WO2017034184A1 - Vision inspection module and element inspection system having same - Google Patents

Vision inspection module and element inspection system having same Download PDF

Info

Publication number
WO2017034184A1
WO2017034184A1 PCT/KR2016/008769 KR2016008769W WO2017034184A1 WO 2017034184 A1 WO2017034184 A1 WO 2017034184A1 KR 2016008769 W KR2016008769 W KR 2016008769W WO 2017034184 A1 WO2017034184 A1 WO 2017034184A1
Authority
WO
WIPO (PCT)
Prior art keywords
vision inspection
semiconductor device
inspection module
plane
reflection member
Prior art date
Application number
PCT/KR2016/008769
Other languages
French (fr)
Korean (ko)
Inventor
유홍준
이명국
배수민
Original Assignee
(주)제이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제이티 filed Critical (주)제이티
Priority to CN201680048622.9A priority Critical patent/CN108449975A/en
Priority to SG11201801479YA priority patent/SG11201801479YA/en
Publication of WO2017034184A1 publication Critical patent/WO2017034184A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to a device inspection system, and more particularly, to a vision inspection module for performing a vision inspection for a semiconductor device and a device inspection system having the same.
  • the semiconductor device device is shipped to the customer tray after inspection such as burn-in test.
  • the semiconductor device that is shipped is subjected to a marking process in which a label such as a serial number and a manufacturer's logo is displayed on a surface of the semiconductor device.
  • the semiconductor device device finally inspects whether the lead device or ball grid is damaged, cracks, scratches, etc., the appearance of the semiconductor device device and whether the marking formed on the surface is good. It will go through the process.
  • the inspection time and the arrangement of each module affect the time and the size of the device for the entire process execution.
  • the size of the device depends on the loading of a tray loaded with a plurality of elements, one or more modules for vision inspection of each element, and the configuration and arrangement of the unloading module according to the inspection result after the inspection.
  • the size of the device limits the number of device inspection systems that can be installed in the device inspection line, or affects the installation cost for device production according to the installation of a predetermined number of device inspection systems.
  • a vision inspection module and a device inspection system having the same which can recognize vision as described above to obtain the image of the surface of the semiconductor device and a plurality of side surfaces adjacent to the surface at one time to perform vision inspection To provide.
  • the present invention is a vision inspection module 50 for performing a vision inspection of the semiconductor device (1) having a planar shape polygon, the semiconductor device ( Single image acquisition unit 100 for obtaining a first plane image of the first plane of 1) and side images of the sides of the polygonal sides of the semiconductor device 1, and a first image of the semiconductor device 1
  • the semiconductor device Single image acquisition unit 100 for obtaining a first plane image of the first plane of 1) and side images of the sides of the polygonal sides of the semiconductor device 1, and a first image of the semiconductor device 1
  • Each of the first optical path L1 for causing the first planar image of the plane to reach the single image acquisition unit 100 and each of the side images of the sides of the polygonal sides of the semiconductor device 1
  • a vision inspection module (50) comprising an optical system for forming a plurality of second optical paths (L2) to reach the image acquisition unit (100).
  • the optical system may further include a focal length correction unit 400 installed in the optical system to correct a focal length difference between the first optical path L1 and the second optical path L2.
  • the focal length correction unit 400 may include a medium unit 410 installed on the light paths L1 and L2 and having a transparent material capable of light transmission.
  • the focal length correction unit 400 may include a frame unit 420 detachably coupled to the structure 520 and the media unit 410 is detachably installed.
  • the frame part 420 may be detachably coupled to the structure 520 by magnetic force.
  • the optical system may include a main reflection member 211 reflecting a first plane image of the first plane toward the single image acquisition unit 100, and corresponding sides of polygonal sides of the semiconductor device 1. And an auxiliary reflection member 311 reflecting side images of the sides of the polygonal sides of the semiconductor device 1 toward the main reflection member 211.
  • the main reflection member 211 has a semi-transmissive material through which light can pass, and the angles of the polygonal sides of the first plane and the semiconductor device 1 on the rear surface of the reflective surface reflecting the first plane image. It may include an illumination system 540 for irradiating light to the side.
  • the focal length correction unit 400 is formed between each side of the polygonal sides of the semiconductor device 1 and the main reflection member 211 of the second optical path L2, and the second optical path L2. ) May be installed in at least one of the main reflection member 211 and the single image acquisition unit 100.
  • the focal length correction unit 400 is installed between each side of the polygonal sides of the semiconductor element 1 of the second optical path L2 and the main reflection member 211, and the focal length correction unit 400 may be integrally formed with the auxiliary reflection member 311.
  • the present invention also includes a loading unit 10 for linearly moving a tray (2) containing a plurality of semiconductor elements (1) is loaded;
  • a vision inspection module 50 installed at one side of the loading unit 10 to be perpendicular to the conveying direction of the tray 2 in the loading unit 10 to perform vision inspection on the semiconductor device 1;
  • a first guide rail 68 disposed perpendicular to the moving direction of the tray 2 in the loading unit 10; Coupled with the first guide rail 68 so as to move along the first guide rail 68, and picks up and transports the device from the loading unit 10 to the vision inspection module 50 to perform vision inspection.
  • a first transfer tool 61 The unloading unit 31 receives the trays 2 containing the semiconductor devices 1 that have undergone vision inspection by the loading unit 10 and classifies the semiconductor devices 1 into the trays 2 according to the vision inspection results.
  • 32, 33, and the vision inspection module 50 discloses a device inspection system, characterized in that the vision inspection module having the configuration as described above.
  • the vision inspection module and the device inspection system having the same according to the present invention are capable of performing a variety of rapid vision inspection by performing a vision inspection by acquiring images of the surface of the semiconductor device and a plurality of side surfaces adjacent to the surface at once. There is an advantage.
  • the difference in focal length according to different optical paths is corrected by using a medium such as transparent glass. Images can be obtained, which simplifies the configuration of modules for performing vision inspection and reduces manufacturing costs.
  • FIG. 1 is a plan view showing an example of a device inspection system according to the present invention.
  • FIG. 2A is a conceptual diagram illustrating a configuration of an example of a vision inspection module of the device inspection system of FIG. 1 in a lateral direction.
  • FIG. 2B is a bottom view illustrating an arrangement of a semiconductor device and an auxiliary reflection member of the vision inspection module of FIG. 2A.
  • FIG. 3 is a plan view illustrating an example of a focal length adjusting unit of the vision inspection module of FIG. 2.
  • FIG. 4 is a side view of the focal length adjusting unit of FIG. 3.
  • FIG. 5 is a conceptual diagram illustrating a configuration of another example of a vision inspection module of the device inspection system of FIG. 1 in a lateral direction.
  • FIG. 6 is a conceptual diagram illustrating a concept of an operating distance for obtaining an image in the vision inspection module of FIG. 2 or FIG. 5.
  • FIG. 7 is a conceptual diagram schematically illustrating an image obtained by the vision inspection module of FIG. 2 or FIG. 5.
  • a loading unit 10 for linearly moving a tray (2) containing a plurality of semiconductor elements (1) is loaded;
  • a vision inspection module 50 installed at one side of the loading unit 10 to be perpendicular to the transfer direction of the tray 2 in the loading unit 10 to perform vision inspection on the semiconductor device 1;
  • a first guide rail 68 disposed perpendicular to the moving direction of the tray 2 in the loading unit 10;
  • a first transfer tool coupled with the first guide rail 68 to move along the first guide rail 68 and picking up and transporting elements from the loading unit 10 to the vision inspection module 50 to perform vision inspection.
  • Unloading units 31 and 32 that receive the trays 2 containing the semiconductor devices 1 that have undergone vision inspection in the loading unit 10 and classify the semiconductor devices 1 into the trays 2 according to the vision inspection results. , 33).
  • the semiconductor device 1 may be a target of any semiconductor device that has completed a semiconductor process such as a memory, an SD RAM, a flash RAM, a CPU, and a GPU.
  • the tray 2 is a structure in which one or more semiconductor devices 1 are stacked and transported in an eight-light matrix, and is generally standardized as a memory device.
  • the loading unit 10 is a component for loading the semiconductor device 1 to be inspected so as to perform vision inspection, and various configurations are possible.
  • the loading unit 10 transfers a tray 2 containing a plurality of semiconductor elements 1 in a state of being seated in a seating groove formed in the tray 2.
  • the loading unit 10 may be configured in various ways, and as shown in FIG. 1 and Korean Patent Application Laid-Open No. 10-2008-0092671, the movement of the tray 2 on which the plurality of semiconductor devices 1 are stacked is performed.
  • a guide unit (not shown) for guiding and a drive unit (not shown) for moving the tray 2 along the guide unit may be configured.
  • the vision inspection module 50 is installed on one side of the loading unit 10 to be perpendicular to the conveying direction of the tray 2 in the loading unit 10 to perform vision inspection of the semiconductor device 1.
  • Various configurations are possible.
  • the vision inspection module 50 can be various configurations depending on the configuration of the system.
  • the vision inspection module 50 may be configured to acquire an image of the exterior of the bottom surface of the semiconductor device 1 by using a camera, a scanner, or the like.
  • the image obtained by the vision inspection module 50 is used for non-point inspection, such as whether the defect after analyzing the image using a program.
  • the vision inspection module 50 may be configured in various ways according to the type of vision inspection, and may be disposed on any one surface (hereinafter, referred to as a 'first surface') and a side adjacent to the top and bottom surfaces of the semiconductor device 1. It is preferred to be configured to perform all vision tests on the subject.
  • the vision inspection module 50 may be mounted in the state of being picked up by the first transfer tool 61 with respect to the semiconductor device 1 having a rectangular planar shape. It is preferably configured to perform vision inspection on both the opposite side and the four sides.
  • the vision inspection module 50 is, for example, as shown in Figures 2 to 5, as a vision inspection module 50 for performing a vision inspection of the semiconductor device 1 of planar polygonal shape, Single image acquisition unit 100 for acquiring the first plane image of the first plane of the semiconductor device 1 and the side images of the sides of the polygonal sides of the semiconductor device 1, the first image of the semiconductor device 1 Acquire a single image for each of the first optical path L1 for allowing the first plane image for one plane to reach the single image acquisition unit 100 and for the side images of the sides of the polygonal sides of the semiconductor device 1. It may include an optical system for forming a plurality of second optical path (L2) to reach the portion 100.
  • L2 second optical path
  • the single image acquisition unit 100 is configured to acquire a first plane image for the first plane of the semiconductor device 1 and side images for the side surfaces of polygonal sides of the semiconductor device 1. Do.
  • the single image acquisition unit 100 may be a camera, a scanner, or the like.
  • the single image acquisition unit 100 includes the first plane image of the first plane of the semiconductor device 1 and the polygonal sides of the semiconductor device 1 for analysis of the acquired images.
  • the side images of the sides of the vehicle are transferred to a controller (not shown) and used for a non-point test such as whether or not after analyzing the image using a program.
  • the optical system includes a first optical path L1 for allowing a first plane image of the first plane of the semiconductor device 1 to reach the single image acquisition unit 100, and side surfaces of polygonal sides of the semiconductor device 1.
  • a first optical path L1 for allowing a first plane image of the first plane of the semiconductor device 1 to reach the single image acquisition unit 100
  • Various configurations are possible as a configuration of forming a plurality of second optical paths L2 for allowing each of the side images of the light beams to reach the single image acquisition unit 100.
  • the numbers of the lens 110, the reflecting members 211 and 311, the transflective member, the prism, and the like, according to the installation positions of the semiconductor device 1 and the single image acquisition unit 100, are numbers and installation positions. Can be selected.
  • the optical system corresponds to the main reflection member 211 reflecting the first plane image on the first plane toward the single image acquisition unit 100 and corresponding to each side of the polygonal sides of the semiconductor device 1. It may include an auxiliary reflection member 311 is installed to reflect the side image of each side of the polygonal sides of the semiconductor device 1 toward the main reflection member 211.
  • the main reflecting member 211 is configured to reflect the first plane image on the first plane toward the single image acquisition unit 100, and various members such as a reflective member and a semi-transmissive member may be used.
  • the auxiliary reflection member 311 is installed to correspond to each side of the polygonal sides of the semiconductor device 1 so that the side image of each side of the polygonal sides of the semiconductor device 1 toward the main reflection member 211.
  • various members such as a reflecting member and a transflective member can be used.
  • the optical system is provided with an illumination system 540 for irradiating light to the first plane and side surfaces for vision inspection, and the illumination system 540 may be variously installed according to the irradiation method.
  • the illumination system 540 may be irradiated with a variety of light, such as monochromatic light such as laser light, tricolor light such as R, G, B, white light, depending on the type of vision inspection, various light sources such as LED element can be used.
  • monochromatic light such as laser light
  • tricolor light such as R, G, B
  • white light depending on the type of vision inspection
  • various light sources such as LED element can be used.
  • the illumination system 540 can be variously arranged according to the configuration of the optical system.
  • the optical system when the optical system includes the main reflection member 211 described above, the main reflection member 211 may have a transflective material through which light can pass, and the illumination system 540 may include a first plane. It may be configured to irradiate light to each side of the polygonal sides of the first plane and the semiconductor device 1 on the back surface of the reflecting surface reflecting the image.
  • the illumination system 540 may be configured to perform irradiation on the first plane and irradiation on each side by a separate light source 545, and the auxiliary reflection described above.
  • the member 311 may be configured to have a transflective material through which light can pass, and to irradiate light onto each side of the polygonal sides of the semiconductor device 1 on the rear surface of the reflective surface reflecting the side image.
  • the focal lengths are different from each other due to the path difference of the optical paths, thereby obtaining a single image.
  • a device that is, a camera
  • one of the first planar image and the side image is out of focus and blurs.
  • the vision inspection module 50 is installed in the optical system to correct the focal length difference between the first optical path (L1) and the second optical path (L2) focal length
  • the correction unit 400 may further include.
  • the focal length correction unit 400 is obtained through the first optical path L1 and the second optical path L2, various configurations are possible as a configuration for compensating that the focal lengths are different from each other due to the path difference of the optical paths. .
  • the focal length correction unit 400 may include a medium unit 410 installed on the light paths L1 and L2 and having a transparent material capable of light transmission.
  • the medium part 410 is installed on the optical paths L1 and L2 to correct the focal length, and is installed on the optical paths L1 and L2 such as transparent glass and quartz and has a focal length due to a difference in refractive index. It is a configuration to correct.
  • the medium part 410 is preferably installed in the second optical path L2 of the first optical path L1 and the second optical path L2.
  • the medium part 410 has a column shape such as a cylinder, a polygonal column, etc., having a predetermined thickness and forming a plane perpendicular to the optical path based on the optical path.
  • the thickness t of the medium portion 410 in the second optical path L2 direction is calculated by FIG. 6 and the following equation.
  • t (1-1 / n) / A 1 -A 2 , where t is the thickness of the medium in the optical path direction, n is the refractive index of the medium, A 1 working distance for image acquisition on the first plane, A 2 Is the working distance for the image acquisition on the side)
  • the focal length correction unit 400 may be detachable from the structure 520. It may be coupled to the frame portion 410 may include a frame portion 420 is detachably installed.
  • the structure 520 is installed in an apparatus, that is, an element inspection system, and can be configured in various ways as a structure for supporting the medium portion 410.
  • the frame part 420 is detachably coupled to the structure 520 and is configured to be detachably installed with a medium part 410.
  • the frame part 420 forms an empty space 429 in the first optical path L1 to enable light transmission, and corresponds to the second optical path L2. It may be configured by a plurality of frame members (421, 422) so that the medium portion 413 can be installed in the portion.
  • the frame part 420 may be detachably coupled to the structure 520 by a magnetic force, and for this purpose, at least one of the magnet 424 and the at least one of the frame part 420 and the structure 520 may be used. 524 may be installed.
  • the focal length correction unit 400 may be arranged in various ways in combination with an optical system.
  • the focal length compensator 400 may include each side surface of the polygonal sides of the semiconductor device 1 and the main reflection member of the second optical path L2. Between the 211, and between the main reflecting member 211 and the single image acquisition unit 100 of the second optical path (L2).
  • the focal length correction unit 400 is installed between each side of the polygonal sides of the semiconductor element 1 and the main reflection member 211 in the second optical path L2. 400 may be integrally formed with the auxiliary reflection member 311.
  • the focal length correction unit 400 when the image is acquired by a single image acquisition device, that is, a camera, the focal lengths are different from each other due to the path difference of the optical paths. This can solve the problem of blurring because of focusing on either side.
  • the first transfer tool 61 is coupled to the first guide rail 68 so as to move along the first guide rail 68 and from the loading unit 10 to the vision inspection module 50 to perform vision inspection.
  • Various configurations are possible as the configuration for picking up and transferring the elements.
  • the first transfer tool 61 may include one or more pickup tools (not shown) for picking up the semiconductor device 1, and the pickup tools may be provided in a plurality, such as a line or a double row, to increase the inspection speed. This is preferable.
  • the pick-up tool is configured to pick up the semiconductor element 1 by vacuum pressure, and various configurations are possible.
  • the first guide rail 680 is disposed perpendicular to the moving direction of the tray 2 in the loading unit 10 to support the first transfer tool 61 to be described later, and to guide the movement thereof. Configuration is possible.
  • the unloading units 31, 32, and 33 receive trays 2 containing the semiconductor devices 1 that have undergone vision inspection in the loading unit 10, and receive semiconductor trays in the trays 2 according to the vision inspection results.
  • Various configurations are possible as the configuration for classifying (1).
  • the unloading parts 31, 32, and 33 have a structure similar to that of the loading part 10, and according to the number of inspection results of the semiconductor device 1, good quality G, bad 1 or abnormal 1 (R1), bad It is preferable that it is comprised so that classification grades, such as 2 or more 2 (R2), may be provided.
  • the unloading parts 31, 32, and 33 may include a guide part (not shown) installed in parallel with one side of the loading part 10, and a driving part (not shown) for moving the tray 2 along the guide part. Unloading trays including a plurality may be installed in parallel.
  • the tray 2 may be transferred between the loading unit 10 and the unloading units 31, 32, and 33 by a tray transfer device (not shown), and the unloading units 31, 32 may be used.
  • 33 may further include a bin tray 200 for supplying an empty tray 2 in which the semiconductor device 1 is not loaded.
  • the bin tray 200 may include a guide unit (not shown) installed in parallel with one side of the loading unit 10, and a drive unit (not shown) for moving the tray 2 along the guide unit.
  • a guide unit (not shown) installed in parallel with one side of the loading unit 10
  • a drive unit (not shown) for moving the tray 2 along the guide unit.
  • the unloading parts 31, 32, and 33 may be separately provided with a sorting tool 62 for transferring the semiconductor device 1 according to the classification level of each unloading tray part between the unloading tray parts. .
  • the sorting tool 62 may have a configuration that is the same as or similar to that of the first transfer tool 61 described above, and may have a double row structure or a single row structure.
  • the unloading units 31, 32, and 33 have been described with reference to an embodiment in which the unloading unit 31, 32, and 33 are unloaded while being loaded in the tray 2 loaded from the loading unit 10. Any configuration can be used as long as it can be loaded and unloaded, including a so-called tape reel module, which is loaded and unloaded on a carrier tape having a pocket.
  • the present invention is characterized by the configuration of the vision inspection module, in particular the ultra-compensation distance compensation unit on the optical path, the configuration of the device inspection system presented is an embodiment, the vision inspection module according to the present invention is an embodiment of the present invention Of course, it is not limited to being installed in the device inspection system according to the example.

Abstract

The present invention relates to an element inspection system and, more specifically, to a vision inspection module for performing a vision inspection on a semiconductor element, and an element inspection system having the same. Disclosed is a vision inspection module (50) for performing a vision inspection on a semiconductor element (1) having a polygonal planar shape, the vision inspection module (50) comprising: a single image acquisition unit (100) for acquiring a first planar image for a first plane of the semiconductor element (1) and lateral images for lateral surfaces of polygonal sides of the semiconductor element (1); and an optical system for forming a first optical path (L1) through which the first planar image for the first plane of the semiconductor element (1) arrives at the single image acquisition unit (100) and a plurality of second optical paths (L2) through which the lateral images for the lateral surfaces of the polygonal sides of the semiconductor element (1) respectively arrive at the single image acquisition unit (100).

Description

비전검사모듈 및 그를 가지는 소자검사시스템Vision Inspection Module and Device Inspection System Having It
본 발명은 소자검사시스템에 관한 것으로서, 보다 상세하게는 반도체소자에 대한 비전검사를 수행하는 비전검사모듈 및 그를 가지는 소자검사시스템에 관한 것이다.The present invention relates to a device inspection system, and more particularly, to a vision inspection module for performing a vision inspection for a semiconductor device and a device inspection system having the same.
패키지 공정을 마친 반도체디바이스 소자는 번인테스트 등의 검사를 마친 후에 고객 트래이에 적재되어 출하된다.After the packaging process, the semiconductor device device is shipped to the customer tray after inspection such as burn-in test.
그리고 출하되는 반도체디바이스 소자는 그 표면에 레이저 등에 의하여 일련번호, 제조사 로고 등의 표지가 표시되는 마킹공정을 거치게 된다.In addition, the semiconductor device that is shipped is subjected to a marking process in which a label such as a serial number and a manufacturer's logo is displayed on a surface of the semiconductor device.
또한 반도체디바이스 소자는 최종적으로 리드(lead)나 볼 그리드(ball grid)의 파손여부, 크랙(crack), 스크래치(scratch) 여부 등과 같은 반도체디바이스 소자의 외관상태 및 표면에 형성된 마킹의 양호여부를 검사하는 공정을 거치게 된다.In addition, the semiconductor device device finally inspects whether the lead device or ball grid is damaged, cracks, scratches, etc., the appearance of the semiconductor device device and whether the marking formed on the surface is good. It will go through the process.
한편 상기와 같은 반도체디바이스 소자의 외관상태 및 마킹의 양호여부의 검사가 추가되면서 그 검사시간 및 각 모듈들의 배치에 따라서 전체 공정수행을 위한 시간 및 장치의 크기에 영향을 미치게 된다.On the other hand, as the inspection of the appearance state of the semiconductor device device and whether the marking is satisfactory is added, the inspection time and the arrangement of each module affect the time and the size of the device for the entire process execution.
특히 다수의 소자들이 적재된 트레이의 로딩, 각 소자들에 대한 비전검사를 위한 하나 이상의 모듈, 검사 후 검사결과에 따른 언로딩모듈의 구성 및 배치에 따라서 장치의 크기가 달라진다.In particular, the size of the device depends on the loading of a tray loaded with a plurality of elements, one or more modules for vision inspection of each element, and the configuration and arrangement of the unloading module according to the inspection result after the inspection.
그리고 장치의 크기는 소자검사라인 내에 설치될 수 있는 소자검사시스템의 숫자를 제한하거나, 미리 정해진 숫자의 소자검사시스템의 설치에 따라서 소자 생산을 위한 설치비용에 영향을 주게 된다.The size of the device limits the number of device inspection systems that can be installed in the device inspection line, or affects the installation cost for device production according to the installation of a predetermined number of device inspection systems.
본 발명의 목적을 상기와 같은 점들을 인식하여 반도체소자의 표면 및 그 표면에 인접하는 복수의 측면들에 대한 이미지를 한번에 획득하여 비전검사를 수행할 수 있는 비전검사모듈 및 그를 가지는 소자검사시스템을 제공하는 데 있다.A vision inspection module and a device inspection system having the same, which can recognize vision as described above to obtain the image of the surface of the semiconductor device and a plurality of side surfaces adjacent to the surface at one time to perform vision inspection To provide.
본 발명은 상기와 같은 본 발명의 목적을 달성하기 위하여 창출된 것으로서, 본 발명은, 평면형상이 다각형인 반도체소자(1)의 비전검사를 수행하는 비전검사모듈(50)로서, 상기 반도체소자(1)의 제1평면에 대한 제1평면이미지 및 상기 반도체소자(1)의 다각형 변들의 측면들에 대한 측면이미지들을 획득하는 단일이미지획득부(100)와, 상기 반도체소자(1)의 제1평면에 대한 제1평면이미지가 상기 단일이미지획득부(100)에 도달하도록 하는 제1광경로(L1)와, 상기 반도체소자(1)의 다각형 변들의 측면들에 대한 측면이미지들 각각을 상기 단일이미지획득부(100)에 도달하도록 하는 복수의 제2광경로(L2)들을 형성하는 광학계를 포함하는 것을 특징으로 하는 비전검사모듈(50)을 개시한다.The present invention was created in order to achieve the object of the present invention as described above, the present invention is a vision inspection module 50 for performing a vision inspection of the semiconductor device (1) having a planar shape polygon, the semiconductor device ( Single image acquisition unit 100 for obtaining a first plane image of the first plane of 1) and side images of the sides of the polygonal sides of the semiconductor device 1, and a first image of the semiconductor device 1 Each of the first optical path L1 for causing the first planar image of the plane to reach the single image acquisition unit 100 and each of the side images of the sides of the polygonal sides of the semiconductor device 1 Disclosed is a vision inspection module (50) comprising an optical system for forming a plurality of second optical paths (L2) to reach the image acquisition unit (100).
상기 광학계에 설치되어 상기 제1광경로(L1) 및 상기 제2광경로(L2)의 초점거리 차이를 보정하는 초점거리보정부(400)를 추가로 포함할 수 있다.The optical system may further include a focal length correction unit 400 installed in the optical system to correct a focal length difference between the first optical path L1 and the second optical path L2.
상기 초점거리보정부(400)는, 해당 광경로(L1, L2)에 설치되어 광투과가 가능한 투명재질을 가지는 매질부(410)를 포함할 수 있다.The focal length correction unit 400 may include a medium unit 410 installed on the light paths L1 and L2 and having a transparent material capable of light transmission.
상기 초점거리보정부(400)는, 구조물(520)에 탈착가능하게 결합되며 상기 매질부(410)가 탈착가능하게 설치되는 프레임부(420)를 포함할 수 있다.The focal length correction unit 400 may include a frame unit 420 detachably coupled to the structure 520 and the media unit 410 is detachably installed.
상기 프레임부(420)는, 상기 구조물(520)에 대하여 자력에 의하여 탈착가능하게 결합될 수 있다.The frame part 420 may be detachably coupled to the structure 520 by magnetic force.
상기 광학계는, 상기 제1평면에 대한 제1평면이미지를 상기 단일이미지획득부(100)를 향하도록 반사시키는 주반사부재(211)와, 상기 반도체소자(1)의 다각형 변들의 각 측면에 대응되어 설치되어 상기 반도체소자(1)의 다각형 변들의 각 측면에 대한 측면이미지를 상기 주반사부재(211)로 향하도록 반사시키는 보조반사부재(311)를 포함할 수 있다.The optical system may include a main reflection member 211 reflecting a first plane image of the first plane toward the single image acquisition unit 100, and corresponding sides of polygonal sides of the semiconductor device 1. And an auxiliary reflection member 311 reflecting side images of the sides of the polygonal sides of the semiconductor device 1 toward the main reflection member 211.
상기 주반사부재(211)는, 광이 투과할 수 있는 반투과재질을 가지며, 상기 제1평면이미지를 반사시키는 반사면의 이면에서 상기 제1평면 및 상기 반도체소자(1)의 다각형 변들의 각 측면에 광을 조사하는 조명계(540)를 포함할 수 있다.The main reflection member 211 has a semi-transmissive material through which light can pass, and the angles of the polygonal sides of the first plane and the semiconductor device 1 on the rear surface of the reflective surface reflecting the first plane image. It may include an illumination system 540 for irradiating light to the side.
상기 초점거리보정부(400)는, 상기 제2광경로(L2) 중 상기 반도체소자(1)의 다각형 변들의 각 측면 및 상기 주반사부재(211)의 사이, 및 상기 제2광경로(L2) 중 상기 주반사부재(211) 및 상기 단일이미지획득부(100) 사이 중 적어도 어느 하나에 설치될 수 있다.The focal length correction unit 400 is formed between each side of the polygonal sides of the semiconductor device 1 and the main reflection member 211 of the second optical path L2, and the second optical path L2. ) May be installed in at least one of the main reflection member 211 and the single image acquisition unit 100.
상기 초점거리보정부(400)는, 상기 제2광경로(L2) 중 상기 반도체소자(1)의 다각형 변들의 각 측면 및 상기 주반사부재(211)의 사이에 설치되며, 상기 초점거리보정부(400)는, 상기 보조반사부재(311)와 일체로 형성될 수 있다.The focal length correction unit 400 is installed between each side of the polygonal sides of the semiconductor element 1 of the second optical path L2 and the main reflection member 211, and the focal length correction unit 400 may be integrally formed with the auxiliary reflection member 311.
본 발명은 또한 복수의 반도체소자(1)들이 담긴 트레이(2)가 로딩되어 선형이동시키는 로딩부(10)와; 상기 로딩부(10) 내의 트레이(2)의 이송방향과 수직을 이루어 상기 로딩부(10)의 일측에 설치되어 반도체소자(1)에 대한 비전검사를 수행하는 비전검사모듈(50)과; 상기 로딩부(10)에서의 트레이(2) 이동방향과 수직으로 배치된 제1가이드레일(68)과; 상기 제1가이드레일(68)을 따라서 이동되도록 상기 제1가이드레일(68)과 결합되며 비전검사를 수행하기 위하여 상기 로딩부(10)로부터 상기 비전검사모듈(50)로 소자를 픽업하여 이송하는 제1이송툴(61)과; 상기 로딩부(10)에서 비전검사를 마친 반도체소자(1)들이 담긴 트레이(2)들을 전달받아 비전검사결과에 따라서 해당 트레이(2)에 반도체소자(1)들을 분류하는 언로딩부(31, 32, 33)를 포함하며, 상기 비전검사모듈(50)은, 상기와 같은 구성을 가지는 비전검사모듈인 것을 특징으로 하는 소자검사시스템을 개시한다.The present invention also includes a loading unit 10 for linearly moving a tray (2) containing a plurality of semiconductor elements (1) is loaded; A vision inspection module 50 installed at one side of the loading unit 10 to be perpendicular to the conveying direction of the tray 2 in the loading unit 10 to perform vision inspection on the semiconductor device 1; A first guide rail 68 disposed perpendicular to the moving direction of the tray 2 in the loading unit 10; Coupled with the first guide rail 68 so as to move along the first guide rail 68, and picks up and transports the device from the loading unit 10 to the vision inspection module 50 to perform vision inspection. A first transfer tool 61; The unloading unit 31 receives the trays 2 containing the semiconductor devices 1 that have undergone vision inspection by the loading unit 10 and classifies the semiconductor devices 1 into the trays 2 according to the vision inspection results. 32, 33, and the vision inspection module 50 discloses a device inspection system, characterized in that the vision inspection module having the configuration as described above.
본 발명에 따른 비전검사모듈 및 그를 가지는 소자검사시스템은, 반도체소자의 표면 및 그 표면에 인접하는 복수의 측면들에 대한 이미지를 한번에 획득하여 비전검사를 수행함으로써 다양하고 신속한 비전검사의 수행이 가능한 이점이 있다.The vision inspection module and the device inspection system having the same according to the present invention are capable of performing a variety of rapid vision inspection by performing a vision inspection by acquiring images of the surface of the semiconductor device and a plurality of side surfaces adjacent to the surface at once. There is an advantage.
특히 반도체소자의 표면 및 그 표면에 인접하는 복수의 측면들에 대한 이미지를 한번에 획득함에 있어 서로 다른 광경로에 따른 초점거리의 차이를 투명유리 등의 매질을 이용하여 보정함으로써 하나의 단일 카메라에 의한 이미지 획득이 가능하여 비전검사의 수행을 위한 모듈의 구성을 간단화하고 제조비용을 절감할 수 있는 이점이 있다.In particular, in acquiring images of the surface of a semiconductor device and a plurality of side surfaces adjacent to the surface of the semiconductor device at a time, the difference in focal length according to different optical paths is corrected by using a medium such as transparent glass. Images can be obtained, which simplifies the configuration of modules for performing vision inspection and reduces manufacturing costs.
도 1은, 본 발명에 따른 소자검사시스템의 일예를 보여주는 평면도이다.1 is a plan view showing an example of a device inspection system according to the present invention.
도 2a는, 도 1의 소자검사시스템의 비전검사모듈의 일예의 구성을 측면 방향으로 보여주는 개념도이다.FIG. 2A is a conceptual diagram illustrating a configuration of an example of a vision inspection module of the device inspection system of FIG. 1 in a lateral direction.
도 2b는, 도 2a의 비전검사모듈 중 반도체소자 및 보조반사부재의 배치를 보여주는 저면도이다.FIG. 2B is a bottom view illustrating an arrangement of a semiconductor device and an auxiliary reflection member of the vision inspection module of FIG. 2A.
도 3은, 도 2의 비전검사모듈 중 초점거리조정부의 일예를 보여주는 평면도이다.3 is a plan view illustrating an example of a focal length adjusting unit of the vision inspection module of FIG. 2.
도 4는, 도 3의 초점거리조정부의 측면도이다.4 is a side view of the focal length adjusting unit of FIG. 3.
도 5는, 도 1의 소자검사시스템의 비전검사모듈의 다른 예의 구성을 측면 방향으로 보여주는 개념도이다.FIG. 5 is a conceptual diagram illustrating a configuration of another example of a vision inspection module of the device inspection system of FIG. 1 in a lateral direction.
도 6은, 도 2 또는 도 5의 비전검사모듈에서 이미지 획득을 위한 작동거리의 개념을 보여주는 개념도이다.6 is a conceptual diagram illustrating a concept of an operating distance for obtaining an image in the vision inspection module of FIG. 2 or FIG. 5.
도 7은, 도 2 또는 도 5의 비전검사모듈에 의하여 획득된 이미지를 개략적으로 보여주는 개념도이다. 7 is a conceptual diagram schematically illustrating an image obtained by the vision inspection module of FIG. 2 or FIG. 5.
이하, 본 발명에 따른 비전검사모듈 및 그를 가지는 소자검사시스템에 관하여 첨부된 도면을 참조하여 설명하면 다음과 같다.Hereinafter, a vision inspection module and a device inspection system having the same according to the present invention will be described with reference to the accompanying drawings.
본 발명의 일실시예에 따른 소자검사시스템는, 도 1에 도시된 바와 같이, 복수의 반도체소자(1)들이 담긴 트레이(2)가 로딩되어 선형이동시키는 로딩부(10)와; 로딩부(10) 내의 트레이(2)의 이송방향과 수직을 이루어 로딩부(10)의 일측에 설치되어 반도체소자(1)에 대한 비전검사를 수행하는 비전검사모듈(50)과; 로딩부(10)에서의 트레이(2) 이동방향과 수직으로 배치된 제1가이드레일(68)과; 제1가이드레일(68)을 따라서 이동되도록 제1가이드레일(68)과 결합되며 비전검사를 수행하기 위하여 로딩부(10)로부터 비전검사모듈(50)로 소자를 픽업하여 이송하는 제1이송툴(61)과; 로딩부(10)에서 비전검사를 마친 반도체소자(1)들이 담긴 트레이(2)들을 전달받아 비전검사결과에 따라서 해당 트레이(2)에 반도체소자(1)들을 분류하는 언로딩부(31, 32, 33)를 포함한다.Device inspection system according to an embodiment of the present invention, as shown in Figure 1, a loading unit 10 for linearly moving a tray (2) containing a plurality of semiconductor elements (1) is loaded; A vision inspection module 50 installed at one side of the loading unit 10 to be perpendicular to the transfer direction of the tray 2 in the loading unit 10 to perform vision inspection on the semiconductor device 1; A first guide rail 68 disposed perpendicular to the moving direction of the tray 2 in the loading unit 10; A first transfer tool coupled with the first guide rail 68 to move along the first guide rail 68 and picking up and transporting elements from the loading unit 10 to the vision inspection module 50 to perform vision inspection. 61; Unloading units 31 and 32 that receive the trays 2 containing the semiconductor devices 1 that have undergone vision inspection in the loading unit 10 and classify the semiconductor devices 1 into the trays 2 according to the vision inspection results. , 33).
여기서 반도체소자(1)는, 메모리, SD램, 플래쉬램, CPU, GPU 등 반도체 공정을 마친 반도체소자들이면 모두 그 대상이 될 수 있다.Here, the semiconductor device 1 may be a target of any semiconductor device that has completed a semiconductor process such as a memory, an SD RAM, a flash RAM, a CPU, and a GPU.
상기 트레이(2)는, 한 개 이상의 반도체소자(1)들이 8등 행렬을 이루어 적재되어 이송되는 구성으로서, 메모리소자 등 규격화됨이 일반적이다.The tray 2 is a structure in which one or more semiconductor devices 1 are stacked and transported in an eight-light matrix, and is generally standardized as a memory device.
상기 로딩부(10)는, 검사대상인 반도체소자(1)를 담아 비전검사를 수행할 수 있도록 로딩하는 구성으로서, 다양한 구성이 가능하다The loading unit 10 is a component for loading the semiconductor device 1 to be inspected so as to perform vision inspection, and various configurations are possible.
예로서, 상기 로딩부(10)는, 트레이(2)에 형성된 안착홈에 안착된 상태로 다수개의 반도체소자(1)들이 담긴 트레이(2)를 이송한다.For example, the loading unit 10 transfers a tray 2 containing a plurality of semiconductor elements 1 in a state of being seated in a seating groove formed in the tray 2.
상기 로딩부(10)는 다양한 구성이 가능하며, 도 1 및 한국 공개특허공보 제10-2008-0092671호에 도시된 바와 같이, 다수개의 반도체소자(1)들이 적재되는 트레이(2)의 이동을 안내하는 가이드부(미도시)와, 트레이(2)가 가이드부를 따라서 이동시키기 위한 구동부(미도시)를 포함하여 구성될 수 있다.The loading unit 10 may be configured in various ways, and as shown in FIG. 1 and Korean Patent Application Laid-Open No. 10-2008-0092671, the movement of the tray 2 on which the plurality of semiconductor devices 1 are stacked is performed. A guide unit (not shown) for guiding and a drive unit (not shown) for moving the tray 2 along the guide unit may be configured.
상기 비전검사모듈(50)은, 로딩부(10) 내의 트레이(2)의 이송방향과 수직을 이루어 로딩부(10)의 일측에 설치되어 반도체소자(1)에 대한 비전검사를 수행하는 구성으로서 다양한 구성이 가능하다.The vision inspection module 50 is installed on one side of the loading unit 10 to be perpendicular to the conveying direction of the tray 2 in the loading unit 10 to perform vision inspection of the semiconductor device 1. Various configurations are possible.
여기서 상기 비전검사모듈(50)은, 시스템의 구성에 따라서 다양한 구성이 가능함은 물론이다.Here, the vision inspection module 50, of course, can be various configurations depending on the configuration of the system.
특히 상기 비전검사모듈(50)은, 반도체소자(1)의 저면 등에 대한 외관을 카메라, 스캐너 등을 이용하여 이미지를 획득하는 구성으로서 다양한 구성이 가능하다.In particular, the vision inspection module 50 may be configured to acquire an image of the exterior of the bottom surface of the semiconductor device 1 by using a camera, a scanner, or the like.
여기서 상기 비전검사모듈(50)에 의하여 획득된 이미지는, 프로그램 등을 이용하여 이미지 분석 후 불량여부 등의 비점검사에 활용된다.Here, the image obtained by the vision inspection module 50 is used for non-point inspection, such as whether the defect after analyzing the image using a program.
한편 상기 비전검사모듈(50)은, 비전검사의 종류에 따라서 다양한 구성이 가능하며, 반도체소자(1)의 상면 및 저면 중 어느 일면(이하 '제1표면'이라 한다) 및 그에 인접된 측면에 대한 비전검사를 모두 수행하도록 구성됨이 바람직하다.Meanwhile, the vision inspection module 50 may be configured in various ways according to the type of vision inspection, and may be disposed on any one surface (hereinafter, referred to as a 'first surface') and a side adjacent to the top and bottom surfaces of the semiconductor device 1. It is preferred to be configured to perform all vision tests on the subject.
보다 구체적으로, 상기 비전검사모듈(50)은, 도 2a 및 도 7에 도시된 바와 같이, 평면형상이 직사각형인 반도체소자(1)에 대하여, 제1이송툴(61)에 픽업된 상태에서 그 반대면 및 네 개의 측면들에 대한 비전검사를 모두 수행하도록 구성됨이 바람직하다.More specifically, as shown in FIGS. 2A and 7, the vision inspection module 50 may be mounted in the state of being picked up by the first transfer tool 61 with respect to the semiconductor device 1 having a rectangular planar shape. It is preferably configured to perform vision inspection on both the opposite side and the four sides.
이를 위하여, 상기 비전검사모듈(50)은, 예로서, 도 2 내지 도 5에 도시된 바와 같이, 평면형상이 다각형인 반도체소자(1)의 비전검사를 수행하는 비전검사모듈(50)로서, 반도체소자(1)의 제1평면에 대한 제1평면이미지 및 반도체소자(1)의 다각형 변들의 측면들에 대한 측면이미지들을 획득하는 단일이미지획득부(100)와, 반도체소자(1)의 제1평면에 대한 제1평면이미지가 단일이미지획득부(100)에 도달하도록 하는 제1광경로(L1)와, 반도체소자(1)의 다각형 변들의 측면들에 대한 측면이미지들 각각을 단일이미지획득부(100)에 도달하도록 하는 복수의 제2광경로(L2)들을 형성하는 광학계를 포함할 수 있다.To this end, the vision inspection module 50 is, for example, as shown in Figures 2 to 5, as a vision inspection module 50 for performing a vision inspection of the semiconductor device 1 of planar polygonal shape, Single image acquisition unit 100 for acquiring the first plane image of the first plane of the semiconductor device 1 and the side images of the sides of the polygonal sides of the semiconductor device 1, the first image of the semiconductor device 1 Acquire a single image for each of the first optical path L1 for allowing the first plane image for one plane to reach the single image acquisition unit 100 and for the side images of the sides of the polygonal sides of the semiconductor device 1. It may include an optical system for forming a plurality of second optical path (L2) to reach the portion 100.
상기 단일이미지획득부(100)는, 반도체소자(1)의 제1평면에 대한 제1평면이미지 및 반도체소자(1)의 다각형 변들의 측면들에 대한 측면이미지들을 획득하는 구성으로서 다양한 구성이 가능하다.The single image acquisition unit 100 is configured to acquire a first plane image for the first plane of the semiconductor device 1 and side images for the side surfaces of polygonal sides of the semiconductor device 1. Do.
예로서, 상기 단일이미지획득부(100)는, 카메라, 스캐너 등이 사용될 수 있다.For example, the single image acquisition unit 100 may be a camera, a scanner, or the like.
그리고 상기 단일이미지획득부(100)는, 도 7에 도시된 바와 같이, 획득된 이미지들의 분석을 위하여 반도체소자(1)의 제1평면에 대한 제1평면이미지 및 반도체소자(1)의 다각형 변들의 측면들에 대한 측면이미지들을 제어부(미도시)로 전달되어 프로그램 등을 이용하여 이미지 분석 후 불량여부 등의 비점검사에 활용된다.In addition, as illustrated in FIG. 7, the single image acquisition unit 100 includes the first plane image of the first plane of the semiconductor device 1 and the polygonal sides of the semiconductor device 1 for analysis of the acquired images. The side images of the sides of the vehicle are transferred to a controller (not shown) and used for a non-point test such as whether or not after analyzing the image using a program.
상기 광학계는, 반도체소자(1)의 제1평면에 대한 제1평면이미지가 단일이미지획득부(100)에 도달하도록 하는 제1광경로(L1)와, 반도체소자(1)의 다각형 변들의 측면들에 대한 측면이미지들 각각을 단일이미지획득부(100)에 도달하도록 하는 복수의 제2광경로(L2)들을 형성하는 구성으로서 다양한 구성이 가능하다.The optical system includes a first optical path L1 for allowing a first plane image of the first plane of the semiconductor device 1 to reach the single image acquisition unit 100, and side surfaces of polygonal sides of the semiconductor device 1. Various configurations are possible as a configuration of forming a plurality of second optical paths L2 for allowing each of the side images of the light beams to reach the single image acquisition unit 100.
구체적으로, 상기 광학계는, 반도체소자(1) 및 단일이미지획득부(100)의 설치위치에 따라서 렌즈(110), 반사부재(211, 311), 반투과부재, 프리즘 등이 그 숫자 및 설치위치가 선택될 수 있다.Specifically, in the optical system, the numbers of the lens 110, the reflecting members 211 and 311, the transflective member, the prism, and the like, according to the installation positions of the semiconductor device 1 and the single image acquisition unit 100, are numbers and installation positions. Can be selected.
특히, 상기 광학계는, 제1평면에 대한 제1평면이미지를 단일이미지획득부(100)를 향하도록 반사시키는 주반사부재(211)와, 반도체소자(1)의 다각형 변들의 각 측면에 대응되어 설치되어 반도체소자(1)의 다각형 변들의 각 측면에 대한 측면이미지를 주반사부재(211)로 향하도록 반사시키는 보조반사부재(311)를 포함할 수 있다.In particular, the optical system corresponds to the main reflection member 211 reflecting the first plane image on the first plane toward the single image acquisition unit 100 and corresponding to each side of the polygonal sides of the semiconductor device 1. It may include an auxiliary reflection member 311 is installed to reflect the side image of each side of the polygonal sides of the semiconductor device 1 toward the main reflection member 211.
상기 주반사부재(211)는, 제1평면에 대한 제1평면이미지를 단일이미지획득부(100)를 향하도록 반사시키는 구성으로서 반사부재, 반투과부재 등 다양한 부재가 사용될 수 있다.The main reflecting member 211 is configured to reflect the first plane image on the first plane toward the single image acquisition unit 100, and various members such as a reflective member and a semi-transmissive member may be used.
상기 보조반사부재(311)는, 반도체소자(1)의 다각형 변들의 각 측면에 대응되어 설치되어 반도체소자(1)의 다각형 변들의 각 측면에 대한 측면이미지를 주반사부재(211)로 향하도록 반사시키는 구성으로서, 반사부재, 반투과부재 등 다양한 부재가 사용될 수 있다.The auxiliary reflection member 311 is installed to correspond to each side of the polygonal sides of the semiconductor device 1 so that the side image of each side of the polygonal sides of the semiconductor device 1 toward the main reflection member 211. As the configuration for reflecting, various members such as a reflecting member and a transflective member can be used.
한편, 상기 광학계는, 비전검사를 위하여 제1평면, 측면들에 광을 조사하는 조명계(540)가 설치되는데, 조명계(540)는, 그 조사방식에 따라서 다양하게 설치될 수 있다.Meanwhile, the optical system is provided with an illumination system 540 for irradiating light to the first plane and side surfaces for vision inspection, and the illumination system 540 may be variously installed according to the irradiation method.
상기 조명계(540)는, 비전검사의 형태에 따라서, 레이저광 등의 단색광, R, G, B 등의 삼색광, 백색광 등 다양한 광을 조사할 수 있으며, 엘이디소자 등 다양한 광원이 사용될 수 있다.The illumination system 540 may be irradiated with a variety of light, such as monochromatic light such as laser light, tricolor light such as R, G, B, white light, depending on the type of vision inspection, various light sources such as LED element can be used.
아울러, 상기 조명계(540)는, 광학계의 구성에 따라서 다양한 배치가 가능하다.In addition, the illumination system 540 can be variously arranged according to the configuration of the optical system.
예로서, 상기 광학계가 앞서 설명한 주반사부재(211)를 포함할 때, 주반사부재(211)가 광이 투과할 수 있는 반투과재질을 가질 수 있으며, 이때 조명계(540)는, 제1평면이미지를 반사시키는 반사면의 이면에서 제1평면 및 반도체소자(1)의 다각형 변들의 각 측면에 광을 조사하도록 구성될 수 있다.For example, when the optical system includes the main reflection member 211 described above, the main reflection member 211 may have a transflective material through which light can pass, and the illumination system 540 may include a first plane. It may be configured to irradiate light to each side of the polygonal sides of the first plane and the semiconductor device 1 on the back surface of the reflecting surface reflecting the image.
또한, 상기 조명계(540)는, 도 2에 도시된 바와 같이, 제1평면에 대한 조사 및 각 측면에 대한 조사가 별도의 광원(545)에 의하여 수행되도록 구성될 수 있으며, 이때 앞서 설명한 보조반사부재(311)가 광이 투과할 수 있는 반투과재질을 가지도록 하고, 측면이미지를 반사시키는 반사면의 이면에서 반도체소자(1)의 다각형 변들의 각 측면에 광을 조사하도록 구성될 수 있다.Also, as shown in FIG. 2, the illumination system 540 may be configured to perform irradiation on the first plane and irradiation on each side by a separate light source 545, and the auxiliary reflection described above. The member 311 may be configured to have a transflective material through which light can pass, and to irradiate light onto each side of the polygonal sides of the semiconductor device 1 on the rear surface of the reflective surface reflecting the side image.
한편 제1평면이미지 및 측면이미지들은, 서로 다른 광경로, 즉 제1광경로(L1) 및 제2광경로(L2)를 거쳐 획득되므로 광경로의 경로차로 인하여 초점거리가 서로 달라 단일의 이미지획득장치, 즉 카메라에 의하여 이미지가 획득될 때 제1평면이미지 및 측면이미지들 중 어느 한쪽에 대한 초점이 맞지 않아 흐릿하게 되는 문제점이 있다.On the other hand, since the first planar image and the side images are acquired through different optical paths, that is, the first optical path L1 and the second optical path L2, the focal lengths are different from each other due to the path difference of the optical paths, thereby obtaining a single image. When an image is acquired by a device, that is, a camera, one of the first planar image and the side image is out of focus and blurs.
이에, 상기 비전검사모듈(50)은, 도 2 내지 도 5에 도시된 바와 같이, 광학계에 설치되어 제1광경로(L1) 및 제2광경로(L2)의 초점거리 차이를 보정하는 초점거리보정부(400)를 추가로 포함할 수 있다.Thus, the vision inspection module 50, as shown in Figures 2 to 5, is installed in the optical system to correct the focal length difference between the first optical path (L1) and the second optical path (L2) focal length The correction unit 400 may further include.
상기 초점거리보정부(400)는, 제1광경로(L1) 및 제2광경로(L2)를 거쳐 획득되므로 광경로의 경로차로 인하여 초점거리가 서로 달라지는 것을 보정하는 구성으로서 다양한 구성이 가능하다.Since the focal length correction unit 400 is obtained through the first optical path L1 and the second optical path L2, various configurations are possible as a configuration for compensating that the focal lengths are different from each other due to the path difference of the optical paths. .
일예로서, 상기 초점거리보정부(400)는, 해당 광경로(L1, L2)에 설치되어 광투과가 가능한 투명재질을 가지는 매질부(410)를 포함할 수 있다.As an example, the focal length correction unit 400 may include a medium unit 410 installed on the light paths L1 and L2 and having a transparent material capable of light transmission.
상기 매질부(410)는, 해당 광경로(L1, L2)에 설치되어 초점거리를 보정하기 위한 구성으로서, 투명유리, 석영 등 광경로(L1, L2) 상에 설치되어 굴절률 상의 차이로 초점거리를 보정하는 구성이다.The medium part 410 is installed on the optical paths L1 and L2 to correct the focal length, and is installed on the optical paths L1 and L2 such as transparent glass and quartz and has a focal length due to a difference in refractive index. It is a configuration to correct.
특히 상기 매질부(410)는, 제1광경로(L1) 및 제2광경로(L2) 중 제2광경로(L2)에 설치됨이 바람직하다.In particular, the medium part 410 is preferably installed in the second optical path L2 of the first optical path L1 and the second optical path L2.
여기서 상기 매질부(410)는, 광경로를 기준으로 광의 입사면 및 투과면은 광경로와 수직인 평면을 이루며 미리 설정된 두께를 가지는 원기둥, 다각기둥 등 기둥 형상을 가진다. Here, the medium part 410 has a column shape such as a cylinder, a polygonal column, etc., having a predetermined thickness and forming a plane perpendicular to the optical path based on the optical path.
이때, 상기 제2광경로(L2) 방향의 매질부(410)의 두께(t)는, 도 6 및 다음 식에 의하여 산출된다.At this time, the thickness t of the medium portion 410 in the second optical path L2 direction is calculated by FIG. 6 and the following equation.
t= (1-1/n)/A1-A2 (여기서 t는 광경로 방향으로의 매질의 두께, n은 매질의 굴절율, A1 제1평면에 대한 이미지획득을 위한 작업거리, A2는 측면에 대한 이미지획득을 위한 작업거리이다)t = (1-1 / n) / A 1 -A 2 , where t is the thickness of the medium in the optical path direction, n is the refractive index of the medium, A 1 working distance for image acquisition on the first plane, A 2 Is the working distance for the image acquisition on the side)
한편 상기 매질부(410)는, 미세한 오차가 있는 경우 그 측정결과에 영향을 줄 수 있는바, 정밀한 설치가 중요하며, 이를 위하여, 초점거리보정부(400)는, 구조물(520)에 탈착가능하게 결합되며 매질부(410)가 탈착가능하게 설치되는 프레임부(420)를 포함할 수 있다.Meanwhile, the medium part 410 may affect the measurement result when there is a minute error. Therefore, precise installation is important. For this purpose, the focal length correction unit 400 may be detachable from the structure 520. It may be coupled to the frame portion 410 may include a frame portion 420 is detachably installed.
상기 구조물(520)은, 장치, 즉 소자검사시스템에 설치되어 매질부(410)를 지지하기 위한 구성으로서 다양한 구성이 가능하다.The structure 520 is installed in an apparatus, that is, an element inspection system, and can be configured in various ways as a structure for supporting the medium portion 410.
상기 프레임부(420)는, 구조물(520)에 탈착가능하게 결합되며 매질부(410)가 탈착가능하게 설치되는 구성으로서 다양한 구성이 가능하다.The frame part 420 is detachably coupled to the structure 520 and is configured to be detachably installed with a medium part 410.
예로서, 상기 프레임부(420)는, 도 3에 도시된 바와 같이, 제1광경로(L1)에는 광투과 가능하도록 빈공간(429)을 형성하고, 제2광경로(L2)에 대응되는 부분에서 매질부(413)가 설치될 수 있도록 복수의 프레임부재(421, 422)들에 의하여 구성될 수 있다.For example, as illustrated in FIG. 3, the frame part 420 forms an empty space 429 in the first optical path L1 to enable light transmission, and corresponds to the second optical path L2. It may be configured by a plurality of frame members (421, 422) so that the medium portion 413 can be installed in the portion.
또한, 상기 프레임부(420)는, 구조물(520)에 대하여 자력에 의하여 탈착가능하게 결합될 수 있으며, 이를 위하여 프레임부(420) 및 구조물(520) 중 적어도 어느 하나에는 하나 이상의 자석(424, 524)이 설치될 수 있다.In addition, the frame part 420 may be detachably coupled to the structure 520 by a magnetic force, and for this purpose, at least one of the magnet 424 and the at least one of the frame part 420 and the structure 520 may be used. 524 may be installed.
한편 상기 초점거리보정부(400)는, 광학계와 조합되어 다양하게 배치될 수 있다.The focal length correction unit 400 may be arranged in various ways in combination with an optical system.
예로서, 상기 초점거리보정부(400)는, 도 2 및 도 5에 도시된 바와 같이, 상기 제2광경로(L2) 중 상기 반도체소자(1)의 다각형 변들의 각 측면 및 상기 주반사부재(211)의 사이, 및 상기 제2광경로(L2) 중 상기 주반사부재(211) 및 상기 단일이미지획득부(100) 사이 중 적어도 어느 하나에 설치될 수 있다.For example, as illustrated in FIGS. 2 and 5, the focal length compensator 400 may include each side surface of the polygonal sides of the semiconductor device 1 and the main reflection member of the second optical path L2. Between the 211, and between the main reflecting member 211 and the single image acquisition unit 100 of the second optical path (L2).
그리고, 상기 초점거리보정부(400)는, 제2광경로(L2) 중 반도체소자(1)의 다각형 변들의 각 측면 및 상기 주반사부재(211)의 사이에 설치될 때, 초점거리보정부(400)는, 보조반사부재(311)와 일체로 형성될 수 있다.The focal length correction unit 400 is installed between each side of the polygonal sides of the semiconductor element 1 and the main reflection member 211 in the second optical path L2. 400 may be integrally formed with the auxiliary reflection member 311.
상기와 같은 초점거리보정부(400)의 설치에 의하여, 광경로의 경로차로 인하여 초점거리가 서로 달라 단일의 이미지획득장치, 즉 카메라에 의하여 이미지가 획득될 때 제1평면이미지 및 측면이미지들 중 어느 한쪽에 대한 초점이 맞지 않아 흐릿하게 되는 문제점을 해결할 수 있다.By installing the focal length correction unit 400 as described above, when the image is acquired by a single image acquisition device, that is, a camera, the focal lengths are different from each other due to the path difference of the optical paths. This can solve the problem of blurring because of focusing on either side.
상기 제1이송툴(61)은, 제1가이드레일(68)을 따라서 이동되도록 제1가이드레일(68)과 결합되며 비전검사를 수행하기 위하여 로딩부(10)로부터 비전검사모듈(50)로 소자를 픽업하여 이송하는 구성으로서 다양한 구성이 가능하다.The first transfer tool 61 is coupled to the first guide rail 68 so as to move along the first guide rail 68 and from the loading unit 10 to the vision inspection module 50 to perform vision inspection. Various configurations are possible as the configuration for picking up and transferring the elements.
예로서, 상기 제1이송툴(61)은, 반도체소자(1)를 픽업하기 위한 하나 이상의 픽업툴(미도시)들을 포함하며, 픽업툴은 검사속도 등을 높이기 위하여 일렬 또는 복렬 등 복수개로 설치됨이 바람직하다.For example, the first transfer tool 61 may include one or more pickup tools (not shown) for picking up the semiconductor device 1, and the pickup tools may be provided in a plurality, such as a line or a double row, to increase the inspection speed. This is preferable.
상기 픽업툴은, 진공압에 의하여 반도체소자(1)를 픽업하는 구성으로서 다양한 구성이 가능하다.The pick-up tool is configured to pick up the semiconductor element 1 by vacuum pressure, and various configurations are possible.
상기 제1가이드레일(680)은, 로딩부(10)에서의 트레이(2) 이동방향과 수직으로 배치되어 후술하는 제1이송툴(61)을 지지함과 아울러 그 이동을 가이드하는 구성으로서 다양한 구성이 가능하다.The first guide rail 680 is disposed perpendicular to the moving direction of the tray 2 in the loading unit 10 to support the first transfer tool 61 to be described later, and to guide the movement thereof. Configuration is possible.
상기 언로딩부(31, 32, 33)는, 로딩부(10)에서 비전검사를 마친 반도체소자(1)들이 담긴 트레이(2)들을 전달받아 비전검사결과에 따라서 해당 트레이(2)에 반도체소자(1)들을 분류하는 구성으로서 다양한 구성이 가능하다.The unloading units 31, 32, and 33 receive trays 2 containing the semiconductor devices 1 that have undergone vision inspection in the loading unit 10, and receive semiconductor trays in the trays 2 according to the vision inspection results. Various configurations are possible as the configuration for classifying (1).
상기 언로딩부(31, 32, 33)는 로딩부(10)와 유사한 구성을 가지며, 반도체소자(1)의 검사결과의 수에 따라서 양품(G), 불량1 또는 이상1(R1), 불량2 또는 이상2(R2) 등의 분류등급이 부여되도록 구성됨이 바람직하다.The unloading parts 31, 32, and 33 have a structure similar to that of the loading part 10, and according to the number of inspection results of the semiconductor device 1, good quality G, bad 1 or abnormal 1 (R1), bad It is preferable that it is comprised so that classification grades, such as 2 or more 2 (R2), may be provided.
그리고 상기 언로딩부(31, 32, 33)는, 로딩부(10)의 일측에 평행하게 설치되는 가이드부(미도시)와, 트레이(2)가 가이드부를 따라서 이동시키기 위한 구동부(미도시)를 포함하는 언로딩트레이부들이 평행하게 복수개로 설치될 수 있다.The unloading parts 31, 32, and 33 may include a guide part (not shown) installed in parallel with one side of the loading part 10, and a driving part (not shown) for moving the tray 2 along the guide part. Unloading trays including a plurality may be installed in parallel.
한편 상기 트레이(2)는 로딩부(10) 및 상기 언로딩부(31, 32, 33)들 사이에서 서로 트레이이송장치(미도시)에 의하여 이송이 가능하며, 상기 언로딩부(31, 32, 33)에 반도체소자(1)가 적재되지 않은 빈 트레이(2)를 공급하는 빈트레이부(200)를 추가적으로 포함할 수 있다.Meanwhile, the tray 2 may be transferred between the loading unit 10 and the unloading units 31, 32, and 33 by a tray transfer device (not shown), and the unloading units 31, 32 may be used. , 33 may further include a bin tray 200 for supplying an empty tray 2 in which the semiconductor device 1 is not loaded.
이때 상기 빈트레이부(200)는 로딩부(10)의 일측에 평행하게 설치되는 가이드부(미도시)와, 트레이(2)가 가이드부를 따라서 이동시키기 위한 구동부(미도시)를 포함하여 구성될 수 있다.In this case, the bin tray 200 may include a guide unit (not shown) installed in parallel with one side of the loading unit 10, and a drive unit (not shown) for moving the tray 2 along the guide unit. Can be.
또한 상기 언로딩부(31, 32, 33)에는, 각 언로딩트레이부 사이에서 각 언로딩트레이부의 분류등급에 따라서 반도체소자(1)를 이송하기 위한 소팅툴(62)이 별도로 설치될 수 있다.In addition, the unloading parts 31, 32, and 33 may be separately provided with a sorting tool 62 for transferring the semiconductor device 1 according to the classification level of each unloading tray part between the unloading tray parts. .
상기 소팅툴(62)은 앞서 설명한 제1이송툴(61)과 동일하거나 유사한 구성을 가지며 복렬구조 또는 일렬구조를 가질 수 있다.The sorting tool 62 may have a configuration that is the same as or similar to that of the first transfer tool 61 described above, and may have a double row structure or a single row structure.
한편 상기 언로딩부(31, 32, 33)는, 로딩부(10)에서 로딩되는 트레이(2)에 다시 적재된 상태로 언로딩되는 실시예를 들어 설명하였으나, 반도체소자(1)가 담기는 포켓이 형성된 캐리어테이프에 적재시켜 언로딩하는, 소위 테이프 엔 릴 모듈을 포함하는 등 반도체소자(1)를 담아 언로딩할 수 있는 구성이면 어떠한 구성도 가능하다.Meanwhile, the unloading units 31, 32, and 33 have been described with reference to an embodiment in which the unloading unit 31, 32, and 33 are unloaded while being loaded in the tray 2 loaded from the loading unit 10. Any configuration can be used as long as it can be loaded and unloaded, including a so-called tape reel module, which is loaded and unloaded on a carrier tape having a pocket.
한편 본 발명은, 비전검사모듈, 특히 광경로상에 초검거리보상부가 설치된 구성에 특징이 있는바, 제시된 소자검사시스템의 구성은 일 실시예로서, 본 발명에 따른 비전검사모듈은 본 발명의 실시예에 따른 소자검사시스템에 설치되는 것으로 한정되는 것이 아님은 물론이다.On the other hand, the present invention is characterized by the configuration of the vision inspection module, in particular the ultra-compensation distance compensation unit on the optical path, the configuration of the device inspection system presented is an embodiment, the vision inspection module according to the present invention is an embodiment of the present invention Of course, it is not limited to being installed in the device inspection system according to the example.
이상에서는 본 발명의 바람직한 실시예들에 대하여 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예들에만 한정되는 것이 아니며, 특허청구범위에 기재된 범주 내에서 적절하게 변경될 수 있다.The exemplary embodiments of the present invention have been described above by way of example, but the scope of the present invention is not limited to these specific embodiments, and may be appropriately changed within the scope of the claims.

Claims (14)

  1. 평면형상이 다각형인 반도체소자(1)의 비전검사를 수행하는 비전검사모듈(50)로서,As a vision inspection module 50 for performing a vision inspection of a semiconductor device 1 having a polygonal planar shape,
    상기 반도체소자(1)의 제1평면에 대한 제1평면이미지 및 상기 반도체소자(1)의 다각형 변들의 측면들에 대한 측면이미지들을 획득하는 단일이미지획득부(100)와,A single image acquisition unit 100 for acquiring a first plane image of the first plane of the semiconductor device 1 and side images of sides of polygonal sides of the semiconductor device 1;
    상기 반도체소자(1)의 제1평면에 대한 제1평면이미지가 상기 단일이미지획득부(100)에 도달하도록 하는 제1광경로(L1)와, 상기 반도체소자(1)의 다각형 변들의 측면들에 대한 측면이미지들 각각을 상기 단일이미지획득부(100)에 도달하도록 하는 복수의 제2광경로(L2)들을 형성하는 광학계를 포함하는 것을 특징으로 하는 비전검사모듈(50).A first optical path L1 for causing a first plane image of the first plane of the semiconductor device 1 to reach the single image acquisition unit 100 and sides of polygonal sides of the semiconductor device 1 Vision inspection module (50), characterized in that it comprises an optical system for forming a plurality of second optical paths (L2) to reach each of the side images for the single image acquisition unit (100).
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 광학계에 설치되어 상기 제1광경로(L1) 및 상기 제2광경로(L2)의 초점거리 차이를 보정하는 초점거리보정부(400)를 추가로 포함하는 비전검사모듈(50).Vision inspection module (50) is installed in the optical system further comprises a focal length correction unit (400) for correcting the focal length difference between the first optical path (L1) and the second optical path (L2).
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 초점거리보정부(400)는, 해당 광경로(L1, L2)에 설치되어 광투과가 가능한 투명재질을 가지는 매질부(410)를 포함하는 것을 특징으로 하는 비전검사모듈(50).The focal length correction unit 400, the vision inspection module 50, characterized in that it comprises a medium portion 410 is installed in the light path (L1, L2) having a transparent material capable of light transmission.
  4. 청구항 2에 있어서,The method according to claim 2,
    상기 초점거리보정부(400)는, 구조물(520)에 탈착가능하게 결합되며 상기 매질부(410)가 탈착가능하게 설치되는 프레임부(420)를 포함하는 것을 특징으로 비전검사모듈(50).The focal length correction unit (400) is a vision inspection module (50), characterized in that it comprises a frame portion (420) detachably coupled to the structure (520) and the medium portion (410) is detachably installed.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 프레임부(420)는, 상기 구조물(520)에 대하여 자력에 의하여 탈착가능하게 결합되는 것을 특징으로 하는 비전검사모듈(50).The frame part (420), the vision inspection module 50, characterized in that detachably coupled to the structure 520 by a magnetic force.
  6. 청구항 1 내지 청구항 5 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 5,
    상기 광학계는,The optical system,
    상기 제1평면에 대한 제1평면이미지를 상기 단일이미지획득부(100)를 향하도록 반사시키는 주반사부재(211)와,A main reflection member 211 reflecting the first plane image with respect to the first plane toward the single image acquisition unit 100;
    상기 반도체소자(1)의 다각형 변들의 각 측면에 대응되어 설치되어 상기 반도체소자(1)의 다각형 변들의 각 측면에 대한 측면이미지를 상기 주반사부재(211)로 향하도록 반사시키는 보조반사부재(311)를 포함하는 것을 특징으로 하는 비전검사모듈(50).An auxiliary reflection member installed to correspond to each side surface of the polygonal sides of the semiconductor device 1 to reflect side images of each side surface of the polygonal sides of the semiconductor device 1 toward the main reflection member 211 ( Vision inspection module 50, characterized in that it comprises a 311).
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 주반사부재(211)는, 광이 투과할 수 있는 반투과재질을 가지며,The main reflection member 211 has a semi-transmissive material that can transmit light,
    상기 제1평면이미지를 반사시키는 반사면의 이면에서 상기 제1평면 및 상기 반도체소자(1)의 다각형 변들의 각 측면에 광을 조사하는 조명계(540)를 포함하는 것을 특징으로 하는 비전검사모듈(50).A vision inspection module comprising an illumination system 540 for irradiating light to each side of the polygonal sides of the first plane and the semiconductor device 1 from a rear surface of the reflective surface reflecting the first plane image ( 50).
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 초점거리보정부(400)는, 상기 제2광경로(L2) 중 상기 반도체소자(1)의 다각형 변들의 각 측면 및 상기 주반사부재(211)의 사이, 및 상기 제2광경로(L2) 중 상기 주반사부재(211) 및 상기 단일이미지획득부(100) 사이 중 적어도 어느 하나에 설치된 것을 특징으로 하는 비전검사모듈(50).The focal length correction unit 400 is formed between each side of the polygonal sides of the semiconductor device 1 and the main reflection member 211 of the second optical path L2, and the second optical path L2. Vision inspection module (50), characterized in that installed in at least one of between the main reflecting member (211) and the single image acquisition unit (100).
  9. 청구항 7에 있어서,The method according to claim 7,
    상기 초점거리보정부(400)는, 상기 제2광경로(L2) 중 상기 반도체소자(1)의 다각형 변들의 각 측면 및 상기 주반사부재(211)의 사이에 설치되며,The focal length correction unit 400 is provided between each side of the polygonal sides of the semiconductor device 1 and the main reflection member 211 of the second optical path L2,
    상기 초점거리보정부(400)는, 상기 보조반사부재(311)와 일체로 형성된 것을 특징으로 하는 비점검사모듈(1).The focal length correction unit 400, the non-point inspection module (1), characterized in that formed integrally with the auxiliary reflecting member (311).
  10. 복수의 반도체소자(1)들이 담긴 트레이(2)가 로딩되어 선형이동시키는 로딩부(10)와; A loading unit 10 configured to linearly move by loading a tray 2 containing a plurality of semiconductor devices 1;
    상기 로딩부(10) 내의 트레이(2)의 이송방향과 수직을 이루어 상기 로딩부(10)의 일측에 설치되어 반도체소자(1)에 대한 비전검사를 수행하는 비전검사모듈(50)과; A vision inspection module 50 installed at one side of the loading unit 10 to be perpendicular to the conveying direction of the tray 2 in the loading unit 10 to perform vision inspection on the semiconductor device 1;
    상기 로딩부(10)에서의 트레이(2) 이동방향과 수직으로 배치된 제1가이드레일(68)과; A first guide rail 68 disposed perpendicular to the moving direction of the tray 2 in the loading unit 10;
    상기 제1가이드레일(68)을 따라서 이동되도록 상기 제1가이드레일(68)과 결합되며 비전검사를 수행하기 위하여 상기 로딩부(10)로부터 상기 비전검사모듈(50)로 소자를 픽업하여 이송하는 제1이송툴(61)과; Coupled with the first guide rail 68 so as to move along the first guide rail 68, and picks up and transports the device from the loading unit 10 to the vision inspection module 50 to perform vision inspection. A first transfer tool 61;
    상기 로딩부(10)에서 비전검사를 마친 반도체소자(1)들이 담긴 트레이(2)들을 전달받아 비전검사결과에 따라서 해당 트레이(2)에 반도체소자(1)들을 분류하는 언로딩부(31, 32, 33)를 포함하며,The unloading unit 31 receives the trays 2 containing the semiconductor devices 1 that have undergone vision inspection by the loading unit 10 and classifies the semiconductor devices 1 into the trays 2 according to the vision inspection results. 32, 33),
    상기 비전검사모듈(50)은, 청구항 1 내지 청구항 5 중 어느 하나의 항에 따른 비전검사모듈인 것을 특징으로 하는 소자검사시스템.The vision inspection module 50 is a device inspection system, characterized in that the vision inspection module according to any one of claims 1 to 5.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 광학계는,The optical system,
    상기 제1평면에 대한 제1평면이미지를 상기 단일이미지획득부(100)를 향하도록 반사시키는 주반사부재(211)와,A main reflection member 211 reflecting the first plane image with respect to the first plane toward the single image acquisition unit 100;
    상기 반도체소자(1)의 다각형 변들의 각 측면에 대응되어 설치되어 상기 반도체소자(1)의 다각형 변들의 각 측면에 대한 측면이미지를 상기 주반사부재(211)로 향하도록 반사시키는 보조반사부재(311)를 포함하는 것을 특징으로 하는 소자검사시스템.An auxiliary reflection member installed to correspond to each side surface of the polygonal sides of the semiconductor device 1 to reflect side images of each side surface of the polygonal sides of the semiconductor device 1 toward the main reflection member 211 ( 311) device inspection system comprising a.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 주반사부재(211)는, 광이 투과할 수 있는 반투과재질을 가지며,The main reflection member 211 has a semi-transmissive material that can transmit light,
    상기 제1평면이미지를 반사시키는 반사면의 이면에서 상기 제1평면 및 상기 반도체소자(1)의 다각형 변들의 각 측면에 광을 조사하는 조명계(540)를 포함하는 것을 특징으로 하는 소자검사시스템.And an illumination system (540) for irradiating light to each side of the polygonal sides of the first plane and the semiconductor device (1) from the back surface of the reflecting surface reflecting the first plane image.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 초점거리보정부(400)는, 상기 제2광경로(L2) 중 상기 반도체소자(1)의 다각형 변들의 각 측면 및 상기 주반사부재(211)의 사이, 및 상기 제2광경로(L2) 중 상기 주반사부재(211) 및 상기 단일이미지획득부(100) 사이 중 적어도 어느 하나에 설치된 것을 특징으로 하는 소자검사시스템.The focal length correction unit 400 may be formed between the side surfaces of the polygonal sides of the semiconductor device 1 and the main reflection member 211 of the second optical path L2, and the second optical path L2. ) At least one of the main reflecting member (211) and the single image acquisition unit (100).
  14. 청구항 12에 있어서,The method according to claim 12,
    상기 초점거리보정부(400)는, 상기 제2광경로(L2) 중 상기 반도체소자(1)의 다각형 변들의 각 측면 및 상기 주반사부재(211)의 사이에 설치되며,The focal length correction unit 400 is provided between each side of the polygonal sides of the semiconductor device 1 and the main reflection member 211 of the second optical path L2,
    상기 초점거리보정부(400)는, 상기 보조반사부재(311)와 일체로 형성된 것을 특징으로 하는 소자검사시스템.The focal length correction unit (400) is a device inspection system, characterized in that formed integrally with the auxiliary reflecting member (311).
PCT/KR2016/008769 2015-08-26 2016-08-10 Vision inspection module and element inspection system having same WO2017034184A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680048622.9A CN108449975A (en) 2015-08-26 2016-08-10 Vision-based detection module and element testing system comprising this module
SG11201801479YA SG11201801479YA (en) 2015-08-26 2016-08-10 Vision inspection module and device inspection system having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150120312A KR101784987B1 (en) 2015-08-26 2015-08-26 Vision inspection module and device inspection system having the same
KR10-2015-0120312 2015-08-26

Publications (1)

Publication Number Publication Date
WO2017034184A1 true WO2017034184A1 (en) 2017-03-02

Family

ID=58100643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008769 WO2017034184A1 (en) 2015-08-26 2016-08-10 Vision inspection module and element inspection system having same

Country Status (5)

Country Link
KR (1) KR101784987B1 (en)
CN (1) CN108449975A (en)
SG (1) SG11201801479YA (en)
TW (1) TWI637165B (en)
WO (1) WO2017034184A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190106098A (en) * 2018-03-07 2019-09-18 (주)제이티 Vision inspection module, device inspection system having the same and device inspection method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5452080A (en) * 1993-06-04 1995-09-19 Sony Corporation Image inspection apparatus and method
US20050185181A1 (en) * 2003-03-07 2005-08-25 Ismeca Semiconductor Holding Sa Optical device and inspection module
KR20130008694A (en) * 2011-07-13 2013-01-23 주식회사 미르기술 3d vision inspection method and 3d vision inspection apparatus for light emitting diode
KR101275134B1 (en) * 2012-04-27 2013-06-17 한미반도체 주식회사 Semiconductor package inspecting device and semiconductor package inspecting method using the same
KR20130135583A (en) * 2012-06-01 2013-12-11 (주)제이티 Vision inspection module and device inspection apparatus having the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144513A (en) * 1997-05-29 1999-02-16 Sony Corp Visual examination device for semiconductor device and method therefor
JP5619351B2 (en) 2005-05-31 2014-11-05 ダブリュ・オー・エム・ワールド・オブ・メディスン・アー・ゲーW.O.M. World Ofmedicine Ag Method and apparatus for visually characterizing tissue
TWI280361B (en) * 2005-12-28 2007-05-01 Nat Pingtung University Of Sci Examining apparatus for an outer perimeter of a component
KR101108672B1 (en) * 2009-05-12 2012-01-25 (주)제이티 Vision inspection apparatus and vision inspection method therefor
TWM477571U (en) * 2013-10-09 2014-05-01 Utechzone Co Ltd Image inspection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5452080A (en) * 1993-06-04 1995-09-19 Sony Corporation Image inspection apparatus and method
US20050185181A1 (en) * 2003-03-07 2005-08-25 Ismeca Semiconductor Holding Sa Optical device and inspection module
KR20130008694A (en) * 2011-07-13 2013-01-23 주식회사 미르기술 3d vision inspection method and 3d vision inspection apparatus for light emitting diode
KR101275134B1 (en) * 2012-04-27 2013-06-17 한미반도체 주식회사 Semiconductor package inspecting device and semiconductor package inspecting method using the same
KR20130135583A (en) * 2012-06-01 2013-12-11 (주)제이티 Vision inspection module and device inspection apparatus having the same

Also Published As

Publication number Publication date
KR101784987B1 (en) 2017-10-12
SG11201801479YA (en) 2018-03-28
TW201713939A (en) 2017-04-16
TWI637165B (en) 2018-10-01
CN108449975A (en) 2018-08-24
KR20170024808A (en) 2017-03-08

Similar Documents

Publication Publication Date Title
TWI428589B (en) Vision inspection apparatus and vision inspection method therefor
WO2018016889A1 (en) Vision inspection module and element handler having same
WO2008126955A1 (en) Apparatus for inspecting semiconductor device
WO2019231231A1 (en) Container inspection apparatus
WO2012134146A1 (en) Apparatus for inspecting vision using stereo vision and lattice pattern
KR20150107447A (en) Apparatus for inspecting lens and method of inspecting lens using the same
JP2012171628A (en) Taping device and taping method
WO2017126854A1 (en) Vision inspection module, focal distance adjustment module of vision inspection module and element inspection system having same
KR101637493B1 (en) Apparatus for Inspecting Lead Frame of LED
WO2017034184A1 (en) Vision inspection module and element inspection system having same
KR20160067067A (en) Apparatus for inspecting lens
KR101794181B1 (en) Apparatus for measuring a focusing state
WO2019172689A1 (en) Vision inspection module, device inspection system including same, and device inspection method using same
WO2015167104A1 (en) Apparatus and method of detecting foreign material on upper surface of transparent substrate using polarized light
WO2016032060A1 (en) Cap inspection apparatus
KR20180099390A (en) Device inspection system
WO2017217772A1 (en) Element handler
WO2024039231A1 (en) Vision inspection module, device inspection system including same, and vision inspection method
WO2012157952A2 (en) Pcb substrate inspection apparatus
US11044841B2 (en) Feeder system, pick and place machine, and method
KR101551351B1 (en) Method for Inspecting Lead Frame of LED
KR100417764B1 (en) An apparatus and a method for defect inspection
KR0130867B1 (en) Method and system for automatic inspection of printed circuit
WO2016129870A1 (en) Component handler and vision inspection method
WO2024048800A1 (en) Wafer inspection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11201801479Y

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 16839473

Country of ref document: EP

Kind code of ref document: A1