WO2017047912A1 - Bioimplantation metal having nano-patterning groove surface, method for preparing metal, implant, method for manufacturing implant, stent, and method for manufacturing stent - Google Patents

Bioimplantation metal having nano-patterning groove surface, method for preparing metal, implant, method for manufacturing implant, stent, and method for manufacturing stent Download PDF

Info

Publication number
WO2017047912A1
WO2017047912A1 PCT/KR2016/006518 KR2016006518W WO2017047912A1 WO 2017047912 A1 WO2017047912 A1 WO 2017047912A1 KR 2016006518 W KR2016006518 W KR 2016006518W WO 2017047912 A1 WO2017047912 A1 WO 2017047912A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
metal
base material
metal base
nano
Prior art date
Application number
PCT/KR2016/006518
Other languages
French (fr)
Korean (ko)
Inventor
김두헌
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150130912A external-priority patent/KR101701264B1/en
Priority claimed from KR1020160060719A external-priority patent/KR101724039B1/en
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2017047912A1 publication Critical patent/WO2017047912A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon

Definitions

  • the present invention relates to a metal for biotransplantation, a metal manufacturing method, an implant, an implant manufacturing method, a stent and a stent manufacturing method having a nanopatterning groove surface, and more particularly, after anodizing the surface of the metal base material.
  • a groove is formed on the surface to remove the anodized titanium oxide film and prevents the nanopatterning groove surface from leaking out of the living body, a method for manufacturing a metal, a metal manufacturing method, an implant, an implant manufacturing method, a stent and a stent manufacturing method It is about.
  • Biotransplantation metals have superior strength, fatigue resistance, and molding processability compared to other materials such as ceramics, polymers, etc. and are still used for dental, orthopedic, It is the most widely used biomaterial in plastic surgery.
  • Such biograft metals are magnesium (Mg), calcium (Ca, phosphorus (P), zinc (Zn), iron (Fe), chromium (Cr), nickel (Ni), stainless steel (Stainless steel), cobalt alloy (Co) alloy), titanium (Ti), titanium alloy (Ti alloy), zirconium (Zr), niobium (Nb), tantalum (Ta), gold (Au), silver (Ag), and the like.
  • titanium, titanium alloys, and gold which are excellent in corrosion resistance and stable in human tissues, are most widely used in the human body.
  • Implants are used to support or attach tissue during treatment, such as molded parts such as membranes, fixed sheets, three-dimensional or spatial parts that can be implanted into organ organs, or fixed means such as screws, pins, rivets, tacks, or tissues It is used for the purpose of separating the from other tissues.
  • tissue such as molded parts such as membranes, fixed sheets, three-dimensional or spatial parts that can be implanted into organ organs, or fixed means such as screws, pins, rivets, tacks, or tissues It is used for the purpose of separating the from other tissues.
  • the stent is a medical apparatus used to expand the diameter of the blood vessel by performing the treatment inside the blood vessel.
  • the implant and stent inserted into the living body should satisfy the following two conditions for the biograft metal forming the same.
  • biocompatibility should be excellent.
  • the use of metal as a biosupport substitute should not cause foreign body reactions and toxicity to surrounding tissues.
  • the bone forming cells that differentiate at various stages and the new bone must have a surface that can fuse well with the implanted metal surface. Since the 1990s, various surface modification methods have been developed to improve fusion and bone tissue around implant metals and to improve soft tissue and biocompatibility.
  • SLA sprays micro-sized ceramic particles usually using alumina
  • a strong pressure on the titanium alloy surface to form tens of micrometers of micro-roughness on the titanium-based metal surface, followed by acid etching. It is a method of increasing the surface area by further forming a roughness of several micrometer scale through.
  • Roughness of various micrometer sizes formed through SLA surface treatment has the advantage of improving the anchoring force of the new bone on the surface of the biograft metal at the beginning of the implantation, and also improves the degree of adhesion after the initial stage.
  • residual chemicals generated in the process of treating the ceramic particles with the strong acid on the surface of the biograft metal may act as contaminants, and the interface of the metal particles may show fracture.
  • the quality of dental biograft metals is determined by the chemical, physical, mechanical and topographical properties of the surface.
  • Surface chemistry affects protein adsorption and cellular activity, surface roughness affects cell migration and proliferation, and surface topography is responsible for cell growth and osteoblast cell growth. It is known to affect changes and bone tissue formation.
  • macro-roughness roughness of tens of micrometers to several millimeters
  • Micrometer-level roughness (roughness of hundreds of nanometers to tens of micrometers) formed on the surface of the biograft metal may maximize the bond between the surface and the mineralized bone tissue.
  • nano-roughness (a few nanometers to tens of nanometers of roughness) affects the protein adsorption, osteoclast adhesion and osteointegration rate of the surface of the metal for transplantation.
  • nanometer-level roughness increases surface energy to improve the hydrophilicity of the surface of the biograft metal and facilitates cell adhesion and protein substrate and fibrin binding to control osteoblast differentiation. Can be.
  • the metal oxide film on the metal base material obtained through anodization is weak in mechanical strength and may be peeled off from the metal surface while being inserted into the living body and leaked into the living body.
  • 1 is a SEM photograph showing that the metal surface is anodized by a conventional method, it can be seen that the metal oxide film formed by anodizing the metal surface is separated.
  • 2 is a SEM photograph showing that the metal oxide film is easily peeled off and the metal inside is exposed.
  • the anodized metal oxide film is easily peeled off from the metal surface by applying a physical force such as bending.
  • the anodized metal oxide film which has fallen off is leaked into the living body and has a serious effect on the living body.
  • the problem of the anodization method has a problem of surface contamination due to the residual of the electrolyte or chemical components used during anodization. The smaller the porosity of the anodized surface is at the nanoscale level, the more difficult it is to remove residual impurities.
  • the present invention relates to a method of imparting nanometer-level roughness to the surface of a biograft metal while simultaneously anodizing and removing the anodized surface to remove residual contaminants present on the surface.
  • This is a surface treatment method that can form a micro / nanometer roughness when used in combination with the surface treatment method existing micro-level roughness exists.
  • an object of the present invention is to remove the anodized surface after anodizing the surface of the metal base material, a groove is formed on the surface, and the anodized titanium oxide film is peeled off to prevent leakage from the inside of the body and at the same time when peeling
  • an object of the present invention is to remove the anodized surface after anodizing the surface of the metal base material, a groove is formed on the surface, and the anodized titanium oxide film is peeled off to prevent leakage from the inside of the body and at the same time when peeling
  • a biograft metal having a nanopatterning groove surface having excellent biocompatibility, chemical compatibility, and mechanical compatibility when implanted into a living body by using a biograft titanium or a titanium alloy as a material of a metal base material by a groove formed through surface anodization.
  • biotransplant metals and metals with nanopatterned groove surfaces that can be formed with sandblasting or anodized with SLA (Sand blasted, Large-grit, Acid etched) processes to form grooves of various sizes, including nanopatterning It is to provide a method, an implant, an implant manufacturing method, a stent, and a stent manufacturing method.
  • SLA Sand blasted, Large-grit, Acid etched
  • the above object is to anodize a metal base material consisting of titanium metal or titanium alloy to form titanium oxide nanotubes; Removing the titanium oxide nanotubes is achieved by a method for producing a bio-grafted metal having a nano-patterned groove surface comprising the step of forming a groove (groove) on the surface of the metal base material.
  • the step of forming the titanium nanotubes oxidized by oxidizing the anode are, fluoride (F -) ions by immersing the base metal in the electrolytic solution, and oxidizing the anode containing the electrolyte solution containing fluoride ions, fluoride Salts containing ions; It is preferable to include; at least one solvent of an inorganic acid, an organic acid, and a polymer alcohol.
  • the salt includes at least one of hydrogen fluoride (HF), sodium fluoride (NaF) and ammonium fluoride (NH 4 F), and the solvent is phosphoric acid (H 3 PO 4 ), sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), glycerol (glycerol), it is preferable to include one or more of ethylene glycol (ethylene glycol).
  • HF hydrogen fluoride
  • NaF sodium fluoride
  • NH 4 F ammonium fluoride
  • the solvent is phosphoric acid (H 3 PO 4 ), sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), glycerol (glycerol), it is preferable to include one or more of ethylene glycol (ethylene glycol).
  • the method may further include forming an oxide film having a thickness of 10 nm to 1,000 nm on the surface of the metal base material by heat-treating the metal base material after forming the grooves on the surface of the metal base material. It is preferable to make at 1200 degreeC.
  • the groove has a hemispherical shape
  • the diameter has a size of 10nm to 1,000nm
  • the hemispherical groove preferably further comprises a micropore (pore) of several nanometers on the surface.
  • the titanium oxide nanotubes are removed by ultrasonic cleaning by immersing the metal base material in hydrogen peroxide (H 2 O 2 ), and the titanium oxide nanotubes are preferably removed by immersing in an organic acid or an aqueous base solution.
  • H 2 O 2 hydrogen peroxide
  • the method may further include sandblasting the surface of the metal base material, and the sandblasting may include sand blasting the metal blast surface on the surface of the metal base material. It is preferable to further include the step of forming a micro groove in the micrometer to 500 ⁇ m, or surface treatment of the metal base material through a sand blasted, large-grit, acid etched (SLA) method.
  • SLA acid etched
  • the method further comprises removing the polymer protective layer.
  • the method may further include coating a biocompatible material on the surface of the oxide film, and the coating of the biocompatible material may preferably use an electron beam deposition method or an electrolytic coating method.
  • the electrolytic coating method after the step of immersing the metal base material in an aqueous solution containing the biocompatible material and then applying electricity to the aqueous solution to coat the biocompatible material, after forming a groove on the surface of the metal base material, Changing the surface of the metal base material to a hydrophilic state; It is preferred to further include the step of injecting a drug into the groove of the metal base material is hydrophilic, the drug is preferably a hydrophilic polymer drug.
  • the above object is, the surface of the nano-patterned grooves, characterized in that the anodized metal base material consisting of titanium metal or titanium alloy to form titanium oxide nanotubes, the titanium oxide nanotubes are removed to form grooves on the surface of the metal base material It is also achieved by a biograft metal having a.
  • biotransplantable metal having a nanopatterned groove surface characterized in that it comprises a metal matrix having hemispherical grooves formed on the surface thereof.
  • the above object is to anodize an implant body made of titanium metal or titanium alloy to form titanium oxide nanotubes; Removing the titanium oxide nanotubes is achieved by an implant manufacturing method having a nano-patterned groove surface comprising the step of forming a groove (groove) on the surface of the implant body.
  • the above object is, the surface of the nano-patterned grooves, characterized in that the implant body made of titanium metal or titanium alloy anodized to form titanium oxide nanotubes, the titanium oxide nanotubes are removed to form grooves on the surface of the implant body It is also achieved by implants with.
  • an implant having a nanopatterning groove surface characterized in that it comprises an implant body with hemispherical grooves formed on the surface.
  • the above object is to anodize a stent body made of titanium metal or titanium alloy to form titanium oxide nanotubes; Removing the titanium oxide nanotubes is achieved by a method for manufacturing a stent having a nano-patterned groove surface comprising the step of forming a groove (groove) on the surface of the stent body.
  • the above object is, the surface of the nano-patterned grooves, characterized in that anodizing the stent body made of titanium metal or titanium alloy to form titanium oxide nanotubes, the titanium oxide nanotubes are removed to form grooves on the surface of the stent body Achieved by a stent with
  • a stent having a nanopatterned groove surface characterized in that it comprises a stent body with hemispherical grooves formed on the surface.
  • a stent having a nanopatterned groove surface wherein the surface of the stent body on which the groove is formed is hydrophilic and a hydrophilic polymer drug is injected into the groove of the stent body which is hydrophilic.
  • an anodized surface is removed to form grooves on the surface, and anodized titanium oxide film can be peeled off to prevent leakage from the inside of the living body. Impurities remaining in the can be effectively removed.
  • a biograft titanium or titanium alloy as a material of the metal base material to maximize the surface area when implanted in the living body by the groove formed through the surface anodization, it has excellent biocompatibility, chemical compatibility and mechanical compatibility, sandblasting or SLA (Sand blasted, Large-grit, Acid etched) and anodization can be performed to form grooves of various sizes including nanopatterning.
  • 1 and 2 are SEM images of the anodized metal oxide film according to the embodiment of the prior art
  • FIG. 3 is a flow chart of a method for manufacturing a bio-transplant metal having a nano-patterned groove surface according to the first embodiment of the present invention
  • Figure 4 is a schematic diagram showing a method for producing a metal for transplantation
  • Figure 5 is a flow chart of a method for producing a metal for transplantation according to the second embodiment
  • FIG. 6 is a flow chart of a method for manufacturing a metal for transplantation according to a third embodiment
  • FIG. 7 is a flow chart of a method for manufacturing a bio-transplant metal according to a fourth embodiment
  • FIG. 8 is a flow chart of a method for manufacturing a bio-transplant metal according to a fifth embodiment
  • FIG. 9 is a flowchart of a method of manufacturing a metal for transplantation according to a sixth embodiment.
  • FIG. 11 is a schematic diagram showing a state of anodizing a metal base material
  • FIG. 13 is an SEM photograph showing that grooves are formed on the surface of the metal base material from which the titanium oxide film is removed according to the first embodiment
  • 16 is a graph showing the XPS surface component analysis results of the metal base material before and after the nanopatterning process according to the first embodiment
  • 17 is an AFM photograph of a surface of a metal base material having a titanium oxide film removed according to the first embodiment
  • 19 is a SEM photograph showing that a groove is formed on the surface of the metal base material from which the titanium oxide film is removed according to the second embodiment
  • 20 is an AFM photograph of a surface of a metal base material having a titanium oxide film removed according to a second embodiment
  • 21 is a SEM photograph showing the surface change of the titanium metal base material according to the step of the second embodiment
  • FIG. 22 is a SEM photograph of the surface of the metal base material removed after the SLA surface treatment and the titanium oxide film formed thereon according to the step of the third embodiment.
  • the biograft metal, implant, and stent of the present invention are manufactured using a metal base material, and have an implant body made of an implant shape, a stent body made of a stent shape, or a metal base material for a biograft metal, having a shape suitable for use.
  • a metal base material representatively.
  • anodizing a metal base material forms titanium oxide nanotubes on a surface (S1a).
  • a metal base material 100 made of titanium (Ti) or a titanium alloy is prepared, and the metal base material 100 is anodized to form a titanium nanotube structure having a titanium nanotube structure on its surface.
  • the metal base material 100 of the present invention uses only titanium or titanium alloy as a material.
  • metal base material 100 when the metal base material 100 is an implant base material, grooves are formed on the surface of the artificial tooth by anodizing the artificial tooth area.
  • Metal base material 100 is divided into a crown (crown), abutment and artificial tooth root, the metal base material (100) is formed by forming a groove in the artificial root to be placed in the root of the tooth to induce bone adhesion It can be used for a long time without departing from the roots.
  • Titanium oxide nanotubes 200 made of titanium oxide (TiO 2 ) are formed in a region in which the electrolyte is in contact with the metal base material 100 as an anode and then immersed in the electrolyte.
  • the titanium oxide nanotubes 200 are formed in the form of a tube on the surface of the metal base material 100, and the interface contacting the metal base material 100 is in the form of a hemisphere like the lower shape of the tube.
  • the size of the area recessed by the tubular shape has a diameter of several tens to hundreds of nanometers, which can be adjusted by controlling the anodization conditions.
  • the electrolyte solution is an electrolyte solution containing fluoride (F ⁇ ) ions, and is oxidized by immersing the metal base material 100 in the electrolyte solution.
  • the electrolyte solution containing fluoride ions is preferably formed by mixing a salt containing fluoride ions, a solvent selected from at least one of a group consisting of an inorganic acid, an organic acid, a polymer alcohol and a mixture thereof, and water.
  • Salts containing fluoride ions are salts consisting of hydrogen fluoride (HF), sodium fluoride (NaF), ammonium fluoride (NH 4 F) and mixtures thereof, phosphoric acid (H 3 PO 4 ), sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), glycerol (glycerol), ethylene glycol (ethylene glycol) and a solvent selected from the group consisting of a mixture thereof, it is preferable to use a mixture of water.
  • HF hydrogen fluoride
  • NaF sodium fluoride
  • NH 4 F ammonium fluoride
  • phosphoric acid H 3 PO 4
  • sulfuric acid H 2 SO 4
  • nitric acid HNO 3
  • glycerol glycerol
  • ethylene glycol ethylene glycol
  • solvent selected from the group consisting of a mixture thereof it is preferable to use a mixture of water.
  • the halide ions can effectively elute the metal to create pitting corrosion on the metal.
  • other halides such as chloride (Cl ⁇ ) and bromide (Br ⁇ ) among halide ions
  • anodizing is performed in an electrolyte solution containing fluoride ions, since the titanium oxide nanotubes 200 having a uniform size and spacing are formed, the present invention uses an electrolyte solution containing fluoride ions.
  • Titanium oxide nanotubes 200 formed by anodization have a physical force applied to the metal base material 100 in vivo when or after the metal base material 100 formed of titanium or titanium alloy is inserted into a living body.
  • the surface is easily peeled off as shown in FIGS. 1 and 2.
  • 1 and 2 are anodized the metal surface by a general anodization method as in the prior art, it can be seen that the metal oxide film immediately falls off even if a little external force is applied. Therefore, when the biograft metal prepared by the prior art is inserted into the living body, the metal oxide film is peeled off, and the peeled metal oxide film causes problems such as necrosis of somatic cells and a decrease in the degree of bone fusion of the biograft metal. In addition, it is difficult to effectively remove impurities remaining in the oxide film when nano-sized micropores are formed through anodization. In order to solve this problem, the present invention removes the titanium oxide nanotubes 200 formed on the metal base material 100.
  • the hemispherical groove 300 is formed on the surface of the metal base material 100 by removing the titanium oxide nanotubes 200 formed on the surface of the metal base material 100 using a physical method or a chemical method. Even if the titanium oxide nanotubes 200 are removed, the hemispherical grooves 300 formed by the titanium oxide nanotubes 200 remain on the surface of the metal base material 100.
  • the physical method is preferably a method of ultrasonic cleaning by immersing the titanium oxide nanotubes 200 in hydrogen peroxide (H 2 O 2 ), chemical method is titanium oxide nano immersed by immersing the metal base material 100 in an organic acid or aqueous base solution A method of causing the tube 200 to fall apart is preferred, but not limited to these methods.
  • nanosized grooves 300 having a substantially hemispherical shape are formed on the surface of the metal base material 100, and the hemispherical grooves 110 are formed.
  • a metal base material 100 having micropores 111 and pores having a size smaller than that of a hemispherical groove 110 may be obtained.
  • the hemispherical groove 110 may be formed to a diameter (d) of 10 to 1,000nm. This is possible by controlling electrochemical conditions such as applied voltage, an electrolyte solution, and temperature during anodization.
  • the surface of the metal base material 100 obtained through the steps S1a and S2a is passivated from metal to metal oxide and can be used immediately.
  • the process of passivating the titanium in the form of titanium oxide suitable for biomaterials and prevent oxidation was carried out by exposing the biograft metal to high temperature or boiling in hot water.
  • a groove may be formed on the surface while passivating the metal base material 100 in the form of titanium oxide through anodization.
  • the heat treatment is performed to form an oxide film 300 on the surface of the metal base material 100 (S3a).
  • An oxide film 300 is formed on the surface of the metal base material 100 by heat-treating the metal base material 100 having the grooves 110 formed on the surface thereof.
  • the oxide film 300 may include fine pores in or inside the oxide film 300 including the grooved oxide 310 and the oxide fine hole 311 formed along the groove 110 and the micropores 111 of the metal base material 100. It means the oxide film 300 formed.
  • the oxide film 300 is preferably a thin film having a thickness of 10 to 1,000nm, if the thickness of the thin film is less than 10nm does not mean that the heat treatment separately, if the thickness exceeds 1,000nm the oxide film 300 by the external force the metal base material (100) ) May deviate.
  • the oxide film 300 is in an amorphous state when the surface of the metal base material 100 on which the grooves 110 are formed is not heat treated, and becomes an crystalline surface when heat treated. As such, by changing to a crystalline surface, physicochemical properties such as hydrophilicity, hardness, strength, and thickness of the oxide film 300 can be controlled.
  • the oxide film 300 is formed with a hemispherical groove oxide 310 including a microscopic oxide hole 311, the heat treatment temperature for forming the groove oxide 310 is preferably made at 200 to 1200 °C, such a temperature In crystalline oxide film 300 is formed. If the heat treatment temperature is less than 200 °C amorphous oxide film is formed, if it exceeds 1200 °C may deform the metal base material 100.
  • the hemispherical groove oxide 310 formed in the oxide film 300 preferably has a diameter of 10 to 1,000 nm.
  • the diameter of the grooves 310 may be adjusted through condition control of anodization.
  • the surface of the groove oxide 310 itself is also formed with a rough surface having a fine microscopic oxide hole 311 of several nanometers in size.
  • the crystalline titanium oxide film 300 is formed to have a higher hardness and a thickness of 10 nm or more, which is relatively thicker than the amorphous titanium oxide film, thereby improving biocompatibility and hydrophilicity.
  • an amorphous titanium oxide (TiO 2 ) thin film having a thickness of 2 to 5 nm is formed on a surface of a native oxide layer formed naturally after the titanium oxide nanotubes 200 are removed through anodization.
  • an anatase crystal phase is formed at about 200 ° C. or more, and a rutile crystal phase oxide film 300 is formed at 700 ° C. or more.
  • the hardness is in order of rutile>anatase> amorphous, and by heat treatment, the thickness of the oxide film 300 can be increased to 10 nm or more. That is, as the heat treatment is performed, the hardness of the metal surface on which the hemispherical grooves 310 are formed may be increased, and the thickness of the oxide film 300 suitable for the living body may be increased.
  • the hemispherical groove 110 is formed on the surface only by anodizing the metal base material 100.
  • the anodization is performed with sandblasting.
  • the surface of the metal base material is sandblasted (S1b).
  • Sandblasting is a type of spray processing, and sandblast media used here are small diameter glass spheres, silicon, sea sand, metal particles, and the like.
  • Sandblasting is a process of forming a fine groove surface on the surface by hitting the sandblast medium by spraying with air or dropping by gravity. That is, sandblasting particles of 1 to 100 ⁇ m are prepared to form micro-sized grooves on the surface of the metal base material, and sandblasted to the surface of the metal base material using a pressure of 0.45 to 0.65 kgf / cm 2 .
  • the sand blasting pressure 0.45kgf / cm 2 is less than mothamyeo not form a groove of a desired size has not been sand-blast media to properly blow the metal base material, cause a damage to a part of the metal base material exceeds the 0.65kgf / cm 2 have. Thereafter, the sandblast media is washed to remove all of the metal substrate surface. Through this process, a large micro recess of 50 to 500 ⁇ m size is formed on the surface of the metal base material. In the case of micro grooves, it is difficult to form grooves of less than 50 ⁇ m by using sand blasting, and when they exceed 500 ⁇ m, the grooves are not suitable because they are large enough to affect the metal base material.
  • a process of anodizing the metal base material including the micro grooves is performed.
  • hemispherical nano grooves are formed in the micro grooves by anodization.
  • a third embodiment using a sand blasted, larg-grit, acid etched (SLA) method and an anodization method may be performed instead of the sandblasting method as the second embodiment.
  • SLA acid etched
  • an etching process is performed by immersing the metal base material in which the grooves of several hundred micro sizes are formed on the surface through sand blasting. Through the etching process, it is possible to obtain an intermediate groove having a size of 1 to 50 ⁇ m, which is a smaller groove than a micro groove obtained through sandblasting.
  • the intermediate groove it is difficult to form a groove of less than 1 ⁇ m through acid etching, and when it exceeds 50 ⁇ m, sandblasting and acid etching do not have a meaning because there is no difference from a large groove.
  • washing is sequentially performed with a base wash to neutralize the acid, an acid used for neutralization, and water or distilled water to remove the base, and a washing process of particles used for sand blasting is also performed.
  • the step of anodizing the same metal base material as the first embodiment and the second embodiment (S2c) and the step of removing the titanium oxide nanotubes to form hemispherical grooves on the surface of the metal base material (S3c) are performed.
  • the middle groove is formed in the micro groove, and the hemispherical nano groove is formed in the middle groove.
  • the fourth embodiment which is another embodiment, is a technique for preventing anodization in some regions of the metal base material, and includes the following steps. As shown in FIG. 7, first, a polymer protective layer is formed on a part of the surface of the metal base material (S1d).
  • a metal base material for preparing a biograft metal, an implant, or a stent is prepared, and a polymer protective layer is formed to prevent anodization on a part of the surface of the metal base material. This step is performed when there is a region in the surface of the metal base material that does not want to be anodized, and this step may not be performed when anodizing the entire surface of the metal base material.
  • the region requiring high bio-binding force performs anodization
  • the region that does not require bio-binding force or the region that does not require grooves form a polymer protective layer so that anodization does not occur.
  • the inner surface of the stent is preferably smooth so that blood can flow smoothly through the inside of the stent.
  • a polymer protective layer is formed on the inner wall of the stent so that the inner wall is not anodized.
  • the polymer protective layer is a polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA), polyimide (PI), polyethylene terephthalate (PET), polyethersulfone (PES), polyethylene naphthalate (PEN), It is preferably selected from the group consisting of polystyrene (PS), polyurethane (PU), polyamide (PA), fiber reinforced plastic (FRP), and mixtures thereof.
  • PDMS polydimethylsiloxane
  • PMMA polymethylmethacrylate
  • PI polyimide
  • PET polyethylene terephthalate
  • PES polyethersulfone
  • PEN polyethylene naphthalate
  • PS polystyrene
  • PU polyurethane
  • PA polyamide
  • FRP fiber reinforced plastic
  • a titanium oxide nanotube is formed on the surface by anodizing a metal base material having a polymer protective layer formed on a portion of the surface or the polymer protective layer not present.
  • the anodized electrolyte is in contact with the region excluding the polymer protective layer, and titanium oxide nanotubes are formed in the area where the electrolyte is in contact.
  • the step of anodizing the metal base material to form the titanium oxide nanotubes on the surface may use the same method as in step S1a of the first embodiment, thereby detailed description thereof will be omitted.
  • the polymer protective layer on the surface of the metal base material is removed (S3d).
  • the polymer protective layer protecting the surface of the metal base material is removed to prevent anodization.
  • the polymer protective layer can be simply removed using a cleaning solution such as acetone or the like.
  • the step of removing the polymer protective layer is preferably removed immediately after anodization, but in some cases, may be removed after the final biograft metal is finally manufactured. In other words, this step may be performed at any stage or after anodization.
  • the step of removing the titanium oxide nanotubes to form hemispherical grooves on the surface of the metal base material (S4d) and the step of performing heat treatment to form an oxide film on the surface of the metal base material (S5d) are the same as in the steps S2a and S3a of Example 1 Detailed description is omitted because it is made.
  • the fourth embodiment may use the biograft metal, implant or stent obtained through these steps, but if necessary to carry a hydrophilic drug, the following steps may be further proceeded.
  • the oxide film is changed into a hydrophilic state (S6d).
  • hydrophobic drug When a hydrophobic drug is injected in a hydrophobic state without changing the oxide film into a hydrophilic state, when a biotransplantable metal, implant or stent including the same is inserted into the living body, the hydrophobic drug may be rapidly released from the biograft metal, implant or stent in contact with the living body. It is released all at once. If the drug is released in a short time, the release concentration of the drug is increased, which has a harmful effect on the living body. Therefore, a hydrophilic drug is used to release the drug slowly, and the surface of the biograft metal, implant or stent is also preferably hydrophilic.
  • UV having a wavelength of 300 to 400 nm at a speed of 1 to 20 m / min is used by using a UV lamp having an intensity of 0.1 to 10 J / cm 2 for the oxide film. It is preferable to process.
  • methods such as a hydrothermal treatment process and a plasma treatment process, which can change the oxide film into a hydrophilic state, can be used without limitation.
  • the drug is injected into the groove of the oxide film (S7d).
  • the oxide film is changed to hydrophilic, and a hydrophilic drug is injected into the groove to allow the drug to smoothly flow into the hydrophilic groove.
  • the hydrophilic drug is preferably a hydrophilic polymer drug that inhibits the proliferation of neointimal cells.
  • Drugs can be used in various ways depending on the use of the implant or stent, it is preferable to use bisphosphonate-based drugs in order to increase the biobinding force in the implant.
  • bisphosphonate-based drugs and antibiotics may be mixed, and bisphosphonate-based drugs are used to suppress osteoclast production in vivo. have.
  • bisphosphonate drugs cause metabolic changes such as inhibition of intestinal calcium migration, inhibition of 1,25 (OH) 2 D production, inhibition of glycolysis, inhibition of cell growth, and changes in acidic and alkaline phosphatides.
  • Such bisphosphonate drugs include etidronate (1-ethane-1-hydroxy-1,1-bisphosphonate), pamidronate (3-amino-1-hydroxy-propylidene bisphosphonate), and alendronate (4). -amino-1-hydroxy-butylidene bisphosphonate), ibandronate, 1-hydroxy-3- [methyl (pentyl) amino] propane-1,1-diyl bisphosphonate), and mixtures thereof.
  • etidronate (1-ethane-1-hydroxy-1,1-bisphosphonate
  • pamidronate (3-amino-1-hydroxy-propylidene bisphosphonate
  • alendronate (4) alendronate (4).
  • -amino-1-hydroxy-butylidene bisphosphonate ibandronate, 1-hydroxy-3- [methyl (pentyl) amino] propane-1,1-diyl bisphosphonate
  • the antibiotic is preferably selected from the group consisting of tetracycline (tetracycline), vancomycin (vancomycin), amoxicillin, clavulanic acid and mixtures thereof.
  • the manufacturing method of the fifth embodiment is identical to the steps S1d to S4d as shown in FIG. 8, but there is a difference in the process after the step of forming grooves on the surface of the metal base material.
  • a polymer protective layer on a portion of the surface of the metal base material (S1e), anodizing the metal base material to form titanium oxide nanotubes on the surface (S2e), and removing the polymer protective layer on the surface of the metal base material (S3e).
  • a biocompatible material is coated on the surface of the metal base material (S5e).
  • the biocompatible material is further coated on the surface of the metal base material in order to increase the biocompatibility, the biocompatibility, the strength, and the like.
  • a thin coating layer is formed on the surface of the metal base material using a biocompatible material, grooves are also formed in the coating layer by the grooves of the metal base material.
  • the biocompatible material may be a biocompatible metal, a biocompatible ceramic, a biocompatible polymer, or the like.
  • Biocompatible materials and elements include magnesium (Mg), calcium (Ca), phosphorus (P), zinc (Zn), iron (Fe), chromium (Cr), nickel (Ni), stainless steel, and cobalt ( Co), titanium (Ti), zirconium (Zr), niobium (Nb), tantalum (Ta), gold (Au), silver (Ag) and a mixture thereof are preferably selected.
  • the biocompatible polymers are polylactic acid (PLA), polyglycolic acid (PGA), polylactic-co-glycolic acid (PLGA), polycaprolactone (poly-e- caprolactone, PCL) and mixtures thereof.
  • an electron beam deposition method or an electrolytic coating method is preferable.
  • any method capable of coating may be used without limitation.
  • the electron beam deposition method is a method of depositing a biocompatible material on a metal base material which is a deposition base material by irradiating an electron beam to a biocompatible material located in an electron beam deposition apparatus, and is generally used as a method of depositing a metal.
  • a metal base material which is a deposition base material by irradiating an electron beam to a biocompatible material located in an electron beam deposition apparatus.
  • the electron beam may be generated at an electron beam deposition current of 100 to 150 mA. If the electron beam is less than 100 mA, the energy is so small that the electron beam is generated so that the rate at which the biocompatible material is deposited is very low and the process is not efficient. In addition, the biocompatible material may be overflowed if it exceeds 150 mA, thereby reducing the durability of the electron beam deposition equipment.
  • the electron beam deposition rate in the electron beam deposition process is preferably 1 to 1.5 ⁇ / s. If the deposition rate is less than 1 ⁇ / s, the amount of biocompatible materials deposited is too small, the process is inefficient, exceeding 1.5 ⁇ / s In this case, the uniformity may be reduced when the biocompatible material to be deposited is laminated.
  • the electrolytic coating method which is another method of coating a biocompatible material, is a method of coating a biocompatible material by immersing a metal base material in an aqueous solution containing the biocompatible material and then greeting the electricity with the aqueous solution.
  • the aqueous solution containing the biocompatible material is preferably selected from the group consisting of a hydroxyapatite (HAp) solution, a calcium solution, a phosphate solution, and a mixture thereof.
  • the calcium solution refers to a solution containing calcium in an ionic form, calcium phosphate, calcium acetate monohydrate (CA), calcium acetate hydrate (calcium acetate hydrate), calcium acetate (calcium) acetate) and mixtures thereof, but is not limited thereto.
  • the phosphate solution means a solution in which the phosphate is contained in the aqueous solution in the form of ions, glycerophosphate disodium salt pentahydrate (GP), glycerol phosphate calcium salt, glycerophosphate disodium
  • the salt hydrate is selected from the group consisting of glycerophosphate disodium salt hydrate, glycerol phosphate disodium salt, and mixtures thereof.
  • aqueous solution is 25-300 degreeC in temperature. If the temperature is less than 25 °C the activity of the electrolytic ions may be lowered kinetics disadvantageously, if the temperature exceeds 300 °C may cause a problem of excessive manufacturing energy release.
  • a biocompatible metal, an implant or a stent coated with a biocompatible material on the surface of the metal base material can be obtained, and in the case of the drug release implant or the stent, as in the steps S6d and S7d of the fourth embodiment Changing the coating layer to a hydrophilic state (S6e) and the step of injecting a drug into the groove of the hydrophilic coating layer (S7e) can be further proceeded.
  • forming a polymer protective layer on a part of the surface of the metal base material (S1f), and forming titanium oxide nanotubes on the surface by anodizing the metal base material ( S2f), removing the polymer protective layer on the surface of the metal base material (S3f), and removing the titanium oxide nanotubes to form grooves on the surface of the metal base material (S4f) are the same as in the fourth and fifth embodiments. Although the following steps are made, there is a difference in applying the fourth embodiment and the fifth embodiment together.
  • the metal base material having grooves formed on the surface is heat-treated to form an oxide film on the metal base material surface.
  • a plurality of grooves are formed in the oxide film, and the heat treatment temperature for forming the grooves is preferably performed at 200 to 1200 ° C. as in the fourth embodiment, and a crystalline thin film is formed at this temperature.
  • the grooves formed in the oxide film preferably have a diameter of 10 to 1,000 nm similarly to the grooves. If the diameter of the grooved oxide is less than 10nm, the bio-binding force is not high, and if the diameter of the grooved oxide is greater than 1,000 nm, the grooves may be interlocked with each other, thereby making it difficult to obtain uniform grooves.
  • the diameter of the grooves can be controlled by the diameter of the grooves or by controlling the heat treatment temperature. In addition, a rough surface having fine pores of several nanometers in size is formed at the same time as the surface of the grooved oxide itself.
  • the biocompatible material is coated on the surface of the oxide film (S6f).
  • the biocompatible material is further coated on the surface of the oxide film in order to increase biocompatibility, biocompatibility, strength, and the like.
  • the coating layer is formed on the surface of the oxide film using a biocompatible material
  • the groove shape is also formed on the coating layer by the groove of the oxide film.
  • the biocompatible material any of the materials described in Example 5 can be used.
  • the strength is increased by the oxide film, and the strength and biocombination force are increased by the biocompatible material.
  • a biograft metal, an implant, or a stent coated with a biocompatible material on the oxide film surface may be obtained.
  • the coating layer may be similar to the steps S6d and S7d of the fourth embodiment. Changing to a hydrophilic state (S7f) and the step of injecting a drug into the groove of the hydrophilic coating layer (S8f) can be further proceeded.
  • Example 1 is a method of anodizing the surface of a metal base material made of pure titanium metal or titanium alloy to form hemispherical grooves on the surface.
  • the surface of the metal base material before the surface treatment may be confirmed through FIG. 10.
  • a positive electrode is a titanium (Ti) metal base material 100 and a negative electrode is an insoluble platinum (Pt, 10) metal
  • a DC voltage is applied to both ends and anodized, so that the titanium oxide nanotubes are formed on a metal surface. Can be formed on top.
  • the metal base material 100 is immersed in ethanol and acetone in an ultrasonic cleaner in turn, and then washed for 2 minutes. Subsequently, the titanium (Ti) metal base material 100 to be anodized in the electrolyte and the insoluble platinum 10 metal as a counter electrode are dipped in the electrolyte 20 as shown in FIG. 11.
  • the electrolyte solution was an electrolyte solution 20 in which 0.01 to 10 wt% of ammonium fluoride (NH 4 F) salt was added to a mixture of ethylene glycol and water, and the temperature of the electrolyte solution 20 was 10 to 10.
  • Titanium oxide obtained by the anodic oxidation (TiO 2) nanotubes can be seen to preferably formed of a bar, titanium oxide nanotubes shown in FIG.
  • the sample obtained by anodizing is immersed in water for 1 hour and washed. After washing, in order to remove the titanium oxide nanotubes obtained by anodizing from the metal matrix, they were immersed in a hydrogen peroxide (H 2 O 2 ) solution and washed again with an ultrasonic cleaner for 5 minutes while maintaining 20 to 100 ° C. After dipping and washing for 5 minutes with an ultrasonic cleaner, it is finally dipped in ethanol and washed for 5 minutes with an ultrasonic cleaner.
  • the washed samples are stored after drying in a hot air dryer. This removes the titanium oxide nanotubes formed on the surface of the metal base material, and the surface has a hemispherical groove as shown in FIG. 13.
  • FIG. 16 shows XPS results of comparing the original metal matrix surface with the surface removed after anodizing to form titanium oxide nanotubes. XPS results show that after the nanopatterning process, the surface is more oxidized to titanium oxide and impurities such as lead (Pb) are removed as shown in Table 1. Lead may remain on the surface during the manufacturing process, but may be removed from the surface of the metal substrate in the process of removing the titanium oxide nanotubes after anodizing as in the present invention. At this time, impurities other than lead are also removed.
  • Pb lead
  • FIG. 17 illustrates an AFM (atomic force microscope) image of the metal base material from which anodized titanium oxide nanotubes are removed, and it can be seen that nano-sized grooves are uniformly formed.
  • AFM atomic force microscope
  • the thickness of the titanium oxide oxide film may be increased to about 10 nm to 1,000 nm by heat-treating the metal matrix sample at 200 to 1200 ° C.
  • Example 2 is a restable blast media (RBM) process for sandblasting a metal base material made of pure titanium metal or an alloy and then anodizing to form grooves on the surface of the metal base material.
  • RBM restable blast media
  • the metal base material is fixed so as not to be moved by pressure, and then sandblasting the media including calcium phosphate particles having a grain size of sand such as 180 to 425 ⁇ m to the metal base material at an appropriate pressure using a spray nozzle.
  • Surface treatment The sand is using a pressure of 0.45 to 0.65kgf / cm 2 is made as sand blasting. The surface treatment is performed for 10 to 25 seconds, and the treated metal base material is washed in the ultrasonic cleaner for about 5 minutes.
  • the sandblasting surface-treated metal base material can be confirmed through FIG.
  • Anodization is carried out using a sandblasted metal substrate. Anodization is performed in the same manner as in Example 1 by immersing a metal base material as an anode and platinum as a cathode in an electrolyte and applying a voltage to obtain titanium oxide nanotubes of 200 nm or more on the surface of the metal base material.
  • the titanium oxide nanotubes obtained through anodization are sequentially immersed in hydrogen peroxide water, water and ethanol, and then washed using an ultrasonic cleaner, thereby removing the titanium oxide nanotubes.
  • the metal base material having grooves formed on the surface thereof can obtain a surface having micro grooves of 100 ⁇ m and nano grooves of several to several hundred nanometers.
  • 19 and 20 are surfaces removed only part of the titanium oxide nanotubes after sandblasting and anodizing, titanium oxide nanotube shape is left on the surface is not removed, as shown in the figure, evenly formed hemispherical grooves It can be seen that.
  • This step can confirm the surface change as shown in FIG. 22 shows that the nanopattern grooves are formed on the surface while maintaining the micro grooves and the intermediate grooves on the hemispherical surface by anodizing the SLA and then removing the titanium oxide nanotubes.
  • Example 2 is a process of forming grooves on the surface of the metal base material by anodizing the metal base material made of pure titanium metal or alloy after SLA (Sand blasted, Larg-grit, Acid etched) method.
  • SLA Sand blasted, Larg-grit, Acid etched
  • the metal base material is fixed so as not to be moved by the pressure, and then sandblasted aluminum metal (Al 2 O 3 ) having a grain size of sand such as 100 ⁇ m to the metal base material at an appropriate pressure using a spray nozzle.
  • Aluminum oxide is sandblasted using a pressure of 0.45 to 0.65kgf / cm 2 .
  • the sandblasted metal matrix is immersed in an acid and the surface is etched to form grooves of several micrometers.
  • neutralization washing is performed through a base to neutralize the acid used for etching, and washing with water or distilled water is performed once more to remove the base used for neutralization washing.
  • an additional cleaning process is performed to completely remove the aluminum oxide used in sandblasting.
  • Anodization is carried out using sandblasted and etched metal substrates. Anodization is performed in the same manner as in Example 1 by immersing a metal base material as an anode and platinum as a cathode in an electrolyte and applying a voltage to obtain titanium oxide nanotubes of 200 nm or more on the surface of the metal base material.
  • the titanium oxide nanotubes obtained through anodization are sequentially immersed in water, hydrogen peroxide and ethanol, and then washed using an ultrasonic cleaner, thereby removing the titanium oxide nanotubes.
  • the metal base material having grooves formed on the surface may obtain a surface having micro grooves of 100 ⁇ m, intermediate grooves of several micrometers, and nano grooves of several to several hundred nanometers.
  • Example 4 the metal base material made of pure titanium metal or alloy is anodized in the same manner as in Example 1, a groove is formed on the surface of the metal base material, and heat treatment is performed to increase the thickness of the oxide film.
  • Anodization is performed in the same manner as in Example 1 by dipping the metal base material as an anode and platinum as a cathode in an electrolyte and applying a voltage to obtain a nanotube structure of 200 nm or more on the surface of the metal base material. After immersing in water, hydrogen peroxide and alcohol, ultrasonic cleaning for 5 minutes to remove the titanium oxide nanotubes. After removing the titanium oxide nanotubes and dried for 10 minutes in 100 °C oven, heat treatment for 1 hour in 300 °C electric furnace. After the heat treatment, the thickness of the oxide film was increased to about 50 nm.
  • a metal base material made of titanium (Ti) metal having an implant or stent shape is immersed in ethanol and acetone in an ultrasonic cleaner and washed for 2 minutes. After cleaning, the metal base is dried and PDMS (Polymethylsiloxane) is coated on the metal base where anodization is not desired. Thereafter, spot welding is performed on titanium metal to make an electrode point to anodize the surface of the metal base material. Subsequently, a titanium metal base material, which is an anodization target, and a platinum (Pt) metal, a counter electrode, are immersed in the electrolyte.
  • the electrolyte used was an electrolyte in which 0.01 to 10 wt% NH 4 F and 1 to 50 vol% H 2 O were added to ethylene glycol, and the temperature of the electrolyte was maintained at room temperature.
  • the surface of the titanium metal base material is anodized with titanium oxide (TiO 2 ).
  • the DC voltage is applied to a constant voltage of 10 to 200V for 10 to 300 minutes, the anodized titanium oxide is formed on the surface of the metal substrate titanium oxide nanotubes having a thickness of several microns or more.
  • Anodized metal base material is removed using PDMS coated on the inner wall surface using acetone.
  • the PDMS coated surface is not anodized and the smooth surface is maintained.
  • the titanium oxide nanotubes obtained through anodization are removed from the metal base material.
  • the anodized titanium nanotubes are immersed in a 30 wt% hydrogen peroxide (H 2 O 2 ) solution for 10 minutes under an ultrasonic cleaner. Through this method, the titanium oxide nanotubes formed on the surface of the metal base material are removed, and grooves are formed on the surface thereof.
  • Titanium oxide nanotubes are removed to heat the titanium metal base material with grooves formed on the surface at 200 to 1200 ° C. to form an oxide film having grooves that are nano size grooves of about 10 to 1,000 nm. Heat treatment was performed in a kiln at a temperature to form a titanium metal matrix having a thin film having a thickness of about 100 nm.
  • the film is irradiated with UV to change the hydrophilic surface so that the drug is injected into the oxide groove of the oxide film.
  • the UV is treated at a speed of 10 m / min using a UV lamp having a strength of 1 J / cm 2.
  • the hydrophilic drug is injected into the groove of the oxide film of which the surface is hydrophilic to finally prepare a biograft metal, and the biograft metal is applied to an implant or stent.
  • a metal base material made of titanium (Ti) metal having an implant or stent shape is immersed in ethanol and acetone in an ultrasonic cleaner and washed for 2 minutes. After cleaning, the metal base is dried and PDMS (Polymethylsiloxane) is coated on the metal base where anodization is not desired. Thereafter, spot welding is performed on titanium metal to make an electrode point to anodize the surface of the metal base material. Subsequently, a titanium metal base material, which is an anodization target, and a platinum (Pt) metal, a counter electrode, are immersed in the electrolyte.
  • Ti titanium
  • Pt platinum
  • the electrolyte used was ethylene glycol (Ethylene glycol) 0.01 to 10wt% NH 4 F and the electrolyte of from 1 to the composition is added 50vol% H 2 O, the temperature of the electrolyte is kept to room temperature.
  • the surface of the titanium metal base material is anodized with titanium oxide (TiO 2 ).
  • the DC voltage is applied to a constant voltage of 10 to 200V for 10 to 300 minutes, the anodized titanium oxide is formed of titanium oxide nanotubes having a thickness of several microns or more on the surface of the metal base material.
  • Anodized metal base material is removed using PDMS coated on the inner wall surface using acetone.
  • the PDMS coated surface is not anodized and the smooth surface is maintained.
  • the titanium oxide nanotubes obtained through anodization were removed from the titanium metal matrix.
  • anodized titanium metal substrate was placed in a 30 wt% hydrogen peroxide (H 2 O 2 ) solution under an ultrasonic cleaner. Immerse for 10 minutes.
  • Titanium oxide nanotubes are removed to mount the titanium metal base material having grooves on the surface of the inner upper side of the vacuum chamber.
  • Niobium (Nb) one of the biocompatible materials, is disposed under the vacuum chamber, and the pressure inside the vacuum chamber is maintained at about 5 ⁇ 10 ⁇ 7 Torr.
  • the electron beam deposition current was applied for 9 hours while varying from 100 to 150 mA. This adjusted the current value in order to maintain the rate drop over time when niobium deposition was carried out at a rate of 1 mA / s.
  • a niobium layer which is a biocompatible material having a thickness of 3 ⁇ m, is formed on the surface of the metal matrix.
  • Such biograft metals, implants, and stents are anodized to remove the anodized surface after anodizing the surface of the metal base material, thereby preventing the anodized surface from being peeled off and thus decreasing the somatic cell necrosis or bone fusion.
  • implanting a metal biomaterial with hemispherical grooves formed through surface anodization of the metal base material it has an advantage of maximizing surface area and increasing surface roughness, thereby having excellent biocompatibility, chemical compatibility and mechanical compatibility. .
  • the present invention relates to a metal for biotransplantation, a metal manufacturing method, an implant, an implant manufacturing method, a stent and a stent manufacturing method having a nanopatterning groove surface, and more particularly, after anodizing the surface of the metal base material.
  • a groove is formed on the surface to remove the anodized titanium oxide film and prevents the nanopatterning groove surface from leaking out of the living body, a method for manufacturing a metal, a metal manufacturing method, an implant, an implant manufacturing method, a stent and a stent manufacturing method Available in the field.

Abstract

The present invention relates to a bioimplantation metal having a nano-patterning groove surface, a method for preparing the metal, an implant, a method for manufacturing the implant, a stent, and a method for manufacturing the stent. The subject matter of the present invention comprises the steps of: forming a titanium oxide nanotube by anodizing a metal base comprising titanium metal or a titanium alloy; and forming a groove on a surface of the metal base by removing the titanium oxide nanotube. Therefore, a groove is formed on the surface by removing the anodized surface after anodizing the surface of a metal base, and an anodized titanium oxide film is stripped off such that a leak thereof from the inside of a living body is prevented and impurities remaining on the surface are effectively removed. In addition, when titanium or a titanium alloy for bioimplantation, is used as a metal base material and is bioimplanted by the groove formed through surface anodizing, such that the surface area is maximized, thereby having excellent bioaffinity, chemical compatibility and mechanical compatibility during bioimplantation, and various sizes of grooves comprising nano-patterning can be formed by carrying out anodizing in combination with sandblasting or sandblasted, large-grit, acid-etched (SLA) method.

Description

나노패터닝 요홈 표면을 갖는 생체이식용 금속, 금속 제조방법, 임플란트, 임플란트 제조방법, 스텐트 및 스텐트 제조방법Biograft metal with nanopatterned groove surface, metal manufacturing method, implant, implant manufacturing method, stent and stent manufacturing method
본 발명은 나노패터닝 요홈 표면을 갖는 생체이식용 금속, 금속 제조방법, 임플란트, 임플란트 제조방법, 스텐트 및 스텐트 제조방법에 관한 것으로, 더욱 상세하게는 금속모재의 표면을 양극산화한 후 양극산화된 표면을 제거시켜 표면에 요홈이 형성되고, 양극산화된 티타늄 산화막이 박리되어 생체 내부에서 유출되는 것을 방지하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속, 금속 제조방법, 임플란트, 임플란트 제조방법, 스텐트 및 스텐트 제조방법에 관한 것이다.The present invention relates to a metal for biotransplantation, a metal manufacturing method, an implant, an implant manufacturing method, a stent and a stent manufacturing method having a nanopatterning groove surface, and more particularly, after anodizing the surface of the metal base material. A groove is formed on the surface to remove the anodized titanium oxide film and prevents the nanopatterning groove surface from leaking out of the living body, a method for manufacturing a metal, a metal manufacturing method, an implant, an implant manufacturing method, a stent and a stent manufacturing method It is about.
생체이식용 금속은 세라믹스(ceramics), 고분자(polymer) 등 다른 재료들에 비해 강도, 피로저항성, 성형가공성이 우수하여 현재까지도 생체의 결손, 훼손 부위의 재생 및 치료의 목적으로 하는 치과, 정형외과 또는 성형외과에서 가장 널리 사용되고 있는 생체 재료이다. 이러한 생체이식용 금속은 마그네슘(Mg), 칼슘(Ca, 인(P), 아연(Zn), 철(Fe), 크롬(Cr), 니켈(Ni), 스테인레스 스틸(Stainless steel), 코발트 합금(Co alloy), 티타늄(Ti), 티타늄 합금(Ti alloy), 지르코늄(Zr), 니오븀(Nb), 탄탈럼(Ta), 금(Au), 은(Ag) 등이 있으며, 이들 중 다른 금속재료에 비해 내식성이 우수하고 인체 조직 내에서도 안정한 특성을 보이는 티타늄, 티타늄 합금, 금 등이 인체에 가장 널리 사용되고 있다.Biotransplantation metals have superior strength, fatigue resistance, and molding processability compared to other materials such as ceramics, polymers, etc. and are still used for dental, orthopedic, It is the most widely used biomaterial in plastic surgery. Such biograft metals are magnesium (Mg), calcium (Ca, phosphorus (P), zinc (Zn), iron (Fe), chromium (Cr), nickel (Ni), stainless steel (Stainless steel), cobalt alloy (Co) alloy), titanium (Ti), titanium alloy (Ti alloy), zirconium (Zr), niobium (Nb), tantalum (Ta), gold (Au), silver (Ag), and the like. In comparison, titanium, titanium alloys, and gold, which are excellent in corrosion resistance and stable in human tissues, are most widely used in the human body.
이와 같은 생체이식용 금속을 이용하여 제조되는 대표적인 제품으로는 임플란트(implant)와 스텐트(stent)가 있다. 임플란트는 기관 장기에 이식할 수 있는 막, 고정 박판, 입체적 또는 공간적 부품 등과 같은 성형된 부품이나, 나사, 핀, 리벳, 압정 등의 고정수단과 같이 치료 중에 조직을 지지하거나 부착시키는 용도, 또는 조직을 다른 조직으로부터 분리시키는 용도에 사용되고 있다. 스텐트의 경우 생체 내에 발생하는 각종 질병에 의해 혈관의 직경이 좁아져 혈액의 순환이 원활하게 일어나지 않는 경우에 그 혈관의 내부에 시술하여 혈관의 직경을 확장하기 위해 사용하는 의료용 기구이다.Representative products manufactured using such a biograft metal include implants and stents. Implants are used to support or attach tissue during treatment, such as molded parts such as membranes, fixed sheets, three-dimensional or spatial parts that can be implanted into organ organs, or fixed means such as screws, pins, rivets, tacks, or tissues It is used for the purpose of separating the from other tissues. In the case of a stent, when a diameter of a blood vessel is narrowed due to various diseases occurring in a living body and blood circulation does not occur smoothly, the stent is a medical apparatus used to expand the diameter of the blood vessel by performing the treatment inside the blood vessel.
이와 같이 생체 내에 삽입되는 임플란트 및 스텐트는 이를 이루는 생체이식용 금속이 다음과 같은 두 가지 조건을 만족해야 한다. 첫째, 생체적합성이 우수해야 한다. 즉, 금속을 생체 지지용 대체물로 사용할 경우 이물반응과 주위 조직에 독성을 유발하지 않아야 한다. 둘째, 다양한 단계에서 분화하는 골 형성 세포 및 신생 골이 이식된 금속 표면과 잘 융합될 수 있는 표면을 가져야 한다. 1990년대 이후부터 임플란트 금속 주위의 골조직과 융합을 향상시키고 연조직과 생체 친화성 향상을 위한 다양한 표면개질 방법이 개발되었다. 순수 티타늄 금속과 티타늄 합금의 표면처리 방법으로 블라스팅(blasting), 산처리, 양극산화, 기계적 연삭가공, 레이저가공, 소결(sintering), 하이드록시아파타이트(hydroxyapatite) 코팅, 티타늄 플라즈마 스프레이(Ti plasma spray), 이온주입법 등 다양한 방법의 시도가 있으며, 현재까지 널리 사용되는 방법은 SLA(sandblasted, large grit, acid etched) 방법이다.As such, the implant and stent inserted into the living body should satisfy the following two conditions for the biograft metal forming the same. First, biocompatibility should be excellent. In other words, the use of metal as a biosupport substitute should not cause foreign body reactions and toxicity to surrounding tissues. Second, the bone forming cells that differentiate at various stages and the new bone must have a surface that can fuse well with the implanted metal surface. Since the 1990s, various surface modification methods have been developed to improve fusion and bone tissue around implant metals and to improve soft tissue and biocompatibility. Surface treatment method of pure titanium metal and titanium alloy is blasting, acid treatment, anodization, mechanical grinding, laser processing, sintering, hydroxyapatite coating, Ti plasma spray There are various attempts, such as ion implantation, and the method widely used to date is SLA (sandblasted, large grit, acid etched) method.
SLA는 마이크로 사이즈의 세라믹 입자(일반적으로 알루미나 사용)를 티타늄 합금 표면에 강한 압력으로 분사하여 티타늄계 금속 표면에 수십 마이크로미터 사이즈의 거칠기(micro-roughness)를 형성한 뒤, 산에칭(acid etching)을 통하여 수 마이크로미터 규모의 거칠기를 추가로 형성시킴으로써 표면적을 증대시키는 방법이다. SLA 표면처리를 통하여 형성된 다양한 마이크로미터 사이즈의 거칠기는 매식 초기에 생체이식용 금속 표면에 신생골의 고정력을 향상시키고, 초기 이후에도 골유착도를 향상시킨다는 장점이 있다. 그러나 생체이식용 금속 표면에 잔류 세라믹 입자와 강산으로 처리하는 공정에서 발생되는 잔류 화학물질은 오염물질로 작용할 수 있고, 금속입자의 경계면이 파절을 보이는 등의 문제점이 있다. 또한 강산으로 처리하는 공정 자체가 환경오염이 유발되는 방식이며, 표면처리 공정 후 티타늄 표면에 잔류하는 화학물질을 제거하기 위해 수십 번의 수세공정을 필요로 하므로 공정이 복잡해지고 에너지가 낭비되는 원인이 되어 생체이식용 금속의 제조 단가가 상승한다는 단점이 있다.SLA sprays micro-sized ceramic particles (usually using alumina) with a strong pressure on the titanium alloy surface to form tens of micrometers of micro-roughness on the titanium-based metal surface, followed by acid etching. It is a method of increasing the surface area by further forming a roughness of several micrometer scale through. Roughness of various micrometer sizes formed through SLA surface treatment has the advantage of improving the anchoring force of the new bone on the surface of the biograft metal at the beginning of the implantation, and also improves the degree of adhesion after the initial stage. However, residual chemicals generated in the process of treating the ceramic particles with the strong acid on the surface of the biograft metal may act as contaminants, and the interface of the metal particles may show fracture. In addition, the process of treating with strong acid itself is a way of causing environmental pollution, and after the surface treatment process, dozens of washing processes are required to remove chemicals remaining on the titanium surface, which makes the process complicated and wastes energy. There is a disadvantage that the manufacturing cost of the metal for biotransplantation increases.
치과용 생체이식용 금속의 질(quality)은 표면의 화학적, 물리적, 기계적, 지형적 특성에 의해 결정된다. 표면 화학(surface chemistry)은 단백질 흡착 및 세포활성에 영향을 주고, 표면 거칠기(surface roughness)는 세포의 이동 및 증식에 영향을 주며, 표면지형(surface topography)적 특성은 세포의 성장, 조골세포의 변화 및 골조직 형성에 영향을 주는 것으로 알려져 있다. 생체이식용 금속 표면에 형성된 매크로 수준의 거칠기(macro-roughness, 수십 마이크로미터 내지 수 밀리미터의 거칠기)가 적절히 형성된 경우 생체이식용 금속의 초기 고정력과 생체이식용 금속의 표면과 주위 골조직 및 연조직과의 물리적, 기계적 안정성을 향상 시킬 수 있다. 생체이식용 금속의 표면에 형성된 마이크로미터 수준의 거칠기(micro-roughness, 수백 나노미터 내지 수십 마이크로미터의 거칠기)는 표면과 미네랄화된 골조직과의 결합을 극대화할 수 있다. 또한, 나노미터 수준의 거칠기(nano-roughness, 수 나노미터 내지 수십 나노미터 수준의 거칠기)는 생체이식용 금속의 표면의 단백질 흡착, 조골세포의 점착 및 골유착(osseointegration) 속도에 영향을 준다. 이에 더하여, 나노미터 수준의 거칠기는 표면 에너지를 증가시켜 생체이식용 금속의 표면의 친수성(wettability)을 향상시키고, 세포의 점착 및 단백질 기질과 피브린(fibrin) 결합을 용이하게 하여 조골세포 분화를 제어할 수 있다.The quality of dental biograft metals is determined by the chemical, physical, mechanical and topographical properties of the surface. Surface chemistry affects protein adsorption and cellular activity, surface roughness affects cell migration and proliferation, and surface topography is responsible for cell growth and osteoblast cell growth. It is known to affect changes and bone tissue formation. When appropriately formed macro-roughness (roughness of tens of micrometers to several millimeters) formed on the surface of the biotransplant metal, the initial fixation force of the biograft metal and the physical and mechanical properties of the surface of the biograft metal and surrounding bone and soft tissue It can improve stability. Micrometer-level roughness (roughness of hundreds of nanometers to tens of micrometers) formed on the surface of the biograft metal may maximize the bond between the surface and the mineralized bone tissue. In addition, nano-roughness (a few nanometers to tens of nanometers of roughness) affects the protein adsorption, osteoclast adhesion and osteointegration rate of the surface of the metal for transplantation. In addition, nanometer-level roughness increases surface energy to improve the hydrophilicity of the surface of the biograft metal and facilitates cell adhesion and protein substrate and fibrin binding to control osteoblast differentiation. Can be.
그러나 종래의 SLA와 같은 표면처리방법은 나노미터 수준의 거칠기를 부여할 수 없다. 최근 나노미터 수준의 표면처리 방법으로, 종래기술 '대한민국특허청 공개특허 제10-2009-0060833호 양극산화법에 의한 임플란트재료 및 그 제조방법', '대한민국특허청 공개특허 제10-2011-0082658호 타이타늄 임플란트의 표면처리 방법 및 그 방법에 의해 제조된 임플란트', '대한민국특허청 공개특허 제10-2012-0101748호 임플란트 표면처리 용액 및 그를 이용한 표면 처리방법 및 그리고 그 방법에 의하여 제조된 임플란트'와 같이 금속을 양극산화 처리하여 표면에 나노 튜브를 형성하고, 이를 통해 금속의 골유착을 촉진시키는 기술이 알려져 있다. 하지만 종래기술과 같이 양극산화를 통해 얻어진 금속모재 상의 금속 산화막은 기계적 강도가 약해 생체 내에 삽입되는 동안 금속 표면으로부터 박리되어 생체 내부로 유출될 수 있다. 도 1은 종래의 방법으로 금속 표면을 양극산화한 것을 나타낸 SEM 사진으로 금속 표면에 양극산화 형성된 금속 산화막이 분리되는 것을 확인할 수 있다. 또한 도 2는 금속 산화막이 쉽게 박리되어 내부의 금속이 그대로 드러나는 것을 나타낸 SEM 사진이다.However, conventional surface treatment methods such as SLA cannot give nanometer roughness. Recently, as a nanometer surface treatment method, the implant materials and manufacturing method of the prior art 'Korean Patent Office Publication No. 10-2009-0060833 anodizing method', 'Korean Patent Office Publication No. 10-2011-0082658 Titanium implant Surface treatment method and the implant prepared by the method ',' the surface treatment method using the same and the surface treatment method using the same and the implant prepared by the method ' It is known to form nanotubes on the surface by anodizing, thereby promoting bone adhesion of metals. However, the metal oxide film on the metal base material obtained through anodization, as in the prior art, is weak in mechanical strength and may be peeled off from the metal surface while being inserted into the living body and leaked into the living body. 1 is a SEM photograph showing that the metal surface is anodized by a conventional method, it can be seen that the metal oxide film formed by anodizing the metal surface is separated. 2 is a SEM photograph showing that the metal oxide film is easily peeled off and the metal inside is exposed.
이와 같이 양극산화된 금속 산화막은 구부러지는 등과 같이 물리적인 힘을 가하면 쉽게 금속표면으로부터 박리되는 것을 알 수 있다. 이 경우 떨어져 나간 양극산화 금속 산화막은 생체 내부로 유출되어 생체에 심각한 영향을 미치게 되는 문제점이 있다. 또한, 양극산화 방식의 문제점은 양극산화시 사용된 전해질 또는 화학성분의 잔류로 인한 표면 오염의 문제점이 있다. 이러한 양극산화된 표면의 기공이 나노사이즈 수준으로 작을수록 잔류 불순물을 제거가 어렵다.It can be seen that the anodized metal oxide film is easily peeled off from the metal surface by applying a physical force such as bending. In this case, the anodized metal oxide film which has fallen off is leaked into the living body and has a serious effect on the living body. In addition, the problem of the anodization method has a problem of surface contamination due to the residual of the electrolyte or chemical components used during anodization. The smaller the porosity of the anodized surface is at the nanoscale level, the more difficult it is to remove residual impurities.
본 발명은 양극산화한 뒤 이 양극산화된 표면을 제거하여 표면에 존재하는 잔류 오염물질을 제거함과 동시에 생체이식용 금속의 표면에 나노미터 수준의 거칠기를 부여하는 방법에 관한 것이다. 이는 기존의 마이크로 수준의 거칠기가 존재하는 표면 처리방식과 병행하여 사용할 경우 마이크로/나노미터 수준의 거칠기를 형성할 수 있는 표면처리 방식이다.The present invention relates to a method of imparting nanometer-level roughness to the surface of a biograft metal while simultaneously anodizing and removing the anodized surface to remove residual contaminants present on the surface. This is a surface treatment method that can form a micro / nanometer roughness when used in combination with the surface treatment method existing micro-level roughness exists.
따라서 본 발명의 목적은 금속모재의 표면을 양극산화한 후 양극산화된 표면을 제거시켜 표면에 요홈이 형성되고, 양극산화된 티타늄 산화막이 박리되어 생체 내부에서 유출되는 것을 방지함과 동시에 박리시에 표면에 잔류하는 불순물을 제거하여 나노패터닝 요홈 표면을 갖는 생체이식용 금속, 금속 제조방법, 임플란트, 임플란트 제조방법, 스텐트 및 스텐트 제조방법을 제공하는 것이다.Therefore, an object of the present invention is to remove the anodized surface after anodizing the surface of the metal base material, a groove is formed on the surface, and the anodized titanium oxide film is peeled off to prevent leakage from the inside of the body and at the same time when peeling By removing impurities remaining on the surface of the present invention to provide a metal for implantation, a metal manufacturing method, an implant, an implant manufacturing method, a stent and a stent manufacturing method having a nanopatterning groove surface.
또한 생체이식용 티타늄 또는 티타늄 합금을 금속모재의 소재로 사용하여 표면 양극산화를 통해 형성된 요홈에 의해 생체에 이식될 때 우수한 생체 친화성, 화학적 적합성 및 기계적 적합성을 가지는 나노패터닝 요홈 표면을 갖는 생체이식용 금속, 금속 제조방법, 임플란트, 임플란트 제조방법, 스텐트 및 스텐트 제조방법을 제공하는 것이다.In addition, a biograft metal having a nanopatterning groove surface having excellent biocompatibility, chemical compatibility, and mechanical compatibility when implanted into a living body by using a biograft titanium or a titanium alloy as a material of a metal base material by a groove formed through surface anodization. To provide a metal manufacturing method, implant, implant manufacturing method, stent and stent manufacturing method.
뿐만 아니라 샌드블라스팅 또는 SLA(Sand blasted, Large-grit, Acid etched) 공법과 함께 양극산화를 수행하여 나노패터닝을 포함한 다양한 사이즈의 요홈을 형성시킬 수 있는 나노패터닝 요홈 표면을 갖는 생체이식용 금속, 금속 제조방법, 임플란트, 임플란트 제조방법, 스텐트 및 스텐트 제조방법을 제공하는 것이다.In addition, the production of biotransplant metals and metals with nanopatterned groove surfaces that can be formed with sandblasting or anodized with SLA (Sand blasted, Large-grit, Acid etched) processes to form grooves of various sizes, including nanopatterning It is to provide a method, an implant, an implant manufacturing method, a stent, and a stent manufacturing method.
상기한 목적은, 티타늄 금속 또는 티타늄 합금으로 이루어진 금속모재를 양극산화하여 산화티타늄 나노튜브를 형성하는 단계와; 상기 산화티타늄 나노튜브를 제거하여 상기 금속모재 표면에 요홈(groove)을 형성하는 단계를 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법에 의해서 달성된다.The above object is to anodize a metal base material consisting of titanium metal or titanium alloy to form titanium oxide nanotubes; Removing the titanium oxide nanotubes is achieved by a method for producing a bio-grafted metal having a nano-patterned groove surface comprising the step of forming a groove (groove) on the surface of the metal base material.
여기서, 상기 양극산화하여 산화티타늄 나노튜브를 형성하는 단계는, 플루오라이드(F-) 이온을 함유하는 전해액에 상기 금속모재를 침지시켜 양극산화하며, 플루오라이드 이온을 함유하는 상기 전해액은, 플루오라이드 이온을 함유하는 염; 무기산, 유기산, 고분자알코올 중 1종 이상의 용매;를 포함하는 것이 바람직하다.Here, the step of forming the titanium nanotubes oxidized by oxidizing the anode are, fluoride (F -) ions by immersing the base metal in the electrolytic solution, and oxidizing the anode containing the electrolyte solution containing fluoride ions, fluoride Salts containing ions; It is preferable to include; at least one solvent of an inorganic acid, an organic acid, and a polymer alcohol.
상기 염은, 불화수소(HF), 플루오린화나트륨(NaF), 플루오르화암모늄(NH4F) 중 1종 이상을 포함하며, 상기 용매는, 인산(H3PO4), 황산(H2SO4), 질산(HNO3), 글리세롤(glycerol), 에틸렌글리콜(ethylene glycol) 중 1종 이상을 포함하는 것이 바람직하다.The salt includes at least one of hydrogen fluoride (HF), sodium fluoride (NaF) and ammonium fluoride (NH 4 F), and the solvent is phosphoric acid (H 3 PO 4 ), sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), glycerol (glycerol), it is preferable to include one or more of ethylene glycol (ethylene glycol).
또한, 상기 금속모재 표면에 상기 요홈을 형성하는 단계 이후에, 상기 금속모재를 열처리하여 상기 금속모재의 표면에 10nm 내지 1,000nm 두께의 산화막을 형성하는 단계를 더 포함하며, 상기 열처리는 200℃ 내지 1200℃에서 이루어지는 것이 바람직하다.The method may further include forming an oxide film having a thickness of 10 nm to 1,000 nm on the surface of the metal base material by heat-treating the metal base material after forming the grooves on the surface of the metal base material. It is preferable to make at 1200 degreeC.
여기서, 상기 요홈은 반구상의 형상을 지니며, 직경이 10nm 내지 1,000nm 크기를 가지며, 반구상의 상기 요홈은 표면에 수 나노미터 크기의 미세기공(pore)을 더 포함하는 것이 바람직하다.Here, the groove has a hemispherical shape, the diameter has a size of 10nm to 1,000nm, the hemispherical groove preferably further comprises a micropore (pore) of several nanometers on the surface.
상기 산화티타늄 나노튜브의 제거는 상기 금속모재를 과산화수소수(H2O2)에 침지시켜 초음파 세척하여 제거하며, 상기 산화티타늄 나노튜브의 제거는 유기산 또는 염기 수용액에 침지시켜 제거하는 것이 바람직하다.The titanium oxide nanotubes are removed by ultrasonic cleaning by immersing the metal base material in hydrogen peroxide (H 2 O 2 ), and the titanium oxide nanotubes are preferably removed by immersing in an organic acid or an aqueous base solution.
상기 산화티타늄 나노튜브를 형성하는 단계 이전에, 상기 금속모재 표면을 샌드블라스팅하는 단계를 더 포함하며, 상기 샌드블라스팅하는 단계는, 샌드블라스트 메디아를 상기 금속모재 표면에 타격하여 상기 금속모재 표면에 50㎛ 내지 500㎛의 마이크로 요홈을 형성시키거나, SLA(Sand blasted, Large-grit, Acid etched) 공법을 통해 상기 금속모재를 표면처리하는 단계를 더 포함하는 것이 바람직하다.Prior to forming the titanium oxide nanotubes, the method may further include sandblasting the surface of the metal base material, and the sandblasting may include sand blasting the metal blast surface on the surface of the metal base material. It is preferable to further include the step of forming a micro groove in the micrometer to 500㎛, or surface treatment of the metal base material through a sand blasted, large-grit, acid etched (SLA) method.
상기 산화티타늄 나노튜브를 형성시키는 단계 이전에, 상기 금속모재의 표면 일부에 양극산화되는 것을 방지하기 위해 폴리머 보호층을 형성하는 단계를 포함하며, 상기 산화티타늄 나노튜브를 형성시키는 단계 이후에, 상기 폴리머 보호층을 제거하는 단계를 더 포함하는 것이 바람직하다.Before forming the titanium oxide nanotubes, forming a polymer protective layer to prevent anodization on a portion of the surface of the metal base material, and after forming the titanium oxide nanotubes, Preferably, the method further comprises removing the polymer protective layer.
상기 금속모재 표면에 요홈을 형성하는 단계 이후에, 상기 금속모재 표면에 생체적합성 재료를 코팅하는 단계를 더 포함하거나, 상기 금속모재를 열처리하여 상기 금속모재의 표면에 산화막을 형성하는 단계와; 상기 산화막의 표면에 생체적합성 재료를 코팅하는 단계를 더 포함하는 것이 바람직하며, 상기 생체적합성 재료를 코팅하는 단계는, 전자빔 증착 방법 또는 전해 코팅 방법을 이용하는 것이 바람직하다.After forming the grooves on the surface of the metal base material, further comprising coating a biocompatible material on the surface of the metal base material, or heat-treating the metal base material to form an oxide film on the surface of the metal base material; The method may further include coating a biocompatible material on the surface of the oxide film, and the coating of the biocompatible material may preferably use an electron beam deposition method or an electrolytic coating method.
상기 전해 코팅 방법은, 상기 생체적합성 재료를 포함하는 수용액에 상기 금속모재를 침지한 후 상기 수용액에 전기를 인가하여 상기 생체적합성 재료를 코팅하며, 상기 금속모재 표면에 요홈을 형성하는 단계 이후에, 상기 금속모재의 표면을 친수성 상태로 변화시키는 단계와; 친수성인 상기 금속모재의 요홈 내에 약물을 주입하는 단계를 더 포함하는 것이 바람직한데, 상기 약물은 친수성 고분자 약물인 것이 바람직하다.The electrolytic coating method, after the step of immersing the metal base material in an aqueous solution containing the biocompatible material and then applying electricity to the aqueous solution to coat the biocompatible material, after forming a groove on the surface of the metal base material, Changing the surface of the metal base material to a hydrophilic state; It is preferred to further include the step of injecting a drug into the groove of the metal base material is hydrophilic, the drug is preferably a hydrophilic polymer drug.
상기한 목적은, 티타늄 금속 또는 티타늄 합금으로 이루어진 금속모재를 양극산화하여 산화티타늄 나노튜브를 형성하고, 상기 산화티타늄 나노튜브를 제거하여 상기 금속모재 표면에 요홈이 형성된 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속에 의해서도 달성된다.The above object is, the surface of the nano-patterned grooves, characterized in that the anodized metal base material consisting of titanium metal or titanium alloy to form titanium oxide nanotubes, the titanium oxide nanotubes are removed to form grooves on the surface of the metal base material It is also achieved by a biograft metal having a.
상기한 목적은 또한, 표면에 반구상의 요홈이 형성된 금속모재를 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속에 의해서도 달성된다.The above object is also achieved by a biotransplantable metal having a nanopatterned groove surface characterized in that it comprises a metal matrix having hemispherical grooves formed on the surface thereof.
상기한 목적은, 티타늄 금속 또는 티타늄 합금으로 이루어진 임플란트 본체를 양극산화하여 산화티타늄 나노튜브를 형성하는 단계와; 상기 산화티타늄 나노튜브를 제거하여 상기 임플란트 본체 표면에 요홈(groove)을 형성하는 단계를 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트 제조방법에 의해서 달성된다.The above object is to anodize an implant body made of titanium metal or titanium alloy to form titanium oxide nanotubes; Removing the titanium oxide nanotubes is achieved by an implant manufacturing method having a nano-patterned groove surface comprising the step of forming a groove (groove) on the surface of the implant body.
상기한 목적은, 티타늄 금속 또는 티타늄 합금으로 이루어진 임플란트 본체를 양극산화하여 산화티타늄 나노튜브를 형성하고, 상기 산화티타늄 나노튜브를 제거하여 상기 임플란트 본체 표면에 요홈이 형성된 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트에 의해서도 달성된다.The above object is, the surface of the nano-patterned grooves, characterized in that the implant body made of titanium metal or titanium alloy anodized to form titanium oxide nanotubes, the titanium oxide nanotubes are removed to form grooves on the surface of the implant body It is also achieved by implants with.
상기한 목적은 또한, 표면에 반구상의 요홈이 형성된 임플란트 본체를 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트에 의해서도 달성된다.The above object is also achieved by an implant having a nanopatterning groove surface, characterized in that it comprises an implant body with hemispherical grooves formed on the surface.
상기한 목적은, 티타늄 금속 또는 티타늄 합금으로 이루어진 스텐트 본체를 양극산화하여 산화티타늄 나노튜브를 형성하는 단계와; 상기 산화티타늄 나노튜브를 제거하여 상기 스텐트 본체 표면에 요홈(groove)을 형성하는 단계를 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트 제조방법에 의해서 달성된다.The above object is to anodize a stent body made of titanium metal or titanium alloy to form titanium oxide nanotubes; Removing the titanium oxide nanotubes is achieved by a method for manufacturing a stent having a nano-patterned groove surface comprising the step of forming a groove (groove) on the surface of the stent body.
상기한 목적은, 티타늄 금속 또는 티타늄 합금으로 이루어진 스텐트 본체를 양극산화하여 산화티타늄 나노튜브를 형성하고, 상기 산화티타늄 나노튜브를 제거하여 상기 스텐트 본체 표면에 요홈이 형성된 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트에 의해서 달성된다.The above object is, the surface of the nano-patterned grooves, characterized in that anodizing the stent body made of titanium metal or titanium alloy to form titanium oxide nanotubes, the titanium oxide nanotubes are removed to form grooves on the surface of the stent body Achieved by a stent with
상기한 목적은 또한, 표면에 반구상의 요홈이 형성된 스텐트 본체를 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트에 의해서도 달성된다.The above object is also achieved by a stent having a nanopatterned groove surface, characterized in that it comprises a stent body with hemispherical grooves formed on the surface.
상기한 목적은 또한, 요홈이 형성된 상기 스텐트 본체의 표면은 친수성 상태이며, 친수성인 상기 스텐트 본체의 요홈 내에 친수성 고분자 약물이 주입되는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트에 의해서도 달성된다.The above object is also achieved by a stent having a nanopatterned groove surface, wherein the surface of the stent body on which the groove is formed is hydrophilic and a hydrophilic polymer drug is injected into the groove of the stent body which is hydrophilic.
상술한 본 발명의 구성에 따르면 금속모재의 표면을 양극산화한 후 양극산화된 표면을 제거시켜 표면에 요홈이 형성되고, 양극산화된 티타늄 산화막이 박리되어 생체 내부에서 유출되는 것을 방지할 수 있으며 표면에 잔류하는 불순물을 효과적으로 제거할 수 있다.According to the above-described configuration of the present invention, after anodizing the surface of the metal base material, an anodized surface is removed to form grooves on the surface, and anodized titanium oxide film can be peeled off to prevent leakage from the inside of the living body. Impurities remaining in the can be effectively removed.
또한 생체이식용 티타늄 또는 티타늄 합금을 금속모재의 소재로 사용하여 표면 양극산화를 통해 형성된 요홈에 의해 생체에 이식될 때 표면적을 극대화하여 우수한 생체 친화성, 화학적 적합성 및 기계적 적합성을 가지며, 샌드블라스팅 또는 SLA(Sand blasted, Large-grit, Acid etched) 공법과 함께 양극산화를 수행하여 나노패터닝을 포함한 다양한 사이즈의 요홈을 형성시킬 수 있다.In addition, by using a biograft titanium or titanium alloy as a material of the metal base material to maximize the surface area when implanted in the living body by the groove formed through the surface anodization, it has excellent biocompatibility, chemical compatibility and mechanical compatibility, sandblasting or SLA (Sand blasted, Large-grit, Acid etched) and anodization can be performed to form grooves of various sizes including nanopatterning.
도 1 및 도 2는 종래기술의 실시예에 따른 양극산화된 금속 산화막의 SEM 사진이고,1 and 2 are SEM images of the anodized metal oxide film according to the embodiment of the prior art,
도 3은 본 발명의 제1실시예에 따른 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법의 순서도이고,3 is a flow chart of a method for manufacturing a bio-transplant metal having a nano-patterned groove surface according to the first embodiment of the present invention,
도 4는 생체이식용 금속 제조방법을 나타낸 모식도이고,Figure 4 is a schematic diagram showing a method for producing a metal for transplantation,
도 5는 제2실시예에 따른 생체이식용 금속 제조방법의 순서도이고,Figure 5 is a flow chart of a method for producing a metal for transplantation according to the second embodiment,
도 6은 제3실시예에 따른 생체이식용 금속 제조방법의 순서도이고,6 is a flow chart of a method for manufacturing a metal for transplantation according to a third embodiment,
도 7은 제4실시예에 따른 생체이식용 금속 제조방법의 순서도이고,7 is a flow chart of a method for manufacturing a bio-transplant metal according to a fourth embodiment,
도 8은 제5실시예에 따른 생체이식용 금속 제조방법의 순서도이고,8 is a flow chart of a method for manufacturing a bio-transplant metal according to a fifth embodiment,
도 9는 제6실시예에 따른 생체이식용 금속 제조방법의 순서도이고,9 is a flowchart of a method of manufacturing a metal for transplantation according to a sixth embodiment;
도 10은 양극산화 전 금속모재 표면을 나타낸 SEM 사진이고,10 is an SEM photograph showing the surface of the metal base material before anodization;
도 11은 금속모재를 양극산화하는 상태를 나타낸 모식도이고,11 is a schematic diagram showing a state of anodizing a metal base material,
도 12는 제1실시예에 따른 금속모재에 티타늄 산화막이 형성된 것을 나타낸 SEM 사진이고,12 is a SEM photograph showing that a titanium oxide film is formed on the metal base material according to the first embodiment;
도 13은 제1실시예에 따른 티타늄 산화막이 제거된 금속모재의 표면에 요홈이 형성된 것을 나타낸 SEM 사진이고,FIG. 13 is an SEM photograph showing that grooves are formed on the surface of the metal base material from which the titanium oxide film is removed according to the first embodiment;
도 14 및 도 15는 제1실시예에 따른 티타늄 산화막이 제거된 금속모재의 표면에 요홈 및 미세기공이 형성된 것을 나타낸 SEM 사진이고,14 and 15 are SEM photographs showing grooves and micropores formed on the surface of the metal base material from which the titanium oxide film was removed according to the first embodiment;
도 16은 제1실시예에 따른 나노패터닝 공정 실시 전과 후의 금속모재의 XPS 표면 성분 분석 결과를 나타낸 그래프이고,16 is a graph showing the XPS surface component analysis results of the metal base material before and after the nanopatterning process according to the first embodiment;
도 17은 제1실시예에 따른 티타늄 산화막이 제거된 금속모재 표면의 AFM 사진이고,17 is an AFM photograph of a surface of a metal base material having a titanium oxide film removed according to the first embodiment,
도 18은 제2실시예에 따른 샌드블라스팅한 금속모재 표면의 SEM 사진이고,18 is a SEM photograph of the surface of the sandblasted metal base material according to the second embodiment,
도 19는 제2실시예에 따른 티타늄 산화막이 제거된 금속모재의 표면에 요홈이 형성된 것을 나타낸 SEM 사진이고,19 is a SEM photograph showing that a groove is formed on the surface of the metal base material from which the titanium oxide film is removed according to the second embodiment;
도 20은 제2실시예에 따른 티타늄 산화막이 제거된 금속모재 표면의 AFM 사진이고,20 is an AFM photograph of a surface of a metal base material having a titanium oxide film removed according to a second embodiment;
도 21은 제2실시예의 단계에 따른 티타늄 금속모재 표면 변화를 나타내는 SEM 사진이고,21 is a SEM photograph showing the surface change of the titanium metal base material according to the step of the second embodiment,
도 22는 제3실시예의 단계에 따른 SLA 표면 처리 후와 그 위에 티타늄 산화막을 형성시킨 후 제거된 금속모재 표면의 SEM 사진이다.FIG. 22 is a SEM photograph of the surface of the metal base material removed after the SLA surface treatment and the titanium oxide film formed thereon according to the step of the third embodiment.
이하 도면을 참조하여 본 발명의 실시예에 따른 나노패터닝 요홈(groove) 표면을 갖는 생체이식용 금속, 금속 제조방법, 임플란트, 임플란트 제조방법, 스텐트 및 스텐트 제조방법을 상세히 설명한다. 여기서 본 발명의 생체이식용 금속, 임플란트 및 스텐트는 금속모재를 이용하여 제조되며, 임플란트 형상으로 이루어진 임플란트 본체, 스텐트 형상으로 이루어진 스텐트 본체 또는 생체이식용 금속을 위한 금속모재로 용도에 맞는 형상을 가지는데 본 발명에서는 대표적으로 금속모재를 통해 설명하도록 한다.Hereinafter, with reference to the drawings will be described in detail a metal for transplantation, a metal manufacturing method, an implant, an implant manufacturing method, a stent and a stent manufacturing method having a nanopatterning groove surface (groove) according to an embodiment of the present invention. Here, the biograft metal, implant, and stent of the present invention are manufactured using a metal base material, and have an implant body made of an implant shape, a stent body made of a stent shape, or a metal base material for a biograft metal, having a shape suitable for use. In the present invention will be described through a metal base material representatively.
제1실시예에 따른 제조방법은 도 3에 도시된 바와 같이 먼저, 금속모재를 양극산화하여 표면에 산화티타늄 나노튜브를 형성한다(S1a).In the manufacturing method according to the first embodiment, as shown in FIG. 3, first, anodizing a metal base material forms titanium oxide nanotubes on a surface (S1a).
도 4에 도시된 바와 같이 티타늄(Ti) 또는 티타늄 합금(Ti alloy)으로 이루어진 금속모재(100)를 준비하고, 금속모재(100)를 양극산화하여 표면에 티타늄 나노튜브 구조체 형상의 산화티타늄 나노튜브(200)를 형성시킨다. 티타늄 또는 티타늄 합금은 생체 이식 재료로 적합한 금속이기 때문에 본 발명의 금속모재(100)는 티타늄 또는 티타늄 합금만을 소재로 사용한다.As shown in FIG. 4, a metal base material 100 made of titanium (Ti) or a titanium alloy is prepared, and the metal base material 100 is anodized to form a titanium nanotube structure having a titanium nanotube structure on its surface. To form 200. Since titanium or titanium alloy is a suitable metal as a living implant material, the metal base material 100 of the present invention uses only titanium or titanium alloy as a material.
여기서 금속모재(100)가 임플란트(implant) 모재일 경우 인공치근(fixture) 영역을 양극산화하여 인공치근 표면에 요홈(groove)이 형성되도록 한다. 금속모재(100)는 크라운(crown), 지대주(abutment) 및 인공치근으로 구분되는데, 그 중 치아의 뿌리에 배치되어 골유착이 유도되도록 하는 인공치근에 요홈을 형성시켜 금속모재(100)가 치아뿌리로부터 이탈되지 않고 오랜 기간 사용할 수 있다.In this case, when the metal base material 100 is an implant base material, grooves are formed on the surface of the artificial tooth by anodizing the artificial tooth area. Metal base material 100 is divided into a crown (crown), abutment and artificial tooth root, the metal base material (100) is formed by forming a groove in the artificial root to be placed in the root of the tooth to induce bone adhesion It can be used for a long time without departing from the roots.
금속모재(100)를 양극으로 하여 전해액에 침지시킨 후 전압을 인가하여 전해액이 접촉한 영역에 산화티타늄(TiO2)으로 이루어진 산화티타늄 나노튜브(200)가 형성된다. 산화티타늄 나노튜브(200)는 금속모재(100) 표면에 튜브형태로 형성되며, 금속모재(100)와 접촉하는 경계면은 튜브의 하부형상과 같이 반구(hemisphere)상의 형태가 된다. 튜브형태에 의해 함몰되는 영역의 크기는 수십 내지 수백 나노미터 사이즈의 직경을 가지며, 이러한 직경은 양극산화 조건을 제어함으로써 조절이 가능하다. Titanium oxide nanotubes 200 made of titanium oxide (TiO 2 ) are formed in a region in which the electrolyte is in contact with the metal base material 100 as an anode and then immersed in the electrolyte. The titanium oxide nanotubes 200 are formed in the form of a tube on the surface of the metal base material 100, and the interface contacting the metal base material 100 is in the form of a hemisphere like the lower shape of the tube. The size of the area recessed by the tubular shape has a diameter of several tens to hundreds of nanometers, which can be adjusted by controlling the anodization conditions.
여기서 전해액은 플루오라이드(F-) 이온을 함유하는 전해액이며, 전해액에 금속모재(100)를 침지시켜 양극산화한다. 플루오라이드 이온을 함유하는 전해액은, 플루오라이드 이온을 함유하는 염과, 무기산, 유기산, 고분자알코올 및 이의 혼합으로 이루어진 군 중 적어도 어느 하나로 선택되는 용매와, 물을 혼합하여 이루어지는 것이 바람직하다. 여기서 플루오라이드 이온을 함유하는 염은 불화수소(HF), 플루오린화나트륨(NaF), 플루오르화암모늄(NH4F) 및 이의 혼합으로 이루어진 염과, 인산(H3PO4), 황산(H2SO4), 질산(HNO3), 글리세롤(glycerol), 에틸렌글리콜(ethylene glycol) 및 이의 혼합으로 이루어진 군에서 선택되는 용매와, 물을 혼합하여 사용하는 것이 바람직하다. The electrolyte solution is an electrolyte solution containing fluoride (F ) ions, and is oxidized by immersing the metal base material 100 in the electrolyte solution. The electrolyte solution containing fluoride ions is preferably formed by mixing a salt containing fluoride ions, a solvent selected from at least one of a group consisting of an inorganic acid, an organic acid, a polymer alcohol and a mixture thereof, and water. Salts containing fluoride ions are salts consisting of hydrogen fluoride (HF), sodium fluoride (NaF), ammonium fluoride (NH 4 F) and mixtures thereof, phosphoric acid (H 3 PO 4 ), sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), glycerol (glycerol), ethylene glycol (ethylene glycol) and a solvent selected from the group consisting of a mixture thereof, it is preferable to use a mixture of water.
할라이드계 이온은 금속을 효과적으로 용출시켜 금속 상에 미세 구멍(pitting corrosion)을 만들 수 있다. 그러나 할라이드계 이온 중 클로라이드(Cl-), 브로마이드(Br-) 등과 같은 다른 할라이드계의 경우 곧고 균일한 사이즈의 나노튜브 구조체를 형성하기 어렵다. 하지만 플루오라이드 이온을 포함하는 전해액에서 양극산화가 이루어질 경우 균일한 사이즈 및 간격을 갖는 산화티타늄 나노튜브(200)가 형성되기 때문에 본 발명에서는 플로라이드 이온을 포함하는 전해액을 사용한다.The halide ions can effectively elute the metal to create pitting corrosion on the metal. However, in the case of other halides such as chloride (Cl ) and bromide (Br ) among halide ions, it is difficult to form a straight and uniform nanotube structure. However, when anodizing is performed in an electrolyte solution containing fluoride ions, since the titanium oxide nanotubes 200 having a uniform size and spacing are formed, the present invention uses an electrolyte solution containing fluoride ions.
산화티타늄 나노튜브(200)를 제거하여 금속모재(100) 표면에 반구상의 요홈(110)을 형성시킨다(S2a).Removing the titanium oxide nanotubes 200 to form a hemispherical groove 110 on the surface of the metal base material 100 (S2a).
양극산화에 의해 형성된 산화티타늄 나노튜브(200)는 티타늄 또는 티타늄합금으로 형성된 금속모재(100)가 생체 내에 삽입될 때 또는 삽입된 후, 생체 내에서 금속모재(100)를 향해 물리적인 힘이 가해지면 도 1 및 도 2에 도시된 바와 같이 쉽게 박리된다. 도 1 및 도 2는 종래기술과 같이 일반적인 양극산화 방법을 통해 금속 표면을 양극산화한 것으로, 외력이 조금만 가해져도 금속 산화막이 바로 떨어져 나가는 것을 확인할 수 있다. 따라서 이러한 종래기술을 통해 제조되는 생체이식용 금속을 생체 내에 삽입하게 되면 금속 산화막이 박리되고, 박리된 금속 산화막은 체세포의 괴사, 생체이식용 금속의 골융합도 저하 등의 문제를 발생시키게 된다. 또한, 양극산화를 통해 나노 크기 수준의 미세기공이 형성되는 경우 산화막 안에 잔류하는 불순물을 효과적으로 제거하기 어렵다. 이러한 문제를 해결하기 위해 본 발명에서는 금속모재(100)에 형성된 산화티타늄 나노튜브(200)를 제거한다. Titanium oxide nanotubes 200 formed by anodization have a physical force applied to the metal base material 100 in vivo when or after the metal base material 100 formed of titanium or titanium alloy is inserted into a living body. The surface is easily peeled off as shown in FIGS. 1 and 2. 1 and 2 are anodized the metal surface by a general anodization method as in the prior art, it can be seen that the metal oxide film immediately falls off even if a little external force is applied. Therefore, when the biograft metal prepared by the prior art is inserted into the living body, the metal oxide film is peeled off, and the peeled metal oxide film causes problems such as necrosis of somatic cells and a decrease in the degree of bone fusion of the biograft metal. In addition, it is difficult to effectively remove impurities remaining in the oxide film when nano-sized micropores are formed through anodization. In order to solve this problem, the present invention removes the titanium oxide nanotubes 200 formed on the metal base material 100.
금속모재(100) 표면에 형성된 산화티타늄 나노튜브(200)를 물리적 방법 또는 화학적 방법을 이용하여 제거함에 의해 금속모재(100) 표면에 반구상의 요홈(300)을 형성시킨다. 산화티타늄 나노튜브(200)를 제거하더라도 산화티타늄 나노튜브(200)에 의해 형성된 반구 형상의 요홈(300)은 금속모재(100) 표면에 남아있게 된다. 여기서 물리적 방법은 산화티타늄 나노튜브(200)를 과산화수소수(H2O2)에 침지시켜 초음파 세척하는 방법이 바람직하며, 화학적 방법은 유기산 또는 염기 수용액에 금속모재(100)를 침지시켜 산화티타늄 나노튜브(200)가 떨어져나가도록 하는 방법이 바람직하나 이러한 방법들에 한정되지는 않는다.The hemispherical groove 300 is formed on the surface of the metal base material 100 by removing the titanium oxide nanotubes 200 formed on the surface of the metal base material 100 using a physical method or a chemical method. Even if the titanium oxide nanotubes 200 are removed, the hemispherical grooves 300 formed by the titanium oxide nanotubes 200 remain on the surface of the metal base material 100. The physical method is preferably a method of ultrasonic cleaning by immersing the titanium oxide nanotubes 200 in hydrogen peroxide (H 2 O 2 ), chemical method is titanium oxide nano immersed by immersing the metal base material 100 in an organic acid or aqueous base solution A method of causing the tube 200 to fall apart is preferred, but not limited to these methods.
이와 같이 금속모재(100) 표면에 형성된 산화티타늄 나노튜브(200)가 제거되면 금속모재(100) 표면에 거의 반구상의 형태를 가지는 나노 사이즈의 요홈(300)이 형성되고, 반구상의 요홈(110) 내부에는 반구상의 요홈(110)보다 상대적으로 크기가 작은 수 나노미터 크기의 미세기공(111, pore)이 형성된 금속모재(100)를 얻을 수 있다. 반구상의 요홈(110)은 10 내지 1,000nm의 직경(d)으로 형성시킬 수 있다. 이는 양극산화시의 인가전압, 전해액, 온도 등의 전기화학적인 조건을 조절하여 가능하다.As such, when the titanium oxide nanotubes 200 formed on the surface of the metal base material 100 are removed, nanosized grooves 300 having a substantially hemispherical shape are formed on the surface of the metal base material 100, and the hemispherical grooves 110 are formed. A metal base material 100 having micropores 111 and pores having a size smaller than that of a hemispherical groove 110 may be obtained. The hemispherical groove 110 may be formed to a diameter (d) of 10 to 1,000nm. This is possible by controlling electrochemical conditions such as applied voltage, an electrolyte solution, and temperature during anodization.
요홈(110)의 직경(d)과 높이(h) 비율로 따졌을 때 요홈(110)이 반구상으로 형성 가능하도록 직경(d) : 높이(h) = 1 : 0.01 내지 0.5인 것이 바람직하다. 요홈(110)의 높이(h)가 직경(d)에 0.01배 미만일 경우 높이가 매우 낮아 표면 거칠기가 낮고 골유착이 용이하지 못하며, 요홈(110)은 반구 형상으로 만들어지기 때문에 0.5배를 초과할 수는 없다. 따라서 직경(d) : 높이(h) = 1 : 0.01 내지 0.5 비율이 가장 바람직하다.When the diameter (d) and the height (h) ratio of the groove 110 is determined, the diameter (d): height (h) = 1: 0.01 to 0.5 so that the groove 110 can be formed in a hemispherical shape. If the height h of the groove 110 is less than 0.01 times the diameter d, the height is very low, so that the surface roughness is low and bone adhesion is not easy, and the groove 110 is more than 0.5 times because it is made in a hemispherical shape. There is no number. Therefore, the ratio of diameter d: height h = 1: 0.01 to 0.5 is most preferred.
S1a 및 S2a 단계를 통해 얻어진 금속모재(100)의 표면은 금속에서 금속 산화물로 부동태화 되어 이를 바로 사용할 수 있다. 종래의 기술로 생체이식용 금속, 스텐트 또는 임플란트를 제조할 경우 티타늄을 생체재료에 적합하며 산화방지가 가능한 산화 티타늄 형태로 부동태화하는 과정을 별도로 거쳤다. 산화티타늄 형태로 부동태화하는 과정은 생체이식용 금속을 고온에 노출시키거나 고온의 물에서 끓이는 과정을 통해 실시하였다. 하지만 본 발명의 경우 양극산화 과정을 통해 산화티타늄 형태로 금속모재(100)를 부동태화시키면서 표면에 요홈을 형성시킬 수 있다.The surface of the metal base material 100 obtained through the steps S1a and S2a is passivated from metal to metal oxide and can be used immediately. When manufacturing a biograft metal, stent or implant in the prior art, the process of passivating the titanium in the form of titanium oxide suitable for biomaterials and prevent oxidation. The passivation process in the form of titanium oxide was carried out by exposing the biograft metal to high temperature or boiling in hot water. However, in the case of the present invention, a groove may be formed on the surface while passivating the metal base material 100 in the form of titanium oxide through anodization.
필요에 따라서 다음과 같은 단계를 추가로 진행할 수도 있다. If necessary, you can further proceed as follows.
열처리하여 금속모재(100) 표면에 산화막(300)을 형성한다(S3a).The heat treatment is performed to form an oxide film 300 on the surface of the metal base material 100 (S3a).
표면에 요홈(110)이 형성된 금속모재(100)를 열처리하여 금속모재(100) 표면에 산화막(300)을 형성한다. 여기서 산화막(300)은 금속모재(100)의 요홈(110) 및 미세기공(111)을 따라 형성된 산화요홈(310) 및 산화미세기공(311)을 포함하는 산화막(300) 또는 내부에 미세 기공이 형성된 산화막(300)을 의미한다. 이러한 산화막(300)은 10 내지 1,000nm 두께의 박막이 바람직한데, 박막의 두께가 10nm 미만일 경우 별도로 열처리를 하는 의미가 없으며, 1,000nm를 초과할 경우 산화막(300)이 외력에 의해 금속모재(100)로부터 이탈될 수 있다.An oxide film 300 is formed on the surface of the metal base material 100 by heat-treating the metal base material 100 having the grooves 110 formed on the surface thereof. Here, the oxide film 300 may include fine pores in or inside the oxide film 300 including the grooved oxide 310 and the oxide fine hole 311 formed along the groove 110 and the micropores 111 of the metal base material 100. It means the oxide film 300 formed. The oxide film 300 is preferably a thin film having a thickness of 10 to 1,000nm, if the thickness of the thin film is less than 10nm does not mean that the heat treatment separately, if the thickness exceeds 1,000nm the oxide film 300 by the external force the metal base material (100) ) May deviate.
산화막(300)은 요홈(110)이 형성된 금속모재(100) 표면을 열처리하지 않을 경우 비정질 상태이고, 열처리를 할 경우 결정질 표면이 된다. 이와 같이 결정질 표면으로 변화시켜 친수성, 경도, 강도, 산화막(300)의 두께 등의 물리화학적 성질은 제어할 수 있다. 이러한 산화막(300)에는 산화미세기공(311)을 포함하는 반구상의 산화요홈(310)이 형성되어 있는데, 산화요홈(310)을 형성하기 위한 열처리 온도는 200 내지 1200℃에서 이루어지는 것이 바람직하며 이러한 온도에서 결정질의 산화막(300)이 형성된다. 열처리 온도가 200℃ 미만일 경우 비정질의 산화막이 형성되고, 1200℃를 초과할 경우 금속모재(100)의 변형이 일어날 수 있다.The oxide film 300 is in an amorphous state when the surface of the metal base material 100 on which the grooves 110 are formed is not heat treated, and becomes an crystalline surface when heat treated. As such, by changing to a crystalline surface, physicochemical properties such as hydrophilicity, hardness, strength, and thickness of the oxide film 300 can be controlled. The oxide film 300 is formed with a hemispherical groove oxide 310 including a microscopic oxide hole 311, the heat treatment temperature for forming the groove oxide 310 is preferably made at 200 to 1200 ℃, such a temperature In crystalline oxide film 300 is formed. If the heat treatment temperature is less than 200 ℃ amorphous oxide film is formed, if it exceeds 1200 ℃ may deform the metal base material 100.
산화막(300)에 형성된 반구상의 산화요홈(310)은 10 내지 1,000nm 크기 직경을 가지는 것이 바람직하다. 산화요홈(310)의 직경이 10nm 미만일 경우 생체 결합력이 높지 않으며, 1,000nm를 초과하는 산화요홈(310)은 화학적 또는 물리적 방식으로도 효과적으로 형성시킬 수 있는 수준이다. 이러한 산화요홈(310)의 직경은 양극산화의 조건 제어를 통해 조절할 수 있다. 또한, 산화요홈(310)의 표면 자체도 수 나노미터 크기의 미세한 산화미세기공(311)을 가지는 거친 표면이 동시에 형성된다. 이러한 열처리 진행을 통해 보다 경도가 높고 10nm 이상의 두께로 비정질 티타늄 산화막보다 상대적으로 두꺼운 결정질 티타늄 산화막(300)을 형성시켜줌으로 인해 생체 적합성 및 친수성을 높여줄 수 있다.The hemispherical groove oxide 310 formed in the oxide film 300 preferably has a diameter of 10 to 1,000 nm. When the diameter of the grooved oxide 310 is less than 10 nm, the biological binding force is not high, and the grooved oxide 310 larger than 1,000 nm may be effectively formed in a chemical or physical manner. The diameter of the grooves 310 may be adjusted through condition control of anodization. In addition, the surface of the groove oxide 310 itself is also formed with a rough surface having a fine microscopic oxide hole 311 of several nanometers in size. Through such heat treatment, the crystalline titanium oxide film 300 is formed to have a higher hardness and a thickness of 10 nm or more, which is relatively thicker than the amorphous titanium oxide film, thereby improving biocompatibility and hydrophilicity.
티타늄(Ti)의 경우 양극산화를 통한 산화티타늄 나노튜브(200)가 제거된 후에 자연적으로 형성된 자연산화피막(native oxide layer)으로 표면에 2 내지 5nm의 비정질 산화티타늄(TiO2) 박막이 형성된다. 이를 200 내지 1200℃에서 열처리할 경우 약 200℃ 이상에서는 아나타제(anatase) 결정상이 형성되고, 700℃ 이상에서는 루타일(rutile) 결정상 산화막(300)이 형성된다. 경도는 루타일 > 아나타제 > 비정질 순이며, 열처리를 함으로써 산화막(300)의 두께를 10nm 이상으로 증가시킬 수 있게 된다. 즉, 열처리를 할수록 반구상의 산화요홈(310)이 형성된 금속 표면의 경도를 높임과 동시에 생체에 적합한 산화막(300)의 두께도 증대시키는 효과를 가져올 수 있게 된다.In the case of titanium (Ti), an amorphous titanium oxide (TiO 2 ) thin film having a thickness of 2 to 5 nm is formed on a surface of a native oxide layer formed naturally after the titanium oxide nanotubes 200 are removed through anodization. . When heat-treated at 200 to 1200 ° C., an anatase crystal phase is formed at about 200 ° C. or more, and a rutile crystal phase oxide film 300 is formed at 700 ° C. or more. The hardness is in order of rutile>anatase> amorphous, and by heat treatment, the thickness of the oxide film 300 can be increased to 10 nm or more. That is, as the heat treatment is performed, the hardness of the metal surface on which the hemispherical grooves 310 are formed may be increased, and the thickness of the oxide film 300 suitable for the living body may be increased.
제1실시예의 경우 금속모재(100)를 양극산화하는 공정을 통해서만 표면에 반구상의 요홈(110)을 형성시킨 데 비해, 제2실시예의 경우 샌드블라스팅과 함께 양극산화를 실시하는 공정으로 이루어진다. 제2실시예에 따른 제조방법은 도 5에 도시된 바와 같이 먼저, 금속모재 표면을 샌드블라스팅한다(S1b).In the first embodiment, the hemispherical groove 110 is formed on the surface only by anodizing the metal base material 100. In the second embodiment, the anodization is performed with sandblasting. In the manufacturing method according to the second embodiment, first, as shown in FIG. 5, the surface of the metal base material is sandblasted (S1b).
샌드블라스팅(sandblasting)은 분사 가공의 일종으로, 여기에 사용되는 샌드블라스트 메디아(sandblast media)는 직경이 작은 글리드 글래스구, 규소, 해사, 금속입자 등이다. 샌드블라스팅은 이러한 샌드블라스트 메디아를 공기로 분사시키거나 중력으로 낙하시키는 방법으로 타격하여 표면에 미세한 요홈 면을 형성하도록 하는 공정으로 이루어진다. 즉 금속모재 표면에 마이크로 사이즈의 요홈을 형성시키기 위해 1 내지 100㎛의 샌드블라스트용 입자를 준비하고, 이를 0.45 내지 0.65kgf/cm2의 압력을 이용하여 금속모재 표면에 샌드블라스팅(sandblasting)한다. 여기서 샌드 블라스팅 압력이 0.45kgf/cm2 미만일 경우 금속모재에 샌드블라스트 메디아가 제대로 타격되지 않아 원하는 사이즈의 요홈을 형성하지 못하며, 0.65kgf/cm2를 초과할 경우 금속모재의 일부 영역이 파손될 우려가 있다. 이후 샌드블라스트 메디아를 세척하는 과정을 통해 금속모재 표면에 이를 모두 제거한다. 이와 같은 과정을 통해 금속모재 표면에는 50 내지 500㎛ 사이즈의 큰 마이크로 요홈이 형성된다. 마이크로 요홈의 경우 샌드블라스팅을 이용해서는 50㎛ 미만의 요홈을 형성하기 어려우며, 500㎛를 초과할 경우 요홈이 금속모재에 영향을 줄 수 있을 정도로 큰 요홈이 되어 적합하지 않다.Sandblasting is a type of spray processing, and sandblast media used here are small diameter glass spheres, silicon, sea sand, metal particles, and the like. Sandblasting is a process of forming a fine groove surface on the surface by hitting the sandblast medium by spraying with air or dropping by gravity. That is, sandblasting particles of 1 to 100 μm are prepared to form micro-sized grooves on the surface of the metal base material, and sandblasted to the surface of the metal base material using a pressure of 0.45 to 0.65 kgf / cm 2 . In the case where the sand blasting pressure 0.45kgf / cm 2 is less than mothamyeo not form a groove of a desired size has not been sand-blast media to properly blow the metal base material, cause a damage to a part of the metal base material exceeds the 0.65kgf / cm 2 have. Thereafter, the sandblast media is washed to remove all of the metal substrate surface. Through this process, a large micro recess of 50 to 500 μm size is formed on the surface of the metal base material. In the case of micro grooves, it is difficult to form grooves of less than 50 μm by using sand blasting, and when they exceed 500 μm, the grooves are not suitable because they are large enough to affect the metal base material.
그 후 마이크로 요홈을 포함하는 금속모재를 양극산화하는 과정이 이루어지는데, 금속모재를 양극산화하는 단계(S2b) 및 산화티타늄 나노튜브를 제거하여 금속모재 표면에 반구상의 요홈을 형성시키는 단계(S3b)는, 실시예 1의 S1a 단계 및 S2a 단계와 동일하기 때문에 별도의 설명은 생략한다. 이러한 공정을 통해 마이크로 요홈의 내부에는 양극산화에 의한 반구상의 나노 요홈이 형성된다.Thereafter, a process of anodizing the metal base material including the micro grooves is performed. Anodizing the metal base material (S2b) and removing the titanium oxide nanotubes to form hemispherical grooves on the surface of the metal base material (S3b). Is the same as step S1a and step S2a of the first embodiment, and further description is omitted. Through this process, hemispherical nano grooves are formed in the micro grooves by anodization.
경우에 따라서 제2실시예와 같은 샌드블라스팅 공법이 아닌 SLA(Sand blasted, Larg-grit, Acid etched) 공법과 양극산화 공법을 함께 사용하는 제3실시예를 수행할 수도 있다. 도 6에 도시된 바와 같이 금속모재에 SLA 공법을 수행하는 단계(S1c)는 샌드블라스팅을 통해 표면에 수백 마이크로 사이즈의 요홈이 형성된 금속모재를 산에 침지시켜 식각 공정을 수행한다. 식각 공정을 통해서는 샌드블라스팅을 통해 얻어지는 마이크로 요홈보다 작은 사이즈의 요홈인 1 내지 50㎛ 사이즈의 중간 요홈을 얻을 수 있게 된다. 중간 요홈의 경우 산 식각을 통해 1㎛ 미만의 요홈을 형성하기는 어려우며, 50㎛를 초과할 경우 큰 요홈과 별다른 차이가 없기 때문에 샌드블라스팅과 산 식각을 별도로 한 의미가 없게 된다.In some cases, a third embodiment using a sand blasted, larg-grit, acid etched (SLA) method and an anodization method may be performed instead of the sandblasting method as the second embodiment. As shown in FIG. 6, in the step S1c of performing the SLA method on the metal base material, an etching process is performed by immersing the metal base material in which the grooves of several hundred micro sizes are formed on the surface through sand blasting. Through the etching process, it is possible to obtain an intermediate groove having a size of 1 to 50 μm, which is a smaller groove than a micro groove obtained through sandblasting. In the case of the intermediate groove, it is difficult to form a groove of less than 1 μm through acid etching, and when it exceeds 50 μm, sandblasting and acid etching do not have a meaning because there is no difference from a large groove.
산 식각이 이루어진 후 산을 중화하기 위한 염기세척, 중화에 사용된 산 및 염기를 제거하기 위한 물 또는 증류수로 세척이 순차적으로 이루어지며 추가적으로 샌드블라스팅에 사용된 입자의 세척 공정 또한 이루어지게 된다. 이 이후에는 제1실시예 및 제2실시예와 동일한 금속모재를 양극산화하는 단계(S2c) 및 산화티타늄 나노튜브를 제거하여 금속모재 표면에 반구상의 요홈을 형성시키는 단계(S3c)가 진행된다. 이와 같이 제3실시예를 통해서는 마이크로 요홈의 내부에 중간 요홈이 형성되고, 중간 요홈에는 반구상의 나노 요홈이 형성된다.After acid etching, washing is sequentially performed with a base wash to neutralize the acid, an acid used for neutralization, and water or distilled water to remove the base, and a washing process of particles used for sand blasting is also performed. After this, the step of anodizing the same metal base material as the first embodiment and the second embodiment (S2c) and the step of removing the titanium oxide nanotubes to form hemispherical grooves on the surface of the metal base material (S3c) are performed. Thus, through the third embodiment, the middle groove is formed in the micro groove, and the hemispherical nano groove is formed in the middle groove.
또 다른 실시예인 제4실시예는 금속모재의 일부 영역에는 양극산화가 이루어지지 않도록 하는 기술로, 다음과 같은 단계로 이루어진다. 도 7에 도시된 바와 같이 먼저 금속모재의 표면 일부에 폴리머 보호층을 형성한다(S1d).The fourth embodiment, which is another embodiment, is a technique for preventing anodization in some regions of the metal base material, and includes the following steps. As shown in FIG. 7, first, a polymer protective layer is formed on a part of the surface of the metal base material (S1d).
생체이식용 금속, 임플란트 또는 스텐트를 형성하기 위한 금속모재를 준비하고, 금속모재의 표면 일부에 양극산화되는 것을 방지하기 위해 폴리머 보호층을 형성한다. 이는 금속모재의 표면 중 양극산화를 원하지 않는 영역이 있을 경우 수행하는 단계로, 금속모재 전면을 양극산화할 때에는 이 단계를 수행하지 않아도 무방하다.A metal base material for preparing a biograft metal, an implant, or a stent is prepared, and a polymer protective layer is formed to prevent anodization on a part of the surface of the metal base material. This step is performed when there is a region in the surface of the metal base material that does not want to be anodized, and this step may not be performed when anodizing the entire surface of the metal base material.
임플란트의 경우 형상에 따라 생체 결합력을 높게 요구하는 영역과, 생체 결합력을 요구하지 않는 영역이 있을 수 있다. 이에 따라 생체 결합력을 높게 요구하는 영역은 양극산화를 수행하며, 생체 결합력을 요구하지 않는 영역 또는 요홈이 필요하지 않는 영역은 폴리머 보호층을 형성하여 양극산화가 일어나지 않도록 한다. 스텐트의 경우 스텐트 내부를 통해 혈액이 원활하게 이동할 수 있도록 스텐트 내벽 표면은 매끄러운 것이 바람직한데, 이를 위해 폴리머 보호층을 스텐트 내벽에 형성시켜 내벽이 양극산화가 일어나지 않도록 한다.In the case of an implant, there may be a region requiring a high biobinding force and a region not requiring the biobinding force according to the shape. Accordingly, the region requiring high bio-binding force performs anodization, and the region that does not require bio-binding force or the region that does not require grooves form a polymer protective layer so that anodization does not occur. In the case of the stent, the inner surface of the stent is preferably smooth so that blood can flow smoothly through the inside of the stent. For this purpose, a polymer protective layer is formed on the inner wall of the stent so that the inner wall is not anodized.
여기서 폴리머 보호층은 금속모재에 전기가 인가되더라도 양극산화 반응이 일어나지 않는 PDMS(Polydimethylsiloxane), PMMA(Polymethylmethacrylate), PI(Polyimide), PET(Polyethylene terephthalate), PES(Polyethersulfone), PEN(Polyethylene naphthalate), PS(Polystyrene), PU(Polyurethane), PA(Polyamide), FRP(Fiber reinforced plastic) 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.The polymer protective layer is a polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA), polyimide (PI), polyethylene terephthalate (PET), polyethersulfone (PES), polyethylene naphthalate (PEN), It is preferably selected from the group consisting of polystyrene (PS), polyurethane (PU), polyamide (PA), fiber reinforced plastic (FRP), and mixtures thereof.
금속모재를 양극산화하여 표면에 산화티타늄 나노튜브를 형성한다(S2d).Anodizing the base metal to form titanium oxide nanotubes on the surface (S2d).
표면 일부에 폴리머 보호층이 형성되어 있거나 또는 폴리머 보호층이 존재하지 않는 금속모재를 양극산화하여 표면에 산화티타늄 나노튜브를 형성시킨다. 폴리머 보호층이 형성된 금속모재의 경우 폴리머 보호층을 제외한 영역에 양극산화 전해액이 접촉하게 되며, 전해액이 접촉한 영역에 산화티타늄 나노튜브가 형성된다. 금속모재를 양극산화하여 표면에 산화티타늄 나노튜브를 형성하는 단계는 제1실시예의 S1a 단계와 동일한 방법을 사용할 수 있으며, 이에 의해 자세한 설명은 생략하도록 한다.A titanium oxide nanotube is formed on the surface by anodizing a metal base material having a polymer protective layer formed on a portion of the surface or the polymer protective layer not present. In the case of the metal base material on which the polymer protective layer is formed, the anodized electrolyte is in contact with the region excluding the polymer protective layer, and titanium oxide nanotubes are formed in the area where the electrolyte is in contact. The step of anodizing the metal base material to form the titanium oxide nanotubes on the surface may use the same method as in step S1a of the first embodiment, thereby detailed description thereof will be omitted.
금속모재 표면의 폴리머 보호층을 제거한다(S3d).The polymer protective layer on the surface of the metal base material is removed (S3d).
금속모재의 표면에 양극산화가 완료되면 양극산화가 방지되도록 금속모재의 표면을 보호하고 있던 폴리머 보호층을 제거한다. 폴리머 보호층은 아세톤(acetone) 등과 같은 세척 용액을 이용하여 간단히 제거할 수 있다. 이와 같은 폴리머 보호층을 제거하는 단계는 양극산화 후 바로 제거하는 것이 바람직하나, 경우에 따라서 생체이식용 금속이 최종으로 제조된 후에 제거하여도 무방하다. 즉, 양극산화가 끝난 후에 행해지든 어느 단계에서든지 본 단계가 이루어져도 무방하다.When anodization is completed on the surface of the metal base material, the polymer protective layer protecting the surface of the metal base material is removed to prevent anodization. The polymer protective layer can be simply removed using a cleaning solution such as acetone or the like. The step of removing the polymer protective layer is preferably removed immediately after anodization, but in some cases, may be removed after the final biograft metal is finally manufactured. In other words, this step may be performed at any stage or after anodization.
이후 산화티타늄 나노튜브를 제거하여 금속모재 표면에 반구상의 요홈을 형성시키는 단계(S4d)와, 열처리하여 금속모재 표면에 산화막을 형성하는 단계(S5d)는 실시예 1의 S2a 및 S3a 단계와 동일한 조건으로 이루어지기 때문에 상세한 설명은 생략한다. 제4실시예는 이러한 단계들을 통해 얻어진 생체이식용 금속, 임플란트 또는 스텐트를 사용하여도 되지만, 필요에 따라서 친수성 약물을 담지하여야 할 경우에는 다음과 같은 단계를 추가로 진행할 수도 있다.Subsequently, the step of removing the titanium oxide nanotubes to form hemispherical grooves on the surface of the metal base material (S4d) and the step of performing heat treatment to form an oxide film on the surface of the metal base material (S5d) are the same as in the steps S2a and S3a of Example 1 Detailed description is omitted because it is made. The fourth embodiment may use the biograft metal, implant or stent obtained through these steps, but if necessary to carry a hydrophilic drug, the following steps may be further proceeded.
산화막을 친수성 상태로 변화시킨다(S6d).The oxide film is changed into a hydrophilic state (S6d).
산화막을 친수성 상태로 변화시키지 않고 소수성 상태에서 소수성 약물을 주입할 경우 이를 포함한 생체이식용 금속, 임플란트 또는 스텐트가 생체 내에 삽입되면, 생체와 접촉하는 생체이식용 금속, 임플란트 또는 스텐트로부터 소수성 약물이 빠른 시간 내에 한꺼번에 방출된다. 약물이 빠른 시간 내에 방출되면 약물의 방출 농도가 높아져 생체에 해로운 영향을 끼치게 된다. 따라서 약물이 천천히 방출되도록 친수성 약물을 사용하며, 생체이식용 금속, 임플란트 또는 스텐트의 표면 역시 친수성 상태가 되는 것이 바람직하다. 금속모재의 표면에 형성된 산화막을 친수성 상태로 변화시키는 방법으로는, 산화막에 0.1 내지 10J/㎠의 강도를 갖는 UV 램프를 이용하여 1 내지 20m/min의 속도로 300 내지 400nm의 파장을 갖는 UV를 처리하는 것이 바람직하다. UV 처리 이외에도 산화막을 친수성 상태로 변화시킬 수 있는 방법인 열수처리 공정, 플라즈마 처리 공정과 같은 방법을 제한 없이 사용 가능하다.When a hydrophobic drug is injected in a hydrophobic state without changing the oxide film into a hydrophilic state, when a biotransplantable metal, implant or stent including the same is inserted into the living body, the hydrophobic drug may be rapidly released from the biograft metal, implant or stent in contact with the living body. It is released all at once. If the drug is released in a short time, the release concentration of the drug is increased, which has a harmful effect on the living body. Therefore, a hydrophilic drug is used to release the drug slowly, and the surface of the biograft metal, implant or stent is also preferably hydrophilic. As a method of changing the oxide film formed on the surface of the metal base material into a hydrophilic state, UV having a wavelength of 300 to 400 nm at a speed of 1 to 20 m / min is used by using a UV lamp having an intensity of 0.1 to 10 J / cm 2 for the oxide film. It is preferable to process. In addition to the UV treatment, methods such as a hydrothermal treatment process and a plasma treatment process, which can change the oxide film into a hydrophilic state, can be used without limitation.
산화막의 산화요홈 내에 약물을 주입한다(S7d).The drug is injected into the groove of the oxide film (S7d).
약물의 방출을 지연시키기 위해 산화막을 친수성으로 변화시키고, 친수성인 산화요홈 내로 약물이 원활히 유입되도록 친수성으로 이루어진 약물을 산화요홈 내로 주입한다. 여기서 친수성 약물을 신생 내막세포 증식을 억제하는 친수성 고분자 약물인 것이 바람직하다.In order to delay the release of the drug, the oxide film is changed to hydrophilic, and a hydrophilic drug is injected into the groove to allow the drug to smoothly flow into the hydrophilic groove. The hydrophilic drug is preferably a hydrophilic polymer drug that inhibits the proliferation of neointimal cells.
약물은 임플란트 또는 스텐트의 사용 용도에 따라서 다양하게 사용 가능한데, 임플란트의 경우 생체결합력을 증가시키기 위해 비스포스포네이트계 약물을 사용하는 것이 바람직하다. 경우에 따라서 비스포스포네이트계 약물과 항생제를 혼합해서 사용할 수 있으며, 비스포스포네이트계 약물은 생체 내에서 파골세포(osteoclast)의 생성을 억제하는 것으로, 악성종양과 관련된 고칼슘협증, 골다골증 및 이소성 석회화 증후군의 치료 등에 사용되고 있다. 뿐만 아니라 비스포스포네이트계 약물을 장내 칼슘 이동의 억제, 1,25(OH)2D 생성의 억제, 해당작용의 억제, 세포성장의 억제 및 산성과 알칼리성 포스파티아제의 변화 등 대사성 변화를 일으킨다.Drugs can be used in various ways depending on the use of the implant or stent, it is preferable to use bisphosphonate-based drugs in order to increase the biobinding force in the implant. In some cases, bisphosphonate-based drugs and antibiotics may be mixed, and bisphosphonate-based drugs are used to suppress osteoclast production in vivo. have. In addition, bisphosphonate drugs cause metabolic changes such as inhibition of intestinal calcium migration, inhibition of 1,25 (OH) 2 D production, inhibition of glycolysis, inhibition of cell growth, and changes in acidic and alkaline phosphatides.
이러한 비스포스포네이트계 약물은 에티드로네이트(etidronate, 1-ethane-1-hydroxy-1,1-bisphosphonate), 파미드로네이트(pamidronate, 3-amino-1-hydroxy-propylidene bisphosphonate), 알렌드로네이트(alendronate, 4-amino-1-hydroxy-butylidene bisphosphonate), 이반드로네이트(ibandronate, 1-hydroxy-3-[methyl(pentyl)amino]propane-1,1-diyl bisphosphonate) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.Such bisphosphonate drugs include etidronate (1-ethane-1-hydroxy-1,1-bisphosphonate), pamidronate (3-amino-1-hydroxy-propylidene bisphosphonate), and alendronate (4). -amino-1-hydroxy-butylidene bisphosphonate), ibandronate, 1-hydroxy-3- [methyl (pentyl) amino] propane-1,1-diyl bisphosphonate), and mixtures thereof. Do.
또한 항생제의 경우 테트라사이클린(tetracycline), 반코마이신(vancomycin), 아목시실린(anoxicillin), 클라부란산(clavulanic acid) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.In addition, the antibiotic is preferably selected from the group consisting of tetracycline (tetracycline), vancomycin (vancomycin), amoxicillin, clavulanic acid and mixtures thereof.
제4실시예와 달리 제5실시예의 제조방법은 도 8에 도시된 바와 같이 S1d 내지 S4d 단계까지는 동일하게 이루어지나, 금속모재의 표면에 요홈을 형성시키는 단계 이후의 과정에 있어서는 차이가 있다.Unlike the fourth embodiment, the manufacturing method of the fifth embodiment is identical to the steps S1d to S4d as shown in FIG. 8, but there is a difference in the process after the step of forming grooves on the surface of the metal base material.
금속모재의 표면 일부에 폴리머 보호층을 형성하는 단계(S1e), 금속모재를 양극산화하여 표면에 산화티타늄 나노튜브를 형성시키는 단계(S2e), 금속모재 표면의 폴리머 보호층을 제거하는 단계(S3e), 산화티타늄 나노튜브를 제거하여 금속모재 표면에 요홈을 형성시키는 단계(S4e) 이후에, 제5실시예에서는 금속모재의 표면에 생체적합성 재료를 코팅한다(S5e).Forming a polymer protective layer on a portion of the surface of the metal base material (S1e), anodizing the metal base material to form titanium oxide nanotubes on the surface (S2e), and removing the polymer protective layer on the surface of the metal base material (S3e). After removing the titanium oxide nanotubes to form grooves on the surface of the metal base material (S4e), in the fifth embodiment, a biocompatible material is coated on the surface of the metal base material (S5e).
생체적합성, 생체결합력, 강도 등을 증가시키기 위하여 금속모재의 표면에 생체적합성 재료를 추가로 코팅한다. 생체적합성 재료를 이용하여 금속모재 표면에 얇게 코팅층을 형성하게 되면, 금속모재의 요홈에 의해 코팅층에도 요홈이 형성된다.The biocompatible material is further coated on the surface of the metal base material in order to increase the biocompatibility, the biocompatibility, the strength, and the like. When a thin coating layer is formed on the surface of the metal base material using a biocompatible material, grooves are also formed in the coating layer by the grooves of the metal base material.
여기서 생체적합성 재료는 생체적합성 금속, 생체적합성 세라믹, 생체적합성 고분자 등이 될 수 있다. 생체적합성 재료 및 원소는 마그네슘(Mg), 칼슘(Ca), 인(P), 아연(Zn), 철(Fe), 크롬(Cr), 니켈(Ni), 스테인레스 스틸(stainless steel), 코발트(Co), 티타늄(Ti), 지르코늄(Zr), 니오븀(Nb), 탄탈럼(Ta), 금(Au), 은(Ag) 및 이의 혼합으로 이루어지는 군으로부터 선택되는 것이 바람직하며, 생체적합성 세라믹은 하이드록시 아파타이트(hydroxyapatite, HAp), 칼슘 포스페이트계 세라믹스(biphasic calcium phosphate ceramics), 생체활성 유리(biactive glass), 지르코니아(ZrO2), 알루미나(Al2O3), 티타니아(TiO2), 탄화규소(SiC), 질화규소(Si3N4) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다. 또한 생체적합성 고분자는 폴리락트산(polylatic acid, PLA), 폴리글리콜산(polyglycolic acid, PGA), 폴리락틱코글리콜산(poly-lactic-co-glycolic acid, PLGA), 폴리카프로락톤(poly-e-caprolactone, PCL) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.The biocompatible material may be a biocompatible metal, a biocompatible ceramic, a biocompatible polymer, or the like. Biocompatible materials and elements include magnesium (Mg), calcium (Ca), phosphorus (P), zinc (Zn), iron (Fe), chromium (Cr), nickel (Ni), stainless steel, and cobalt ( Co), titanium (Ti), zirconium (Zr), niobium (Nb), tantalum (Ta), gold (Au), silver (Ag) and a mixture thereof are preferably selected. Hydroxyapatite (HAp), biphasic calcium phosphate ceramics, bioactive glass, zirconia (ZrO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), and mixtures thereof. In addition, the biocompatible polymers are polylactic acid (PLA), polyglycolic acid (PGA), polylactic-co-glycolic acid (PLGA), polycaprolactone (poly-e- caprolactone, PCL) and mixtures thereof.
금속모재의 표면에 생체적합성 재료를 코팅하는 방법으로는 전자빔 증착 방법 또는 전해 코팅 방법이 바람직한데, 이 이외에도 코팅이 가능한 방법이면 제한 없이 사용 가능하다.As a method of coating the biocompatible material on the surface of the metal base material, an electron beam deposition method or an electrolytic coating method is preferable. In addition to this, any method capable of coating may be used without limitation.
전자빔 증착 방법은 전자빔 증착장비 내에 위치한 생체적합성 재료에 전자빔을 조사하여 증착모재가 되는 금속모재에 생체적합성 재료를 증착하는 방법으로, 일반적으로 금속을 증착하는 방법으로 사용된다. 이와 같은 방법을 사용할 경우 융점이 높은 금속이라도 용이하게 증착할 수 있으며, 동시에 치밀하고 균일한 코팅을 진행할 수 있다는 장점이 있다.The electron beam deposition method is a method of depositing a biocompatible material on a metal base material which is a deposition base material by irradiating an electron beam to a biocompatible material located in an electron beam deposition apparatus, and is generally used as a method of depositing a metal. When using this method, even a metal having a high melting point can be easily deposited, and at the same time, there is an advantage in that a dense and uniform coating can be performed.
전자빔은 전자빔 증착 전류가 100 내지 150mA에서 발생할 수 있는데, 만약 100mA 미만일 경우 에너지가 너무 작아서 전자빔이 적게 생성되어 생체적합성 재료가 증착되는 속도가 매우 낮아 공정이 효율적이지 못하다. 또한 150mA를 초과할 경우 생체적합성 재료가 오버플로잉(over flowing)되어 결과적으로 전자빔 증착장비의 내구성을 저감시킬 수 있다.The electron beam may be generated at an electron beam deposition current of 100 to 150 mA. If the electron beam is less than 100 mA, the energy is so small that the electron beam is generated so that the rate at which the biocompatible material is deposited is very low and the process is not efficient. In addition, the biocompatible material may be overflowed if it exceeds 150 mA, thereby reducing the durability of the electron beam deposition equipment.
또한 전자빔 증착 과정에서 전자빔 증착 속도는 1 내지 1.5Å/s인 것이 바람직한데, 증착 속도가 1Å/s 미만일 경우 증착되는 생체적합성 재료의 양이 너무 적어 공정이 비효율적이며, 1.5Å/s를 초과할 경우 증착되는 생체적합성 재료가 적층될 때 균일성이 저감되는 문제가 생길 수 있다.In addition, the electron beam deposition rate in the electron beam deposition process is preferably 1 to 1.5 Å / s. If the deposition rate is less than 1 Å / s, the amount of biocompatible materials deposited is too small, the process is inefficient, exceeding 1.5 Å / s In this case, the uniformity may be reduced when the biocompatible material to be deposited is laminated.
생체적합성 재료를 코팅하는 방법 중 또 다른 방법인 전해코팅 방법은, 생체적합성 재료를 포함하는 수용액에 금속모재를 침지한 후 수용액에 전기를 인사하여 생체적합성 재료를 코팅하는 방법이다.The electrolytic coating method, which is another method of coating a biocompatible material, is a method of coating a biocompatible material by immersing a metal base material in an aqueous solution containing the biocompatible material and then greeting the electricity with the aqueous solution.
여기서 생체적합성 재료를 포함하는 수용액은, 하이드록시 아파타이트(hydroxyapatite, HAp) 용액, 칼슘용액, 인산용액 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다. 여기서 칼슘용액은 칼슘이 이온 형태로 수용액 내에 포함된 용액을 의미하며, 칼슘 포스페이트(calcium phosphate), 칼슘 아세테이트 모노하이드레이트(calcium acetate monohydrate, CA), 칼슘 아세테이트 하이드레이트(calcium acetate hydrate), 칼슘 아세테이트(calcium acetate) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하나 이에 한정되지는 않는다. 또한 인산용액은 인산이 이온 형태로 수용액 내에 포함된 용액을 의미하며, 글리세로포스페이트 디소듐 염 펜타하이드레이트(glycerophosphate disodium salt pentahydrate, GP), 글리세롤 포스페이트 칼슘 염(glycerolphosphate calcium salt), 글리세로포스페이트 디소듐 염 하이드레이트(glycerophosphate disodium salt hydrate), 글리세롤포스페이트 디소듐 염(glycerolphosphate disodium salt) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하나 이에 한정되지는 않는다.Herein, the aqueous solution containing the biocompatible material is preferably selected from the group consisting of a hydroxyapatite (HAp) solution, a calcium solution, a phosphate solution, and a mixture thereof. Here, the calcium solution refers to a solution containing calcium in an ionic form, calcium phosphate, calcium acetate monohydrate (CA), calcium acetate hydrate (calcium acetate hydrate), calcium acetate (calcium) acetate) and mixtures thereof, but is not limited thereto. In addition, the phosphate solution means a solution in which the phosphate is contained in the aqueous solution in the form of ions, glycerophosphate disodium salt pentahydrate (GP), glycerol phosphate calcium salt, glycerophosphate disodium Preferably, the salt hydrate is selected from the group consisting of glycerophosphate disodium salt hydrate, glycerol phosphate disodium salt, and mixtures thereof.
수용액은 온도가 25 내지 300℃인 것이 바람직하다. 만약 온도가 25℃ 미만일 경우 전해 이온들의 활성도가 낮아져서 반응속도론(kinetic) 적으로 불리할 수 있으며, 300℃를 초과할 경우 제조 에너지 투하가 과해지는 문제가 생길 수 있다.It is preferable that aqueous solution is 25-300 degreeC in temperature. If the temperature is less than 25 ℃ the activity of the electrolytic ions may be lowered kinetics disadvantageously, if the temperature exceeds 300 ℃ may cause a problem of excessive manufacturing energy release.
이와 같은 단계를 통해 제5실시예에서는 금속모재 표면에 생체적합성 재료가 코팅된 생체이식용 금속, 임플란트 또는 스텐트를 얻을 수 있으며, 약물 방출형 임플란트 또는 스텐트의 경우 제4실시예의 S6d 및 S7d 단계와 마찬가지로 코팅층을 친수성 상태로 변화시키는 단계(S6e)와 친수성인 코팅층의 요홈 내에 약물을 주입하는 단계(S7e)를 추가로 진행할 수 있다.Through this step, in the fifth embodiment, a biocompatible metal, an implant or a stent coated with a biocompatible material on the surface of the metal base material can be obtained, and in the case of the drug release implant or the stent, as in the steps S6d and S7d of the fourth embodiment Changing the coating layer to a hydrophilic state (S6e) and the step of injecting a drug into the groove of the hydrophilic coating layer (S7e) can be further proceeded.
제6실시예에 따른 제조방법은 도 9에 도시된 바와 같이 금속모재의 표면 일부에 폴리머 보호층을 형성하는 단계(S1f), 금속모재를 양극산화하여 표면에 산화티타늄 나노튜브를 형성시키는 단계(S2f), 금속모재 표면의 폴리머 보호층을 제거하는 단계(S3f), 산화티타늄 나노튜브를 제거하여 금속모재 표면에 요홈을 형성시키는 단계(S4f)는 제4실시예 및 제5실시예와 동일하게 이루어지나, 이후의 단계는 제4실시예 및 제5실시예를 함께 적용한다는 점에 있어서 차이가 있다.In the manufacturing method according to the sixth embodiment, as shown in FIG. 9, forming a polymer protective layer on a part of the surface of the metal base material (S1f), and forming titanium oxide nanotubes on the surface by anodizing the metal base material ( S2f), removing the polymer protective layer on the surface of the metal base material (S3f), and removing the titanium oxide nanotubes to form grooves on the surface of the metal base material (S4f) are the same as in the fourth and fifth embodiments. Although the following steps are made, there is a difference in applying the fourth embodiment and the fifth embodiment together.
제6실시예에서는 제4실시예와 마찬가지로 금속모재 표면에 요홈을 형성시키는 단계(S4f) 이후에, 열처리하여 금속모재의 표면에 산화티타늄 나노튜브를 형성한다(S5f).In the sixth embodiment, as in the fourth embodiment, after forming grooves on the surface of the metal base material (S4f), heat treatment is performed to form titanium oxide nanotubes on the surface of the metal base material (S5f).
표면에 요홈이 형성된 금속모재를 열처리하여 금속모재 표면에 산화막을 형성한다. 이러한 산화막에는 복수의 산화요홈이 형성되어 있는데, 산화요홈을 형성하기 위한 열처리 온도는 제4실시예와 마찬가지로 200 내지 1200℃에서 이루어지는 것이 바람직하며 이러한 온도에서 결정질의 박막이 형성된다.The metal base material having grooves formed on the surface is heat-treated to form an oxide film on the metal base material surface. A plurality of grooves are formed in the oxide film, and the heat treatment temperature for forming the grooves is preferably performed at 200 to 1200 ° C. as in the fourth embodiment, and a crystalline thin film is formed at this temperature.
산화막에 형성된 산화요홈은 요홈과 마찬가지로 10 내지 1,000nm의 직경을 가지는 것이 바람직하다. 산화요홈의 직경이 10nm 미만일 경우 생체 결합력이 높지 않으며, 1,000nm를 초과할 경우 산화요홈의 직경이 커서 산화요홈끼리 맞물릴 수 있으며 이에 의해 균일한 산화요홈을 얻기 어렵다. 이러한 산화요홈의 직경은 요홈의 직경에 영향을 받거나 열처리 온도의 제어를 통해 조절할 수 있다. 또한, 산화요홈의 표면 자체도 수 나노미터 크기의 미세한 기공을 가지는 거친 표면이 동시에 형성된다.The grooves formed in the oxide film preferably have a diameter of 10 to 1,000 nm similarly to the grooves. If the diameter of the grooved oxide is less than 10nm, the bio-binding force is not high, and if the diameter of the grooved oxide is greater than 1,000 nm, the grooves may be interlocked with each other, thereby making it difficult to obtain uniform grooves. The diameter of the grooves can be controlled by the diameter of the grooves or by controlling the heat treatment temperature. In addition, a rough surface having fine pores of several nanometers in size is formed at the same time as the surface of the grooved oxide itself.
산화막 표면에 생체적합성 재료를 코팅한다(S6f).The biocompatible material is coated on the surface of the oxide film (S6f).
생체적합성, 생체결합력, 강도 등을 증가시키기 위하여 산화막의 표면에 생체적합성 재료를 추가로 코팅한다. 생체적합성 재료를 이용하여 산화막 표면에 얇게 코팅층을 형성하게 되면, 산화막의 산화요홈에 의해 코팅층에도 요홈 형상이 형성된다. 여기서 생체적합성 재료는 실시예5에 기재된 재료를 모두 사용 가능하다.The biocompatible material is further coated on the surface of the oxide film in order to increase biocompatibility, biocompatibility, strength, and the like. When the coating layer is formed on the surface of the oxide film using a biocompatible material, the groove shape is also formed on the coating layer by the groove of the oxide film. As the biocompatible material, any of the materials described in Example 5 can be used.
상기와 같이 열처리를 하여 산화막을 형성한 후에 생체적합성 재료를 코팅하게 되면 산화막에 의해 강도가 세지며, 생체적합성 재료에 의해 강도 및 생체결합력이 증가하게 된다.When the biocompatible material is coated after the heat treatment is performed to form the oxide film, the strength is increased by the oxide film, and the strength and biocombination force are increased by the biocompatible material.
이와 같은 단계들을 통해 제6실시예에서는 산화막 표면에 생체적합성 재료가 코팅된 생체이식용 금속, 임플란트 또는 스텐트를 얻을 수 있으며, 약물 방출형 임플란트 또는 스텐트의 경우 제4실시예의 S6d 및 S7d 단계와 마찬가지로 코팅층을 친수성 상태로 변화시키는 단계(S7f)와 친수성인 코팅층의 요홈 내에 약물을 주입하는 단계(S8f)를 추가로 진행할 수 있다.Through these steps, in the sixth embodiment, a biograft metal, an implant, or a stent coated with a biocompatible material on the oxide film surface may be obtained. In the case of a drug release implant or stent, the coating layer may be similar to the steps S6d and S7d of the fourth embodiment. Changing to a hydrophilic state (S7f) and the step of injecting a drug into the groove of the hydrophilic coating layer (S8f) can be further proceeded.
이하 본 발명의 실시예를 좀 더 구체적으로 설명한다.Hereinafter, embodiments of the present invention will be described in more detail.
<실시예 1><Example 1>
실시예 1은 순수한 티타늄 금속 또는 티타늄 합금으로 이루어진 금속모재의 표면을 양극산화하여 표면에 반구상의 요홈을 형성시키는 방법이다. 여기서 표면처리 전 금속모재의 표면은 도 10을 통해 확인할 수 있다.Example 1 is a method of anodizing the surface of a metal base material made of pure titanium metal or titanium alloy to form hemispherical grooves on the surface. Here, the surface of the metal base material before the surface treatment may be confirmed through FIG. 10.
도 11에 도시된 바와 같이 양극을 티타늄(Ti) 금속모재(100)로, 음극을 불용성 백금(Pt, 10) 금속으로 하여 양단에 직류전압을 인가하고 양극산화를 하면 산화티타늄 나노튜브를 금속 표면 위에 형성시킬 수 있다. 양극산화를 하기 전에 먼저, 금속모재(100)를 초음파 세척기에서 에탄올, 아세톤에 차례대로 담근 후 각각 2분씩 세정한다. 이후에 전해액에 양극산화를 하려고 하는 티타늄(Ti) 금속모재(100)와 상대전극인 불용성 백금(10) 금속을 도 11에 도시된 바와 같이 전해액(20)에 담근다. 이때 전해액은 에틸렌글리콜(ethylene glycol)과 물의 혼합물에 0.01 내지 10wt%의 플루오르화암모늄(ammonium fluoride,NH4F) 염을 첨가한 전해액(20)을 사용하였고, 전해액(20)의 온도는 10 내지 80℃를 유지하면서 인가전압 10 내지 200V를 1 내지 300분 동안 정전압으로 인가하여 200nm 이상의 산화티타늄 나노튜브를 얻는다. 양극산화를 통해 얻은 산화티타늄(TiO2) 나노튜브는 도 12에 나타낸 바, 산화티타늄 나노튜브가 양호하게 형성됨을 알 수 있다.As shown in FIG. 11, when a positive electrode is a titanium (Ti) metal base material 100 and a negative electrode is an insoluble platinum (Pt, 10) metal, a DC voltage is applied to both ends and anodized, so that the titanium oxide nanotubes are formed on a metal surface. Can be formed on top. Before anodizing, first, the metal base material 100 is immersed in ethanol and acetone in an ultrasonic cleaner in turn, and then washed for 2 minutes. Subsequently, the titanium (Ti) metal base material 100 to be anodized in the electrolyte and the insoluble platinum 10 metal as a counter electrode are dipped in the electrolyte 20 as shown in FIG. 11. In this case, the electrolyte solution was an electrolyte solution 20 in which 0.01 to 10 wt% of ammonium fluoride (NH 4 F) salt was added to a mixture of ethylene glycol and water, and the temperature of the electrolyte solution 20 was 10 to 10. Applying an applied voltage of 10 to 200V at a constant voltage for 1 to 300 minutes while maintaining 80 ℃ to obtain a titanium oxide nanotube of 200nm or more. Titanium oxide obtained by the anodic oxidation (TiO 2) nanotubes can be seen to preferably formed of a bar, titanium oxide nanotubes shown in FIG.
양극산화하여 얻은 샘플을 물에 1시간 동안 담구어 세척한다. 세척이 끝나면 양극산화하여 얻은 산화티타늄 나노튜브를 금속모재로부터 제거하기 위하여, 과산화수소(H2O2) 용액에 담구어 20 내지 100℃를 유지하면서 5분간 초음파 세척기로 다시 세척하고, 이후에 물에 담구어 5분간 초음파 세척기로 세척한 후, 최종적으로 에탄올에 담구어 5분간 초음파 세척기로 세척한다. 세척된 샘플은 열풍 건조기로 건조한 후 보관한다. 이렇게 하면 금속모재 표면에 형성된 산화티타늄 나노튜브는 제거되고, 표면은 도 13과 같이 반구상의 요홈이 형성된다. 이를 더욱 확대해볼 경우 도 14 및 도 15에 나타난 바와 같이 반구상의 요홈 내에 미세기공들이 형성되어 있는 것을 확인할 수 있다. 도 16은 본래의 금속모재 표면과, 양극산화하여 산화티타늄 나노튜브를 형성시킨 후 제거한 표면을 비교 분석한 XPS 결과이다. XPS 결과를 통해 나노패터닝 공정 후 표면은 보다 산화되어 산화티타늄으로 바뀜과 동시에 표 1에 나타나 있는 바와 같이 납(Pb)과 같은 불순물도 제거됨을 알 수 있다. 납의 경우 제조 과정에서 표면에 잔류할 수 있으나, 본 발명과 같이 양극산화를 진행한 후 산화티타늄 나노튜브를 제거하는 과정에서 금속모재 표면에서 제거될 수 있다. 이때 납 이외의 다른 불순물들도 함께 제거된다.The sample obtained by anodizing is immersed in water for 1 hour and washed. After washing, in order to remove the titanium oxide nanotubes obtained by anodizing from the metal matrix, they were immersed in a hydrogen peroxide (H 2 O 2 ) solution and washed again with an ultrasonic cleaner for 5 minutes while maintaining 20 to 100 ° C. After dipping and washing for 5 minutes with an ultrasonic cleaner, it is finally dipped in ethanol and washed for 5 minutes with an ultrasonic cleaner. The washed samples are stored after drying in a hot air dryer. This removes the titanium oxide nanotubes formed on the surface of the metal base material, and the surface has a hemispherical groove as shown in FIG. 13. In further expansion, it can be seen that micropores are formed in the hemispherical grooves as shown in FIGS. 14 and 15. FIG. 16 shows XPS results of comparing the original metal matrix surface with the surface removed after anodizing to form titanium oxide nanotubes. XPS results show that after the nanopatterning process, the surface is more oxidized to titanium oxide and impurities such as lead (Pb) are removed as shown in Table 1. Lead may remain on the surface during the manufacturing process, but may be removed from the surface of the metal substrate in the process of removing the titanium oxide nanotubes after anodizing as in the present invention. At this time, impurities other than lead are also removed.
표 1
name 나노패터닝 전 (At.%) 나노패터닝 후 (At.%)
C1s 47.5 47.85
Ca2p 0.29 -
F1s 0.33 0.41
K2p - -
Nis 1.09 1.06
O1s 34.18 36.9
Pb4f 0.13 -
S2p 0.42 -
Si2p 1.16 0.6
Ti2p 14.4 13.12
Zn2p3 0.51 0.06
Table 1
name Before Nano Patterning (At.%) After Nano Patterning (At.%)
C1s 47.5 47.85
Ca2p 0.29 -
F1s 0.33 0.41
K2p - -
Nis 1.09 1.06
O1s 34.18 36.9
Pb4f 0.13 -
S2p 0.42 -
Si2p 1.16 0.6
Ti2p 14.4 13.12
Zn2p3 0.51 0.06
도 17은 양극산화된 산화티타늄 나노튜브를 제거한 금속모재의 표면 AFM(atomic force microscope) 이미지를 나타내고 있으며, 나노 사이즈의 요홈이 균일하게 형성되어 있음을 알 수 있다. FIG. 17 illustrates an AFM (atomic force microscope) image of the metal base material from which anodized titanium oxide nanotubes are removed, and it can be seen that nano-sized grooves are uniformly formed.
필요에 의해서는 금속모재 샘플을 200 내지 1200℃에서 열처리를 통해 10nm 내지 1,000nm 정도로써 산화티타늄 산화막의 두께를 증대시킬 수도 있다.If necessary, the thickness of the titanium oxide oxide film may be increased to about 10 nm to 1,000 nm by heat-treating the metal matrix sample at 200 to 1200 ° C.
<실시예 2><Example 2>
실시예 2는 순수한 티타늄 금속 또는 합금으로 이루어진 금속모재를 샌드블라스팅 한 후 양극산화를 진행하여 금속모재의 표면에 요홈을 형성시키는 리조블 블라스트 메디아(resorbable blast media, RBM) 공정이다.Example 2 is a restable blast media (RBM) process for sandblasting a metal base material made of pure titanium metal or an alloy and then anodizing to form grooves on the surface of the metal base material.
먼저 금속모재가 압력에 의해 위치 이동되지 않도록 고정한 후, 180 내지 425㎛ 사이즈와 같이 모래알갱이 사이즈로 이루어진 칼슘포스페이트 입자를 포함하는 메디아를 분사노즐을 이용하여 적정한 압력으로 금속모재에 샌드블라스팅(sandblasting)하여 표면처리한다. 이때 모래는 0.45 내지 0.65kgf/cm2의 압력을 이용하여 샌드블라스팅이 이루어진다. 표면처리는 10 내지 25초간 이루어지며, 처리한 금속모재를 초음파 세척기에 약 5분간 세척한다. 이와 같이 샌드블라스팅 표면처리된 금속모재는 도 18을 통해 확인할 수 있다.First, the metal base material is fixed so as not to be moved by pressure, and then sandblasting the media including calcium phosphate particles having a grain size of sand such as 180 to 425 μm to the metal base material at an appropriate pressure using a spray nozzle. Surface treatment. The sand is using a pressure of 0.45 to 0.65kgf / cm 2 is made as sand blasting. The surface treatment is performed for 10 to 25 seconds, and the treated metal base material is washed in the ultrasonic cleaner for about 5 minutes. Thus, the sandblasting surface-treated metal base material can be confirmed through FIG.
샌드블라스팅된 금속모재를 이용하여 양극산화를 실시한다. 양극산화는 실시예 1과 동일한 방법으로 금속모재를 양극으로, 백금을 음극으로 하여 전해액에 담근 후 전압을 인가하여 금속모재 표면에 200nm 이상의 산화티타늄 나노튜브를 얻는다.Anodization is carried out using a sandblasted metal substrate. Anodization is performed in the same manner as in Example 1 by immersing a metal base material as an anode and platinum as a cathode in an electrolyte and applying a voltage to obtain titanium oxide nanotubes of 200 nm or more on the surface of the metal base material.
양극산화를 통해 얻는 산화티타늄 나노튜브를 과산화수소수, 물 및 에탄올에 순차적으로 담근 후 초음파 세척기를 이용하여 세척하고, 이를 통해 산화티타늄 나노튜브를 제거한다. 이와 같은 방법으로 표면에 요홈이 형성된 금속모재는 100㎛의 마이크로 요홈과, 수 내지 수백 나노미터의 나노 요홈을 갖는 표면을 얻을 수 있다. 도 19 및 도 20은 샌드블라스팅 및 양극산화한 후 산화티타늄 나노튜브의 일부만 제거한 표면으로, 도면과 같이 제거가 되지 않은 표면에는 산화티타늄 나노튜브 형상이 남아있고, 제거한 표면에는 고르게 반구상의 요홈이 형성되어 있음을 알 수 있다. 이러한 단계는 도 21과 같이 표면 변화를 확인할 수 있다. 도 22는 SLA 표면처리 후 양극산화한 뒤 산화티타늄 나노튜브를 제거하여 반구상을 형상한 표면으로 마이크로 요홈과 중간 요홈을 유지하면서 그 위에 나노패턴의 요홈이 형성되어 있음을 알 수 있다.The titanium oxide nanotubes obtained through anodization are sequentially immersed in hydrogen peroxide water, water and ethanol, and then washed using an ultrasonic cleaner, thereby removing the titanium oxide nanotubes. In this manner, the metal base material having grooves formed on the surface thereof can obtain a surface having micro grooves of 100 μm and nano grooves of several to several hundred nanometers. 19 and 20 are surfaces removed only part of the titanium oxide nanotubes after sandblasting and anodizing, titanium oxide nanotube shape is left on the surface is not removed, as shown in the figure, evenly formed hemispherical grooves It can be seen that. This step can confirm the surface change as shown in FIG. 22 shows that the nanopattern grooves are formed on the surface while maintaining the micro grooves and the intermediate grooves on the hemispherical surface by anodizing the SLA and then removing the titanium oxide nanotubes.
<실시예 3><Example 3>
실시예 2는 순수한 티타늄 금속 또는 합금으로 이루어진 금속모재를 SLA(Sand blasted, Larg-grit, Acid etched) 공법을 시행한 후 양극산화를 진행하여 금속모재의 표면에 요홈을 형성시키는 공정이다.Example 2 is a process of forming grooves on the surface of the metal base material by anodizing the metal base material made of pure titanium metal or alloy after SLA (Sand blasted, Larg-grit, Acid etched) method.
먼저 금속모재가 압력에 의해 위치 이동되지 않도록 고정한 후, 100㎛ 사이즈와 같이 모래알갱이 사이즈로 이루어진 산화알루미늄(Al2O3)을 분사노즐을 이용하여 적정한 압력으로 금속모재에 샌드블라스팅(sandblasting)하여 표면처리한다. 이때 산화알루미늄은 0.45 내지 0.65kgf/cm2의 압력을 이용하여 샌드블라스팅이 이루어진다. 그 후 산(acid)에 샌드블라스팅된 금속모재를 담그고 표면을 에칭하여 수 마이크로미터의 요홈을 형성시킨다. 이후에는 에칭에 이용된 산을 중화시키기 위하여 염기(base)를 통해 중화세척이 이루어지며, 중화세척에 사용된 염기를 제거하기 위해 물 또는 증류수를 이용하여 한번 더 세척한다. 이후 샌드블라스팅에 사용된 산화알루미늄을 완전히 제거하기 위해 추가 세척과정을 거치게 된다.First, the metal base material is fixed so as not to be moved by the pressure, and then sandblasted aluminum metal (Al 2 O 3 ) having a grain size of sand such as 100 μm to the metal base material at an appropriate pressure using a spray nozzle. Surface treatment At this time, the aluminum oxide is sandblasted using a pressure of 0.45 to 0.65kgf / cm 2 . Thereafter, the sandblasted metal matrix is immersed in an acid and the surface is etched to form grooves of several micrometers. Thereafter, neutralization washing is performed through a base to neutralize the acid used for etching, and washing with water or distilled water is performed once more to remove the base used for neutralization washing. Thereafter, an additional cleaning process is performed to completely remove the aluminum oxide used in sandblasting.
샌드블라스팅 및 에칭된 금속모재를 이용하여 양극산화를 실시한다. 양극산화는 실시예 1과 동일한 방법으로 금속모재를 양극으로, 백금을 음극으로 하여 전해액에 담근 후 전압을 인가하여 금속모재 표면에 200nm 이상의 산화티타늄 나노튜브를 얻는다.Anodization is carried out using sandblasted and etched metal substrates. Anodization is performed in the same manner as in Example 1 by immersing a metal base material as an anode and platinum as a cathode in an electrolyte and applying a voltage to obtain titanium oxide nanotubes of 200 nm or more on the surface of the metal base material.
양극산화를 통해 얻는 산화티타늄 나노튜브를 물, 과산화수소수 및 에탄올에 순차적으로 담근 후 초음파 세척기를 이용하여 세척하고, 이를 통해 산화티타늄 나노튜브를 제거한다. 이와 같은 방법으로 표면에 요홈이 형성된 금속모재는 100㎛의 마이크로 요홈과, 수 마이크로미터의 중간 요홈과, 수 내지 수백 나노미터의 나노 요홈을 갖는 표면을 얻을 수 있다.The titanium oxide nanotubes obtained through anodization are sequentially immersed in water, hydrogen peroxide and ethanol, and then washed using an ultrasonic cleaner, thereby removing the titanium oxide nanotubes. In this manner, the metal base material having grooves formed on the surface may obtain a surface having micro grooves of 100 μm, intermediate grooves of several micrometers, and nano grooves of several to several hundred nanometers.
<실시예 4><Example 4>
실시예 4는 순수한 티타늄 금속 또는 합금으로 이루어진 금속모재를 실시예 1과 동일한 방법으로 양극산화를 진행하며, 금속모재의 표면에 요홈을 형성시킨 후 열처리하여 산화막의 두께를 증가시키는 공정이다.In Example 4, the metal base material made of pure titanium metal or alloy is anodized in the same manner as in Example 1, a groove is formed on the surface of the metal base material, and heat treatment is performed to increase the thickness of the oxide film.
양극산화는 실시예 1과 동일한 방법으로 금속모재를 양극으로, 백금을 음극으로 하여 전해액에 담근 후 전압을 인가하여 금속모재 표면에 200nm 이상의 나노튜브 구조체를 얻는다. 이후 물, 과산화수소수, 알코올에 침지시켜 각 5분 초음파 세척하여 산화티타늄 나노튜브를 제거한다. 산화티타늄 나노튜브를 제거한 후 100℃ 오븐 내에서 10분간 건조하고, 300℃ 전기로에서 1시간 동안 열처리 한다. 열처리한 후 산화막의 두께는 약 50nm로 증가하였다.Anodization is performed in the same manner as in Example 1 by dipping the metal base material as an anode and platinum as a cathode in an electrolyte and applying a voltage to obtain a nanotube structure of 200 nm or more on the surface of the metal base material. After immersing in water, hydrogen peroxide and alcohol, ultrasonic cleaning for 5 minutes to remove the titanium oxide nanotubes. After removing the titanium oxide nanotubes and dried for 10 minutes in 100 ℃ oven, heat treatment for 1 hour in 300 ℃ electric furnace. After the heat treatment, the thickness of the oxide film was increased to about 50 nm.
<실시예 5>Example 5
임플란트 또는 스텐트 형상을 가지는 티타늄(Ti) 금속으로 이루어진 금속모재를 초음파 세척기에서 에탄올, 아세톤에 차례로 담가 2분씩 세정을 한다. 세정이 끝나면 금속모재를 건조한 후 금속모재 중 양극산화를 원하지 않는 영역에 PDMS(Polymethylsiloxane)를 코팅한다. 그 후 금속모재의 표면을 양극산화하기 위해 티타늄 금속에 스팟 웰딩(Spot-welding)을 하여 전극점을 만들어준다. 이후 전해액에 양극산화 대상인 티타늄 금속모재와, 상대전극인 백금(Pt) 금속을 전해액에 담근다. 여기서 전해질은 에틸렌글리콜(Ethylene glycol)에 0.01 내지 10wt% NH4F와 1 내지 50vol% H2O가 첨가된 조성의 전해질을 사용하였고, 전해액의 온도는 상온을 유지한다.A metal base material made of titanium (Ti) metal having an implant or stent shape is immersed in ethanol and acetone in an ultrasonic cleaner and washed for 2 minutes. After cleaning, the metal base is dried and PDMS (Polymethylsiloxane) is coated on the metal base where anodization is not desired. Thereafter, spot welding is performed on titanium metal to make an electrode point to anodize the surface of the metal base material. Subsequently, a titanium metal base material, which is an anodization target, and a platinum (Pt) metal, a counter electrode, are immersed in the electrolyte. In this case, the electrolyte used was an electrolyte in which 0.01 to 10 wt% NH 4 F and 1 to 50 vol% H 2 O were added to ethylene glycol, and the temperature of the electrolyte was maintained at room temperature.
티타늄 금속모재를 양극으로, 불용성 백금 금속을 음극으로 하여 양단에 직류전압을 인가하면 티타늄 금속모재의 표면이 산화티타늄(TiO2)으로 양극산화된다. 이때 직류전압은 10 내지 300분 동안 10 내지 200V의 전압을 정전압으로 인가하며, 양극산화된 산화티타늄은 금속모재의 표면에 수 마이크론 이상의 두께를 가지는 산화티타늄 나노튜브가 형성된다.When a direct current voltage is applied to both ends with a titanium metal base material as an anode and an insoluble platinum metal as a cathode, the surface of the titanium metal base material is anodized with titanium oxide (TiO 2 ). At this time, the DC voltage is applied to a constant voltage of 10 to 200V for 10 to 300 minutes, the anodized titanium oxide is formed on the surface of the metal substrate titanium oxide nanotubes having a thickness of several microns or more.
양극산화를 마친 금속모재를 아세톤을 이용하여 내벽 표면에 코팅된 PDMS를 제거한다. PDMS가 코팅된 표면은 양극산화가 되지 않고 매끄러운 표면이 그대로 유지된다. 다음은 양극산화를 통해 얻은 산화티타늄 나노튜브를 금속모재로부터 제거하는바, 양극산화된 티타늄 나노튜브를 초음파 세척기 하에서 30wt%의 과산화수소(H2O2) 용액에 10분간 침지시킨다. 이와 같은 방법을 통해 금속모재 표면에 형성된 산화티타늄 나노튜브가 제거되고, 그 표면에는 요홈이 형성된다.Anodized metal base material is removed using PDMS coated on the inner wall surface using acetone. The PDMS coated surface is not anodized and the smooth surface is maintained. Next, the titanium oxide nanotubes obtained through anodization are removed from the metal base material. The anodized titanium nanotubes are immersed in a 30 wt% hydrogen peroxide (H 2 O 2 ) solution for 10 minutes under an ultrasonic cleaner. Through this method, the titanium oxide nanotubes formed on the surface of the metal base material are removed, and grooves are formed on the surface thereof.
산화티타늄 나노튜브가 제거되어 표면에 요홈이 형성된 티타늄 금속모재를 200 내지 1200℃에서 열처리하여 10 내지 1,000nm 정도의 나노 사이즈 요홈인 산화요홈을 가지는 산화막이 형성되는데, 본 실시예에서는 약 400℃의 온도의 소성로에서 열처리하여 약 100nm 정도의 두께인 박막을 가지는 티타늄 금속모재를 형성시켰다.Titanium oxide nanotubes are removed to heat the titanium metal base material with grooves formed on the surface at 200 to 1200 ° C. to form an oxide film having grooves that are nano size grooves of about 10 to 1,000 nm. Heat treatment was performed in a kiln at a temperature to form a titanium metal matrix having a thin film having a thickness of about 100 nm.
산화막의 산화요홈 내에 약물이 주입되도록 박막에 UV를 조사하여 친수성 표면으로 변화시키는 데, UV는 1J/㎠ 강도를 갖는 UV 램프를 이용하여 10m/min 속도로 처리한다. 표면이 친수성 처리된 산화막의 산화요홈 내로 친수성 약물을 주입하여 최종적으로 생체이식용 금속을 제조하고, 생체이식용 금속은 임플란트 또는 스텐트에 적용된다.The film is irradiated with UV to change the hydrophilic surface so that the drug is injected into the oxide groove of the oxide film. The UV is treated at a speed of 10 m / min using a UV lamp having a strength of 1 J / cm 2. The hydrophilic drug is injected into the groove of the oxide film of which the surface is hydrophilic to finally prepare a biograft metal, and the biograft metal is applied to an implant or stent.
<실시예 6><Example 6>
임플란트 또는 스텐트 형상을 가지는 티타늄(Ti) 금속으로 이루어진 금속모재를 초음파 세척기에서 에탄올, 아세톤에 차례로 담가 2분씩 세정을 한다. 세정이 끝나면 금속모재를 건조한 후 금속모재 중 양극산화를 원하지 않는 영역에 PDMS(Polymethylsiloxane)를 코팅한다. 그 후 금속모재의 표면을 양극산화하기 위해 티타늄 금속에 스팟 웰딩(Spot-welding)을 하여 전극점을 만들어준다. 이후 전해액에 양극산화 대상인 티타늄 금속모재와, 상대전극인 백금(Pt) 금속을 전해액에 담근다. 여기서 전해질은 에틸렌글리콜(Ethylene glycol)에 0.01 내지 10wt% NH4F와 1 내지 50vol% H2O가 첨가된 조성의 전해질을 사용하였고, 전해액의 온도는 상온을 유지한다.A metal base material made of titanium (Ti) metal having an implant or stent shape is immersed in ethanol and acetone in an ultrasonic cleaner and washed for 2 minutes. After cleaning, the metal base is dried and PDMS (Polymethylsiloxane) is coated on the metal base where anodization is not desired. Thereafter, spot welding is performed on titanium metal to make an electrode point to anodize the surface of the metal base material. Subsequently, a titanium metal base material, which is an anodization target, and a platinum (Pt) metal, a counter electrode, are immersed in the electrolyte. The electrolyte used was ethylene glycol (Ethylene glycol) 0.01 to 10wt% NH 4 F and the electrolyte of from 1 to the composition is added 50vol% H 2 O, the temperature of the electrolyte is kept to room temperature.
티타늄 금속모재를 양극으로, 불용성 백금 금속을 음극으로 하여 양단에 직류전압을 인가하면 티타늄 금속모재의 표면이 산화티타늄(TiO2)으로 양극산화된다. 이때 직류전압은 10 내지 300분 동안 10 내지 200V의 전압을 정전압으로 인가하며, 양극산화된 산화티타늄은 금속모재의 표면에 수 마이크론 이상의 두께를 가지는 산화티타늄 나노튜브으로 형성된다.When a direct current voltage is applied to both ends with a titanium metal base material as an anode and an insoluble platinum metal as a cathode, the surface of the titanium metal base material is anodized with titanium oxide (TiO 2 ). At this time, the DC voltage is applied to a constant voltage of 10 to 200V for 10 to 300 minutes, the anodized titanium oxide is formed of titanium oxide nanotubes having a thickness of several microns or more on the surface of the metal base material.
양극산화를 마친 금속모재를 아세톤을 이용하여 내벽 표면에 코팅된 PDMS를 제거한다. PDMS가 코팅된 표면은 양극산화가 되지 않고 매끄러운 표면이 그대로 유지된다.Anodized metal base material is removed using PDMS coated on the inner wall surface using acetone. The PDMS coated surface is not anodized and the smooth surface is maintained.
다음은 양극산화를 통해 얻은 산화티타늄 나노튜브를 티타늄 금속모재로부터 제거하는바, 산화티타늄 나노튜브를 제거하기 위하여 양극산화된 티타늄 금속모재를 초음파 세척기 하에서 30wt%의 과산화수소(H2O2) 용액에 10분간 침지시킨다.Next, the titanium oxide nanotubes obtained through anodization were removed from the titanium metal matrix. In order to remove the titanium oxide nanotubes, anodized titanium metal substrate was placed in a 30 wt% hydrogen peroxide (H 2 O 2 ) solution under an ultrasonic cleaner. Immerse for 10 minutes.
산화티타늄 나노튜브가 제거되어 표면에 요홈이 형성된 티타늄 금속모재를 진공챔버의 내부 상측에 거치한다. 진공챔버의 하측에는 생체적합성 재료 중 하나인 니오븀(Nb)을 배치하고, 진공챔버 내부의 압력을 약 5×10-7Torr로 유지한다. 니오븀 금속에 조사되는 전자빔을 발생시키기 위하여 전자빔 증착 전류를 100 내지 150mA로 변화시키며 9시간 동안 인가하였다. 이는 1Å/s의 속도로 니오븀 증착이 행해질 때, 시간이 지남에 따라 속도가 떨어져 이를 유지하기 위하여 전류 값을 조절하였다. 이를 통해 금속모재의 표면에는 3㎛ 두께의 생체적합성 재료인 니오븀 층이 형성된다.Titanium oxide nanotubes are removed to mount the titanium metal base material having grooves on the surface of the inner upper side of the vacuum chamber. Niobium (Nb), one of the biocompatible materials, is disposed under the vacuum chamber, and the pressure inside the vacuum chamber is maintained at about 5 × 10 −7 Torr. In order to generate an electron beam irradiated to niobium metal, the electron beam deposition current was applied for 9 hours while varying from 100 to 150 mA. This adjusted the current value in order to maintain the rate drop over time when niobium deposition was carried out at a rate of 1 mA / s. As a result, a niobium layer, which is a biocompatible material having a thickness of 3 μm, is formed on the surface of the metal matrix.
이와 같은 생체이식용 금속, 임플란트 및 스텐트는 금속모재의 표면을 양극산화한 후, 양극산화된 표면을 제거하기 때문에 양극산화된 표면이 박리되어 체세포 괴사나 골융합도 저하가 발생되는 것을 방지할 수 있다. 또한 금속모재의 표면 양극산화를 통해 형성된 반구상의 요홈을 가진 금속 생체재료를 이식할 경우 표면적을 극대화함과 동시에 표면 거칠기를 증가시킴으로써 때 우수한 생체친화성, 화학적 적합성 및 기계적 적합성을 가진다는 장점이 있다.Such biograft metals, implants, and stents are anodized to remove the anodized surface after anodizing the surface of the metal base material, thereby preventing the anodized surface from being peeled off and thus decreasing the somatic cell necrosis or bone fusion. In addition, when implanting a metal biomaterial with hemispherical grooves formed through surface anodization of the metal base material, it has an advantage of maximizing surface area and increasing surface roughness, thereby having excellent biocompatibility, chemical compatibility and mechanical compatibility. .
본 발명은 나노패터닝 요홈 표면을 갖는 생체이식용 금속, 금속 제조방법, 임플란트, 임플란트 제조방법, 스텐트 및 스텐트 제조방법에 관한 것으로, 더욱 상세하게는 금속모재의 표면을 양극산화한 후 양극산화된 표면을 제거시켜 표면에 요홈이 형성되고, 양극산화된 티타늄 산화막이 박리되어 생체 내부에서 유출되는 것을 방지하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속, 금속 제조방법, 임플란트, 임플란트 제조방법, 스텐트 및 스텐트 제조방법 분야에 이용가능하다.The present invention relates to a metal for biotransplantation, a metal manufacturing method, an implant, an implant manufacturing method, a stent and a stent manufacturing method having a nanopatterning groove surface, and more particularly, after anodizing the surface of the metal base material. A groove is formed on the surface to remove the anodized titanium oxide film and prevents the nanopatterning groove surface from leaking out of the living body, a method for manufacturing a metal, a metal manufacturing method, an implant, an implant manufacturing method, a stent and a stent manufacturing method Available in the field.

Claims (70)

  1. 티타늄 금속 또는 티타늄 합금으로 이루어진 금속모재를 양극산화하여 산화티타늄 나노튜브를 형성하는 단계와;Anodizing a metal base material made of titanium metal or titanium alloy to form titanium oxide nanotubes;
    상기 산화티타늄 나노튜브를 제거하여 상기 금속모재 표면에 요홈(groove)을 형성하는 단계를 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.And removing the titanium oxide nanotubes to form grooves on the surface of the metal base material.
  2. 제 1항에 있어서,The method of claim 1,
    상기 양극산화하여 산화티타늄 나노튜브를 형성하는 단계는,The anodizing to form titanium oxide nanotubes,
    플루오라이드(F-) 이온을 함유하는 전해액에 상기 금속모재를 침지시켜 양극산화하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.A method for producing a metal for transplantation with a nanopatterned groove, characterized in that the metal base material is immersed in an electrolyte solution containing fluoride (F ) ions.
  3. 제 2항에 있어서,The method of claim 2,
    플루오라이드 이온을 함유하는 상기 전해액은,The electrolyte solution containing fluoride ions,
    플루오라이드 이온을 함유하는 염; 무기산, 유기산, 고분자알코올 중 1종 이상의 용매;를 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.Salts containing fluoride ions; At least one solvent of an inorganic acid, an organic acid, a polymer alcohol; a method for producing a bio-transplant metal having a nano-patterned groove surface comprising a.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 염은, 불화수소(HF), 플루오린화나트륨(NaF), 플루오르화암모늄(NH4F) 중 1종 이상을 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.The salt is a method for producing a bio-grafted metal having a nano-patterned groove surface characterized in that it comprises at least one of hydrogen fluoride (HF), sodium fluoride (NaF), ammonium fluoride (NH 4 F).
  5. 제 3항에 있어서,The method of claim 3, wherein
    상기 용매는, 인산(H3PO4), 황산(H2SO4), 질산(HNO3), 글리세롤(glycerol), 에틸렌글리콜(ethylene glycol) 중 1종 이상을 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.The solvent is nano-patterned, characterized in that it comprises at least one of phosphoric acid (H 3 PO 4 ), sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), glycerol (glycerol), ethylene glycol (ethylene glycol) A method for producing a biotransplant metal having a groove surface.
  6. 제 1항에 있어서,The method of claim 1,
    상기 금속모재 표면에 상기 요홈을 형성하는 단계 이후에,After the step of forming the groove on the metal base material surface,
    상기 금속모재를 열처리하여 상기 금속모재의 표면에 10nm 내지 1,000nm 두께의 산화막을 형성하는 단계를 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.Heat treating the metal base material to form an oxide film having a thickness of 10 nm to 1,000 nm on the surface of the metal base material.
  7. 제 6항에 있어서,The method of claim 6,
    상기 열처리는 200℃ 내지 1200℃에서 이루어지는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.The heat treatment is a biotransplantation metal manufacturing method having a nanopatterning groove surface, characterized in that at 200 ℃ to 1200 ℃.
  8. 제 1항에 있어서,The method of claim 1,
    상기 요홈은 반구상의 형상을 지니며,The groove has a hemispherical shape,
    직경이 10nm 내지 1,000nm 크기를 가지는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.10. A method for producing a bio-transplant metal having a nanopatterning groove surface, characterized in that the diameter has a size of 10nm to 1,000nm.
  9. 제 1항에 있어서,The method of claim 1,
    상기 요홈은 반구상의 형상을 지니며,The groove has a hemispherical shape,
    반구상의 상기 요홈은 표면에 수 나노미터 크기의 미세기공(pore)을 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.The hemispherical groove has a nano-patterned groove surface characterized in that it further comprises a nanopore (pore) of several nanometers in size on the surface.
  10. 제 1항에 있어서,The method of claim 1,
    상기 산화티타늄 나노튜브의 제거는 상기 금속모재를 과산화수소수(H2O2)에 침지시켜 초음파 세척하여 제거하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.The removal of the titanium oxide nanotubes is a method for producing a bio-grafted metal having a nano-patterned groove surface characterized in that the metal base material is immersed in hydrogen peroxide (H 2 O 2 ) to remove by ultrasonic cleaning.
  11. 제 1항에 있어서,The method of claim 1,
    상기 산화티타늄 나노튜브의 제거는 유기산 또는 염기 수용액에 침지시켜 제거하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.The removal of the titanium oxide nanotubes are immersed in an organic acid or an aqueous base solution to remove the nanopatterning grooves, characterized in that the manufacturing method of the metal for biografting.
  12. 제 1항에 있어서,The method of claim 1,
    상기 산화티타늄 나노튜브를 형성하는 단계 이전에,Prior to forming the titanium oxide nanotubes,
    상기 금속모재 표면을 샌드블라스팅하는 단계를 더 포함하며,Sandblasting the surface of the metal base material further comprises,
    상기 샌드블라스팅하는 단계는,The sandblasting step,
    샌드블라스트 메디아를 상기 금속모재 표면에 타격하여 상기 금속모재 표면에 50㎛ 내지 500㎛의 마이크로 요홈을 형성시키는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.A method for manufacturing a bio-transplant metal having a nanopatterned groove surface, by hitting sandblasted media against the surface of the metal base material to form micro grooves of 50 μm to 500 μm on the surface of the metal base material.
  13. 제 1항에 있어서,The method of claim 1,
    상기 산화티타늄 나노튜브를 형성하는 단계 이전에,Prior to forming the titanium oxide nanotubes,
    SLA(Sand blasted, Large-grit, Acid etched) 공법을 통해 상기 금속모재를 표면처리하는 단계를 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.A method for manufacturing a biograft metal having a nanopatterned groove surface further comprising surface treating the metal base material through a sand blasted, large-grit, acid etched (SLA) method.
  14. 제 1항에 있어서,The method of claim 1,
    상기 산화티타늄 나노튜브를 형성시키는 단계 이전에,Prior to forming the titanium oxide nanotubes,
    상기 금속모재의 표면 일부에 양극산화되는 것을 방지하기 위해 폴리머 보호층을 형성하는 단계를 포함하며,Forming a polymer protective layer to prevent anodization on a portion of the surface of the metal base material,
    상기 산화티타늄 나노튜브를 형성시키는 단계 이후에,After forming the titanium oxide nanotubes,
    상기 폴리머 보호층을 제거하는 단계를 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.And removing the polymer protective layer.
  15. 제 1항에 있어서,The method of claim 1,
    상기 금속모재 표면에 요홈을 형성하는 단계 이후에,After the step of forming a groove on the metal base material surface,
    상기 금속모재 표면에 생체적합성 재료를 코팅하는 단계를 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.The method for producing a bio-transplant metal having a nano-patterned groove surface further comprising the step of coating a biocompatible material on the surface of the metal base material.
  16. 제 1항에 있어서,The method of claim 1,
    상기 금속모재 표면에 요홈을 형성하는 단계 이후에,After the step of forming a groove on the metal base material surface,
    상기 금속모재를 열처리하여 상기 금속모재의 표면에 산화막을 형성하는 단계와;Heat-treating the metal base material to form an oxide film on the surface of the metal base material;
    상기 산화막의 표면에 생체적합성 재료를 코팅하는 단계를 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.The method of manufacturing a bio-transplant metal having a nano-patterned groove surface characterized in that it further comprises the step of coating a biocompatible material on the surface of the oxide film.
  17. 제 15 및 16항 중 어느 한 항에 있어서,The method according to any one of claims 15 and 16,
    상기 생체적합성 재료를 코팅하는 단계는,Coating the biocompatible material comprises:
    전자빔 증착 방법 또는 전해 코팅 방법을 이용하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.A method for producing a biotransplant metal having a nanopatterning groove surface, using an electron beam deposition method or an electrolytic coating method.
  18. 제 17항에 있어서,The method of claim 17,
    상기 전해 코팅 방법은,The electrolytic coating method,
    상기 생체적합성 재료를 포함하는 수용액에 상기 금속모재를 침지한 후 상기 수용액에 전기를 인가하여 상기 생체적합성 재료를 코팅하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.And immersing the metal base material in an aqueous solution containing the biocompatible material and applying electricity to the aqueous solution to coat the biocompatible material.
  19. 제 1항에 있어서,The method of claim 1,
    상기 금속모재 표면에 요홈을 형성하는 단계 이후에,After the step of forming a groove on the metal base material surface,
    상기 금속모재의 표면을 친수성 상태로 변화시키는 단계와;Changing the surface of the metal base material to a hydrophilic state;
    친수성인 상기 금속모재의 요홈 내에 약물을 주입하는 단계를 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.The method of manufacturing a bio-grafted metal having a nano-patterned groove surface further comprises the step of injecting a drug into the groove of the metal base material is hydrophilic.
  20. 제 19항에 있어서,The method of claim 19,
    상기 약물은 친수성 고분자 약물인 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속 제조방법.The drug is a method for producing a bio-transplant metal having a nano-patterned groove surface, characterized in that the hydrophilic polymer drug.
  21. 티타늄 금속 또는 티타늄 합금으로 이루어진 금속모재를 양극산화하여 산화티타늄 나노튜브를 형성하고, 상기 산화티타늄 나노튜브를 제거하여 상기 금속모재 표면에 요홈이 형성된 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속.Anodizing a metal base material made of titanium metal or titanium alloy to form titanium oxide nanotubes, and removing the titanium oxide nanotubes, grooves are formed on the surface of the metal base material. .
  22. 제 21항에 있어서,The method of claim 21,
    상기 요홈은 반구상의 형상을 지니며,The groove has a hemispherical shape,
    상기 요홈은 직경 및 높이의 비율이 직경 : 높이 = 1 : 0.01 내지 0.5이며, 반구상의 상기 요홈의 직경은 10nm 내지 1,000nm 크기를 가지는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속.The groove is a ratio of diameter and height is diameter: height = 1: 0.01 to 0.5, the diameter of the hemispherical groove has a nanopatterned groove surface having a nanopatterning groove surface, characterized in that the size.
  23. 제 21항에 있어서,The method of claim 21,
    상기 요홈은 수 나노미터 크기의 미세기공을 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속.The groove is a nano-transplanting metal having a nano-patterned groove surface characterized in that it further comprises a micro-pores of several nanometers in size.
  24. 제 21항에 있어서,The method of claim 21,
    상기 금속모재는 10nm 내지 1,000nm 두께의 산화막을 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속.The metal base material has a nanopatterning groove surface, characterized in that it further comprises an oxide film of 10nm to 1,000nm thickness.
  25. 제 21항에 있어서,The method of claim 21,
    상기 금속모재는 상기 요홈보다 큰 사이즈인 1㎛ 내지 50㎛의 중간 요홈과, 상기 중간 요홈보다 큰 사이즈인 50㎛ 내지 500㎛의 마이크로 요홈이 형성된 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속.The metal base material is a biograft metal having a nano patterning groove surface, characterized in that the intermediate groove of 1㎛ to 50㎛ size larger than the groove, and the micro grooves of 50㎛ to 500㎛ size larger than the intermediate groove .
  26. 제 21항에 있어서,The method of claim 21,
    요홈이 형성된 상기 금속모재의 표면은 친수성 상태이며, 친수성인 상기 금속모재의 요홈 내에 친수성 고분자 약물이 주입되는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속.The surface of the metal base material in which the grooves are formed is a hydrophilic state, and the biopatterning metal having a nanopatterning groove surface, characterized in that the hydrophilic polymer drug is injected into the grooves of the metal base material which is hydrophilic.
  27. 표면에 반구상의 요홈이 형성된 금속모재를 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속.A biograft metal having a nanopatterned groove surface, characterized in that it comprises a metal base material having a hemispherical groove formed on the surface.
  28. 제 27항에 있어서,The method of claim 27,
    반구상의 상기 요홈은 직경 및 높이의 비율이 직경 : 높이 = 1 : 0.01 내지 0.5이며, 반구상의 상기 요홈은 10nm 내지 1,000nm 크기를 가지는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속.The hemispherical groove has a ratio of diameter and height in diameter: height = 1: 0.01 to 0.5, and the hemispherical groove has a nanopatterning groove surface, characterized in that it has a size of 10nm to 1,000nm.
  29. 제 27항에 있어서,The method of claim 27,
    반구상의 상기 요홈은 수 나노미터 크기의 미세기공을 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속.The hemispherical groove has a nanopatterned groove surface, characterized in that it further comprises micropores of several nanometers in size.
  30. 제 27항에 있어서,The method of claim 27,
    상기 금속모재는 10nm 내지 1,000nm 두께의 산화막을 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속.The metal base material has a nanopatterning groove surface, characterized in that it further comprises an oxide film of 10nm to 1,000nm thickness.
  31. 제 27항에 있어서,The method of claim 27,
    상기 금속모재는 상기 요홈보다 큰 사이즈인 1㎛ 내지 50㎛의 중간 요홈과, 상기 중간 요홈보다 큰 사이즈인 50㎛ 내지 500㎛의 마이크로 요홈이 형성된 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속.The metal base material is a biograft metal having a nano patterning groove surface, characterized in that the intermediate groove of 1㎛ to 50㎛ size larger than the groove, and the micro grooves of 50㎛ to 500㎛ size larger than the intermediate groove .
  32. 제 27항에 있어서,The method of claim 27,
    요홈이 형성된 상기 금속모재의 표면은 친수성 상태이며, 친수성인 상기 금속모재의 요홈 내에 친수성 고분자 약물이 주입되는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 생체이식용 금속.The surface of the metal base material in which the grooves are formed is a hydrophilic state, and the biopatterning metal having a nanopatterning groove surface, characterized in that the hydrophilic polymer drug is injected into the grooves of the metal base material which is hydrophilic.
  33. 티타늄 금속 또는 티타늄 합금으로 이루어진 임플란트 본체를 양극산화하여 산화티타늄 나노튜브를 형성하는 단계와;Anodizing an implant body made of titanium metal or a titanium alloy to form titanium oxide nanotubes;
    상기 산화티타늄 나노튜브를 제거하여 상기 임플란트 본체 표면에 요홈(groove)을 형성하는 단계를 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트 제조방법.Removing the titanium oxide nanotubes to form grooves on the surface of the implant body, wherein the implant has a nanopatterning groove surface.
  34. 제 33항에 있어서,The method of claim 33,
    상기 임플란트 본체 표면에 상기 요홈을 형성하는 단계 이후에,After forming the groove on the surface of the implant body,
    상기 임플란트 본체를 열처리하여 상기 임플란트 본체의 표면에 10nm 내지 1,000nm 두께의 산화막을 형성하는 단계를 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트 제조방법.And heat treating the implant body to form an oxide film having a thickness of 10 nm to 1,000 nm on the surface of the implant body.
  35. 제 33항에 있어서,The method of claim 33,
    상기 열처리는 200℃ 내지 1200℃에서 이루어지는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트 제조방법.The heat treatment is an implant manufacturing method having a nano patterning groove surface, characterized in that at 200 ℃ to 1200 ℃.
  36. 제 33항에 있어서,The method of claim 33,
    상기 요홈은 반구상의 형상을 지니며,The groove has a hemispherical shape,
    직경이 10nm 내지 1,000nm 크기를 가지며, 반구상의 상기 요홈은 표면에 수 나노미터 크기의 미세기공(pore)을 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트 제조방법.10 nm to 1,000 nm in diameter, the hemispherical groove is an implant having a nano patterning groove surface characterized in that it further comprises a micropore (pore) of several nanometers on the surface.
  37. 제 33항에 있어서,The method of claim 33,
    상기 산화티타늄 나노튜브를 형성하는 단계 이전에,Prior to forming the titanium oxide nanotubes,
    상기 임플란트 본체 표면을 샌드블라스팅하는 단계를 더 포함하며,Further comprising sandblasting the implant body surface,
    상기 샌드블라스팅하는 단계는,The sandblasting step,
    샌드블라스트 메디아를 상기 임플란트 본체 표면에 타격하여 상기 임플란트 본체 표면에 50㎛ 내지 500㎛의 마이크로 요홈을 형성시키는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트 제조방법.A method for manufacturing an implant having a nanopatterning groove surface, wherein sandblast media is hitting the surface of the implant body to form micro grooves of 50 μm to 500 μm on the surface of the implant body.
  38. 제 33항에 있어서,The method of claim 33,
    상기 산화티타늄 나노튜브를 형성하는 단계 이전에,Prior to forming the titanium oxide nanotubes,
    SLA(Sand blasted, Large-grit, Acid etched) 공법을 통해 상기 임플란트 본체를 표면처리하는 단계를 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트 제조방법.The method of manufacturing an implant having a nano-patterned groove surface further comprises the step of surface treatment of the implant body through a sand blasted, large-grit, acid etched (SLA) method.
  39. 티타늄 금속 또는 티타늄 합금으로 이루어진 임플란트 본체를 양극산화하여 산화티타늄 나노튜브를 형성하고, 상기 산화티타늄 나노튜브를 제거하여 상기 임플란트 본체 표면에 요홈이 형성된 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트.An implant having a nanopatterned groove surface, wherein an implant body made of titanium metal or a titanium alloy is anodized to form titanium oxide nanotubes, and the titanium oxide nanotubes are removed to form grooves on the surface of the implant body.
  40. 제 39항에 있어서,The method of claim 39,
    상기 요홈은 반구상의 형상을 지니며,The groove has a hemispherical shape,
    상기 요홈은 직경 및 높이의 비율이 직경 : 높이 = 1 : 0.01 내지 0.5이며, 반구상의 상기 요홈의 직경은 10nm 내지 1,000nm 크기를 가지는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트.The groove is an implant having a nano patterning groove surface, the ratio of diameter and height is diameter: height = 1: 0.01 to 0.5, the diameter of the hemispherical groove has a size of 10nm to 1,000nm.
  41. 제 39항에 있어서,The method of claim 39,
    상기 요홈은 수 나노미터 크기의 미세기공을 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트.The groove has a nanopatterning groove surface, characterized in that it further comprises a micro-pores of several nanometers in size.
  42. 제 39항에 있어서,The method of claim 39,
    상기 금속모재는 10nm 내지 1,000nm 두께의 산화막을 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트. The metal base material is an implant having a nano patterning groove surface, characterized in that further comprises an oxide film of 10nm to 1,000nm thickness.
  43. 제 39항에 있어서,The method of claim 39,
    상기 임플란트 본체는 상기 요홈보다 큰 사이즈인 1㎛ 내지 50㎛의 중간 요홈과, 상기 중간 요홈보다 큰 사이즈인 50㎛ 내지 500㎛의 마이크로 요홈이 형성된 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트.The implant body is an implant having a nano-patterned groove surface, characterized in that the intermediate groove of 1㎛ to 50㎛ size larger than the groove, and the micro groove of 50㎛ to 500㎛ size larger than the intermediate groove is formed.
  44. 표면에 반구상의 요홈이 형성된 임플란트 본체를 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트.An implant having a nanopatterned groove surface comprising an implant body having a hemispherical groove formed on the surface thereof.
  45. 제 44항에 있어서,The method of claim 44,
    반구상의 상기 요홈은 직경 및 높이의 비율이 직경 : 높이 = 1 : 0.01 내지 0.5이며, 반구상의 상기 요홈은 10nm 내지 1,000nm 크기를 가지는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트.The hemispherical groove has a diameter-to-height ratio of diameter: height = 1: 0.01 to 0.5, and the hemispherical groove has an nanopatterning groove surface, characterized in that it has a size of 10nm to 1,000nm.
  46. 제 44항에 있어서,The method of claim 44,
    반구상의 상기 요홈은 수 나노미터 크기의 미세기공을 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트.The hemispherical groove is an implant having a nano-patterned groove surface, characterized in that it further comprises micropores of several nanometers in size.
  47. 제 44항에 있어서,The method of claim 44,
    상기 임플란트 본체는 10nm 내지 1,000nm 두께의 산화막을 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트.The implant body has a nano-patterned groove surface, characterized in that further comprises an oxide film of 10nm to 1,000nm thickness.
  48. 제 44항에 있어서,The method of claim 44,
    상기 임플란트 본체는 상기 요홈보다 큰 사이즈인 1㎛ 내지 50㎛의 중간 요홈과, 상기 중간 요홈보다 큰 사이즈인 50㎛ 내지 500㎛의 마이크로 요홈이 형성된 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 임플란트.The implant body is an implant having a nano-patterned groove surface, characterized in that the intermediate groove of 1㎛ to 50㎛ size larger than the groove, and the micro groove of 50㎛ to 500㎛ size larger than the intermediate groove is formed.
  49. 티타늄 금속 또는 티타늄 합금으로 이루어진 스텐트 본체를 양극산화하여 산화티타늄 나노튜브를 형성하는 단계와;Anodizing a stent body made of titanium metal or a titanium alloy to form titanium oxide nanotubes;
    상기 산화티타늄 나노튜브를 제거하여 상기 스텐트 본체 표면에 요홈(groove)을 형성하는 단계를 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트 제조방법.Removing the titanium oxide nanotubes to form a groove (groove) on the surface of the stent body, characterized in that it comprises a nano patterning groove surface having a stent manufacturing method.
  50. 제 49항에 있어서,The method of claim 49,
    상기 스텐트 본체 표면에 상기 요홈을 형성하는 단계 이후에,After forming the groove on the surface of the stent body,
    상기 스텐트 본체를 열처리하여 상기 스텐트 본체의 표면에 10nm 내지 1,000nm 두께의 산화막을 형성하는 단계를 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트 제조방법.And heat-treating the stent body to form an oxide film having a thickness of 10 nm to 1,000 nm on the surface of the stent body.
  51. 제 49항에 있어서,The method of claim 49,
    상기 요홈은 반구상의 형상을 지니며,The groove has a hemispherical shape,
    직경이 10nm 내지 1,000nm 크기를 가지는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트 제조방법.A method for producing a stent having a nanopatterning groove surface, wherein the diameter has a size of 10 nm to 1,000 nm.
  52. 제 49항에 있어서,The method of claim 49,
    상기 요홈은 반구상의 형상을 지니며,The groove has a hemispherical shape,
    반구상의 상기 요홈은 표면에 수 나노미터 크기의 미세기공(pore)을 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트 제조방법.The hemispherical groove is a stent manufacturing method having a nano-patterned groove surface characterized in that it further comprises a micropore (pore) of several nanometers in size on the surface.
  53. 제 49항에 있어서,The method of claim 49,
    상기 산화티타늄 나노튜브를 형성시키는 단계 이전에,Prior to forming the titanium oxide nanotubes,
    상기 스텐트 본체의 표면 일부에 양극산화되는 것을 방지하기 위해 폴리머 보호층을 형성하는 단계를 포함하며,Forming a polymer protective layer to prevent anodization on a portion of the surface of the stent body,
    상기 산화티타늄 나노튜브를 형성시키는 단계 이후에,After forming the titanium oxide nanotubes,
    상기 폴리머 보호층을 제거하는 단계를 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트 제조방법.The method of claim 1, further comprising removing the polymer protective layer.
  54. 제 49항에 있어서,The method of claim 49,
    상기 스텐트 본체 표면에 요홈을 형성하는 단계 이후에,After the step of forming a groove in the stent body surface,
    상기 스텐트 본체 표면에 생체적합성 재료를 코팅하는 단계를 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트 제조방법.The method of manufacturing a stent having a nanopatterning groove surface further comprising the step of coating a biocompatible material on the surface of the stent body.
  55. 제 49항에 있어서,The method of claim 49,
    상기 스텐트 본체 표면에 요홈을 형성하는 단계 이후에,After the step of forming a groove in the stent body surface,
    상기 스텐트 본체를 열처리하여 상기 스텐트 본체의 표면에 산화막을 형성하는 단계와;Heat treating the stent body to form an oxide film on the surface of the stent body;
    상기 산화막의 표면에 생체적합성 재료를 코팅하는 단계를 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트 제조방법.The method of manufacturing a stent having a nano-patterned groove surface further comprises the step of coating a biocompatible material on the surface of the oxide film.
  56. 제 54 및 55항 중 어느 한 항에 있어서,The method of any one of claims 54 and 55,
    상기 생체적합성 재료를 코팅하는 단계는,Coating the biocompatible material comprises:
    전자빔 증착 방법 또는 전해 코팅 방법을 이용하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트 제조방법.A method of manufacturing a stent having a nanopatterning groove surface, using an electron beam deposition method or an electrolytic coating method.
  57. 제 49항에 있어서,The method of claim 49,
    상기 스텐트 본체 표면에 요홈을 형성하는 단계 이후에,After the step of forming a groove in the stent body surface,
    상기 스텐트 본체의 표면을 친수성 상태로 변화시키는 단계와;Changing the surface of the stent body to a hydrophilic state;
    친수성인 상기 스텐트 본체의 요홈 내에 약물을 주입하는 단계를 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트 제조방법.The method of manufacturing a stent having a nano-patterned groove surface further comprises the step of injecting a drug into the groove of the stent body is hydrophilic.
  58. 제 49항에 있어서,The method of claim 49,
    상기 약물은 친수성 고분자 약물인 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트 제조방법.The drug is a method for producing a stent having a nano patterning groove surface, characterized in that the hydrophilic polymer drug.
  59. 티타늄 금속 또는 티타늄 합금으로 이루어진 스텐트 본체를 양극산화하여 산화티타늄 나노튜브를 형성하고, 상기 산화티타늄 나노튜브를 제거하여 상기 스텐트 본체 표면에 요홈이 형성된 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트.A stent having a nanopatterned groove surface, wherein the stent body made of titanium metal or titanium alloy is anodized to form titanium oxide nanotubes, and the titanium oxide nanotubes are removed to form grooves on the surface of the stent body.
  60. 제 59항에 있어서,The method of claim 59,
    상기 요홈은 반구상의 형상을 지니며,The groove has a hemispherical shape,
    상기 요홈은 직경 및 높이의 비율이 직경 : 높이 = 1 : 0.01 내지 0.5이며, 반구상의 상기 요홈의 직경은 10nm 내지 1,000nm 크기를 가지는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트.The groove has a diameter-to-height ratio of diameter: height = 1: 0.01 to 0.5, and the diameter of the hemispherical groove has a nanopatterning groove surface, characterized in that it has a size of 10 nm to 1,000 nm.
  61. 제 59항에 있어서,The method of claim 59,
    상기 요홈은 수 나노미터 크기의 미세기공을 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트.The groove has a nano-patterned groove surface, characterized in that it further comprises micropores of several nanometers in size.
  62. 제 59항에 있어서,The method of claim 59,
    상기 스텐트 본체는 10nm 내지 1,000nm 두께의 산화막을 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트.The stent body has a nano patterning groove surface, characterized in that further comprises an oxide film of 10nm to 1,000nm thickness.
  63. 제 59항에 있어서,The method of claim 59,
    상기 스텐트 본체는 상기 요홈보다 큰 사이즈인 1㎛ 내지 50㎛의 중간 요홈과, 상기 중간 요홈보다 큰 사이즈인 50㎛ 내지 500㎛의 마이크로 요홈이 형성된 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트.The stent body has a nano patterning groove surface, characterized in that the intermediate groove of 1㎛ to 50㎛ size larger than the groove, and the micro grooves of 50㎛ to 500㎛ size larger than the intermediate groove is formed.
  64. 제 59항에 있어서,The method of claim 59,
    요홈이 형성된 상기 스텐트 본체의 표면은 친수성 상태이며, 친수성인 상기 스텐트 본체의 요홈 내에 친수성 고분자 약물이 주입되는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트.The surface of the stent body in which the grooves are formed is a hydrophilic state, and a hydrophilic polymer drug is injected into the grooves of the hydrophilic stent body.
  65. 표면에 반구상의 요홈이 형성된 스텐트 본체를 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트.A stent having a nanopatterned groove surface comprising a stent body having a hemispherical groove formed on its surface.
  66. 제 65항에 있어서,66. The method of claim 65,
    반구상의 상기 요홈은 직경 및 높이의 비율이 직경 : 높이 = 1 : 0.01 내지 0.5이며, 반구상의 상기 요홈은 10nm 내지 1,000nm 크기를 가지는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트.The hemispherical groove has a diameter and height ratio of diameter: height = 1: 0.01 to 0.5, and the hemispherical groove has a nanopatterning groove surface, characterized in that it has a size of 10 nm to 1,000 nm.
  67. 제 65항에 있어서,66. The method of claim 65,
    반구상의 상기 요홈은 수 나노미터 크기의 미세기공을 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트.The hemispherical groove has a nanopatterned groove surface, characterized in that it further comprises micropores of several nanometers in size.
  68. 제 65항에 있어서,66. The method of claim 65,
    상기 스텐트 본체는 10nm 내지 1,000nm 두께의 산화막을 더 포함하는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트.The stent body has a nano patterning groove surface, characterized in that further comprises an oxide film of 10nm to 1,000nm thickness.
  69. 제 65항에 있어서,66. The method of claim 65,
    상기 스텐트 본체는 상기 요홈보다 큰 사이즈인 1㎛ 내지 50㎛의 중간 요홈과, 상기 중간 요홈보다 큰 사이즈인 50㎛ 내지 500㎛의 마이크로 요홈이 형성된 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트.The stent body has a nano patterning groove surface, characterized in that the intermediate groove of 1㎛ to 50㎛ size larger than the groove, and the micro grooves of 50㎛ to 500㎛ size larger than the intermediate groove is formed.
  70. 제 65항에 있어서,66. The method of claim 65,
    요홈이 형성된 상기 스텐트 본체의 표면은 친수성 상태이며, 친수성인 상기 스텐트 본체의 요홈 내에 친수성 고분자 약물이 주입되는 것을 특징으로 하는 나노패터닝 요홈 표면을 갖는 스텐트.The surface of the stent body in which the grooves are formed is a hydrophilic state, and a hydrophilic polymer drug is injected into the grooves of the hydrophilic stent body.
PCT/KR2016/006518 2015-09-16 2016-06-20 Bioimplantation metal having nano-patterning groove surface, method for preparing metal, implant, method for manufacturing implant, stent, and method for manufacturing stent WO2017047912A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0130912 2015-09-16
KR1020150130912A KR101701264B1 (en) 2015-09-16 2015-09-16 Metal for transplantation, manufacturing method for metal, implant and stent using the same
KR10-2016-0060719 2016-05-18
KR1020160060719A KR101724039B1 (en) 2016-05-18 2016-05-18 Implant having a surface nano-patterned groove and a method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2017047912A1 true WO2017047912A1 (en) 2017-03-23

Family

ID=58288999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006518 WO2017047912A1 (en) 2015-09-16 2016-06-20 Bioimplantation metal having nano-patterning groove surface, method for preparing metal, implant, method for manufacturing implant, stent, and method for manufacturing stent

Country Status (1)

Country Link
WO (1) WO2017047912A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112546434A (en) * 2020-12-11 2021-03-26 深圳先进技术研究院 Implantable flexible microelectrode array and preparation method thereof
CN114159617A (en) * 2021-10-11 2022-03-11 安徽医科大学第二附属医院 Titanium implant with nano bionic three-dimensional porous titanium trabecular structure and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488343B2 (en) * 2003-09-16 2009-02-10 Boston Scientific Scimed, Inc. Medical devices
KR20090074365A (en) * 2008-01-02 2009-07-07 주식회사 디오 Stent for medical use and manufacturing method thereof
KR20100075032A (en) * 2008-12-24 2010-07-02 서울대학교산학협력단 Manufacturing method of self-organized anodic titanium oxide nanotube arrays and control of the anodic titanium oxide nanotube thereby
KR20130057269A (en) * 2011-11-23 2013-05-31 한국전기연구원 Preparation methods of nanoporous filter by anodization of ti
KR20130092855A (en) * 2012-02-13 2013-08-21 오스템임플란트 주식회사 Porous surface having a triple structure of at the macro, micro and nanolevel for improving osteointegration of implants and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488343B2 (en) * 2003-09-16 2009-02-10 Boston Scientific Scimed, Inc. Medical devices
KR20090074365A (en) * 2008-01-02 2009-07-07 주식회사 디오 Stent for medical use and manufacturing method thereof
KR20100075032A (en) * 2008-12-24 2010-07-02 서울대학교산학협력단 Manufacturing method of self-organized anodic titanium oxide nanotube arrays and control of the anodic titanium oxide nanotube thereby
KR20130057269A (en) * 2011-11-23 2013-05-31 한국전기연구원 Preparation methods of nanoporous filter by anodization of ti
KR20130092855A (en) * 2012-02-13 2013-08-21 오스템임플란트 주식회사 Porous surface having a triple structure of at the macro, micro and nanolevel for improving osteointegration of implants and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112546434A (en) * 2020-12-11 2021-03-26 深圳先进技术研究院 Implantable flexible microelectrode array and preparation method thereof
CN114159617A (en) * 2021-10-11 2022-03-11 安徽医科大学第二附属医院 Titanium implant with nano bionic three-dimensional porous titanium trabecular structure and preparation method and application thereof
CN114159617B (en) * 2021-10-11 2022-08-12 安徽医科大学第二附属医院 Titanium implant with nano bionic three-dimensional porous titanium trabecular structure and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR101724039B1 (en) Implant having a surface nano-patterned groove and a method of manufacturing the same
KR101701264B1 (en) Metal for transplantation, manufacturing method for metal, implant and stent using the same
EP3854342B1 (en) Surface treatment for an implant surface
US20100280599A1 (en) Calcium phosphate coated implantable medical devices, and electrochemical deposition processes for making same
Louarn et al. Nanostructured surface coatings for titanium alloy implants
KR20110082658A (en) Titanium implant surface treatment method and implant manufactured by the same
Fouziya et al. Surface modifications of titanium implants–The new, the old, and the never heard of options
Banakh et al. Synthesis by anodic-spark deposition of Ca-and P-containing films on pure titanium and their biological response
WO2017047912A1 (en) Bioimplantation metal having nano-patterning groove surface, method for preparing metal, implant, method for manufacturing implant, stent, and method for manufacturing stent
KR20070063114A (en) Metal implants and manufacturing method thereof
KR101283780B1 (en) Titanium implant and preparation method thereof
KR101015462B1 (en) Titanium dioxide ceramics for implant and fabricating method thereof
CN111803231A (en) Bionic micro/nano antibacterial structure and manufacturing method and application thereof
Vaithilingam et al. Surface modification of selective laser melted structures using self-assembled monolayers for biomedical applications
KR100865345B1 (en) Surface characteristics of ha coatings on dental implants
EP3195825B1 (en) Dental implant
KR102150326B1 (en) Method for surface treatment of biocompatible affinity metal material
Chuan et al. Effect of applied voltage on surface properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA)
US20100198345A1 (en) Calcium phosphate coated implantable medical devices, and electrophoretic deposition processes for making same
KR20180004418A (en) A membrane and a manufacturing method for the implant
WO2015147473A1 (en) Method for preparing titanium-containing implant by using environmentally-friendly etching composition
KR20190085679A (en) Method for coating bioceramic on a titanium implant surface and titanium implant prepared by the method
Karjuna et al. Surface modifications on osseointegration of dental implants–A literature review.
WO2017210758A1 (en) Method for superficial nano-morphological alteration in anodized-titanium implants
PT110191B (en) BIOMICROELECTROMECHANICAL SYSTEMS (BIOMEMS) FOR ADVANCED METALLIC IMPLANTS CONTROLLED BY FUNCTIONALIZED PIEZOELECTRIC COATINGS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846734

Country of ref document: EP

Kind code of ref document: A1