WO2017149756A1 - Particle analysis device and particle analysis method - Google Patents

Particle analysis device and particle analysis method Download PDF

Info

Publication number
WO2017149756A1
WO2017149756A1 PCT/JP2016/056791 JP2016056791W WO2017149756A1 WO 2017149756 A1 WO2017149756 A1 WO 2017149756A1 JP 2016056791 W JP2016056791 W JP 2016056791W WO 2017149756 A1 WO2017149756 A1 WO 2017149756A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
pores
particle
liquid
particle analyzer
Prior art date
Application number
PCT/JP2016/056791
Other languages
French (fr)
Japanese (ja)
Inventor
樹 高倉
悠 石毛
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/056791 priority Critical patent/WO2017149756A1/en
Publication of WO2017149756A1 publication Critical patent/WO2017149756A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/12Coulter-counters

Definitions

  • the present invention relates to a particle analysis apparatus and a particle analysis method.
  • Patent Document 1 describes a resistance pulse method for measuring a change in current when a particle passes through a nanopore, as a method for measuring particles contained in a sample solution, particularly a polymer including nucleic acid molecules.
  • Patent Document 1 describes that “the present disclosure provides an array of nanopore detectors (or sensors) for molecular detection and / or nucleic acid sequencing”.
  • the particles move from the cis side filled with the sample liquid to the other transformer side through the pores with the measurement. At this time, waste liquid in which particles after measurement are accumulated is generated on the transformer side. Therefore, in order to newly measure different sample liquids using the same pores, it is desirable to replace the cis-side sample liquid with a new sample liquid and also replace and wash the transformer-side waste liquid.
  • Patent Document 1 In the resistance pulse method, a method of arraying a plurality of pores and a plurality of electrodes is known in order to increase the volume of a sample to be measured.
  • Patent Document 1 After forming a lipid bilayer directly on each of a plurality of electrodes, pores are formed in the lipid bilayer, and particles are introduced outside the lipid bilayer. Therefore, since the inside covered with the lipid bilayer membrane on each electrode becomes the transformer side, it is difficult to replace and wash the waste liquid on the transformer side. Therefore, in the configuration of Patent Document 1, the same pore cannot be washed and repeatedly measured, and a new pore is formed when the same device is used for the same measurement multiple times. There is a need. Moreover, it is necessary to form a new pore device for each measurement, and there is a problem that costs such as time and cost are required.
  • the present invention provides a technique that enables repeated measurement using the same pore device in a particle analyzer having an array structure.
  • the present application includes a plurality of means for solving the above-mentioned problem.
  • a substrate having a plurality of pores, and a surface of the substrate that is in contact with the plurality of pores and a part of the pores.
  • a measurement container including a first flow path formed so as to divide the gap, and a second flow path in contact with the plurality of pores on the back surface of the substrate, and the surface of the substrate or the first flow path
  • a plurality of detection electrodes provided inside and corresponding to each of the plurality of pores; at least one counter electrode provided on the back surface of the substrate or inside the second flow path;
  • a voltage source that applies a voltage between the plurality of detection electrodes and the counter electrode; and a measurement unit that measures a current or electric resistance flowing between each of the plurality of detection electrodes and the counter electrode.
  • a particle analysis apparatus is provided.
  • a substrate having a plurality of pores and a first flow path formed so as to be in contact with the plurality of pores on the surface of the substrate and to partition between some of the pores.
  • a first introduction step of introducing a liquid having conductivity into the first flow path of the measurement container including a second flow path in contact with the plurality of pores on the back surface of the substrate, and the measurement container A second introduction step of introducing a conductive liquid into the second flow channel, and an operation step of operating the first flow channel or particles contained in the second flow channel to pass through the plurality of pores.
  • a plurality of detection electrodes provided on the front surface of the substrate or inside the first flow path and arranged to correspond to each of the plurality of pores; and the back surface of the substrate or the second flow path
  • Each of the plurality of detection electrodes using at least one counter electrode provided inside Particle analysis method comprising the step of measuring the current or resistance flowing between the counter electrode.
  • FIG. 1 is a schematic view of an embodiment of a particle analyzer according to the present invention, and is a side sectional view of a measurement container.
  • the particle analyzer includes a measurement container 10.
  • the measurement container 10 is formed such that a substrate 101 having a plurality of pores 100 regularly provided in the plane, and the one surface of the substrate 101 is in contact with the pores 100 and part of the pores 100 are separated.
  • the first flow path 102 and the second flow path 103 in contact with the pores 100 on the other side of the substrate 101 are provided.
  • the surface of the substrate 101 in contact with the first flow path 102 is referred to as “front surface”
  • the surface of the substrate 101 in contact with the second flow path 103 is referred to as “back surface”.
  • the inlet 110 and the outlet 111 are connected to the first channel 102, and the inlet 112 and the outlet 113 are connected to the second channel 103.
  • a conductive liquid can be injected into the first flow path 102 and the second flow path 103 using the corresponding inlets 110 and 112, respectively.
  • a flow path wall 104 is provided inside the first flow path 102, and the flow path wall 104 is formed so as to separate adjacent pores 100.
  • the flow path wall 104 may be formed of PDMS (polydimethylsiloxane).
  • a plurality of detection electrodes 121 are provided in the vicinity of each pore 100 inside the first flow path 102. At least one counter electrode 122 is provided inside the second flow path 103.
  • the detection electrode 121 and the counter electrode 122 are shown to be embedded in the measurement container 10, but the present invention is not limited to this.
  • a plurality of detection electrodes 121 may be provided on the surface of the substrate 101, respectively.
  • at least one counter electrode 122 may be provided on the back surface of the substrate 101.
  • the detection electrode 121 and the counter electrode 122 are provided so as to be in electrical contact with the liquid introduced into the first channel 102 and the second channel 103, respectively.
  • the detection electrode 121 and the counter electrode 122 are connected to each other outside the first flow path 102 and the second flow path 103 by a conducting wire, thereby forming a closed circuit.
  • This circuit includes a voltage source 130, and the voltage source 130 applies a voltage between the detection electrode 121 and the counter electrode 122.
  • the voltage source 130 is preferably a variable voltage source. In FIG. 1, the single voltage source 130 is configured to apply the same voltage to all the detection electrodes 121. However, independent voltage sources may be provided for the detection electrodes 121. Good.
  • the particle analyzer includes a measurement unit that measures current or electric resistance flowing between each of the plurality of detection electrodes 121 and the counter electrode 122.
  • An ammeter 131 for measuring the current flowing through each detection electrode 121 is connected to the circuit as a measurement unit. Instead of the ammeter 131, an ohmmeter may be connected to the circuit. According to this configuration, the same measurement as described above can be performed by measuring the change in electrical resistance across the pores 100.
  • the particle analyzer includes a processing device (not shown) connected to the ammeter 131.
  • the processing device may be realized using a general-purpose computer.
  • the computer includes at least a processor such as a CPU (Central Processing Unit), a memory, and a storage device such as a hard disk.
  • the processing device receives the current value measured by the ammeter 131 as an input, and executes a predetermined process (for example, the contents described in FIGS. 8 and 9) on the current value.
  • the processing device may record the current value measured by the ammeter 131 in the storage device. Further, the processing device may analyze the particles 20 based on the measured current value and output the analysis result.
  • the processing apparatus may include a display unit such as a display, and the display unit may display the current value measured by the ammeter 131 and the analysis result.
  • the sample liquid is introduced into the first channel 102 or the second channel 103.
  • the sample liquid refers to a liquid in which the particles 20 are dispersed in a conductive liquid. Even if the sample liquid is introduced into either the first channel 102 or the second channel 103, the same measurement can be performed.
  • the particles 20 are nucleic acid molecules, protein molecules and aggregates thereof, metal nanoparticles, polymer beads, cells, and the like, and the particle size thereof is about 1 nm to 20 ⁇ m.
  • the diameter of the pore 100 is large enough to allow the particle 20 to pass through.
  • a pore having a diameter smaller than about 5 ⁇ m can be produced by applying a lithography technique to a semiconductor thin film.
  • pores having a diameter larger than about 5 ⁇ m can be produced by molding a resin material using a mold.
  • FIG. 2 is a top view showing an example of the shape of the first flow path in the particle analyzer shown in FIG.
  • Two pores 100 are formed in the bottom surface of the first flow path 102, that is, in the substrate 101.
  • the flow path wall 104 is provided so as to partially separate the two pores 100.
  • the flow path wall 104 may be formed as a surface extending in the direction perpendicular to the flow direction when the conductive liquid is introduced into the first flow path 102.
  • the flow path wall 104 may be formed by a structure integrated with the measurement container 10 or the substrate 101.
  • the liquid introduced from the inlet 110 of the first flow channel 102 can go around the connecting portion 105 formed by the flow channel wall 104 and fill the entire inside of the first flow channel 102.
  • the substrate 101 is illustrated as including two pores 100, but the number of the pores 100 may be more than two.
  • the connecting portion 105 is illustrated as having two locations, but the first flow path 102 of the measurement container 10 only needs to include at least one connecting portion.
  • FIG. 3 is a top view showing an example of the shape of the first flow path when the particle analyzer shown in FIG. 1 has a large number of pores.
  • the flow path wall 104 can be provided so as to partially divide the pores 100.
  • the first flow path 102 includes a plurality of flow path walls 104.
  • the plurality of flow path walls 104 have a cross-shaped cross section when viewed from above.
  • the first flow path 102 is divided into 12 sections by a plurality of cross-shaped flow path walls 104.
  • One pore 100 is disposed in each of the 12 compartments.
  • the effect of the flow path wall 104 will be described.
  • Crosstalk here means that the electric signal intensity in the pores through which the particles have passed decreases, and at the same time, an electric signal change occurs in the neighboring pores through which the particles have not passed.
  • the electrical resistance between the plurality of pores 100 can be increased by the flow path wall 104, and the crosstalk can be reduced.
  • FIG. 4 shows an equivalent circuit when the substrate 101 has two pores in the apparatus shown in FIG.
  • the left pore 100 is referred to as a pore 1
  • the right pore 100 is referred to as a pore 2 in the drawing of the apparatus of FIG.
  • R I is the electrical resistance of the liquid between the pore 1 and the pore 2
  • R P1 and R P2 are , Corresponding to the electrical resistance in the pore 1 and the pore 2, respectively.
  • RP1 and RP2 include electrical resistances from the pores 1 and 2 to the counter electrode 122, respectively, but these are usually sufficiently smaller than the electrical resistance of the pores themselves.
  • the electrical resistance forms a bridge circuit, and the voltage V is applied by the voltage source 130.
  • the current flowing through the detection electrode 121 corresponds to the current flowing through the electric resistance R on the equivalent circuit.
  • FIG. 5 shows a change in current when the electric resistance RP1 is increased by 1% due to particles entering the pore 1 in the equivalent circuit shown in FIG.
  • the flow path wall 104 may be formed of a material and / or structure that increases the resistance between the adjacent pores 100.
  • the electrical resistance between each of the plurality of pores 100 and the corresponding detection electrode 121 is between the plurality of pores 100 and the adjacent pores 100. It is smaller than the electrical resistance of the liquid having the electrical conductivity.
  • the connecting portion (liquid passage) 105 between the pores 100 is narrowed, and the electrical resistance between the pores 100 is increased. be able to. As a result, crosstalk can be reduced.
  • the substrate 101 includes two pores 100.
  • the substrate 101 includes three or more pores (for example, FIG. 3).
  • the flow path wall 104 can be provided so as to obtain the same effect.
  • FIG. 6 is an example of a flow of an analysis process using the particle analyzer shown in FIG.
  • the particle analysis process includes a first introduction step S ⁇ b> 1 for introducing a conductive sample liquid in which particles 20 are dispersed in the first flow path 102 of the measurement container 10, and a second flow of the measurement container 10.
  • the second introduction step S2 for introducing a conductive liquid into the path 103, and the voltage source 130 between the detection electrode 121 and the counter electrode 122 while operating the particle 20 to pass through the pore 100.
  • a measurement step S3 of applying a voltage and measuring a current flowing through each of the detection electrodes 121.
  • the first introduction step S1 may be performed after the second introduction step S2.
  • the first introduction step S1 and the second introduction step S2 may be performed simultaneously.
  • grains 20 were introduce
  • electrophoresis by an electric field induced in the vicinity of the pore 100 may be used to operate the particle 20 so as to pass through the pore 100, which will be described later.
  • pressure flow may be used.
  • electrophoresis when negatively charged particles 20 are introduced into the first flow path 102, a negative voltage is applied to the detection electrode 121, and the first flow path 102 to the second flow path 103. The particles 20 may be driven.
  • positively charged particles 20 are introduced into the first flow path 102, a positive voltage is applied to the detection electrode 121, and the particles 20 are transferred from the first flow path 102 to the second flow path 103. What is necessary is just to drive.
  • FIG. 7 is another example of an analysis process flow using the particle analyzer shown in FIG.
  • liquid is introduced into one or both of the first flow path 102 and the second flow path 103 immediately before the flow of the analysis process shown in FIG.
  • a cleaning step S0 for cleaning is included. Thereby, it is possible to remove the substance remaining in the vicinity of the pore 100 and in the first and second flow paths 102 and 103 by the previous measurement, and perform a more precise measurement.
  • the liquid used in the cleaning step S0 may be the same as the conductive liquid introduced into the first and second flow paths 102 and 103 in the first introduction step S1 and the second introduction step S2.
  • the cleaning liquid may have completely different properties.
  • FIG. 8 is a diagram showing a change in current obtained in the particle analyzer shown in FIG.
  • the vertical axis indicates the current value measured in each pore 100, and the horizontal axis indicates time.
  • the current values of the plurality of pores 100 are displayed side by side so that the pores having the largest crosstalk are continuous.
  • the processing device may be configured to analyze an electrical signal including crosstalk between the plurality of pores 100.
  • the processing device receives an electrical signal from the ammeter 131 as input information and executes a process of searching for an extreme value in the three-dimensional graph.
  • the processing apparatus may output a search result (for example, information on pores through which particles have passed).
  • FIG. 9 is a diagram showing the current change amount of each pore at the time when the particles pass in the current measurement data shown in FIG.
  • the curve in the figure shows the theoretical value of crosstalk.
  • the above particle analyzer and analysis process facilitate the exchange of the sample liquid and the injection of the cleaning liquid in the pore sensor array, and enable repeated measurement using the same pore device (the substrate 101 having the pore 100). Become. Therefore, the cost for measurement can be reduced. Further, according to the present embodiment, the crosstalk of the electric signal between the plurality of pores 100 can be reduced, and the signal including the remaining crosstalk can be analyzed.
  • FIG. 10 is a schematic view of an embodiment of the particle analyzer according to the present invention. Constituent elements described in the above-described embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the pressure control unit 140 is connected to the apparatus described in the first embodiment.
  • the pressure control unit 140 can generate a pressure flow by applying a differential pressure across the pore 100 to the first channel 102 and the second channel 103.
  • illustration of an electric circuit is abbreviate
  • the pressure control unit 140 is connected to the outlet 113 of the second channel 103, but is connected to the inlet 110 of the first channel 102, the outlet 111 of the first channel 102, or the inlet 112 of the second channel 103. May be. Further, the pressure control unit 140 may also be used as a pump used when liquid is introduced into the first channel 102 or the second channel 013.
  • the pressure control unit 140 may be a pump that directly sends liquid, or a pump that generates a differential pressure by operating a syringe filled with gas. Further, the pressure control unit 140 may be a mechanism that generates a differential pressure by giving a height difference between the liquid level of the first flow path 102 and the liquid level of the second flow path 103.
  • the differential pressure between the first channel 102 and the second channel 103 is typically in the range of 200 hPa or less, preferably in the range of 100 hPa or less.
  • the pressure control unit 140 is operated so that the flow path into which the particles 20 are introduced has a higher pressure than the other flow path. That is, when the particles 20 are introduced into the first flow path 102, the pressure control unit 140 operates so that the pressure in the first flow path 102 is higher than the pressure in the second flow path 103.
  • the inlet 110 of the first flow path 102 or the outlet 111 of the first flow path 102 is opened to the atmospheric pressure, and negative pressure is applied to the pressure control unit 140. Apply pressure.
  • the driving force for the particles 20 to pass through the pores 100 is an electric field.
  • the particle 20 does not have a sufficient surface charge, or when the diameter of the pore 100 is about 1 ⁇ m or more and the electric field strength in the vicinity of the pore 100 is small, the electrophoretic force becomes small, and the efficiency In particular, the particles 20 cannot be driven.
  • FIG. 11 is a top view showing an example of the shape of the first channel 102 in one embodiment of the particle analyzer according to the present invention.
  • the plurality of flow path walls 104 are arranged along the flow direction when the conductive liquid is introduced.
  • the first flow path 102 includes a plurality of divided flow paths 106. At least one pore 100 is disposed in each divided flow path 106. In the example of FIG. 11, three pores 100 are arranged in each divided flow path 106. The ends of the divided flow paths 106 are connected by a connecting portion 105.
  • segmentation flow path 106 is extended along the flow direction when the liquid which has electroconductivity is introduce
  • the plurality of flow path walls 104 are formed to be parallel to the flow direction when the conductive liquid is introduced into the first flow path 102.
  • the pores 100 are arranged in a line along the flow direction when a conductive liquid is introduced into each divided flow channel 106. Preferably they are arranged.
  • the number of pores closest to the fine pores 100 arranged in the divided flow channel 106 is two.
  • the number of pores closest to the pore 100 arranged at the end of the divided flow channel 106 is three at the maximum.
  • Example 4 12 and 13 are top views showing an example of the shape of the first channel 102 in an embodiment of the particle analyzer according to the present invention.
  • the first flow path 102 is a flow path having no branch, and a plurality of pores are arranged in a line along the flow direction when the conductive liquid is introduced into the first flow path 102.
  • the first flow path 102 has a structure that is folded back in a zigzag shape.
  • the first flow path 102 has a spiral structure.
  • the number of pores closest to each pore 100 becomes two at the maximum.
  • Such a shape of the first flow path 102 can reduce the number of pores that are closest to each of the pores 100 even when the plurality of pores 100 are provided. Therefore, it is possible to reduce crosstalk more effectively.
  • FIG. 14 is a top view showing an example of the shape of the first channel 102 and a method for introducing a conductive liquid in an embodiment of the particle analyzer according to the present invention.
  • the shape of the first flow path 102 of the present embodiment is the same as that of the example shown in the fourth embodiment, but a droplet generation unit 150 is connected to the front stage of the inlet 110 of the first flow path 102.
  • the droplet generation unit 150 generates a droplet 151 in a state where the particles 20 are included in a conductive liquid.
  • the droplet generation unit 150 introduces the generated droplet 151 into the first channel 102 from the inlet 110. Between two adjacent droplets 151 are filled with oil droplets or bubbles 152. Therefore, the droplet generation unit 150 may be configured to introduce the droplets 151 and the oil droplets or bubbles 152 into the first flow path 102 alternately.
  • the oil droplet or bubble 152 may be a liquid or gas that is not mixed with the droplet 151 and does not have conductivity.
  • bubbles are used so as to allow the volume change between the droplets 151. Is preferred.
  • a hydrophobic liquid that does not have gas or conductivity between the plurality of droplets 151 along the flow direction when the conductive liquid is introduced into the first flow path 102. Divided by. When the space between the plurality of droplets 151 is filled with a hydrophobic liquid or gas having no electrical conductivity, the electrical resistance between the pores 100 becomes infinite. As a result, the crosstalk between the pores 100 can be completely removed while the liquid can be replaced and washed using the first flow path 102.
  • FIG. 15 is an example of a flow of an analysis process using the particle analyzer shown in FIG.
  • the particle analysis process is a process in which a part of the particle analysis process shown in FIG. 6 is replaced.
  • the particle analysis process includes a droplet generation step S4 in which the droplet generation unit 150 generates a liquid droplet 151 having conductivity including the particles 20, and a conductive liquid including the particles 20 in the first flow path 102.
  • the droplet 151 is positioned so as to be in contact with the pore 100 and the detection electrode 121 in the first channel 102.
  • the droplet introduction step S5 may be performed after the second introduction step S2.
  • the droplet introduction step S5 and the second introduction step S2 may be performed simultaneously.
  • grains 20 were introduce
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment.
  • the structure of another Example can also be added to the structure of a certain Example.
  • another configuration can be added, deleted, or replaced.
  • the functions of the above processing apparatus may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in various types of non-transitory computer-readable media.
  • the non-transitory computer-readable medium for example, a flexible disk, a CD-ROM, a DVD-ROM, a hard disk, an optical disk, a magneto-optical disk, a CD-R, a magnetic tape, a nonvolatile memory card, a ROM, and the like are used.

Abstract

A particle analysis device of the present invention is equipped with a measuring unit, and a measuring container that is provided with: a substrate having a plurality of fine pores; a first flow channel, which is in contact with, on the front surface of the substrate, the fine pores, and which separates some of the fine pores from each other; and a second flow channel in contact with, on the rear surface of the substrate, the fine pores. The measuring unit measures a flowing current or electric resistance between each of a plurality of detection electrodes that are provided on the front surface of the substrate or inside of the first flowing channel, and at least one facing electrode that is provided on the rear surface of the substrate or inside of the second flowing channel.

Description

粒子分析装置及び粒子分析方法Particle analyzer and particle analysis method
 本発明は、粒子分析装置及び粒子分析方法に関する。 The present invention relates to a particle analysis apparatus and a particle analysis method.
 本技術分野の背景技術として、特許文献1がある。特許文献1には、試料液中に含まれる粒子、特に核酸分子を包含するポリマーの測定法として、粒子がナノ細孔を通過する際の電流変化を測定する抵抗パルス法が記載されている。そして、特許文献1には、「本開示は、分子の検出および/又は核酸の配列決定のためのナノ細孔検出器(又はセンサー)のアレイを提供する」と記載されている。 There is Patent Document 1 as background art in this technical field. Patent Document 1 describes a resistance pulse method for measuring a change in current when a particle passes through a nanopore, as a method for measuring particles contained in a sample solution, particularly a polymer including nucleic acid molecules. Patent Document 1 describes that “the present disclosure provides an array of nanopore detectors (or sensors) for molecular detection and / or nucleic acid sequencing”.
特表2015-508896号公報JP-T-2015-508896
 抵抗パルス法では、測定に伴って、粒子が、試料液体が充填されたシス側から細孔を通って他方のトランス側へ移動する。このとき、トランス側には測定後の粒子が蓄積した廃液が発生する。そのため、同一の細孔を用いて異なる試料液体を新たに測定するためには、シス側の試料液体を新たな試料液体で置換するとともに、トランス側の廃液も置換洗浄することが望ましい。 In the resistance pulse method, the particles move from the cis side filled with the sample liquid to the other transformer side through the pores with the measurement. At this time, waste liquid in which particles after measurement are accumulated is generated on the transformer side. Therefore, in order to newly measure different sample liquids using the same pores, it is desirable to replace the cis-side sample liquid with a new sample liquid and also replace and wash the transformer-side waste liquid.
 抵抗パルス法において、測定する試料の容量を増大させるために、複数の細孔及び複数の電極をアレイ化する手法が知られている。特許文献1では、複数の電極のそれぞれの直上に脂質二重膜を形成した後、脂質二重膜中に細孔が形成され、脂質二重膜の外側に粒子が導入される。したがって、各電極上において脂質二重膜に被覆された内部がトランス側となるため、トランス側の廃液を置換及び洗浄することは困難である。したがって、特許文献1の構成では、同一の細孔を洗浄して繰り返し測定を行うことができず、同一のデバイスを用いて複数回の同様の測定を行う場合には新たな細孔を形成する必要がある。また、測定の度に新たな細孔デバイスを形成する必要があり、時間及び費用などのコストがかかるという課題がある。 In the resistance pulse method, a method of arraying a plurality of pores and a plurality of electrodes is known in order to increase the volume of a sample to be measured. In Patent Document 1, after forming a lipid bilayer directly on each of a plurality of electrodes, pores are formed in the lipid bilayer, and particles are introduced outside the lipid bilayer. Therefore, since the inside covered with the lipid bilayer membrane on each electrode becomes the transformer side, it is difficult to replace and wash the waste liquid on the transformer side. Therefore, in the configuration of Patent Document 1, the same pore cannot be washed and repeatedly measured, and a new pore is formed when the same device is used for the same measurement multiple times. There is a need. Moreover, it is necessary to form a new pore device for each measurement, and there is a problem that costs such as time and cost are required.
 そこで、本発明は、上記課題を考慮し、アレイ構造を有する粒子分析装置において、同一の細孔デバイスを用いた繰り返し測定を可能にする技術を提供する。 In view of the above problems, the present invention provides a technique that enables repeated measurement using the same pore device in a particle analyzer having an array structure.
 例えば、上記課題を解決するために、請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例をあげるならば、複数の細孔を有する基板と、前記基板の表面で前記複数の細孔に接し、かつ一部の細孔間を区切るように形成されている第1流路と、前記基板の裏面で前記複数の細孔に接する第2流路とを備えた測定容器と、前記基板の表面又は前記第1流路の内部に設けられ、前記複数の細孔のそれぞれに対応するように配置された複数の検出用電極と、前記基板の裏面又は前記第2流路の内部に設けられた少なくとも1つの対向電極と、前記複数の検出用電極と前記対向電極との間に電圧を印加する電圧源と、前記複数の検出用電極のそれぞれと前記対向電極との間に流れる電流又は電気抵抗を測定する測定部とを備える粒子分析装置が提供される。 For example, in order to solve the above problems, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-mentioned problem. To give an example, a substrate having a plurality of pores, and a surface of the substrate that is in contact with the plurality of pores and a part of the pores. A measurement container including a first flow path formed so as to divide the gap, and a second flow path in contact with the plurality of pores on the back surface of the substrate, and the surface of the substrate or the first flow path A plurality of detection electrodes provided inside and corresponding to each of the plurality of pores; at least one counter electrode provided on the back surface of the substrate or inside the second flow path; A voltage source that applies a voltage between the plurality of detection electrodes and the counter electrode; and a measurement unit that measures a current or electric resistance flowing between each of the plurality of detection electrodes and the counter electrode. A particle analysis apparatus is provided.
 また、他の例によれば、複数の細孔を有する基板と、前記基板の表面で前記複数の細孔に接し、かつ一部の細孔間を区切るように形成されている第1流路と、前記基板の裏面で前記複数の細孔に接する第2流路とを備えた測定容器の前記第1流路に導電性を有する液体を導入する第1導入工程と、前記測定容器の前記第2流路に導電性を有する液体を導入する第2導入工程と、前記第1流路又は前記第2流路に含まれる粒子が前記複数の細孔を通過するように操作する操作工程と、前記基板の表面又は前記第1流路の内部に設けられ、前記複数の細孔のそれぞれに対応するように配置された複数の検出用電極と、前記基板の裏面又は前記第2流路の内部に設けられた少なくとも1つの対向電極とを用いて、前記複数の検出用電極のそれぞれと前記対向電極との間に流れる電流又は電気抵抗を測定する測定工程とを含む粒子分析方法が提供される。 Further, according to another example, a substrate having a plurality of pores and a first flow path formed so as to be in contact with the plurality of pores on the surface of the substrate and to partition between some of the pores. A first introduction step of introducing a liquid having conductivity into the first flow path of the measurement container including a second flow path in contact with the plurality of pores on the back surface of the substrate, and the measurement container A second introduction step of introducing a conductive liquid into the second flow channel, and an operation step of operating the first flow channel or particles contained in the second flow channel to pass through the plurality of pores. A plurality of detection electrodes provided on the front surface of the substrate or inside the first flow path and arranged to correspond to each of the plurality of pores; and the back surface of the substrate or the second flow path Each of the plurality of detection electrodes using at least one counter electrode provided inside Particle analysis method comprising the step of measuring the current or resistance flowing between the counter electrode.
 本発明によれば、アレイ構造を有する粒子分析装置において、同一の細孔デバイスを用いた繰り返し測定が可能となる。なお、本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施例の説明により明らかにされる。 According to the present invention, repeated measurement using the same pore device is possible in a particle analyzer having an array structure. Further features relating to the present invention will become apparent from the description of the present specification and the accompanying drawings. Further, problems, configurations and effects other than those described above will be clarified by the description of the following examples.
本発明による粒子分析装置の一実施例の模式図である。It is a schematic diagram of one Example of the particle | grain analyzer by this invention. 粒子分析装置における第1流路の形状の一例を示した上面図である。It is the top view which showed an example of the shape of the 1st flow path in a particle analyzer. 粒子分析装置における第1流路の形状の一例を示した上面図である。It is the top view which showed an example of the shape of the 1st flow path in a particle analyzer. 図1の粒子分析装置における等価回路を示す模式図である。It is a schematic diagram which shows the equivalent circuit in the particle | grain analyzer of FIG. 検出信号のクロストークを示す計算結果である。It is a calculation result which shows the crosstalk of a detection signal. 粒子分析装置を用いた分析プロセスのフローの一例である。It is an example of the flow of the analysis process using a particle analyzer. 粒子分析装置を用いた分析プロセスのフローの一例である。It is an example of the flow of the analysis process using a particle analyzer. 検出信号のクロストークを含む測定結果を示す模式図である。It is a schematic diagram which shows the measurement result containing the crosstalk of a detection signal. 検出信号のクロストークを含む測定結果の解析方法を示す模式図である。It is a schematic diagram which shows the analysis method of the measurement result containing the crosstalk of a detection signal. 本発明による粒子分析装置の一実施例の模式図である。It is a schematic diagram of one Example of the particle | grain analyzer by this invention. 粒子分析装置における第1流路の形状の一例を示した上面図である。It is the top view which showed an example of the shape of the 1st flow path in a particle analyzer. 粒子分析装置における第1流路の形状の一例を示した上面図である。It is the top view which showed an example of the shape of the 1st flow path in a particle analyzer. 粒子分析装置における第1流路の形状の一例を示した上面図である。It is the top view which showed an example of the shape of the 1st flow path in a particle analyzer. 本発明による粒子分析装置の一実施例の模式図である。It is a schematic diagram of one Example of the particle | grain analyzer by this invention. 粒子分析装置を用いた分析プロセスのフローの一例である。It is an example of the flow of the analysis process using a particle analyzer.
 以下、本発明の実施例について図面を用いて説明する。なお、以下に説明する実施例は一例であり、本発明の要旨を逸脱しない範囲で変形実施することが可能である。また、1つの例示的な態様と共に図示又は記述される特色を、他の態様の特色と組み合わせてもよい。各実施例の図面において既に説明した構成要素については同じ符号を付して対応関係を明確にしている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the Example described below is an example and can be modified within a range not departing from the gist of the present invention. Also, a spot color illustrated or described with one exemplary aspect may be combined with a spot color with another aspect. The components already described in the drawings of the embodiments are given the same reference numerals to clarify the correspondence.
[実施例1]
 図1は、本発明による粒子分析装置の一実施例の模式図であり、測定容器の側断面図である。粒子分析装置は、測定容器10を備える。測定容器10は、面内に規則的に設けられた複数の細孔100を有する基板101と、基板101の片面で細孔100に接し、且つ一部の細孔100間を区切るように形成されている第1流路102と、基板101の他方の片面で細孔100に接する第2流路103とを備える。ここで、便宜上、第1流路102が接している基板101の面を「表面」と称し、第2流路103が接している基板101の面を「裏面」と称する。
[Example 1]
FIG. 1 is a schematic view of an embodiment of a particle analyzer according to the present invention, and is a side sectional view of a measurement container. The particle analyzer includes a measurement container 10. The measurement container 10 is formed such that a substrate 101 having a plurality of pores 100 regularly provided in the plane, and the one surface of the substrate 101 is in contact with the pores 100 and part of the pores 100 are separated. The first flow path 102 and the second flow path 103 in contact with the pores 100 on the other side of the substrate 101 are provided. Here, for convenience, the surface of the substrate 101 in contact with the first flow path 102 is referred to as “front surface”, and the surface of the substrate 101 in contact with the second flow path 103 is referred to as “back surface”.
 第1流路102には入口110と出口111が接続され、第2流路103には入口112と出口113が接続されている。第1流路102及び第2流路103には、それぞれ対応する入口110、112を用いて、導電性を有する液体を注入することができる。また、第1流路102及び第2流路103からは、それぞれ対応する出口111、113を用いて、導電性を有する液体を排出することができる。 The inlet 110 and the outlet 111 are connected to the first channel 102, and the inlet 112 and the outlet 113 are connected to the second channel 103. A conductive liquid can be injected into the first flow path 102 and the second flow path 103 using the corresponding inlets 110 and 112, respectively. In addition, from the first flow path 102 and the second flow path 103, it is possible to discharge the liquid having conductivity using the corresponding outlets 111 and 113, respectively.
 第1流路102の内部には流路壁104が設けられており、流路壁104は、隣接する細孔100間を区切るように形成されている。一例として、流路壁104は、PDMS(polydimethylsiloxane)で形成されてよい。 A flow path wall 104 is provided inside the first flow path 102, and the flow path wall 104 is formed so as to separate adjacent pores 100. As an example, the flow path wall 104 may be formed of PDMS (polydimethylsiloxane).
 第1流路102の内部には、複数の検出用電極121が、各細孔100の近傍に設けられている。第2流路103の内部には、少なくとも1つの対向電極122が設けられている。図1では、検出用電極121及び対向電極122が測定容器10に埋め込まれるように示されているが、これに限定されない。例えば、複数の検出用電極121がそれぞれ基板101の表面に設けられてもよい。また、少なくとも1つの対向電極122が基板101の裏面に設けられていてもよい。検出用電極121と対向電極122は、それぞれ第1流路102及び第2流路103に導入された液体に対して電気的に接触するように設けられている。 A plurality of detection electrodes 121 are provided in the vicinity of each pore 100 inside the first flow path 102. At least one counter electrode 122 is provided inside the second flow path 103. In FIG. 1, the detection electrode 121 and the counter electrode 122 are shown to be embedded in the measurement container 10, but the present invention is not limited to this. For example, a plurality of detection electrodes 121 may be provided on the surface of the substrate 101, respectively. In addition, at least one counter electrode 122 may be provided on the back surface of the substrate 101. The detection electrode 121 and the counter electrode 122 are provided so as to be in electrical contact with the liquid introduced into the first channel 102 and the second channel 103, respectively.
 検出用電極121と対向電極122は、第1流路102及び第2流路103の外部において導線で接続されており、閉回路を構成する。この回路は電圧源130を備えられており、電圧源130は検出用電極121と対向電極122との間に電圧を印加する。電圧源130は可変電圧源であることが好ましい。また、図1では単一の電圧源130が全ての検出用電極121に同一の電圧を印加する構成となっているが、それぞれの検出用電極121に対して独立の電圧源が設けられてもよい。 The detection electrode 121 and the counter electrode 122 are connected to each other outside the first flow path 102 and the second flow path 103 by a conducting wire, thereby forming a closed circuit. This circuit includes a voltage source 130, and the voltage source 130 applies a voltage between the detection electrode 121 and the counter electrode 122. The voltage source 130 is preferably a variable voltage source. In FIG. 1, the single voltage source 130 is configured to apply the same voltage to all the detection electrodes 121. However, independent voltage sources may be provided for the detection electrodes 121. Good.
 粒子分析装置は、複数の検出用電極121のそれぞれと対向電極122との間に流れる電流又は電気抵抗を測定する測定部を備える。回路には、測定部として、それぞれの検出用電極121を流れる電流を測定するための電流計131が接続されている。電流計131の代わりに、抵抗計を回路に接続してもよい。この構成によれば、細孔100をまたぐ電気抵抗の変化を測定することによって、上記と同等の測定を行うことができる。 The particle analyzer includes a measurement unit that measures current or electric resistance flowing between each of the plurality of detection electrodes 121 and the counter electrode 122. An ammeter 131 for measuring the current flowing through each detection electrode 121 is connected to the circuit as a measurement unit. Instead of the ammeter 131, an ohmmeter may be connected to the circuit. According to this configuration, the same measurement as described above can be performed by measuring the change in electrical resistance across the pores 100.
 粒子分析装置は、電流計131に接続された処理装置(図示省略)を備える。例えば、処理装置は、汎用のコンピュータを用いて実現されてもよい。コンピュータは、CPU(Central Processing Unit)などのプロセッサと、メモリと、ハードディスクなどの記憶装置を少なくとも備える。処理装置は、電流計131で測定された電流値を入力として受け取り、電流値に対して所定の処理(例えば、図8及び図9で説明する内容)を実行する。また、処理装置は、電流計131で測定された電流値を記憶装置に記録してもよい。また、処理装置は、測定された電流値に基づいて粒子20を分析し、分析結果を出力してもよい。処理装置は、ディスプレイなどの表示部を備えてもよく、表示部は、電流計131で測定された電流値や分析結果を表示してもよい。 The particle analyzer includes a processing device (not shown) connected to the ammeter 131. For example, the processing device may be realized using a general-purpose computer. The computer includes at least a processor such as a CPU (Central Processing Unit), a memory, and a storage device such as a hard disk. The processing device receives the current value measured by the ammeter 131 as an input, and executes a predetermined process (for example, the contents described in FIGS. 8 and 9) on the current value. In addition, the processing device may record the current value measured by the ammeter 131 in the storage device. Further, the processing device may analyze the particles 20 based on the measured current value and output the analysis result. The processing apparatus may include a display unit such as a display, and the display unit may display the current value measured by the ammeter 131 and the analysis result.
 試料液体は、第1流路102又は第2流路103の内部に導入される。ここで、試料液体とは、粒子20が導電性を有する液体に分散したものを指す。試料液体は、第1流路102と第2流路103のいずれに導入しても、同様の測定を行うことができる。 The sample liquid is introduced into the first channel 102 or the second channel 103. Here, the sample liquid refers to a liquid in which the particles 20 are dispersed in a conductive liquid. Even if the sample liquid is introduced into either the first channel 102 or the second channel 103, the same measurement can be performed.
 粒子20は、核酸分子、たんぱく質分子及びその凝集体、金属ナノ粒子、高分子ビーズ、細胞などであり、その粒径はおよそ1nmから20μmである。細孔100の直径は、粒子20が通過できる程度の大きさである。直径が5μm程度より小さな細孔は、半導体薄膜に対してリソグラフィ技術を適用して作製することができる。また、直径が5μm程度より大きな細孔は、鋳型を用いて樹脂材料を成型して作製することができる。 The particles 20 are nucleic acid molecules, protein molecules and aggregates thereof, metal nanoparticles, polymer beads, cells, and the like, and the particle size thereof is about 1 nm to 20 μm. The diameter of the pore 100 is large enough to allow the particle 20 to pass through. A pore having a diameter smaller than about 5 μm can be produced by applying a lithography technique to a semiconductor thin film. Moreover, pores having a diameter larger than about 5 μm can be produced by molding a resin material using a mold.
 図2は、図1で示した粒子分析装置において、第1流路の形状の一例を示した上面図である。第1流路102の底面、すなわち、基板101には2つ細孔100が形成されている。流路壁104は、2つの細孔100の間を部分的に区切るように設けられている。このように、流路壁104は、第1流路102に導電性を有する液体が導入されるときの流れ方向に対して垂直方向に延びる面として形成されてもよい。なお、流路壁104は、測定容器10又は基板101と一体化した構造によって形成されてもよい。第1流路102の入口110から導入された液体は、流路壁104によって形成される連結部105を回り込んで第1流路102の内部全体を満たすことができる。 FIG. 2 is a top view showing an example of the shape of the first flow path in the particle analyzer shown in FIG. Two pores 100 are formed in the bottom surface of the first flow path 102, that is, in the substrate 101. The flow path wall 104 is provided so as to partially separate the two pores 100. Thus, the flow path wall 104 may be formed as a surface extending in the direction perpendicular to the flow direction when the conductive liquid is introduced into the first flow path 102. The flow path wall 104 may be formed by a structure integrated with the measurement container 10 or the substrate 101. The liquid introduced from the inlet 110 of the first flow channel 102 can go around the connecting portion 105 formed by the flow channel wall 104 and fill the entire inside of the first flow channel 102.
 なお、図1及び図2では、基板101は2個の細孔100を備えるように図示されているが、細孔100の個数は2個より多くてもよい。また、図2では連結部105は2箇所あるように図示されているが、測定容器10の第1流路102は、少なくとも1箇所の連結部を備えていればよい。 1 and 2, the substrate 101 is illustrated as including two pores 100, but the number of the pores 100 may be more than two. In FIG. 2, the connecting portion 105 is illustrated as having two locations, but the first flow path 102 of the measurement container 10 only needs to include at least one connecting portion.
 図3は、図1で示した粒子分析装置において、多数の細孔を有する場合の第1流路の形状の一例を示した上面図である。このように、多数の細孔100を有する場合であっても、細孔100間を部分的に区切るように流路壁104を設けることができる。図3の例では、第1流路102が複数の流路壁104を備える。複数の流路壁104は、上面視において十字形状の断面を有する。第1流路102は、十字形状の複数の流路壁104によって12個の区画に分けられる。12個の区画のそれぞれに1つの細孔100が配置されている。 FIG. 3 is a top view showing an example of the shape of the first flow path when the particle analyzer shown in FIG. 1 has a large number of pores. As described above, even when the plurality of pores 100 are provided, the flow path wall 104 can be provided so as to partially divide the pores 100. In the example of FIG. 3, the first flow path 102 includes a plurality of flow path walls 104. The plurality of flow path walls 104 have a cross-shaped cross section when viewed from above. The first flow path 102 is divided into 12 sections by a plurality of cross-shaped flow path walls 104. One pore 100 is disposed in each of the 12 compartments.
 次に、流路壁104の効果について説明する。複数の細孔100のシス側又はトランス側が導電性を有する液体を介して接続されているとき、近傍の細孔100間で電気信号のクロストークが発生するという課題がある。ここでのクロストークとは、粒子が通過した細孔における電気信号強度が低下すると同時に、粒子が通過していない近傍の細孔において電気信号変化が生じることを指す。本実施例によれば、流路壁104によって複数の細孔100間の電気抵抗を増大させ、クロストークを低減することができる。 Next, the effect of the flow path wall 104 will be described. When the cis side or the transformer side of the plurality of pores 100 are connected via a liquid having conductivity, there is a problem that crosstalk of electrical signals occurs between the neighboring pores 100. Crosstalk here means that the electric signal intensity in the pores through which the particles have passed decreases, and at the same time, an electric signal change occurs in the neighboring pores through which the particles have not passed. According to the present embodiment, the electrical resistance between the plurality of pores 100 can be increased by the flow path wall 104, and the crosstalk can be reduced.
 図4は、図1で示した装置において、基板101が2個の細孔を有する場合の等価回路を示したものである。以下では、図1の装置の図面上において左側の細孔100を細孔1と称し、右側の細孔100を細孔2と称する。 FIG. 4 shows an equivalent circuit when the substrate 101 has two pores in the apparatus shown in FIG. Hereinafter, the left pore 100 is referred to as a pore 1 and the right pore 100 is referred to as a pore 2 in the drawing of the apparatus of FIG.
 図4において、Rは検出用電極121とそれに対応する細孔1、2との間の電気抵抗、Rは細孔1と細孔2の間の液体の電気抵抗、RP1及びRP2は、それぞれ細孔1及び細孔2における電気抵抗に対応している。RP1及びRP2はそれぞれ細孔1及び細孔2から対向電極122までの電気抵抗を含むが、これらは通常、細孔そのものの電気抵抗よりも十分に小さい。上記の電気抵抗はブリッジ回路を構成しており、電圧源130によって電圧Vが印加される。検出用電極121を流れる電流は、等価回路上では電気抵抗Rに流れる電流に対応する。 4, the electrical resistance between the pore 1 and 2 wherein R is and its corresponding detection electrode 121, R I is the electrical resistance of the liquid between the pore 1 and the pore 2, R P1 and R P2 are , Corresponding to the electrical resistance in the pore 1 and the pore 2, respectively. RP1 and RP2 include electrical resistances from the pores 1 and 2 to the counter electrode 122, respectively, but these are usually sufficiently smaller than the electrical resistance of the pores themselves. The electrical resistance forms a bridge circuit, and the voltage V is applied by the voltage source 130. The current flowing through the detection electrode 121 corresponds to the current flowing through the electric resistance R on the equivalent circuit.
 図5は、図4で示した等価回路において、細孔1に粒子が入ることによって電気抵抗RP1が1%増加したときの電流変化を示したものである。 FIG. 5 shows a change in current when the electric resistance RP1 is increased by 1% due to particles entering the pore 1 in the equivalent circuit shown in FIG.
 細孔1の電気抵抗RP1を1MΩから1%増加させた(RP1=1.01MΩ)。このとき、RP2=1MΩ、R=10kΩとし、Rを1kΩ、10kΩ、100kΩ、1MΩと変化させた。図5の値は、元の電流値(電気抵抗RP1を1%増加させる前)に対する電流値の割合を示す。電気抵抗Rが高いほど、細孔1において電流値が変化したときに、細孔2における電流値の変化が小さい。例えば、電気抵抗R=1MΩの場合、細孔1の電気抵抗RP1を1%増加したときに、細孔2での電流値は元の電流値と比較してほとんど変化していないことが分かる。 The electrical resistance R P1 of the pore 1 was increased by 1% from 1 MΩ (R P1 = 1.01 MΩ). At this time, R P2 = 1 MΩ, R = 10 kΩ, and R I was changed to 1 kΩ, 10 kΩ, 100 kΩ, and 1 MΩ. The value of FIG. 5 shows the ratio of the current value to the original current value (before increasing the electrical resistance R P1 by 1%). The higher the electrical resistance R I, when the current value in a pore 1 is changed, a small change in the current value in the pore 2. For example, when the electrical resistance R I = 1 MΩ, when the electrical resistance R P1 of the pore 1 is increased by 1%, the current value in the pore 2 is hardly changed compared to the original current value. I understand.
 クロストークの影響により、粒子が通過しない細孔2においても電流変化が生じるが、細孔1、2間の電気抵抗Rを増大させることによってクロストークが低減されることが明らかとなった。また、特に、細孔100間の電気抵抗Rを、検出用電極121とそれに対応する細孔100との間の電気抵抗よりも大きくすることで、効果的にクロストークを低減できることが明らかとなった。 The influence of cross-talk, but also current change occurs in the pores 2 which particles do not pass through, it became clear that crosstalk is reduced by increasing the electric resistance R I between the pore 1 and 2. In particular, the electrical resistance R I between the pores 100 is made greater than the electrical resistance between the pores 100 and its corresponding detection electrode 121, clear that can effectively reduce crosstalk became.
 したがって、流路壁104は、隣接する細孔100間の抵抗を上げるような材料及び/又は構造で形成されればよい。好ましくは、流路壁104を形成したとき、複数の細孔100のそれぞれと対応する検出用電極121との間の電気抵抗が、複数の細孔100のそれぞれと隣接する細孔100との間の導電性を有する液体の電気抵抗よりも小さい。 Therefore, the flow path wall 104 may be formed of a material and / or structure that increases the resistance between the adjacent pores 100. Preferably, when the flow path wall 104 is formed, the electrical resistance between each of the plurality of pores 100 and the corresponding detection electrode 121 is between the plurality of pores 100 and the adjacent pores 100. It is smaller than the electrical resistance of the liquid having the electrical conductivity.
 本実施例によれば、第1流路102内に流路壁104を設けることによって、細孔100間の連結部(液体の通り道)105を狭小化し、細孔100間の電気抵抗を増大させることができる。その結果、クロストークを低減することが可能である。 According to this embodiment, by providing the flow path wall 104 in the first flow path 102, the connecting portion (liquid passage) 105 between the pores 100 is narrowed, and the electrical resistance between the pores 100 is increased. be able to. As a result, crosstalk can be reduced.
 なお、図4及び図5は、基板101が2個の細孔100を備えた例を用いた例を示しているが、3個以上の細孔を備える基板101(例えば、図3)に対しても同様の効果を得られるように流路壁104を設けることができる。 4 and 5 show an example in which the substrate 101 includes two pores 100. However, the substrate 101 includes three or more pores (for example, FIG. 3). However, the flow path wall 104 can be provided so as to obtain the same effect.
 図6は、図1で示した粒子分析装置を用いた分析プロセスのフローの一例である。図6に示すように、粒子分析プロセスは、測定容器10の第1流路102に粒子20が分散した導電性を有する試料液体を導入する第1導入工程S1と、測定容器10の第2流路103に導電性を有する液体を導入する第2導入工程S2と、粒子20が細孔100を通過するように操作しながら電圧源130を用いて検出用電極121と対向電極122との間に電圧を印加して検出用電極121のそれぞれを流れる電流を測定する測定工程S3とを含む。 FIG. 6 is an example of a flow of an analysis process using the particle analyzer shown in FIG. As shown in FIG. 6, the particle analysis process includes a first introduction step S <b> 1 for introducing a conductive sample liquid in which particles 20 are dispersed in the first flow path 102 of the measurement container 10, and a second flow of the measurement container 10. The second introduction step S2 for introducing a conductive liquid into the path 103, and the voltage source 130 between the detection electrode 121 and the counter electrode 122 while operating the particle 20 to pass through the pore 100. And a measurement step S3 of applying a voltage and measuring a current flowing through each of the detection electrodes 121.
 図6で示したフローでは、第1導入工程S1を実施した後に第2導入工程S2を実施する場合を説明したが、第2導入工程S2の後に第1導入工程S1を実施してもよい。また、別の例として、第1導入工程S1と第2導入工程S2を同時に実施してもよい。また、第1導入工程S1において粒子20を導入する場合を説明したが、すでに述べたように第2導入工程S2において粒子20を導入してもよい。 In the flow shown in FIG. 6, the case where the second introduction step S2 is performed after the first introduction step S1 has been described, but the first introduction step S1 may be performed after the second introduction step S2. As another example, the first introduction step S1 and the second introduction step S2 may be performed simultaneously. Moreover, although the case where the particle | grains 20 were introduce | transduced in 1st introduction | transduction process S1 was demonstrated, you may introduce | transduce the particle | grains 20 in 2nd introduction | transduction process S2 as already stated.
 図6で示したフローにおける測定工程S3では、粒子20が細孔100を通過するように操作するために、細孔100近傍に誘起された電場による電気泳動が用いられてもよいし、後述するように圧力流が用いられてもよい。電気泳動については、負に帯電した粒子20が第1流路102に導入されている場合には、検出用電極121に負の電圧を印加し、第1流路102から第2流路103へ粒子20を駆動すればよい。また、正に帯電した粒子20が第1流路102に導入されている場合には、検出用電極121に正の電圧を印加し、第1流路102から第2流路103へ粒子20を駆動すればよい。 In the measurement step S3 in the flow shown in FIG. 6, electrophoresis by an electric field induced in the vicinity of the pore 100 may be used to operate the particle 20 so as to pass through the pore 100, which will be described later. Thus, pressure flow may be used. For electrophoresis, when negatively charged particles 20 are introduced into the first flow path 102, a negative voltage is applied to the detection electrode 121, and the first flow path 102 to the second flow path 103. The particles 20 may be driven. When positively charged particles 20 are introduced into the first flow path 102, a positive voltage is applied to the detection electrode 121, and the particles 20 are transferred from the first flow path 102 to the second flow path 103. What is necessary is just to drive.
 図7は、図1で示した粒子分析装置を用いた分析プロセスのフローの別の例である。図7に示すように、粒子分析プロセスは、図6で示した分析プロセスのフローの直前に、第1流路102及び第2流路103のいずれか又は両方に液体を導入して流路を洗浄する洗浄工程S0を含む。これにより、以前の測定によって細孔100近傍及び第1及び第2流路102、103内に残留した物質を除去し、より精密な測定を行うことが可能である。 FIG. 7 is another example of an analysis process flow using the particle analyzer shown in FIG. As shown in FIG. 7, in the particle analysis process, liquid is introduced into one or both of the first flow path 102 and the second flow path 103 immediately before the flow of the analysis process shown in FIG. A cleaning step S0 for cleaning is included. Thereby, it is possible to remove the substance remaining in the vicinity of the pore 100 and in the first and second flow paths 102 and 103 by the previous measurement, and perform a more precise measurement.
 洗浄工程S0で用いる液体は、第1導入工程S1及び第2導入工程S2において第1及び第2流路102、103内に導入される導電性を有する液体と同様のものであってもよいし、全く異なる性質をもつ洗浄液であってもよい。第1導入工程S1、第2導入工程S2及び測定工程S3については、図6で示したフローと同様に実行順序を変更してもよい。 The liquid used in the cleaning step S0 may be the same as the conductive liquid introduced into the first and second flow paths 102 and 103 in the first introduction step S1 and the second introduction step S2. The cleaning liquid may have completely different properties. About 1st introduction process S1, 2nd introduction process S2, and measurement process S3, you may change an execution order similarly to the flow shown in FIG.
 図8は、図1で示した粒子分析装置において得られた電流変化を示した図である。縦軸はそれぞれの細孔100で測定される電流値を示し、横軸は時間を示す。複数の細孔100の電流値は、最もクロストークが大きな細孔同士が連続するように並べて表示されている。時刻t及びtにおいて粒子20が細孔を通過し、複数の隣接する細孔にわたって電流値の減少が測定されている。処理装置は、複数の細孔100間でのクロストークを含む電気信号を解析するように構成されてもよい。 FIG. 8 is a diagram showing a change in current obtained in the particle analyzer shown in FIG. The vertical axis indicates the current value measured in each pore 100, and the horizontal axis indicates time. The current values of the plurality of pores 100 are displayed side by side so that the pores having the largest crosstalk are continuous. At times t 1 and t 2 , the particles 20 pass through the pores, and a decrease in current value is measured across a plurality of adjacent pores. The processing device may be configured to analyze an electrical signal including crosstalk between the plurality of pores 100.
 例えば、このようなクロストークを含んだ一連の電気信号に対して、図8で示すように3次元グラフ内で極値を探索することで、粒子20が通過した細孔を特定することができる。例えば、処理装置は、電流計131から電気信号を入力情報として受け取り、3次元グラフ内で極値を探索する処理を実行する。処理装置は、探索結果(例えば、粒子が通過した細孔の情報)を出力してもよい。 For example, with respect to a series of electrical signals including such crosstalk, by searching for an extreme value in a three-dimensional graph as shown in FIG. 8, the pore through which the particle 20 has passed can be specified. . For example, the processing device receives an electrical signal from the ammeter 131 as input information and executes a process of searching for an extreme value in the three-dimensional graph. The processing apparatus may output a search result (for example, information on pores through which particles have passed).
 図9は、図8で示した電流計測データにおいて、粒子が通過した時刻における各細孔の電流変化量を示した図である。図中の曲線はクロストークの理論値を示す。各細孔の電流変化量に対して理論値でフィッティングすることにより、クロストークを含んだ複数の細孔で測定した一連のデータから、単一の細孔で測定した場合と同等の信号値を得ることができる。処理装置は、複数の電流計131から電気信号を入力情報として受け取り、クロストークの理論値に基づいて各細孔の信号値に対してフィッティング処理を実行してもよい。また、この解析においては、理論値の代わりに既知の粒子を測定した場合のデータを用いて校正してもよい。 FIG. 9 is a diagram showing the current change amount of each pore at the time when the particles pass in the current measurement data shown in FIG. The curve in the figure shows the theoretical value of crosstalk. By fitting the current change amount of each pore with a theoretical value, a signal value equivalent to that measured with a single pore is obtained from a series of data measured with multiple pores including crosstalk. Obtainable. The processing device may receive electrical signals as input information from the plurality of ammeters 131, and may perform a fitting process on the signal values of the respective pores based on the theoretical value of crosstalk. Moreover, in this analysis, you may calibrate using the data at the time of measuring a known particle | grain instead of a theoretical value.
 以上の粒子分析装置及び分析プロセスにより、細孔センサーアレイにおいて試料液体の交換及び洗浄液の注入が容易になり、同一の細孔デバイス(細孔100を備える基板101)を用いた繰り返し測定が可能となる。そのため、計測にかかるコストを低減することができる。また、本実施例によれば、複数の細孔100間での電気信号のクロストークを低減し、残存するクロストークを含んだ信号の解析が可能となる。 The above particle analyzer and analysis process facilitate the exchange of the sample liquid and the injection of the cleaning liquid in the pore sensor array, and enable repeated measurement using the same pore device (the substrate 101 having the pore 100). Become. Therefore, the cost for measurement can be reduced. Further, according to the present embodiment, the crosstalk of the electric signal between the plurality of pores 100 can be reduced, and the signal including the remaining crosstalk can be analyzed.
[実施例2]
 図10は、本発明による粒子分析装置の一実施例の模式図である。上述の実施例で説明した構成要素については、同じ符号を付して説明を省略する。本実施例は、実施例1で説明した装置に圧力制御部140が接続された構成である。
[Example 2]
FIG. 10 is a schematic view of an embodiment of the particle analyzer according to the present invention. Constituent elements described in the above-described embodiments are denoted by the same reference numerals and description thereof is omitted. In the present embodiment, the pressure control unit 140 is connected to the apparatus described in the first embodiment.
 圧力制御部140は、第1流路102と第2流路103に対して、細孔100をまたぐように差圧を与えて圧力流を発生させることができる。なお、図10では電気回路の図示が省略されている。圧力制御部140は、第2流路103の出口113に接続されているが、第1流路102の入口110、第1流路102の出口111、又は第2流路103の入口112に接続されてもよい。また、圧力制御部140は、第1流路102又は第2流路013に液体を導入する際に用いるポンプと兼用してもよい。 The pressure control unit 140 can generate a pressure flow by applying a differential pressure across the pore 100 to the first channel 102 and the second channel 103. In addition, illustration of an electric circuit is abbreviate | omitted in FIG. The pressure control unit 140 is connected to the outlet 113 of the second channel 103, but is connected to the inlet 110 of the first channel 102, the outlet 111 of the first channel 102, or the inlet 112 of the second channel 103. May be. Further, the pressure control unit 140 may also be used as a pump used when liquid is introduced into the first channel 102 or the second channel 013.
 圧力制御部140は、直接液体を送液するポンプであってもよいし、又は、気体で満たされたシリンジを動作させて差圧を発生させるポンプでもよい。また、圧力制御部140は、第1流路102の液面と第2流路103の液面の高低差を与えることで差圧を発生させる機構であってもよい。第1流路102と第2流路103の差圧は、典型的には200hPa以下の範囲であり、好ましくは100hPa以下の範囲である。 The pressure control unit 140 may be a pump that directly sends liquid, or a pump that generates a differential pressure by operating a syringe filled with gas. Further, the pressure control unit 140 may be a mechanism that generates a differential pressure by giving a height difference between the liquid level of the first flow path 102 and the liquid level of the second flow path 103. The differential pressure between the first channel 102 and the second channel 103 is typically in the range of 200 hPa or less, preferably in the range of 100 hPa or less.
 圧力制御部140は、粒子20が導入された流路が他方の流路よりも圧力が高くなるように動作させる。すなわち、粒子20が第1流路102に導入された場合、圧力制御部140は、第1流路102の圧力が第2流路103の圧力よりも高くなるように動作させる。このような動作を行うためには、例えば図10に示された例では、第1流路102の入口110又は第1流路102の出口111を大気圧に開放し、圧力制御部140に負圧を与えればよい。 The pressure control unit 140 is operated so that the flow path into which the particles 20 are introduced has a higher pressure than the other flow path. That is, when the particles 20 are introduced into the first flow path 102, the pressure control unit 140 operates so that the pressure in the first flow path 102 is higher than the pressure in the second flow path 103. In order to perform such an operation, for example, in the example shown in FIG. 10, the inlet 110 of the first flow path 102 or the outlet 111 of the first flow path 102 is opened to the atmospheric pressure, and negative pressure is applied to the pressure control unit 140. Apply pressure.
 実施例1においては、粒子20が細孔100を通過するための駆動力は電場である。しかし、粒子20が十分な表面電荷を有していない場合や、細孔100の径が1μm程度以上であり、細孔100近傍の電場強度が小さい場合には、電気泳動力が小さくなり、効率的に粒子20を駆動することができない。本実施例によれば、これらの場合においても圧力制御部140によって生成された圧力流によって効率的に粒子20を駆動し、抵抗パルス測定を行うことが可能である。 In Example 1, the driving force for the particles 20 to pass through the pores 100 is an electric field. However, when the particle 20 does not have a sufficient surface charge, or when the diameter of the pore 100 is about 1 μm or more and the electric field strength in the vicinity of the pore 100 is small, the electrophoretic force becomes small, and the efficiency In particular, the particles 20 cannot be driven. According to the present embodiment, even in these cases, it is possible to efficiently drive the particle 20 by the pressure flow generated by the pressure control unit 140 and perform resistance pulse measurement.
[実施例3]
 図11は、本発明による粒子分析装置の一実施例における第1流路102の形状の一例を示した上面図である。
[Example 3]
FIG. 11 is a top view showing an example of the shape of the first channel 102 in one embodiment of the particle analyzer according to the present invention.
 本実施例では、複数の流路壁104が、導電性を有する液体が導入されるときの流れ方向に沿って配置されている。この構成により、第1流路102が複数の分割流路106を備える。少なくとも1つの細孔100が各分割流路106に配置されている。図11の例では、3つの細孔100が各分割流路106に配置されている。各分割流路106の端部は連結部105によって接続されている。 In this embodiment, the plurality of flow path walls 104 are arranged along the flow direction when the conductive liquid is introduced. With this configuration, the first flow path 102 includes a plurality of divided flow paths 106. At least one pore 100 is disposed in each divided flow path 106. In the example of FIG. 11, three pores 100 are arranged in each divided flow path 106. The ends of the divided flow paths 106 are connected by a connecting portion 105.
 なお、液体の流れを妨げないという観点から、分割流路106は、第1流路102に導電性を有する液体が導入されるときの流れ方向に沿って延びていることが好ましい。この構成のために、複数の流路壁104は、第1流路102に導電性を有する液体が導入されるときの流れ方向と平行になるように形成される。また、各分割流路106に複数の細孔100が配置される場合には、細孔100は各分割流路106に導電性を有する液体が導入されるときの流れ方向に沿って1列に配置されることが好ましい。 In addition, it is preferable that the division | segmentation flow path 106 is extended along the flow direction when the liquid which has electroconductivity is introduce | transduced into the 1st flow path 102 from a viewpoint that the flow of a liquid is not prevented. For this configuration, the plurality of flow path walls 104 are formed to be parallel to the flow direction when the conductive liquid is introduced into the first flow path 102. Further, when a plurality of pores 100 are arranged in each divided flow channel 106, the pores 100 are arranged in a line along the flow direction when a conductive liquid is introduced into each divided flow channel 106. Preferably they are arranged.
 本実施例によれば、分割流路106に沿って細孔100を1列に配置することによって、分割流路106の内部に配置された細孔100に最近接する細孔の個数は2個となり、分割流路106の端部に配置された細孔100に最近接する細孔の個数は最大で3個となる。これにより、例えば実施例1の図3で例示した第1流路102の形状と比較して、多数の細孔を有する場合でも、それぞれの細孔100に最近接する細孔の個数を減らすことができる。したがって、よりクロストークを低減することが可能である。 According to the present embodiment, by arranging the pores 100 in one row along the divided flow channel 106, the number of pores closest to the fine pores 100 arranged in the divided flow channel 106 is two. The number of pores closest to the pore 100 arranged at the end of the divided flow channel 106 is three at the maximum. Thereby, compared with the shape of the 1st flow path 102 illustrated in FIG. 3 of Example 1, for example, even when it has many pores, the number of the pores nearest to each pore 100 can be reduced. it can. Therefore, crosstalk can be further reduced.
[実施例4]
 図12及び図13は、本発明による粒子分析装置の一実施例における第1流路102の形状の一例を示した上面図である。
[Example 4]
12 and 13 are top views showing an example of the shape of the first channel 102 in an embodiment of the particle analyzer according to the present invention.
 本実施例では、第1流路102が分岐を持たない流路であり、第1流路102に導電性を有する液体が導入されるときの流れ方向に沿って複数の細孔が1列に配置されている。図12の例では、第1流路102は、ジグザグ状に折り返す構造を備える。図13の例では、第1流路102は、渦巻き状の構造を備える。 In the present embodiment, the first flow path 102 is a flow path having no branch, and a plurality of pores are arranged in a line along the flow direction when the conductive liquid is introduced into the first flow path 102. Has been placed. In the example of FIG. 12, the first flow path 102 has a structure that is folded back in a zigzag shape. In the example of FIG. 13, the first flow path 102 has a spiral structure.
 本実施例によれば、第1流路102に沿って細孔を1列に配置することで、それぞれの細孔100に最近接する細孔の個数は最大で2個となる。これは、図11で例示した第1流路102から、分割流路106の端部の連結部105をなくした形状に対応している。このような第1流路102の形状によって、多数の細孔100を有する場合でもそれぞれの細孔100に最近接する細孔の個数を減らすことができる。したがって、より効果的にクロストークを低減することが可能である。 According to the present embodiment, by arranging the pores in a line along the first flow path 102, the number of pores closest to each pore 100 becomes two at the maximum. This corresponds to a shape in which the connection part 105 at the end of the divided flow path 106 is omitted from the first flow path 102 illustrated in FIG. Such a shape of the first flow path 102 can reduce the number of pores that are closest to each of the pores 100 even when the plurality of pores 100 are provided. Therefore, it is possible to reduce crosstalk more effectively.
[実施例5]
 図14は、本発明による粒子分析装置の一実施例における第1流路102の形状及び導電性を有する液体の導入法の一例を示した上面図である。
[Example 5]
FIG. 14 is a top view showing an example of the shape of the first channel 102 and a method for introducing a conductive liquid in an embodiment of the particle analyzer according to the present invention.
 本実施例の第1流路102の形状は実施例4で示した例と同様であるが、第1流路102の入口110の前段に液滴生成部150が連結されている。液滴生成部150は、導電性を有する液体に粒子20が含まれた状態の液滴151を生成する。液滴生成部150は、生成した液滴151を入口110から第1流路102に導入する。隣接する2つの液滴151の間は油滴又は気泡152で満たされている。したがって、液滴生成部150は、液滴151と油滴又は気泡152を交互に第1流路102に導入するように構成されてもよい。 The shape of the first flow path 102 of the present embodiment is the same as that of the example shown in the fourth embodiment, but a droplet generation unit 150 is connected to the front stage of the inlet 110 of the first flow path 102. The droplet generation unit 150 generates a droplet 151 in a state where the particles 20 are included in a conductive liquid. The droplet generation unit 150 introduces the generated droplet 151 into the first channel 102 from the inlet 110. Between two adjacent droplets 151 are filled with oil droplets or bubbles 152. Therefore, the droplet generation unit 150 may be configured to introduce the droplets 151 and the oil droplets or bubbles 152 into the first flow path 102 alternately.
 油滴または気泡152は、液滴151と混合せず、かつ導電性を有さない液体又は気体であればよい。なお、圧力流を用いて大流量で液滴151を導入し、測定前後で液滴151の体積が大きく変化する場合には、液滴151間の体積の変化を許容するように気泡を用いることが好ましい。 The oil droplet or bubble 152 may be a liquid or gas that is not mixed with the droplet 151 and does not have conductivity. In addition, when the droplet 151 is introduced at a large flow rate using a pressure flow, and the volume of the droplet 151 changes greatly before and after the measurement, bubbles are used so as to allow the volume change between the droplets 151. Is preferred.
 本実施例によれば、第1流路102に導電性を有する液体が導入されるときの流れ方向に沿って、複数の液滴151の間が気体又は導電性を有さない疎水性の液体によって分割される。複数の液滴151の間が導電性を有さない疎水性の液体又は気体で満たされることによって、細孔100間の電気抵抗が無限大となる。これにより、第1流路102を用いて液体の置換及び洗浄が可能な構成でありながら、細孔100間のクロストークを完全に除去することができる。 According to the present embodiment, a hydrophobic liquid that does not have gas or conductivity between the plurality of droplets 151 along the flow direction when the conductive liquid is introduced into the first flow path 102. Divided by. When the space between the plurality of droplets 151 is filled with a hydrophobic liquid or gas having no electrical conductivity, the electrical resistance between the pores 100 becomes infinite. As a result, the crosstalk between the pores 100 can be completely removed while the liquid can be replaced and washed using the first flow path 102.
 図15は、図14で示した粒子分析装置を用いた分析プロセスのフローの一例である。図15に示すように、粒子分析プロセスは、図6で示した粒子分析プロセスの一部を置換したプロセスである。粒子分析プロセスは、液滴生成部150によって、粒子20を含む導電性を有する液体の液滴151を生成する液滴生成工程S4と、第1流路102に粒子20を含む導電性を有する液体の液滴151を導入する液滴導入工程S5と、測定容器10の第2流路103に導電性を有する液体を導入する第2導入工程S2と、粒子20が細孔100を通過するように操作しながら電圧源130を用いて検出用電極121と対向電極122との間に電圧を印加し、検出用電極121のそれぞれを流れる電流を測定する測定工程S3とを含む。測定工程S3では、液滴151が第1流路102の中で細孔100及び検出用電極121に接するように位置づけられる。 FIG. 15 is an example of a flow of an analysis process using the particle analyzer shown in FIG. As shown in FIG. 15, the particle analysis process is a process in which a part of the particle analysis process shown in FIG. 6 is replaced. The particle analysis process includes a droplet generation step S4 in which the droplet generation unit 150 generates a liquid droplet 151 having conductivity including the particles 20, and a conductive liquid including the particles 20 in the first flow path 102. A droplet introducing step S5 for introducing the liquid droplet 151, a second introducing step S2 for introducing a conductive liquid into the second flow path 103 of the measurement container 10, and the particles 20 passing through the pores 100. A measurement step S3 in which a voltage is applied between the detection electrode 121 and the counter electrode 122 using the voltage source 130 and the current flowing through each of the detection electrodes 121 is measured. In the measurement step S <b> 3, the droplet 151 is positioned so as to be in contact with the pore 100 and the detection electrode 121 in the first channel 102.
 図15で示したフローでは、液滴導入工程S5を実施した後に第2導入工程S2を実施する場合を説明したが、第2導入工程S2の後に液滴導入工程S5を実施してもよい。また、別の例として、液滴導入工程S5と第2導入工程S2を同時に実施してもよい。また、液滴生成工程S4において粒子20を導入する場合を説明したが、すでに述べたように第2導入工程S2において粒子20を導入してもよい。 In the flow shown in FIG. 15, the case where the second introduction step S2 is performed after the droplet introduction step S5 has been described, but the droplet introduction step S5 may be performed after the second introduction step S2. As another example, the droplet introduction step S5 and the second introduction step S2 may be performed simultaneously. Moreover, although the case where the particle | grains 20 were introduce | transduced in droplet production | generation process S4 was demonstrated, you may introduce | transduce the particle | grains 20 in 2nd introduction | transduction process S2 as already stated.
 本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。上記実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることもできる。また、ある実施例の構成に他の実施例の構成を加えることもできる。また、各実施例の構成の一部について、他の構成を追加・削除・置換することもできる。 The present invention is not limited to the above-described embodiments, and includes various modifications. The above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Also, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment. Moreover, the structure of another Example can also be added to the structure of a certain Example. Further, with respect to a part of the configuration of each embodiment, another configuration can be added, deleted, or replaced.
 上記の処理装置の機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)に記憶させることが可能である。非一時的なコンピュータ可読媒体としては、例えば、フレキシブルディスク、CD-ROM、DVD-ROM、ハードディスク、光ディスク、光磁気ディスク、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。また、上記の処理装置の機能等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。 The functions of the above processing apparatus may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in various types of non-transitory computer-readable media. As the non-transitory computer-readable medium, for example, a flexible disk, a CD-ROM, a DVD-ROM, a hard disk, an optical disk, a magneto-optical disk, a CD-R, a magnetic tape, a nonvolatile memory card, a ROM, and the like are used. Moreover, you may implement | achieve the function of said processing apparatus, etc. by hardware, for example by designing part or all with an integrated circuit.
10  測定容器
20  粒子
100 細孔
101 基板
102 第1流路
103 第2流路
104 流路壁
105 連結部
106 分割流路
110 第1流路入口
111 第1流路出口
112 第2流路入口
113 第2流路出口
121 検出用電極
122 対向電極
130 電圧源
131 電流計
140 圧力制御部
150 液滴生成部
151 液滴
152 油滴又は気泡
10 measurement container 20 particle 100 pore 101 substrate 102 first flow path 103 second flow path 104 flow path wall 105 connecting part 106 divided flow path 110 first flow path inlet 111 first flow path outlet 112 second flow path inlet 113 Second channel outlet 121 Detection electrode 122 Counter electrode 130 Voltage source 131 Ammeter 140 Pressure control unit 150 Droplet generation unit 151 Droplet 152 Oil droplet or bubble

Claims (15)

  1.  複数の細孔を有する基板と、前記基板の表面で前記複数の細孔に接し、かつ一部の細孔間を区切るように形成されている第1流路と、前記基板の裏面で前記複数の細孔に接する第2流路とを備えた測定容器と、
     前記基板の表面又は前記第1流路の内部に設けられ、前記複数の細孔のそれぞれに対応するように配置された複数の検出用電極と、
     前記基板の裏面又は前記第2流路の内部に設けられた少なくとも1つの対向電極と、
     前記複数の検出用電極と前記対向電極との間に電圧を印加する電圧源と、
     前記複数の検出用電極のそれぞれと前記対向電極との間に流れる電流又は電気抵抗を測定する測定部と
    を備える粒子分析装置。
    A substrate having a plurality of pores; a first flow path formed so as to contact the plurality of pores on the surface of the substrate and partition between some of the pores; A measurement vessel having a second flow path in contact with the pores of
    A plurality of detection electrodes provided on the surface of the substrate or in the first flow path and arranged to correspond to each of the plurality of pores;
    At least one counter electrode provided on the back surface of the substrate or in the second flow path;
    A voltage source for applying a voltage between the plurality of detection electrodes and the counter electrode;
    A particle analyzer comprising: a measuring unit that measures a current or an electric resistance flowing between each of the plurality of detection electrodes and the counter electrode.
  2.  請求項1に記載の粒子分析装置において、
     前記複数の細孔のそれぞれと対応する前記検出用電極との間の電気抵抗が、前記複数の細孔のそれぞれと隣接する細孔との間の導電性を有する液体の電気抵抗よりも小さいことを特徴とする粒子分析装置。
    The particle analyzer according to claim 1, wherein
    The electrical resistance between each of the plurality of pores and the corresponding detection electrode is smaller than the electrical resistance of the liquid having conductivity between each of the plurality of pores and the adjacent pore. Particle analyzer characterized by.
  3.  請求項1に記載の粒子分析装置において、
     前記第1流路と前記第2流路の圧力差を制御する圧力制御部をさらに備えることを特徴とする粒子分析装置。
    The particle analyzer according to claim 1, wherein
    The particle analyzer further comprising a pressure control unit for controlling a pressure difference between the first channel and the second channel.
  4.  請求項1に記載の粒子分析装置において、
     前記第1流路が複数の分割流路を備え、前記分割流路のそれぞれに少なくとも1つの細孔が配置されていることを特徴とする粒子分析装置。
    The particle analyzer according to claim 1, wherein
    The particle analyzer according to claim 1, wherein the first flow path includes a plurality of divided flow paths, and at least one pore is disposed in each of the divided flow paths.
  5.  請求項4に記載の粒子分析装置において、
     前記複数の分割流路が、前記第1流路に導電性を有する液体が導入されるときの流れ方向に沿って延びていることを特徴とする粒子分析装置。
    The particle analyzer according to claim 4,
    The particle analyzer according to claim 1, wherein the plurality of divided flow paths extend along a flow direction when a liquid having conductivity is introduced into the first flow path.
  6.  請求項1に記載の粒子分析装置において、
     前記第1流路が分岐を持たない流路であり、前記第1流路に導電性を有する液体が導入されるときの流れ方向に沿って前記複数の細孔が1列に配置されていることを特徴とする粒子分析装置。
    The particle analyzer according to claim 1, wherein
    The first flow path is a flow path having no branch, and the plurality of pores are arranged in a line along a flow direction when a conductive liquid is introduced into the first flow path. A particle analyzer characterized by that.
  7.  請求項1に記載の粒子分析装置において、
     導電性を有する液体の複数の液滴を生成する液滴生成部をさらに備え、
     前記複数の液滴の間が気体又は導電性を有さない疎水性の液体によって分割されることを特徴とする粒子分析装置。
    The particle analyzer according to claim 1, wherein
    A liquid droplet generator that generates a plurality of liquid droplets having electrical conductivity;
    The particle analyzer is characterized in that the plurality of droplets are divided by a hydrophobic liquid having no gas or conductivity.
  8.  請求項1に記載の粒子分析装置において、
     前記複数の細孔間でのクロストークを含む電気信号を解析する処理装置をさらに備えることを特徴とする粒子分析装置。
    The particle analyzer according to claim 1, wherein
    A particle analyzer further comprising a processing device for analyzing an electrical signal including crosstalk between the plurality of pores.
  9.  請求項8に記載の粒子分析装置において、
     前記処理装置は、前記複数の細孔間での電気信号のクロストークの理論値又は既知のデータに基づいて前記細孔の信号値に対してフィッティング処理を実行することを特徴とする粒子分析装置。
    The particle analyzer according to claim 8, wherein
    The processing apparatus performs a fitting process on the signal value of the pore based on a theoretical value or known data of crosstalk of electrical signals between the plurality of pores. .
  10.  複数の細孔を有する基板と、前記基板の表面で前記複数の細孔に接し、かつ一部の細孔間を区切るように形成されている第1流路と、前記基板の裏面で前記複数の細孔に接する第2流路とを備えた測定容器の前記第1流路に導電性を有する液体を導入する第1導入工程と、
     前記測定容器の前記第2流路に導電性を有する液体を導入する第2導入工程と、
     前記第1流路又は前記第2流路に含まれる粒子が前記複数の細孔を通過するように操作する操作工程と、
     前記基板の表面又は前記第1流路の内部に設けられ、前記複数の細孔のそれぞれに対応するように配置された複数の検出用電極と、前記基板の裏面又は前記第2流路の内部に設けられた少なくとも1つの対向電極とを用いて、前記複数の検出用電極のそれぞれと前記対向電極との間に流れる電流又は電気抵抗を測定する測定工程と
    を含む粒子分析方法。
    A substrate having a plurality of pores; a first flow path formed so as to contact the plurality of pores on the surface of the substrate and partition between some of the pores; A first introduction step of introducing a liquid having conductivity into the first flow path of the measurement container having a second flow path in contact with the pores of
    A second introduction step of introducing a conductive liquid into the second flow path of the measurement container;
    An operation step of operating the particles contained in the first channel or the second channel so as to pass through the plurality of pores;
    A plurality of detection electrodes provided on the front surface of the substrate or in the first flow path and arranged to correspond to the plurality of pores; and the back surface of the substrate or the interior of the second flow path. A particle analysis method including a measurement step of measuring a current or an electric resistance flowing between each of the plurality of detection electrodes and the counter electrode using at least one counter electrode provided on the electrode.
  11.  請求項10に記載の粒子分析方法において、
     前記複数の細孔のそれぞれと対応する前記検出用電極との間の電気抵抗が、前記複数の細孔のそれぞれと隣接する細孔との間の導電性を有する液体の電気抵抗よりも小さいことを特徴とする粒子分析方法。
    The particle analysis method according to claim 10,
    The electrical resistance between each of the plurality of pores and the corresponding detection electrode is smaller than the electrical resistance of the liquid having conductivity between each of the plurality of pores and the adjacent pore. A particle analysis method characterized by the above.
  12.  請求項11に記載の粒子分析方法において、
     前記第1流路及び前記第2流路のいずれか、又は両方に液体を導入して洗浄する洗浄工程をさらに含むことを特徴とする粒子分析方法。
    The particle analysis method according to claim 11,
    A particle analysis method, further comprising a cleaning step of introducing a liquid into one or both of the first flow path and the second flow path to perform cleaning.
  13.  請求項10に記載の粒子分析方法において、
     前記操作工程は、前記第1流路と前記第2流路の圧力差を制御することを含むことを特徴とする粒子分析方法。
    The particle analysis method according to claim 10,
    The particle analyzing method, wherein the operation step includes controlling a pressure difference between the first flow path and the second flow path.
  14.  請求項10に記載の粒子分析方法において、
     前記第1導入工程は、
     導電性を有する液体の複数の液滴を生成することと、
     前記複数の液滴の間に気体又は導電性を有さない疎水性の液体を導入することと
    を含むことを特徴とする粒子分析方法。
    The particle analysis method according to claim 10,
    The first introduction step includes
    Generating a plurality of droplets of conductive liquid;
    Introducing a gas or a hydrophobic liquid having no electrical conductivity between the plurality of droplets.
  15.  請求項10に記載の粒子分析方法において、
     前記複数の細孔間でのクロストークを含む電気信号を解析する工程をさらに含むことを特徴とする粒子分析方法。
    The particle analysis method according to claim 10,
    The particle analysis method further comprising the step of analyzing an electrical signal including crosstalk between the plurality of pores.
PCT/JP2016/056791 2016-03-04 2016-03-04 Particle analysis device and particle analysis method WO2017149756A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056791 WO2017149756A1 (en) 2016-03-04 2016-03-04 Particle analysis device and particle analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056791 WO2017149756A1 (en) 2016-03-04 2016-03-04 Particle analysis device and particle analysis method

Publications (1)

Publication Number Publication Date
WO2017149756A1 true WO2017149756A1 (en) 2017-09-08

Family

ID=59742654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056791 WO2017149756A1 (en) 2016-03-04 2016-03-04 Particle analysis device and particle analysis method

Country Status (1)

Country Link
WO (1) WO2017149756A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138861A (en) * 2018-02-15 2019-08-22 株式会社東芝 Analysis element and analyzer
WO2021152954A1 (en) * 2020-01-29 2021-08-05 株式会社アドバンテスト Pore device and particle measurement system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376878A (en) * 1991-12-12 1994-12-27 Fisher; Timothy C. Multiple-aperture particle counting sizing and deformability-measuring apparatus
US20070159156A1 (en) * 2005-10-21 2007-07-12 Jun Hu Coulter counter having a plurality of channels
JP2012026986A (en) * 2010-07-28 2012-02-09 Hitachi High-Technologies Corp Nanopore-based analyzer and chamber for sample analysis
JP5670278B2 (en) * 2011-08-09 2015-02-18 株式会社日立ハイテクノロジーズ Nanopore analyzer
WO2015151226A1 (en) * 2014-04-01 2015-10-08 株式会社日立製作所 Particle analysis device and particle analysis method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376878A (en) * 1991-12-12 1994-12-27 Fisher; Timothy C. Multiple-aperture particle counting sizing and deformability-measuring apparatus
US20070159156A1 (en) * 2005-10-21 2007-07-12 Jun Hu Coulter counter having a plurality of channels
JP2012026986A (en) * 2010-07-28 2012-02-09 Hitachi High-Technologies Corp Nanopore-based analyzer and chamber for sample analysis
JP5670278B2 (en) * 2011-08-09 2015-02-18 株式会社日立ハイテクノロジーズ Nanopore analyzer
WO2015151226A1 (en) * 2014-04-01 2015-10-08 株式会社日立製作所 Particle analysis device and particle analysis method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138861A (en) * 2018-02-15 2019-08-22 株式会社東芝 Analysis element and analyzer
WO2021152954A1 (en) * 2020-01-29 2021-08-05 株式会社アドバンテスト Pore device and particle measurement system
JP2021117198A (en) * 2020-01-29 2021-08-10 株式会社アドバンテスト Pore device and particulate measurement system
JP7034429B2 (en) 2020-01-29 2022-03-14 株式会社アドバンテスト Pore device and particle measurement system

Similar Documents

Publication Publication Date Title
JP5604862B2 (en) Channel device, complex permittivity measuring apparatus and dielectric cytometry apparatus
JP6062569B2 (en) Current measuring device, current measuring method, and current measuring kit
Kwak et al. Continuous-flow biomolecule and cell concentrator by ion concentration polarization
KR101383004B1 (en) Flow path device and sample processing device including same
Ma et al. Modulation of ionic current rectification in ultrashort conical nanopores
Vaclavek et al. Resistive pulse sensing as particle counting and sizing method in microfluidic systems: Designs and applications review
US20090294291A1 (en) Iso-dielectric separation apparatus and methods of use
WO2017149756A1 (en) Particle analysis device and particle analysis method
CN111019814B (en) Nucleic acid sequencing device and nucleic acid sequencing method based on nanopore
US20140027287A1 (en) Increased molecule capture rate into a nanopore
US20190227051A1 (en) Osmotic imbalance methods for bilayer formation
US8721861B2 (en) Method for electrophoresis involving parallel and simultaneous separation
Zhu et al. An easy-fabricated and disposable polymer-film microfluidic impedance cytometer for cell sensing
JP4357902B2 (en) Liquid separation device and liquid separation method
Derakhshan et al. Continuous size-based DEP separation of particles using a bi-gap electrode pair
WO2016139809A1 (en) Particle analyzer and particle analysis method
Kim Electric Field Driven Migration and Separation in the Microenvironment
Koh et al. Numerical modeling reveals improved organelle separation for dielectrophoretic ratchet migration
Gan et al. Insulator-Based Dielectrophoretic Manipulation of DNA in a Microfluidic Device
JP2019117049A (en) Particle detector and method for detecting particles
An Electrochemical processes in microfluidics systems under AC electric fields
Liu et al. Analysis and Characterization of Soft-Lithography-Compatible Parallel-Electrode-Sensors in Microfluidic Devices
US20080257736A1 (en) Method for Electrophoresis Using Media of Differing Properties
JP6414234B2 (en) Electrical measurement container, electrical measurement device, and electrical measurement method
McPherson A Passive Pumping Microfluidic Coulter Counter

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892596

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP