WO2016181895A1 - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
WO2016181895A1
WO2016181895A1 PCT/JP2016/063635 JP2016063635W WO2016181895A1 WO 2016181895 A1 WO2016181895 A1 WO 2016181895A1 JP 2016063635 W JP2016063635 W JP 2016063635W WO 2016181895 A1 WO2016181895 A1 WO 2016181895A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
wave plate
regions
region
light
Prior art date
Application number
PCT/JP2016/063635
Other languages
French (fr)
Japanese (ja)
Inventor
川上 彰二郎
川嶋 貴之
俊和 居城
Original Assignee
有限会社オートクローニング・テクノロジー
株式会社フォトニックラティス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社オートクローニング・テクノロジー, 株式会社フォトニックラティス filed Critical 有限会社オートクローニング・テクノロジー
Priority to JP2017517909A priority Critical patent/JPWO2016181895A1/en
Publication of WO2016181895A1 publication Critical patent/WO2016181895A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a thin flat optical element that performs condensing, divergence, refraction, polarization separation and synthesis.
  • Non-Patent Document 1 and Patent Documents 1 to 6 disclose conventional optical elements that can be used as a condensing lens in, for example, an image sensor for a digital camera.
  • a condenser lens is the most basic universal optical element that is always used. To make it smaller and thinner, there are practical examples widely used in, for example, microlenses used in image sensors for digital cameras. Furthermore, it is highly desirable to make it flat, thin and short focal length, but conventional optical elements are limited to, for example, a focal length of several millimeters and a thickness of several millimeters. There are many restrictions on the use of these devices for device coupling. Therefore, the present invention makes the thickness of the optical element and the focal length drastically improved by setting the thickness of the optical element to several ⁇ m to several tens ⁇ m and the focal length to several ⁇ m to several tens ⁇ m or several hundred ⁇ m. With the goal.
  • the first aspect of the present invention relates to an optical element.
  • the plane on which light is incident is divided into a plurality of regions, each region is composed of a wave plate, each wave plate has its own phase difference, and the direction of the slow axis or fast axis between the regions.
  • Each region is adjacent to each other with no gap, and has a function of condensing light incident with one linearly polarized light. That is, the optical element according to the present invention can function as a lens and has a light diverging function and a refractive function in addition to the light condensing function.
  • the plurality of regions are preferably a plurality of circular or annular regions sharing the center, a plurality of elliptical or elliptical regions sharing the center, or a plurality of rectangular regions.
  • the basic concept of an optical element comprising a wave plate according to the present invention will be described with reference to FIGS. 4 (a) and 4 (b).
  • the structure of this optical element is largely divided into three wave plate regions. That is, a circular (or elliptical) region located at the center, an annular (or elliptical) region located around the periphery, and a rectangular region located further around the region.
  • Each region is composed of a number of wave plate unit cells each having a stripe shape or a square shape.
  • the central circular region is composed of strip-shaped wave plate unit cells extending in the X-axis direction
  • the surrounding annular region is composed of many rectangular wave plate unit cells
  • the surrounding rectangular region is in the Y-axis direction. It consists of a streak-shaped wave plate unit cell extending in a straight line.
  • the plane on which light is incident is divided into a plurality of band-like areas, each area is composed of a wave plate, each wave plate has a phase difference, and a slow axis or a speed between the areas.
  • the respective regions may be adjacent to each other with no gap while keeping the axis direction in common, and may have a refraction function at an angle for each polarization with respect to two orthogonal linearly polarized light.
  • each wave plate unit cell is preferably a rectangle (including a square and parallel irregularities).
  • the optical element is regarded as a two-dimensional plane having an X axis and a Y axis, the respective wave plate unit cells are formed adjacent to each other with no gap in the X axis direction and the Y axis direction.
  • the optical element is caused to function as a lens having a condensing, divergence, or refraction function
  • the optical element is divided into a plurality of regions (preferably three or more or five or more regions) from the central portion toward the outer edge. It is divided.
  • a plurality of wave plate unit cells having the longest slow axis and the shortest fast axis are arranged in the most central area, and are arranged in each area from the most central area toward the outer edge.
  • the slow axis of each wave plate unit cell is shortened or the fast axis is lengthened.
  • an optical element in which a plurality of wave plate regions having different phase differences is arranged functions as a lens having a function of condensing, diverging, or refraction with respect to light incident as one linearly polarized light.
  • the optical element when the optical element is caused to function as a prism having a polarization separation or synthesis function, the optical element is divided into a plurality of regions (preferably three or more or five or more regions) from one end side to the other end side. .
  • a plurality of wave plate unit cells having the longest slow axis and the shortest fast axis are arranged, and are arranged in each region from the region closest to the one end toward the other end side.
  • the slow axis of each wave plate unit cell is shortened or the fast axis is lengthened.
  • the optical element in which the wavelength plate unit cell is arranged functions as a prism having a function of polarization separation or synthesis with respect to two orthogonal linearly polarized lights.
  • the wave plate is a photonic crystal formed by self-cloning action.
  • the photonic crystal has a periodic groove-like structure in a plane and has a structure in which the periodic groove-like structure is laminated in the thickness direction.
  • a photonic crystal is a micro periodic structure that functions as an optical element.
  • two or more types of substances transparent materials
  • a technique for constructing a wave plate using self-cloning crystals is known (for example, JP-A-2008-197399).
  • One of the plurality of types of transparent bodies forming the photonic crystal is preferably amorphous silicon, niobium pentoxide, or tantalum pentoxide.
  • the photonic crystal can be a combination of niobium pentoxide and tantalum pentoxide, a combination of amorphous silicon and niobium pentoxide, or a combination of amorphous silicon and tantalum pentoxide.
  • the self-cloning photonic crystal has a structure in which high refractive index materials and low refractive index materials are alternately stacked in the z direction.
  • the high refractive index material is preferably one of tantalum pentoxide, niobium pentoxide, amorphous silicon, titanium oxide, hafnium oxide, or a combination of two or more of these materials.
  • the low refractive index material is preferably one of fluorides including silicon dioxide, aluminum oxide, and magnesium fluoride, or a combination of two or more of these materials.
  • the basic period of the groove is preferably 1/3 or less or 1/5 or less of the light wavelength of incident light.
  • channel can also be made into 1/6 or less of the light wavelength of incident light, or 1/8 or less.
  • the second aspect of the present invention relates to an optical component having the optical element according to the first aspect on both surfaces of a single substrate.
  • the first optical element after forming the optical element according to the first aspect, after depositing one kind of dielectric film to a certain thickness and flattening the surface, the first optical element is the number of wave plates, The optical component which formed the optical element which concerns on the 1st side surface from which direction or a period differs may be sufficient.
  • the third aspect of the present invention relates to an optical coupling component that couples two or more optical communication components using the optical element according to the first aspect or the optical component according to the second aspect.
  • a light beam to be handled by one optical element is often limited to a predetermined linearly polarized light.
  • a wave plate can be used in a conventional flat lens. Placing the slow axis direction of the wave plate parallel to the electric field of incident light is equivalent to a large phase lag and a high refractive index. The opposite is true when the fast axes are placed in parallel.
  • the self-cloning photonic crystal wave plate regions having various delay phase amounts can be arranged adjacent to each other without any gap on one substrate, so that the light collecting function, the diverging function equivalent to the lens, or A refraction function can be provided.
  • the thickness of the optical element functioning as a lens can be set to about 1 to several tens of ⁇ m, and the focal length can be set to about 1 ⁇ m to several tens or several hundreds of ⁇ m.
  • a condensing function that far exceeds the common sense that a phase difference ⁇ equivalent to one wavelength can be realized with a thickness equivalent to eight times the free space wavelength, depending on the choice of materials, between orthogonal polarizations, etc. Therefore, the thickness can be dramatically reduced.
  • optical element of the present invention can be used both for optical communication and for a visible region with a shorter wavelength.
  • polarization In communication technology, the term polarization is used. In optics centered on visible light, the term polarization is used. In the present application, polarization is used for communication applications, and polarization is used for general optics, but they are equivalent.
  • components such as a planar optical circuit (PLC) and an optical fiber for coherent optical communication, or a small and elliptical light of an InP optical modulator that can be mounted on a circular optical fiber with a large diameter by flat plate bonding.
  • PLC planar optical circuit
  • InP optical modulator an InP optical modulator that can be mounted on a circular optical fiber with a large diameter by flat plate bonding.
  • FIG. 1 (a) shows an example of a concavo-convex structure of a film to be given to a periodic structure photonic crystal formed by self-cloning in order to give a predetermined phase difference to an arbitrary region of an integrated wave plate.
  • FIG. 1B shows an example of an uneven structure of a film to be given to a periodic structure photonic crystal formed by self-cloning in order to give a predetermined phase difference to an arbitrary region of the integrated wave plate.
  • FIG. 1C shows an example of an uneven structure of a film to be given to a periodic structure photonic crystal formed by self-cloning in order to give a predetermined phase difference to an arbitrary region of the integrated wave plate.
  • FIG. 1 (a) shows an example of a concavo-convex structure of a film to be given to a periodic structure photonic crystal formed by self-cloning in order to give a predetermined phase difference to an arbitrary region of an integrated wave plate.
  • FIG. 1B shows an example of an uneven structure of
  • FIG. 2 is a diagram showing actual measurement results for showing that the longitudinal and lateral dimensional ratios determine the respective phase differences in the in-plane unit cell of the photonic crystal shown in FIG.
  • the horizontal axis ⁇ represents (1-a / b).
  • is zero, and gradually increases as the vertical and horizontal opening increases, and ⁇ is 1 when b is almost infinitely larger than a.
  • FIG. 3 shows a configuration method of an elliptic lens as an example of a condensing lens. In the figure, it is difficult in the prior art to independently realize the horizontal light condensing action and the vertical light converging action for the light traveling perpendicular to the paper surface, but even the function can be realized in the present invention. So how to do that.
  • FIG. 1 shows a configuration method of an elliptic lens as an example of a condensing lens.
  • FIG. 4A shows a perspective view of an elliptic lens as an example of a condensing lens.
  • FIG. 4B is an electron micrograph of the surface of the elliptic lens.
  • FIG. 4C shows a condensing spot of the elliptic lens.
  • a self-cloning photonic crystal condensing lens composed of niobium pentoxide and silicon dioxide and its effect are shown.
  • FIG. 4D shows the focal shape of the elliptic lens.
  • a self-cloning photonic crystal condensing lens composed of niobium pentoxide and silicon dioxide and its effect are shown.
  • FIG. 5 shows an example of an optical circuit that efficiently couples an elongated elliptical beam having a size of about the light wavelength to an optical fiber.
  • FIG. 5A is a cut surface in which the minor axis can be seen by longitudinally cutting the light beam.
  • the vertical axis represents the beam cross section, and the horizontal axis represents the propagation length.
  • the unit is um (micrometer).
  • the left end is the incident surface, the next x is the conversion point (6 um) by the first lens, and the right x is the incident surface of the optical fiber. Since the equiphase surface has a quadratic curve, the second lens is placed here to correct the equiphase surface and make it flat (the optical fiber mode equiphase surface is flat).
  • the arc represents the equiphase surface of the beam.
  • FIG.5 (b) is a figure corresponding to a long diameter similarly.
  • an almost flat equiphase surface is converted to divergence. That is, it has a concave lens action.
  • FIG. 6 shows a concept of a method for realizing the prism function.
  • the prism does not have any particular light condensing action and changes only the traveling direction.
  • FIG. 7 shows a more specific method for realizing the prism function.
  • the prism does not have any particular light condensing action and changes only the traveling direction.
  • FIG. 1A shows an upper surface of a wave plate having a rectangular (rectangular) shape having a short side a and a long side b as a unit cell.
  • Wave plates made of a photonic crystal produced by a self-cloning method in which the long side b is almost infinitely larger than a are known (Patent Documents 1 to 6).
  • FIG. 1 shows an example of the structure of the wave plate according to the present invention. A structure in which a ridge is provided every length b is shown in FIG. 1 (a), and a structure in which a valley is provided every other length b is shown in FIG.
  • FIG. 1A may be modified as shown in FIG. 1C, and anisotropy can be reduced by forming infinitely long peaks and grooves in a finite length.
  • the phase difference can be selected independently for each location.
  • the slow axis and the fast axis are collectively referred to as the main axis in the wave plate.
  • the long side b of the unit cell rectangle is made two times, three times, and four times the short side a so as to have a common number of layers and a common thickness.
  • Each film was evaluated for the phase difference. The result is shown in FIG.
  • the relative phase difference is approximately proportional to (1-a / b).
  • the optical element has a structure in which a plurality of wave plate regions are adjacent to each other without a gap while keeping the slow axis and / or fast axis directions in common.
  • each wave plate unit cell has a basic structure of a rectangle having a short side a and a long side b (a square wave plate having the short side a and the long side b equal in length exists). Also good). That is, when considering a two-dimensional coordinate system of orthogonal X-axis and Y-axis, each rectangular wave plate is formed adjacent to the X-axis direction and the Y-axis direction.
  • each wave plate region has a convex portion or a concave portion, and ridges or valleys are formed between the wave plate regions. The boundaries of each wave plate region are clearly delimited by valleys.
  • each wave plate has a recess, and a ridge is formed at the boundary between adjacent wave plate regions.
  • FIG. 1A each wave plate has a recess, and a ridge is formed at the boundary between adjacent wave plate regions.
  • the ridges between the wave plate regions are continuous in an infinite length along the X axis and the Y axis.
  • each wave plate region has a convex portion, and a valley is formed at the boundary between adjacent wave plate regions.
  • the valleys between the wave plate regions are connected to the infinite length along the X axis and the Y axis.
  • each wave plate region has a recess, and a ridge is formed at the boundary between adjacent wave plate regions.
  • the ridges are connected to the infinite length along the Y axis, but have a finite length along the X axis. That is, the ridges extending in the X-axis direction are formed so as to be offset in the Y-axis direction.
  • FIG. 3 shows a configuration of an elliptic lens as an example of a condensing lens (optical element) according to the present invention. As shown in FIG.
  • a plurality of wave plate regions having different phase differences are arranged, and the phase lag of the wave plate is maximized in the central region with respect to predetermined linearly polarized light, and the phase lag decreases toward the periphery.
  • an optical element composed of a plurality of wave plate regions can have a lens action. That is, the condensing lens configured in this manner exhibits a condensing, divergence, or refraction function for one linearly polarized light according to the polarization state of incident light. Since the phase difference changes stepwise, generally the phase lag is not a smooth function of the space and has a minute quantization error, but its influence is small in the condensing system.
  • the condensing lens (elliptical lens) having a lens action is formed with a plurality of vertically long wave plate regions having relatively long sides at the center, and the center A plurality of vertically long wave plate regions with relatively long sides are formed around the substrate, and a plurality of substantially square wave plate regions (with short sides and long sides being equal) are formed around it. A plurality of horizontally long waveplate regions having short sides are formed, and a plurality of horizontally long waveplate regions having relatively long sides are formed around the periphery.
  • the condensing lens includes the first area corresponding to the central portion, the second area positioned around the first area, the third area positioned around the second area, and the periphery of the third area.
  • the condensing lens is configured with a five-stage phase distribution from the first to fifth regions.
  • the phase lag of the wave plate is maximized in the first region located in the center with respect to the predetermined linearly polarized light, and the phase lag decreases toward the periphery.
  • Each wave plate region is arranged.
  • the degree of approximation to the ideal phase change amount to be realized as the number of steps increases. Will increase. If the phase change amount to be realized is 180 degrees from end to end, that is, equivalent to a half wavelength, and the number of steps is n, one stage represents (180 / n) degrees, and the maximum error is (90 / n) degrees.
  • the number of stages of the phase distribution can be selected according to the purpose.
  • the number of stages n of the phase distribution is preferably an integer of 3 or more or 5 or more.
  • the size of the short side can be set to about 1/3 of the wavelength used for niobium pentoxide and tantalum pentoxide, and is usually used for amorphous silicon. It can be about 1/5 of the wavelength. It is also possible to make the value smaller than these values while maintaining the ratio between the in-plane period and the thickness direction period. For example, niobium pentoxide and tantalum pentoxide normally have a wavelength of 1/5 or less, and amorphous silicon normally has a wavelength of 1/8 or less. You can also choose.
  • the same thickness as the half-wave plate may be used to make the phase difference between the minimum and maximum refractive index in the plane to be ⁇ radians. 12 ⁇ m.
  • a film thickness of about 12 ⁇ m is further laminated in proportion to the film thickness.
  • a self-cloning photonic crystal of a combination of amorphous silicon and silicon dioxide may be used, and the required thickness is about 1/3 of the previous case.
  • Amorphous silicon is a transparent material in the optical communication wavelength band but is opaque in the visible range, so it is selected according to the purpose.
  • FIG. 1 An example of such a condensing device pattern is shown in FIG.
  • An example is shown in which the light converging power in the left-right direction and the light converging power in the vertical direction are separately determined for light incident perpendicularly to the paper surface.
  • incident light needs to be linearly polarized waves in the vertical direction.
  • the elliptic lens shown in FIG. 3 is divided in the order of the first region, the second region, the third region, the fourth region, and the fifth region from the center toward the outer edge.
  • a plurality of vertically long wave plate regions having relatively long sides are formed in the first region, a plurality of vertically long wave plate regions having relatively long sides are formed in the second region, and a substantially square shape is formed in the third region.
  • a plurality of wave plate regions (which are equal in short side and long side) are formed, a plurality of horizontally long wave plate regions having relatively long sides are formed in the fourth region, and a horizontally long plate having relatively long sides in the fifth region.
  • a plurality of the wavelength plate regions are formed.
  • a vertically long rectangle represents a wave plate whose slow axis is in the vertical direction
  • a horizontally long rectangle represents a wave plate whose slow axis is in the left and right direction.
  • Squares are isotropic, ie, the phase difference is zero.
  • the phase difference of the wavelength plate increases as the ratio of the vertical and horizontal dimensions of the rectangle greatly differs from 1.
  • This structure makes it possible to form an elliptic lens that collects light independently in the X and Y directions.
  • a wave plate with a slow axis in the vertical direction and a large phase difference is arranged in the first region at the center of the elliptic lens, and the slow axis is in the vertical direction in the surrounding second region.
  • a wave plate having a small phase difference is arranged, and an isotropic wave plate having a phase difference of zero is arranged in the third region around the wave plate.
  • a wave plate having a small phase difference with the slow axis in the left-right direction, that is, the fast axis in the vertical direction is arranged, and in the fifth region around the slow region, the slow axis is A wave plate having a large phase difference is arranged in the left-right direction, that is, the fast axis is the up-down direction.
  • the incident light is linearly polarized light
  • the slow axis of the wave plate coincides with the polarization of the linearly polarized light
  • the portion delays the wavefront of the light, in other words, behaves in the same manner as a medium having a large refractive index.
  • FIG. 4 (a) shows the configuration of the condensing lens according to the present invention
  • FIG. 4 (b) shows an electron micrograph of the surface
  • FIG. 4 (c) shows the condensing spot
  • FIG. (D) shows the focal shape
  • FIG. 4B shows the surface of the stacked photonic crystal that serves as a light incident surface.
  • the photonic crystal is a self-cloning multilayer film having a total thickness of 12 ⁇ m, and consists of an inner cylinder having a diameter of 5.8 ⁇ m, an outer cylinder having an outer shape of 8.2 ⁇ m, an inner diameter of 5.8 ⁇ m, and an outer region.
  • the slow axis of the inner cylindrical part is represented by the X axis.
  • Y be the slow axis of the outer region orthogonal to it.
  • the middle ring is a stack of west lattices and is isotropic with respect to X and Y.
  • an incident light beam having a wavelength of 1.55 ⁇ m polarized in the X direction and having a diameter of about 10 ⁇ m propagates in the air after passing through the lens by 6.3 ⁇ m, and then has a diameter as shown in FIGS. 4 (c) and 4 (d). Light was condensed to about 3 ⁇ m.
  • an optical transceiver optical transceiver
  • the shape of an optical mode of a transmitting element for example, an InP optical modulator
  • the minor axis is about 1 ⁇ m
  • the major axis is several ⁇ m, for example, 3 ⁇ m or less.
  • a normal optical fiber has a circular shape with a diameter of about 10 ⁇ m, it is usually not easy to efficiently couple between them.
  • each waveguide of a transmission circuit or a reception circuit handles only light of a specific polarization, so that a light collection system integrated by applying the light collection system according to the present invention is not used. Can be made.
  • the beam of the narrow waveguide is approximated by an elliptical Gaussian wave, the short diameter (diameter) is about 0.92 ⁇ m, and the long diameter is 3.0 ⁇ m (respectively expressed by the full width of power exp ( ⁇ 2)).
  • the optical circuit is formed by integrally stacking the following four parts.
  • a first high refractive index layer for example, a layer made of amorphous silicon and having a thickness of 6 ⁇ m.
  • B A first condensing element, for example, a photonic crystal made of amorphous silicon and silicon dioxide.
  • C A high refractive index layer, for example, a layer made of amorphous silicon and having a thickness of 40 ⁇ m.
  • a second condensing element for example, a photonic crystal made of amorphous silicon and silicon dioxide. The part (A) is in contact with the thin waveguide, and the part (D) is in contact with the optical fiber.
  • the traveling direction of light is the z-axis
  • the minor axis direction of the narrow waveguide perpendicular to the z-axis is the x axis
  • the major axis direction is the y axis.
  • Each of the first and second optical elements is formed so as to approximate the phase difference represented by the following quadric surface with a step function.
  • First: phase difference Ax 2 + By 2 + C
  • Second: phase difference Dx 2 + Ey 2 + F
  • the light beam propagates as shown in FIG. 5A when observed on the xz plane and as shown in FIG. 5B when observed on the yz plane.
  • a negative value of D means divergent (concave lens).
  • a photonic crystal wave plate whose concept is shown in FIG. 6 can be used.
  • the relationship between the rectangle in the figure and the principal axis / phase difference of the wave plate region that it represents is the same as that described for FIG.
  • the short side and long side of the rectangle in the figure have a simple integer ratio both within one rectangle and between different rectangles, but this is only for convenience of explanation and drawing, and there is a large degree of freedom.
  • the number of partial wave plates in the whole element and the number of partial wave plates in the entire element can be freely selected depending on the purpose.
  • the entire optical element shown in FIG. 6 is formed in a rectangular thin plate shape.
  • a plurality of horizontally long rectangular wave plate regions are formed in the rightmost first region, and a substantially square (short side and long side are formed in the second region located on the left side thereof. Are formed), a plurality of vertically long rectangular wave plate regions are formed in the third region located on the left side, and the fourth region located on the left side has a long longitudinal side.
  • a plurality of rectangular wave plate regions are formed, and a plurality of horizontally long rectangular wave plate regions with longer long sides are formed in the fifth region located on the left side thereof.
  • the delay is increased if the electric field component of the polarized light of the incident light is parallel to the long side of the rectangular wave plate region, and the delay is reduced if it is perpendicular to the long side of the rectangular wave plate.
  • This element does not have a condensing or diverging function. For this reason, the parallel beam takes an optical path determined for each polarized light while being kept parallel. Therefore, it operates as a polarization separation element or a polarization composition element.
  • the optical element shown in FIG. 5 has a function of separating or synthesizing two orthogonal linearly polarized lights, that is, a function as a prism.
  • FIG. 7 shows a surface configuration of a polarization splitting prism for a wavelength of 1.55 ⁇ m according to the present invention.
  • the photonic crystal wave plate is composed of Nb 2 O 5 / SiO 2 , and the interval in the X direction (lateral direction) of the groove row extending in the Y direction (vertical direction) is 0.4 ⁇ m, which is almost a quarter wavelength, Mark it as a.
  • This polarization splitting prism is mainly composed of 13 regions, and each region is composed of a rectangular unit cell (including one in which one side extends to the end of the element) having a common long side.
  • the photonic crystal is a self-cloning multilayer film having a total thickness of 48 ⁇ m, and it is composed of 13 band-like regions arranged in the X direction.
  • the i-th band from the left is further composed of four peak / valley structures with a period d parallel to the Y-axis, and valleys parallel to the X-axis and having an interval equal to b / I.
  • an incident light beam having a wavelength of 1.55 ⁇ m polarized in the X direction is directed to the right by about 1/12 radians, and an incident light beam having a wavelength of 1.55 ⁇ m polarized in the y direction is also directed to the left by about 1/12 radians.
  • an incident light beam having a wavelength of 1.55 ⁇ m polarized in the y direction is also directed to the left by about 1/12 radians.
  • the wave plate as a unit is not limited to a rectangle, and may be a polygon having a slow axis and a fast axis, such as an elongated hexagon, and may be arranged without a gap.
  • the wave plate as a unit is a rectangle, the case where the long side and the short side form a simple integer ratio has been shown in many cases, but it is of course possible to use a more general ratio. Is possible.
  • the state in which the light to be processed by any optical element is a specific linearly polarized light can be widely used for coherent optical communication in the optical communication region and in the laser optical system even in the visible region.
  • There are a wide range of applications such as short focal length characteristics, small characteristics, and high integration.

Abstract

[Problem] In a conventional flat plate lens, condensing functionality is weak, and size reduction (decreasing the focal distance and reducing the size of the lens) is significantly limited. [Solution] The present invention provides an optical element for condensing/diverging/refracting linearly polarized light using a plurality of wavelength plate regions of a photonic crystal. Using the features whereby a thin wavelength plate has an extremely large effective refractive index difference, and a phase difference can be continuously varied on a single substrate, it is possible to provide an optical element for condensing/diverging/refracting linearly polarized light. Because a lens can be formed by numerous thin wavelength plates in the present invention, the thickness of the lens as a whole can be made extremely small.

Description

光学素子Optical element
 本発明は、集光、発散、屈折、偏光分離・合成を行う薄型平面光学素子に関する。 The present invention relates to a thin flat optical element that performs condensing, divergence, refraction, polarization separation and synthesis.
 非特許文献1や特許文献1~6には、例えばディジタルカメラ用のイメージセンサなどにおいて集光レンズとして利用することのできる従来の光学素子が開示されている。 Non-Patent Document 1 and Patent Documents 1 to 6 disclose conventional optical elements that can be used as a condensing lens in, for example, an image sensor for a digital camera.
「3次元周期構造体及びその作製方法並びに膜の製造方法」 特許3325825号“Three-dimensional periodic structure, method for producing the same, and method for producing the film”, Japanese Patent No. 3325825 「複屈折性周期構造体、位相板、回折格子型の偏光ビームスプリッタ及びそれらの作製方法」 特開2001-51122号公報“Birefringent Periodic Structure, Phase Plate, Diffraction Grating Polarizing Beam Splitter, and Manufacturing Method Thereof” Japanese Patent Application Laid-Open No. 2001-51122 「多値波長板」 特開2010-156896号公報"Multi-valued wave plate" Japanese Patent Application Laid-Open No. 2010-156896 「偏光回折素子」 特開2010-156895号公報“Polarized diffraction element”, JP 2010-156895 A 「偏光コンバータ」 特開2012-181385号公報"Polarization converter" Japanese Patent Application Laid-Open No. 2012-181385 「偏光変換機能を有するフォトニック結晶」 特開2013-257371号公報“Photonic crystal having polarization conversion function”, JP 2013-257371 A
 光学系において、集光レンズは、つねに用いられる最も基礎的普遍的な光学素子である。それを小形化、薄型化することは、たとえばディジタルカメラ用のイメージセンサに用いられるマイクロレンズなどで広く用いられる実用例がある。さらに、それを平面形にし、薄型化、短焦点距離化することは非常に望ましいが、従来の光学素子は、たとえば焦点距離は数ミリメートル、厚さは数ミリメートル程度が限度であり、光通信用のデバイス結合に用いるには制約が多いものであった。そこで、本発明は、光学素子の厚さを数μmから数十μm、焦点距離を数μmから数十μmあるいは数百μm程度とし、光学素子の厚さおよび焦点距離を飛躍的に改善することを目的とする。 In an optical system, a condenser lens is the most basic universal optical element that is always used. To make it smaller and thinner, there are practical examples widely used in, for example, microlenses used in image sensors for digital cameras. Furthermore, it is highly desirable to make it flat, thin and short focal length, but conventional optical elements are limited to, for example, a focal length of several millimeters and a thickness of several millimeters. There are many restrictions on the use of these devices for device coupling. Therefore, the present invention makes the thickness of the optical element and the focal length drastically improved by setting the thickness of the optical element to several μm to several tens μm and the focal length to several μm to several tens μm or several hundred μm. With the goal.
 本発明の第1の側面は、光学素子に関する。本発明に係る光学素子は、光の入射する平面が複数の領域に分かれ、各領域はそれぞれ波長板よりなり、各波長板はそれぞれの位相差をもち、領域間で遅軸または速軸の方向を共通に保ちながら各領域は隙間なく隣接しており、一つの直線偏光で入射する光に対して集光の機能をもつ。つまり、本発明に係る光学素子は、レンズとして機能することが可能であり、光の集光機能の他にも、光の発散機能及び屈折機能を持つものであるといえる The first aspect of the present invention relates to an optical element. In the optical element according to the present invention, the plane on which light is incident is divided into a plurality of regions, each region is composed of a wave plate, each wave plate has its own phase difference, and the direction of the slow axis or fast axis between the regions. Each region is adjacent to each other with no gap, and has a function of condensing light incident with one linearly polarized light. That is, the optical element according to the present invention can function as a lens and has a light diverging function and a refractive function in addition to the light condensing function.
 本発明の光学素子において、複数の領域は、中心を共有する複数の円形若しくは円環状の領域、中心を共有する複数の楕円形若しくは楕円環状の領域、又は複数の方形の領域であることが好ましい。本発明に係る波長板からなる光学素子の基本概念を図4(a)および図4(b)を用いて説明する。図4(a)および図4(b)に示されるように、この光学素子の構造は大きく三つの波長板領域に分かれている。つまり、中央に位置する円形(または楕円形)の領域と、その周囲に位置する円環状(または楕円環状)の領域と、さらにその周囲に位置する方形の領域である。そして、それぞれの領域はすじ状または方形の多数の波長板単位セルから成り立っている。つまり、中央の円形領域はX軸方向に延びるすじ状の波長板単位セルからなり、その周囲の円環状領域は方形の多数の波長板単位セルからなり、さらにその周囲の方形領域はY軸方向に延びるすじ状の波長板単位セルからなる。 In the optical element of the present invention, the plurality of regions are preferably a plurality of circular or annular regions sharing the center, a plurality of elliptical or elliptical regions sharing the center, or a plurality of rectangular regions. . The basic concept of an optical element comprising a wave plate according to the present invention will be described with reference to FIGS. 4 (a) and 4 (b). As shown in FIGS. 4A and 4B, the structure of this optical element is largely divided into three wave plate regions. That is, a circular (or elliptical) region located at the center, an annular (or elliptical) region located around the periphery, and a rectangular region located further around the region. Each region is composed of a number of wave plate unit cells each having a stripe shape or a square shape. In other words, the central circular region is composed of strip-shaped wave plate unit cells extending in the X-axis direction, the surrounding annular region is composed of many rectangular wave plate unit cells, and the surrounding rectangular region is in the Y-axis direction. It consists of a streak-shaped wave plate unit cell extending in a straight line.
 また、本発明の光学素子は、光の入射する平面が帯状の複数の領域に分かれ、各領域はそれぞれ波長板よりなり、各波長板はそれぞれの位相差をもち、領域間で遅軸または速軸の方向を共通に保ちながら各領域は隙間なく隣接されており、二つの直交する直線偏光に対して偏光ごとの角度で屈折の機能をもつものであってもよい。 In the optical element of the present invention, the plane on which light is incident is divided into a plurality of band-like areas, each area is composed of a wave plate, each wave plate has a phase difference, and a slow axis or a speed between the areas. The respective regions may be adjacent to each other with no gap while keeping the axis direction in common, and may have a refraction function at an angle for each polarization with respect to two orthogonal linearly polarized light.
 具体的に説明すると、各波長板単位セルの形状は長方形(正方形、平行凹凸を含む)であることが好ましい。光学素子をX軸とY軸を持つ2次元の平面として捉えた場合において、各波長板単位セルはX軸方向及びY軸方向に隙間なく隣接して形成される。ここで、光学素子を集光、発散、または屈折の機能をもつレンズとして機能させる場合、光学素子は、その中央部から外縁に向かって複数の領域(好ましくは3以上または5以上の領域)に区分される。このとき、最も中央寄りの領域には、遅軸が最も長く速軸が最も短い複数の波長板単位セルが配置されており、この最も中央寄りの領域から外縁に向かうにつれて、各領域に配置されている各波長板単位セルの遅軸が短くなるか若しくは速軸が長くなっていく。このように、複数の位相差の異なる波長板領域が配置された光学素子は、一つの直線偏光で入射する光に対して集光、発散、または屈折の機能をもつレンズとして機能する。他方、光学素子を偏光分離または合成の機能を持つプリズムとして機能させる場合、光学素子は、一端側から他端側に向かって複数の領域(好ましくは3以上または5以上の領域)に区分される。最も一端寄りの領域には、遅軸が最も長く速軸が最も短い複数の波長板単位セルが配置されており、この最も一端寄りの領域から他端側に向かうにつれて、各領域に配置されている各波長板単位セルの遅軸が短くなるか若しくは速軸が長くなっていく。このように波長板単位セルが配置された光学素子は、二つの直交する直線偏光に対して偏光分離または合成の機能をもつプリズムとして機能する。 Specifically, the shape of each wave plate unit cell is preferably a rectangle (including a square and parallel irregularities). When the optical element is regarded as a two-dimensional plane having an X axis and a Y axis, the respective wave plate unit cells are formed adjacent to each other with no gap in the X axis direction and the Y axis direction. Here, when the optical element is caused to function as a lens having a condensing, divergence, or refraction function, the optical element is divided into a plurality of regions (preferably three or more or five or more regions) from the central portion toward the outer edge. It is divided. At this time, a plurality of wave plate unit cells having the longest slow axis and the shortest fast axis are arranged in the most central area, and are arranged in each area from the most central area toward the outer edge. The slow axis of each wave plate unit cell is shortened or the fast axis is lengthened. As described above, an optical element in which a plurality of wave plate regions having different phase differences is arranged functions as a lens having a function of condensing, diverging, or refraction with respect to light incident as one linearly polarized light. On the other hand, when the optical element is caused to function as a prism having a polarization separation or synthesis function, the optical element is divided into a plurality of regions (preferably three or more or five or more regions) from one end side to the other end side. . In the region closest to one end, a plurality of wave plate unit cells having the longest slow axis and the shortest fast axis are arranged, and are arranged in each region from the region closest to the one end toward the other end side. The slow axis of each wave plate unit cell is shortened or the fast axis is lengthened. Thus, the optical element in which the wavelength plate unit cell is arranged functions as a prism having a function of polarization separation or synthesis with respect to two orthogonal linearly polarized lights.
 波長板が、自己クローニング作用により形成されたフォトニック結晶であることが好ましい。フォトニック結晶は、平面内に周期溝状の構造を持ち、当該周期溝状の構造が厚さ方向に積層された構造を持つ。フォトニック結晶は、光学素子として機能する微小周期構造体である。具体的なフォトニック結晶の製造方法として、特開平10-335758号公報に開示される2次元的に周期的な凹凸をもつ基板の上に2種類以上の物質(透明体)を周期的に順次積層し、その積層の中の少なくとも一部分にスパッタエッチングを単独で、または成膜と同時に用いることにより光学素子を製造する方法があげられる。この方法は、自己クローニング法ともよばれる。また、自己クローニング結晶を用いて波長板を構成する技術は公知である(例えば、特開2008-197399号公報)。 It is preferable that the wave plate is a photonic crystal formed by self-cloning action. The photonic crystal has a periodic groove-like structure in a plane and has a structure in which the periodic groove-like structure is laminated in the thickness direction. A photonic crystal is a micro periodic structure that functions as an optical element. As a specific photonic crystal manufacturing method, two or more types of substances (transparent materials) are periodically and sequentially formed on a substrate having two-dimensional periodic irregularities disclosed in JP-A-10-335758. There is a method of manufacturing an optical element by stacking and using sputter etching alone or simultaneously with film formation on at least a part of the stack. This method is also called an autocloning method. A technique for constructing a wave plate using self-cloning crystals is known (for example, JP-A-2008-197399).
 フォトニック結晶を形成する複数種類の透明体の内一つは、アモルファスシリコン、5酸化ニオブ、または5酸化タンタルであることが好ましい。例えば、フォトニック結晶は、5酸化ニオブと5酸化タンタルの組み合わせ、アモルファスシリコンと5酸化ニオブの組み合わせ、アモルファスシリコンと5酸化タンタルの組み合わせとすることも可能である。具体的に、自己クローニング型フォトニック結晶は、高屈折率材料と低屈折率材料とをz方向に交互に積層した構造を有する。高屈折率材料は、5酸化タンタル、5酸化ニオブ、アモルファスシリコン、酸化チタン、酸化ハフニウムの1種またはこれら2種以上の材料を組み合わせたものであることが好ましい。低屈折率材料は、2酸化ケイ素、酸化アルミ、フッ化マグネシウムを含むフッ化物の1種またはこれら2種以上の材料を組み合わせたものであることが好ましい。 One of the plurality of types of transparent bodies forming the photonic crystal is preferably amorphous silicon, niobium pentoxide, or tantalum pentoxide. For example, the photonic crystal can be a combination of niobium pentoxide and tantalum pentoxide, a combination of amorphous silicon and niobium pentoxide, or a combination of amorphous silicon and tantalum pentoxide. Specifically, the self-cloning photonic crystal has a structure in which high refractive index materials and low refractive index materials are alternately stacked in the z direction. The high refractive index material is preferably one of tantalum pentoxide, niobium pentoxide, amorphous silicon, titanium oxide, hafnium oxide, or a combination of two or more of these materials. The low refractive index material is preferably one of fluorides including silicon dioxide, aluminum oxide, and magnesium fluoride, or a combination of two or more of these materials.
 自己クローニング作用で形成される周期溝状(凹凸)の構造において溝の基本周期が、入射する光の光波長の3分の1以下または5分の1以下であることが好ましい。また、溝の基本周期は、入射する光の光波長の6分の1以下または8分の1以下とすることもできる。 In the periodic groove-like (unevenness) structure formed by the self-cloning action, the basic period of the groove is preferably 1/3 or less or 1/5 or less of the light wavelength of incident light. Moreover, the fundamental period of a groove | channel can also be made into 1/6 or less of the light wavelength of incident light, or 1/8 or less.
 本発明の第2の側面は、1枚の基板の両面に、上記第1の側面に係る光学素子を持つ光学部品に関する。 The second aspect of the present invention relates to an optical component having the optical element according to the first aspect on both surfaces of a single substrate.
 本発明は、上記第1の側面に係る光学素子を形成した後に、1種類の誘電体膜をある厚さ成膜し表面を平坦化した上で、最初の光学素子とは波長板の数、向き、又は周期が異なる第1の側面に係る光学素子を形成した光学部品であってもよい。 In the present invention, after forming the optical element according to the first aspect, after depositing one kind of dielectric film to a certain thickness and flattening the surface, the first optical element is the number of wave plates, The optical component which formed the optical element which concerns on the 1st side surface from which direction or a period differs may be sufficient.
 本発明の第3の側面は、第1の側面に係る光学素子、若しくは第2の側面に係る光学部品を用いて二つ以上の光通信部品間を結合する光学結合部品に関する。 The third aspect of the present invention relates to an optical coupling component that couples two or more optical communication components using the optical element according to the first aspect or the optical component according to the second aspect.
 ディジタルコヒーレント光通信(コヒーレント光通信)では、一つの光学素子が扱うべき光ビームが、所定の直線偏光に限定される場合が多い。従来の平面レンズでは等方的な屈折率の大小差により光を集めるが、本発明に係る直線偏光系の光学素子では波長板を用いることができる。入射光の電界に対し波長板の遅軸方向を平行に置くと位相遅れが大きく屈折率が高いのと同等である。速軸を平行に置くとその反対である。 In digital coherent optical communication (coherent optical communication), a light beam to be handled by one optical element is often limited to a predetermined linearly polarized light. In a conventional flat lens, light is collected by a difference in isotropic refractive index, but in a linearly polarizing optical element according to the present invention, a wave plate can be used. Placing the slow axis direction of the wave plate parallel to the electric field of incident light is equivalent to a large phase lag and a high refractive index. The opposite is true when the fast axes are placed in parallel.
 さらに、自己クローニング形フォトニック結晶ではさまざまな遅延位相量をもつ波長板領域を1枚の基板上に隙間なく隣接して配置することができるので、レンズと同等の集光機能、発散機能、又は屈折機能を持たせることができる。このように、極めて薄い自己クローニング形フォトニック結晶をレンズとして機能させることができる。従って、本発明によれば、レンズとして機能する光学素子の厚さを1~数十μm程度とし、焦点距離を1μmから数十あるいは数百μm程度とすることができる。 Furthermore, in the self-cloning photonic crystal, wave plate regions having various delay phase amounts can be arranged adjacent to each other without any gap on one substrate, so that the light collecting function, the diverging function equivalent to the lens, or A refraction function can be provided. In this way, an extremely thin self-cloning photonic crystal can function as a lens. Therefore, according to the present invention, the thickness of the optical element functioning as a lens can be set to about 1 to several tens of μm, and the focal length can be set to about 1 μm to several tens or several hundreds of μm.
 さらに、フォトニック結晶波長板では直交偏光間で、材料の選択によっては1波長相当の位相差πを自由空間波長の8倍相当の厚さで実現できるという常識を遙かに超える集光機能等をもつので、その厚さを飛躍的に微小化できる。 Furthermore, with a photonic crystal wave plate, a condensing function that far exceeds the common sense that a phase difference π equivalent to one wavelength can be realized with a thickness equivalent to eight times the free space wavelength, depending on the choice of materials, between orthogonal polarizations, etc. Therefore, the thickness can be dramatically reduced.
 なお用語について付言する。本発明の光学素子は光通信用にも、より波長の短い可視域用にも利用できる。通信技術では偏波、可視光を中心とする光学では偏光という言葉を用いるがこれは習慣の差である。本願では通信応用に偏波、一般光学に偏光と記すが同等と了解する。 Note that terms are added. The optical element of the present invention can be used both for optical communication and for a visible region with a shorter wavelength. In communication technology, the term polarization is used. In optics centered on visible light, the term polarization is used. In the present application, polarization is used for communication applications, and polarization is used for general optics, but they are equivalent.
 たとえばコヒーレント光通信用に平面光回路(PLC)と光ファイバを結合する、あるいはInP光変調器の微小で楕円形状の光を直径が大きく円形の光ファイバに平板貼り合わせの方法で実装できるなど部品数削減、工数節約、原価低減などの便益が大きい。 For example, components such as a planar optical circuit (PLC) and an optical fiber for coherent optical communication, or a small and elliptical light of an InP optical modulator that can be mounted on a circular optical fiber with a large diameter by flat plate bonding. Benefits such as reductions in manpower, man-hours savings, and cost reductions are significant.
図1(a)は、集積された波長板の任意の領域に、所定の位相差をもたせるため、自己クローニングで形成される周期構造フォトニック結晶に与えるべき膜の凹凸構造の一例を示している。FIG. 1 (a) shows an example of a concavo-convex structure of a film to be given to a periodic structure photonic crystal formed by self-cloning in order to give a predetermined phase difference to an arbitrary region of an integrated wave plate. . 図1(b)は、集積された波長板の任意の領域に、所定の位相差をもたせるため、自己クローニングで形成される周期構造フォトニック結晶に与えるべき膜の凹凸構造の一例を示している。FIG. 1B shows an example of an uneven structure of a film to be given to a periodic structure photonic crystal formed by self-cloning in order to give a predetermined phase difference to an arbitrary region of the integrated wave plate. . 図1(c)は、集積された波長板の任意の領域に、所定の位相差をもたせるため、自己クローニングで形成される周期構造フォトニック結晶に与えるべき膜の凹凸構造の一例を示している。FIG. 1C shows an example of an uneven structure of a film to be given to a periodic structure photonic crystal formed by self-cloning in order to give a predetermined phase difference to an arbitrary region of the integrated wave plate. . 図2は、図1で示されたフォトニック結晶の面内単位セルにおいて、縦と横の寸法比がそれぞれの位相差を決定することを示すための実測結果を表す図である。横軸ηは(1-a/b)を表し、正方形単位セルではηは零、縦と横の開きが大きくなると漸増しbがaに比してほとんど無限に大きいときηは1である。FIG. 2 is a diagram showing actual measurement results for showing that the longitudinal and lateral dimensional ratios determine the respective phase differences in the in-plane unit cell of the photonic crystal shown in FIG. The horizontal axis η represents (1-a / b). In the square unit cell, η is zero, and gradually increases as the vertical and horizontal opening increases, and η is 1 when b is almost infinitely larger than a. 図3は、集光レンズの一例として楕円レンズの構成法を示す。図において紙面に垂直に進む光に対し、像の水平方向の集光作用と垂直方向の集光作用を独立に実現することは従来技術では困難であるが、本発明ではその機能さえも実現できるので、その方法を示す。FIG. 3 shows a configuration method of an elliptic lens as an example of a condensing lens. In the figure, it is difficult in the prior art to independently realize the horizontal light condensing action and the vertical light converging action for the light traveling perpendicular to the paper surface, but even the function can be realized in the present invention. So how to do that. 図4(a)は、集光レンズの一例として、楕円レンズの斜視図を示している。FIG. 4A shows a perspective view of an elliptic lens as an example of a condensing lens. 図4(b)は、楕円レンズの表面を撮影した電子顕微鏡写真である。FIG. 4B is an electron micrograph of the surface of the elliptic lens. 図4(c)は、楕円レンズの集光スポットを示している。ここでは、五酸化ニオブと二酸化ケイ素からなる自己クローニングフォトニック結晶形の集光レンズとその効果を示す。FIG. 4C shows a condensing spot of the elliptic lens. Here, a self-cloning photonic crystal condensing lens composed of niobium pentoxide and silicon dioxide and its effect are shown. 図4(d)は、楕円レンズの焦点形状を示している。ここでは、五酸化ニオブと二酸化ケイ素からなる自己クローニングフォトニック結晶形の集光レンズとその効果を示す。FIG. 4D shows the focal shape of the elliptic lens. Here, a self-cloning photonic crystal condensing lens composed of niobium pentoxide and silicon dioxide and its effect are shown. 図5は、細長く、しかもサイズが光波長程度の細い楕円ビームを光ファイバに効率よく結合する光回路の例を示す。図5(a)は、光ビームを縦切りして短径が見えるような切断面である。縦軸はビームの断面を、横軸は伝搬長を示す。単位はum(マイクロメートル)である。左端は入射面、次のx印は第一のレンズによる変換点(6um)、右端のx印は光ファイバの入射面である。等位相面は2次曲線的なので第二のレンズをここにおき等位相面を補正し平坦にする(光ファイバのモードの等位相面は平坦である)。円弧はビームの等位相面を表す。図5(b)は、同じく長径に対応する図である。最初のレンズではほぼ平坦な等位相面を発散性に変換している。即ち凹レンズ作用を持たせている。FIG. 5 shows an example of an optical circuit that efficiently couples an elongated elliptical beam having a size of about the light wavelength to an optical fiber. FIG. 5A is a cut surface in which the minor axis can be seen by longitudinally cutting the light beam. The vertical axis represents the beam cross section, and the horizontal axis represents the propagation length. The unit is um (micrometer). The left end is the incident surface, the next x is the conversion point (6 um) by the first lens, and the right x is the incident surface of the optical fiber. Since the equiphase surface has a quadratic curve, the second lens is placed here to correct the equiphase surface and make it flat (the optical fiber mode equiphase surface is flat). The arc represents the equiphase surface of the beam. FIG.5 (b) is a figure corresponding to a long diameter similarly. In the first lens, an almost flat equiphase surface is converted to divergence. That is, it has a concave lens action. 図6は、プリズム機能の実現方法の概念を示す。プリズムには集光作用は特にもたせず進行方向のみ変える。上下方向に偏光した光が図6の素子に入射すると光は左方に屈折される。FIG. 6 shows a concept of a method for realizing the prism function. The prism does not have any particular light condensing action and changes only the traveling direction. When vertically polarized light enters the element shown in FIG. 6, the light is refracted to the left. 図7は、プリズム機能を実現するより具体化方法を示す。プリズムには集光作用は特にもたせず進行方向のみ変える。上下方向に偏光した光が図6の素子に入射すると光は左方に屈折される。左右方向に偏向した光は右方に屈折される。FIG. 7 shows a more specific method for realizing the prism function. The prism does not have any particular light condensing action and changes only the traveling direction. When vertically polarized light enters the element shown in FIG. 6, the light is refracted to the left. Light deflected in the left-right direction is refracted to the right.
 以下、本発明について、実施例1ないし実施例6に基づいて詳細に説明する。 Hereinafter, the present invention will be described in detail based on Examples 1 to 6.
 1枚の基板の上に複数種類の位相差をもつ波長板または波長板領域を同一プロセスで作成する方法を説明する。図1(a)には、短辺a、長辺bの長方形(矩形)を単位セルとする波長板の上面を示す。長辺bがaに比して殆ど無限に大きいような、自己クローニング法で作成したフォトニック結晶からできている波長板は既知である(特許文献1~6)。これに対して、図1は、本発明に係る波長板の構造の例を示している。長さbおきに稜を設けた構造が図1(a)に示されており、反対に長さbおきに谷を設けた構造が図1(b)に示されている。また、図1(c)のように図1(a)を変形してもよく、無限長の山と溝を有限長の連なりとすることで異方性を減らすことができる。そのような位相差を制御された波長板領域を複数個隙間なく、かつ主軸方向を共通に保ったまま配置することにより位相差を場所ごとに独立に選択できる。なお本出願では波長板において遅軸と速軸とを併せて主軸と呼ぶ。 A method of creating a wave plate or wave plate region having a plurality of types of phase differences on a single substrate by the same process will be described. FIG. 1A shows an upper surface of a wave plate having a rectangular (rectangular) shape having a short side a and a long side b as a unit cell. Wave plates made of a photonic crystal produced by a self-cloning method in which the long side b is almost infinitely larger than a are known (Patent Documents 1 to 6). On the other hand, FIG. 1 shows an example of the structure of the wave plate according to the present invention. A structure in which a ridge is provided every length b is shown in FIG. 1 (a), and a structure in which a valley is provided every other length b is shown in FIG. 1 (b). Further, FIG. 1A may be modified as shown in FIG. 1C, and anisotropy can be reduced by forming infinitely long peaks and grooves in a finite length. By arranging a plurality of such wave plate regions with controlled phase differences without leaving a gap and keeping the main axis direction in common, the phase difference can be selected independently for each location. In the present application, the slow axis and the fast axis are collectively referred to as the main axis in the wave plate.
 次に、自己クローニング法で作成された波長板の位相差を領域ごとに調節する方法を示す。5酸化ニオブと2酸化シリコンからなるフォトニック結晶波長板において、単位セル長方形の長辺bを短辺aの2倍、3倍、4倍にして、共通の層数、共通の厚さに製膜してそれぞれの位相差を評価した。その結果を図2に示す。相対的な位相差は(1-a/b)にほぼ比例している。 Next, a method for adjusting the phase difference of the wave plate created by the self-cloning method for each region is shown. In a photonic crystal wave plate made of niobium pentoxide and silicon dioxide, the long side b of the unit cell rectangle is made two times, three times, and four times the short side a so as to have a common number of layers and a common thickness. Each film was evaluated for the phase difference. The result is shown in FIG. The relative phase difference is approximately proportional to (1-a / b).
 本願の発明思想においては、光学素子は、複数の波長板領域を遅軸および/または速軸の方向を共通に保ちながら隙間なく隣接させた構造となっている。また、各波長板単位セルは、短辺aと長辺bとを有する長方形を基本構造としている(なお、短辺aと長辺bの長さが等しい正方形状の波長板が存在していてもよい)。つまり、直交するX軸及びY軸の二次元座標系を考えたときに、長方形状の各波長板は、X軸方向とY軸方向に隣接して形成されていることとなる。本願明細書では便宜的に、Y軸方向(図の上下方向)に長い長方形を「縦長の長方形」と称し、X軸方向(図の左右方向)に長い長方形を「横長の長方形」と称している。図1(a)等に示されるように、各波長板領域は、凸部又は凹部を有しており、また各波長板領域の間には稜又は谷が形成されており、これらの稜又は谷によって各波長板領域の境界が明確に区切られている。例えば、図1(a)の例では、各波長板は凹部を有しており、隣接する波長板領域の境界には稜が形成されている。図1(a)の例では、波長板領域の間の稜がX軸とY軸に沿って略無限長に連なっている。また、図1(b)の例では、各波長板領域は凸部を有しており、隣接する波長板領域の境界には谷が形成されている。図1(b)の例では、波長板領域の間の谷がX軸とY軸に沿って略無限長に連なっている。また、図1(c)の例では、各波長板領域は凹部を有しており、隣接する波長板領域の境界には稜が形成されている。ただし、図1(c)の例では、稜は、Y軸に沿って略無限長に連なっているものの、X軸に沿っては有限長となっている。つまり、X軸方向に延びる稜は、Y軸方向に互い違いになるようにオフセットして形成されている。 In the inventive idea of the present application, the optical element has a structure in which a plurality of wave plate regions are adjacent to each other without a gap while keeping the slow axis and / or fast axis directions in common. Further, each wave plate unit cell has a basic structure of a rectangle having a short side a and a long side b (a square wave plate having the short side a and the long side b equal in length exists). Also good). That is, when considering a two-dimensional coordinate system of orthogonal X-axis and Y-axis, each rectangular wave plate is formed adjacent to the X-axis direction and the Y-axis direction. In the present specification, for convenience, a rectangle that is long in the Y-axis direction (the vertical direction in the figure) is referred to as a “longitudinal rectangle”, and a rectangle that is long in the X-axis direction (the horizontal direction in the figure) is referred to as a “horizontal rectangle”. Yes. As shown in FIG. 1A and the like, each wave plate region has a convex portion or a concave portion, and ridges or valleys are formed between the wave plate regions. The boundaries of each wave plate region are clearly delimited by valleys. For example, in the example of FIG. 1A, each wave plate has a recess, and a ridge is formed at the boundary between adjacent wave plate regions. In the example of FIG. 1A, the ridges between the wave plate regions are continuous in an infinite length along the X axis and the Y axis. In the example of FIG. 1B, each wave plate region has a convex portion, and a valley is formed at the boundary between adjacent wave plate regions. In the example of FIG. 1B, the valleys between the wave plate regions are connected to the infinite length along the X axis and the Y axis. In the example of FIG. 1C, each wave plate region has a recess, and a ridge is formed at the boundary between adjacent wave plate regions. However, in the example of FIG. 1C, the ridges are connected to the infinite length along the Y axis, but have a finite length along the X axis. That is, the ridges extending in the X-axis direction are formed so as to be offset in the Y-axis direction.
 入射光が直線偏光の場合、波長板の遅軸が直線偏光の偏光と一致するときその部分は光の波面を遅らせる、言い換えれば屈折率の大きい媒体と同等の振る舞いをする。同様に、波長板の速軸が直線偏光の偏光と一致するときその部分は光の波面を相対的に進める、言い換えれば屈折率の小さい媒体と同等の振る舞いをする。図3は、本発明に係る集光レンズ(光学素子)の一例として、楕円レンズの構成を示している。図3のように複数の位相差の異なる波長板領域(長方形)を配置し、所定の直線偏光に対して中央領域は波長板の位相遅れが最大となり、周辺に向かって位相遅れが減少するように各波長板領域を配置すれば、複数の波長板領域で構成される光学素子にレンズ作用を持たせることができる。つまり、このように構成された集光レンズは、一つの直線偏光に対しては、入射する光の偏光状態に応じて集光、発散、または屈折の機能を発揮する。なお、位相差は階段的に変化するので一般に位相遅れは空間の滑らかな関数とはならず微小な量子化誤差を持つことになるが、集光系ではその影響は小さい。 When the incident light is linearly polarized, when the slow axis of the wave plate coincides with the polarization of the linearly polarized light, that portion delays the wavefront of the light, in other words, behaves in the same way as a medium having a large refractive index. Similarly, when the fast axis of the wave plate coincides with the polarization of linearly polarized light, that portion relatively advances the wavefront of light, in other words, behaves equivalently to a medium having a small refractive index. FIG. 3 shows a configuration of an elliptic lens as an example of a condensing lens (optical element) according to the present invention. As shown in FIG. 3, a plurality of wave plate regions (rectangles) having different phase differences are arranged, and the phase lag of the wave plate is maximized in the central region with respect to predetermined linearly polarized light, and the phase lag decreases toward the periphery. If each wave plate region is disposed in the optical element, an optical element composed of a plurality of wave plate regions can have a lens action. That is, the condensing lens configured in this manner exhibits a condensing, divergence, or refraction function for one linearly polarized light according to the polarization state of incident light. Since the phase difference changes stepwise, generally the phase lag is not a smooth function of the space and has a minute quantization error, but its influence is small in the condensing system.
 より具体的に説明すると、図3に示されるように、レンズ作用を持つ集光レンズ(楕円レンズ)は、中央部に比較的長辺の長い縦長の波長板領域が複数形成され、その中央部の周囲に比較的長辺の短い縦長の波長板領域が複数形成され、さらにその周囲に略正方形の(短辺と長辺が等しい)波長板領域が複数形成され、さらにその周囲に比較的長辺の短い横長の波長板領域が複数形成され、さらにその周囲に比較的長辺の長い横長の波長板領域が複数形成されている。このように、集光レンズは、中央部に相当する第1領域と、第1領域の周囲に位置する第2領域と、第2領域の周囲に位置する第3領域と、第3領域の周囲に位置する第4領域と、第4領域の周囲に位置する第5領域とから構成され、各領域でそれぞれ波長板領域の長辺の長さや向きが異なるため、結果として各領域で波長板の位相差が異なっている。図3に示した例において、集光レンズは、第1~第5領域までの5段階の位相分布で構成されている。このように、図3に示された楕円レンズは、所定の直線偏光に対して中央部に位置する第1領域は波長板の位相遅れが最大となり、周辺に向かって位相遅れが減少するように各波長板領域が配置されている。 More specifically, as shown in FIG. 3, the condensing lens (elliptical lens) having a lens action is formed with a plurality of vertically long wave plate regions having relatively long sides at the center, and the center A plurality of vertically long wave plate regions with relatively long sides are formed around the substrate, and a plurality of substantially square wave plate regions (with short sides and long sides being equal) are formed around it. A plurality of horizontally long waveplate regions having short sides are formed, and a plurality of horizontally long waveplate regions having relatively long sides are formed around the periphery. As described above, the condensing lens includes the first area corresponding to the central portion, the second area positioned around the first area, the third area positioned around the second area, and the periphery of the third area. 4 and the fifth region located around the fourth region, and the length and direction of the long side of the wavelength plate region are different in each region. The phase difference is different. In the example shown in FIG. 3, the condensing lens is configured with a five-stage phase distribution from the first to fifth regions. As described above, in the elliptical lens shown in FIG. 3, the phase lag of the wave plate is maximized in the first region located in the center with respect to the predetermined linearly polarized light, and the phase lag decreases toward the periphery. Each wave plate region is arranged.
 本発明のように、集光・分散・屈折機能をもつレンズ(光学素子)の位相分布を階段的なものとする場合、その段数が多いほど実現すべき理想的な位相変化量への近似度が高まる。仮に実現すべき位相変化量を端から端まで180度、即ち半波長相当とし、階段の数をnとすれば、一つの段は(180/n)度を代表し、最大誤差は(90/n)度となる。位相不整合による損失は、n=3のときに0.4dB、n=4のときに0.22dB、n=5のときに0.14dBとなるとなる。このように、段数(n)を多くする程、位相不整合による損失を低減させることが可能である。従って、位相分布の段数は、目的に応じて段数を選択することができる。ここでの位相分布の段数nは、3以上または5以上の整数であることが好ましい。 When the phase distribution of a lens (optical element) having a condensing / dispersing / refractive function is stepped as in the present invention, the degree of approximation to the ideal phase change amount to be realized as the number of steps increases. Will increase. If the phase change amount to be realized is 180 degrees from end to end, that is, equivalent to a half wavelength, and the number of steps is n, one stage represents (180 / n) degrees, and the maximum error is (90 / n) degrees. The loss due to phase mismatch is 0.4 dB when n = 3, 0.22 dB when n = 4, and 0.14 dB when n = 5. Thus, the loss due to the phase mismatch can be reduced as the number of stages (n) is increased. Accordingly, the number of stages of the phase distribution can be selected according to the purpose. Here, the number of stages n of the phase distribution is preferably an integer of 3 or more or 5 or more.
 段数を増やすためには各位相板領域を構成する長方形のサイズを小さくすることが望ましい。自己クローニング法においては、波長板を作製するのに短辺の大きさを、5酸化ニオブ・5酸化タンタルでは通常は使用波長の1/3程度とすることができ、またアモルファスシリコンでは通常は使用波長の1/5程度とすることができる。また、面内周期と厚さ方向周期との比を保ったままで、これらの値より小さくすることも可能である。たとえば、5酸化ニオブ・5酸化タンタルでは通常は使用波長の1/5以下としたり、アモルファスシリコンでは通常は使用波長の1/8以下としても、波長板の特性は影響されないのでそのような設計を選ぶこともできる。 In order to increase the number of steps, it is desirable to reduce the size of the rectangle constituting each phase plate region. In the self-cloning method, the size of the short side can be set to about 1/3 of the wavelength used for niobium pentoxide and tantalum pentoxide, and is usually used for amorphous silicon. It can be about 1/5 of the wavelength. It is also possible to make the value smaller than these values while maintaining the ratio between the in-plane period and the thickness direction period. For example, niobium pentoxide and tantalum pentoxide normally have a wavelength of 1/5 or less, and amorphous silicon normally has a wavelength of 1/8 or less. You can also choose.
 自己クローニング法で波長板形集光デバイスを作成するとき、必要とされる最大位相差と製膜すべき膜厚との概略の関係は次の通りである。 When creating a wave plate condensing device by the self-cloning method, the approximate relationship between the required maximum phase difference and the film thickness to be formed is as follows.
 例えば光通信波長の1550nmにおいては、面内のいわば屈折率最小部と最大部の位相差をπラジアンにするには1/2波長板とおなじ厚さで良く、実施例2の材料系では約12μmとなる。より大きい、例えば2πラジアン必要なときは膜厚をそれに比例してさらに約12μm積層する。 For example, at the optical communication wavelength of 1550 nm, the same thickness as the half-wave plate may be used to make the phase difference between the minimum and maximum refractive index in the plane to be π radians. 12 μm. When a larger value, for example, 2π radians, is required, a film thickness of about 12 μm is further laminated in proportion to the film thickness.
 より薄い膜厚で同等の機能を実現したい場合、アモルファスシリコンと2酸化シリコンの組み合わせの自己クローニングフォトニック結晶を用いれば良く、必要な厚さは前の場合の約1/3で済む。アモルファスシリコンは光通信波長帯では透明材料であるが可視域では不透明なので目的に応じて選択する。 If it is desired to achieve the same function with a thinner film thickness, a self-cloning photonic crystal of a combination of amorphous silicon and silicon dioxide may be used, and the required thickness is about 1/3 of the previous case. Amorphous silicon is a transparent material in the optical communication wavelength band but is opaque in the visible range, so it is selected according to the purpose.
 そのような集光デバイスのパターンの一例を図3に示す。紙面に垂直に入射する光において、紙面の左右方向の集光力と上下方向の集光力を別々に定める例を示している。この例においては入射する光は上下方向の直線偏波であることを要する。 An example of such a condensing device pattern is shown in FIG. An example is shown in which the light converging power in the left-right direction and the light converging power in the vertical direction are separately determined for light incident perpendicularly to the paper surface. In this example, incident light needs to be linearly polarized waves in the vertical direction.
 図3に示した楕円レンズは、上述したとおり、その中央から外縁に向かって、第1領域、第2領域、第3領域、第4領域、第5領域の順に区分されている。第1領域には比較的長辺の長い縦長の波長板領域が複数形成され、第2領域には比較的長辺の短い縦長の波長板領域が複数形成され、第3領域には略正方形の(短辺と長辺が等しい)波長板領域が複数形成され、第4領域には比較的長辺の短い横長の波長板領域が複数形成され、第5領域には比較的長辺の長い横長の波長板領域が複数形成されている。 As described above, the elliptic lens shown in FIG. 3 is divided in the order of the first region, the second region, the third region, the fourth region, and the fifth region from the center toward the outer edge. A plurality of vertically long wave plate regions having relatively long sides are formed in the first region, a plurality of vertically long wave plate regions having relatively long sides are formed in the second region, and a substantially square shape is formed in the third region. A plurality of wave plate regions (which are equal in short side and long side) are formed, a plurality of horizontally long wave plate regions having relatively long sides are formed in the fourth region, and a horizontally long plate having relatively long sides in the fifth region. A plurality of the wavelength plate regions are formed.
 図3において、縦長の長方形は遅軸が上下方向の波長板を、横長の長方形は遅軸が左右方向の波長板を表す。正方形は等方的、即ち位相差がゼロの場合を表す。図2を用いて説明したとおり、長方形の縦と横の比が1から大きく異なるほど波長板の位相差は大きくなる。 In FIG. 3, a vertically long rectangle represents a wave plate whose slow axis is in the vertical direction, and a horizontally long rectangle represents a wave plate whose slow axis is in the left and right direction. Squares are isotropic, ie, the phase difference is zero. As described with reference to FIG. 2, the phase difference of the wavelength plate increases as the ratio of the vertical and horizontal dimensions of the rectangle greatly differs from 1.
 この構造により、X方向とY方向で独立の集光とする楕円レンズを形成することができる。 This structure makes it possible to form an elliptic lens that collects light independently in the X and Y directions.
 また、図3に示したように、楕円レンズ中央の第1領域に、遅軸が上下方向であって位相差の大きい波長板を配置し、その周囲の第2領域に、遅軸が上下方向であって位相差の小さい波長板を配置し、さらにその周囲の第3領域に、位相差がゼロとなる等方的な波長板を配置する。さらに、第3領域の周囲の第4領域には、遅軸が左右方向すなわち速軸が上下方向となる位相差の小さい波長板を配置し、さらにその周囲の第5領域には、遅軸が左右方向すなわち速軸が上下方向となる位相差の大きい波長板を配置する。ここで、入射光が直線偏光の場合、波長板の遅軸が直線偏光の偏光と一致するときその部分は光の波面を遅らせる、言い換えれば屈折率の大きい媒体と同等の振る舞いをする。同様に、波長板の速軸が直線偏光の偏光と一致するときその部分は光の波面を相対的に進める、言い換えれば屈折率の小さい媒体と同等の振る舞いをする。従って、図3のように位相差の異なる種々の波長板(長方形)を配置し、所定の直線偏光に対して中央部分は波長板の位相遅れが最大となり、周辺に向かって位相遅れが減少するように各波長板を配置すれば、複数の波長板で構成される光学素子にレンズ作用を持たせることができる。つまり、このように構成された集光レンズは、一つの直線偏光に対しては、入射する光の偏光状態に応じて集光、発散、または屈折の機能を発揮する。 In addition, as shown in FIG. 3, a wave plate with a slow axis in the vertical direction and a large phase difference is arranged in the first region at the center of the elliptic lens, and the slow axis is in the vertical direction in the surrounding second region. A wave plate having a small phase difference is arranged, and an isotropic wave plate having a phase difference of zero is arranged in the third region around the wave plate. Further, in the fourth region around the third region, a wave plate having a small phase difference with the slow axis in the left-right direction, that is, the fast axis in the vertical direction, is arranged, and in the fifth region around the slow region, the slow axis is A wave plate having a large phase difference is arranged in the left-right direction, that is, the fast axis is the up-down direction. Here, when the incident light is linearly polarized light, when the slow axis of the wave plate coincides with the polarization of the linearly polarized light, the portion delays the wavefront of the light, in other words, behaves in the same manner as a medium having a large refractive index. Similarly, when the fast axis of the wave plate coincides with the polarization of linearly polarized light, that portion relatively advances the wavefront of light, in other words, behaves equivalently to a medium having a small refractive index. Therefore, various wave plates (rectangular shapes) having different phase differences are arranged as shown in FIG. 3, and the phase delay of the wave plate is maximized at the central portion with respect to predetermined linearly polarized light, and the phase delay decreases toward the periphery. If each wave plate is arranged in this manner, an optical element composed of a plurality of wave plates can have a lens action. That is, the condensing lens configured in this manner exhibits a condensing, divergence, or refraction function for one linearly polarized light according to the polarization state of incident light.
 図4(a)には本発明による集光レンズの構成を示し、図4(b)にはその表面の電子顕微鏡写真を示し、図4(c)にはその集光スポットを示し、図4(d)には焦点形状を示す。図4(b)は光の入射面となる、積層型フォトニック結晶の表面を示す。フォトニック結晶は全体の厚さ12μmの自己クローニング多層膜であり、それは直径5.8μmの内円柱、外形8.2μm、内径5.8μmの円環筒、その外側の領域からなる。内円柱部の遅軸をX軸で表す。外側領域の遅軸をそれと直交させYとする。中間の円環筒は西方格子の積層されたものでX、Yに関し等方的である。この構造はX方向に偏光した波長1.55μmの直径約10μmの入射光ビームを、レンズ通過後空気中を6.3μm伝搬した後に図4(c)、図4(d)に示すように直径約3μmに集光した。 4 (a) shows the configuration of the condensing lens according to the present invention, FIG. 4 (b) shows an electron micrograph of the surface, FIG. 4 (c) shows the condensing spot, and FIG. (D) shows the focal shape. FIG. 4B shows the surface of the stacked photonic crystal that serves as a light incident surface. The photonic crystal is a self-cloning multilayer film having a total thickness of 12 μm, and consists of an inner cylinder having a diameter of 5.8 μm, an outer cylinder having an outer shape of 8.2 μm, an inner diameter of 5.8 μm, and an outer region. The slow axis of the inner cylindrical part is represented by the X axis. Let Y be the slow axis of the outer region orthogonal to it. The middle ring is a stack of west lattices and is isotropic with respect to X and Y. In this structure, an incident light beam having a wavelength of 1.55 μm polarized in the X direction and having a diameter of about 10 μm propagates in the air after passing through the lens by 6.3 μm, and then has a diameter as shown in FIGS. 4 (c) and 4 (d). Light was condensed to about 3 μm.
 光トランシーバー(光送受信機)では、送信素子、たとえばInP光変調器の光モードの形状が細径で非円形(短径が例えば1μm程度、長径も数μm、たとえば3μm以下)になることが多い。通常の光ファイバは直径約10μmの円形形状をしているから、その間を効率よく結合することは普通容易でない。しかし、ディジタルコヒーレント通信においては、送信回路または受信回路の一つ一つの導波路は特定の偏光の光だけを扱うので、本発明に係る集光系を適用して一体化された集光系を作ることができる。細径導波路のビームを楕円状ガウス波で近似し、短径(直径)を約0.92μmとし、長径を3.0μmとする(それぞれパワーexp(-2)倍全幅で表す)。それを通信用標準の光ファイバのモードである直径10μmの円形ビームに変換する光回路の例を図5に示す。 In an optical transceiver (optical transceiver), the shape of an optical mode of a transmitting element, for example, an InP optical modulator, is often small and non-circular (the minor axis is about 1 μm, the major axis is several μm, for example, 3 μm or less). . Since a normal optical fiber has a circular shape with a diameter of about 10 μm, it is usually not easy to efficiently couple between them. However, in digital coherent communication, each waveguide of a transmission circuit or a reception circuit handles only light of a specific polarization, so that a light collection system integrated by applying the light collection system according to the present invention is not used. Can be made. The beam of the narrow waveguide is approximated by an elliptical Gaussian wave, the short diameter (diameter) is about 0.92 μm, and the long diameter is 3.0 μm (respectively expressed by the full width of power exp (−2)). An example of an optical circuit that converts it into a circular beam with a diameter of 10 μm, which is a mode of a standard optical fiber for communication, is shown in FIG.
 その光回路は次の四つの部分を一体に積層したものである。
(A)第1の高屈折率層、たとえばアモルファスシリコンでできた厚さ6μmの層
(B)第1の集光素子、たとえばアモルファスシリコンと2酸化シリコンよりなるフォトニック結晶で構成される。
(C)高屈折率層、たとえばアモルファスシリコンでできた厚さ40μmの層
(D)第2の集光素子、たとえばアモルファスシリコンと2酸化シリコンよりなるフォトニック結晶で構成される。
(A)の部分は前記細径導波路に接し(D)の部分は光ファイバに接する。
The optical circuit is formed by integrally stacking the following four parts.
(A) A first high refractive index layer, for example, a layer made of amorphous silicon and having a thickness of 6 μm. (B) A first condensing element, for example, a photonic crystal made of amorphous silicon and silicon dioxide.
(C) A high refractive index layer, for example, a layer made of amorphous silicon and having a thickness of 40 μm. (D) A second condensing element, for example, a photonic crystal made of amorphous silicon and silicon dioxide.
The part (A) is in contact with the thin waveguide, and the part (D) is in contact with the optical fiber.
 図5に示した第1の集光素子および第2の集光素子を以下説明する。
 3次元空間において、光の進行方向をz軸、それに直交する細径導波路の短径方向をx軸、長軸方向をy軸とする。第1、第2の光学素子はそれぞれ階段関数をもって次の2次曲面で表される位相差を近似するようにつくる。
第1:位相差=Ax+By+C
第2:位相差=Dx+Ey+F
 そのとき光ビームはxz面で観察して図5(a)、yz面で観察して図5(b)のように伝搬する。
 ただし
A=0.91rad/μm^2
B=0.03rad/μm^2
D=-0.07rad/μm^2
E=0.034rad/μm^2
とする。
 C、Fは中心点x=y=0における位相差を設定する定数である。Dの値が負なのは発散性(凹レンズ的)であることを意味する。
The first light collecting element and the second light collecting element shown in FIG. 5 will be described below.
In a three-dimensional space, the traveling direction of light is the z-axis, the minor axis direction of the narrow waveguide perpendicular to the z-axis is the x axis, and the major axis direction is the y axis. Each of the first and second optical elements is formed so as to approximate the phase difference represented by the following quadric surface with a step function.
First: phase difference = Ax 2 + By 2 + C
Second: phase difference = Dx 2 + Ey 2 + F
At that time, the light beam propagates as shown in FIG. 5A when observed on the xz plane and as shown in FIG. 5B when observed on the yz plane.
However, A = 0.91 rad / μm ^ 2
B = 0.03 rad / μm ^ 2
D = −0.07 rad / μm ^ 2
E = 0.034 rad / μm ^ 2
And
C and F are constants for setting the phase difference at the center point x = y = 0. A negative value of D means divergent (concave lens).
 多数の波長板で構成された光学素子によってマイクロプリズムを実現する為には、図6に概念を示すフォトニック結晶波長板を用いることができる。図中の長方形と、それが表す波長板領域の主軸・位相差との関係は、図2について述べたのと同じである。また、図中の長方形の短辺、長辺は、一つの長方形内でも異なる長方形間でも簡単な整数比をなしているが、これは説明と作図の便宜上に過ぎず大きな自由度が存在する。同様に、領域の種類の多少、素子全体における部分波長板の数の多い・少ないは目的により自由に選択できる。 In order to realize a microprism with an optical element composed of a large number of wave plates, a photonic crystal wave plate whose concept is shown in FIG. 6 can be used. The relationship between the rectangle in the figure and the principal axis / phase difference of the wave plate region that it represents is the same as that described for FIG. In addition, the short side and long side of the rectangle in the figure have a simple integer ratio both within one rectangle and between different rectangles, but this is only for convenience of explanation and drawing, and there is a large degree of freedom. Similarly, the number of partial wave plates in the whole element and the number of partial wave plates in the entire element can be freely selected depending on the purpose.
 具体的に説明すると、図6に示した光学素子は、全体が矩形状の薄板状に形成されている。図6に示されるように、光学素子は、もっとも右側の第1領域に横長の長方形の波長板領域が複数形成され、その左方に位置する第2領域に略正方形(短辺と長辺が等しい)の波長板領域が複数形成され、その左方に位置する第3領域に縦長の長方形の波長板領域が複数形成され、さらにその左方に位置する第4領域により長辺の長い縦長の長方形の波長板領域が複数形成され、その左方に位置する第5領域にさらに長辺の長い横長の長方形の波長板領域が複数形成されている。 More specifically, the entire optical element shown in FIG. 6 is formed in a rectangular thin plate shape. As shown in FIG. 6, in the optical element, a plurality of horizontally long rectangular wave plate regions are formed in the rightmost first region, and a substantially square (short side and long side are formed in the second region located on the left side thereof. Are formed), a plurality of vertically long rectangular wave plate regions are formed in the third region located on the left side, and the fourth region located on the left side has a long longitudinal side. A plurality of rectangular wave plate regions are formed, and a plurality of horizontally long rectangular wave plate regions with longer long sides are formed in the fifth region located on the left side thereof.
 このような光学素子は、入射した光の偏光の電界成分が、長方形の波長板領域の長辺に平行ならば遅延が大きくなり、長方形の波長板の長辺に垂直ならば遅延が減少する。この素子には集光、発散の機能は持たせていない。このため、平行ビームは平行に保たれたまま、偏光ごとに定まる光路をとる。故にこれは偏光分離素子または偏光合成素子として動作する。このように、図5に示された光学素子は、二つの直交する直線偏光に対して偏光分離または合成の機能、すなわちプリズムとしての機能をもつものである。 In such an optical element, the delay is increased if the electric field component of the polarized light of the incident light is parallel to the long side of the rectangular wave plate region, and the delay is reduced if it is perpendicular to the long side of the rectangular wave plate. This element does not have a condensing or diverging function. For this reason, the parallel beam takes an optical path determined for each polarized light while being kept parallel. Therefore, it operates as a polarization separation element or a polarization composition element. As described above, the optical element shown in FIG. 5 has a function of separating or synthesizing two orthogonal linearly polarized lights, that is, a function as a prism.
図7には本発明による、波長1.55μm用の偏光分離プリズムの表面構成を示す。フォトニック結晶波長板はNb/SiOで構成され、Y方向(縦方向)に延びる溝列のX方向(横方向)の間隔はほぼ1/4波長である0.4μmであり、それをaと記す。この偏光分離プリズムは大きく13個の領域よりなり、個々の領域はそれぞれ共通の長辺を持つ長方形単位セル(一辺が素子の端に及ぶものも含む)よりなる。長方形単位セルの長辺をbと記せば、第m番の領域の長方形単位セルの長辺は
b=12a/(m-1)
すなわちb=∞、12a、6a、4a、2.4a、….
となる。
FIG. 7 shows a surface configuration of a polarization splitting prism for a wavelength of 1.55 μm according to the present invention. The photonic crystal wave plate is composed of Nb 2 O 5 / SiO 2 , and the interval in the X direction (lateral direction) of the groove row extending in the Y direction (vertical direction) is 0.4 μm, which is almost a quarter wavelength, Mark it as a. This polarization splitting prism is mainly composed of 13 regions, and each region is composed of a rectangular unit cell (including one in which one side extends to the end of the element) having a common long side. If the long side of the rectangular unit cell is written as b, the long side of the rectangular unit cell in the mth area is b = 12a / (m−1).
That is, b = ∞, 12a, 6a, 4a, 2.4a,.
It becomes.
 Y方向(縦方向)に偏光した入射光に対しては図の左側ほど実効的な屈折率が高く、光は左側に偏向される。X方向(横方向)の偏向に対してはその逆である。フォトニック結晶は全体の厚さ48μmの自己クローニング多層膜であり、それはX方向に配列された13個の帯状領域で構成される。左から第i番目の帯はさらにY軸に平行な、周期dの、4本の山・谷構造と、X軸に平行で間隔がb/Iに等しい谷とから構成される。この構造にX方向に偏光した波長1.55μmの入射光ビームは約1/12ラジアンだけ右方向に、y方向に偏光した波長1.55μmの入射光ビームは同じく約1/12ラジアンだけ左方向に偏向される。 For the incident light polarized in the Y direction (longitudinal direction), the effective refractive index is higher toward the left side of the figure, and the light is deflected to the left side. The opposite is true for deflection in the X direction (lateral direction). The photonic crystal is a self-cloning multilayer film having a total thickness of 48 μm, and it is composed of 13 band-like regions arranged in the X direction. The i-th band from the left is further composed of four peak / valley structures with a period d parallel to the Y-axis, and valleys parallel to the X-axis and having an interval equal to b / I. In this structure, an incident light beam having a wavelength of 1.55 μm polarized in the X direction is directed to the right by about 1/12 radians, and an incident light beam having a wavelength of 1.55 μm polarized in the y direction is also directed to the left by about 1/12 radians. To be biased.
 本明細書では、単位となる波長板領域が長方形(正方形、平行凹凸を含めて)である場合について例示してきた。ただし、単位となる波長板は、長方形に限らず、たとえば細長い六角形のような遅軸と速軸を持つ多角形であってもよく、これを隙間なく配置する形態にすることもできる。また、本明細書では、単位となる波長板が長方形である場合において、長辺と短辺とが簡単な整数比をなす場合を多く示してきたが、より一般的な比とすることももちろん可能である。 In the present specification, the case where the wavelength plate region as a unit is a rectangle (including a square and parallel unevenness) has been exemplified. However, the wave plate as a unit is not limited to a rectangle, and may be a polygon having a slow axis and a fast axis, such as an elongated hexagon, and may be arranged without a gap. Further, in this specification, when the wave plate as a unit is a rectangle, the case where the long side and the short side form a simple integer ratio has been shown in many cases, but it is of course possible to use a more general ratio. Is possible.
 何らかの光素子が処理すべき光が特定の直線偏光であるような状態は、光通信域ではコヒーレント光通信に、可視域でもレーザ光学系に広く利用することができる。短焦点距離特性、小形特性、高度の集積が可能であることなど利用範囲は多種多様である。 The state in which the light to be processed by any optical element is a specific linearly polarized light can be widely used for coherent optical communication in the optical communication region and in the laser optical system even in the visible region. There are a wide range of applications such as short focal length characteristics, small characteristics, and high integration.

Claims (9)

  1.  光の入射する平面が複数の領域に分かれ、各領域はそれぞれ波長板よりなり、各波長板はそれぞれの位相差をもち、領域間で遅軸または速軸の方向を共通に保ちながら各領域は隙間なく隣接しており、一つの直線偏光で入射する光に対して集光の機能をもつ
     光学素子。
    The plane on which the light is incident is divided into a plurality of regions, each region is composed of a wave plate, each wave plate has a phase difference, and each region has a common slow axis or fast axis direction between the regions. An optical element that is adjacent to each other with no gap and has the function of condensing light incident on a single linearly polarized light.
  2.  前記複数の領域は、
      中心を共有する複数の円形若しくは円環状の領域、
      中心を共有する複数の楕円形若しくは楕円環状の領域、又は
      複数の方形の領域である
     請求項1に記載の光学素子。
    The plurality of regions are:
    A plurality of circular or annular regions sharing a center,
    The optical element according to claim 1, wherein the optical element is a plurality of elliptical or elliptical annular regions sharing a center or a plurality of rectangular regions.
  3.  光の入射する平面が帯状の複数の領域に分かれ、各領域はそれぞれ波長板よりなり、各波長板はそれぞれの位相差をもち、領域間で遅軸または速軸の方向を共通に保ちながら各領域は隙間なく隣接されており、二つの直交する直線偏光に対して偏光ごとの角度で屈折の機能をもつ
     光学素子。
    The plane on which light is incident is divided into a plurality of band-shaped regions, each region is made of a wave plate, each wave plate has its own phase difference, and each region has a common slow axis or fast axis direction. An optical element in which the regions are adjacent to each other with no gap and has a function of refraction at an angle for each polarization with respect to two orthogonal linearly polarized light.
  4.  前記波長板は、平面内に周期溝状の構造を持ち、当該周期溝状の構造が厚さ方向に積層されたフォトニック結晶である
     請求項1または請求項3に記載の素子。
    The element according to claim 1, wherein the wave plate is a photonic crystal having a periodic groove-like structure in a plane, and the periodic groove-like structure is stacked in a thickness direction.
  5.  前記フォトニック結晶は、複数種類の屈折率の異なる透明体が厚さ方向に積層されたものであり、
     前記複数種類の透明体の内一つは、アモルファスシリコン、5酸化ニオブ、または5酸化タンタルである
     請求項4に記載の光学素子。
    The photonic crystal is a laminate in which a plurality of types of transparent bodies having different refractive indexes are laminated in the thickness direction,
    The optical element according to claim 4, wherein one of the plurality of types of transparent bodies is amorphous silicon, niobium pentoxide, or tantalum pentoxide.
  6.  前記波長板は、前記周期溝状の構造において溝の基本周期が、入射する光の光波長の5分の1以下である
     請求項4に記載の光学素子。
    The optical element according to claim 4, wherein the wavelength plate has a fundamental period of grooves that is not more than one-fifth of an optical wavelength of incident light in the periodic groove-shaped structure.
  7.  1枚の基板の両面に請求項1または請求項3に記載の光学素子を持つ
     光学部品。
    An optical component having the optical element according to claim 1 or 3 on both surfaces of a single substrate.
  8.  請求項1または請求項3に記載の第1の光学素子を形成した後に、1種類の誘電体膜をある厚さ成膜し表面を平坦化した上で、第1の光学素子とは波長板の数、向き、又は周期が異なる請求項1または請求項3に記載の第2の光学素子を形成する
     光学部品の製造方法。
    After the first optical element according to claim 1 or 3 is formed, a thickness of one type of dielectric film is formed and the surface is flattened. The manufacturing method of the optical component which forms the 2nd optical element of Claim 1 or Claim 3 from which the number, direction, or period of these differs.
  9.  請求項1または請求項3に記載の光学素子を用いて二つ以上の光通信部品間を結合する
     光学結合部品。
    An optical coupling component that couples two or more optical communication components using the optical element according to claim 1.
PCT/JP2016/063635 2015-05-08 2016-05-06 Optical element WO2016181895A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017517909A JPWO2016181895A1 (en) 2015-05-08 2016-05-06 Optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015095370 2015-05-08
JP2015-095370 2015-05-08

Publications (1)

Publication Number Publication Date
WO2016181895A1 true WO2016181895A1 (en) 2016-11-17

Family

ID=57247970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063635 WO2016181895A1 (en) 2015-05-08 2016-05-06 Optical element

Country Status (2)

Country Link
JP (1) JPWO2016181895A1 (en)
WO (1) WO2016181895A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054114A (en) * 2015-09-07 2017-03-16 有限会社オートクローニング・テクノロジー Optical waveguide device of photonic crystal perpendicular type

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008196A1 (en) * 2002-07-13 2004-01-22 Autocloning Technology Ltd. Polarization analyzer
WO2009044834A1 (en) * 2007-10-01 2009-04-09 Nikon Corporation Polarization compensation optical system and polarization compensation optical element used in this optical system
US7715099B2 (en) * 2006-12-12 2010-05-11 Northrop Grumman Space & Mission Systems Corporation Optical birefringence coronagraph
JP2010156896A (en) * 2008-12-26 2010-07-15 Photonic Lattice Inc Multi-value wavelength plate
US20130177273A1 (en) * 2010-07-12 2013-07-11 Research Foundation of CUNY on behalf of City College Cylindrical Vector Beam Generation From A Multicore Optical Fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008196A1 (en) * 2002-07-13 2004-01-22 Autocloning Technology Ltd. Polarization analyzer
US7715099B2 (en) * 2006-12-12 2010-05-11 Northrop Grumman Space & Mission Systems Corporation Optical birefringence coronagraph
WO2009044834A1 (en) * 2007-10-01 2009-04-09 Nikon Corporation Polarization compensation optical system and polarization compensation optical element used in this optical system
JP2010156896A (en) * 2008-12-26 2010-07-15 Photonic Lattice Inc Multi-value wavelength plate
US20130177273A1 (en) * 2010-07-12 2013-07-11 Research Foundation of CUNY on behalf of City College Cylindrical Vector Beam Generation From A Multicore Optical Fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054114A (en) * 2015-09-07 2017-03-16 有限会社オートクローニング・テクノロジー Optical waveguide device of photonic crystal perpendicular type

Also Published As

Publication number Publication date
JPWO2016181895A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
US6927915B2 (en) Diffractive optical element, and optical system and optical apparatus provided with the same
JP6356557B2 (en) Lens and manufacturing method thereof
JP6253105B2 (en) Interlayer lightwave coupling device
US11125925B2 (en) Optical element
US9927575B2 (en) Optical coupling using polarization beam displacer
CN104932043B (en) Reflective off-axis lens based on metal micro-nanostructure antenna array
KR20140082855A (en) Control of light wavefronts
US20040258355A1 (en) Micro-structure induced birefringent waveguiding devices and methods of making same
WO2022000925A1 (en) Structured light projection device
US20020122613A1 (en) Optical device and spectroscopic and integrated optical apparatus using the same
CN113391384B (en) On-chip directional rectification super surface based on cascade nano microstructure and design method thereof
CN111133346B (en) Optical element and lightwave circuit
JP3979146B2 (en) Optical element using one-dimensional photonic crystal and optical apparatus using the same
WO2016181895A1 (en) Optical element
JP3766844B2 (en) Lattice modulation photonic crystal
CN110426772B (en) Photonic crystal heterostructure capable of realizing one-way transmission of elliptically polarized light
US20230221462A1 (en) Metasurface optical device with tilted nano-structure units and optical apparatus
GB2386205A (en) Optical photonic crystal beam splitting element
CN103235417A (en) Thin film type optical collimator on basis of surface plasmon polaritons
US20100208346A1 (en) Multilayer Dielectric Transmission Gratings Having Maximal Transmitted Diffraction Efficiency
JP7048962B2 (en) Optical element
CN108646429B (en) Structured light projector
CN102157894A (en) Axisymmetric polarization resonator mirror based on grating
JP2000131522A (en) Polarizer and its production and waveguide type optical device using the same
CN111580288A (en) Tunable thermo-optical filter, and adjusting method and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017517909

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792620

Country of ref document: EP

Kind code of ref document: A1