 84B identification information, 84C, 320B calibration program, 90, 304 communication interface, 92 USB terminal, 100 calibration device, 101, 301 control unit, 102 box, 103 units, 104 storage unit, 105 drive unit, 106 robot arm, 108 electromagnetic coil, 110 calibration standard, 110B, 110C, 110G, 110M, 110O, 110R, 110W, 110Y, 111 standard plate, 112 stage, 113 Reference light source, 113A to 113C light source, 115 light guide, 116 fixing mechanism, 118 spacer, 130 temperature sensor, 132 vibration sensor, 150, 350 receiver, 152 selector, 154 drive controller, 56 obtaining unit, 158 transmission unit, 200, 200A, 200B optical measuring device, 300 server, 302 ROM, 303 RAM, 320A reference data, 321 a reference spectrum, 322 the measured spectra, 352 calibration unit 500 calibration system.

Claims (7)

  1.  異なる種類の光学測定装置を校正できる校正システムであって、
     複数の基準物体と、
     校正対象の光学測定装置から当該光学測定装置の種類を受信するための受信部と、
     校正処理に用いられる基準物体を光学測定装置の種類ごとに対応付けている校正情報に基づいて、前記複数の基準物体の中から前記校正対象の光学測定装置の種類に対応付けられている基準物体を選択するための選択部と、
     前記選択部によって選択された基準物体の測定指示を前記校正対象の光学測定装置に出力し、当該校正対象の光学測定装置から当該基準物体の測定データを取得するための取得部と、
     前記測定データを用いて前記校正対象の光学測定装置を校正するための校正部とを備える、校正システム。
    A calibration system capable of calibrating different types of optical measuring devices,
    A plurality of reference objects;
    A receiving unit for receiving the type of the optical measuring device from the optical measuring device to be calibrated;
    A reference object associated with the type of the optical measurement device to be calibrated out of the plurality of reference objects, based on calibration information that associates a reference object used for the calibration process for each type of optical measurement device. A selection section for selecting
    An acquisition unit for outputting a measurement instruction of the reference object selected by the selection unit to the calibration target optical measurement device, and acquiring measurement data of the reference object from the calibration target optical measurement device;
    A calibration system comprising: a calibration unit for calibrating the optical measurement device to be calibrated using the measurement data.
  2.  前記校正対象の光学測定装置は、物体からの反射光を測定するための装置であり、
     前記複数の基準物体は、異なる色の複数の基準板を含み、
     前記選択部は、前記校正情報に基づいて、前記複数の基準板の中から前記校正対象の光学測定装置の種類に対応付けられている基準板を選択し、
     前記校正システムは、前記選択部によって選択された基準板を前記校正対象の光学測定装置の測定口に対向するおように設置するための駆動部をさらに備える、請求項1に記載の校正システム。
    The optical measuring device to be calibrated is a device for measuring reflected light from an object,
    The plurality of reference objects include a plurality of reference plates of different colors,
    The selection unit selects a reference plate associated with the type of the optical measurement device to be calibrated from the plurality of reference plates based on the calibration information,
    The calibration system according to claim 1, further comprising a drive unit configured to install the reference plate selected by the selection unit so as to face a measurement port of the optical measurement apparatus to be calibrated.
  3.  前記校正対象の光学測定装置は、光源から発せられる光を測定するための装置であり、
     前記複数の基準物体は、異なる波長の光を発する複数の光源を含み、
     前記選択部は、前記校正情報に基づいて、前記複数の光源の中から前記校正対象の光学測定装置の種類に対応付けられている光源を選択し、
     前記校正システムは、前記選択部によって選択された光源から発せられる光を前記校正対象の光学測定装置の測定口に導くための導光部をさらに備える、請求項1または2に記載の校正システム。
    The optical measuring device to be calibrated is a device for measuring light emitted from a light source,
    The plurality of reference objects include a plurality of light sources that emit light of different wavelengths,
    The selection unit selects a light source associated with a type of the optical measurement device to be calibrated from the plurality of light sources based on the calibration information,
    The calibration system according to claim 1, further comprising a light guide unit for guiding light emitted from the light source selected by the selection unit to a measurement port of the optical measurement device to be calibrated.
  4.  前記校正システムは、
      校正装置と、
      前記校正装置と通信可能なサーバーとを備え、
     前記校正装置は、前記複数の基準物体と、前記受信部と、前記選択部と、前記取得部とを含み、
     前記サーバーは、前記校正部を含む、請求項1~3のいずれか1項に記載の校正システム。
    The calibration system includes:
    A calibration device;
    A server capable of communicating with the calibration device,
    The calibration apparatus includes the plurality of reference objects, the reception unit, the selection unit, and the acquisition unit,
    4. The calibration system according to claim 1, wherein the server includes the calibration unit.
  5.  前記校正システムは、前記校正対象の光学測定装置の周囲の環境を示す環境データを取得するためのセンサーをさらに備え、
     前記校正部は、前記環境データおよび前記測定データを用いて前記校正対象の光学測定装置の校正処理を実行する、請求項1~4のいずれか1項に記載の校正システム。
    The calibration system further includes a sensor for acquiring environmental data indicating an environment around the optical measuring device to be calibrated,
    The calibration system according to any one of claims 1 to 4, wherein the calibration unit executes a calibration process of the optical measurement device to be calibrated using the environment data and the measurement data.
  6.  複数の基準物体を用いて異なる種類の光学測定装置を校正することが可能な校正方法であって、
     校正対象の光学測定装置から当該光学測定装置の種類を受信するステップと、
     校正処理に用いられる基準物体を光学測定装置の種類ごとに対応付けている校正情報に基づいて、前記複数の基準物体の中から前記校正対象の光学測定装置の種類に対応付けられている基準物体を選択するステップと、
     前記選択するステップで選択された基準物体の測定指示を前記校正対象の光学測定装置に出力し、当該校正対象の光学測定装置から当該基準物体の測定データを取得するステップと、
     前記測定データを用いて前記校正対象の光学測定装置を校正するステップとを備える、校正方法。
    A calibration method capable of calibrating different types of optical measurement devices using a plurality of reference objects,
    Receiving the type of the optical measuring device from the optical measuring device to be calibrated;
    A reference object associated with the type of the optical measurement device to be calibrated out of the plurality of reference objects, based on calibration information that associates a reference object used for the calibration process for each type of optical measurement device. A step of selecting
    Outputting a measurement instruction of the reference object selected in the selecting step to the optical measurement apparatus to be calibrated, and obtaining measurement data of the reference object from the optical measurement apparatus to be calibrated;
    And calibrating the optical measuring device to be calibrated using the measurement data.
  7.  複数の基準物体を用いて異なる種類の光学測定装置を校正することが可能な校正プログラムであって、
     前記校正プログラムは、コンピュータに、
      校正対象の光学測定装置から当該光学測定装置の種類を受信するステップと、
      校正処理に用いられる基準物体を光学測定装置の種類ごとに対応付けている校正情報に基づいて、前記複数の基準物体の中から前記校正対象の光学測定装置の種類に対応付けられている基準物体を選択するステップと、
      前記選択するステップで選択された基準物体の測定指示を前記校正対象の光学測定装置に出力し、当該校正対象の光学測定装置から当該基準物体の測定データを取得するステップと、
      前記測定データを用いて前記校正対象の光学測定装置を校正するステップとを実行させる、校正プログラム。
    A calibration program capable of calibrating different types of optical measuring devices using a plurality of reference objects,
    The calibration program is stored in a computer,
    Receiving the type of the optical measuring device from the optical measuring device to be calibrated;
    A reference object associated with the type of the optical measurement device to be calibrated out of the plurality of reference objects, based on calibration information that associates a reference object used for the calibration process for each type of optical measurement device. A step of selecting
    Outputting a measurement instruction of the reference object selected in the selecting step to the optical measurement apparatus to be calibrated, and obtaining measurement data of the reference object from the optical measurement apparatus to be calibrated;
    A calibration program for executing the step of calibrating the optical measuring device to be calibrated using the measurement data.
PCT/JP2017/015234 2016-04-19 2017-04-14 Calibration system, calibration method, and calibration program WO2017183567A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018513152A JP6784292B2 (en) 2016-04-19 2017-04-14 Calibration system, calibration method, and calibration program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-083839 2016-04-19
JP2016083839 2016-04-19

Publications (1)

Publication Number Publication Date
WO2017183567A1 true WO2017183567A1 (en) 2017-10-26

Family

ID=60116820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015234 WO2017183567A1 (en) 2016-04-19 2017-04-14 Calibration system, calibration method, and calibration program

Country Status (2)

Country Link
JP (1) JP6784292B2 (en)
WO (1) WO2017183567A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047944A1 (en) * 2022-08-29 2024-03-07 富士フイルム株式会社 Member for calibration, housing device, calibration device, calibration method, and program

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301531A (en) * 1991-03-29 1992-10-26 Matsushita Electric Ind Co Ltd Photoelectric colorimeter with error correcting function
JPH0634440A (en) * 1992-07-21 1994-02-08 Juki Corp Colorimeter
US5319437A (en) * 1991-07-26 1994-06-07 Kollmorgen Corporation Handheld portable spectrophotometer
JPH10300580A (en) * 1997-04-30 1998-11-13 Shimadzu Corp Color measuring equipment
JP2006047127A (en) * 2004-08-05 2006-02-16 Noritsu Koki Co Ltd Calibration method of colorimetric device
JP2006153498A (en) * 2004-11-25 2006-06-15 Konica Minolta Sensing Inc Standard surface sample and optical characteristic measuring system
JP2009008561A (en) * 2007-06-28 2009-01-15 Konica Minolta Sensing Inc Spectral characteristic measuring apparatus and spectral characteristic measuring system
JP2013221766A (en) * 2012-04-13 2013-10-28 Panasonic Corp Visual inspection device and visual inspection method
US8736841B1 (en) * 2013-02-27 2014-05-27 Datacolor Holding Ag Method and apparatus for aligning and validating the measurements of color measurement instruments

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301531A (en) * 1991-03-29 1992-10-26 Matsushita Electric Ind Co Ltd Photoelectric colorimeter with error correcting function
US5319437A (en) * 1991-07-26 1994-06-07 Kollmorgen Corporation Handheld portable spectrophotometer
JPH0634440A (en) * 1992-07-21 1994-02-08 Juki Corp Colorimeter
JPH10300580A (en) * 1997-04-30 1998-11-13 Shimadzu Corp Color measuring equipment
JP2006047127A (en) * 2004-08-05 2006-02-16 Noritsu Koki Co Ltd Calibration method of colorimetric device
JP2006153498A (en) * 2004-11-25 2006-06-15 Konica Minolta Sensing Inc Standard surface sample and optical characteristic measuring system
JP2009008561A (en) * 2007-06-28 2009-01-15 Konica Minolta Sensing Inc Spectral characteristic measuring apparatus and spectral characteristic measuring system
JP2013221766A (en) * 2012-04-13 2013-10-28 Panasonic Corp Visual inspection device and visual inspection method
US8736841B1 (en) * 2013-02-27 2014-05-27 Datacolor Holding Ag Method and apparatus for aligning and validating the measurements of color measurement instruments

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047944A1 (en) * 2022-08-29 2024-03-07 富士フイルム株式会社 Member for calibration, housing device, calibration device, calibration method, and program

Also Published As

Publication number Publication date
JP6784292B2 (en) 2020-11-11
JPWO2017183567A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP5334602B2 (en) Color calibration system
CN100489956C (en) Control to spectrum content in self-luminescence display
US8340937B2 (en) Characterization of a model-based spectral reflectance sensing device
CN102005181B (en) Standard dot matrix light source and image point correction method of LED display screen
EP1985981A2 (en) Information processing apparatus and method
JP5246395B2 (en) Optical property measuring device
JP2012215570A (en) Color measuring device calibration method
CN108731811B (en) Method and apparatus for calibrating a color measurement instrument
JPWO2010021258A1 (en) Photometric color measuring device
US20170184501A1 (en) Operating method of a biological detection calibration system
WO2017183567A1 (en) Calibration system, calibration method, and calibration program
US20110098957A1 (en) Measurement apparatus and method for rapid verification of critical optical parameters of a viewing display device screen and viewing environment
WO2017179520A1 (en) Optical measurement device, malfunction determination system, malfunction determination method, and malfunction determination program
WO2018056161A1 (en) Measurement data management system, measurement data management method, and optical characteristic measurement device
JP5838081B2 (en) Optical characteristic unevenness measuring apparatus and optical characteristic unevenness measuring method
US20210022646A1 (en) System and method for urine analysis and personal health monitoring
JP2010139356A (en) Calibrating function acquiring system and testing system of display
JP5176379B2 (en) Electronic device, external memory device, inspection method and program for electronic device
US11892351B2 (en) Instrument monitoring and correction
KR102209455B1 (en) Apparatus for calibrating color temperature and color in lighting system
CN116858374A (en) Calibration method and device for optical probe
US20220057264A1 (en) Method for calibrating a spectrometer
KR20210120497A (en) System and Method for Inspecting Display Panel
JPWO2019039024A1 (en) Wavelength shift correction system and wavelength shift correction method
CN114402181A (en) Imaging light measuring device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018513152

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785905

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785905

Country of ref document: EP

Kind code of ref document: A1