WO2017135491A1 - Polymer composite material - Google Patents

Polymer composite material Download PDF

Info

Publication number
WO2017135491A1
WO2017135491A1 PCT/KR2016/001522 KR2016001522W WO2017135491A1 WO 2017135491 A1 WO2017135491 A1 WO 2017135491A1 KR 2016001522 W KR2016001522 W KR 2016001522W WO 2017135491 A1 WO2017135491 A1 WO 2017135491A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
fiber
filament
composite material
adhesive
Prior art date
Application number
PCT/KR2016/001522
Other languages
French (fr)
Korean (ko)
Inventor
누르 안나스 로즐란무함마드
조명현
Original Assignee
키스와이어 에스디엔 비에이치디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 키스와이어 에스디엔 비에이치디 filed Critical 키스와이어 에스디엔 비에이치디
Priority to US15/747,236 priority Critical patent/US20180371691A1/en
Priority to EP16813212.4A priority patent/EP3222775A4/en
Publication of WO2017135491A1 publication Critical patent/WO2017135491A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0666Reinforcing cords for rubber or plastic articles the wires being characterised by an anti-corrosive or adhesion promoting coating
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • D02G3/404Yarns or threads coated with polymeric solutions
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/005Composite ropes, i.e. ropes built-up from fibrous or filamentary material and metal wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • D07B1/025Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics comprising high modulus, or high tenacity, polymer filaments or fibres, e.g. liquid-crystal polymers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • D07B1/04Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics with a core of fibres or filaments arranged parallel to the centre line
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0613Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the rope configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/12Ropes or cables with a hollow core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/162Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber enveloping sheathing
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/165Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber inlay
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/06Making ropes or cables from special materials or of particular form from natural or artificial staple fibres
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1012Rope or cable structures characterised by their internal structure
    • D07B2201/102Rope or cable structures characterised by their internal structure including a core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2046Strands comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2061Cores characterised by their structure comprising wires resulting in a twisted structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2062Cores characterised by their structure comprising wires comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2075Fillers
    • D07B2201/2078Fillers having a load bearing function
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/202Environmental resistance
    • D07B2401/2025Environmental resistance avoiding corrosion
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/2055Improving load capacity
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2015Construction industries
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2061Ship moorings

Definitions

  • the present invention relates to a polymer composite material, and more particularly, to a polymer composite material having light weight, high strength and high toughness, and excellent wear resistance by forming a multilayered structure by bonding one or more kinds of steel and fibers in a polymer to be bonded and bonded. will be.
  • steel wires are used in mooring steel ropes for offshore oil and gas production facilities, steel ropes for offshore cranes, mining ropes, cables for structures and bridges, and the like. Steel is also used as a reinforcement for sports, industrial materials, automobiles and tires.
  • Steel ropes for mooring or steel cranes for offshore cranes should be made of steel with high corrosion resistance because steel is easily corroded, and steel with excellent corrosion resistance should be used while reducing the weight as the depth applied to the rope increases.
  • the present invention is to solve the above-mentioned problems, and more specifically, by polymerizing one or more kinds of steel and fiber in the polymer adhesive bonding to form a multi-layer structure, a lightweight, high strength and high toughness, excellent wear resistance polymer composite material It is about.
  • the polymer composite material of the present invention for achieving the above object comprises a polymer, a filament planted inside the polymer and adhesively bonded to the polymer, a fiber planted inside the polymer and adhesively bonded to the polymer, Any one of the filament or the fiber is embedded in the polymer and bonded to the polymer, or the filament and the fiber are simultaneously planted inside the polymer and bonded to the polymer, so that it has light strength and high toughness. It is characterized by.
  • the filament of the polymer composite material of the present invention for achieving the above object is preferably made of at least one steel or fiber, the polymer is adhesively treated with an adhesive is preferably adhesively bonded to the filament or the fiber.
  • the filaments or the fibers are plasma surface modified to be adhesively bonded to the polymer.
  • an adhesive force ratio of the polymer and the filament or the polymer and the fiber of the polymer composite material of the present invention is 5% or more, and is formed between the polymer and the filament or the polymer and the fiber. It is preferable that the contact interface void ratio of the contact interface used becomes 90% or less.
  • the filament of the polymer composite material of the present invention for achieving the above object is located in the center of the polymer, the fiber is preferably located around the filament, the fiber is made of a plurality, the fiber around the filament It is preferable to form a layer, and the fiber layer is composed of at least one layer.
  • the polymer composite material of the present invention for achieving the above object further comprises a filler which is embedded in the polymer and bonded to the polymer, the filler is preferably made of steel or fiber, the filament and the fiber is It is preferred that the polymer is planted in any one or more of straight, twisted, and woven fabrics.
  • the polymer of the polymer composite material of the present invention for achieving the above object is made of any one or more of TPU (Thermoplastic Polyurethane), HDPE (high Density Polyethylene), PE (Polyethylene), PP (polypropylene), polyester, It is preferable that a fiber consists of any one or more of aramid, polyester, nylon, and polyethylene.
  • TPU Thermoplastic Polyurethane
  • HDPE high Density Polyethylene
  • PE Polyethylene
  • PP polypropylene
  • polyester It is preferable that a fiber consists of any one or more of aramid, polyester, nylon, and polyethylene.
  • the cross section of the polymer composite material of the present invention for achieving the above object is preferably formed in any one shape of a circle, a square, a plate, a sheet, the polymer is a high pressure and rapid cooling treatment, the inside of the polymer It is preferable that the void area ratio is formed to be 2% or less.
  • the HDPE polymer is preferably made of HDPE and HDPE-g-MAH additive, when the polymer is HDPE, 5% silane and 95% of ions
  • the fibers or filaments are adhesively bonded to the polymer by treatment with water or a solution consisting of 5% silane and 95% ethanol.
  • one or more kinds of steel and fiber are adhesively bonded by planting in the polymer.
  • excellent tensile strength and cutting load can be obtained.
  • the adhesive treatment of the polymer and the filament or fiber, and the adhesive bonding of the filament and the fiber to the polymer by the plasma surface modification treatment has the advantage of increasing the adhesive strength of the filament and the polymer or fiber and the polymer.
  • 1 to 3 is a view showing a composite material according to an embodiment of the present invention.
  • FIG. 4 is a view showing a cross section of FIG.
  • 5 to 7 is a view showing a composite material according to an embodiment of the present invention.
  • FIG. 10 is a view showing the tensile strength of the composite material according to an embodiment of the present invention.
  • FIG. 11 is a view showing a cutting load of the composite material according to an embodiment of the present invention.
  • 12A is a view showing an adhesive interface between an adhesive polymer and a filament or fiber according to an embodiment of the present invention.
  • FIG. 12B is a diagram illustrating components analyzed by EDX at an adhesive interface between an adhesive polymer and a filament or fiber.
  • 13A is a view showing an adhesive interface between an untreated polymer and a filament or fiber according to an embodiment of the present invention.
  • FIG. 13B is a diagram illustrating an analysis of components by EDX on an adhesive interface between an untreated polymer and a filament or fiber.
  • FIG 14 is a view showing the adhesive force between the polymer and the filament or fiber before and after the adhesive treatment according to an embodiment of the present invention.
  • 15 is a view showing the adhesion of the polymer to which the adhesion promoter according to an embodiment of the present invention.
  • 16 is a view showing an adhesive interface before and after plasma surface modification according to an embodiment of the present invention.
  • 17 is a view showing the adhesive force before and after the plasma surface modification process according to an embodiment of the present invention.
  • FIG. 18 is a diagram illustrating an adhesive interface according to an embodiment of the present invention.
  • 19A and 19B are views illustrating changes in the area of pores of a polymer before and after high pressure and rapid cooling according to an embodiment of the present invention.
  • 20A and 20B are graphs showing a polymer internal void ratio (%) before and after high pressure and rapid cooling according to an embodiment of the present invention.
  • the present invention relates to a polymer composite material, and more particularly, to a polymer composite material having light weight, high strength and high toughness, and excellent wear resistance by forming a multilayered structure by bonding one or more kinds of steel and fibers in a polymer to be bonded and bonded. will be.
  • Tensile strength (N / mm2) increases in proportion to tensile load (N), and cutting strength (N / mm2) increases in proportion to breaking load (N). Therefore, when the tensile load (N) and the cutting load (N) increases, the tensile strength (N / mm2) and cutting strength (N / mm2) increases. Therefore, in the following description, the increase in tensile load (N) or cutting load (N) refers to the increase in tensile strength (N / mm2) and cutting strength (N / mm2).
  • the polymer composite material 100 of the present invention comprises a polymer 110, filament 120, fiber 130. Only one of the filament 120 or the fiber 130 may be planted inside the polymer 110 to be adhesively bonded to the polymer 110 in the polymer 110, and the filament 120 and the fiber ( 130 may be simultaneously planted inside the polymer 110 to be adhesively bonded to the polymer 110.
  • the filament 120 is planted inside the polymer 110 and adhesively bonded to the polymer 110.
  • the filament 120 may be made of at least one steel or fiber. That is, the filament 120 may be made of steel or may be made of fiber.
  • the filament 120 may be made of one, it may be made of two or more.
  • the polymer composite material 100 of the present invention may further include the fiber 130.
  • the fiber 130 is positioned around the filament 120, and may be formed of a plurality of fibers to form a fiber layer 131 around the filament 120. That is, the polymer composite material 100 may be formed in a form in which the filament 120 is positioned at the center thereof and the fiber 130 is surrounded by the fiber layer 131.
  • the filament 120 and the fiber 130 are planted inside the polymer 110 and adhesively bonded to the polymer 110.
  • the polymer 110 may be formed of a first polymer 111 and a second polymer 112.
  • the first polymer 111 surrounds the filament 120.
  • the second polymer 112 surrounds the fiber 130.
  • the filament 120 is planted and bonded to the first polymer 111, and the fiber 130 is planted and bonded to the second polymer 112.
  • the first polymer 111 and the second polymer 112 may be the same type of polymer, and different types of polymers may be used.
  • the fiber layer 131 formed of a plurality of fibers 130 may be formed of one layer, and the fiber layer 131 may be formed of two or more layers.
  • the filler 140 may be planted in the polymer 110 to be adhesively bonded to the polymer 110, and the filler 140 may be made of steel or fiber.
  • the filler 140 may be planted in an empty space between the fiber 130 or an empty space between the fiber 130 and the filament 120. As the filler 140 is planted in the empty space, a decrease in strength of the empty space may be prevented. Therefore, the strength of the composite material 100 is increased by planting the filler 140 having high strength in the empty space. Since the filler 140 is made of steel or fiber having high toughness, there is an effect of increasing the toughness of the composite material 100.
  • the composite material 100 may have a cross section of various shapes.
  • the cross section of the composite material 100 may be generally circular, but is not limited thereto, and may have a shape of a rectangle, a plate, a sheet, or the like.
  • the cross section of the composite material 100 may be formed in another release form (trapezoid, H cross-sectional shape, Z cross-sectional shape, etc.).
  • the filament 120 and the fiber 130 may be planted in various shapes inside the polymer 110 to be adhesively bonded.
  • the filament 120 and the fiber 130 may be planted in the polymer 110 in a straight line. Referring to FIG. 3, the filament 120 and the fiber 130 may be twisted in the form of the polymer. It can be planted in (110). In addition, the filament 120 and the fiber 130 may be planted in the polymer 110 in the form of a fabric (mesh or braded).
  • the filament 120 and the fiber 130 may be planted extending in one direction in the polymer 110, and may be planted in the form of a fabric extending simultaneously in the horizontal and vertical directions.
  • the filament 120 and the fiber 130 are planted in the polymer 110 is not limited thereto, but may be planted in various forms.
  • the shape of the composite material 100 is not limited to the above-described shape, but may be formed in various shapes. Referring to FIG. 7, two filaments 120 are planted in the center of the polymer 110, four fibers 130 are bundled, and four fibers 130 form the fiber layer 131. Can be formed. In addition to the one that can increase the strength of the composite material 100, it can be made in a variety of shapes.
  • the polymer 110 may be TPU (Thermoplastic Polyurethane), HDPE (High Density Polyethylene), PE (Polyethylene), PP (polypropylene), Polyester, etc., and the type of the fiber 130 may be aramid, polyester , Nylon, polyethylene and the like can be used.
  • the type of the polymer 110 and the fiber 130 is not limited thereto, and various kinds may be used as long as the strength of the composite material 100 may be increased.
  • TPU Thermoplastic Polyurethane
  • HDPE High Density Polyethylene
  • PE Polyethylene
  • PP polypropylene
  • Polyester etc., which are types of the polymer 110
  • aramid polyester, nylon, polyethylene, etc., which are types of the fiber 130 Is a well-known technology, detailed description thereof will be omitted.
  • metal plated steel may be used, and steel without metal plating may be used.
  • the plated steel may be zinc plated, brass plated, or the like, and various other metals may be plated on the steel.
  • An important quality characteristic of the composite material 100 is a spinning factor (%), and the annual efficiency (%) is between the filament 120 and the fiber 130 and the polymer 110 planted in a polymer. Determined by adhesion force ratio (%).
  • Adhesive Force Ratio (%) (Adhesive Strength (N / mm2) / Polymer Tensile Strength (N / mm2)) * 100
  • Adhesive strength is a value obtained by dividing the adhesion force (N) of the polymer 110 and the filament 120 or the polymer 110 and the fiber 130 by the area of the adhesive interface.
  • FIGS. 8 and 9 are views showing the relationship between the adhesive force ratio (%) and the annual efficiency (%)
  • Figure 9 is a view showing the relationship between the annual efficiency (%) and the tensile load (N).
  • the adhesive force (%) of the polymer 110 and the filament 120 or the polymer 110 and the fiber 130 is preferably 5% or more.
  • the adhesive force ratio (%) is 5% or less, since the tensile load and the cutting load of the composite material 100 become small, it becomes difficult to obtain the desired strength of the composite material 100. Therefore, the adhesive force (%) of the polymer 110 and the filament 120 or the polymer 110 and the fiber 130 is preferably 5% or more.
  • 10 and 11 are views showing tensile strength and cutting load according to elongation of the composite material 100.
  • the composite material 100 can be seen that the tensile strength and the cutting load increases compared to the polyester, the elongation is reduced. That is, the elongation when the composite material 100 reaches the tensile strength and the cutting load is reduced compared to the elongation when the polyester reaches the tensile strength and the cutting load.
  • the elongation decreases as a property of a steel material, and the composite material 100 is similar to that of steel as the filament 120 and the fiber 130 are planted in the polymer 110. There is.
  • the composite material 100 can be seen that the tensile load and the cutting load increases as the adhesive strength ratio (%) as described above, in order to increase the adhesive strength ratio (%) the polymer 110 and the filament 120 Or increase the adhesion between the polymer 110 and the fiber 130.
  • the polymer 110 may be adhesively bonded to the filament 120 or the fiber 130 after the adhesive treatment through the adhesive.
  • the type of adhesive may vary depending on the type of the polymer 110.
  • the polymer 110 is high density polyethylene (HDPE)
  • HDPE high density polyethylene
  • the filament 120 or the fiber 130 may be adhesively bonded.
  • an adhesion treatment chemical treatment
  • the adhesion between the polymer 110 and the filament 120 or the polymer 110 and the filament 120 is improved, and thus the tensile load of the composite material 100. And cutting load is also increased.
  • FIG. 12A and 12B illustrate that the high density polyethylene (HDPE) in the polymer 110 is bonded with 5% silane and 95% deionized water to bond the galvanized steel. It is a figure which shows the adhesion interface of a sample. Referring to FIG. 12A, it can be seen that pores or pores of the adhesive interface are very small, which means that the polymer 110 is well bonded to the steel.
  • HDPE high density polyethylene
  • 12B is a graph of the components of the adhesive sample described above with EDX. 12B, it can be seen that carbon (C), which is a chemical component of the polymer 110, and a zinc component of zinc-plated steel are uniformly distributed. This means that the polymer 110 and the steel are well chemically bonded.
  • Figures 13a and 13b show the sample without adhesion of 5% silane and 95% deionized water to high density polyethylene (HDPE) and galvanized steel in the sample described above. It is a figure which shows an adhesive interface. Referring to 13a, large gaps or pores exist in the adhesive interface. This indicates that the adhesion between the polymer 110 and the steel is not properly made.
  • HDPE high density polyethylene
  • 13b is a graph in which the above-described sample is analyzed by EDX, and it can be seen that carbon (C), which is a chemical component of the polymer 110, is not uniformly distributed. This means that the chemical adhesion between the polymer 110 and the steel is not good.
  • the filament 120 or the fiber 130 is treated with 5% silane and 95% deionized water. It can be seen that when the adhesive bond to the adhesive strength increases.
  • the polymer 110 is a high density polyethylene (HDPE)
  • HDPE high density polyethylene
  • 5% silane and 95% ethanol May be used.
  • the type of adhesive may be a different type of adhesive according to the type of the polymer 110, and when the polymer 110 is a TPU or a polyester, a Chemlok adhesive may be used. Chemlok adhesive is a commercially available adhesive and its detailed description is omitted. By using such an adhesive it is possible to increase the adhesive strength of the polymer 110 and the filament 120 or the polymer 110 and the fiber 130. 14 is a view comparing the adhesive force before and after the adhesive treatment to the TPU through the adhesive. Referring to Figure 14, it can be seen that the adhesive force increases when the adhesive treatment to the TPU through the adhesive.
  • the type of the adhesive is not limited thereto, and various adhesives capable of increasing the adhesive force of the polymer 110 may be used according to the type of the polymer 110.
  • the polymer 110 may be made by adding an adhesion promoter.
  • the polymer 110 is dissolved and mixed with the adhesion promoter.
  • the adhesion promoter may improve adhesion between the polymer 110 and the filament 120 or the polymer 110 and the fiber 130.
  • the adhesion promoter may be used in various kinds according to the type of the polymer 110, and when the polymer 110 is made of high density polyethylene (HDPE), the adhesion promoter may be HDPE-g-MAH.
  • HDPE high density polyethylene
  • FIG. 15 illustrates that the polymer 110 is 90% made of high density polyethylene (HDPE) and has improved adhesion by using 10% HDPE-g-MAH adhesion promoter.
  • the adhesion promoter may be carbon black in addition to HDPE-g-MAH.
  • the filament 120 or the fiber 130 may be subjected to an Atmospheric pressure plasma surface modification treatment Plasma surface modification treatment ").
  • the plasma surface modification treatment of the filament 120 or the fiber 130 improves adhesion to the polymer 110.
  • FIG. 16 is a view showing adhesion sites with the polymer 110 before and after the filament 120 or the fiber 130 is subjected to plasma surface modification.
  • Plasma surface modification can reduce gaps occurring at the adhesive interface.
  • the gap Gap is a void of the adhesive interface, and the plasma surface modification process reduces the void of the adhesive interface, and thus the polymer 110, the filament 120, or the polymer 110 and the fiber ( 130) can improve the adhesion.
  • FIG. 17 is a view showing the adhesive force before and after the plasma surface modification treatment to the filament 120 or the fiber 130, the brass plate when the polymer 110 is TPU and the fiber 130 is aramid ( It is a test result showing the adhesive strength with the brass plate and the adhesive force with the brass plate when the polymer 110 is a polyester and the fiber 130 is aramid.
  • the adhesive strength is improved by about 2 times through plasma surface modification, and when the polymer 110 is a polyester, about 5 times through the plasma surface modification. It can be seen that the adhesive force is improved.
  • the polymer 110 and the filament 120 or the polymer 110 and the fiber 130 are bonded to the polymer 110 and the filament 120 or the polymer 110 and the fiber 130 Voids occur in the adhesive interface generated between them, and the void ratio at adhesion interface (%) is preferably 90% or less.
  • the adhesive interfacial void ratio (%) is when the composite material 100 is cut
  • % Of adhesive interface pore (sum of all pore lengths at adhesive interface / total length of adhesive interface) * 100.
  • the adhesive interface void percentage (%) is greater than 90%, as the voids become larger, the adhesion between the polymer 110 and the filament 120 or the polymer 110 and the fiber 130 decreases, thus The tensile load and the cutting load of the composite material 100 are reduced. Therefore, it is preferable to keep the adhesive interface void ratio (%) at 90% or less.
  • the polymer 110 occupies 15-40% of the total cross-sectional area of the composite material 100. Therefore, when the strength of the polymer 110, which occupies a large area of the composite material 100, is increased, the strength of the composite material 100 may be increased.
  • the polymer 110 is melted and used to produce the composite material 100.
  • 19A and 19B are diagrams showing voids inside the polymer 110 before and after the polymer 110 is rapidly cooled at a high pressure.
  • 19A is a view before rapid cooling of the polymer 110 at high pressure
  • FIG. 19B is a view after rapid cooling of the polymer 110 at high pressure.
  • 19A and 19B when the polymer 110 is rapidly cooled at a high pressure, the pore area is reduced from 2698.57 ⁇ m to 173.78 ⁇ m, and the pore area is reduced to 1/15 compared with the initial pore area. This reduction in porosity increases the tensile strength of the polymer 110.
  • the polymer internal void area ratio (%) is preferably 2% or less.
  • Polymer internal void area ratio (%) is measured by cutting the composite material 100, the polymer internal void area ratio (%) is defined as follows.
  • the measurement method of the polymer void area percentage (%) is as follows.
  • the composite material 100 is cut and photographed at x 5000 magnification using an electron microscope. By adding the area of the pores shown in the picture and dividing by the area of the picture, the ratio of the pore area inside the polymer is obtained.
  • the polymer internal pore area ratio (%) can be measured by cutting the area having only the polymer 110 instead of the contact interface formed therein and observing it under a microscope.
  • 20A and 20B are diagrams showing a polymer internal void area ratio (%) before and after rapid cooling of the polymer 110 at high pressure.
  • 20A is a view before rapid cooling of the polymer 110 at high pressure
  • FIG. 20B is a view after rapid cooling of the polymer 110 at high pressure.
  • the sum of the area of the pores is reduced, thereby reducing the polymer pore area ratio (%).
  • 20A and 20B measure two samples, and by rapidly cooling the polymer 110 at high pressure, the polymer void area percentage decreases from 2.71% to 0.11% and from 4.14% to 0.18%. Able to know.
  • [Table 1] shows the adhesion of the polymer 110, the filament 120, the fiber type 130 and the adhesion according to specific embodiments of the present invention.
  • the polymer 110, the filament 120, and the fiber 130 were prepared in an in-line facility by using a polymer adhesive sample.
  • the process of in-line equipment consists of adhesive coating, drying and polymer bonding in the extruder.
  • the adhesion force (N) of the sample was measured by the tensile load when the polymer 110 and the filament 120 or the fiber 130 is separated from each other through a tensile tester.
  • the polymer 110 is a high density polyethylene (HDPE) and the filament 120 is galvanized, 5% silane and 95% deionized water or 5% silane It can be seen that the adhesion is improved when the adhesive treatment with (silane) and 95% ethanol. In addition, it can be seen that the polymer 110 is 90% made of high density polyethylene (HDPE) and 10% is improved adhesion when using the HDPE-g-MAH adhesion promoter.
  • HDPE high density polyethylene
  • the filament 120 is galvanized, 5% silane and 95% deionized water or 5% silane
  • the brass plate and the fiber were subjected to plasma surface modification treatment at room temperature, the molten polymer was infiltrated therebetween, and applied under a constant pressure.
  • the polymer dissolution temperature was 195 to 205 degrees and the plasma surface modification rate was 5 m / min.
  • Table 2 Adhesion results with and without plasma surface modification treatment depending on the type of polymer are listed in Table 2. Referring to [Table 2], after the plasma surface modification treatment, the adhesive strength was increased in both the polymer TPU and the polymer Polyseter. When the polymer was polyester, the adhesive strength was remarkably increased.
  • Table 3 shows the measured values of tensile strength and cutting load according to the adhesive interface void ratio (%) and the adhesive force ratio (%) as specific examples of the present invention.
  • Five samples were prepared by using a composite material composed of brass plated steel cord (filament), aramid (fiber), and TPU (polymer). The manufacturing method was plasma surface modified or chemlock adhesive on the surface of brass plated steel cord and adhesively bonded to the TPU polymer. After a 9-stranded aramid and plasma surface modification treatment, the TPU polymer was adhesively bonded (manufacture of the composite material of FIG. 7). At this time, five kinds of samples having different adhesive strength ratios (%) were changed under different plasma surface modification treatment conditions. Was produced. The bonding temperature of the TPU polymer was 195 to 205 degrees.
  • the results of calculating the adhesive interfacial porosity (%) of the sample through the above-described method for measuring the interfacial porosity (%) are described in Table 3 below. Looking at the following [Table 3], it can be seen that as the adhesive force ratio (%) increases the annual efficiency and cutting load increases. In particular, when the adhesive force ratio (%) is 3%, a very low cutting load is obtained, so that the adhesive force ratio (%) is preferably 5% or more in order to obtain a desired cutting load. In addition, the adhesive force percentage (%) was found to be related to the adhesive interface void percentage (%). Referring to the following [Table 3], it can be seen that as the adhesive interface void ratio (%) is smaller, the adhesive force ratio (%) increases.
  • the adhesive interface void ratio (%) 90% or less.
  • the adhesive interface void ratio (%) can be made small through the above-described plasma surface modification treatment and the adhesive treatment using the adhesive described above. That is, through the above-described plasma surface modification treatment and the above-described adhesion treatment, the adhesive interface void ratio (%) may be formed to 90% or less, thereby increasing the tensile strength and cutting load of the composite material 100. Will be.
  • the following examples are provided to aid the understanding of the present invention, and do not limit the present invention.
  • Table 4 is a table showing the characteristics before and after the rapid cooling of the polymer 110 to a specific embodiment of the present invention.
  • four types of samples were prepared by increasing the pressure of the polymer bond and increasing the cooling rate when the polymer was TPU.
  • Working conditions of the four types of samples are as described in Table 4 below.
  • the composite material 100 of the present invention is the adhesive to the polymer 110 and the filament 120 or the polymer 110 to improve the adhesion between the polymer 110 and the fiber 130 through an adhesive
  • the adhesion may be improved through an adhesion promoter (eg, HDPE-g-MAH additive when the polymer 110 is a high density polyethylene (HDPE)).
  • the filament 120 and the fiber 130 may be subjected to plasma surface modification to improve adhesion.
  • the adhesion force percentage (%) is 5% or more
  • the adhesion interface void percentage (%) is preferably 90% or less.
  • the adhesive force ratio (%) should be 5% or more and the adhesive interface void ratio (%) should be 90% or less to obtain the desired tensile strength and cutting load of the composite material 100.
  • the polymer 110 may be rapidly cooled to a high pressure so that the polymer internal void ratio (%) is 2% or less. Reducing the polymer internal void ratio (%) of the polymer 110 to 2% can improve the tensile strength of the polymer 110, since the polymer 110 occupies a large volume in the composite material 100 It is possible to increase the strength of the composite material (100).
  • the composite material 100 which is rapidly treated at high pressure by an adhesive treatment through an adhesive, using an adhesion promoter, a plasma surface modification treatment, and high pressure may have the following effects.
  • the composite material 100 of the present invention can obtain excellent tensile strength and cutting load by bonding the filament 120 and the fiber 130 to the polymer 110.
  • the polymer 110 and the fiber 130 has a lower self-weight than steel and can produce a light composite material 100 having excellent tensile strength and cutting load, and have low elongation at tensile strength and cutting load. It has the advantage of having similar characteristics. That is, the composite material 100 of the present invention can be light, yet have high strength and high toughness.
  • the polymer 110 is bonded to the filament 120 and the fiber 130 by adhesive treatment with a solution composed of 5% silane and 95% of ions removed, or 5% silane and 95% ethanol.
  • Adhesive bonding, and the polymer 110 and the filament 120 or the polymer 110 and the fiber by adhesively bonding the filament 120 and the fiber 130 to the polymer 110 by the plasma surface modification treatment There is an advantage that can improve the adhesion of the 130.
  • the polymer 110 has an advantage of increasing the tensile strength of the polymer 110 by reducing the polymer internal voids by high pressure and rapid cooling treatment.
  • the composite material 100 of the present invention described above is a process of bonding the adhesive through an adhesive, using an adhesion promoter, plasma surface modifying the filament 120 or the fiber 130, and rapidly cooling the polymer 110 at a high pressure. All of them can be rough.
  • the composite material 100 is not limited thereto, and some processes may be omitted.

Abstract

The present invention relates to a polymer composite material that is light, but has high strength, high toughness, and excellent wear resistance. The polymer composite material has a multilayer structure in which one or more types of steels and fibers are implanted in a polymer and bonded thereto. The polymer composite material comprises: the polymer; a filament implanted in the polymer and bonded to the polymer; and a fiber implanted in the polymer and bonded to the polymer, wherein only one of the filament and the fiber is implanted in the polymer and bonded to the polymer, or both the filament and the fiber are simultaneously implanted in the polymer and bonded to the polymer.

Description

폴리머 복합소재Polymer Composites
본 발명은 폴리머 복합소재에 관한 것으로, 더욱 상세하게는 1종류 이상의 스틸 및 파이버를 폴리머 속에 심어 접착 결합시켜 다층 구조를 형성함으로써, 가벼우면서도 고강도 및 고인성을 갖고, 내마모성이 우수한 폴리머 복합소재에 관한 것이다. The present invention relates to a polymer composite material, and more particularly, to a polymer composite material having light weight, high strength and high toughness, and excellent wear resistance by forming a multilayered structure by bonding one or more kinds of steel and fibers in a polymer to be bonded and bonded. will be.
일반적으로 해상 오일 및 가스 생산 설비의 무어링용 스틸 로프(mooring steel rope), 해상 크레인용 스틸 로프, 마이닝 로프(mining rope), 구조물 및 교량용 케이블(cable) 등에 스틸 강선이 사용된다. 또한, 스포츠, 산업용 자재, 자동차 및 타이어용 보강 자재로 스틸이 사용되기도 한다. In general, steel wires are used in mooring steel ropes for offshore oil and gas production facilities, steel ropes for offshore cranes, mining ropes, cables for structures and bridges, and the like. Steel is also used as a reinforcement for sports, industrial materials, automobiles and tires.
이와 같은 용도로 스틸을 사용하기 위해 스틸의 고강도화가 진행되고 있다. 무어링용 스틸 로프나, 해상 크레인용 스틸 로프는 스틸이 부식되기 쉬우므로 내식성이 우수한 스틸을 사용해야 하며, 로프에 적용되는 수심이 깊어짐에 따라 자중을 줄이면서 내식성이 우수한 스틸을 사용해야 한다. In order to use steel for such a use, the strength of steel is progressing. Steel ropes for mooring or steel cranes for offshore cranes should be made of steel with high corrosion resistance because steel is easily corroded, and steel with excellent corrosion resistance should be used while reducing the weight as the depth applied to the rope increases.
그러나, 종래의 스틸을 고강도화 하거나, 내식성이 우수한 스틸을 제조하기 위해서는 스틸의 자중을 증가시켜야 하는 문제점이 있다. 스틸의 자중이 증가하면, 스틸을 사용하는 설비의 자중도 증가하게 된다. 이에 따라 스틸을 사용하는 설비들의 에너지 절감 측면에 문제가 발생할 수 있으며, 스틸의 자중 증가에 따라 스틸을 사용하는 설비에 불편함을 초래할 수 있다. However, in order to increase the strength of conventional steel or to produce steel having excellent corrosion resistance, there is a problem in that the weight of the steel must be increased. As the self weight of steel increases, so does the weight of equipment using steel. Accordingly, a problem may occur in terms of energy saving of facilities using steel, and may cause inconvenience to facilities using steel as the weight of steel increases.
따라서, 가벼우면서도 스틸에 준하는 강도와 인성을 갖는 소재의 개발이 필요하다. 그러나, 종래의 기술을 살펴보면 스틸의 강도를 증가시킬 수 있으나, 동시에 스틸의 자중을 줄이면서 경량화를 실현하는데 한계가 있는 문제점이 있다.Therefore, it is necessary to develop a material which is light and has strength and toughness comparable to that of steel. However, looking at the prior art, but can increase the strength of the steel, at the same time there is a problem that there is a limit in realizing the weight while reducing the weight of the steel.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 더욱 상세하게는 1종류 이상의 스틸 및 파이버를 폴리머 속에 심어 접착 결합시켜 다층 구조를 형성함으로써, 가벼우면서도 고강도 및 고인성을 갖고, 내마모성이 우수한 폴리머 복합소재에 관한 것이다.The present invention is to solve the above-mentioned problems, and more specifically, by polymerizing one or more kinds of steel and fiber in the polymer adhesive bonding to form a multi-layer structure, a lightweight, high strength and high toughness, excellent wear resistance polymer composite material It is about.
상술한 목적을 달성하기 위한 본 발명의 폴리머 복합소재는 폴리머와, 상기 폴리머의 내부에 심어지며 상기 폴리머에 접착 결합되는 필라멘트, 상기 폴리머의 내부에 심어지며 상기 폴리머에 접착 결합되는 파이버를 포함하며, 상기 필라멘트 또는 상기 파이버 중 어느 하나만 상기 폴리머 내부에 심어져 상기 폴리머에 접착 결합되거나, 상기 필라멘트와 상기 파이버가 동시에 상기 폴리머 내부에 심어져 상기 폴리머에 접착 결합되어, 가벼우면서도 고강도 및 고인성을 갖는 것을 특징으로 하는 것이다. The polymer composite material of the present invention for achieving the above object comprises a polymer, a filament planted inside the polymer and adhesively bonded to the polymer, a fiber planted inside the polymer and adhesively bonded to the polymer, Any one of the filament or the fiber is embedded in the polymer and bonded to the polymer, or the filament and the fiber are simultaneously planted inside the polymer and bonded to the polymer, so that it has light strength and high toughness. It is characterized by.
상술한 목적을 달성하기 위한 본 발명의 폴리머 복합소재의 상기 필라멘트는 적어도 1개 이상의 스틸 또는 파이버로 이루어지는 것이 바람직하며, 상기 폴리머는 접착제에 의해 접착처리 되어 상기 필라멘트 또는 상기 파이버와 접착 결합 되는 것이 바람직하며, 상기 필라멘트 또는 상기 파이버는 플라즈마 표면 개질 처리되어, 상기 폴리머에 접착 결합되는 것이 바람직하다.The filament of the polymer composite material of the present invention for achieving the above object is preferably made of at least one steel or fiber, the polymer is adhesively treated with an adhesive is preferably adhesively bonded to the filament or the fiber. Preferably, the filaments or the fibers are plasma surface modified to be adhesively bonded to the polymer.
상술한 목적을 달성하기 위한 본 발명의 폴리머 복합소재의 상기 폴리머와 상기 필라멘트 또는 상기 폴리머와 상기 파이버의 접착력 비율은 5% 이상인 것이 바람직하며, 상기 폴리머와 상기 필라멘트 또는 상기 폴리머와 상기 파이버 사이에 형성되는 접촉 계면의 접촉 계면 공극 비율은 90% 이하인 것이 바람직하다. In order to achieve the above object, it is preferable that an adhesive force ratio of the polymer and the filament or the polymer and the fiber of the polymer composite material of the present invention is 5% or more, and is formed between the polymer and the filament or the polymer and the fiber. It is preferable that the contact interface void ratio of the contact interface used becomes 90% or less.
상술한 목적을 달성하기 위한 본 발명의 폴리머 복합소재의 상기 필라멘트는 상기 폴리머의 중심에 위치하며, 상기 파이버는 상기 필라멘트 주변에 위치는 것이 바람직하며, 상기 파이버는 복수 개로 이루어져, 상기 필라멘트 주변에서 파이버 층을 형성하고, 상기 파이버 층은 적어도 1개 이상의 층으로 이루어지는 것이 바람직하다. The filament of the polymer composite material of the present invention for achieving the above object is located in the center of the polymer, the fiber is preferably located around the filament, the fiber is made of a plurality, the fiber around the filament It is preferable to form a layer, and the fiber layer is composed of at least one layer.
상술한 목적을 달성하기 위한 본 발명의 폴리머 복합소재는 상기 폴리머에 심어져 상기 폴리머에 접착 결합되는 필러를 더 포함하며, 상기 필러는 스틸 또는 파이버로 이루어지는 것이 바람직하며, 상기 필라멘트와 상기 파이버는 상기 폴리머에 직선 형태, 꼬인선 형태, 직물형태 중 어느 하나 이상의 형태로 심어지는 것이 바람직하다. The polymer composite material of the present invention for achieving the above object further comprises a filler which is embedded in the polymer and bonded to the polymer, the filler is preferably made of steel or fiber, the filament and the fiber is It is preferred that the polymer is planted in any one or more of straight, twisted, and woven fabrics.
상술한 목적을 달성하기 위한 본 발명의 폴리머 복합소재의 상기 폴리머는 TPU(Thermoplastic Polyurethane), HDPE(high Density Polyethylene), PE(Polyethylene), PP(polypropylene), polyester 중 어느 하나 이상으로 이루어지며, 상기 파이버는 아라미드, 폴리에스테르, 나일론, 폴리에틸렌 중 어느 하나 이상으로 이루어지는 것이 바람직하다. The polymer of the polymer composite material of the present invention for achieving the above object is made of any one or more of TPU (Thermoplastic Polyurethane), HDPE (high Density Polyethylene), PE (Polyethylene), PP (polypropylene), polyester, It is preferable that a fiber consists of any one or more of aramid, polyester, nylon, and polyethylene.
상술한 목적을 달성하기 위한 본 발명의 폴리머 복합소재의 단면은 원형, 사각형, 플레이트, 쉬트 중 어느 한 형상으로 이루어지는 것을 특징으로 하는 것이 바람직하며, 상기 폴리머는 고압 및 급속 냉각처리 되어, 상기 폴리머 내부 공극(Void) 면적비율이 2% 이하로 형성되는 것이 바람직하다.The cross section of the polymer composite material of the present invention for achieving the above object is preferably formed in any one shape of a circle, a square, a plate, a sheet, the polymer is a high pressure and rapid cooling treatment, the inside of the polymer It is preferable that the void area ratio is formed to be 2% or less.
상술한 목적을 달성하기 위한 본 발명의 폴리머 복합소재의 상기 폴리머 중에서 HDPE 폴리머는 HDPE 와 HDPE-g-MAH 첨가제로 이루어지는 것이 바람직하며, 상기 폴리머가 HDPE인 경우, 5% 실란과 95%의 이온이 제거된 물 또는 5%의 실란과 95%의 에탄올로 이루어진 용액으로 접착 처리되어 상기 파이버 또는 상기 필라멘트가 상기 폴리머와 접착 결합되는 것이 바람직하다.Among the polymers of the polymer composite material of the present invention for achieving the above object, the HDPE polymer is preferably made of HDPE and HDPE-g-MAH additive, when the polymer is HDPE, 5% silane and 95% of ions Preferably, the fibers or filaments are adhesively bonded to the polymer by treatment with water or a solution consisting of 5% silane and 95% ethanol.
본 발명의 폴리머 복합소재는 1종류 이상의 스틸 및 파이버가 폴리머 속에 심어 접착 결합 된다. 스틸 및 파이버를 폴리머 속에 심어 접합시킴에 따라 우수한 인장강도 및 절단하중을 얻을 수 있는 장점이 있다. In the polymer composite material of the present invention, one or more kinds of steel and fiber are adhesively bonded by planting in the polymer. As the steel and fibers are planted in the polymer and bonded to each other, excellent tensile strength and cutting load can be obtained.
또한, 폴리머를 접착처리하여 필라멘트 또는 파이버와 접착결합하고, 필라멘트와 파이버를 플라즈마 표면 개질 처리를 하여 폴리머에 접착 결합함으로써 필라멘트와 폴리머 또는 파이버와 폴리머의 접착력을 높일 수 있는 장점이 있다. In addition, the adhesive treatment of the polymer and the filament or fiber, and the adhesive bonding of the filament and the fiber to the polymer by the plasma surface modification treatment has the advantage of increasing the adhesive strength of the filament and the polymer or fiber and the polymer.
이외에도 폴리머를 고압 및 급속 냉각시켜 폴리머 내부 공극을 줄임으로써, 폴리머의 인장강도를 증가시킬 수 있는 장점이 있다. 폴리머와 파이버는 스틸에 비해 자중이 작아, 인장강도와 절단하중이 우수하면서도 가벼운 복합소재를 얻을 수 있는 장점이 있다. In addition to the high pressure and rapid cooling of the polymer to reduce the polymer voids, there is an advantage that can increase the tensile strength of the polymer. Polymers and fibers have a smaller self weight than steel, and thus have excellent strength and cutting loads, but also have a lighter composite material.
도 1 내지 도 3은 본 발명의 실시 예에 따른 복합소재를 나타내는 도면이다.1 to 3 is a view showing a composite material according to an embodiment of the present invention.
도 4는 도 3의 단면을 나타내는 도면이다. 4 is a view showing a cross section of FIG.
도 5는 내지 도 7은 본 발명의 실시 예에 따른 복합소재를 나타내는 도면이다.5 to 7 is a view showing a composite material according to an embodiment of the present invention.
도 8은 접착력 비율(%)과 연효율(%)의 관계를 나타내는 도면이다. 8 is a diagram showing the relationship between the adhesive force ratio (%) and the annual efficiency (%).
도 9는 연효율(%)과 인장하중의 관계를 나타내는 도면이다.9 is a graph showing the relationship between the annual efficiency (%) and the tensile load.
도 10은 본 발명의 실시 예에 따른 복합소재의 인장강도를 나타내는 도면이다. 10 is a view showing the tensile strength of the composite material according to an embodiment of the present invention.
도 11은 본 발명의 실시 예에 따른 복합소재의 절단하중을 나타내는 도면이다. 11 is a view showing a cutting load of the composite material according to an embodiment of the present invention.
도 12a는 본 발명의 실시 예에 따른 접착처리가 된 폴리머와 필라멘트 또는 파이버와의 접착 계면을 나타내는 도면이며, 12A is a view showing an adhesive interface between an adhesive polymer and a filament or fiber according to an embodiment of the present invention.
도 12b는 접착처리가 된 폴리머와 필라멘트 또는 파이버와의 접착 계면을 EDX로 성분을 분석한 도면이다. FIG. 12B is a diagram illustrating components analyzed by EDX at an adhesive interface between an adhesive polymer and a filament or fiber. FIG.
도 13a는 본 발명의 실시 예에 따른 접착처리가 되지 않은 폴리머와 필라멘트 또는 파이버와의 접착 계면을 나타내는 도면이며, 13A is a view showing an adhesive interface between an untreated polymer and a filament or fiber according to an embodiment of the present invention.
도 13b는 접착처리가 되지 않은 폴리머와 필라멘트 또는 파이버와의 접착 계면을 EDX로 성분을 분석한 도면이다. FIG. 13B is a diagram illustrating an analysis of components by EDX on an adhesive interface between an untreated polymer and a filament or fiber.
도 14는 본 발명의 실시 예에 따른 접착처리가 되기 전후의 폴리머와 필라멘트 또는 파이버와의 접착력을 나타내는 도면이다. 14 is a view showing the adhesive force between the polymer and the filament or fiber before and after the adhesive treatment according to an embodiment of the present invention.
도 15는 본 발명의 실시 예에 따른 접착 촉진제를 첨가한 폴리머의 접착력을 나타내는 도면이다. 15 is a view showing the adhesion of the polymer to which the adhesion promoter according to an embodiment of the present invention.
도 16은 본 발명의 실시 예에 따른 플라즈마 표면 개질 처리되기 전후의 접착 계면을 나타내는 도면이다.16 is a view showing an adhesive interface before and after plasma surface modification according to an embodiment of the present invention.
도 17은 본 발명의 실시 예에 따른 플라즈마 표면 개질 처리되기 전후의 접착력을 나타내는 도면이다. 17 is a view showing the adhesive force before and after the plasma surface modification process according to an embodiment of the present invention.
도 18은 본 발명의 실시 예에 따른 접착 계면를 나타내는 도면이다. 18 is a diagram illustrating an adhesive interface according to an embodiment of the present invention.
도 19 a 및 19b 는 본 발명의 실시 예에 따른 고압 및 급속냉각 되기 전후의 폴리머의 공극의 면적 변화를 나타내는 도면이다. 19A and 19B are views illustrating changes in the area of pores of a polymer before and after high pressure and rapid cooling according to an embodiment of the present invention.
도 20a 및 20b은 본 발명의 실시 예에 따른 고압 및 급속냉각 되기 전후의 폴리머의 폴리머 내부 공극 비율(%)을 나타내는 도면이다.20A and 20B are graphs showing a polymer internal void ratio (%) before and after high pressure and rapid cooling according to an embodiment of the present invention.
본 발명은 폴리머 복합소재에 관한 것으로, 더욱 상세하게는 1종류 이상의 스틸 및 파이버를 폴리머 속에 심어 접착 결합시켜 다층 구조를 형성함으로써, 가벼우면서도 고강도 및 고인성을 갖고, 내마모성이 우수한 폴리머 복합소재에 관한 것이다. The present invention relates to a polymer composite material, and more particularly, to a polymer composite material having light weight, high strength and high toughness, and excellent wear resistance by forming a multilayered structure by bonding one or more kinds of steel and fibers in a polymer to be bonded and bonded. will be.
인장강도(Tensile Strength)(N/mm²)는 인장하중(N)에 비례하여 증가하며, 절단강도(N/mm²)는 절단하중(Breaking Load)(N)에 비례하여 증가한다. 따라서, 인장하중(N) 및 절단하중(N)이 증가하면 인장강도(N/mm²) 및 절단강도(N/mm²)가 증가하게 된다. 따라서, 이하 설명에서는 인장하중(N) 또는 절단하중(N)이 증가 되는 것은 인장강도(N/mm²) 및 절단강도(N/mm²)가 증가되는 것을 지칭한다.Tensile strength (N / mm²) increases in proportion to tensile load (N), and cutting strength (N / mm²) increases in proportion to breaking load (N). Therefore, when the tensile load (N) and the cutting load (N) increases, the tensile strength (N / mm²) and cutting strength (N / mm²) increases. Therefore, in the following description, the increase in tensile load (N) or cutting load (N) refers to the increase in tensile strength (N / mm²) and cutting strength (N / mm²).
이하, 본 발명의 바람직한 실시 예를 첨부된 도면을 통해 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 폴리머 복합소재(100)는 폴리머(110), 필라멘트(120), 파이버(130)를 포함하여 구성된다. 상기 폴리머(110)에는 상기 필라멘트(120) 또는 상기 파이버(130) 중 어느 하나만 상기 폴리머(110) 내부에 심어져 상기 폴리머(110)에 접착 결합될 수 있으며, 상기 필라멘트(120)와 상기 파이버(130)가 동시에 상기 폴리머(110) 내부에 심어져 상기 폴리머(110)에 접착 결합될 수 있다. The polymer composite material 100 of the present invention comprises a polymer 110, filament 120, fiber 130. Only one of the filament 120 or the fiber 130 may be planted inside the polymer 110 to be adhesively bonded to the polymer 110 in the polymer 110, and the filament 120 and the fiber ( 130 may be simultaneously planted inside the polymer 110 to be adhesively bonded to the polymer 110.
도 1 및 도 2를 참조하면, 상기 필라멘트(120)는 상기 폴리머(110) 내부에 심어지며, 상기 폴리머(110)에 접착 결합된다. 여기서 상기 필라멘트(120)는 적어도 1개 이상의 스틸 또는 파이버로 이루어질 수 있다. 즉, 필라멘트(120)는 스틸로도 이루어질 수 있고, 파이버로도 이루어질 수 있다. 상기 필라멘트(120)는 1개로 이루어질 수 있으며, 2개 이상으로도 이루어질 수 있다. 1 and 2, the filament 120 is planted inside the polymer 110 and adhesively bonded to the polymer 110. The filament 120 may be made of at least one steel or fiber. That is, the filament 120 may be made of steel or may be made of fiber. The filament 120 may be made of one, it may be made of two or more.
도 3 및 도 4를 참조하면, 본 발명의 폴리머 복합소재(100)는 상기 파이버(130)를 더 포함하여 이루어질 수 있다. 상기 파이버(130)는 상기 필라멘트(120) 주변에 위치하며, 복수 개로 이루어져 상기 필라멘트(120) 주변에서 파이버 층(131)을 형성하며 이루어질 수 있다. 즉, 폴리머 복합소재(100)는 중앙에 상기 필라멘트(120)가 위치하고 그 주변을 상기 파이버(130)가 상기 파이버 층(131)을 이루며 둘러싸고 있는 형태로 이루어질 수 있다. 3 and 4, the polymer composite material 100 of the present invention may further include the fiber 130. The fiber 130 is positioned around the filament 120, and may be formed of a plurality of fibers to form a fiber layer 131 around the filament 120. That is, the polymer composite material 100 may be formed in a form in which the filament 120 is positioned at the center thereof and the fiber 130 is surrounded by the fiber layer 131.
상기 필라멘트(120)와 상기 파이버(130)는 상기 폴리머(110)에 내부에 심어지며, 상기 폴리머(110)에 접착 결합된다. 도 3 및 도 4를 참조하면, 상기 폴리머(110)는 제1폴리머(111)와 제2폴리머(112)로 이루어질 수 있다. 상기 제1폴리머(111)는 상기 필라멘트(120)를 둘러싸고 있는 것이다. 상기 제2폴리머(112)는 상기 파이버(130)를 둘러싸고 있는 것이다. 상기 제1폴리머(111)에 상기 필라멘트(120)가 심어져 접착 결합되고, 상기 제2폴리머(112)에 상기 파이버(130)가 심어져 접착 결합된다. 여기서, 상기 제1폴리머(111)와 상기 제2폴리머(112)는 같은 종류의 폴리머가 사용될 수 있으며, 다른 종류의 폴리머가 사용될 수 있다. The filament 120 and the fiber 130 are planted inside the polymer 110 and adhesively bonded to the polymer 110. 3 and 4, the polymer 110 may be formed of a first polymer 111 and a second polymer 112. The first polymer 111 surrounds the filament 120. The second polymer 112 surrounds the fiber 130. The filament 120 is planted and bonded to the first polymer 111, and the fiber 130 is planted and bonded to the second polymer 112. Here, the first polymer 111 and the second polymer 112 may be the same type of polymer, and different types of polymers may be used.
상기 파이버(130)가 복수 개로 이루어져 형성된 상기 파이버 층(131)은 1개의 층으로 이루어질 수 있으며, 상기 파이버 층(131)은 2개 이상의 층으로도 이루어질 수 있다. The fiber layer 131 formed of a plurality of fibers 130 may be formed of one layer, and the fiber layer 131 may be formed of two or more layers.
도 5를 참조하면, 상기 필러(140)는 상기 폴리머(110)에 심어져 상기 폴리머(110)에 접착 결합되며, 상기 필러(140)는 스틸 또는 파이버로 이루어질 수 있다. 상기 필러(140)는 상기 파이버(130) 사이의 빈 공간 또는 상기 파이버(130)와 상기 필라멘트(120) 사이의 빈 공간에 심어질 수 있는 것이다. 상기 필러(140)가 상기 빈 공간에 심어짐에 따라 상기 빈 공간의 강도 저하를 막을 수 있다. 따라서, 상기 빈 공간에 강도가 높은 상기 필러(140)를 심어 넣음으로써, 상기 복합소재(100)의 강도가 높아진다. 상기 필러(140)는 인성이 강한 스틸 또는 파이버로 이루어져 있기 때문에 상기 복합소재(100)의 인성을 높여주는 효과도 있다. Referring to FIG. 5, the filler 140 may be planted in the polymer 110 to be adhesively bonded to the polymer 110, and the filler 140 may be made of steel or fiber. The filler 140 may be planted in an empty space between the fiber 130 or an empty space between the fiber 130 and the filament 120. As the filler 140 is planted in the empty space, a decrease in strength of the empty space may be prevented. Therefore, the strength of the composite material 100 is increased by planting the filler 140 having high strength in the empty space. Since the filler 140 is made of steel or fiber having high toughness, there is an effect of increasing the toughness of the composite material 100.
도 6을 참조하면, 상기 복합소재(100)는 다양한 형상의 단면으로 이루어질 수 있다. 상기 복합소재(100)의 단면은 일반적으로 원형으로 이루어질 수 있으나, 이에 한정되는 것은 아니며, 사각형, 플레이트(Plate), 쉬트(sheet) 등의 형상으로 이루어질 수 있다. 이외에도 다른 이형 형태(사다리꼴, H 단면 형상, Z 단면 형상 등)로 상기 복합소재(100)의 단면이 형성될 수 있다. Referring to FIG. 6, the composite material 100 may have a cross section of various shapes. The cross section of the composite material 100 may be generally circular, but is not limited thereto, and may have a shape of a rectangle, a plate, a sheet, or the like. In addition, the cross section of the composite material 100 may be formed in another release form (trapezoid, H cross-sectional shape, Z cross-sectional shape, etc.).
상기 필라멘트(120)와 상기 파이버(130)는 상기 폴리머(110) 내부에서 다양한 형상으로 심어져 접착 결합될 수 있다. 상기 필라멘트(120)와 상기 파이버(130)는 직선 형태로 상기 폴리머(110) 속에 심어질 수 있으며, 도 3을 참조하면, 상기 필라멘트(120)와 상기 파이버(130)는 꼬인선 형태로 상기 폴리머(110) 속에 심어질 수 있다. 이외에도 상기 필라멘트(120)와 상기 파이버(130)는 직물 형태(mesh 또는 braded)로 상기 폴리머(110)에 심어질 수도 있다. The filament 120 and the fiber 130 may be planted in various shapes inside the polymer 110 to be adhesively bonded. The filament 120 and the fiber 130 may be planted in the polymer 110 in a straight line. Referring to FIG. 3, the filament 120 and the fiber 130 may be twisted in the form of the polymer. It can be planted in (110). In addition, the filament 120 and the fiber 130 may be planted in the polymer 110 in the form of a fabric (mesh or braded).
즉, 상기 필라멘트(120)와 상기 파이버(130)는 상기 폴리머(110)에 일방향으로 연장되어 심어질 수 있으며, 가로방향, 세로방향으로 동시에 연장되어 직물형태로 심어질 수도 있다. 상기 필라멘트(120)와 상기 파이버(130)가 상기 폴리머(110)에 심어지는 형태는 이에 한정되는 것은 아니며 다양한 형태로 심어질 수 있음은 물론이다. That is, the filament 120 and the fiber 130 may be planted extending in one direction in the polymer 110, and may be planted in the form of a fabric extending simultaneously in the horizontal and vertical directions. The filament 120 and the fiber 130 are planted in the polymer 110 is not limited thereto, but may be planted in various forms.
상기 복합소재(100)의 형상은 상술한 형상에 한정되는 것은 아니며, 이외에도 다양한 형상으로 이루어질 수 있다. 도 7을 참조하면, 상기 폴리머(110) 중앙에 2개의 상기 필라멘트(120)가 심어지고, 4개의 상기 파이버(130)가 묶인 후 4개의 상기 파이버(130)가 상기 파이버 층(131)을 이루며 형성될 수 있다. 이외에도 상기 복합소재(100)의 강도를 증가시킬 수 있는 것이라면, 다양한 형상으로 이루어질 수 있다. The shape of the composite material 100 is not limited to the above-described shape, but may be formed in various shapes. Referring to FIG. 7, two filaments 120 are planted in the center of the polymer 110, four fibers 130 are bundled, and four fibers 130 form the fiber layer 131. Can be formed. In addition to the one that can increase the strength of the composite material 100, it can be made in a variety of shapes.
상기 폴리머(110)의 종류는 TPU(Thermoplastic Polyurethane), HDPE(high Density Polyethylene), PE(Polyethylene), PP(polypropylene), Polyester 등이 사용될 수 있으며, 상기 파이버(130)의 종류는 아라미드, 폴리에스테르, 나일론, 폴리에틸렌 등이 사용될 수 있다. 상기 폴리머(110)와 상기 파이버(130)의 종류는 이에 한정되는 것은 아니며 상기 복합소재(100)의 강도를 증가시킬 수 있는 것이라면 다양한 종류가 사용될 수 있음은 물론이다. 상기 폴리머(110)의 종류인 TPU(Thermoplastic Polyurethane), HDPE(high Density Polyethylene), PE(Polyethylene), PP(polypropylene), Polyester 등과 상기 파이버(130)의 종류인 아라미드, 폴리에스테르, 나일론, 폴리에틸렌 등은 공지된 기술인바 상세한 설명은 생략한다. The polymer 110 may be TPU (Thermoplastic Polyurethane), HDPE (High Density Polyethylene), PE (Polyethylene), PP (polypropylene), Polyester, etc., and the type of the fiber 130 may be aramid, polyester , Nylon, polyethylene and the like can be used. The type of the polymer 110 and the fiber 130 is not limited thereto, and various kinds may be used as long as the strength of the composite material 100 may be increased. Thermoplastic Polyurethane (TPU), High Density Polyethylene (HDPE), Polyethylene (PE), PP (polypropylene), Polyester, etc., which are types of the polymer 110, and aramid, polyester, nylon, polyethylene, etc., which are types of the fiber 130 Is a well-known technology, detailed description thereof will be omitted.
상기 스틸은 금속 도금된 스틸이 사용될 수 있으며, 금속 도금이 되지 않은 스틸이 사용될 수도 있다. 도금된 스틸은 아연 도금, 황동 도금 등이 사용될 수 있으며, 그외 다양한 금속이 상기 스틸에 도금될 수 있다. As the steel, metal plated steel may be used, and steel without metal plating may be used. The plated steel may be zinc plated, brass plated, or the like, and various other metals may be plated on the steel.
상기 복합소재(100)의 중요한 품질특성은 연효율(spinning factor)(%)이며, 연효율(%)은 폴리머 속에 심어진 상기 필라멘트(120) 및 상기 파이버(130)와 상기 폴리머(110) 사이의 접착력 비율(%)(adhesion force ratio)에 의해 결정된다. An important quality characteristic of the composite material 100 is a spinning factor (%), and the annual efficiency (%) is between the filament 120 and the fiber 130 and the polymer 110 planted in a polymer. Determined by adhesion force ratio (%).
여기서, 연효율(%)은 Where the annual efficiency (%) is
연효율(%) = (복합소재(100)의 인장하중 / (개별 파이버 및 필라멘트(120)의 인장하중의 합 + 폴리머(110)의 인장하중)) * 100 Annual efficiency (%) = (tensile load of composite material / (sum of individual fiber and filament 120 plus the tensile load of polymer 110)) * 100
으로 정의된다. 즉, 상기 폴리머(110)에 심어지는 상기 필라멘트(120) 및 상기 파이버(130)의 개별 인장하중을 모두 합하고, 다시 상기 폴리머(110)의 인장하중을 합한 값에 대한 상기 복합소재(100)의 인장하중의 비율이 연효율(%)이 된다. Is defined. That is, the sum of the individual tensile loads of the filament 120 and the fiber 130, which are planted in the polymer 110, and again the sum of the tensile loads of the polymer 110 of the composite material 100 The ratio of tensile load is the annual efficiency (%).
여기서, 접착력 비율(%)은 Here, the adhesion ratio (%) is
접착력 비율(%) = (접착 강도(N/mm²) / 폴리머 인장강도(N/mm²)) * 100Adhesive Force Ratio (%) = (Adhesive Strength (N / mm²) / Polymer Tensile Strength (N / mm²)) * 100
으로 정의된다. 접착 강도는 상기 폴리머(110)와 상기 필라멘트(120) 또는 상기 폴리머(110)와 상기 파이버(130)의 접착력(adhesion force(N))을 접착 계면의 면적으로 나눈 값이다. Is defined. Adhesive strength is a value obtained by dividing the adhesion force (N) of the polymer 110 and the filament 120 or the polymer 110 and the fiber 130 by the area of the adhesive interface.
도 8은 접착력 비율(%)과 연효율(%)의 관계를 나타내는 도면이며, 도 9는 연효율(%)과 인장하중(N)의 관계를 나타내는 도면이다. 도 8 및 도 9를 참고하면, 접착력 비율(%)이 높아질수록 연효율(%)이 높아지며, 연효율(%)이 높아질수록 상기 복합소재(100)의 인장하중이 높아지는 것을 알 수 있다. 또한, 상기 폴리머(110)와 상기 필라멘트(120) 또는 상기 폴리머(110)와 상기 파이버(130)의 접착력이 높아질수록 상기 복합소재(100)의 절단하중은 증가한다. 8 is a view showing the relationship between the adhesive force ratio (%) and the annual efficiency (%), Figure 9 is a view showing the relationship between the annual efficiency (%) and the tensile load (N). Referring to FIGS. 8 and 9, it can be seen that as the adhesive force ratio (%) increases, the annual efficiency (%) increases, and as the annual efficiency (%) increases, the tensile load of the composite material 100 increases. In addition, as the adhesive force between the polymer 110 and the filament 120 or the polymer 110 and the fiber 130 increases, the cutting load of the composite material 100 increases.
따라서, 상기 폴리머(110)와 상기 필라멘트(120) 또는 상기 폴리머(110)와 상기 파이버(130)의 접착력 비율(%)은 5% 이상인 것이 바람직하다. 접착력 비율(%)이 5% 이하인 경우 상기 복합소재(100)의 인장하중과 절단하중이 작아지기 때문에 상기 복합소재(100)가 목적하는 강도를 얻는 것이 어렵게 된다. 그러므로, 상기 폴리머(110)와 상기 필라멘트(120) 또는 상기 폴리머(110)와 상기 파이버(130)의 접착력 비율(%)은 5% 이상인 것이 바람직하다.Therefore, the adhesive force (%) of the polymer 110 and the filament 120 or the polymer 110 and the fiber 130 is preferably 5% or more. When the adhesive force ratio (%) is 5% or less, since the tensile load and the cutting load of the composite material 100 become small, it becomes difficult to obtain the desired strength of the composite material 100. Therefore, the adhesive force (%) of the polymer 110 and the filament 120 or the polymer 110 and the fiber 130 is preferably 5% or more.
도 10 및 도 11은 상기 복합소재(100)의 신율(Elongation)에 따른 인장강도 와 절단하중를 나타내는 도면이다. 도 10 및 도 11을 참조하면, 상기 복합소재(100)는 폴리에스테르에 비하여 인장강도 및 절단하중이 증가하며, 신율은 감소하는 것을 알 수 있다. 즉, 상기 복합소재(100)가 인장강도 및 절단하중에 도달했을 때 신율은 폴리에스테르가 인장강도 및 절단하중에 도달했을 때의 신율에 비해 감소하게 된다. 이와 같이 신율이 감소하는 특성은 스틸 소재의 특성으로, 상기 복합소재(100)는 상기 폴리머(110)에 상기 필라멘트(120)와 상기 파이버(130)가 심어짐에 따라 스틸의 특성과 비슷해지는 효과가 있다. 10 and 11 are views showing tensile strength and cutting load according to elongation of the composite material 100. 10 and 11, the composite material 100 can be seen that the tensile strength and the cutting load increases compared to the polyester, the elongation is reduced. That is, the elongation when the composite material 100 reaches the tensile strength and the cutting load is reduced compared to the elongation when the polyester reaches the tensile strength and the cutting load. As described above, the elongation decreases as a property of a steel material, and the composite material 100 is similar to that of steel as the filament 120 and the fiber 130 are planted in the polymer 110. There is.
상기 복합소재(100)는 상술한 바와 같이 접착력 비율(%)이 높아질수록 인장하중 및 절단하중이 증가하는 것을 알 수 있으며, 접착력 비율(%)을 높이기 위해서는 상기 폴리머(110)와 상기 필라멘트(120) 또는 상기 폴리머(110)와 상기 파이버(130)의 접착력을 높여야 한다. The composite material 100 can be seen that the tensile load and the cutting load increases as the adhesive strength ratio (%) as described above, in order to increase the adhesive strength ratio (%) the polymer 110 and the filament 120 Or increase the adhesion between the polymer 110 and the fiber 130.
접착력을 높이기 위해 상기 폴리머(110)는 접착제를 통해 접착 처리 된 후 상기 필라멘트(120) 또는 상기 파이버(130)와 접착결합 될 수 있다. 접착제의 종류는 상기 폴리머(110)의 종류에 따라 다른 접착제가 사용된다. In order to increase the adhesive strength, the polymer 110 may be adhesively bonded to the filament 120 or the fiber 130 after the adhesive treatment through the adhesive. The type of adhesive may vary depending on the type of the polymer 110.
상기 폴리머(110)가 고밀도 폴리에틸렌(HDPE : High Density Polyethylene)인 경우 5%의 실란(silane)과 95%의 이온이 제거된 물(deionized water) 또는 5%의 실란과 95%의 에탄올로 이루어진 용액으로 접착 처리된 후 상기 필라멘트(120) 또는 상기 파이버(130)에 접착 결합될 수 있다. 이와 같은 접착처리(화학처리)를 통해 상기 폴리머(110)와 상기 필라멘트(120) 또는 상기 폴리머(110)와 상기 필라멘트(120)의 접착력이 향상되며, 이에 따라 상기 복합소재(100)의 인장하중 및 절단하중도 증가된다. When the polymer 110 is high density polyethylene (HDPE), a solution composed of 5% silane and 95% deionized water or 5% silane and 95% ethanol After the adhesive treatment, the filament 120 or the fiber 130 may be adhesively bonded. Through such an adhesion treatment (chemical treatment), the adhesion between the polymer 110 and the filament 120 or the polymer 110 and the filament 120 is improved, and thus the tensile load of the composite material 100. And cutting load is also increased.
도 12a 및 도 12b는 상기 폴리머(110) 중 고밀도 폴리에틸렌(HDPE)을 5%의 실란(silane)과 95%의 이온이 제거된 물(deionized water)로 접착처리 하여 아연 도금된 스틸을 접착 결합시킨 샘플의 접착 계면(Adhesion Interface)을 나타내는 도면이다. 도 12a를 참조하면, 접착 계면의 공극이나 기공이 매우 작게 존재하는 것을 알 수 있으며, 이는 상기 폴리머(110)와 상기 스틸이 잘 접착되었다는 것을 의미한다. 12A and 12B illustrate that the high density polyethylene (HDPE) in the polymer 110 is bonded with 5% silane and 95% deionized water to bond the galvanized steel. It is a figure which shows the adhesion interface of a sample. Referring to FIG. 12A, it can be seen that pores or pores of the adhesive interface are very small, which means that the polymer 110 is well bonded to the steel.
도 12b는 상술한 접착 샘플을 EDX로 성분을 분석한 그래프이다. 도 12b를 참조하면, 상기 폴리머(110)의 화학성분인 탄소(C)와 아연 도금된 스틸의 아연 성분이 일정하게 분포되어 있는 것을 알 수 있다. 이는 상기 폴리머(110)와 상기 스틸이 화학적인 접착이 잘 되었다는 것을 의미한다. 12B is a graph of the components of the adhesive sample described above with EDX. 12B, it can be seen that carbon (C), which is a chemical component of the polymer 110, and a zinc component of zinc-plated steel are uniformly distributed. This means that the polymer 110 and the steel are well chemically bonded.
도 13a 및 도 13b는 상술한 샘플에서 고밀도 폴리에틸렌(HDPE)과 아연 도금된 스틸에 5%의 실란(silane)과 95%의 이온이 제거된 물(deionized water)로 접착처리 하지 않았을 때의 샘플의 접착 계면을 나타내는 도면이다. 13a을 참조하면, 접착 계면에 공극이나 기공이 크게 존재한다. 이는 상기 폴리머(110)와 상기 스틸의 접착이 제대로 이루어지지 않은 것을 나타낸다. Figures 13a and 13b show the sample without adhesion of 5% silane and 95% deionized water to high density polyethylene (HDPE) and galvanized steel in the sample described above. It is a figure which shows an adhesive interface. Referring to 13a, large gaps or pores exist in the adhesive interface. This indicates that the adhesion between the polymer 110 and the steel is not properly made.
13b는 상술한 샘플을 EDX로 성분을 분석한 그래프로, 상기 폴리머(110)의 화학성분인 탄소(C)가 일정하게 분포되어 있지 않은 것을 알 수 있다. 이는 상기 폴리머(110)와 상기 스틸의 화학적인 접착이 잘 되어 있지 않다는 것을 의미한다. 13b is a graph in which the above-described sample is analyzed by EDX, and it can be seen that carbon (C), which is a chemical component of the polymer 110, is not uniformly distributed. This means that the chemical adhesion between the polymer 110 and the steel is not good.
이처럼 상기 폴리머(110)가 고밀도 폴리에틸렌(HDPE)인 경우 5%의 실란(silane)과 95%의 이온이 제거된 물(deionized water)로 접착 처리 한 후 상기 필라멘트(120) 또는 상기 파이버(130)에 접착 결합시키면 접착력이 증가하는 것을 알 수 있다. 상기 폴리머(110)가 고밀도 폴리에틸렌(HDPE)인 경우 접착 처리하기 위해 5%의 실란(silane)과 95%의 이온이 제거된 물(deionized water) 이외에도 5%의 실란(silane)과 95%의 에탄올이 사용될 수도 있다. As described above, when the polymer 110 is HDPE, the filament 120 or the fiber 130 is treated with 5% silane and 95% deionized water. It can be seen that when the adhesive bond to the adhesive strength increases. When the polymer 110 is a high density polyethylene (HDPE), in addition to 5% silane and 95% deionized water for adhesion treatment, 5% silane and 95% ethanol May be used.
접착제의 종류는 상기 폴리머(110)의 종류에 따라 다른 종류의 접착제가 사용될 수 있으며, 상기 폴리머(110)가 TPU 또는 Polyester 인 경우에는 Chemlok 접착제가 사용될 수 있다. Chemlok 접착제는 상용화 된 접착제로 그 상세한 설명은 생략한다. 이와 같은 접착제를 사용함에 따라 상기 폴리머(110)와 상기 필라멘트(120) 또는 상기 폴리머(110)와 상기 파이버(130)의 접착력을 높일 수 있게 된다. 도 14는 TPU에 접착제를 통해 접착 처리를 하기 전 후의 접착력을 비교한 도면이다. 도 14를 참조하면, TPU에 접착제를 통해 접착 처리를 하면 접착력이 증가하는 것을 알 수 있다. 접착제의 종류는 이에 한정되는 것은 아니며, 상기 폴리머(110)의 종류에 따라 상기 폴리머(110)의 접착력을 증가시킬 수 있는 다양한 접착제가 사용될 수 있음은 물론이다. The type of adhesive may be a different type of adhesive according to the type of the polymer 110, and when the polymer 110 is a TPU or a polyester, a Chemlok adhesive may be used. Chemlok adhesive is a commercially available adhesive and its detailed description is omitted. By using such an adhesive it is possible to increase the adhesive strength of the polymer 110 and the filament 120 or the polymer 110 and the fiber 130. 14 is a view comparing the adhesive force before and after the adhesive treatment to the TPU through the adhesive. Referring to Figure 14, it can be seen that the adhesive force increases when the adhesive treatment to the TPU through the adhesive. The type of the adhesive is not limited thereto, and various adhesives capable of increasing the adhesive force of the polymer 110 may be used according to the type of the polymer 110.
상기 폴리머(110)는 접착 촉진제를 첨가하여 이루어질 수 있다. 상기 접착 촉진제를 첨가하기 위해서는 상기 폴리머(110)를 용해시켜 상기 접착 촉진제와 섞어서 사용하게 된다. 상기 접착 촉진제는 상기 폴리머(110)와 상기 필라멘트(120) 또는 상기 폴리머(110)와 상기 파이버(130)의 접착력을 향상시킬 수 있는 것이다. 상기 접착 촉진제는 상기 폴리머(110)의 종류에 따라 다양한 종류가 사용될 수 있으며, 상기 폴리머(110)가 고밀도 폴리에틸렌(HDPE)으로 이루어질 때, 상기 접착 촉진제는 HDPE-g-MAH가 사용될 수 있다. The polymer 110 may be made by adding an adhesion promoter. In order to add the adhesion promoter, the polymer 110 is dissolved and mixed with the adhesion promoter. The adhesion promoter may improve adhesion between the polymer 110 and the filament 120 or the polymer 110 and the fiber 130. The adhesion promoter may be used in various kinds according to the type of the polymer 110, and when the polymer 110 is made of high density polyethylene (HDPE), the adhesion promoter may be HDPE-g-MAH.
도 15는 상기 폴리머(110)가 90%는 고밀도 폴리에틸렌(HDPE)으로 이루어지고, 10%의 HDPE-g-MAH 접착 촉진제를 사용하여 접착력이 향상된 결과를 나타내는 도면이다. 상기 폴리머(110)가 고밀도 폴리에틸렌(HDPE)일 때, 상기 접착 촉진제는 HDPE-g-MAH 외에 carbon black도 사용될 수 있다. 상기 접착 촉진제를 사용함에 따라, HDPE-g-MAH를 사용할 때는 접착력이 8배 증가하게 되며, carbon black을 사용할 때는 접착력이 2배 증가된다. FIG. 15 illustrates that the polymer 110 is 90% made of high density polyethylene (HDPE) and has improved adhesion by using 10% HDPE-g-MAH adhesion promoter. When the polymer 110 is a high density polyethylene (HDPE), the adhesion promoter may be carbon black in addition to HDPE-g-MAH. By using the adhesion promoter, when using the HDPE-g-MAH adhesive strength is increased by 8 times, when using carbon black the adhesion strength is increased by 2 times.
상기 폴리머(110)와 상기 필라멘트(120) 또는 상기 폴리머(110)와 상기 파이버(130)의 접착력을 향상시키기 위해서 상기 필라멘트(120) 또는 상기 파이버(130)는 Atmospheric pressure plasma 표면 개질 처리(이하 "플라즈마 표면 개질 처리")가 이루어질 수 있다. 상기 필라멘트(120) 또는 상기 파이버(130)를 플라즈마 표면 개질 처리하면 상기 폴리머(110)와의 접착력이 향상된다. In order to improve adhesion between the polymer 110 and the filament 120 or the polymer 110 and the fiber 130, the filament 120 or the fiber 130 may be subjected to an Atmospheric pressure plasma surface modification treatment Plasma surface modification treatment "). The plasma surface modification treatment of the filament 120 or the fiber 130 improves adhesion to the polymer 110.
도 16는 상기 필라멘트(120) 또는 상기 파이버(130)가 플라즈마 표면 개질 처리되기 전후의 상기 폴리머(110)와의 접착부위를 나타내는 도면이다. 플라즈마 표면 개질 처리를 통해 접착 계면에 발생하는 간격(Gap)을 감소시킬 수 있다. 상기 간격(Gap)은 접착 계면의 공극(Void)으로, 플라즈마 표면 개질 처리는 접착 계면의 공극을 감소시킴에 따라 상기 폴리머(110)와 상기 필라멘트(120) 또는 상기 폴리머(110)와 상기 파이버(130)의 접착력을 향상시킬 수 있다. FIG. 16 is a view showing adhesion sites with the polymer 110 before and after the filament 120 or the fiber 130 is subjected to plasma surface modification. Plasma surface modification can reduce gaps occurring at the adhesive interface. The gap Gap is a void of the adhesive interface, and the plasma surface modification process reduces the void of the adhesive interface, and thus the polymer 110, the filament 120, or the polymer 110 and the fiber ( 130) can improve the adhesion.
도 17은 상기 필라멘트(120) 또는 상기 파이버(130)에 플라즈마 표면 개질 처리를 하기 전후의 접착력을 나타내는 도면으로, 상기 폴리머(110)가 TPU 이고 상기 파이버(130)가 아라미드인 경우의 황동 플레이트(Brass plate)와의 접착력과, 상기 폴리머(110)가 Polyester 이고 상기 파이버(130)가 아라미드인 경우의 황동 플레이트와의 접착력을 나타내는 시험 결과이다. 도 17을 참고하면, 상기 폴리머(110)가 TPU인 경우는 플라즈마 표면 개질 처리를 통해 약 2배의 접착력이 향상되며, 상기 폴리머(110)가 Polyester인 경우 플라즈마 표면 개질 처리를 통해 약 5배의 접착력이 향상되는 것을 알 수 있다. 17 is a view showing the adhesive force before and after the plasma surface modification treatment to the filament 120 or the fiber 130, the brass plate when the polymer 110 is TPU and the fiber 130 is aramid ( It is a test result showing the adhesive strength with the brass plate and the adhesive force with the brass plate when the polymer 110 is a polyester and the fiber 130 is aramid. Referring to FIG. 17, in the case where the polymer 110 is a TPU, the adhesive strength is improved by about 2 times through plasma surface modification, and when the polymer 110 is a polyester, about 5 times through the plasma surface modification. It can be seen that the adhesive force is improved.
상기 폴리머(110)와 상기 필라멘트(120) 또는 상기 폴리머(110)와 상기 파이버(130)가 접착되어, 상기 폴리머(110)와 상기 필라멘트(120) 또는 상기 폴리머(110)와 상기 파이버(130) 사이에 발생한 접착 계면에는 공극(Void)이 발생하는데, 접착 계면 공극 비율(Void ratio at adhesion interface)(%)은 90% 이하인 것이 바람직하다. The polymer 110 and the filament 120 or the polymer 110 and the fiber 130 are bonded to the polymer 110 and the filament 120 or the polymer 110 and the fiber 130 Voids occur in the adhesive interface generated between them, and the void ratio at adhesion interface (%) is preferably 90% or less.
여기서, 접착 계면 공극 비율(%)은 상기 복합소재(100)를 절단하였을 때, Here, the adhesive interfacial void ratio (%) is when the composite material 100 is cut,
접착 계면 공극 비율(%) = (접착 계면에 있는 모든 공극 길이의 합 / 접착 계면의 전체 길이) * 100 으로 정의된다.% Of adhesive interface pore = (sum of all pore lengths at adhesive interface / total length of adhesive interface) * 100.
도 18을 참조하여 접착 계면 공극 비율(%)을 측정하는 방법을 살펴보면 다음과 같다. 상기 복합소재(100)를 절단한 후 전자 현미경을 사용하여 x 600의 배율로 407.17 * 542.28 μm²면적 안에 있는 모든 공극의 길이를 측정하고 접촉 계면의 길이를 측정하여, 모든 공극 길이의 합을 접착 계면의 전체 길이로 나누어 접착 계면 공극 비율(%)을 측정한다. 도 18의 접촉 계면 공극 비율(%)은 모든 공극 길이의 합이 102.76μm이고, 접착 계면의 전체 길이가 630.83μm로 측정되므로 접착 계면 공극 비율은 102.76 / 630.83 * 100 = 16.3%로 측정될 수 있다. Looking at the method of measuring the adhesive interfacial void ratio (%) with reference to Figure 18 as follows. After cutting the composite material 100 by using an electron microscope to measure the length of all the pores in the area of 407.17 * 542.28 μm² at a magnification of x 600 and the length of the contact interface, the sum of all pore lengths to the adhesive interface The percentage of adhesive interface voids was measured by dividing by the total length of. The percentage of contact interface voids in FIG. 18 is 102.76 μm in the sum of all pore lengths, and the total length of the adhesive interface is measured at 630.83 μm, so that the bond interface porosity ratio may be measured as 102.76 / 630.83 * 100 = 16.3%. .
접착 계면 공극 비율(%)이 90%가 초과 되면, 공극이 커짐에 따라 상기 폴리머(110)와 상기 필라멘트(120) 또는 상기 폴리머(110)와 상기 파이버(130)의 접착력이 작아지고, 이에 따라 상기 복합소재(100)의 인장하중와 절단하중이 작아진다. 따라서, 상기 접착 계면 공극 비율(%)은 90% 이하로 유지하는 것이 바람직하다. When the adhesive interface void percentage (%) is greater than 90%, as the voids become larger, the adhesion between the polymer 110 and the filament 120 or the polymer 110 and the fiber 130 decreases, thus The tensile load and the cutting load of the composite material 100 are reduced. Therefore, it is preferable to keep the adhesive interface void ratio (%) at 90% or less.
상기 폴리머(110)는 상기 복합소재(100)의 전체 단면적의 15~40% 점유하고 있다. 따라서, 상기 복합소재(100)의 많은 면적을 차지하고 있는 상기 폴리머(110)의 강도를 높이면 상기 복합소재(100)의 강도를 높일 수 있게 된다. 상기 복합소재(100)를 제작하기 위해 상기 폴리머(110)는 용융되어 사용된다. 상기 폴리머(110)의 강도를 높이기 위해서 상기 폴리머(110)를 용융된 상태에서 고압으로 급속 냉각(High pressure and Rapid cooling)하는 것이 바람직하다. 즉, 상기 폴리머(110)를 응고시 압력을 증가시키면서 빠르게 냉각시키는 것이다. 상기 폴리머(110)를 고압에서 급속 냉각하면 상기 폴리머(110) 내부에 발생하는 공극(Void)이 줄어들게 되며, 이에 따라 상기 폴리머(110)의 인장강도는 증가하게 된다. The polymer 110 occupies 15-40% of the total cross-sectional area of the composite material 100. Therefore, when the strength of the polymer 110, which occupies a large area of the composite material 100, is increased, the strength of the composite material 100 may be increased. The polymer 110 is melted and used to produce the composite material 100. In order to increase the strength of the polymer 110, it is preferable to cool the polymer 110 in a molten state at high pressure and rapid cooling. That is, the polymer 110 is rapidly cooled while increasing the pressure during solidification. Rapid cooling of the polymer 110 at high pressure reduces voids generated in the polymer 110, thereby increasing the tensile strength of the polymer 110.
도 19a 및 도 19b는 상기 폴리머(110)를 고압에서 급속 냉각하기 전후의 상기 폴리머(110) 내부의 공극을 나타내는 도면이다. 도 19a는 상기 폴리머(110)를 고압에서 급속 냉각하기 전의 도면이며, 도 19b는 상기 폴리머(110)를 고압에서 급속 냉각한 후의 도면이다. 도 19a 및 도 19b를 참조하면, 상기 폴리머(110)를 고압에서 급속 냉각하면 공극의 면적이 2698.57μm에서 173.78μm로 감소하며, 처음의 공극 면적에 비해 1/15로 공극 면적이 줄어들게 된다. 이와 같은 공극의 감소는 상기 폴리머(110)의 인장강도를 증가시키게 된다. 19A and 19B are diagrams showing voids inside the polymer 110 before and after the polymer 110 is rapidly cooled at a high pressure. 19A is a view before rapid cooling of the polymer 110 at high pressure, and FIG. 19B is a view after rapid cooling of the polymer 110 at high pressure. 19A and 19B, when the polymer 110 is rapidly cooled at a high pressure, the pore area is reduced from 2698.57 μm to 173.78 μm, and the pore area is reduced to 1/15 compared with the initial pore area. This reduction in porosity increases the tensile strength of the polymer 110.
상기 폴리머(110)를 고압으로 급속냉각 시켰을 때, 상기 폴리머 내부 공극 면적 비율(%)은 2% 이하로 하는 것이 바람직하다. 폴리머 내부 공극 면적 비율(%)은 상기 복합소재(100)를 절단하여 측정되며, 폴리머 내부 공극 면적비율(%)은 다음과 같이 정의된다. When the polymer 110 is rapidly cooled at a high pressure, the polymer internal void area ratio (%) is preferably 2% or less. Polymer internal void area ratio (%) is measured by cutting the composite material 100, the polymer internal void area ratio (%) is defined as follows.
폴리머 내부 공극 면적 비율(%) = (폴리머 절단 면적에 존재하는 공극 면적의 합 / 폴리머 절단면적) * 100% Polymer internal pore area = (sum of pore areas in polymer cut area / polymer cut area) * 100
폴리머 내부 공극 면적 비율(%)의 측정방법을 살펴보면 다음과 같다. 상기 복합소재(100)를 절단하고 전자 현미경을 사용하여 x 5000 배율에서 사진을 찍는다. 사진에 보이는 공극의 면적을 합하고 사진의 넓이로 나누면 폴리머 내부 공극 면적 비율을 구할 수 있게 된다. 여기서, 상기 복합소재(100)를 절단할 경우 접촉계면이 형성된 곳이 아닌 상기 폴리머(110)만 있는 면적을 절단하여 현미경으로 관찰함으로써 폴리머 내부 공극 면적 비율(%)을 측정할 수 있게 된다. Looking at the measurement method of the polymer void area percentage (%) is as follows. The composite material 100 is cut and photographed at x 5000 magnification using an electron microscope. By adding the area of the pores shown in the picture and dividing by the area of the picture, the ratio of the pore area inside the polymer is obtained. In this case, when cutting the composite material 100, the polymer internal pore area ratio (%) can be measured by cutting the area having only the polymer 110 instead of the contact interface formed therein and observing it under a microscope.
도 20a 및 도 20b는 상기 폴리머(110)를 고압으로 급속냉각 하기 전후의 폴리머 내부 공극 면적 비율(%)을 나타내는 도면이다. 도 20a는 상기 폴리머(110)를 고압에서 급속 냉각하기 전의 도면이며, 도 20b는 상기 폴리머(110)를 고압에서 급속 냉각한 후의 도면이다. 상기 폴리머(110)를 고압으로 급속 냉각시키면 공극의 면적 합이 감소하게 되고, 이에 따라 폴리머 공극 면적 비율(%)이 감소하게 된다. 도 20a 및 도 20b는 두 가지의 샘플을 측정한 것으로 상기 폴리머(110)를 고압으로 급속 냉각함으로써, 폴리머 공극 면적 비율(%)은 2.71%에서 0.11%로, 4.14%에서 0.18%로 감소하는 것을 알 수 있다. 20A and 20B are diagrams showing a polymer internal void area ratio (%) before and after rapid cooling of the polymer 110 at high pressure. 20A is a view before rapid cooling of the polymer 110 at high pressure, and FIG. 20B is a view after rapid cooling of the polymer 110 at high pressure. When the polymer 110 is rapidly cooled at high pressure, the sum of the area of the pores is reduced, thereby reducing the polymer pore area ratio (%). 20A and 20B measure two samples, and by rapidly cooling the polymer 110 at high pressure, the polymer void area percentage decreases from 2.71% to 0.11% and from 4.14% to 0.18%. Able to know.
이하에서는 실시 예를 들어 본 발명을 보다 상세히 설명하나, 하기의 실시 예는 설명의 목적을 위한 것으로 본 발명을 제한하기 위한 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are for the purpose of explanation and are not intended to limit the invention.
[실시 예1]Example 1
다음의 [표1]은 본 발명의 구체적 실시 예로 상기 폴리머(110), 상기 필라멘트(120), 상기 파이버(130)의 소재 종류 및 접착에 따른 접착력을 나타낸 것이다. 상기 폴리머(110), 상기 필라멘트(120), 상기 파이버(130)는 접착제를 사용하여 폴리머 복합소재 샘플을 인라인 설비에서 제조하였다. 인라인 설비의 공정은 접착제 코팅, 건조, 압출기에서 폴리머 결합으로 이루어진다. 샘플의 접착력(N)은 인장시험기를 통해 상기 폴리머(110)와 상기 필라멘트(120) 또는 상기 파이버(130)가 서로 분리될 때의 인장하중으로 측정하였다. 접착력 시험결과 상기 폴리머(110)가 고밀도 폴리에틸렌(HDPE)이고 상기 필라멘트(120)가 아연도금 된 경우 5%의 실란(silane)과 95%의 이온이 제거된 물(deionized water) 또는 5%의 실란(silane)과 95%의 에탄올로 접착처리 했을 때 접착력이 향상되는 것을 알 수 있다. 또한, 상기 폴리머(110)가 90%는 고밀도 폴리에틸렌(HDPE)으로 이루어지고 10%는 HDPE-g-MAH 접착 촉진제를 사용했을 때의 접착력 향상되는 것을 알 수 있다. 하기 실시 예는 본 발명의 이해를 돕기 위한 것으로, 본 발명을 한정하는 것은 아니다.[Table 1] shows the adhesion of the polymer 110, the filament 120, the fiber type 130 and the adhesion according to specific embodiments of the present invention. The polymer 110, the filament 120, and the fiber 130 were prepared in an in-line facility by using a polymer adhesive sample. The process of in-line equipment consists of adhesive coating, drying and polymer bonding in the extruder. The adhesion force (N) of the sample was measured by the tensile load when the polymer 110 and the filament 120 or the fiber 130 is separated from each other through a tensile tester. In the adhesion test, when the polymer 110 is a high density polyethylene (HDPE) and the filament 120 is galvanized, 5% silane and 95% deionized water or 5% silane It can be seen that the adhesion is improved when the adhesive treatment with (silane) and 95% ethanol. In addition, it can be seen that the polymer 110 is 90% made of high density polyethylene (HDPE) and 10% is improved adhesion when using the HDPE-g-MAH adhesion promoter. The following examples are provided to aid the understanding of the present invention, and do not limit the present invention.
[규칙 제91조에 의한 정정 26.02.2016] 
Figure WO-DOC-TABLE-1



[Correction under Rule 91 26.02.2016]
Figure WO-DOC-TABLE-1



[실시 예2]Example 2
다음의 [표2]는 본 발명의 구체적 실시 예로 플라즈마 표면 개질 처리가 상기 필라멘트(120) 또는 상기 파이버(130)와 상기 폴리머(110)의 접착력 향상에 기여 정도를 확인하기 위한 실험이다. The following [Table 2] is an experiment for confirming the degree of contribution of the plasma surface modification treatment to the adhesive force improvement of the filament 120 or the fiber 130 and the polymer 110 in a specific embodiment of the present invention.
도 17을 참고하면, 황동 플레이트와 파이버를 상온에서 플라즈마 표면 개질처리를 하고 용융 폴리머를 그들 사이에 침투 시킨 후 일정압력을 가하여 접착시켰다. 폴리머 용해 온도는 195도 내지 205도로 하였으며, 플라즈마 표면 개질 처리속도는 5m/min로 했다. 이와 같은 실험을 통해 [표2]와 같은 샘플을 제조하였으며, 각 샘플의 폴리머와 황동 플레이트 사이의 접착력을 실험하였다. 폴리머의 종류에 따라 플라즈마 표면 개질 처리를 한 경우와 안 한 경우의 접착력 결과는 [표2]에 기재된다. [표2]를 참고하면 플라즈마 표면 개질 처리 후, 폴리머가 TPU인 경우와 폴리머가 Polyseter인 경우 모두 접착력이 증가되었으며, 폴리머가 Polyester인 경우 현저한 접착력 증가가 나타났다. 또한, 본 실험에서 폴리머와 파이버의 접착계면을 현미경으로 관찰한 결과, 도 16과 같이 접착 계면의 공극 비율이 현저히 줄어 들었다. 특히 폴리머가 Polyester 인 경우와 파이버가 아라미드인 경우 접착이 우수한 것으로 나타났다. 이처럼, 필라멘트 또는 파이버에 플라즈마 표면 개질 처리를 하면 접촉 계면에 발생하는 공극이 감소하게 되고, 이는 폴리머와 필라멘트 또는 폴리머와 파이버의 접착력을 향상시킬 수 있게 된다. 하기 실시 예는 본 발명의 이해를 돕기 위한 것으로, 본 발명을 한정하는 것은 아니다.Referring to FIG. 17, the brass plate and the fiber were subjected to plasma surface modification treatment at room temperature, the molten polymer was infiltrated therebetween, and applied under a constant pressure. The polymer dissolution temperature was 195 to 205 degrees and the plasma surface modification rate was 5 m / min. Through the above experiment to prepare a sample as shown in Table 2, the adhesion between the polymer and the brass plate of each sample was tested. Adhesion results with and without plasma surface modification treatment depending on the type of polymer are listed in Table 2. Referring to [Table 2], after the plasma surface modification treatment, the adhesive strength was increased in both the polymer TPU and the polymer Polyseter. When the polymer was polyester, the adhesive strength was remarkably increased. In addition, as a result of observing the adhesion interface between the polymer and the fiber under a microscope in this experiment, as shown in FIG. Especially when the polymer is polyester and the fiber is aramid, the adhesion is excellent. As such, the plasma surface modification treatment on the filament or the fiber reduces the voids generated at the contact interface, which can improve the adhesion between the polymer and the filament or the polymer and the fiber. The following examples are provided to aid the understanding of the present invention, and do not limit the present invention.
Figure PCTKR2016001522-appb-T000002
Figure PCTKR2016001522-appb-T000002
[실시 예3]Example 3
다음의 [표3]은 본 발명의 구체적 실시 예로 접착 계면 공극 비율(%) 및 접착력 비율(%)에 따른 인장강도 및 절단하중을 측정한 값을 나타내는 것이다. 황동도금 스틸코드(필라멘트), aramid(파이버), TPU(폴리머)로 이루어진 복합 소재로 접착력을 다르게 하여 5가지 샘플을 제작하였다. 제조방법은 황동도금 스틸코드 표면에 플라즈마 표면 개질 처리 또는 chemlock 접착처리를 하고 TPU 폴리머에 접착 결합 시켰다. 그 위에 aramid를 9가닥 연선하고 플라즈마 표면 개질 처리한 후 TPU 폴리머를 접착 결합시켰다.(도 7의 복합소재 제작) 이때, 플라즈마 표면 개질 처리 조건을 다르게 하여 접착력 비율(%)이 다른 5종류의 샘플을 제작하였다. TPU 폴리머의 결합 온도는 195도 내지 205도로 하였다. Table 3 below shows the measured values of tensile strength and cutting load according to the adhesive interface void ratio (%) and the adhesive force ratio (%) as specific examples of the present invention. Five samples were prepared by using a composite material composed of brass plated steel cord (filament), aramid (fiber), and TPU (polymer). The manufacturing method was plasma surface modified or chemlock adhesive on the surface of brass plated steel cord and adhesively bonded to the TPU polymer. After a 9-stranded aramid and plasma surface modification treatment, the TPU polymer was adhesively bonded (manufacture of the composite material of FIG. 7). At this time, five kinds of samples having different adhesive strength ratios (%) were changed under different plasma surface modification treatment conditions. Was produced. The bonding temperature of the TPU polymer was 195 to 205 degrees.
상술한 접착 계면 공극 비율(%) 측정방법을 통해 상기 샘플의 접착 계면 공극 비율(%)을 계산한 결과를 하기 [표3]에 기재하였다. 하기 [표3]을 살펴 보면, 접착력 비율(%)이 증가할수록 연효율 및 절단하중이 증가하는 것을 알 수 있다. 특히 접착력 비율(%)이 3% 에서는 매우 낮은 절단하중이 얻어지므로, 목적하는 절단하중을 얻기 위해 접착력 비율(%)은 5%이상으로 하는 것이 바람직하다. 또한, 접착력 비율(%)은 접착 계면 공극 비율(%)과 관계가 있는 것으로 나타났다. 하기 [표3]을 참조하면, 접착 계면 공극 비율(%)이 작을수록 접착력 비율(%)은 증가하는 것을 알 수 있다. 따라서, 목적하는 절단하중을 만족시키기 위해서는 접착 계면 공극 비율(%)을 90% 이하로 하는 것이 바람직하다. 접착 계면 공극 비율(%)은 상술한 플라즈마 표면 개질 처리와 상술한 접착제를 이용한 접착처리를 통해 작게 할 수 있다. 즉, 상술한 플라즈마 표면 개질 처리 및 상술한 접착처리를 통해 접착 계면 공극 비율(%)을 90%이하로 형성할 수 있으며, 이를 통해 상기 복합소재(100)의 인장강도 및 절단하중을 증가시킬 수 있게 된다. 하기 실시 예는 본 발명의 이해를 돕기 위한 것으로, 본 발명을 한정하는 것은 아니다.The results of calculating the adhesive interfacial porosity (%) of the sample through the above-described method for measuring the interfacial porosity (%) are described in Table 3 below. Looking at the following [Table 3], it can be seen that as the adhesive force ratio (%) increases the annual efficiency and cutting load increases. In particular, when the adhesive force ratio (%) is 3%, a very low cutting load is obtained, so that the adhesive force ratio (%) is preferably 5% or more in order to obtain a desired cutting load. In addition, the adhesive force percentage (%) was found to be related to the adhesive interface void percentage (%). Referring to the following [Table 3], it can be seen that as the adhesive interface void ratio (%) is smaller, the adhesive force ratio (%) increases. Therefore, in order to satisfy the desired cutting load, it is preferable to make the adhesive interface void ratio (%) 90% or less. The adhesive interface void ratio (%) can be made small through the above-described plasma surface modification treatment and the adhesive treatment using the adhesive described above. That is, through the above-described plasma surface modification treatment and the above-described adhesion treatment, the adhesive interface void ratio (%) may be formed to 90% or less, thereby increasing the tensile strength and cutting load of the composite material 100. Will be. The following examples are provided to aid the understanding of the present invention, and do not limit the present invention.
Figure PCTKR2016001522-appb-T000003
Figure PCTKR2016001522-appb-T000003
[실시 예 4]Example 4
다음의 [표4]는 본 발명의 구체적 실시 예로 상기 폴리머(110)를 고압으로 급속 냉각 하기 전후의 특성을 나타내는 표이다. 하기 [표4]의 실험은 폴리머가 TPU인 경우 폴리머 결합의 압력을 높이고 냉각속도를 높여 4종류의 샘플을 제조한 것이다. 4종류 샘플의 작업조건은 하기 [표4]에 기재된 바와 같다. The following [Table 4] is a table showing the characteristics before and after the rapid cooling of the polymer 110 to a specific embodiment of the present invention. In the experiment of Table 4, four types of samples were prepared by increasing the pressure of the polymer bond and increasing the cooling rate when the polymer was TPU. Working conditions of the four types of samples are as described in Table 4 below.
하기 [표4]에서 보면 높은 압력을 높이고 냉각속도를 적용한 후 폴리머 내부 공극이 약 96% 감소하였고, 이로 인해 TPU 폴리머의 인장강도가 약 2.6배 증가한 것을 알 수 있다. 즉, [표4]를 통하여 압력을 높이고 냉각속도를 높이면 폴리머 내부 공극 면적 비율(%)이 작아지게 되며, 이에 따라 절단하중이 증가하는 것을 알 수 있다. 따라서, 폴리머를 고압으로 급속 냉각 시켜, 폴리머 내부 공극 면적 비율(%)을 2%로 이하로 유지하는 것이 바람직하다. 하기 실시 예는 본 발명의 이해를 돕기 위한 것으로, 본 발명을 한정하는 것은 아니다.In the following [Table 4], after increasing the high pressure and applying the cooling rate, the pore inside the polymer decreased about 96%, which indicates that the tensile strength of the TPU polymer increased about 2.6 times. In other words, it can be seen that increasing the pressure and increasing the cooling rate through Table 4 decreases the polymer pore area ratio (%), thereby increasing the cutting load. Therefore, it is desirable to rapidly cool the polymer to a high pressure and keep the polymer internal void area percentage (%) at 2% or less. The following examples are provided to aid the understanding of the present invention, and do not limit the present invention.
Figure PCTKR2016001522-appb-T000004
Figure PCTKR2016001522-appb-T000004
상술한 본 발명의 복합소재(100)는 상기 폴리머(110)와 상기 필라멘트(120) 또는 상기 폴리머(110)와 상기 파이버(130)의 접착력을 향상시키기 위해서 상기 폴리머(110)를 접착제를 통해 접착 처리 하며, 접착 촉진제(가령, 상기 폴리머(110)가 고밀도 폴리에틸렌(HDPE)인 경우 HDPE-g-MAH 첨가제)를 통해 접착력을 향상시킬 수 있다. 또한 상기 필라멘트(120)와 상기 파이버(130)를 플라즈마 표면 개질 처리를 하여 접착력을 향상시킬 수 있다. 이를 통해 접착력 비율(%)을 5% 이상으로 하는 것이 좋으며, 접착 계면 공극 비율(%)을 90% 이하로 하는 것이 좋다. 이와 같이 접착력 비율(%)을 5% 이상, 접착 계면 공극 비율(%)을 90% 이하로 하여야 상기 복합소재(100)가 원하는 인장강도 및 절단하중을 얻을 수 있게 된다. The composite material 100 of the present invention is the adhesive to the polymer 110 and the filament 120 or the polymer 110 to improve the adhesion between the polymer 110 and the fiber 130 through an adhesive In addition, the adhesion may be improved through an adhesion promoter (eg, HDPE-g-MAH additive when the polymer 110 is a high density polyethylene (HDPE)). In addition, the filament 120 and the fiber 130 may be subjected to plasma surface modification to improve adhesion. Through this, it is preferable that the adhesion force percentage (%) is 5% or more, and the adhesion interface void percentage (%) is preferably 90% or less. As described above, the adhesive force ratio (%) should be 5% or more and the adhesive interface void ratio (%) should be 90% or less to obtain the desired tensile strength and cutting load of the composite material 100.
이와 함께 상기 폴리머(110)는 고압으로 급속 냉각 되어 폴리머 내부 공극 비율(%)을 2%로 이하로 하는 것이 좋다. 상기 폴리머(110)의 폴리머 내부 공극 비율(%)을 2%로 줄이면 상기 폴리머(110)의 인장강도를 향상시킬 수 있으며, 상기 폴리머(110)는 상기 복합소재(100)에서 많은 부피를 차지하므로 상기 복합소재(100)의 강도를 증가시킬 수 있게 된다.In addition, the polymer 110 may be rapidly cooled to a high pressure so that the polymer internal void ratio (%) is 2% or less. Reducing the polymer internal void ratio (%) of the polymer 110 to 2% can improve the tensile strength of the polymer 110, since the polymer 110 occupies a large volume in the composite material 100 It is possible to increase the strength of the composite material (100).
이와 같이 접착제를 통한 접착처리, 접착 촉진제 사용, 플라즈마 표면 개질 처리, 고압으로 급속 냉각한 상기 복합소재(100)는 다음과 같은 효과를 갖을 수 있다. As described above, the composite material 100 which is rapidly treated at high pressure by an adhesive treatment through an adhesive, using an adhesion promoter, a plasma surface modification treatment, and high pressure may have the following effects.
먼저, 본 발명의 복합소재(100)는 상기 폴리머(110)에 상기 필라멘트(120)와 상기 파이버(130)를 접합시킴에 따라 우수한 인장강도 및 절단하중을 얻을 수 있다. 상기 폴리머(110)와 상기 파이버(130)는 스틸에 비해 자중이 작아 우수한 인장강도 및 절단하중을 갖으면서 가벼운 복합소재(100)를 제작할 수 있으며, 인장강도 및 절단하중에서 신율이 작게 형성되어 스틸과 비슷한 특성을 갖는 장점이 있다. 즉, 본 발명의 복합소재(100)는 가벼우면서도 고강도 및 고인성을 갖을 수 있게 된다.First, the composite material 100 of the present invention can obtain excellent tensile strength and cutting load by bonding the filament 120 and the fiber 130 to the polymer 110. The polymer 110 and the fiber 130 has a lower self-weight than steel and can produce a light composite material 100 having excellent tensile strength and cutting load, and have low elongation at tensile strength and cutting load. It has the advantage of having similar characteristics. That is, the composite material 100 of the present invention can be light, yet have high strength and high toughness.
또한, 상기 폴리머(110)를 5%의 실란과 95%의 이온이 제거된 물 또는 5%의 실란과 95%의 에탄올로 이루어진 용액으로 접착 처리하여 상기 필라멘트(120)와 상기 파이버(130)에 접착 결합시키고, 상기 필라멘트(120)와 상기 파이버(130)를 플라즈마 표면 개질 처리하여 상기 폴리머(110)에 접착 결합시킴으로써 상기 폴리머(110)와 상기 필라멘트(120) 또는 상기 폴리머(110)와 상기 파이버(130)의 접착력을 향상시킬 수 있는 장점이 있다. 상기 폴리머(110)는 고압 및 급속 냉각처리 되어 폴리머 내부 공극을 줄임으로써, 상기 폴리머(110)의 인장강도를 증가시킬 수 있는 장점이 있다. In addition, the polymer 110 is bonded to the filament 120 and the fiber 130 by adhesive treatment with a solution composed of 5% silane and 95% of ions removed, or 5% silane and 95% ethanol. Adhesive bonding, and the polymer 110 and the filament 120 or the polymer 110 and the fiber by adhesively bonding the filament 120 and the fiber 130 to the polymer 110 by the plasma surface modification treatment There is an advantage that can improve the adhesion of the 130. The polymer 110 has an advantage of increasing the tensile strength of the polymer 110 by reducing the polymer internal voids by high pressure and rapid cooling treatment.
상술한 본 발명의 복합소재(100)는 접착제를 통한 접착처리, 접착 촉진제 사용, 상기 필라멘트(120) 또는 상기 파이버(130)를 플라즈마 표면 개질 처리, 상기 폴리머(110)를 고압으로 급속냉각 하는 과정을 모두 거칠 수 있다. 다만, 상기 복합소재(100)는 이에 한정되어 실시되는 것은 아니며 일부 과정이 생략되어 실시될 수 있음은 물론이다.The composite material 100 of the present invention described above is a process of bonding the adhesive through an adhesive, using an adhesion promoter, plasma surface modifying the filament 120 or the fiber 130, and rapidly cooling the polymer 110 at a high pressure. All of them can be rough. However, the composite material 100 is not limited thereto, and some processes may be omitted.
이상에서 다양한 실시 예를 들어 본 발명을 설명하였으나, 이에 한정되는 것은 아니며 본 발명의 권리범위로부터 합리적으로 해석될 수 있는 것이라면 무엇이나 본 발명의 권리범위에 속하는 것은 당연하다.While the present invention has been described with reference to various embodiments, it is not limited thereto, and any thing that can be reasonably interpreted from the scope of the present invention will naturally belong to the scope of the present invention.

Claims (14)

  1. 폴리머 복합소재로서, As a polymer composite material,
    폴리머와, 상기 폴리머의 내부에 심어지며 상기 폴리머에 접착 결합되는 필라멘트 및 상기 폴리머의 내부에 심어지며 상기 폴리머에 접착 결합되는 파이버를 포함하며, A polymer, a filament planted inside the polymer and adhesively bonded to the polymer, and a fiber planted inside the polymer and adhesively bonded to the polymer,
    상기 필라멘트 또는 상기 파이버 중 어느 하나만 상기 폴리머 내부에 심어져 상기 폴리머에 접착 결합되거나,Any one of the filament or the fiber is embedded in the polymer and adhesively bonded to the polymer,
    상기 필라멘트와 상기 파이버가 동시에 상기 폴리머 내부에 심어져 상기 폴리머에 접착 결합되는 것을 특징으로 하는 폴리머 복합소재. And the filament and the fiber are simultaneously embedded in the polymer and adhesively bonded to the polymer.
  2. 제1항에 있어서, The method of claim 1,
    상기 필라멘트는 적어도 1개 이상의 스틸 또는 파이버로 이루어지는 것을 특징으로 하는 폴리머 복합소재. The filament is a polymer composite material, characterized in that made of at least one steel or fiber.
  3. 제1항에 있어서,The method of claim 1,
    상기 폴리머는 접착제에 의해 접착처리 되어 상기 필라멘트 또는 상기 파이버와 접착결합 되는 것을 특징으로 하는 폴리머 복합소재.The polymer is adhesively treated with an adhesive, the polymer composite material, characterized in that the adhesive bonding with the filament or the fiber.
  4. 제1항에 있어서, The method of claim 1,
    상기 필라멘트 또는 상기 파이버는 플라즈마 표면 개질 처리되어, 상기 폴리머에 접착 결합되는 것을 특징으로 하는 폴리머 복합소재.The filament or the fiber is a polymer composite, characterized in that the plasma surface modification treatment, the adhesive bond to the polymer.
  5. 제1항에 있어서, The method of claim 1,
    상기 폴리머와 상기 필라멘트 또는 상기 폴리머와 상기 파이버의 접착력 비율은 5% 이상인 것을 특징으로 하는 폴리머 복합소재.The polymer composite material, characterized in that the adhesive force ratio of the polymer and the filament or the polymer and the fiber is 5% or more.
  6. 제1항에 있어서,The method of claim 1,
    상기 폴리머와 상기 필라멘트 또는 상기 폴리머와 상기 파이버 사이에 형성되는 접촉 계면의 접촉 계면 공극 비율은 90% 이하인 것을 특징으로 하는 폴리머 복합소재.The polymer composite material, characterized in that the contact interface void ratio of the contact interface formed between the polymer and the filament or the polymer and the fiber is 90% or less.
  7. 제1항에 있어서, The method of claim 1,
    상기 필라멘트는 상기 폴리머의 중심에 위치하며, The filament is located in the center of the polymer,
    상기 파이버는 상기 필라멘트 주변에 위치하는 것을 특징으로 하는 폴리머 복합소재.The fiber is polymer composite, characterized in that located around the filament.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 파이버는 복수 개로 이루어져, 상기 필라멘트 주변에서 파이버 층을 형성하고, The fiber consists of a plurality, forming a fiber layer around the filament,
    상기 파이버 층은 적어도 1개 이상의 층으로 이루어지는 것을 특징으로 하는 폴리머 복합소재.The fiber layer is a polymer composite, characterized in that composed of at least one layer.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 폴리머에 심어져 상기 폴리머에 접착 결합되는 필러를 더 포함하며, And a filler embedded in the polymer and adhesively bonded to the polymer,
    상기 필러는 스틸 또는 파이버로 이루어지는 것을 특징으로 하는 폴리머 복합소재.The filler is a polymer composite material, characterized in that made of steel or fiber.
  10. 제1항에 있어서, The method of claim 1,
    상기 필라멘트와 상기 파이버는,The filament and the fiber,
    상기 폴리머에 직선 형태, 꼬인선 형태, 직물형태 중 어느 하나 이상의 형태로 심어지는 것을 특징으로 하는 폴리머 복합소재.Polymer composite material, characterized in that planted in any one or more of the form of a straight line, twisted line, woven fabric.
  11. 제1항에 있어서, The method of claim 1,
    상기 폴리머는 TPU(Thermoplastic Polyurethane), HDPE(high Density Polyethylene), PE(Polyethylene), PP(polypropylene), polyester 중 어느 하나 이상으로 이루어지며, The polymer is made of one or more of TPU (Thermoplastic Polyurethane), HDPE (High Density Polyethylene), PE (Polyethylene), PP (polypropylene), polyester,
    상기 파이버는 아라미드, 폴리에스테르, 나일론, 폴리에틸렌 중 어느 하나 이상으로 이루어지는 것을 특징으로 하는 폴리머 복합소재.The fiber is a polymer composite material, characterized in that made of any one or more of aramid, polyester, nylon, polyethylene.
  12. 제1항에 있어서, The method of claim 1,
    상기 복합소재의 단면은 원형, 사각형, 플레이트, 쉬트 중 어느 한 형상으로 이루어지는 것을 특징으로 하는 폴리머 복합소재.The cross section of the composite material is a polymer composite material, characterized in that formed in any shape of a circle, a square, a plate, a sheet.
  13. 제1항에 있어서, The method of claim 1,
    상기 폴리머는 고압 및 급속 냉각처리 되어, 폴리머 내부 공극 면적비율이 2% 이하로 형성되는 것을 특징으로 하는 폴리머 복합소재. The polymer is a high pressure and rapid cooling treatment, the polymer composite material, characterized in that the pore area ratio of the polymer is formed to 2% or less.
  14. 제1항에 있어서,The method of claim 1,
    상기 폴리머는 HDPE 와 HDPE-g-MAH 첨가제로 이루어지는 것을 특징으로 하는 폴리머 복합소재.The polymer is a polymer composite material, characterized in that consisting of HDPE and HDPE-g-MAH additives.
PCT/KR2016/001522 2016-02-05 2016-02-16 Polymer composite material WO2017135491A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/747,236 US20180371691A1 (en) 2016-02-05 2016-02-16 Polymer Composite Material
EP16813212.4A EP3222775A4 (en) 2016-02-05 2016-02-16 Polymer composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160014999A KR101680284B1 (en) 2016-02-05 2016-02-05 Composite Polymer
KR10-2016-0014999 2016-02-05

Publications (1)

Publication Number Publication Date
WO2017135491A1 true WO2017135491A1 (en) 2017-08-10

Family

ID=57706404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001522 WO2017135491A1 (en) 2016-02-05 2016-02-16 Polymer composite material

Country Status (4)

Country Link
US (1) US20180371691A1 (en)
EP (1) EP3222775A4 (en)
KR (1) KR101680284B1 (en)
WO (1) WO2017135491A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670349A (en) * 1984-12-20 1987-06-02 Mitsui Petrochemical Industries, Ltd. Adhesive resin composition
KR20050026689A (en) * 2001-10-03 2005-03-15 엔.브이. 베카에르트 에스.에이. Multi-layer steel cord where intermediate filaments are coated wiht a polymer
KR20090009723A (en) * 2007-07-20 2009-01-23 넥쌍 An electrical control cable
KR20110107797A (en) * 2008-12-16 2011-10-04 엔브이 베카에르트 에스에이 A cord having an improved adhesion promoting coating
KR20120007469A (en) * 2010-07-14 2012-01-20 마누엘 호드리게스 돌리베이라 에씨아 필류스 에씨아 Method of accomplishment of a hybrid cord

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4202164A (en) * 1978-11-06 1980-05-13 Amsted Industries Incorporated Lubricated plastic impregnated aramid fiber rope
US6672046B1 (en) * 1999-08-26 2004-01-06 Otis Elevator Company Tension member for an elevator
JP4064668B2 (en) * 2001-12-26 2008-03-19 東京製綱株式会社 Composite wire rope
EP1942224A1 (en) 2007-01-08 2008-07-09 NV Bekaert SA Cable with low structural elongation
DE102011011112A1 (en) * 2011-02-12 2012-08-16 Casar Drahtseilwerk Saar Gmbh Method for producing a strand or a rope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670349A (en) * 1984-12-20 1987-06-02 Mitsui Petrochemical Industries, Ltd. Adhesive resin composition
KR20050026689A (en) * 2001-10-03 2005-03-15 엔.브이. 베카에르트 에스.에이. Multi-layer steel cord where intermediate filaments are coated wiht a polymer
KR20090009723A (en) * 2007-07-20 2009-01-23 넥쌍 An electrical control cable
KR20110107797A (en) * 2008-12-16 2011-10-04 엔브이 베카에르트 에스에이 A cord having an improved adhesion promoting coating
KR20120007469A (en) * 2010-07-14 2012-01-20 마누엘 호드리게스 돌리베이라 에씨아 필류스 에씨아 Method of accomplishment of a hybrid cord

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3222775A4 *

Also Published As

Publication number Publication date
EP3222775A1 (en) 2017-09-27
US20180371691A1 (en) 2018-12-27
KR101680284B1 (en) 2016-11-29
EP3222775A4 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
EP1280958B1 (en) Zinc-coated steel cord with improved fatigue resistance
US20170226297A1 (en) Carbon fiber thermoplastic resin prepreg, carbon fiber composite material and producing method
AU2013251875B2 (en) Hybrid rope or hybrid stand
US20200347526A1 (en) Twisted yarn, opened yarn, carbon fiber-covered twisted yarn, and method for manufacturing these
WO2014065460A1 (en) Pet non-woven fabric for separation membrane of secondary batteries and separation membrane for secondary batteries comprising same
EP3443158B1 (en) Hoisting rope
US20140130475A1 (en) Parallel synthetic rope
CN209722740U (en) Flame retardant type bridge stay cable
US10442625B1 (en) Adhesion aging protection in corded rubber articles
WO2017135491A1 (en) Polymer composite material
US8484941B2 (en) Method of accomplishment of a hybrid cord
AU2013393268B2 (en) High-strength rigging and preparation method thereof
US10737882B2 (en) Adhesion aging protection in corded rubber articles
CN212208973U (en) Opening self-rolling braided tube for electromagnetic shielding protection
CN215265637U (en) High-strength anti-fracture power cable
EP1329413A1 (en) Hoisting rope
CN209133241U (en) A kind of compound bus trailing cable of harbour machinery elevator
RU197534U1 (en) RAILWAY CONTACT NETWORK ROPE
CN104345415A (en) Polyethylene fiber composite tape armored cable
CN107945960A (en) A kind of tension polyphenylene sulfide cable
CN107936546A (en) A kind of polycaprolactam wear-resistant cable
CN203366804U (en) Polyethylene fiber composite band armored cable
WO2019177281A1 (en) Electroplated bead wire having excellent oxidation resistance
CN220381801U (en) Light-weight monitoring cable
CN218159725U (en) Cable with surface erosion resistance and antifriction functions

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016813212

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE