WO2017103533A1 - Method for liquefying natural gas by means of a refrigerant mixture cycle using a refrigerant distillation column provided with a reboiler - Google Patents

Method for liquefying natural gas by means of a refrigerant mixture cycle using a refrigerant distillation column provided with a reboiler Download PDF

Info

Publication number
WO2017103533A1
WO2017103533A1 PCT/FR2016/053520 FR2016053520W WO2017103533A1 WO 2017103533 A1 WO2017103533 A1 WO 2017103533A1 FR 2016053520 W FR2016053520 W FR 2016053520W WO 2017103533 A1 WO2017103533 A1 WO 2017103533A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
stage
cooling
reboiler
compressor
Prior art date
Application number
PCT/FR2016/053520
Other languages
French (fr)
Other versions
WO2017103533A4 (en
Inventor
Laurent Benoit
Pierre-Yves DUCLOS
Hicham GUEDACHA
Michel BEN BELGACEM - STREK
Original Assignee
Engie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Engie filed Critical Engie
Priority to EP16831819.4A priority Critical patent/EP3390937A1/en
Publication of WO2017103533A1 publication Critical patent/WO2017103533A1/en
Publication of WO2017103533A4 publication Critical patent/WO2017103533A4/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0092Mixtures of hydrocarbons comprising possibly also minor amounts of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0291Refrigerant compression by combined gas compression and liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general

Definitions

  • the present invention relates to a gas liquefaction process. Even more particularly, the present invention relates to the liquefaction of gas comprising predominantly nitrogen and C 1 -C 5 hydrocarbons, namely methane, ethane, propane, butane and pentane.
  • the present invention also relates to a gas liquefaction plant.
  • the methane-based gas is either a by-product of the oil fields or a major product in the case of gas fields, where it is then in combination with other gases, mainly C 1 to C 6 hydrocarbons, CO2 and nitrogen.
  • the preferred method is to transport it as a cryogenic liquid (-160 ° C) stored at substantially atmospheric pressure.
  • thermodynamic cycles have been developed to optimize overall energy efficiency. There are two main types of cycles. A first type based on the compression and expansion of coolant, with phase change, and a second type based on the compression and expansion of refrigerant gas without phase change.
  • refrigerant fluid means a gas or a mixture of gases circulating in a closed circuit and undergoing compression phases, where appropriate liquefaction, and then exchanges of heat with the external medium.
  • This first type of cycle, with phase change, is generally used on installations with a large production capacity requiring a larger quantity of equipment.
  • the cooling fluids generally in the form of mixtures, consist of pentane, butane, propane, ethane and methane, these gases being dangerous because they risk, in case of leakage, to cause explosions or considerable fires.
  • these phase change liquefaction processes remain the most efficient.
  • phase change processes currently used comprise a distillation column for separating the heavy and light fractions of the refrigerant mixture at a well-defined stage of the process. It should also be noted that to optimize the use of such a distillation column, it must consume a significant amount of energy, which alters the profitability of such a liquefaction process.
  • the distillation columns used today implement a reflux distillation to separate the heavy and light fractions of the refrigerant mixture.
  • Such reflux compared to the columns which do not use it, or in other words compared to a simple separating flask, makes it possible to better separate the light and heavy fractions from the cooling mixture, that is to say to better adapt the composition of the different fractions.
  • this better adaptation of the composition of the refrigerant mixture fractions makes it possible to consume less energy.
  • the object of the present invention is therefore to provide an improved phase-change gas liquefaction process, which makes it possible in particular to solve at least the problems mentioned above, and particularly to reduce the energy impact of such a process.
  • the subject of the present invention is a process for liquefying a gas comprising predominantly methane, wherein said gas to be liquefied flows in a primary circuit from a source to a tank for liquefied gas, and in which a mixture refrigerant circulates in a closed secondary circuit, said method comprising the following phases:
  • a cooling / liquefaction phase in which said gas to be liquefied is cooled and liquefied following its circulation in a main cryogenic exchanger comprising at least three stages, arranged in cascade, in which said gas is in direct contact with a refrigerant mixture whose composition evolves according to the cooling stage:
  • the first cooling being carried out in a first stage between the ambient temperature and a temperature T 0 equal to or greater than -60 ° C.
  • the second cooling being carried out in a second stage between T0 and a temperature T1 between -140 ° C. and -100 ° C.
  • the third cooling being carried out in a third stage between the temperature T1 and a temperature T2 of between -165 ° C. and -140 ° C.,
  • a treatment phase is performed to both partly recondense the cooling mixture and separate it into different fractions in order to adapt its composition to the cooling requirements of each stage of the main cryogenic exchanger said processing step comprising steps of:
  • the liquid fraction of the refrigerant mixture is pumped by a pump, while the vapor fraction of the refrigerant mixture is compressed by a second compressor, then cooled in a first heat exchanger, the liquid fraction and vapor fraction flows being at the same pressure;
  • said method being characterized in that the heat energy supplied to the reboiler comes directly from the overheating caused by the compression of said refrigerant mixture in said second compressor, this heat energy being fed to the reboiler using a intermediate loop connecting two heat exchangers, the first heat exchanger recovering the heat energy released by the compression performed in said compressor, which is retransmitted by the intermediate loop to the second heat exchanger to transmit it to the reboiler.
  • the term "light fraction” means a fraction comprising vapors rich in dinitrogen (N 2 ), methane (Ci) and ethane (C 2 ).
  • heavy fraction is meant in the sense of the present invention a fraction comprising propane (C 3 ), butane (Q) and pentane (Cs) -rich vapors.
  • the treatment phase occurs after the cooling mixture has effectively cooled all the stages, that is to say at the outlet of said main cryogenic exchanger (on the hot temperature side or near the ambient temperature).
  • the refrigerant mixture circulates through all stages of the main cryogenic exchanger co-current of the gas to be liquefied before moving against the current of the gas to be liquefied by going up all the stages previously crossed.
  • the flow of refrigerant mixture passes through all cooling stages co-current of the gas to be liquefied, it does not influence the temperature and the state of the latter. Indeed, the refrigerant mixture descends all the stages of the main cryogenic exchanger to cool itself and reach a temperature of the order of -160 ° C.
  • the refrigerant mixture passes through all these stages countercurrently with the gas to be liquefied along an exchange line, it cools the gas to be liquefied by exchanging directly with it heat energy to cool the gas. gas to be liquefied.
  • the gas to be liquefied is truly in direct contact only with a single flow of the refrigerant mixture, that which is countercurrent to the flow direction of the gas to be liquefied.
  • the refrigerant mixture before circulating against the current of the gas to be liquefied to cool and liquefy the latter, circulates in co-current of the gas to be liquefied.
  • exchange line means the line according to which the gas to be liquefied and the mixture of refrigerant interchange with each other. the heat energy to cool the gas to be liquefied. This exchange line is located in the main cryogenic exchanger throughout its cooling stages.
  • distillation column used in the context of the invention is provided with a reboiler at the bottom of the column, so that at the outlet of the reboiler, the flow of partially vaporized heavy fractions is reinjected into the column. to distill.
  • the use of a distillation column makes it possible to separate the light and heavy fractions of the cooling mixture, however, without resorting to reflux, but rather to a reboiler fed by an energy coming from a module integrated in the liquefaction process according to the invention.
  • the integrated module is the second compressor.
  • Such a power supply is intended to reduce the energy consumption of the liquefaction process insofar as the energy released by this compressor feeds the reboiler to optimize the separation of the heavy and light fractions of the refrigerant mixture.
  • the amount of recoverable heat at the second compressor, and more particularly at the second aftercooler is approximately equal to 85 ° C.
  • the temperature necessary for the reboiler to function properly must be between 50 ° C. and 70 ° C., and preferably of the order of 65 ° C., given that the fluid which undergoes this type of heating is at a pressure typically between 13 and 18 bar. As a result, the temperature level produced by this compressor is sufficient for the reboiler to operate properly.
  • the available heat output from compression overheating is typically equal to 5 to 7 times that required reboiler.
  • said liquid fraction of the refrigerant mixture issuing from said separator flask is reinjected directly at the outlet of said first heat exchanger.
  • said liquid fraction of the refrigerant mixture issuing from said separator flask is reinjected directly into the first stage of the main cryogenic exchanger.
  • This second embodiment makes it possible to improve the energy performance of the hottest section of the exchange line, at the cost however of a slight complexity.
  • this second embodiment consists in further fractionating the heavy section of the refrigerant mixture by recovering the liquid fraction of the refrigerant mixture which has condensed at room temperature as soon as it leaves the first aftercooler.
  • the gas to be liquefied contains methane in a molar proportion of at least 80%.
  • the refrigerant mixture is liquid air or a mixture comprising essentially nitrogen and alkanes or C 1 -C 5 hydrocarbons with a following typical composition (the compositions being in molar fraction):
  • these mole fractions can vary typically up to 50% depending on the composition and the pressure of the gas to be liquefied.
  • the present invention also relates to a gas liquefaction plant comprising a primary circuit connected to a gas source and to a tank for liquefied gas, the installation comprising:
  • At least one main cryogenic exchanger comprising at least three stages arranged in cascade for cooling and liquefying the gas flowing in the primary circuit
  • said secondary circuit comprising at least:
  • a first compressor and a first aftercooler upstream of a separator tank A first compressor and a first aftercooler upstream of a separator tank
  • a second compressor located between said separator tank and a distillation column
  • the installation further comprises an intermediate loop connecting two heat exchangers, the first heat exchanger recovering the heat energy released by the second compressor, which is retransmitted by the intermediate loop to the second heat exchanger to transmit it to the reboiler .
  • FIG. 1 represents a first embodiment of the installation according to the invention, in which the liquid fraction of the refrigerant mixture issuing from the separator tank is reinjected directly at the outlet of the second compressor;
  • FIG. 2 represents a second embodiment of the installation according to the invention, in which the liquid fraction of the refrigerant mixture coming from the separator tank is reinjected into the first stage of the main cryogenic exchanger.
  • FIG. 1 describes a liquefaction plant for a gas according to the invention which makes it possible to liquefy gas comprising predominantly nitrogen and hydrocarbons such as methane, ethane, propane, butane and pentane.
  • the gas is liquefied as a result of direct heat exchanges along an exchange line which crosses a main cryogenic exchanger.
  • the main cryogenic exchanger comprises three stages 61, 62, and 63 disposed in cascade.
  • the first stage 61 of this main cryogenic exchanger is located between the ambient temperature and a temperature T0 greater than or equal to -60 ° C.
  • the second stage 62 is located between the temperature T0 and a temperature T1 between -140 ° C and -100 ° C.
  • the third stage 63 is located between the temperature T1 and T2 between -165 ° C and -140 ° C.
  • the gas to be liquefied After the gas to be liquefied has circulated through the first stage 61 of the exchanger, it passes through a separation system SR, typically a partial distillation column, to adjust the composition of the gas to be liquefied so that it is consistent with natural gas by taking any surplus heavy hydrocarbons (C 2 , C 3 , C 4 , C 5) in order to adjust its calorific value and its Wobbe index.
  • the gas leaving this separation system SR is a gas in accordance with the specifications of the natural gas.
  • the gas to be liquefied After passing through this separation system SR, the gas to be liquefied passes through the second stage 62 of the main cryogenic exchanger and then through the third stage 63 of the exchanger. At the outlet of the third stage 63, a liquid 2, corresponding to the liquefied gas, is recovered in a tank 2 at a temperature below -160 ° C. and at atmospheric pressure.
  • the gas to be liquefied is cooled.
  • This cooling is achieved by heat exchange with a refrigerant mixture circulating in each stage of the main exchanger countercurrent of the gas to be liquefied.
  • the composition of the refrigerant mixture evolves according to the cooling stage of the main exchanger in which it circulates. It should be noted that the concentration of volatile compounds N 2 , Ci and C 2 of the cooling mixture increases when it crosses, co-current of the gas to be liquefied, the different stages 61, 62 and 63 of the main cryogenic exchanger.
  • At least a portion of the refrigerant mixture circulates against the current of the gas to be liquefied along an exchange line through which the heat energy of the refrigerant mixture is directly transmitted to the gas to be liquefied.
  • the heat energy of at least a portion of the refrigerant mixture is first transmitted to the gas to be liquefied in the third stage 63 of the main cryogenic exchanger, then in the second stage 62, before traveling through the first stage 61.
  • the cooling mixture After having left the third stage 63 through an orifice 61E3, the cooling mixture leaves the main cryogenic exchanger (on the hot temperature side, or close to the ambient temperature) to be treated, by a treatment phase, in a closed secondary circuit for both recondenser and separate into different fractions in order to adapt its composition to the cooling needs of each of the aforementioned stages.
  • the following elements refer to the treatment phase of the refrigerant mixture circulating in a closed secondary circuit.
  • the refrigerant mixture After having left the hot temperature side of the main cryogenic exchanger via an orifice 61E3, the refrigerant mixture passes through a first compressor 21, then a first aftercooler 31.
  • the combination of this first compressor 21 and this first pos-cooler has the effect of preparing the refrigerant mixture for its subsequent passage in a separator tank 11.
  • this first compressor 21 has the effect of compressing the vapor contained in the refrigerant mixture, and thus increasing the pressure and the temperature of the mixture .
  • This first aftercooler 31 has the effect of cooling the refrigerant mixture leaving the first compressor 21.
  • the refrigerant mixture After passing through the first compressor 21 and the first aftercooler 31, the refrigerant mixture is introduced into a separator tank 11.
  • This separator tank 11 has the effect of separating the refrigerant mixture into the liquid fraction MCO and the vapor fraction VCO.
  • the liquid fraction MCO is rich in heavy elements such as C 3 , C 4 and C 5, and the vapor fraction VCO is rich in volatile compounds such as N 2, Ci and C 2 .
  • This separator balloon 11 is placed between the first aftercooler 31 and a second compressor 22 to separate the two different fractions, or two phases, of the refrigerant mixture at this stage of the liquefaction device because, for reasons of optimization and feasibility, it is necessary that only the VCO vapor fraction (gas phase) is compressed in the second compressor 22.
  • the VCO vapor fraction of the refrigerant mixture passes into the second compressor 22, which is intended to raise the pressure of the VCO vapor fraction to facilitate its condensation at later stages of the process, then in a first heat exchanger 40a which has for the purpose of both cooling the superheated VCO fraction during compression and recovering some of this heat at the reboiler 13.
  • the amount of heat energy resulting from the compression at the level of the second compressor 22 typically corresponds to five or even seven times the amount of heat necessary to produce evaporation of the flow leaving a distillation column 12 at the level of the reboiler 13 placed at the bottom of the distillation column 12. It should also be noted that this amount of heat produced by the second compressor 22 strongly depends both on the precise composition of the compressed stream and the polytropic efficiency of the compressor. This amount of generated heat typically represents about twice the energy required for compression.
  • the MCO liquid fraction from the separator tank 11 is in turn pumped by a pump 50 and injected at the outlet of this first heat exchanger 40a.
  • the MCO liquid fraction is injected at the outlet of the first heat exchanger 40a because at this stage of the installation, it is only desired to compress the VCO vapor fraction because a fluid containing both a liquid phase can not be compressed in a compressor. and a gas phase. This is why the liquid fraction MCO is compressed using a pump 50.
  • the refrigerant mixture After leaving the first heat exchanger 40a and having been connected, at the intersection A, to the flow of liquid fraction MCO, the refrigerant mixture then passes into a distillation column 12 provided with a reboiler 13 located at the bottom of Distillation column 12.
  • a reboiler 13 located at the bottom of Distillation column 12.
  • the combination of this distillation column 12 and this reboiler 13 makes it possible to separate the cooling mixture into two distinct fractions: a light fraction FLE leaving the top of the distillation column 12, and a heavy fraction FLO coming out. reboiler 13.
  • the flow leaving the distillation column 12 is introduced into a heat exchanger 40b to be vaporized.
  • This heat exchanger 40b is powered by the heat energy created by the second compressor 22 and recovered by the first heat exchanger 40a.
  • This heat energy is conveyed to the heat exchanger 40b located upstream of the reboiler 13 by means of an intermediate loop 40 which connects these two heat exchangers 40a and 40b.
  • This reboiler 13 makes it possible to separate the vaporized stream leaving the heat exchanger 40b at the bottom of the distillation column 12 in order to obtain, at the exit of the reboiler 13, on the one hand, a heavy fraction FLO predominantly composed of propane-rich vapors (C 3 ), butane (Q) and pentane (C5), and on the other hand a stream of FVA vapor rich in light compounds: N 2 / C 1, C 2 and C 3 .
  • the heavy fraction FLO no longer comprises at this stage N 2 and its molar fraction in methane (Ci) is very low (less than 2%, or even less than 1%).
  • the vapor flow FVA is then reinjected into the distillation column
  • the flow of heavy fraction FLO passes, meanwhile, in a second aftercooler 32 before being introduced on the hot side of the first stage 61 of the main cryogenic exchanger, while the light fraction FLE of the refrigerant mixture, composed predominantly of dinitrogen (N 2 ), methane (Ci) and ethane (C 2 ) leaving the top of the distillation column 12 then passes into a third compressor 23 and necessarily into a third aftercooler 33 so that the fraction light FLE liquefies and so that it is at a sufficiently hot temperature when it is introduced into the exchange line, that is to say when it is introduced on the hot side of the main cryogenic exchanger via a port 61E1 . It should be noted that this third aftercooler 33 is therefore disposed upstream of the first stage 61 of the main cryogenic exchanger for reasons of energy efficiency.
  • the light FLE and heavy FLO fractions of the refrigerant mixture are thus reinjected into the main cryogenic exchanger, and more particularly to the hot side of the first stage 61.
  • Each of these fractions are introduced into this first stage by taking different orifices: the light fraction FLE the refrigerant mixture is introduced through a first orifice 61E1, and the heavy fraction FLO is introduced through a second orifice 61E2.
  • the heavy fraction FLO passes through this first stage 61 co-current of the gas to be liquefied without exchanging heat energy with the latter and thus entering a second orifice 61E2 and then emerging through the cold side of this first stage 61 by an orifice 61S2.
  • the heavy fraction FLO is expanded, in order to bring the fraction FLO to its bubble temperature, by a first expander d1 and then connected, at the intersection B, at least to a part flow of refrigerant mixture circulating countercurrent of the gas to be liquefied and leaving the second stage 62 through the orifice 62E3.
  • the entire refrigerant mixture is reconstituted.
  • the refrigerant mixture is introduced into the first stage 61 of the main cryogenic exchanger by circulating against the current of the gas to be liquefied by entering a port 61S3 and leaving through a third port 61E3 located on the warm side of the first stage 61 of the cryogenic exchanger.
  • the refrigerant mixture transmits heat energy to the gas to be liquefied. It should be noted that 40% of the overall cooling of the gas to be liquefied is carried out in the first stage 61, 50% of the overall cooling is carried out in the second stage 62 and 10% of the overall cooling is carried out in the third stage 63.
  • the light fraction FLE leaves from the first stage 61 through a port 61S1 through the first stage 61 co-current of the gas to be liquefied and then passes into an additional separator tank 14 to separate the flow of light fraction FLE refrigerant mixture in two distinct streams: a first lightest fraction flow FLE1 and a second largest fraction stream FLE2.
  • This separating separator tank 14 makes it possible, on the one hand, to separate the heavier fraction FLE2 from the refrigerant mixture, the latter being intended for cooling the second stage 62, of the lightest fraction FLE1 of the cooling mixture intended for the cooling of the third stage 63.
  • this separating separator balloon 14 also makes it possible to separate the flow of light fraction FLE into two streams, FLE1 and FLE2 in a simple way to have a good technical-economic compromise.
  • the first flow of the lightest fraction FLE1 passes in the second stage 62 of the main cryogenic exchanger entering through a 62E1 orifice and out through a 62S1 orifice.
  • the second largest fraction flow FLE2 meanwhile, passes into the second stage 62 entering through a 62E2 orifice and out through a 62S2 orifice.
  • These two flows FLE1 and FLE2 pass through the second stage 62 at the co-current of the gas to be liquefied.
  • the heaviest fraction flow FLE2 is expanded by a second expander d2, and then connected, at the intersection C, to at least a portion of the flow of the refrigerant mixture circulating counter-flow. gas stream to be liquefied and leaving the third stage 63 through the orifice 63E2.
  • the resulting flow is reinjected into the second stage 62 by entering through a 62S3 orifice, and out through a 62E3 orifice while flowing in this second stage against the current of the gas to be liquefied to exchange heat energy. with the latter.
  • This flow is then connected, at the intersection B, FLO heavy fraction flows out of the first expander dl to reconstitute the entire refrigerant mixture.
  • the first stream of the lightest fraction FLE1 leaving the second stage 62 through a port 62S1 then passes through a third stage 63 at the cocurrent of the gas to be liquefied by entering through an orifice 63E1, and out through a port 63S1.
  • the first lightest fraction flow FLE1 is expanded in a third expander d3, then reinjected into an orifice 63S2 of this third stage 63 to circulate in this third stage against the current of the gas. to liquefy and thus transmit heat energy to the gas to be liquefied.
  • this first lightest fraction flow FLE1 exits from this third stage 63 via a port 63E2 before being connected, at the intersection C, to the heaviest fraction flow FLE2 coming out of the second expander d2.
  • the light fraction FLE of the refrigerant mixture is reconstituted.
  • the reconstituted FLE light fraction of the refrigerant mixture passes through the second stage 62 countercurrently with the gas to be liquefied by entering through a port 62S3 and exiting through a port 62E3.
  • the reconstituted FLE light fraction is connected, at the intersection B, to the heavy fraction FLO of the refrigerant mixture leaving the first expander d1.
  • the entire refrigerant mixture is well reconstituted, as mentioned before, and passes through the first stage 61 against the current of the gas to be liquefied by entering through a port 61S3 and out through a port 61E3 before returning to the phase treatment.
  • FIG. 2 describes a second embodiment of a liquefaction plant of a gas according to the invention which differs from the first, in particular in that the main cryogenic exchanger comprises four stages 61 ', 62', 63 'and 64 in cascade, and in that the MCO liquid fraction from the separator tank 11 is, in turn, pumped by a pump 50 and injected into an orifice 61E3 'of the hot side of the first stage 61' of the main cryogenic exchanger .
  • the first stage 61 of the main cryogenic exchanger used in the first preferred mode is divided into two stages: a first stage 61 'and a second stage 62'.
  • the first stage 61 'of the cryogenic exchanger used in this second preferred embodiment is located between ambient temperature and a temperature T1 typically between 0 and 10 ° C.
  • the second stage 62 ' is located between a temperature Tl' and a temperature T0 between Tl 'and -60 ° C.
  • the third stage 63 ' corresponding to the second stage 62 of the main cryogenic exchanger of the first preferred embodiment, is located between the temperature T0 and a temperature T1 between-140 ° C and -100 ° C.
  • the fourth stage 64 ' corresponding to the third stage 63 of the main cryogenic exchanger of the first preferred embodiment, is located between the temperature T1 and T2 between -165 ° C and -140 ° C.
  • the injection of the liquid fraction MCO directly at the level of the first stage 61 'of the main cryogenic exchanger makes it possible to improve the energy performance of the hottest section of the line. exchange.
  • this second variant of embodiment consists in making an additional fractionation of the heavy section of the refrigerant mixture by recovering at the outlet of the first aftercooler 31, the liquid fraction MCO of the refrigerant mixture which has condensed at temperature. room.
  • the gas to be liquefied passes through the third stage 63 'of the main cryogenic exchanger and then through the fourth stage 64' of the exchanger.
  • a liquid 2 corresponding to the liquefied gas, is recovered in a tank 2 at a temperature below -160 ° C. and at atmospheric pressure.
  • the refrigerant mixture treatment phase of this second embodiment is the same as that of the first mode of cooling. production.
  • the liquid fraction MCO is injected into the first stage 61 'of the cryogenic exchanger and crosses it at the co-current of the gas to be liquefied by entering through an orifice 61 ⁇ 3' and exiting through an orifice 61'S3 '. Then, the liquid fraction MCO is expanded by a pressure reducer of 1 before being connected, at the intersection A ', to a part of the cooling mixture. exiting through a 62 ⁇ 3 'orifice of the second stage 62' and circulating in countercurrent of the gas to be liquefied. After this connection, the entire refrigerant mixture is reconstituted.
  • the heavy fraction FLO of the refrigerant mixture after passing through the second aftercooler 32, for its part, circulates in the first stage 61 'of the main cryogenic exchanger at the co-current of the gas to be liquefied by entering through an orifice 61E'2 before exiting through an orifice 61S'2. Then, this heavy fraction FLO is injected into the second stage 62 'entering through a 62 ⁇ 2' orifice. The heavy fraction FLO passes through this second stage 62 'always co-current of the gas to be liquefied and out through an orifice 62' S2 'before being relaxed by a second expander of 2.
  • the heavy fraction FLO is connected to at least a part of the refrigerant mixture circulating against the current of the gas to be liquefied and exiting through a 63 ⁇ 3 orifice of the third stage 63' of the main cryogenic exchanger.
  • the light fraction FLE of the refrigerant mixture leaving the third aftercooler 33 is, for its part, introduced into the first stage 61 'of the main cryogenic exchanger via an orifice 61 ⁇ . Then, this light fraction FLE passes through the first stage 61 'co-current of the gas to be liquefied and out through an orifice 61S1' before being injected into the second stage 62 'through a hole 62 ⁇ . This light fraction FLE circulates in this second stage 62 ', always at the co-current of the gas to be liquefied without exchanging heat energy with the latter, and exits through an orifice 62'S'l. Then, this light fraction FLE passes into an annex separator tank 14 which separates the stream of light fraction FLE into two distinct streams: a first stream of the lightest fraction FLE1 and a second stream of the largest fraction FLE2.
  • the first lightest fraction flow FLE1 passes into the third stage 63 'of the main cryogenic exchanger entering through a 63'El orifice and exiting through a 63'S1 orifice.
  • the second most fractional flow Heavy FLE2 passes into the third stage 63 'entering through a 63 ⁇ 2 orifice and out through a 63'S2 orifice.
  • These two flows FLE1 and FLE2 pass through the third stage 63 'co-current of the gas to be liquefied.
  • the heavier fraction flow FLE2 is expanded by a third expander of 3 and then reinjected into the third stage 63 'entering through an orifice 63'S3 and then exiting through a 63 ⁇ 3 orifice while circulating in this third stage against the current of the gas to be liquefied to exchange heat energy with the latter.
  • This flow is then connected, at the intersection B ', to the flows of heavy fraction FLO leaving the second expander of 2.
  • the first flow of the lightest fraction FLE1 leaving the third stage 63 'through an orifice 63'S1 passes through a fourth stage 64' cocurrent of the gas to be liquefied by entering through a hole 64'El, and out through a hole 64'S1.
  • the first lightest fraction flow FLE1 is expanded in a fourth expander of 4, and then re-injected into an orifice 64'S2 of this fourth stage 64' to circulate in this fourth stage 64 against the current of the gas to be liquefied and thus transmit heat energy thereto.
  • this first lightest fraction flow FLE1 exits this fourth stage 64 'via a 64 ⁇ 2 orifice before being connected, at the intersection C, to the heaviest fraction flow FLE2 coming out of the third expander. 3.
  • this intersection C the light fraction FLE of the refrigerant mixture is reconstituted.
  • the reconstituted FLE light fraction of the refrigerant mixture passes through the third stage 63 'counter-current of the gas to be liquefied by entering through a 63'S3 orifice and exiting through a 63 ⁇ 3 orifice.
  • the reconstituted FLE light fraction is connected, at the intersection B ', to the heavy fraction FLO of the refrigerant mixture leaving the second expander of 2.
  • the light FLE and heavy FLO fractions of the refrigerant mixture are connected. All light fractions FLE and heavy FLO then crosses the second stage 62 'against the current of the gas to be liquefied by entering through a 62'S3' orifice and out through a 62 ⁇ 3 'orifice before being connected, at the intersection A' to the MCO liquid fraction leaving the first I expander. In this way, as mentioned before, the entire refrigerant mixture is reconstituted.
  • this reconstituted refrigerant mixture passes through the first stage 61 'in countercurrent of the gas to be liquefied by entering through an orifice 61'S4' and exiting through an orifice 61 ⁇ 4 'before being treated in the secondary circuit closed by the phase treatment.
  • thermodynamic model (or equation of state) is: SRK LK-1 (soave Redlich-Kwong Lee Kesler

Abstract

The present invention relates, in general, to a method for liquefying a gas including mostly methane, in which method said gas to be liquefied circulates in a primary circuit from a source (1) to a tank (2) for liquefied gas, and in which a refrigerant mixture circulates in a closed secondary circuit, said method using, in particular, a main cryogenic exchanger, three compressors (21; 22; 23) and three aftercoolers (31; 32; 33), a distillation column (12) and a reboiler (13). The method according to the present invention is characterised in that the heat energy provided to the reboiler (13) comes directly from the overheating caused by the compression of the second compressor (22), said heat energy being carried to the reboiler (13) by means of an intermediate loop (40) connecting two heat exchangers (40a; 40b), the first heat exchanger (40a) recovering the heat energy released by the compression carried out in said second compressor (22), which heat energy is retransmitted via the intermediate loop (40) to the second heat exchanger (40b) in order to transmit same to the reboiler (13). The present invention also relates to a liquefaction facility implementing the method of the invention.

Description

PROCEDE DE LIQUEFACTION DU GAZ NATUREL A L'AIDE D'UN CYCLE A MELANGE REFRIGERANT AVEC COLONNE A DISTILLER DU REFRIGERANT MUNIE D'UN REBOUILLEUR Domaine technique  PROCESS FOR THE LIQUEFACTION OF NATURAL GAS USING A REFRIGERANT MIXTURE CYCLE WITH DISTILLER COLUMN WITH REFRIGERANT WITH REBOUILLEUR Technical Field
La présente invention est relative à un procédé de liquéfaction de gaz. Plus particulièrement encore, la présente invention est relative à la liquéfaction de gaz comprenant majoritairement de l'azote et des hydrocarbures en Ci à Cs à savoir du méthane, de l'éthane, du propane, du butane et du pentane. The present invention relates to a gas liquefaction process. Even more particularly, the present invention relates to the liquefaction of gas comprising predominantly nitrogen and C 1 -C 5 hydrocarbons, namely methane, ethane, propane, butane and pentane.
La présente invention concerne aussi une installation de liquéfaction de gaz.  The present invention also relates to a gas liquefaction plant.
Le gaz à base de méthane est soit un sous-produit des champs pétroliers, soit un produit majeur dans le cas des champs de gaz, où il est alors en combinaison avec d'autres gaz, principalement des hydrocarbures en Ci à Cs, du CO2 et de l'azote.  The methane-based gas is either a by-product of the oil fields or a major product in the case of gas fields, where it is then in combination with other gases, mainly C 1 to C 6 hydrocarbons, CO2 and nitrogen.
Lorsque les quantités de gaz sont importantes, on cherche à le transporter. La méthode préférée est de le transporter à l'état de liquide cryogénique (-160°C) stocké sensiblement à la pression atmosphérique.  When the quantities of gas are important, we try to transport it. The preferred method is to transport it as a cryogenic liquid (-160 ° C) stored at substantially atmospheric pressure.
La liquéfaction du gaz en vue de son transport nécessite des installations considérables pour atteindre des capacités de plusieurs millions de tonnes par an.  The liquefaction of gas for transport requires considerable facilities to reach capacities of several million tons per year.
Les procédés de liquéfaction de gaz nécessitent des quantités d'énergie mécanique considérables. De multiples cycles thermodynamiques ont été développés en vue d'optimiser le rendement énergétique global. Il existe notamment deux types principaux de cycles. Un premier type basé sur la compression et la détente de fluide réfrigérant, avec changement de phase, et un second type basé sur la compression et la détente de gaz réfrigérant sans changement de phase. On appelle « fluide réfrigérant », « gaz réfrigérant » ou « mélange réfrigérant », un gaz ou mélange de gaz, circulant en circuit fermé et subissant des phases de compression, le cas échéant de liquéfaction, puis des échanges de chaleur avec le milieu extérieur, puis ensuite des phases de détente, le cas échéant d'évaporation, et enfin des échanges de chaleur avec le gaz à liquéfier comprenant du méthane, qui peu à peu se refroidit pour atteindre sa température de liquéfaction à pression atmosphérique, c'est à dire environ -160°C dans le cas du gaz naturel liquéfié, ou GNL. Gas liquefaction processes require considerable amounts of mechanical energy. Multiple thermodynamic cycles have been developed to optimize overall energy efficiency. There are two main types of cycles. A first type based on the compression and expansion of coolant, with phase change, and a second type based on the compression and expansion of refrigerant gas without phase change. The term "refrigerant fluid", "refrigerant gas" or "refrigerant mixture" means a gas or a mixture of gases circulating in a closed circuit and undergoing compression phases, where appropriate liquefaction, and then exchanges of heat with the external medium. then, then relaxation phases, if necessary evaporation, and finally heat exchanges with the gas to be liquefied comprising methane, which gradually cools to reach its liquefaction temperature at atmospheric pressure, this is at say about -160 ° C in the case of liquefied natural gas, or LNG.
Ce premier type de cycle, avec changement de phase, est en général utilisé sur des installations de grande capacité de production nécessitant une plus grande quantité d'équipements. De plus, les fluides réfrigérants, en général sous forme de mélanges, sont constitués de pentane, de butane, de propane, d'éthane et de méthane, ces gaz étant dangereux car ils risquent, en cas de fuite, de provoquer des explosions ou des incendies considérables. Par contre, malgré la complexité des équipements requis, ces procédés de liquéfaction avec changement de phase demeurent les plus efficaces.  This first type of cycle, with phase change, is generally used on installations with a large production capacity requiring a larger quantity of equipment. In addition, the cooling fluids, generally in the form of mixtures, consist of pentane, butane, propane, ethane and methane, these gases being dangerous because they risk, in case of leakage, to cause explosions or considerable fires. On the other hand, despite the complexity of the equipment required, these phase change liquefaction processes remain the most efficient.
Il est à noter que certains procédés à changement de phase actuellement mis en œuvre comprennent une colonne à distiller pour séparer les fractions lourdes et légères du mélange réfrigérant à un stade du procédé bien défini au préalable. Il est à noter en outre que pour optimiser l'utilisation d'une telle colonne à distiller, celle-ci doit consommer une quantité d'énergie significative, ce qui altère la rentabilité d'un tel procédé de liquéfaction.  It should be noted that certain phase change processes currently used comprise a distillation column for separating the heavy and light fractions of the refrigerant mixture at a well-defined stage of the process. It should also be noted that to optimize the use of such a distillation column, it must consume a significant amount of energy, which alters the profitability of such a liquefaction process.
En effet, les colonnes à distiller utilisées de nos jours, et appliquées pour liquéfier du gaz, mettent en œuvre une distillation par reflux pour séparer les fractions lourdes et légères du mélange réfrigérant. Un tel reflux, par rapport aux colonnes qui n'en utilisent pas, ou autrement dit par rapport à un simple ballon séparateur, permet de mieux séparer les fractions légères et lourdes du mélange réfrigérant, c'est-à-dire de mieux adapter la composition des différentes fractions. Par ailleurs, cette meilleure adaptation de la composition des fractions de mélange réfrigérant permet de moins consommer d'énergie. Indeed, the distillation columns used today, and applied to liquefy gas, implement a reflux distillation to separate the heavy and light fractions of the refrigerant mixture. Such reflux, compared to the columns which do not use it, or in other words compared to a simple separating flask, makes it possible to better separate the light and heavy fractions from the cooling mixture, that is to say to better adapt the composition of the different fractions. Moreover, this better adaptation of the composition of the refrigerant mixture fractions makes it possible to consume less energy.
Toutefois, ce gain de consommation est légèrement réduit par le fait que l'utilisation d'une colonne à distiller utilisant un reflux induit un refroidissement supplémentaire au niveau du cycle de reflux de la colonne à distiller car une partie du reflux refroidi nécessaire à la séparation a tendance à piéger une partie de ce froid. Cependant, cette consommation d'énergie restant significative (typiquement 2 à 5% de la consommation d'énergie globale de l'installation de liquéfaction), il est opportun de mettre en œuvre un procédé innovant afin de diminuer encore cette consommation énergétique.  However, this consumption gain is slightly reduced by the fact that the use of a distillation column using reflux induces additional cooling in the reflux cycle of the distillation column because part of the cooled reflux required for separation tends to trap some of this cold. However, this energy consumption remaining significant (typically 2 to 5% of the overall energy consumption of the liquefaction plant), it is appropriate to implement an innovative process to further reduce this energy consumption.
Par ailleurs, d'autres problèmes généralement relevés par les procédés de liquéfaction actuellement utilisés sont liés à leurs coûts, leurs dépenses d'exploitation (OPEX) ainsi que leurs dépenses d'investissement de capital (CAPEX). Aujourd'hui, il existe donc un besoin tout particulier d'améliorer de tels procédés de liquéfaction afin de minimiser ces coûts.  In addition, other problems generally identified by the liquefaction processes currently used are related to their costs, their operating expenses (OPEX) as well as their capital investment expenditures (CAPEX). Today, there is therefore a particular need to improve such liquefaction processes to minimize these costs.
Description Description
La présente invention a donc pour but de fournir un procédé amélioré de liquéfaction de gaz avec changement de phase, permettant notamment de résoudre au moins les problèmes ci-dessus mentionnés, et particulièrement de diminuer l'impact énergétique d'un tel procédé. The object of the present invention is therefore to provide an improved phase-change gas liquefaction process, which makes it possible in particular to solve at least the problems mentioned above, and particularly to reduce the energy impact of such a process.
Pour ce faire, la présente invention a pour objet un procédé de liquéfaction d'un gaz comprenant majoritairement du méthane, dans lequel ledit gaz à liquéfier circule dans un circuit primaire d'une source vers un réservoir pour gaz liquéfié, et dans lequel un mélange réfrigérant circule dans un circuit secondaire fermé, ledit procédé comprenant les phases suivantes : To do this, the subject of the present invention is a process for liquefying a gas comprising predominantly methane, wherein said gas to be liquefied flows in a primary circuit from a source to a tank for liquefied gas, and in which a mixture refrigerant circulates in a closed secondary circuit, said method comprising the following phases:
une phase de refroidissement/ liquéfaction dans laquelle ledit gaz à liquéfier est refroidi et liquéfié suite à sa circulation dans un échangeur cryogénique principal comprenant au moins trois étages, disposés en cascade, dans lesquels ledit gaz est en contact direct avec un mélange réfrigérant dont la composition évolue selon l'étage de refroidissement: a cooling / liquefaction phase in which said gas to be liquefied is cooled and liquefied following its circulation in a main cryogenic exchanger comprising at least three stages, arranged in cascade, in which said gas is in direct contact with a refrigerant mixture whose composition evolves according to the cooling stage:
• le premier refroidissement étant réalisé dans un premier étage entre la température ambiante et une température T0 égale ou supérieure à - 60°C, The first cooling being carried out in a first stage between the ambient temperature and a temperature T 0 equal to or greater than -60 ° C.,
• le second refroidissement étant réalisé dans un deuxième étage entre T0 et une température Tl comprise entre -140°C et -100°C, et The second cooling being carried out in a second stage between T0 and a temperature T1 between -140 ° C. and -100 ° C., and
• le troisième refroidissement étant réalisé dans un troisième étage entre la température Tl et une température T2 comprise entre - 165°C et -140°C, The third cooling being carried out in a third stage between the temperature T1 and a temperature T2 of between -165 ° C. and -140 ° C.,
à l'issue de la phase de refroidissement, une phase de traitement est réalisée pour à la fois partiellement recondenser le mélange réfrigérant et le séparer en différentes fractions afin d'adapter sa composition aux besoins de refroidissement de chaque étage de l'échangeur cryogénique principal, ladite phase de traitement comprenant des étapes consistant à :  at the end of the cooling phase, a treatment phase is performed to both partly recondense the cooling mixture and separate it into different fractions in order to adapt its composition to the cooling requirements of each stage of the main cryogenic exchanger said processing step comprising steps of:
• compresser et refroidir ledit mélange réfrigérant sortant du premier étage dudit échangeur cryogénique principal par passages successifs dans au moins un premier compresseur, puis un premier post-refroidisseur qui condense partiellement le mélange, puis dans un ballon séparateur dans lequel la fraction liquide du mélange réfrigérant est séparée de sa fraction vapeur ;  Compressing and cooling said refrigerant mixture leaving the first stage of said main cryogenic exchanger by successive passages in at least one first compressor, then a first aftercooler which partially condenses the mixture, then in a separator tank in which the liquid fraction of the cooling mixture is separated from its vapor fraction;
• la fraction liquide du mélange réfrigérant est pompée par une pompe, tandis que la fraction vapeur du mélange réfrigérant est comprimée par un deuxième compresseur, puis refroidie dans un premier échangeur thermique, les flux de fraction liquide et de fraction vapeur étant à la même pression ; • the liquid fraction of the refrigerant mixture is pumped by a pump, while the vapor fraction of the refrigerant mixture is compressed by a second compressor, then cooled in a first heat exchanger, the liquid fraction and vapor fraction flows being at the same pressure;
• séparer au moins en partie le mélange réfrigérant comprimé, sortant du deuxième compresseur puis du premier échangeur thermique, dans une colonne à distiller munie d'un rebouilleur, en une fraction légère et une fraction lourde ;  • at least partly separate the compressed refrigerant mixture, leaving the second compressor and the first heat exchanger, in a distillation column with a reboiler, a light fraction and a heavy fraction;
• alimenter en énergie calorifique ledit rebouilleur pour générer un flux de vapeur et extraire au moins une partie des composés volatiles initialement compris dans le flux liquide de bas de colonne ;  Supplying said reboiler with heat energy to generate a stream of vapor and extract at least a portion of the volatile compounds initially included in the bottom stream;
• refroidir ou post-refroidir, avec le milieu ambiant, lesdites fractions lourdes sortant du rebouilleur en les acheminant à travers un deuxième post-refroidisseur avant de les introduire dans le premier étage de l'échangeur cryogénique principal ;  • cooling or postcooling, with the environment, said heavy fractions leaving the reboiler by routing them through a second aftercooler before introducing them into the first stage of the main cryogenic exchanger;
• injecter lesdites fractions légères issues de ladite colonne de distillation dans le premier étage de l'échangeur cryogénique principal en les acheminant au préalable dans un troisième compresseur et un troisième post-refroidisseur.  Injecting said light fractions coming from said distillation column into the first stage of the main cryogenic exchanger by forwarding them in advance to a third compressor and a third aftercooler.
Selon la présente invention, ledit procédé étant caractérisé en ce que l'énergie calorifique apportée au rebouilleur provient directement de la surchauffe provoquée par la compression dudit mélange réfrigérant dans ledit deuxième compresseur, cette énergie calorifique étant acheminée au rebouilleur à l'aide d'une boucle intermédiaire reliant deux échangeurs thermiques, le premier échangeur thermique récupérant l'énergie calorifique dégagée par la compression réalisée dans ledit compresseur, qui est retransmise par la boucle intermédiaire au deuxième échangeur thermique pour la transmettre au rebouilleur. Par fraction légère, on entend au sens de la présente invention une fraction comprenant des vapeurs riches en diazote (N2), en méthane (Ci) et éthane (C2). According to the present invention, said method being characterized in that the heat energy supplied to the reboiler comes directly from the overheating caused by the compression of said refrigerant mixture in said second compressor, this heat energy being fed to the reboiler using a intermediate loop connecting two heat exchangers, the first heat exchanger recovering the heat energy released by the compression performed in said compressor, which is retransmitted by the intermediate loop to the second heat exchanger to transmit it to the reboiler. For the purposes of the present invention, the term "light fraction" means a fraction comprising vapors rich in dinitrogen (N 2 ), methane (Ci) and ethane (C 2 ).
Par fraction lourde, on entend au sens de la présente invention une fraction comprenant des vapeurs riches en propane (C3), butane (Q) et pentane (Cs). By heavy fraction is meant in the sense of the present invention a fraction comprising propane (C 3 ), butane (Q) and pentane (Cs) -rich vapors.
Il est à noter que la phase de traitement intervient après que le mélange réfrigérant a effectivement refroidi l'ensemble des étages, c'est-à- dire en sortie dudit échangeur cryogénique principal (du côté température chaude ou proche de la température ambiante).  It should be noted that the treatment phase occurs after the cooling mixture has effectively cooled all the stages, that is to say at the outlet of said main cryogenic exchanger (on the hot temperature side or near the ambient temperature).
Il est à noter que, selon l'invention, le mélange réfrigérant circule à travers tous les étages de l'échangeur cryogénique principal à co-courant du gaz à liquéfier avant de circuler à contre-courant du gaz à liquéfier en remontant tous les étages précédemment traversés. Lorsque le flux de mélange réfrigérant passe à travers tous les étages de refroidissement à co- courant du gaz à liquéfier, il n'influence pas la température ainsi que l'état de ce dernier. En effet, le mélange réfrigérant descend tous les étages de l'échangeur cryogénique principal pour se refroidir lui-même et atteindre une température de l'ordre de -160 °C. Par contre, lorsque le mélange réfrigérant passe à travers tous ces étages à contre-courant du gaz à liquéfier le long d'une ligne d'échange, il refroidit le gaz à liquéfier en échangeant directement avec lui de l'énergie calorifique pour refroidir le gaz à liquéfier.  It should be noted that, according to the invention, the refrigerant mixture circulates through all stages of the main cryogenic exchanger co-current of the gas to be liquefied before moving against the current of the gas to be liquefied by going up all the stages previously crossed. When the flow of refrigerant mixture passes through all cooling stages co-current of the gas to be liquefied, it does not influence the temperature and the state of the latter. Indeed, the refrigerant mixture descends all the stages of the main cryogenic exchanger to cool itself and reach a temperature of the order of -160 ° C. On the other hand, when the refrigerant mixture passes through all these stages countercurrently with the gas to be liquefied along an exchange line, it cools the gas to be liquefied by exchanging directly with it heat energy to cool the gas. gas to be liquefied.
Il est à noter en outre que, selon l'invention, le gaz à liquéfier n'est véritablement en contact direct qu'avec un seul flux du mélange réfrigérant, celui qui est à contre-courant du sens de circulation du gaz à liquéfier. Le mélange réfrigérant, avant de circuler à contre-courant du gaz à liquéfier pour refroidir et liquéfier ce dernier, circule à co-courant du gaz à liquéfier.  It should be noted moreover that, according to the invention, the gas to be liquefied is truly in direct contact only with a single flow of the refrigerant mixture, that which is countercurrent to the flow direction of the gas to be liquefied. The refrigerant mixture, before circulating against the current of the gas to be liquefied to cool and liquefy the latter, circulates in co-current of the gas to be liquefied.
Par ligne d'échange, on entend au sens de la présente invention la ligne selon laquelle le gaz à liquéfier et le mélange de réfrigérant échangent de l'énergie calorifique pour refroidir le gaz à liquéfier. Cette ligne d'échange est située dans l'échangeur cryogénique principal tout au long de ses étages de refroidissement. For the purposes of the present invention, the term "exchange line" means the line according to which the gas to be liquefied and the mixture of refrigerant interchange with each other. the heat energy to cool the gas to be liquefied. This exchange line is located in the main cryogenic exchanger throughout its cooling stages.
Il est à noter également que la colonne à distiller utilisée dans le cadre de l'invention est munie d'un rebouilleur en pied de colonne, de sorte qu'en sortie du rebouilleur, le flux de fractions lourdes partiellement vaporisées est réinjecté dans la colonne à distiller.  It should also be noted that the distillation column used in the context of the invention is provided with a reboiler at the bottom of the column, so that at the outlet of the reboiler, the flow of partially vaporized heavy fractions is reinjected into the column. to distill.
Dans le procédé selon l'invention, l'utilisation d'une colonne à distiller permet de bien séparer les fractions légères et lourdes du mélange réfrigérant cependant sans faire appel à un reflux, mais plutôt à un rebouilleur alimenté par une énergie en provenance d'un module intégré au procédé de liquéfaction selon l'invention. Selon l'invention, le module intégré est le deuxième compresseur. Une telle alimentation a pour but de diminuer la consommation d'énergie du procédé de liquéfaction dans la mesure où l'énergie dégagée par ce compresseur alimente le rebouilleur pour optimiser la séparation des fractions lourdes et légères du mélange réfrigérant.  In the process according to the invention, the use of a distillation column makes it possible to separate the light and heavy fractions of the cooling mixture, however, without resorting to reflux, but rather to a reboiler fed by an energy coming from a module integrated in the liquefaction process according to the invention. According to the invention, the integrated module is the second compressor. Such a power supply is intended to reduce the energy consumption of the liquefaction process insofar as the energy released by this compressor feeds the reboiler to optimize the separation of the heavy and light fractions of the refrigerant mixture.
De cette façon, à l'aide d'un tel recyclage énergétique, on réduit l'impact sur la consommation d'énergie de la colonne à distiller de 1 à 5% par rapport aux procédés déjà existants et mettant particulièrement en œuvre un reflux. Ce gain énergétique est lié au fait que le procédé selon l'invention récupère de l'énergie déjà produite et existante pour séparer les fractions du mélange réfrigérant dans la colonne à distiller au lieu d'utiliser une énergie extérieure au procédé de liquéfaction.  In this way, with the aid of such an energy recycling, the impact on the energy consumption of the distillation column is reduced by 1 to 5% compared to the already existing processes and putting particularly into effect a reflux. This energy gain is related to the fact that the process according to the invention recovers energy already produced and existing to separate the fractions of the refrigerant mixture in the distillation column instead of using an energy external to the liquefaction process.
Il est à noter également que la quantité de chaleur récupérable au niveau du deuxième compresseur, et plus particulièrement au niveau du deuxième post-refroidisseur, est approximativement égale 85°C. Il est à noter également que la température nécessaire au rebouilleur pour correctement fonctionner doit être comprise entre 50°C et 70°C, et de préférence de l'ordre de 65°C, sachant que le fluide qui subit ce type de chauffage est à une pression comprise typiquement entre 13 et 18 bar. En conséquence, le niveau de température produit par ce compresseur suffit au rebouilleur pour que celui-ci fonctionne correctement. It should also be noted that the amount of recoverable heat at the second compressor, and more particularly at the second aftercooler, is approximately equal to 85 ° C. It should also be noted that the temperature necessary for the reboiler to function properly must be between 50 ° C. and 70 ° C., and preferably of the order of 65 ° C., given that the fluid which undergoes this type of heating is at a pressure typically between 13 and 18 bar. As a result, the temperature level produced by this compressor is sufficient for the reboiler to operate properly.
Par ailleurs, il n'y a pas de problème pour récupérer la quantité de chaleur nécessaire au bon fonctionnement du rebouilleur au niveau du deuxième compresseur. En effet, la puissance calorifique disponible issue de la surchauffe par compression est typiquement égale à 5 à 7 fois celle nécessaire au rebouilleur.  Moreover, there is no problem to recover the amount of heat necessary for the smooth operation of the reboiler at the second compressor. Indeed, the available heat output from compression overheating is typically equal to 5 to 7 times that required reboiler.
Dans une première variante de réalisation, ladite fraction liquide du mélange réfrigérant issue dudit ballon séparateur est réinjectée directement à la sortie dudit premier échangeur thermique.  In a first variant embodiment, said liquid fraction of the refrigerant mixture issuing from said separator flask is reinjected directly at the outlet of said first heat exchanger.
Dans une deuxième variante de réalisation, ladite fraction liquide du mélange réfrigérant issue dudit ballon séparateur est réinjectée directement dans le premier étage de l'échangeur cryogénique principal.  In a second variant embodiment, said liquid fraction of the refrigerant mixture issuing from said separator flask is reinjected directly into the first stage of the main cryogenic exchanger.
Cette deuxième variante de réalisation permet d'améliorer la performance énergétique de la section la plus chaude de la ligne d'échange, au prix cependant d'une légère complexification. En effet, plus particulièrement, cette deuxième variante de réalisation consiste à faire un fractionnement supplémentaire de la section lourde du mélange réfrigérant en récupérant dès la sortie du premier post-refroidisseur, la fraction liquide du mélange réfrigérant qui s'est condensé à température ambiante.  This second embodiment makes it possible to improve the energy performance of the hottest section of the exchange line, at the cost however of a slight complexity. In fact, more particularly, this second embodiment consists in further fractionating the heavy section of the refrigerant mixture by recovering the liquid fraction of the refrigerant mixture which has condensed at room temperature as soon as it leaves the first aftercooler.
Cependant, dans cette deuxième variante, il est nécessaire de fractionner également le premier refroidissement, ou premier étage, de l'échangeur cryogénique principal. Plus précisément, dans cette configuration, il est nécessaire d'ajouter un étage supplémentaire compris entre la température ambiante et une température Tl' typiquement comprise 0 et 10°C.  However, in this second variant, it is necessary to also split the first cooling, or first stage, of the main cryogenic exchanger. More precisely, in this configuration, it is necessary to add an additional stage comprised between the ambient temperature and a temperature T1 typically between 0 and 10 ° C.
Par section la plus chaude de la ligne d'échange, on entend au sens de la présente invention le premier étage de l'échangeur cryogénique principal. Avantageusement, le gaz à liquéfier contient du méthane en une proportion molaire d'au moins 80%. By the hottest section of the exchange line is meant in the sense of the present invention the first stage of the main cryogenic exchanger. Advantageously, the gas to be liquefied contains methane in a molar proportion of at least 80%.
Avantageusement, le mélange réfrigérant est de l'air liquide ou un mélange comprenant essentiellement de l'azote et des alcanes ou hydrocarbures en Ci - Cs avec une composition typique suivante (les compositions étant en fraction molaire) :  Advantageously, the refrigerant mixture is liquid air or a mixture comprising essentially nitrogen and alkanes or C 1 -C 5 hydrocarbons with a following typical composition (the compositions being in molar fraction):
- N2 : 5%, - N 2 : 5%,
- Ci : 30%,  - Ci: 30%,
- C2 : 40%, - C 2 : 40%,
- C3 : 5%, - C 3 : 5%,
- i et n C.4 : 5%, et  - i and n C.4: 5%, and
- i et n Cs : 15%.  i and n Cs: 15%.
Il est à noter que ces fractions molaires peuvent varier typiquement jusqu'à 50% selon la composition et la pression du gaz à liquéfier.  It should be noted that these mole fractions can vary typically up to 50% depending on the composition and the pressure of the gas to be liquefied.
La présente invention a également pour objet une installation de liquéfaction d'un gaz comprenant un circuit primaire relié à une source de gaz et à un réservoir pour gaz liquéfié, l'installation comprenant :  The present invention also relates to a gas liquefaction plant comprising a primary circuit connected to a gas source and to a tank for liquefied gas, the installation comprising:
au moins un échangeur cryogénique principal comprenant au moins trois étages disposés en cascade pour refroidir et liquéfier le gaz circulant dans le circuit primaire,  at least one main cryogenic exchanger comprising at least three stages arranged in cascade for cooling and liquefying the gas flowing in the primary circuit,
un circuit secondaire fermé dans lequel circule un mélange réfrigérant, ledit circuit secondaire comprenant au moins :  a closed secondary circuit in which a cooling mixture circulates, said secondary circuit comprising at least:
• un premier compresseur et un premier post-refroidisseur en amont d'un ballon séparateur,  A first compressor and a first aftercooler upstream of a separator tank,
· un deuxième compresseur se situant entre ledit ballon séparateur et une colonne de distillation,  A second compressor located between said separator tank and a distillation column,
• un rebouilleur intégré à ladite colonne de distillation, et  A reboiler integrated in said distillation column, and
• un troisième compresseur ainsi qu'un troisième post-refroidisseur en tête de ladite colonne de distillation. Selon la présente invention, l'installation comprend en outre une boucle intermédiaire reliant deux échangeurs thermiques, le premier échangeur thermique récupérant l'énergie calorifique dégagée par le deuxième compresseur, qui est retransmise par la boucle intermédiaire au deuxième échangeur thermique pour la transmettre au rebouilleur. A third compressor and a third aftercooler at the top of said distillation column. According to the present invention, the installation further comprises an intermediate loop connecting two heat exchangers, the first heat exchanger recovering the heat energy released by the second compressor, which is retransmitted by the intermediate loop to the second heat exchanger to transmit it to the reboiler .
Brève description des figures Brief description of the figures
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumière de la description détaillée de différents modes de réalisation qui va suivre, en référence aux figures suivantes : Other features and advantages of the present invention will become apparent in light of the detailed description of various embodiments which follows, with reference to the following figures:
la figure 1 représente un premier mode de réalisation de l'installation selon l'invention, dans lequel la fraction liquide du mélange réfrigérant issue du ballon séparateur est réinjectée directement à la sortie du deuxième compresseur ; et  FIG. 1 represents a first embodiment of the installation according to the invention, in which the liquid fraction of the refrigerant mixture issuing from the separator tank is reinjected directly at the outlet of the second compressor; and
la figure 2 représente un deuxième mode de réalisation de l'installation selon l'invention, dans lequel la fraction liquide du mélange réfrigérant issue du ballon séparateur est réinjectée dans le premier étage de l'échangeur cryogénique principal.  FIG. 2 represents a second embodiment of the installation according to the invention, in which the liquid fraction of the refrigerant mixture coming from the separator tank is reinjected into the first stage of the main cryogenic exchanger.
Mode de réalisation préférentiel Preferred embodiment
Les modes de réalisation présentés ci-après sont donnés à titre indicatif et non-limitatif. The embodiments presented below are given for information only and are not limiting.
La figure 1 décrit une installation de liquéfaction d'un gaz selon l'invention qui permet de liquéfier du gaz comprenant majoritairement de l'azote et des hydrocarbures tel que le méthane, l'éthane, le propane, le butane et le pentane. Dans l'installation selon l'invention, le gaz est liquéfié suite à des échanges thermiques directs le long d'une ligne d'échange qui traverse un échangeur cryogénique principal. Dans ce premier mode de réalisation préférentiel, l'échangeur cryogénique principal comprend trois étages 61, 62, et 63 disposés en cascade. FIG. 1 describes a liquefaction plant for a gas according to the invention which makes it possible to liquefy gas comprising predominantly nitrogen and hydrocarbons such as methane, ethane, propane, butane and pentane. In the installation according to the invention, the gas is liquefied as a result of direct heat exchanges along an exchange line which crosses a main cryogenic exchanger. In this first preferred embodiment, the main cryogenic exchanger comprises three stages 61, 62, and 63 disposed in cascade.
Le premier étage 61 de cet échangeur cryogénique principal est situé entre la température ambiante et une température T0 supérieure ou égale à - 60°C. Le deuxième étage 62 est situé entre la température T0 et une température Tl comprise entre -140°C et -100°C. Et, le troisième étage 63 est situé entre la température Tl et T2 comprise entre -165°C et -140°C.  The first stage 61 of this main cryogenic exchanger is located between the ambient temperature and a temperature T0 greater than or equal to -60 ° C. The second stage 62 is located between the temperature T0 and a temperature T1 between -140 ° C and -100 ° C. And, the third stage 63 is located between the temperature T1 and T2 between -165 ° C and -140 ° C.
Après que le gaz à liquéfier a circulé à travers le premier étage 61 de l'échangeur, il passe à travers un système de séparation SR, typiquement une colonne à distillation partielle, permettant d'ajuster la composition du gaz à liquéfier pour qu'il soit conforme au gaz naturel en prélevant le surplus éventuel d'hydrocarbures lourds (C2,C3,C4,C5) afin d'ajuster son pouvoir calorifique et son indice de Wobbe. Ainsi, le gaz sortant de ce système de séparation SR est un gaz conforme aux spécifications du gaz naturel. Après donc le passage dans ce système de séparation SR, le gaz à liquéfier passe à travers le deuxième étage 62 de l'échangeur cryogénique principal, puis à travers le troisième étage 63 de l'échangeur. En sortie du troisième étage 63, on récupère dans un réservoir 2 alors un liquide, correspondant au gaz liquéfié, à une température inférieure à -160°C et à la pression atmosphérique. After the gas to be liquefied has circulated through the first stage 61 of the exchanger, it passes through a separation system SR, typically a partial distillation column, to adjust the composition of the gas to be liquefied so that it is consistent with natural gas by taking any surplus heavy hydrocarbons (C 2 , C 3 , C 4 , C 5) in order to adjust its calorific value and its Wobbe index. Thus, the gas leaving this separation system SR is a gas in accordance with the specifications of the natural gas. After passing through this separation system SR, the gas to be liquefied passes through the second stage 62 of the main cryogenic exchanger and then through the third stage 63 of the exchanger. At the outlet of the third stage 63, a liquid 2, corresponding to the liquefied gas, is recovered in a tank 2 at a temperature below -160 ° C. and at atmospheric pressure.
A la sortie de chaque étage de l'échangeur cryogénique principal, le gaz à liquéfier est refroidi. Ce refroidissement est réalisé par échange thermique avec un mélange réfrigérant circulant dans chaque étage de l'échangeur principal à contre-courant du gaz à liquéfier. Il est à noter que la composition du mélange réfrigérant évolue selon l'étage de refroidissement de l'échangeur principal dans lequel il circule. Il est à noter que la concentration en composés volatiles N2, Ci et C2 du mélange réfrigérant augmente lorsque celui-ci traverse, à co-courant du gaz à liquéfier, les différents étages 61, 62 et 63 de l'échangeur cryogénique principal. At the outlet of each stage of the main cryogenic exchanger, the gas to be liquefied is cooled. This cooling is achieved by heat exchange with a refrigerant mixture circulating in each stage of the main exchanger countercurrent of the gas to be liquefied. It should be noted that the composition of the refrigerant mixture evolves according to the cooling stage of the main exchanger in which it circulates. It should be noted that the concentration of volatile compounds N 2 , Ci and C 2 of the cooling mixture increases when it crosses, co-current of the gas to be liquefied, the different stages 61, 62 and 63 of the main cryogenic exchanger.
Plus précisément, une partie au moins du mélange réfrigérant circule à contre-courant du gaz à liquéfier le long d'une ligne d'échange à travers laquelle l'énergie calorifique du mélange réfrigérant est directement transmise au gaz à liquéfier. En effet, l'énergie calorifique d'une partie au moins du mélange réfrigérant est d'abord transmise au gaz à liquéfier dans le troisième étage 63 de l'échangeur cryogénique principal, puis dans le deuxième étage 62, avant de circuler à travers le premier étage 61. Après être sorti du troisième étage 63 par un orifice 61E3, le mélange réfrigérant sort de l'échangeur cryogénique principal (du côté température chaude, ou proche de la température ambiante) pour être traité, par une phase de traitement, dans un circuit secondaire fermé pour à la fois se recondenser et se séparer en différentes fractions dans le but d'adapter sa composition aux besoins de refroidissement de chacun des étages précités.  More specifically, at least a portion of the refrigerant mixture circulates against the current of the gas to be liquefied along an exchange line through which the heat energy of the refrigerant mixture is directly transmitted to the gas to be liquefied. Indeed, the heat energy of at least a portion of the refrigerant mixture is first transmitted to the gas to be liquefied in the third stage 63 of the main cryogenic exchanger, then in the second stage 62, before traveling through the first stage 61. After having left the third stage 63 through an orifice 61E3, the cooling mixture leaves the main cryogenic exchanger (on the hot temperature side, or close to the ambient temperature) to be treated, by a treatment phase, in a closed secondary circuit for both recondenser and separate into different fractions in order to adapt its composition to the cooling needs of each of the aforementioned stages.
Les éléments qui vont suivre se réfèrent à la phase de traitement du mélange réfrigérant circulant dans un circuit secondaire fermé.  The following elements refer to the treatment phase of the refrigerant mixture circulating in a closed secondary circuit.
Après être sorti du côté température chaude de l'échangeur cryogénique principal par un orifice 61E3, le mélange réfrigérant traverse un premier compresseur 21, puis un premier post-refroidisseur 31. L'association de ce premier compresseur 21 et de ce premier pos-refroidisseur a pour effet de préparer le mélange réfrigérant à son passage ultérieur dans un ballon séparateur 11. En effet, ce premier compresseur 21 a pour effet de comprimer la vapeur contenue dans le mélange réfrigérant, et ainsi d'augmenter la pression et la température du mélange. Ce premier post-refroidisseur 31 a pour effet, quant à lui, de refroidir le mélange réfrigérant sortant du premier compresseur 21. Une telle compression suivie d'un tel refroidissement permet donc d'obtenir un mélange plus liquide que s'il sortait de l'échangeur cryogénique principal (du côté chaud), ce qui facilite la séparation ultérieure dans un ballon séparateur 11 du mélange réfrigérant en deux fractions : une fraction liquide MCO et une fraction vapeur VCO. After having left the hot temperature side of the main cryogenic exchanger via an orifice 61E3, the refrigerant mixture passes through a first compressor 21, then a first aftercooler 31. The combination of this first compressor 21 and this first pos-cooler has the effect of preparing the refrigerant mixture for its subsequent passage in a separator tank 11. In fact, this first compressor 21 has the effect of compressing the vapor contained in the refrigerant mixture, and thus increasing the pressure and the temperature of the mixture . This first aftercooler 31 has the effect of cooling the refrigerant mixture leaving the first compressor 21. Such compression followed by such cooling thus makes it possible to obtain a more liquid mixture than if it came out of the main heat exchanger (on the warm side), which facilitates subsequent separation in a separator flask 11 of the refrigerant mixture in two fractions: a liquid fraction MCO and a vapor fraction VCO.
Après avoir traversé le premier compresseur 21 et le premier post- refroidisseur 31, le mélange réfrigérant est introduit dans un ballon séparateur 11. Ce ballon séparateur 11 a pour effet de séparer en fraction liquide MCO et en fraction vapeur VCO le mélange réfrigérant. Typiquement, la fraction liquide MCO est riche en éléments lourds tels qu'en C3, C4 et C5, et la fraction vapeur VCO est riche en composés volatiles tels qu'en N2, Ci et C2. Ce ballon séparateur 11 est placé entre le premier post- refroidisseur 31 et un deuxième compresseur 22 pour bien séparer les deux différentes fractions, ou deux phases, du mélange réfrigérant à ce stade du dispositif de liquéfaction car, pour des raisons d'optimisation et de faisabilité, il est nécessaire que seule la fraction vapeur VCO (phase gazeuse), soit comprimée dans le deuxième compresseur 22. After passing through the first compressor 21 and the first aftercooler 31, the refrigerant mixture is introduced into a separator tank 11. This separator tank 11 has the effect of separating the refrigerant mixture into the liquid fraction MCO and the vapor fraction VCO. Typically, the liquid fraction MCO is rich in heavy elements such as C 3 , C 4 and C 5, and the vapor fraction VCO is rich in volatile compounds such as N 2, Ci and C 2 . This separator balloon 11 is placed between the first aftercooler 31 and a second compressor 22 to separate the two different fractions, or two phases, of the refrigerant mixture at this stage of the liquefaction device because, for reasons of optimization and feasibility, it is necessary that only the VCO vapor fraction (gas phase) is compressed in the second compressor 22.
Ensuite, la fraction vapeur VCO du mélange réfrigérant passe dans le deuxième compresseur 22, qui a pour but d'élever la pression de la fraction vapeur VCO pour faciliter sa condensation à des étapes ultérieures du procédé, puis dans un premier échangeur thermique 40a qui a pour but à la fois de refroidir la fraction VCO surchauffée lors de la compression et de récupérer une partie de cette chaleur au niveau du rebouilleur 13.  Then, the VCO vapor fraction of the refrigerant mixture passes into the second compressor 22, which is intended to raise the pressure of the VCO vapor fraction to facilitate its condensation at later stages of the process, then in a first heat exchanger 40a which has for the purpose of both cooling the superheated VCO fraction during compression and recovering some of this heat at the reboiler 13.
Il est à noter que la quantité d'énergie calorifique issue de la compression au niveau du deuxième compresseur 22 correspond typiquement à cinq, voire sept fois, la quantité de chaleur nécessaire pour produire une évaporation du flux sortant d'une colonne à distiller 12 au niveau du rebouilleur 13 placé en pied de colonne à distiller 12. Il est à noter également que cette quantité de chaleur produite par le deuxième compresseur 22 dépend fortement à la fois de la composition précise du flux compressé et du rendement polytropique du compresseur. Cette quantité de chaleur produite représente typiquement environ deux fois l'énergie nécessaire à la compression. It should be noted that the amount of heat energy resulting from the compression at the level of the second compressor 22 typically corresponds to five or even seven times the amount of heat necessary to produce evaporation of the flow leaving a distillation column 12 at the level of the reboiler 13 placed at the bottom of the distillation column 12. It should also be noted that this amount of heat produced by the second compressor 22 strongly depends both on the precise composition of the compressed stream and the polytropic efficiency of the compressor. This amount of generated heat typically represents about twice the energy required for compression.
La fraction liquide MCO issue du ballon séparateur 11 est quant à elle pompée par une pompe 50 et injectée à la sortie de ce premier échangeur thermique 40a. En particulier, la fraction liquide MCO est injectée en sortie du premier échangeur thermique 40a car à ce stade de l'installation, on souhaite seulement comprimer la fraction vapeur VCO car on ne peut comprimer dans un compresseur un fluide contenant à la fois une phase liquide et une phase gazeuse. C'est pourquoi, on comprime la fraction liquide MCO à l'aide d'une pompe 50.  The MCO liquid fraction from the separator tank 11 is in turn pumped by a pump 50 and injected at the outlet of this first heat exchanger 40a. In particular, the MCO liquid fraction is injected at the outlet of the first heat exchanger 40a because at this stage of the installation, it is only desired to compress the VCO vapor fraction because a fluid containing both a liquid phase can not be compressed in a compressor. and a gas phase. This is why the liquid fraction MCO is compressed using a pump 50.
Après être sorti du premier échangeur thermique 40a et après avoir été raccordé, au niveau de l'intersection A, au flux de fraction liquide MCO, le mélange réfrigérant passe ensuite dans une colonne à distiller 12 munie d'un rebouilleur 13 situé en pied de colonne à distiller 12. L'association de cette colonne à distiller 12 et de ce rebouilleur 13 permet de séparer le mélange réfrigérant en deux fractions distinctes : une fraction légère FLE sortant en tête de la colonne à distiller 12, et une fraction lourde FLO sortant du rebouilleur 13.  After leaving the first heat exchanger 40a and having been connected, at the intersection A, to the flow of liquid fraction MCO, the refrigerant mixture then passes into a distillation column 12 provided with a reboiler 13 located at the bottom of Distillation column 12. The combination of this distillation column 12 and this reboiler 13 makes it possible to separate the cooling mixture into two distinct fractions: a light fraction FLE leaving the top of the distillation column 12, and a heavy fraction FLO coming out. reboiler 13.
Avant de passer dans le rebouilleur 13, le flux sortant de la colonne à distiller 12 est introduit dans un échangeur thermique 40b pour être vaporisé. Cet échangeur thermique 40b est alimenté par l'énergie calorifique créée par le deuxième compresseur 22 et récupérée par le premier échangeur thermique 40a. Cette énergie calorifique est acheminée à l'échangeur thermique 40b se trouvant en amont du rebouilleur 13 à l'aide d'une boucle intermédiaire 40 qui relie ces deux échangeurs thermiques 40a et 40b.  Before passing through the reboiler 13, the flow leaving the distillation column 12 is introduced into a heat exchanger 40b to be vaporized. This heat exchanger 40b is powered by the heat energy created by the second compressor 22 and recovered by the first heat exchanger 40a. This heat energy is conveyed to the heat exchanger 40b located upstream of the reboiler 13 by means of an intermediate loop 40 which connects these two heat exchangers 40a and 40b.
Ce rebouilleur 13 permet de séparer le flux vaporisé sortant de l'échangeur thermique 40b en pied de colonne à distiller 12 pour obtenir, en sortie du rebouilleur 13, d'une part une fraction lourde FLO composée majoritairement de vapeurs riches en propane (C3), butane (Q) et pentane (C5), et d'autre part un flux de vapeur FVA riche en composés légers : N2/ Ci, C2 et C3. Typiquement la fraction lourde FLO ne comprend plus à ce stade de N2 et sa fraction molaire en méthane (Ci) est très faible (moins de 2%, voire moins de 1%). This reboiler 13 makes it possible to separate the vaporized stream leaving the heat exchanger 40b at the bottom of the distillation column 12 in order to obtain, at the exit of the reboiler 13, on the one hand, a heavy fraction FLO predominantly composed of propane-rich vapors (C 3 ), butane (Q) and pentane (C5), and on the other hand a stream of FVA vapor rich in light compounds: N 2 / C 1, C 2 and C 3 . Typically the heavy fraction FLO no longer comprises at this stage N 2 and its molar fraction in methane (Ci) is very low (less than 2%, or even less than 1%).
Le flux de vapeur FVA est ensuite réinjecté dans la colonne à distiller The vapor flow FVA is then reinjected into the distillation column
12 pour augmenter le pouvoir de séparation des composés lourds et légers du mélange réfrigérant. Le flux de fraction lourde FLO passe, quant à lui, dans un deuxième post-refroidisseur 32 avant d'être introduit du côté chaud du premier étage 61 de l'échangeur cryogénique principal, tandis que la fraction légère FLE du mélange réfrigérant, composée majoritairement de diazote (N2), de méthane (Ci) et d'éthane (C2), sortant en tête de la colonne à distiller 12 passe ensuite dans un troisième compresseur 23 puis nécessairement dans un troisième post-refroidisseur 33 pour que la fraction légère FLE se liquéfie et pour qu'elle soit à une température suffisamment chaude lors de son introduction dans la ligne d'échange, c'est-à-dire lors de son introduction du côté chaud de l'échangeur cryogénique principal par un orifice 61E1. Il est à noter que ce troisième post-refroidisseur 33 est donc disposé en amont du premier étage 61 de l'échangeur cryogénique principal pour des raisons d'efficacité énergétique. 12 to increase the separation power of heavy and light compounds of the refrigerant mixture. The flow of heavy fraction FLO passes, meanwhile, in a second aftercooler 32 before being introduced on the hot side of the first stage 61 of the main cryogenic exchanger, while the light fraction FLE of the refrigerant mixture, composed predominantly of dinitrogen (N 2 ), methane (Ci) and ethane (C 2 ) leaving the top of the distillation column 12 then passes into a third compressor 23 and necessarily into a third aftercooler 33 so that the fraction light FLE liquefies and so that it is at a sufficiently hot temperature when it is introduced into the exchange line, that is to say when it is introduced on the hot side of the main cryogenic exchanger via a port 61E1 . It should be noted that this third aftercooler 33 is therefore disposed upstream of the first stage 61 of the main cryogenic exchanger for reasons of energy efficiency.
Les fractions légère FLE et lourde FLO du mélange réfrigérant sont donc réinjectées dans l'échangeur cryogénique principal, et plus particulièrement du côté chaud du premier étage 61. Chacune de ces fractions sont introduites dans ce premier étage en empruntant différents orifices : la fraction légère FLE du mélange réfrigérant est introduite par un premier orifice 61E1, et la fraction lourde FLO est introduite par un deuxième orifice 61E2.  The light FLE and heavy FLO fractions of the refrigerant mixture are thus reinjected into the main cryogenic exchanger, and more particularly to the hot side of the first stage 61. Each of these fractions are introduced into this first stage by taking different orifices: the light fraction FLE the refrigerant mixture is introduced through a first orifice 61E1, and the heavy fraction FLO is introduced through a second orifice 61E2.
La fraction lourde FLO passe à travers ce premier étage 61 à co- courant du gaz à liquéfier sans échanger d'énergie calorifique avec ce dernier et en entrant donc dans un deuxième orifice 61E2 puis en ressortant par le côté froid de ce premier étage 61 par un orifice 61S2. Après être sortie de ce premier étage 61, la fraction lourde FLO est détendue, afin d'amener la fraction FLO à sa température de bulle, par un premier détendeur dl puis raccordée, au niveau de l'intersection B, au moins à une partie du flux de mélange réfrigérant circulant à contre-courant du gaz à liquéfier et sortant du deuxième étage 62 par l'orifice 62E3. Au niveau de cette intersection B, la totalité du mélange réfrigérant est reconstituée. Après ce raccordement, le mélange réfrigérant est introduit dans le premier étage 61 de l'échangeur cryogénique principal en circulant à contre-courant du gaz à liquéfier en entrant dans un orifice 61S3 et en sortant par un troisième orifice 61E3 situé du côté chaud du premier étage 61 de l'échangeur cryogénique. Lors de la traversée du mélange réfrigérant dans ce premier étage à contre-courant du gaz à liquéfier, le mélange réfrigérant transmet de l'énergie calorifique au gaz à liquéfier. Il est à noter que 40% du refroidissement global du gaz à liquéfier est réalisé dans le premier étage 61, 50% du refroidissement global est réalisé dans le deuxième étage 62 et 10% du refroidissement global est réalisé dans le troisième étage 63. The heavy fraction FLO passes through this first stage 61 co-current of the gas to be liquefied without exchanging heat energy with the latter and thus entering a second orifice 61E2 and then emerging through the cold side of this first stage 61 by an orifice 61S2. After having left this first stage 61, the heavy fraction FLO is expanded, in order to bring the fraction FLO to its bubble temperature, by a first expander d1 and then connected, at the intersection B, at least to a part flow of refrigerant mixture circulating countercurrent of the gas to be liquefied and leaving the second stage 62 through the orifice 62E3. At this intersection B, the entire refrigerant mixture is reconstituted. After this connection, the refrigerant mixture is introduced into the first stage 61 of the main cryogenic exchanger by circulating against the current of the gas to be liquefied by entering a port 61S3 and leaving through a third port 61E3 located on the warm side of the first stage 61 of the cryogenic exchanger. During the passage of the refrigerant mixture in this first stage against the current of the gas to be liquefied, the refrigerant mixture transmits heat energy to the gas to be liquefied. It should be noted that 40% of the overall cooling of the gas to be liquefied is carried out in the first stage 61, 50% of the overall cooling is carried out in the second stage 62 and 10% of the overall cooling is carried out in the third stage 63.
La fraction légère FLE sort quant à elle du premier étage 61 par un orifice 61S1 en traversant le premier 61 étage à co-courant du gaz à liquéfier et passe ensuite dans un ballon séparateur annexe 14 pour séparer le flux de fraction légère FLE du mélange réfrigérant en deux flux distincts : un premier flux de fraction la plus légère FLEl et un deuxième flux de fraction la plus lourde FLE2. Ce ballon séparateur annexe 14 permet, d'une part, de séparer la fraction la plus lourde FLE2 du mélange réfrigérant, celle-ci étant destinée au refroidissement du deuxième étage 62, de la fraction la plus légère FLEl du mélange réfrigérant destinée au refroidissement du troisième étage 63. D'autre part, ce ballon séparateur annexe 14 permet également de séparer le flux de fraction légère FLE en deux flux, FLEl et FLE2 de manière simple pour avoir un bon compromis technico-économique. Le premier flux de fraction la plus légère FLE1 passe dans le deuxième étage 62 de l'échangeur cryogénique principal en entrant par un orifice 62E1 et en sortant par un orifice 62S1. Et le deuxième flux de fraction la plus lourde FLE2, quant à lui, passe dans le deuxième étage 62 en entrant par un orifice 62E2 et en sortant par un orifice 62S2. Ces deux flux FLE1 et FLE2 traversent le deuxième étage 62 à co-courant du gaz à liquéfier. Après être sorti par l'orifice 62S2, le flux de fraction la plus lourde FLE2 est détendu par un deuxième détendeur d2, puis raccordé, au niveau de l'intersection C, au moins à une partie du flux de mélange réfrigérant circulant à contre-courant du gaz à liquéfier et sortant du troisième étage 63 par l'orifice 63E2. Après ce raccordement, le flux résultant est réinjecté dans le deuxième étage 62 en entrant par un orifice 62S3, et en sortant par un orifice 62E3 tout en circulant dans ce deuxième étage à contre-courant du gaz à liquéfier pour échanger de l'énergie calorifique avec ce dernier. Ce flux est ensuite raccordé, au niveau de l'intersection B, aux flux de fraction lourde FLO sortant du premier détendeur dl pour reconstituer la totalité du mélange réfrigérant. The light fraction FLE leaves from the first stage 61 through a port 61S1 through the first stage 61 co-current of the gas to be liquefied and then passes into an additional separator tank 14 to separate the flow of light fraction FLE refrigerant mixture in two distinct streams: a first lightest fraction flow FLE1 and a second largest fraction stream FLE2. This separating separator tank 14 makes it possible, on the one hand, to separate the heavier fraction FLE2 from the refrigerant mixture, the latter being intended for cooling the second stage 62, of the lightest fraction FLE1 of the cooling mixture intended for the cooling of the third stage 63. On the other hand, this separating separator balloon 14 also makes it possible to separate the flow of light fraction FLE into two streams, FLE1 and FLE2 in a simple way to have a good technical-economic compromise. The first flow of the lightest fraction FLE1 passes in the second stage 62 of the main cryogenic exchanger entering through a 62E1 orifice and out through a 62S1 orifice. And the second largest fraction flow FLE2, meanwhile, passes into the second stage 62 entering through a 62E2 orifice and out through a 62S2 orifice. These two flows FLE1 and FLE2 pass through the second stage 62 at the co-current of the gas to be liquefied. After exiting through the orifice 62S2, the heaviest fraction flow FLE2 is expanded by a second expander d2, and then connected, at the intersection C, to at least a portion of the flow of the refrigerant mixture circulating counter-flow. gas stream to be liquefied and leaving the third stage 63 through the orifice 63E2. After this connection, the resulting flow is reinjected into the second stage 62 by entering through a 62S3 orifice, and out through a 62E3 orifice while flowing in this second stage against the current of the gas to be liquefied to exchange heat energy. with the latter. This flow is then connected, at the intersection B, FLO heavy fraction flows out of the first expander dl to reconstitute the entire refrigerant mixture.
Le premier flux de fraction la plus légère FLE1 sortant du deuxième étage 62 par un orifice 62S1 passe ensuite à travers un troisième étage 63 à co- courant du gaz à liquéfier en entrant par un orifice 63E1, et en sortant par un orifice 63S1. Après être sorti de ce troisième étage 63, le premier flux de fraction la plus légère FLE1 est détendu dans un troisième détendeur d3, puis réinjecté dans un orifice 63S2 de ce troisième étage 63 pour circuler dans ce troisième étage à contre-courant du gaz à liquéfier et ainsi transmettre de l'énergie calorifique au gaz à liquéfier. Ensuite, ce premier flux de fraction la plus légère FLE1 sort de ce troisième étage 63 par un orifice 63E2 avant d'être raccordé, au niveau de l'intersection C, au flux de fraction la plus lourde FLE2 sortant du deuxième détendeur d2. Au niveau de cette intersection C, la fraction légère FLE du mélange réfrigérant est reconstituée. Ensuite, le fraction légère FLE reconstituée du mélange réfrigérant traverse le deuxième étage 62 à contre-courant du gaz à liquéfier en entrant par un orifice 62S3 et en sortant par un orifice 62E3. The first stream of the lightest fraction FLE1 leaving the second stage 62 through a port 62S1 then passes through a third stage 63 at the cocurrent of the gas to be liquefied by entering through an orifice 63E1, and out through a port 63S1. After having left this third stage 63, the first lightest fraction flow FLE1 is expanded in a third expander d3, then reinjected into an orifice 63S2 of this third stage 63 to circulate in this third stage against the current of the gas. to liquefy and thus transmit heat energy to the gas to be liquefied. Then, this first lightest fraction flow FLE1 exits from this third stage 63 via a port 63E2 before being connected, at the intersection C, to the heaviest fraction flow FLE2 coming out of the second expander d2. At this intersection C, the light fraction FLE of the refrigerant mixture is reconstituted. Then, the reconstituted FLE light fraction of the refrigerant mixture passes through the second stage 62 countercurrently with the gas to be liquefied by entering through a port 62S3 and exiting through a port 62E3.
Puis la fraction légère FLE reconstituée est raccordée, au niveau de l'intersection B, à la fraction lourde FLO du mélange réfrigérant sortant du premier détendeur dl. De cette façon, la totalité du mélange réfrigérant est bien reconstituée, comme mentionné auparavant, et traverse le premier étage 61 à contre-courant du gaz à liquéfier en entrant par un orifice 61S3 et en sortant par un orifice 61E3 avant de repasser par la phase de traitement.  Then the reconstituted FLE light fraction is connected, at the intersection B, to the heavy fraction FLO of the refrigerant mixture leaving the first expander d1. In this way, the entire refrigerant mixture is well reconstituted, as mentioned before, and passes through the first stage 61 against the current of the gas to be liquefied by entering through a port 61S3 and out through a port 61E3 before returning to the phase treatment.
La figure 2 décrit un deuxième mode de réalisation d'une installation de liquéfaction d'un gaz selon l'invention qui se différencie du premier notamment en ce que l'échangeur cryogénique principal comprend quatre étages 61', 62', 63' et 64' disposés en cascade, et en ce que la fraction liquide MCO issue du ballon séparateur 11 est, quant à elle, pompée par une pompe 50 et injectée dans un orifice 61E3' du côté chaud du premier étage 61' de l'échangeur cryogénique principal.  FIG. 2 describes a second embodiment of a liquefaction plant of a gas according to the invention which differs from the first, in particular in that the main cryogenic exchanger comprises four stages 61 ', 62', 63 'and 64 in cascade, and in that the MCO liquid fraction from the separator tank 11 is, in turn, pumped by a pump 50 and injected into an orifice 61E3 'of the hot side of the first stage 61' of the main cryogenic exchanger .
Plus précisément, dans ce deuxième mode préférentiel, le premier étage 61 de l'échangeur cryogénique principal utilisé dans le premier mode préférentiel est fractionné en deux étages : un premier étage 61' et un deuxième étage 62'. Le premier étage 61' de l'échangeur cryogénique utilisé dans ce deuxième mode préférentiel est situé entre la température ambiante et une température Tl' typiquement comprise entre 0 et 10°C. Et le deuxième étage 62' est situé entre une température Tl' et une température T0 comprise entre Tl' et -60°C. Ensuite, le troisième étage 63', correspondant au deuxième étage 62 de l'échangeur cryogénique principal du premier mode préférentiel, est situé entre la température T0 et une température Tl comprise entre - 140°C et -100°C. Et, le quatrième étage 64', correspondant au troisième étage 63 de l'échangeur cryogénique principal du premier mode préférentiel, est situé entre la température Tl et T2 comprise entre -165°C et -140°C. Il est à noter que dans ce deuxième mode de réalisation, l'injection de la fraction liquide MCO directement au niveau du premier étage 61' de l'échangeur cryogénique principal permet d'améliorer la performance énergétique de la section la plus chaude de la ligne d'échange. En effet, plus particulièrement, cette deuxième variante de réalisation consiste à faire un fractionnement supplémentaire de la section lourde du mélange réfrigérant en récupérant dès la sortie du premier post-refroidisseur 31, la fraction liquide MCO du mélange réfrigérant qui s'est condensée à température ambiante. More specifically, in this second preferred embodiment, the first stage 61 of the main cryogenic exchanger used in the first preferred mode is divided into two stages: a first stage 61 'and a second stage 62'. The first stage 61 'of the cryogenic exchanger used in this second preferred embodiment is located between ambient temperature and a temperature T1 typically between 0 and 10 ° C. And the second stage 62 'is located between a temperature Tl' and a temperature T0 between Tl 'and -60 ° C. Then, the third stage 63 ', corresponding to the second stage 62 of the main cryogenic exchanger of the first preferred embodiment, is located between the temperature T0 and a temperature T1 between-140 ° C and -100 ° C. And, the fourth stage 64 ', corresponding to the third stage 63 of the main cryogenic exchanger of the first preferred embodiment, is located between the temperature T1 and T2 between -165 ° C and -140 ° C. It should be noted that in this second embodiment, the injection of the liquid fraction MCO directly at the level of the first stage 61 'of the main cryogenic exchanger makes it possible to improve the energy performance of the hottest section of the line. exchange. In fact, more particularly, this second variant of embodiment consists in making an additional fractionation of the heavy section of the refrigerant mixture by recovering at the outlet of the first aftercooler 31, the liquid fraction MCO of the refrigerant mixture which has condensed at temperature. room.
Après que le gaz à liquéfier a circulé à travers les deux premiers étages After the liquefied gas has circulated through the first two floors
61' et 62' de l'échangeur, il passe à travers un système de séparation SR qui a les mêmes fonctions que celui du premier mode de réalisation. 61 'and 62' of the exchanger, it passes through a separation system SR which has the same functions as that of the first embodiment.
Après donc le passage dans ce système de séparation SR, le gaz à liquéfier passe à travers le troisième étage 63' de l'échangeur cryogénique principal, puis à travers le quatrième étage 64' de l'échangeur. En sortie du quatrième étage 64', on récupère dans un réservoir 2 alors un liquide, correspondant au gaz liquéfié, à une température inférieure à -160°C et à la pression atmosphérique.  After passing through this separation system SR, the gas to be liquefied passes through the third stage 63 'of the main cryogenic exchanger and then through the fourth stage 64' of the exchanger. At the outlet of the fourth stage 64 ', a liquid 2, corresponding to the liquefied gas, is recovered in a tank 2 at a temperature below -160 ° C. and at atmospheric pressure.
Il est à noter qu'hormis l'introduction de la fraction liquide MCO dans le premier étage 61' de l'échangeur cryogénique principal, la phase de traitement du mélange réfrigérant de ce deuxième mode de réalisation est la même que celle du premier mode de réalisation.  It should be noted that, apart from the introduction of the liquid fraction MCO in the first stage 61 'of the main cryogenic exchanger, the refrigerant mixture treatment phase of this second embodiment is the same as that of the first mode of cooling. production.
Les disparités entre ces deux modes de réalisation résident notamment dans la configuration de l'échangeur cryogénique principal. Plus particulièrement, la fraction liquide MCO est injectée dans le premier étage 61' de l'échangeur cryogénique et le traverse à co-courant du gaz à liquéfier en entrant par un orifice 61Έ3' et en sortant par un orifice 61'S3'. Ensuite, la fraction liquide MCO est détendue par un détendeur d'1 avant d'être raccordée, au niveau de l'intersection A', à une partie du mélange réfrigérant sortant par un orifice 62Έ3' du deuxième étage 62' et circulant à contre- courant du gaz à liquéfier. Après ce raccordement, la totalité du mélange réfrigérant est reconstituée. The disparities between these two embodiments reside in particular in the configuration of the main cryogenic exchanger. More particularly, the liquid fraction MCO is injected into the first stage 61 'of the cryogenic exchanger and crosses it at the co-current of the gas to be liquefied by entering through an orifice 61Έ3' and exiting through an orifice 61'S3 '. Then, the liquid fraction MCO is expanded by a pressure reducer of 1 before being connected, at the intersection A ', to a part of the cooling mixture. exiting through a 62Έ3 'orifice of the second stage 62' and circulating in countercurrent of the gas to be liquefied. After this connection, the entire refrigerant mixture is reconstituted.
La fraction lourde FLO du mélange réfrigérant, après son passage dans le deuxième post-refroidisseur 32, circule, quant à elle, dans le premier étage 61' de l'échangeur cryogénique principal à co-courant du gaz à liquéfier en entrant par un orifice 61E'2 avant d'en sortir par un orifice 61S'2. Ensuite, cette fraction lourde FLO est injectée dans le deuxième étage 62' en entrant par un orifice 62Έ2'. La fraction lourde FLO traverse ce deuxième étage 62' toujours à co-courant du gaz à liquéfier et en ressort par un orifice 62' S2' avant d'être détendue par un deuxième détendeur d'2. Après cette détente, au niveau d'une intersection B', la fraction lourde FLO est raccordée à au moins une partie du mélange réfrigérant circulant à contre-courant du gaz à liquéfier et sortant par un orifice 63Έ3 du troisième étage 63' de l'échangeur cryogénique principal.  The heavy fraction FLO of the refrigerant mixture, after passing through the second aftercooler 32, for its part, circulates in the first stage 61 'of the main cryogenic exchanger at the co-current of the gas to be liquefied by entering through an orifice 61E'2 before exiting through an orifice 61S'2. Then, this heavy fraction FLO is injected into the second stage 62 'entering through a 62Έ2' orifice. The heavy fraction FLO passes through this second stage 62 'always co-current of the gas to be liquefied and out through an orifice 62' S2 'before being relaxed by a second expander of 2. After this expansion, at an intersection B ', the heavy fraction FLO is connected to at least a part of the refrigerant mixture circulating against the current of the gas to be liquefied and exiting through a 63Έ3 orifice of the third stage 63' of the main cryogenic exchanger.
La fraction légère FLE du mélange réfrigérant sortant du troisième pos- refroidisseur 33 est, quant à elle, introduite dans le premier étage 61' de l'échangeur cryogénique principal par un orifice 61ΕΊ. Ensuite, cette fraction légère FLE traverse le premier étage 61' à co-courant du gaz à liquéfier et en ressort par un orifice 61S1' avant d'être injectée dans le deuxième étage 62' par un orifice 62ΈΊ. Cette fraction légère FLE circule dans ce deuxième étage 62', toujours à co-courant du gaz à liquéfier sans échanger d'énergie calorifique avec ce dernier, et en ressort par un orifice 62'S'l. Ensuite, cette fraction légère FLE passe dans un ballon séparateur annexe 14 qui sépare le flux de fraction légère FLE en deux flux distincts : un premier flux de fraction la plus légère FLE1 et un deuxième flux de fraction la plus lourde FLE2.  The light fraction FLE of the refrigerant mixture leaving the third aftercooler 33 is, for its part, introduced into the first stage 61 'of the main cryogenic exchanger via an orifice 61ΕΊ. Then, this light fraction FLE passes through the first stage 61 'co-current of the gas to be liquefied and out through an orifice 61S1' before being injected into the second stage 62 'through a hole 62ΈΊ. This light fraction FLE circulates in this second stage 62 ', always at the co-current of the gas to be liquefied without exchanging heat energy with the latter, and exits through an orifice 62'S'l. Then, this light fraction FLE passes into an annex separator tank 14 which separates the stream of light fraction FLE into two distinct streams: a first stream of the lightest fraction FLE1 and a second stream of the largest fraction FLE2.
Le premier flux de fraction la plus légère FLE1 passe dans le troisième étage 63' de l'échangeur cryogénique principal en entrant par un orifice 63'El et en sortant par un orifice 63'S1. Et le deuxième flux de fraction la plus lourde FLE2, quant à lui, passe dans le troisième étage 63' en entrant par un orifice 63Έ2 et en sortant par un orifice 63'S2. Ces deux flux FLEl et FLE2 traversent le troisième étage 63' à co-courant du gaz à liquéfier. Après être sortie par l'orifice 63'S2, le flux de fraction la plus lourde FLE2 est détendu par un troisième détendeur d'3 puis réinjecté dans le troisième étage 63' en entrant par un orifice 63'S3, puis en sortant par un orifice 63Έ3 tout en circulant dans ce troisième étage à contre-courant du gaz à liquéfier pour échanger de l'énergie calorifique avec ce dernier. Ce flux est ensuite raccordé, au niveau de l'intersection B', aux flux de fraction lourde FLO sortant du deuxième détendeur d'2. The first lightest fraction flow FLE1 passes into the third stage 63 'of the main cryogenic exchanger entering through a 63'El orifice and exiting through a 63'S1 orifice. And the second most fractional flow Heavy FLE2, meanwhile, passes into the third stage 63 'entering through a 63Έ2 orifice and out through a 63'S2 orifice. These two flows FLE1 and FLE2 pass through the third stage 63 'co-current of the gas to be liquefied. After having left via the orifice 63'S2, the heavier fraction flow FLE2 is expanded by a third expander of 3 and then reinjected into the third stage 63 'entering through an orifice 63'S3 and then exiting through a 63Έ3 orifice while circulating in this third stage against the current of the gas to be liquefied to exchange heat energy with the latter. This flow is then connected, at the intersection B ', to the flows of heavy fraction FLO leaving the second expander of 2.
Le premier flux de fraction la plus légère FLEl sortant du troisième étage 63' par un orifice 63'S1 traverse un quatrième étage 64' à co-courant du gaz à liquéfier en entrant par un orifice 64'El, et en sortant par un orifice 64'S1. Après être sorti de ce quatrième étage 64', le premier flux de fraction la plus légère FLEl est détendu dans un quatrième détendeur d'4, puis réinjecté dans un orifice 64'S2 de ce quatrième étage 64' pour circuler dans ce quatrième étage 64' à contre-courant du gaz à liquéfier et ainsi transmettre de l'énergie calorifique à ce dernier. Ensuite, ce premier flux de fraction la plus légère FLEl sort de ce quatrième étage 64' par un orifice 64Έ2 avant d'être raccordé, au niveau de l'intersection C, au flux de fraction la plus lourde FLE2 sortant du troisième détendeur d'3. Au niveau de cette intersection C, la fraction légère FLE du mélange réfrigérant est reconstituée.  The first flow of the lightest fraction FLE1 leaving the third stage 63 'through an orifice 63'S1 passes through a fourth stage 64' cocurrent of the gas to be liquefied by entering through a hole 64'El, and out through a hole 64'S1. After having left this fourth stage 64 ', the first lightest fraction flow FLE1 is expanded in a fourth expander of 4, and then re-injected into an orifice 64'S2 of this fourth stage 64' to circulate in this fourth stage 64 against the current of the gas to be liquefied and thus transmit heat energy thereto. Next, this first lightest fraction flow FLE1 exits this fourth stage 64 'via a 64Έ2 orifice before being connected, at the intersection C, to the heaviest fraction flow FLE2 coming out of the third expander. 3. At this intersection C, the light fraction FLE of the refrigerant mixture is reconstituted.
Ensuite, la fraction légère FLE reconstituée du mélange réfrigérant traverse le troisième étage 63' à contre-courant du gaz à liquéfier en entrant par un orifice 63'S3 et en sortant par un orifice 63Έ3.  Then, the reconstituted FLE light fraction of the refrigerant mixture passes through the third stage 63 'counter-current of the gas to be liquefied by entering through a 63'S3 orifice and exiting through a 63Έ3 orifice.
Puis la fraction légère FLE reconstituée est raccordée, au niveau de l'intersection B', à la fraction lourde FLO du mélange réfrigérant sortant du deuxième détendeur d'2. De cette façon, les fractions légère FLE et lourde FLO du mélange réfrigérant sont raccordées. L'ensemble des fractions légère FLE et lourde FLO traverse ensuite le deuxième étage 62' à contre-courant du gaz à liquéfier en entrant par un orifice 62'S3' et en sortant par un orifice 62Έ3' avant d'être raccordé, au niveau de l'intersection A', à la fraction liquide MCO sortant du premier détendeur d'I. De cette façon, comme mentionné auparavant, la totalité du mélange réfrigérant est reconstituée. Then the reconstituted FLE light fraction is connected, at the intersection B ', to the heavy fraction FLO of the refrigerant mixture leaving the second expander of 2. In this way, the light FLE and heavy FLO fractions of the refrigerant mixture are connected. All light fractions FLE and heavy FLO then crosses the second stage 62 'against the current of the gas to be liquefied by entering through a 62'S3' orifice and out through a 62Έ3 'orifice before being connected, at the intersection A' to the MCO liquid fraction leaving the first I expander. In this way, as mentioned before, the entire refrigerant mixture is reconstituted.
Ensuite, ce mélange réfrigérant reconstitué traverse le premier étage 61' à contre-courant du gaz à liquéfier en entrant par un orifice 61'S4' et en sortant par un orifice 61Έ4' avant d'être traiter dans le circuit secondaire fermé par la phase de traitement.  Then, this reconstituted refrigerant mixture passes through the first stage 61 'in countercurrent of the gas to be liquefied by entering through an orifice 61'S4' and exiting through an orifice 61Έ4 'before being treated in the secondary circuit closed by the phase treatment.
Exemples Examples
Les exemples suivants illustrent l'invention sans toutefois en limiter la portée. Il s'agit de simulations numériques permettant de calculer, pour le procédé selon l'invention, les paramètres suivants : The following examples illustrate the invention without, however, limiting its scope. These numerical simulations make it possible to calculate, for the method according to the invention, the following parameters:
- la puissance mécanique utilisée par le procédé, en kW ;  the mechanical power used by the process, in kW;
- la consommation spécifique en kWh/t de GNL produit, la consommation spécifique en kWh/t étant définie de la façon suivante :  - the specific consumption in kWh / t of LNG produced, the specific consumption in kWh / t being defined as follows:
Puissance mécanique utilisée (en kW) _ ^  Mechanical power used (in kW) _ ^
Débit massique du GNL produit (en t/h) '  Mass flow rate of LNG produced (in t / h)
le gain de consommation d'énergie par rapport au procédé connue de l'art antérieur ne comprenant ni un rebouilleur, ni une boucle intermédiaire reliant deux échangeurs thermiques ;  the energy consumption gain compared to the known method of the prior art comprising neither a reboiler nor an intermediate loop connecting two heat exchangers;
par comparaison avec les résultats que l'on obtiendrait avec un procédé connu selon l'art antérieur ne comportant ni un rebouilleur, ni une boucle intermédiaire reliant deux échangeurs thermiques de façon à pouvoir réutiliser l'énergie calorifique dégagée par un compresseur du dispositif de liquéfaction. En particulier, les simulations numériques ont été réalisées par rapport au procédé décrit dans le brevet français FR2703762 (illustré sur la figure 1 de FR2703762), il s'agit d'un procédé de liquéfaction du gaz naturel du type SMR (Single Mixed Réfrigérant) représentatif d'un bon compromis entre simplicité de conception et performance de consommation énergétique. En tant que cycle fermé pur, il ne consomme pas d'azote liquide pour refroidir le gaz naturel. by comparison with the results that would be obtained with a known method according to the prior art having neither a reboiler nor an intermediate loop connecting two heat exchangers so as to reuse the heat energy released by a compressor of the liquefaction device . In particular, the numerical simulations were carried out with respect to the method described in the French patent FR2703762 (illustrated on the Figure 1 of FR2703762), it is a liquefaction process of natural gas type SMR (Single Mixed Refrigerant) representative of a good compromise between simplicity of design and energy consumption performance. As a pure closed cycle, it does not consume liquid nitrogen to cool the natural gas.
Ces simulations numériques ont été réalisées dans les conditions suivantes : These numerical simulations were carried out under the following conditions:
• Gaz d'entrée à liquéfier :  • Entry gas to liquefy:
o Pression : 48 bar,  o Pressure: 48 bar,
o Température : 30°C  o Temperature: 30 ° C
o Débit massique : 10,18 t/h  o Mass flow: 10.18 t / h
o Composition (% molaire) :  o Composition (mol%):
N2 : 0,79% N 2 : 0.79%
Ci : 91,21% Ci: 91.21%
C2 : 7,89% C 2 : 7.89%
0 : 0,11% 0: 0.11%
C4+ :0 C 4+ : 0
• Température minimale de refroidissement du réfrigérant avec le milieu ambiant : 30°C  • Minimum cooling temperature of the refrigerant with the surrounding environment: 30 ° C
• Hypothèses de rendement polytropique de compresseur : 85% • Polytropic compressor efficiency assumptions: 85%
• Température de sous-refroidissement du GNL : -158°C. • LNG subcooling temperature: -158 ° C.
Pour réaliser de telles simulations numériques, l'outil de simulation qui a été utilisé est aspen hysys V7.3, et le modèle thermodynamique (ou équation d'état) est la suivante : SRK LK-1 (soave Redlich-Kwong Lee KeslerTo perform such numerical simulations, the simulation tool that has been used is aspen hysys V7.3, and the thermodynamic model (or equation of state) is: SRK LK-1 (soave Redlich-Kwong Lee Kesler
1)· 1) ·
Les résultats des simulations sont présentés dans le tableau 1 suivant : Tableau 1 The results of the simulations are presented in Table 1 below: Table 1
Figure imgf000026_0001
Figure imgf000026_0001
Ces résultats montrent que, par rapport à un procédé ne mettant en œuvre ni un rebouilleur, ni une boucle intermédiaire reliant deux échangeurs thermiques, le procédé selon l'invention permet de réduire la puissance mécanique nécessaire à la liquéfaction de plus 6% par rapport au procédé standard du brevet FR2703762, ce qui permet d'une part une réduction des coûts opérationnels liés à la consommation d'énergie, et d'autre part une réduction de la taille des compresseur et donc de leur coût capitalistique associé. These results show that, compared to a process involving neither a reboiler nor an intermediate loop connecting two heat exchangers, the method according to the invention makes it possible to reduce the mechanical power required for liquefaction by more than 6% compared to standard method of the patent FR2703762, which allows on the one hand a reduction in operating costs related to energy consumption, and on the other hand a reduction in the size of the compressor and therefore their associated capital cost.

Claims

REVENDICATIONS
1. Procédé de liquéfaction d'un gaz comprenant majoritairement du méthane, dans lequel ledit gaz à liquéfier circule dans un circuit primaire d'une source (1) vers un réservoir (2) pour gaz liquéfié, et dans lequel un mélange réfrigérant circule dans un circuit secondaire fermé, ledit procédé comprenant les phases suivantes : A method of liquefying a gas comprising predominantly methane, wherein said gas to be liquefied flows in a primary circuit from a source (1) to a tank (2) for liquefied gas, and wherein a refrigerant mixture circulates in a a closed secondary circuit, said method comprising the following phases:
une phase de refroidissement/ liquéfaction dans laquelle ledit gaz à liquéfier est refroidi et liquéfié suite à sa circulation dans un échangeur cryogénique principal comprenant au moins trois étages (61, 62, 63), disposés en cascade, dans lesquels ledit gaz est en contact direct avec un mélange réfrigérant dont la composition évolue selon l'étage de refroidissement:  a cooling / liquefaction phase in which said gas to be liquefied is cooled and liquefied following its circulation in a main cryogenic exchanger comprising at least three stages (61, 62, 63), arranged in cascade, in which said gas is in direct contact with a refrigerant mixture whose composition evolves according to the cooling stage:
• le premier refroidissement étant réalisé dans un premier étage (61) entre la température ambiante et une température T0 égale ou supérieure à - 60°C,  The first cooling being carried out in a first stage (61) between the ambient temperature and a temperature T 0 equal to or greater than -60 ° C.,
• le second refroidissement étant réalisé dans un deuxième étage (62) entre T0 et une température Tl comprise entre -140°C et -100°C, et The second cooling being carried out in a second stage (62) between T 0 and a temperature T1 between -140 ° C. and -100 ° C., and
• le troisième refroidissement étant réalisé dans un troisième étage (63) entre la température Tl et une température T2 comprise entre -165°C et -140°C, The third cooling being carried out in a third stage (63) between the temperature T1 and a temperature T2 between -165 ° C. and -140 ° C.,
à l'issue de la phase de refroidissement, une phase de traitement est réalisée pour à la fois partiellement recondenser le mélange réfrigérant et le séparer en différentes fractions afin d'adapter sa composition aux besoins de refroidissement de chaque étage de l'échangeur cryogénique principal, ladite phase de traitement comprenant des étapes consistant à :  at the end of the cooling phase, a treatment phase is performed to both partly recondense the cooling mixture and separate it into different fractions in order to adapt its composition to the cooling requirements of each stage of the main cryogenic exchanger said processing step comprising steps of:
• compresser et refroidir ledit mélange réfrigérant sortant du premier étage (61) dudit échangeur cryogénique principal par passages successifs dans au moins un premier compresseur (21), puis un premier post-refroidisseur (31) qui condense partiellement le mélange, puis dans un ballon séparateur (11) dans lequel la fraction liquide (MCO) du mélange réfrigérant est séparée de sa fraction vapeur (VCO) ; Compressing and cooling said cooling mixture leaving the first stage (61) of said main cryogenic exchanger by passages in at least one first compressor (21), then a first aftercooler (31) which partially condenses the mixture and then in a separator tank (11) in which the liquid fraction (MCO) of the refrigerant mixture is separated from its fraction steam (VCO);
la fraction liquide (MCO) du mélange réfrigérant est pompée par une pompe (50), tandis que la fraction vapeur (VCO) du mélange réfrigérant est comprimée par un deuxième compresseur (22), puis refroidie dans un premier échangeur thermique (40a), les flux de fraction liquide (MCO) et de fraction vapeur (VCO) étant à la même pression ; the liquid fraction (MCO) of the refrigerant mixture is pumped by a pump (50), while the vapor fraction (VCO) of the refrigerant mixture is compressed by a second compressor (22), then cooled in a first heat exchanger (40a), the streams of liquid fraction (MCO) and vapor fraction (VCO) being at the same pressure;
séparer au moins en partie le mélange réfrigérant comprimé, sortant du deuxième compresseur (22) puis du premier échangeur thermique (40a), dans une colonne à distiller (12) munie d'un rebouilleur (13), en une fraction légère (FLE) et une fraction lourde (FLO) ; at least partly separating the compressed refrigerant mixture leaving the second compressor (22) and then the first heat exchanger (40a) in a distillation column (12) provided with a reboiler (13) in a light fraction (FLE) and a heavy fraction (FLO);
alimenter en énergie calorifique ledit rebouilleur (13) pour générer un flux de vapeur (FVA) et extraire au moins une partie des composés volatiles initialement compris dans le flux liquide de bas de colonne (12) ; supplying said reboiler (13) with heat energy to generate a vapor stream (FVA) and extract at least a portion of the volatile compounds initially included in the bottom stream (12);
refroidir ou post-refroidir, avec le milieu ambiant, lesdites fractions lourdes (FLO) sortant du rebouilleur (13) en les acheminant à travers un deuxième post-refroidisseur (32) avant de les introduire dans le premier étage (61) de l'échangeur cryogénique principal ; injecter lesdites fractions légères (FLE) issues de ladite colonne de distillation (12) dans le premier étage (61) de l'échangeur cryogénique principal en les acheminant au préalable dans un troisième compresseur (23) et un troisième post-refroidisseur (33) ; ledit procédé étant caractérisé en ce que l'énergie calorifique apportée au rebouilleur (13) provient directement de la surchauffe provoquée par la compression dudit mélange réfrigérant dans ledit deuxième compresseur (22), cette énergie calorifique étant acheminée au rebouilleur (13) à l'aide d'une boucle intermédiaire (40) reliant deux échangeurs thermiques (40a ; 40b), le premier échangeur thermique (40a) récupérant l'énergie calorifique dégagée par la compression réalisée dans ledit compresseur (22), qui est retransmise par la boucle intermédiaire (40) au deuxième échangeur thermique (40b) pour la transmettre au rebouilleur (13). cooling or post-cooling, with the environment, said heavy fractions (FLO) leaving the reboiler (13) by routing them through a second aftercooler (32) before introducing them into the first stage (61) of the main cryogenic exchanger; injecting said light fractions (FLE) from said distillation column (12) into the first stage (61) of the main cryogenic exchanger by forwarding them in a third compressor (23) and a third aftercooler (33). ; said method being characterized in that the heat energy supplied to the reboiler (13) derives directly from the overheating caused by the compression of said cooling mixture in said second compressor (22), said heat energy being supplied to the reboiler (13) at the using an intermediate loop (40) connecting two heat exchangers (40a; 40b), the first heat exchanger (40a) recovering the heat energy released by the compression performed in said compressor (22), which is retransmitted by the intermediate loop (40) to the second heat exchanger (40b) to transmit it to the reboiler (13).
2. Procédé selon la revendication 1, dans lequel ladite fraction liquide (MCO) du mélange réfrigérant issue du ballon séparateur (11) est réinjectée directement à la sortie dudit premier échangeur thermique (40a). 2. Method according to claim 1, wherein said liquid fraction (MCO) of the refrigerant mixture from the separator tank (11) is reinjected directly to the outlet of said first heat exchanger (40a).
3. Procédé selon la revendication 1, dans lequel ladite fraction liquide (MCO) du mélange réfrigérant issue du ballon séparateur (11) est réinjectée directement dans le premier étage (61) de l'échangeur cryogénique principal. 3. The method of claim 1, wherein said liquid fraction (MCO) of the refrigerant mixture from the separator tank (11) is reinjected directly into the first stage (61) of the main cryogenic exchanger.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le gaz à liquéfier contient du méthane en une proportion molaire d'au moins 80%. 4. Method according to any one of claims 1 to 3, wherein the gas to be liquefied contains methane in a molar proportion of at least 80%.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le mélange réfrigérant est un mélange comprenant essentiellement de l'azote et des alcanes en Ci - Cs. 5. Process according to any one of claims 1 to 4, wherein the cooling mixture is a mixture comprising essentially nitrogen and C 1 -C 5 alkanes.
6. Installation de liquéfaction d'un gaz comprenant un circuit primaire relié à une source (1) de gaz et à un réservoir (2) pour gaz liquéfié, l'installation comprenant : 6. Liquefaction plant for a gas comprising a primary circuit connected to a source (1) of gas and a tank (2) for liquefied gas, the installation comprising:
au moins un échangeur cryogénique principal comprenant au moins trois étages (61, 62, 63) disposés en cascade pour refroidir et liquéfier le gaz circulant dans le circuit primaire,  at least one main cryogenic exchanger comprising at least three stages (61, 62, 63) arranged in cascade for cooling and liquefying the gas flowing in the primary circuit,
un circuit secondaire fermé dans lequel circule un mélange réfrigérant, ledit circuit secondaire comprenant au moins :  a closed secondary circuit in which a cooling mixture circulates, said secondary circuit comprising at least:
• un premier compresseur (21) et un premier post-refroidisseur (31) en amont d'un ballon séparateur (11),  A first compressor (21) and a first aftercooler (31) upstream of a separator tank (11),
• un deuxième compresseur (22) se situant entre ledit ballon séparateur (11) et une colonne de distillation (12),  A second compressor (22) located between said separator tank (11) and a distillation column (12),
• un rebouilleur (13) intégré à ladite colonne de distillation (12), et A reboiler (13) integrated in said distillation column (12), and
• un troisième compresseur (23) ainsi qu'un troisième post- refroidisseur (33) en tête de ladite colonne de distillation (12), caractérisée en ce que l'installation comprend en outre une boucle intermédiaire (40) reliant deux échangeurs thermiques (40a ; 40b), le premier échangeur thermique (40a) récupérant l'énergie calorifique dégagée par le deuxième compresseur (22), qui est retransmise par la boucle intermédiaire (40) au deuxième échangeur thermique (40b) pour la transmettre au rebouilleur (13). A third compressor (23) and a third aftercooler (33) at the top of said distillation column (12), characterized in that the installation further comprises an intermediate loop (40) connecting two heat exchangers ( 40a; 40b), the first heat exchanger (40a) recovering the heat energy released by the second compressor (22), which is retransmitted by the intermediate loop (40) to the second heat exchanger (40b) for transmission to the reboiler (13). ).
PCT/FR2016/053520 2015-12-17 2016-12-16 Method for liquefying natural gas by means of a refrigerant mixture cycle using a refrigerant distillation column provided with a reboiler WO2017103533A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16831819.4A EP3390937A1 (en) 2015-12-17 2016-12-16 Method for liquefying natural gas by means of a refrigerant mixture cycle using a refrigerant distillation column provided with a reboiler

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1562708 2015-12-17
FR1562708A FR3045797A1 (en) 2015-12-17 2015-12-17 PROCESS FOR THE LIQUEFACTION OF NATURAL GAS USING A REFRIGERANT MIXTURE CYCLING WITH DISTILLER COLUMN WITH REFRIGERANT
FR1650634A FR3045799B1 (en) 2015-12-17 2016-01-26 PROCESS FOR LIQUEFACTION OF NATURAL GAS USING A REFRIGERANT MIXED CYCLE WITH A DISTILLER COLUMN OF THE REFRIGERANT PROVIDED WITH A BOILER
FR1650634 2016-01-26

Publications (2)

Publication Number Publication Date
WO2017103533A1 true WO2017103533A1 (en) 2017-06-22
WO2017103533A4 WO2017103533A4 (en) 2017-08-10

Family

ID=55650544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/053520 WO2017103533A1 (en) 2015-12-17 2016-12-16 Method for liquefying natural gas by means of a refrigerant mixture cycle using a refrigerant distillation column provided with a reboiler

Country Status (3)

Country Link
EP (1) EP3390937A1 (en)
FR (2) FR3045797A1 (en)
WO (1) WO2017103533A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581511A (en) * 1969-07-15 1971-06-01 Inst Gas Technology Liquefaction of natural gas using separated pure components as refrigerants
US4586942A (en) * 1983-02-08 1986-05-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and plant for the cooling of a fluid and in particular the liquefaction of natural gas
FR2703762A1 (en) * 1993-04-09 1994-10-14 Grenier Maurice Method and installation for cooling a fluid, in particular for liquefying natural gas.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581511A (en) * 1969-07-15 1971-06-01 Inst Gas Technology Liquefaction of natural gas using separated pure components as refrigerants
US4586942A (en) * 1983-02-08 1986-05-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and plant for the cooling of a fluid and in particular the liquefaction of natural gas
FR2703762A1 (en) * 1993-04-09 1994-10-14 Grenier Maurice Method and installation for cooling a fluid, in particular for liquefying natural gas.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KHAKOO M ET AL: "THE NEXT GENERATION OF LNG PLANTS//LA NOUVELLE GENERATION DES USINES DE LIQUEFACTION", INTERNATIONAL CONFERENCE AND EXHIBITION ON LIQUEFIED NATURAL GAS, XX, XX, 14 May 2001 (2001-05-14), pages 1 - 14, XP001212635 *

Also Published As

Publication number Publication date
EP3390937A1 (en) 2018-10-24
FR3045797A1 (en) 2017-06-23
WO2017103533A4 (en) 2017-08-10
FR3045799A1 (en) 2017-06-23
FR3045799B1 (en) 2020-01-24

Similar Documents

Publication Publication Date Title
EP1352203B1 (en) Method for refrigerating liquefied gas and installation therefor
EP0644996B1 (en) Gas cooling process and plant, especially for natural gas liquefaction
EP2344821B1 (en) Method for producing liquid and gaseous nitrogen streams, a helium-rich gaseous stream, and a denitrogened hydrocarbon stream, and associated plant
FR2675888A1 (en) PROCESS FOR THE USE OF LIQUEFIED NATURAL GAS (LNG) ASSOCIATED WITH A COLD EXPANDER TO PRODUCE LIQUID NITROGEN
EP1118827B1 (en) Partial liquifaction process for a hydrocarbon-rich fraction such as natural gas
FR2611386A1 (en) IMPROVED METHOD FOR LIQUEFYING A NATURAL GAS SUPPLY FLOW USING ONE OR TWO MULTI-COMPONENT CLOSED CIRCUIT REFRIGERANTS
FR2772896A1 (en) METHOD FOR THE LIQUEFACTION OF A GAS, PARTICULARLY A NATURAL GAS OR AIR COMPRISING A MEDIUM PRESSURE PURGE AND ITS APPLICATION
WO2003004951A1 (en) Method for the liquefaction and denitrogenation of natural gas, system for carrying out said method
FR2829401A1 (en) Fractionating a gas produced by pyrolysis of hydrocarbons, including hydrogen and hydrocarbons, in particular 1-4C hydrocarbons, water and CO2
EP2137475B1 (en) Method for cooling a cryogenic exchange line
FR2923001A1 (en) Natural gas liquefying method for transporting liquefied gas, involves choosing operating conditions of fractionator such that liquid phase has molar quantity of methane ranging between specific percentages of molar quantity of ethane
FR2751059A1 (en) IMPROVED COOLING PROCESS AND INSTALLATION, ESPECIALLY FOR LIQUEFACTION OF NATURAL GAS
WO2017081374A1 (en) Method for optimising liquefaction of natural gas
FR2540612A1 (en) METHOD AND INSTALLATION FOR COOLING A FLUID, IN PARTICULAR A LIQUEFACTION OF NATURAL GAS
WO2017077203A1 (en) Reflux of demethanization columns
CN103299145B (en) Process comprises method and the equipment thereof of the hydrocarbon stream of methane
WO2017103533A1 (en) Method for liquefying natural gas by means of a refrigerant mixture cycle using a refrigerant distillation column provided with a reboiler
FR3043452A1 (en) METHOD FOR LIQUEFACTING NATURAL GAS USING A CLOSED CYCLE REFRIGERATION CIRCUIT
FR2990748A1 (en) METHOD AND APPARATUS FOR DISTILLATION AT SUBAMBIAN TEMPERATURE
WO2017134353A1 (en) Optimized injection of a mixed two-phase refrigerant stream in a method for liquefying natural gas
WO2019122656A1 (en) Method for liquefying a natural gas stream containing nitrogen
WO2021032916A1 (en) Method for liquefying natural gas with improved exchanger configuration
WO2021019149A1 (en) Method for liquefying natural gas with improved injection of a mixed refrigerant stream

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16831819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016831819

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016831819

Country of ref document: EP

Effective date: 20180717