WO2016166397A1 - Composition for the cross-linking of an amine with a vinyl compound α,β- conjugated to a carbonyl group of esters, and subsequent polymerisation of the vinyl compound and corresponding methods - Google Patents

Composition for the cross-linking of an amine with a vinyl compound α,β- conjugated to a carbonyl group of esters, and subsequent polymerisation of the vinyl compound and corresponding methods Download PDF

Info

Publication number
WO2016166397A1
WO2016166397A1 PCT/ES2016/070251 ES2016070251W WO2016166397A1 WO 2016166397 A1 WO2016166397 A1 WO 2016166397A1 ES 2016070251 W ES2016070251 W ES 2016070251W WO 2016166397 A1 WO2016166397 A1 WO 2016166397A1
Authority
WO
WIPO (PCT)
Prior art keywords
curing
composition according
stage
composition
amine
Prior art date
Application number
PCT/ES2016/070251
Other languages
Spanish (es)
French (fr)
Inventor
Maria Àngels SERRA ALBET
Xavier Fernández Francos
Xavier Ramis Juan
Josep Maria MORANCHO LLENA
Original Assignee
Universitat Politècnica De Catalunya
Universitat Rovira I Virgili
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De Catalunya, Universitat Rovira I Virgili filed Critical Universitat Politècnica De Catalunya
Publication of WO2016166397A1 publication Critical patent/WO2016166397A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical

Definitions

  • the present invention relates to cross-curable compositions by dual curing, in which the first step consists of a Michael addition of an amine to an ⁇ , ⁇ -conjugated vinyl compound to a carbonyl ester group and the second the polymerization of the same vinyl compound or of another vinyl compound.
  • the invention also relates to a process for obtaining said composition.
  • the invention also relates to a process for coating substrates and the corresponding substrate, and a process for manufacturing parts by molding and the corresponding part. These procedures consist of bringing the components into contact and activating each of the curing stages, either thermally or by ultraviolet radiation, depending on the components that form the desired final composition and properties.
  • the materials prepared from the compositions of the present invention have properties ranging from those of non-gelled materials to those of highly crosslinked materials, depending on the components of the composition, their functionality and their relative proportions, on the Cure conditions and whether the two stages of cure have been performed or only the first. Also, the materials prepared after the first stage of curing can be stored, for long periods of time without substantially modifying their properties, before the second stage of curing is performed.
  • the present invention has application in all the usual fields of thermosetting materials, although its application in the field of thermosensitive substrate coatings is of particular interest.
  • Unsaturated monomers and oligomers are used in a wide range of applications such as adhesives, matrices for composites, varnishes, surface coatings, dental or structural repair systems, systems of Photo printing and holography. After a cross-linking process, called curing, these materials reach their maximum properties, which depend fundamentally on their chemical structure and the degree of cross-linking achieved.
  • the process of crosslinking vinyl systems generally proceeds according to a radical type mechanism, which can be initiated thermally or by ultraviolet radiation. In the first case, a radical initiator, peroxide, hydroperoxide or azo compound is required, which decomposes producing a radical that initiates polymerization.
  • a promoter should be added that reduces the initiator by forming a radical that will also start the process.
  • aromatic tertiary amines or cobalt salts are commonly used.
  • a photoinitiator is needed that generates free radicals during irradiation.
  • photoinitiators there are two families of photoinitiators, those of type I and those of type II, which require to be active of a sensitizer that acts as an electron donor and active species.
  • type I photoinitiators 2,2-dimethoxy-2-phenylacetophenone and 1-hydroxycyclo exylphenyl ketone and its derivatives are usually used.
  • Benzophenone is one of the most commonly used type II photoinitiators.
  • a tertiary amine can be used as a sensitizer, which in addition to reacting easily with benzophenone producing an active species, retards the effect of oxygen inhibition on polymerization. While thermal curing requires a high energy consumption, the photo curing takes place at room temperature with low energy consumption, although in many cases the photo-cured materials must be postured to devitrify and achieve their final properties. If the material is not fully reacted, it can modify its properties during its useful life and even change its composition, if there is free monomer without crosslinking that can be volatile.
  • Radical systems present a serious problem that lies in the inhibition that exerts oxygen on the curing process.
  • the oxygen in the air can trap free radicals, generating new non-active radicals, paralyzing or slowing down the curing process.
  • the material may be partially cured or with a certain surface tack, in the area where oxygen may have been more active.
  • Different alternatives are commonly used to solve or minimize this problem, such as increasing the time and intensity of irradiation, working in an inert atmosphere, using high amounts of photoinitiator or adding oxygen scavengers / sequestrants and / or photosensitizers. Most of these alternatives increase the cost and complexity of the formulation and in some cases, such as working in an inert atmosphere, it is a difficult solution to implement in some industrial applications.
  • thermosetting material acts as an adhesive
  • dual curing allows that after a first stage of pre-curing the material can be stored stably, deformed if necessary or simply that the handling is comfortable, before the material reaches its final properties in a second stage of curing, by application of pressure, temperature or any other form of activation. After the first stage the material must be chemically inactive, maintaining a certain latency until the second curing stage is activated.
  • Dual thermosets are typically prepared by two different chemical processes, often one of them photochemical and the other thermal, although this is not essential if the chemistry of each of the processes and the necessary starting materials and curing agents are properly chosen.
  • Click reactions that have been widely applied in macromolecular engineering can be used in the preparation of thermosets with controlled stoichiometry obtained by dual curing. These reactions are characterized by being fast, highly selective, quantitative, orthogonal and insensitive to oxygen or water.
  • orthogonal refers to the fact that two components can react specifically for a certain functional group with high performance in the presence of a large number of other functional groups without affecting them.
  • Michael's reaction consists in the catalytic addition of a nucleophile (Michael donor) to an ⁇ , ⁇ -unsaturated carbonyl compound (Michael acceptor).
  • the donor group would be the secondary or primary amine.
  • this reaction proceeds efficiently without the need for a base and in others that the addition of certain Lewis acids also catalyzes it.
  • Hyperbranched polymers are being used recently as toughness modifiers and as crosslinking agents for thermostable systems. The relative ease of its synthesis together with the existence of an increasing amount of commercial hyperbranched polymers has increased its use.
  • hyperbranched polyethyleneimines containing primary, secondary and tertiary amines would be potential candidates to form Michael adducts with acrylates, with the advantage that tertiary amines could act simultaneously as bases, accelerating the addition, and as oxygen sequestering agents, diminishing the effect of inhibition that this has on the radical cure.
  • the polymerization of these adducts is carried out in a second differentiated stage by adding a photoinitiator to the previous mixture after the addition reaction (that is, with the adducts already formed), in some cases also in the presence of a solvent, and radiating The sample with ultraviolet light.
  • the present inventors although using the aza-Michael addition and the polymerization of vinyl compounds in their invention, the starting materials, the materials obtained and the process both to obtain the compositions and the one used in the cross-linking thereof, they are completely different than those described in US 3,844,916.
  • the formulations are prepared in one step (so that the initial composition, before the addition reaction begins, already includes the radical initiator), although curing is done in two steps (dual cure), under well differentiated reaction conditions.
  • the materials at the end of the first curing stage are stable and can be stored for a long time.
  • Aza-Michael adducts are formed in situ within the curable composition.
  • the materials at the end of the first curing stage may or may not be gelled, depending on the functionality of the reactive monomers / oligomers used and the relative amount thereof, depending on the application to be performed.
  • the amines used can be linear or hyperbranched and the vinyl compounds used are not limited only to acrylates, although these vinyl compounds must be activated by a conjugated unsaturated functional group.
  • the aza-Michael addition can proceed completely at room temperature or at a higher temperature, without catalyst or catalyzed by a base or by a Lewis acid.
  • the second stage of curing can be activated by UV radiation or thermally.
  • the materials at the end of the second curing stage can be fully reacted without energy input, if both curing stages are performed at room temperature.
  • As a base tertiary amines can be used, which also act as oxygen sequestrants.
  • Curable compositions may be free of volatile organic compounds and solvents. Therefore, in view of the foregoing, there is a need in the state of the art to provide new compositions and a new process for obtaining vinyl materials, formulated in a single step but crosslinked by curing. dual, that can be stored or handled after the first stage of curing, without the mentioned disadvantages related to oxygen inhibition, solvent use and high energy cost.
  • the versatility of the new compositions, which lead to materials with diverse properties and wide industrial applications, is also a demand of the prior art.
  • composition of the invention for the cross-linking of an amine with an ⁇ , ⁇ -vinyl compound conjugated to a carbonyl ester group and subsequent polymerization of the vinyl compound, characterized in that it comprises at least: a) a non-aromatic amine or non-aromatic polyamine, with at least two NH bonds, b) a vinyl compound, of general formula (I), containing at least two double ⁇ , ⁇ -conjugated double bonds to a group ester carbonyl
  • Y and Z are each independently a hydrogen, aliphatic or aromatic moieties or more complex groups, and where X is an aliphatic or aromatic moiety or a more complex group, and c) a radical photoinitiator or a radical thermal initiator, suitable for initiating crosslinking said double ⁇ , ⁇ -conjugated bonds to an excess ester carbonyl group.
  • composition according to the invention once formed, already has all the necessary components as to perform dual curing, that is, a first curing stage of component a) with component b) and a second curing stage in which the ⁇ , ⁇ -conjugated double bonds are reacted to a carbonyl ester group that remain unreacted after the first cure.
  • component c) allows a plurality of applications of the composition according to the invention.
  • a polyamine is any compound that comprises more than one amino group, and may or may not have a polymeric character.
  • any non-aromatic amine or polyamine are viable, the only limitation having at least two N-H bonds, necessary for polymerization.
  • the vinyl compound b) of formula (I) can also be very diverse, and the only really relevant requirement is that it contains at least two double ⁇ - ⁇ -conjugated bonds to a carbonyl ester group, necessary for its polymerization.
  • a plurality of alternatives will be obtained, all of which share the basic advantages of the invention, such as the fact that the composition already includes, at the outset, all the essential components for curing. dual.
  • the ⁇ , ⁇ -conjugated double bonds to a carbonyl ester group are in excess of the NH bonds. Strictly speaking it is not necessary that there is an excess of double ⁇ , ⁇ -conjugated bonds to a carbonyl ester group so that there can be a dual cure, since, in real conditions, it is possible that, even if NH bonds remain unreacted, these do not react with the ⁇ , ⁇ -conjugated double bonds to an unreacted carbonyl ester group for various reasons. Therefore, the second stage of dual curing can take place even with unreacted NH bonds. However, it is advantageous that there are double ⁇ , ⁇ - bonds conjugated to an excess ester carbonyl group to ensure that the second stage of cure takes place in a significant proportion.
  • Y and Z are each independently a hydrogen, a C1-C20 alkyl radical, linear or branched, substituted or not, a C2-C20 alkenyl or alkynyl radical, linear or branched, substituted or not, a C4- cycloalkyl or cycloalkenyl radical C20, substituted or not, an aryl radical, which may also have alkyl, halogen or other substituents directly attached to the aromatic rings.
  • the group X is a C2-C100 alkyl radical, linear or branched, substituted or not, a C2-C40 alkenyl or alkynyl radical, linear or branched, substituted or not, a C4-C20 cycloalkyl or cycloalkenyl radical, substituted or not, an aryl radical, which may also have alkyl, halogen or other substituents directly attached to the aromatic rings, and X may also be linked to several ⁇ , ⁇ -conjugated ester groups.
  • n varies between 2 and 50.
  • Advantageously component a that is, the amine or polyamine, is a polyamine with at least three N-H bonds. These three N-H bonds can be provided by primary, secondary amines or combinations of both.
  • a preferred solution is when the amine or polyamine has between 3 and 5 NH groups, the vinyl compound contains between 2 and 6 ⁇ , ⁇ -conjugated double bonds to a carbonyl ester group and, advantageously, the ratio between NH and double groups ⁇ , ⁇ -conjugated bonds to a carbonyl ester group is between 0.05 and 1.
  • the vinyl compound contains between 2 and 6 double bonds ⁇ , ⁇ -conjugated to a carbonyl ester group and, advantageously, the ratio between NH and double groups ⁇ , ⁇ -conjugated bonds to a carbonyl ester group is between 0.01 and 1.
  • Z and Y are hydrogens, that is, when the compound (I) is an acrylate, or when they are respectively a hydrogen and a methyl group, that is, when the compound (I) is a methacrylate.
  • component b) is a mixture of acrylates, a mixture of methacrylates or a mixture of acrylates and methacrylates in any proportion. In this sense, any of the following alternatives are especially interesting:
  • - component b) is a mixture of bisphenol A-glycerolate diacrylate and 1,6-hexanediol diacrylate.
  • - component b) is a mixture of bisphenol A-glycerolate diacrylate and trimethylolpropane triacrylate.
  • component b) is a mixture of bisphenol A-glycerolate diacrylate and triethylene glycol trimethylolpropane dimethacrylate
  • - component b) is a mixture of bisphenol A-glycerolate dimethacrylate and 1,6-hexanediol diacrylate.
  • component a it is particularly advantageous if it is a polyamine of molecular weight between 400 and 25,000. It is also advantageous that it is:
  • Polyamines marketed under the trade names Jeffamine D-230 and Lupasol FW are two particularly interesting alternatives.
  • a particularly preferred solution is that the amine or polyamine is diethylenetriamine.
  • Component c) of the composition is preferably any radical photoinitiator, both type I and type II.
  • a type II photoinitiator in the present invention, the advantage is obtained that no sensitizers will be required since the tertiary amines generated in the first stage of curing they react with the type II photoinitiator generating an active species that initiates the second stage photo curing.
  • the radical photoinitiator it is particularly advantageous for the radical photoinitiator to be 2,2-dimethoxy-2-phenyl acetophenone or benzophenone.
  • Lewis bases and acids which are preferably 1,5-diazabicyclo [4.3.0] non-5- ene or ytterbium triflate, or increase the temperature, although
  • Lewis bases and acids which are preferably 1,5-diazabicyclo [4.3.0] non-5- ene or ytterbium triflate.
  • the inventors have observed that the aza-Michael addition of an amine to an ⁇ , ⁇ -vinyl compound conjugated to a carbonyl ester group is relatively little dependent on temperature, curing slightly accelerating but not the degree of reaction achieved by increasing the temperature. Heating during the first stage, although it can be done, does not seem like a preferred option, since it implies a higher energy cost.
  • a thermal radical initiator should be added to the composition, which is preferably methyl ethyl ketone peroxide, and , if it is also desired that the temperature is not very high, a promoter, which is preferably cobalt octoate.
  • composition of the invention may optionally contain at least one common adjuvant additive in formulations with unsaturated monomers and oligomers, such as pigments, dyes, plasticizers, reinforcing and non-reinforcing fillers, etc.
  • at least one common adjuvant additive in formulations with unsaturated monomers and oligomers, such as pigments, dyes, plasticizers, reinforcing and non-reinforcing fillers, etc.
  • a subject of the invention is also a process for obtaining a composition for cross-linking an amine with an ⁇ , ⁇ -vinyl compound conjugated to a carbonyl ester group and subsequent polymerization of the excess vinyl compound according to the invention, which It comprises the steps of: (i) dissolving the radical photoinitiator or the radical thermal initiator in component b) of the formulation by stirring at room temperature, (ii) adding component a) to the previous mixture, and maintaining the resulting mixture at vacuum for at least 15 minutes at room temperature.
  • the vacuum is less than 1 00 mm Hg.
  • step (ii) it is dissolved in component a) a base or a Lewis acid.
  • a radical thermal initiator is used and a promoter is added in component b).
  • composition gels during the first curing stage, although in certain applications it may be advantageous for the composition to gel during the second curing stage.
  • Another object of the invention is a substrate coated with a crosslinked material obtainable by curing a composition following the above procedure.
  • the object of the invention is a method of manufacturing a part by molding characterized in that it comprises the steps of:
  • composition III filling a mold with composition III) first stage of curing by the reaction between compound a) and compound b) IV) second stage of curing by activating said photoinitiator by ultraviolet radiation or said thermal initiator by means of heat input and the reaction of the remaining ⁇ , ⁇ -conjugated double bonds to a carbonyl ester group with each other.
  • the object of the invention is also a piece of a crosslinked material obtainable by curing a composition following the above procedure.
  • the inventors have verified that changes in these procedures, in terms of preparation time and temperature, do not alter the final properties of the materials obtained.
  • the first stage of curing can begin during the preparation of the composition, if the time used is not excessively long and the temperature is not very high, as long as the material does not gel, the materials can be prepared without any difficulty.
  • Primers can be made on any type of substrate, although it may have special interest when the substrates are heat sensitive, since it is not necessary to heat the samples to reach their final properties.
  • these can be of any material, although when the second stage is photoinduced they must allow the total or partial passage of UV radiation, being able to be for example glass, quartz or some plastic material such as polypropylene and the polyethylene that let some of the radiation pass.
  • a thermal initiator When it is desired to perform the second stage of curing by thermal initiation, instead of a photoinitiator, a thermal initiator and, if desired, a promoter must be added. If a promoter is added, it is advisable to always work at low temperatures and short times, to avoid starting the second stage of curing during the preparation of the mixture or even during the first stage of curing. Special care must be taken if it is required to store the formulation at the end of the first stage. In order to know the optimum amount of promoter so that there are no prepolymerizations, previous tests can be carried out in a calorimeter or in an oven to determine at what temperature and / or at what time the radical curing of the vinyl component
  • Lewis bases or acids these are preferably dissolved in the amine, although it is possible to dissolve them in component b) of the invention, depending on the miscibility of the components.
  • the invention relates to a process for cross-linking an amine to an ⁇ , ⁇ -conjugated vinyl ester compound by dual curing and subsequent polymerization of the excess vinyl compound, hereinafter process of the invention, which It comprises the use of the composition of the invention as defined above.
  • the process comprises curing said composition by two stages, the first stage is preferably performed at room temperature, although any other temperature is possible.
  • the time required to perform this stage is variable and varies depending on the formulation of the composition of the invention and the curing temperature.
  • the inventors have observed that the temperature of 35 and C (is selected as ambient 35 temperature and C for the results to be valid even in hot climates), in three hours most formulations have completed the addition aza-Michael and If this is not the case, the progress of this is already very slow. It has also been seen that most of this process takes place during the first 45 minutes, so it is possible to adjust the cure time more if it is considered convenient.
  • the inventors have also observed that the properties of the product at the end of the first curing stage depend fundamentally on the formulation of the starting composition, and little on the curing conditions (time, temperature), as long as the curing is close to full.
  • the first stage is carried out at room temperature for three hours and without accelerators
  • the first stage of curing is carried out for 24 hours and in some cases they have been used as accelerators 1, 5 -diazabicyclo [4.3.0] non-5-eno, or ytterbium triflate, acting respectively as a base and as Lewis acid.
  • the second stage of curing, homopolymerization of excess vinyl compound is preferably carried out by photoinduced curing by UV radiation.
  • any type of photoinitiator can be used, both type I and Type II, although in the latter case it is not necessary to add any sensitizers.
  • the amount of photoinitiator can be any, although very low amounts can lead to poorly cured materials or the need to use very high irradiation times and intensities. On the contrary, excessively high amounts can lead to materials with a lower glass transition temperature.
  • any type of lamp, both monochromatic and polychromatic can be used, provided they emit within the emission range in which the photoinitiator is activated.
  • the time and intensity of the irradiation used can be practically any, since the reaction proceeds very quickly and efficiently.
  • a high temperature post cure can be performed to help complete the cure.
  • the increase in cure is so insignificant that it seems reasonable not to do so, since it involves a higher energy cost and a risk to the thermal stability of the materials.
  • the second stage of thermal curing can be performed.
  • a peroxide or hydroperoxide type thermal initiator instead of a photoinitiator, a peroxide or hydroperoxide type thermal initiator must be used.
  • these systems require working at high temperatures above 80 e C from which the initiator decomposes.
  • the inventors have observed that although any thermal radical initiator serves, some of the benzoyl peroxide type, despite allowing almost complete cure, lead to materials that exhibit defects due to the formation of carbon dioxide. By On the contrary, if methyl ethyl ketone peroxide type initiators are used, almost completely cured materials are obtained without apparent defects.
  • a cobalt octoate type promoter should also be added in the case of methyl ketone peroxide or a tertiary amine type A /, A / -dimethylaniline in the case of benzoyl peroxide. Curing times, and amounts of initiator and promoter must be adjusted in each case depending on the cure temperature.
  • the process of the invention does not require that dual cure be performed in the absence of oxygen, and can be done in the air without the need for any prevention.
  • the materials are always very close to complete curing and without any superficial tack.
  • the materials obtained can be stored indefinitely after the first stage of curing, without their properties changing. Only when the sample is irradiated can the second stage of cure begin. In some formulations where the first stage of cure has not been complete, during storage this stage tends to complete slowly but in no case does the second stage begin.
  • Formulations 1/1, 1/2, 1/4 and 1/8 are understood to be those in which the first stage (aza-Michael addition of the amine to the conjugated double bond) represents 100%, 50%, 25% and 12.5% with respect to total cure. The rest up to 100% would correspond to the second stage of curing (homopolymerization of excess vinyl groups) and for the formulations 1/1, 1/2, 1 A and 1/8 equivalent respectively to 0%, 50%, 75 % and 87.5% of total cure.
  • materials with variable compositions can be prepared, ranging from those in which there is only the first curing stage when the formulations are prepared with stoichiometric amounts of amino groups relative to vinyl groups, to formulations where only the second stage of curing (homopolymerization of excess vinyl compound), when not It includes amine in the formulation.
  • the material has completely different properties.
  • BGDA / HDDA acrylates with a weight ratio of 25/75 and diethylenetriamine (examples 6, 7, 8 and 9) and a hyperbranched amine of molecular weight 800 have been used as component b) g / mol and trade name Lupaso FG (examples 10, 1 1, 12 and 13).
  • the latter amine has a composition similar to diethylenetriamine but also has tertiary amino groups in its structure.
  • the T g s after the first stage of cure are superior in the formulations with Lupaso FG than with diethylenetriamine, as are the T g s and the module relaxed after the second stage of cure. It seems that the greater functionality of Lupaso FG leads to significantly more crosslinked materials and superior properties. Conversions at the end of the first stage of cure are significantly higher than when Jeffamine D-230 is used, although somewhat lower compared to diethylenetriamine systems. In general, it can be said that the reaction rate and the degree of cure of the first stage are strongly influenced by the type of amine used. The addition of aza-Michael in formulations with diethylenetriamine and Lupasol ® is much faster and with significantly greater progress than those containing Jeffamine D-230.
  • the HDDA is completely replaced by triethylene glycol dimethacrylate (TEGDMA) (examples 12 and 18), the T g increases from 75 e C for the formulation containing 75% HDDA to 150 e C for the formulation with 75% in TEGDMA.
  • TEGDMA triethylene glycol dimethacrylate
  • the reactive process proceeds relatively similarly although the systems with TEGDMA gel much faster and have little homogeneity, due to the low miscibility between the TEGDMA and the Lupasol ® FG.
  • both stages of curing are complete, reacting the acrylates preferably in the first stage and methacrylates in the second. If 25% of BGDA is replaced in the same formulation with its analogous methacrylate, glycerol bisphenol A-dimethacrylate (BGMA), instead of replacing 75% of HDDA, the final properties are modified very little, although in this embodiment both stages of curing, especially the first, are not complete under the conditions of the study (examples 12 and 19).
  • BGMA glycerol bisphenol A-dimethacrylate
  • DMPA 2,2-dimethoxy-2-phenyl acetophenone
  • type II photoinitiators such as benzophenone are equally efficient for the invented compositions.
  • DMPA 2,2-dimethoxy-2-phenyl acetophenone
  • type II photoinitiators such as benzophenone are equally efficient for the invented compositions.
  • formulations containing 25% BGDA and 75% HDDA and diethylenetriamine with a molar ratio between the first and second stages of 1/2 it has been seen that whether DMPA is used or benzophenone is used, both stages of cure are practically complete, being even slightly superior with benzophenone.
  • the second curing stage can be performed thermally instead of photoinduced but the photoinitiator must be replaced by a thermal radical initiator.
  • the curing pattern (temperature-time) must be adjusted for each formulation and this depends on the composition of the formulation (T g of the completely cured material) and the type and amount of initiator and promoter selected. Some of the prepared materials can be degraded at relatively low temperatures, although above cure temperatures. The higher the proportion of aza-Michael addition has the composition, the more thermally degradable the network is since the CN bonds degrade at a lower temperature than the CC.
  • the temperature at which the material has decomposed 5% ranges from 216 e C for the formulation where 100% is aza-Michael addition up to 382 e C for formulations where 100% cure is homopolymerization of the conjugated vinyl compounds (examples 1, 2, 3, 4 and 5)
  • the most outstanding advantages of the present invention are:
  • thermosetting materials without heating, with the consequent energy savings.
  • thermosets Very versatile materials ranging from elastomers to highly crosslinked thermosets.
  • the monitoring of the cure in both stages has been carried out by infrared spectroscopy in real time.
  • the infrared spectra were recorded with a Brucker Vertex 70 spectrophotometer with an attenuated total reflectance accessory with thermal control and with a Specac- Teknokroma diamond crystal at a resolution of 4 cm "1 and accumulating 20 scans.
  • For preferred formulations of the present invention was placed the fresh sample of a 50 ⁇ thickness on the surface of the ATR and the following curing pattern was performed: a first curing stage of 3 hours at 35 e C, followed by a second stage at 35 e C radiating 1 minute with a polygromatic Hg- lamp Xe Hamamatsu Lightningcure LC5.
  • the second stage consists of thermal curing
  • the procedure has been similar, but in the second stage, instead of irradiating the sample, the surface of the ATR has been placed at the desired temperature.
  • the samples were impregnated in silanized fiberglass and placed between two rigid silicon oxide discs.
  • the material was cured the same as in the FTIR by an isothermal test at 35 and C applying a varying force ble from 0.0025 to 0.01 N.
  • the time at which the material gains mechanical stability and the amplitude of the oscillations is sharply reduced was taken as a gel time.
  • the conversion in gelation (otgei) was determined as the conversion achieved in the FTIR at the same time as it gelled in the thermomechanical analyzer. At the end of the dual cure all the materials were gelled. The gelation was not determined in the second stage of curing since this takes place at very short times and cannot be detected by conventional techniques.
  • T g glass transition temperature at the end of the two curing stages has been determined by a Q800 dynamomechanical analyzer from TA Instruments working at 1 Hz frequency and in the three-point flex mode.
  • the relaxed module 50 e C was determined above the T g , which is proportional to the degree of cross-linking.
  • the T g after the first curing stage has been determined by differential scanning calorimetry, using a Mettler DSC-822e calorimeter with a TS0801 RO robot in aluminum capsules and under nitrogen atmosphere.
  • the samples placed in the capsules have been heated to 10 e C / min after an oven cure for 3 hours at 35 e C and the temperature of the midpoint of the heat capacity jump has been taken as T g when the material changes from the vitreous state to the amorphous.
  • the thermal stability of the crosslinked materials was determined under a nitrogen atmosphere with a flow of 200 cm 3 / min (measured under normal conditions) in a TGA / DSC 1 thermobalance from Mettler-Toledo. Samples of approximately 10 mg were degraded between 30 and 700 e C by heating at 10 e C / min. The temperature at which the material had lost 5% of weight has been taken as the decomposition temperature.
  • Example 1 (mass ratio BGDA / HDDA 25/75, Jeffamine D-230 with a molar ratio between the first and second stage of 1/1, 3% DMPA)
  • a cross-linking composition at room temperature of a mixture of acrylates with an amine was prepared, homogeneously mixing 2.5 g of BGDA and 7.5 g of HDDA. Then 3 g of DMPA was added and stirred until DMPA was completely dissolved. Finally 4,596 g of Jeffamine D-230 was added, stirred and held for 15 minutes under vacuum. Three parts of the prepared composition were placed a in a mold, another in a DSC capsule and another on the surface of the ATR / FTIR and kept for 3 hours at 35 e C. Finally, the samples of the mold and the FTIR were irradiated as explained.
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of -4 e C, a relaxed modulus of 1 5 MPa and a decomposition temperature of 216 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during curing showed an acrylate conversion of 48% that directly represents 48% of the aza-Michael addition at the end of the first curing stage and 97% of acrylates at the end of the second.
  • the material did not gel during the first curing stage and showed at the end of this stage a glass transition temperature of -61 e C.
  • Example 2 (mass ratio BGDA / HDDA 25/75, Jeffamine D-230 with a molar ratio between the first and second stage of 1/2, 3% DMPA)
  • Example 2 The procedure was as in Example 1 but half of Jeffamine D-230, 2,298 g was added.
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 1 0 e C, a relaxed modulus of 26 MPa and a decomposition temperature of 230 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during curing they showed a 32.5% acrylate conversion that directly represents 65% of the aza-Michael addition at the end of the first curing stage and 92% of acrylates at the end of the second.
  • the material did not gel during the first curing stage and showed at the end of this stage a glass transition temperature of -71 e C.
  • Example 3 (mass ratio BGDA / HDDA 25/75, Jeffamine D-230 with a molar ratio between the first and second stage of 1/4, 3% DMPA)
  • Example 2 The procedure was as in Example 1 but a quarter of Jeffamine D-230, 1, 149 g was added.
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 48 e C, a relaxed modulus of 58 MPa and a decomposition temperature of 258 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during Curing showed a 13% acrylate conversion that directly represents 52% of the aza-Michael addition at the end of the first curing stage and 90% of acrylates at the end of the second.
  • the material did not gel during the first curing stage and showed at the end of this stage a glass transition temperature of -84 e C.
  • Example 4 (mass ratio BGDA / HDDA 25/75, Jeffamine D-230 with a molar ratio between the first and second stage of 1/8, 3% DMPA) The procedure was as in Example 1 but one eighth of Jeffamine D-230, 0.5745 g was added.
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 67 e C, a relaxed modulus of 86 MPa and a decomposition temperature of 307 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during Curing showed a conversion of 6.25% acrylates that directly represents 50% of the aza-Michael addition at the end of the first curing stage and 87% of acrylates at the end of the second.
  • the material did not gel during the first curing stage and showed at the end of this stage a glass transition temperature of -92 e C.
  • Comparison example 5 only photo-cured without addition aza-Michael (mass ratio BGDA / HDDA 25/75, 3% DMPA)
  • the procedure was as in Example 1, but the mass of Jeffamine D-230 was replaced by 1.5964 g of diethylenetriamine.
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 16 e C, a relaxed modulus of 33 MPa and a decomposition temperature of 232 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during curing showed an acrylate conversion of 72% that directly represents 72% of the aza-Michael addition at the end of the first curing stage and 94% of acrylates at the end of the second.
  • the material gelled in 45 minutes and achieved a conversion in gelation of 62% acrylates during the first curing stage.
  • the material also showed at the end of this stage a glass transition temperature of -45 e C.
  • Example 7 (mass ratio BGDA / HDDA 25/75, diethylenetriamine with a molar ratio between the first and second stage of 1/2, 3% DMPA)
  • the procedure was as in example 1, but the mass of Jeffamine D-230 was replaced by 0.7882 g of diethylenetriamine (half as in example 6).
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 39 e C, a relaxed module of 44 MPa and a decomposition temperature of 242 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during curing showed an acrylate conversion of 45% that directly represents 90% of the addition aza-Michael at the end of the first stage of curing and 93% of acrylates at the end of the second.
  • the material gelled in 96 minutes and achieved a conversion in gelation of 40% acrylates during the first curing stage.
  • Example 8 mass ratio BGDA / HDDA 25/75, diethylenetriamine with a molar ratio between the first and second stages of 1/4, 3 % DMPA
  • the procedure was as in example 1, but the mass of Jeffamine D-230 was replaced by 0.3991 g of diethylenetriamine (a quarter as in example 6).
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 56 e C, a relaxed modulus of 73 MPa and a decomposition temperature of 275 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during curing showed an acrylate conversion of 24% that directly represents 96% of the aza-Michael addition at the end of the first curing stage and 89% of acrylates at the end of the second.
  • the material gelled in 127 minutes during the first curing stage and reached a conversion in gelation of 26% acrylates and showed at the end of this stage a glass transition temperature of -86 e C.
  • Example 9 (mass ratio BGDA / HDDA 25/75, diethylenetriamine with a molar ratio between the first and second stage of 1/8, 3% DMPA)
  • the procedure was as in example 1, but the mass of Jeffamine D-230 was replaced by 0.16555 g of diethylenetriamine (the eighth part as in example 6).
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 70 e C, a relaxed modulus of 92 MPa and a decomposition temperature of 335 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during Curing showed a 12.5% acrylate conversion that directly represents 100% of the aza-Michael addition at the end of the first curing stage and 88% of acrylates at the end of the second.
  • the material did not gel during the first curing stage and showed at the end of this stage a glass transition temperature of -93 e C.
  • Example 10 (mass ratio BGDA / HDDA 25/75, Lupaso FG with a molar ratio between the first and second stage of 1/1, 3% DMPA)
  • the procedure was as in Example 1, but the mass of Jeffamine D-230 was replaced by 2.58 g of Lupaso FG.
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 33 e C, a relaxed modulus of 44 MPa and a decomposition temperature of 249 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during curing showed an acrylate conversion of 62% that directly represents 62% of the aza-Michael addition at the end of the first curing stage and 85% of acrylates at the end of the second.
  • the material gelled in 2 minutes and reached a conversion in gelation of 25% acrylates during the first stage of curing.
  • the material also showed at the end of this stage a glass transition temperature of -33 e C.
  • Example 11 (mass ratio BGDA / HDDA 25/75, Lupasol ® FG with a molar ratio between the first and second stage of 1/2, 3% DMPA)
  • the procedure was as in example 1, but the mass of Jeffamine D-230 was replaced by 1.29 g of Lupaso FG (half as in example 10).
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 53 e C, a relaxed modulus of 65 MPa and a decomposition temperature of 257 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during curing showed an acrylate conversion of 33% that directly represents 60% of the aza-Michael addition at the end of the first curing stage and 86% of acrylates at the end of the second.
  • the material gelled in 16 minutes and achieved a conversion in gelation of 21% acrylates during the first curing stage.
  • the material also showed at the end of this stage a glass transition temperature of -60 e C.
  • Example 12 (mass ratio BGDA / HDDA 25/75, Lupasol ® FG with a molar ratio between the first and second stage of 1/4, 3% DMPA)
  • the procedure was as in example 1, but the mass of Jeffamine D-230 was replaced by 0.645 g of Lupaso FG (the fourth part than in example 10).
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 64 e C, a relaxed modulus of 87 MPa and a decomposition temperature of 306 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during The curing showed a 20% acrylate conversion that directly represents 80% of the aza-Michael addition at the end of the first curing stage and 87% of acrylates at the end of the second.
  • the material gelled in 48 minutes and reached a conversion in gelation of 16% of acrylates during the first stage of curing.
  • the material also showed at the end of this stage a glass transition temperature of -61 e C.
  • Example 13 (mass ratio BGDA / HDDA 25/75, Lupaso FG with a molar ratio between the first and second stage of 1/8, 3% DMPA)
  • the procedure was as in example 1, but the mass of Jeffamine D-230 was replaced by 0.645 g of Lupaso FG (the eighth part than in example 10).
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 72 e C, a relaxed modulus of 100 MPa and a decomposition temperature of 341 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during Curing showed a 10% acrylate conversion that directly represents 80% of the aza-Michael addition at the end of the first curing stage and 87% of acrylates at the end of the second.
  • the material gelled in 445 minutes and achieved a conversion in gelation of 12.5% acrylates during the first stage of curing.
  • the material also showed at the end of this stage a glass transition temperature of -92 e C.
  • Example 14 (mass ratio BGDA / TMTA 37.5 / 37.5, diethylenetriamine with a molar ratio between the first and second stage of 1/4, 3% DMPA)
  • Example 15 The procedure was as in Example 1, but using 5 g of BGDA and 5 g of TMTA as a mixture of acrylates and 0.407 g of diethylenetriamine
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 76 e C , a relaxed module of 157 MPa and a decomposition temperature of 318 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during curing showed a 22% acrylate conversion that directly represents 88% of the aza-Michael addition at the end of the first stage of curing and 80% of acrylates at the end of the second.
  • the material showed a glass transition temperature of -62 e C at the end of the first curing stage.
  • Example 15 mass ratio BGDA / TMTA 25/75, diethylenetriamine with a molar ratio between the first and second stage of 1/4, 3% DMPA
  • Example 16 The procedure was as in Example 1, but using 2.5 g of BGDA and 7.5 g of TMTA as a mixture of acrylates and 0.430 g of diethylenetriamine
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 97 e C, a relaxed module of 246 MPa and a decomposition temperature of 368 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during curing showed a 20% acrylate conversion that It directly represents 80% of the aza-Michael addition at the end of the first curing stage and 78% of acrylates at the end of the second.
  • the material showed a glass transition temperature of -42 e C at the end of the first curing stage.
  • Example 16 mass ratio BGDA / HDDA 50/50, diethylenetriamine with a molar ratio between the first and second stage of 1/4, 3% DMPA
  • the procedure was as in Example 1, but using 5 g of BGDA and 5 g of HDDA as a mixture of acrylates and 0.327 g of diethylenetriamine.
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 76 e C, a relaxed modulus of 157 MPa and a decomposition temperature of 324 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during Curing showed a 25% acrylate conversion that directly represents 100% of the aza-Michael addition at the end of the first curing stage and 82% of acrylates at the end of the second.
  • the material gelled in 123 minutes and achieved a conversion in gelation of 24% acrylates during the first curing stage. Also, the material showed at the end of this stage a glass transition temperature of -68 e C.
  • Example 17 (mass ratio BGDA / HDDA 75/25, diethylenetriamine with a molar ratio between the first and second stage of 1/4, 3% DMPA)
  • the procedure was as in Example 1, but using 7.5 g of BGDA and 2.5 g of HDDA as a mixture of acrylates and 0.276 g of diethylenetriamine.
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 67 e C, a relaxed modulus of 28 MPa and a decomposition temperature of 325 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during Curing showed a 25% acrylate conversion that directly represents 100% of the aza-Michael addition at the end of the first curing stage and 76% of acrylates at the end of the second.
  • the material showed a glass transition temperature of -32 e C at the end of the first curing stage.
  • Example 18 (mass ratio BGDA / TEGDMA 25/75, Lupaso FG with a molar ratio between the first and second stage of 1/4, 3% DMPA)
  • the procedure was as in Example 1, but using 2.5 g of BGDA and 7.5 g of TEGDMA as a mixture of acrylates and methacrylates and 0.501 g of Lupaso FG.
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 1 50 e C, a relaxed modulus of 83 MPa and a decomposition temperature of 324 e C.
  • the infrared spectroscopy spectra by Fourier transform recorded during curing showed an acrylate / methacrylate conversion of 22% (of which 19% are acrylates and 3% methacrylates) which directly represents 88% of the aza-Michael addition at the end of the first stage of Cured and 99% acrylates / methacrylates at the end of the second.
  • the material gelled in the first stage very quickly and at a low conversion that could not be determined and showed a very wide glass transition temperature difficult to determine.
  • Example 19 (mass ratio BGMA / HDDA 25/75, Lupasol ® FG with a molar ratio between the first and second stage of 1/4, 3% DMPA)
  • the procedure was as in Example 1, but using 2.5 g of BGMA and 7.5 g of HDDA as a mixture of acrylates and methacrylates and 0.601 g of Lupaso FG.
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 75 e C, a relaxed modulus of 86 MPa and a decomposition temperature of 344 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during curing showed a conversion of acrylates / methacrylates of 1 1% (of which 10% are acrylates and 1% methacrylates) which directly represents 44% of the aza-Michael addition at the end of the first curing stage and 90 % acrylates / methacrylates at the end of the second.
  • the material did not gel during the first stage of curing and showed a glass transition temperature of -82 e C at the end of this stage.
  • Example 20 (mass ratio BGDA / HDDA 25/75, diethylenetriamine with a molar ratio between the first and second stage of 1/2, 3% benzophenone)
  • the procedure was as in Example 7, but the DMPA mass was replaced by 3 g of benzophenone.
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 39 e C, a relaxed modulus of 44 MPa and a decomposition temperature of 242 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during curing showed an acrylate conversion of 44% that directly represents 88% of the aza-Michael addition at the end of the first curing stage and 90% of acrylates at the end of the second.
  • Comparison example 21 only photo-cured without addition aza-Michael (mass ratio BGDA / HDDA 25/75, 3% benzophenone)
  • Example 23 (mass ratio BGDA / TMTA 25/75, Lupaso FG with a molar ratio between the first and second stage of 1/4, 3% methyl ethyl ketone peroxide) Proceed as in example 12, but using 2 , 5 g of BGDA and 7.5 g of TMTA as a mixture of acrylates and replacing the DMPA mass with 3 g of methyl ethyl ketone peroxide.
  • the second stage of curing instead of the usual protocol consisted of the following heat treatment sequence: 1 hour at 150 e C, followed by 1 hour at 180 e C, to end with 1 hour at 200 e C.
  • the material crosslinked at the end of the two stages of dual curing showed a glass transition temperature of 79 e C, a relaxed module of 129 MPa and a decomposition temperature of 310 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during curing showed a conversion of 17% acrylates directly representing 68% of the aza-Michael addition at the end of the first curing stage, 55% of acrylates at the end of heating for 1 hour at 150 e C, 73% of acrylates at the end 1 hour heating at 180 e C and 83% acrylates at the end of 1 hour heating at 200 e C.
  • Example 24 (mass ratio BGDA / TMTA 25/75, Lupasol ® FG with a molar ratio between the first and second stage of 1/4, 3% methyl ethyl ketone peroxide, 0.1% cobalt octoate)
  • the procedure was as in example 23, but also adding 0.1 g of cobalt octoate.
  • the crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 140 e C, a relaxed module of 223 MPa and a Decomposition temperature of 313 e C.
  • the Fourier transform infrared spectroscopy spectra recorded during curing showed a 20% acrylate conversion that directly represents 80% of the aza-Michael addition at the end of the first curing stage, 65% of acrylates at the end of 1 hour heating at 150 e C, 85% of acrylates at the end of 1 hour heating at 180 e C and 95% of acrylates at the end of 1 hour heating at 200 e C .

Abstract

The invention relates to a composition for the cross-linking of an amine with a vinyl compound α,β-conjugated to a carbonyl group of esters, and subsequent polymerisation of the vinyl compound, comprising: a) an amine having two or more N-H bonds; b) a vinyl compound, of general formula (I), containing a minimum of two double bonds α,β-conjugated to a carbonyl group of esters - formula (I) - where Y and Z are each independently a hydrogen, aliphatic or aromatic groups or more complex groups, and where X is an aliphatic or aromatic group or a more complex group; and c) a radical photoinitiator or a radical thermal initiator, suitable for starting the cross-linking of said double bonds excess α,β-conjugated to a carbonyl group of esters.

Description

COMPOSICIÓN PARA EL ENTRECRUZAMIENTO DE UNA AMINA CON UN COMPUESTO VINÍLICO α,β-CONJUGADO A UN GRUPO CARBONILO DE ESTER Y POSTERIOR POLIMERIZACIÓN DEL COMPUESTO VINÍLICO Y PROCEDIMIENTOS CORRESPONDIENTES  COMPOSITION FOR THE INTERRUPTING OF AN AMINA WITH AN α, β-CONNECTED VINYL COMPOUND TO A CARBONYL ESTER GROUP AND POSTERIOR POLYMERIZATION OF THE VINYL COMPOUND AND CORRESPONDING PROCEDURES
DESCRIPCIÓN DESCRIPTION
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención se refiere a composiciones entrecruzables mediante curado dual, en que la primera etapa consiste en una adición de Michael de una amina a un compuesto vinílico α,β-conjugado a un grupo carbonilo de éster y la segunda la polimerización del mismo compuesto vinílico o bien de otro compuesto vinílico. Asimismo la invención se refiere a un procedimiento para obtener dicha composición.  The present invention relates to cross-curable compositions by dual curing, in which the first step consists of a Michael addition of an amine to an α, β-conjugated vinyl compound to a carbonyl ester group and the second the polymerization of the same vinyl compound or of another vinyl compound. The invention also relates to a process for obtaining said composition.
La invención se refiere también a un procedimiento para el recubrimiento de sustratos y el sustrato correspondiente, y un procedimiento para la fabricación de piezas por moldeo y la pieza correspondiente. Estos procedimientos consisten en poner en contacto los componentes y en activar cada una de las etapas del curado, bien de forma térmica o mediante radiación ultravioleta, según sean los componentes que formen la composición y las propiedades finales deseadas. Los materiales preparados a partir de las composiciones de la presente invención presentan propiedades que van desde las de los materiales no gelificados hasta las de los materiales altamente entrecruzados, dependiendo de los componentes de la composición, de su funcionalidad y de sus proporciones relativas, de la condiciones del curado y de si se han realizado las dos etapas de curado o sólo la primera. Asimismo, los materiales preparados tras la primera etapa de curado pueden ser almacenados, durante largos periodos de tiempo sin que se modifiquen substancialmente sus propiedades, antes de que se realice la segunda etapa del curado. La presente invención tiene aplicación en todos los campos habituales de los materiales termoestables, aunque tiene especial interés su aplicación en el campo de los recubrimientos con sustratos termosensibles. The invention also relates to a process for coating substrates and the corresponding substrate, and a process for manufacturing parts by molding and the corresponding part. These procedures consist of bringing the components into contact and activating each of the curing stages, either thermally or by ultraviolet radiation, depending on the components that form the desired final composition and properties. The materials prepared from the compositions of the present invention have properties ranging from those of non-gelled materials to those of highly crosslinked materials, depending on the components of the composition, their functionality and their relative proportions, on the Cure conditions and whether the two stages of cure have been performed or only the first. Also, the materials prepared after the first stage of curing can be stored, for long periods of time without substantially modifying their properties, before the second stage of curing is performed. The present invention has application in all the usual fields of thermosetting materials, although its application in the field of thermosensitive substrate coatings is of particular interest.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Los monómeros y oligómeros insaturados son utilizados en una amplia gama de aplicaciones tales como adhesivos, matrices para "composites", barnices, recubrimientos de superficies, sistemas de reparación dental o estructural, sistemas de fotoimpresión y holografía. Tras un proceso de reticulación, denominado curado, estos materiales alcanzan sus máximas propiedades, que dependen fundamentalmente de su estructura química y del grado de reticulación alcanzado. El proceso de reticulación de los sistemas vinílicos procede generalmente según un mecanismo de tipo radicalario, que puede ser iniciado térmicamente o mediante radiación ultravioleta. En el primer caso se requiere un iniciador radicalario, tipo peróxido, hidroperóxido o compuesto azo, que descompone produciendo un radical que inicia la polimerización. Si además se quiere que el proceso tenga lugar a temperatura ambiente, debe añadirse un promotor que reduzca al iniciador formando un radical que también iniciará el proceso. Como promotores se utilizan habitualmente aminas terciarias aromáticas o sales de cobalto. En el caso del curado fotoinducido se necesita un fotoiniciador que genera radicales libres durante la irradiación. Existen dos familias de fotoiniciadores, los de tipo I y los de tipo II, que requieren para ser activos de un sensibilizador que actúa como dador de electrones y especie activa. Como fotoiniciadores de tipo I suelen utilizarse la 2,2-dimetoxi-2-fenilacetofenona y la 1 - hidroxiciclo exilfenilcetona y sus derivados. La benzofenona es uno de los fotoiniciadores de tipo II más utilizado comúnmente. Como sensibilizador puede utilizarse una amina terciaria, que además de reaccionar fácilmente con la benzofenona produciendo una especie activa, retarda el efecto de inhibición del oxígeno sobre la polimerización. Mientras que los curados térmicos requieren un consumo elevado de energía, los fotocurados transcurren a temperatura ambiente con bajo consumo energético, aunque en muchos casos los materiales fotocurados deben postcurarse para que desvitrifiquen y puedan alcanzar sus propiedades finales. Si el material no está completamente reaccionado, este puede modificar sus propiedades durante su vida útil e incluso cambiar su composición, si queda monómero libre sin reticular que puede ir volatilizándose. Unsaturated monomers and oligomers are used in a wide range of applications such as adhesives, matrices for composites, varnishes, surface coatings, dental or structural repair systems, systems of Photo printing and holography. After a cross-linking process, called curing, these materials reach their maximum properties, which depend fundamentally on their chemical structure and the degree of cross-linking achieved. The process of crosslinking vinyl systems generally proceeds according to a radical type mechanism, which can be initiated thermally or by ultraviolet radiation. In the first case, a radical initiator, peroxide, hydroperoxide or azo compound is required, which decomposes producing a radical that initiates polymerization. If you also want the process to take place at room temperature, a promoter should be added that reduces the initiator by forming a radical that will also start the process. As promoters, aromatic tertiary amines or cobalt salts are commonly used. In the case of photoinduced curing, a photoinitiator is needed that generates free radicals during irradiation. There are two families of photoinitiators, those of type I and those of type II, which require to be active of a sensitizer that acts as an electron donor and active species. As type I photoinitiators, 2,2-dimethoxy-2-phenylacetophenone and 1-hydroxycyclo exylphenyl ketone and its derivatives are usually used. Benzophenone is one of the most commonly used type II photoinitiators. A tertiary amine can be used as a sensitizer, which in addition to reacting easily with benzophenone producing an active species, retards the effect of oxygen inhibition on polymerization. While thermal curing requires a high energy consumption, the photo curing takes place at room temperature with low energy consumption, although in many cases the photo-cured materials must be postured to devitrify and achieve their final properties. If the material is not fully reacted, it can modify its properties during its useful life and even change its composition, if there is free monomer without crosslinking that can be volatile.
Uno de los problemas que pueden presentar los sistemas vinílicos es la necesidad de utilizar disolventes. En este caso el disolvente debe ser eliminado durante su aplicación, con el consiguiente gasto energético y generación de volátiles. Asimismo, la utilización de agentes de entrecruzamiento (monómeros) de bajo peso molecular y relativamente volátiles, tipo el estireno, puede presentar problemas de toxicidad tanto durante su aplicación, como durante su vida útil si este queda libre sin formar parte del retículo. One of the problems that vinyl systems can present is the need to use solvents. In this case the solvent must be removed during its application, with the consequent energy expenditure and volatile generation. Likewise, the use of cross-linking agents (monomers) of low molecular weight and relatively volatile, styrene type, can present toxicity problems both during its application and during its useful life if it is free without being part of the lattice.
Los sistemas radicalarios presentan un grave problema que radica en la inhibición que ejerce el oxígeno sobre el proceso de curado. El oxígeno del aire puede atrapar los radicales libres, generando nuevos radicales no activos, paralizando o ralentizando el proceso de curado. En este caso el material puede quedar parcialmente curado o con una cierta pegajosidad superficial, en la zona donde el oxígeno puede haber sido más activo. Para resolver o minimizar este problema comúnmente se utilizan diferentes alternativas, como por ejemplo aumentar el tiempo y la intensidad de irradiación, trabajar en atmósfera inerte, utilizar elevadas cantidades de fotoiniciador o añadir eliminadores/secuestrantes de oxígeno y/o fotosensibilizadores. La mayoría de estas alternativas incrementan el coste y la complejidad de la formulación y en algunos casos, como por ejemplo el trabajar en atmósfera inerte, es una solución difícil de implementar en algunas aplicaciones industriales. Radical systems present a serious problem that lies in the inhibition that exerts oxygen on the curing process. The oxygen in the air can trap free radicals, generating new non-active radicals, paralyzing or slowing down the curing process. In this case the material may be partially cured or with a certain surface tack, in the area where oxygen may have been more active. Different alternatives are commonly used to solve or minimize this problem, such as increasing the time and intensity of irradiation, working in an inert atmosphere, using high amounts of photoinitiator or adding oxygen scavengers / sequestrants and / or photosensitizers. Most of these alternatives increase the cost and complexity of the formulation and in some cases, such as working in an inert atmosphere, it is a difficult solution to implement in some industrial applications.
Aunque el procesado y curado de muchas formulaciones industriales tiene lugar en una sola etapa, para ciertas aplicaciones como por ejemplo en microelectrónica, semiconductores, materiales de reparación o montaje de tarjetas de circuito impreso (PCB), donde el material termoestable actúa como adhesivo, puede ser útil que el curado tenga lugar en dos etapas. Este tipo de curado, conocido como curado dual, permite que después de una primera etapa de precurado el material pueda ser almacenado de forma estable, deformado si es necesario o simplemente que la manipulación sea cómoda, antes de que el material alcance sus propiedades finales en una segunda etapa de curado, mediante aplicación de presión, temperatura o cualquier otra forma de activación. Después de la primera etapa el material debe estar químicamente inactivo, manteniendo una cierta latencia hasta que se active la segunda etapa de curado. Los termoestables duales se preparan típicamente mediante dos procesos químicos diferentes, muchas veces uno de ellos fotoquímico y el otro térmico, aunque esto no es imprescindible si se elige adecuadamente la química de cada uno de los procesos y los materiales de partida y agentes de curado necesarios. Las reacciones click que han sido aplicadas ampliamente en ingeniería macromolecular, pueden ser utilizadas en la preparación de termoestables con estequiometría controlada obtenidos mediante curado dual. Estas reacciones se caracterizan por ser rápidas, altamente selectivas, cuantitativas, ortogonales e insensibles al oxígeno o al agua. El término ortogonal hace referencia a que dos componentes pueden reaccionar específicamente por un determinado grupo funcional con un alto rendimiento en presencia de un gran número de otros grupos funcionales sin que estos los afecten. De esta forma la reacción se controla perfectamente y la estequiometría y condiciones de reacción permiten llegar a conversiones y arquitecturas definidas que no dependen de variables de procesado, por lo que el material final es completamente reproducible. Dentro de las reacciones click se encuentra la adición aza-Michael de una amina primaria o secundaria a un compuesto vinílico α,β-conjugado con un grupo carbonílico, que se empleará en la primera etapa del curado de la presente invención. Although the processing and curing of many industrial formulations takes place in a single stage, for certain applications such as microelectronics, semiconductors, repair materials or assembly of printed circuit boards (PCBs), where the thermosetting material acts as an adhesive, it can It is useful for curing to take place in two stages. This type of curing, known as dual curing, allows that after a first stage of pre-curing the material can be stored stably, deformed if necessary or simply that the handling is comfortable, before the material reaches its final properties in a second stage of curing, by application of pressure, temperature or any other form of activation. After the first stage the material must be chemically inactive, maintaining a certain latency until the second curing stage is activated. Dual thermosets are typically prepared by two different chemical processes, often one of them photochemical and the other thermal, although this is not essential if the chemistry of each of the processes and the necessary starting materials and curing agents are properly chosen. . Click reactions that have been widely applied in macromolecular engineering can be used in the preparation of thermosets with controlled stoichiometry obtained by dual curing. These reactions are characterized by being fast, highly selective, quantitative, orthogonal and insensitive to oxygen or water. The term orthogonal refers to the fact that two components can react specifically for a certain functional group with high performance in the presence of a large number of other functional groups without affecting them. In this way the reaction is perfectly controlled and the Stoichiometry and reaction conditions allow conversions and defined architectures to be reached that do not depend on processing variables, so the final material is fully reproducible. Within the click reactions is the aza-Michael addition of a primary or secondary amine to an α, β-conjugated vinyl compound with a carbonyl group, which will be used in the first stage of curing of the present invention.
En general, la reacción de Michael consiste en la adición catalizada por una base de un nucleófilo (dador de Michael) a un compuesto carbonílico α,β-insaturado (aceptor de Michael). En el caso particular de la adición aza-Michael el grupo dador sería la amina secundaria o primaria. En algunos sistemas se ha visto que esta reacción transcurre eficientemente sin necesidad de una base y en otros que la adición de ciertos ácidos de Lewis también la catalizan. Los polímeros hiperramificados están siendo utilizados recientemente como modificantes de la tenacidad y como agentes de entrecruzamiento de sistemas termoestables. La relativa facilidad de su síntesis junto con la existencia de cada vez mayor cantidad de polímeros hiperramificados comerciales ha hecho aumentar su utilización. El interés de estos polímeros radica fundamentalmente es su baja viscosidad en comparación con sus homólogos lineales, en su gran versatilidad estructural, en su buena solubilidad y en la gran cantidad de grupos terminales reactivos o no reactivos. Su utilidad como agente de curado solo requiere que algunos de los grupos funcionales terminales puedan reaccionar con el sistema a entrecruzar. En el caso expuesto de las adiciones aza-Michael de aminas a sistemas vinílicos, solo se necesita que el hiperramificado contenga grupos amino terminales reactivos. Se piensa que polietileniminas hiperramificadas que contengan aminas primarias, secundarias y terciarias, serían potenciales candidatos a formar aductos de Michael con acrilatos, con la ventaja de que las aminas terciarias podrían actuar simultáneamente como bases, acelerando la adición, y como agentes secuestrantes del oxígeno, disminuyendo el efecto de inhibición que este tienen sobre el curado radicalario. In general, Michael's reaction consists in the catalytic addition of a nucleophile (Michael donor) to an α, β-unsaturated carbonyl compound (Michael acceptor). In the particular case of the aza-Michael addition, the donor group would be the secondary or primary amine. In some systems it has been seen that this reaction proceeds efficiently without the need for a base and in others that the addition of certain Lewis acids also catalyzes it. Hyperbranched polymers are being used recently as toughness modifiers and as crosslinking agents for thermostable systems. The relative ease of its synthesis together with the existence of an increasing amount of commercial hyperbranched polymers has increased its use. The interest of these polymers lies primarily in their low viscosity compared to their linear counterparts, in their great structural versatility, in their good solubility and in the large number of reactive or non-reactive terminal groups. Its usefulness as a curing agent only requires that some of the terminal functional groups can react with the system to crosslink. In the case of the aza-Michael additions of amines to vinyl systems, it is only necessary that the hyperbranched contain reactive terminal amino groups. It is thought that hyperbranched polyethyleneimines containing primary, secondary and tertiary amines would be potential candidates to form Michael adducts with acrylates, with the advantage that tertiary amines could act simultaneously as bases, accelerating the addition, and as oxygen sequestering agents, diminishing the effect of inhibition that this has on the radical cure.
En la patente americana US 3.844.916 se describe el uso de la adición aza-Michael para obtener aductos que contengan aminas terciarias y grupos acrilato que posteriormente, en una segunda etapa completamente independiente, pueden ser polimerizables mediante radiación UV. Los aductos se preparan mediante la adición progresiva de una amina que contenga un único átomo de hidrógeno al acrilato bajo condiciones de reflujo y agitación constante. Los materiales obtenidos, no presentan consistencia mecánica ya que no están gelificados. La polimerización de estos aductos se realiza en una segunda etapa diferenciada mediante la adición de un fotoiniciador a la mezcla anterior tras la reacción de adición (es decir, con los aductos ya formados), en algunos casos también en presencia de un disolvente, e irradiando la muestra con luz ultravioleta. In US Patent 3,844,916 the use of the aza-Michael addition to obtain adducts containing tertiary amines and acrylate groups is described, which subsequently, in a completely independent second stage, can be polymerizable by UV radiation. The adducts are prepared by the progressive addition of an amine containing a single hydrogen atom to the low acrylate reflux conditions and constant agitation. The materials obtained do not have mechanical consistency since they are not gelled. The polymerization of these adducts is carried out in a second differentiated stage by adding a photoinitiator to the previous mixture after the addition reaction (that is, with the adducts already formed), in some cases also in the presence of a solvent, and radiating The sample with ultraviolet light.
Sin embargo, los presentes inventores, aunque utilizan la adición aza-Michael y la polimerización de compuestos vinílicos en su invento, los materiales de partida, los materiales obtenidos y el procedimiento tanto para obtener las composiciones como el utilizado en el entrecruzamiento de las mismas, son completamente distintos que los descritos en el documento US 3.844.916. Tal como se apreciará, en la presente invención las formulaciones se preparan en un solo paso (de manera que la composición inicial, antes de que se inicie la reacción de adición, ya incluye el iniciador radicalario), aunque el curado se hace en dos pasos (curado dual), en condiciones de reacción bien diferenciadas. Los materiales al final de la primera etapa de curado son estables y pueden ser almacenados durante largo tiempo. La formación de los aductos aza-Michael se realiza in situ dentro de la composición curable. Los materiales al final de la primera etapa de curado pueden estar o no estar gelificados, en función de la funcionalidad de los monómeros/oligómeros reactivos utilizados y la cantidad relativa de los mismos, según la aplicación a realizar. Las aminas utilizadas pueden ser lineales o hiperramificadas y los compuestos vinílicos utilizados no se encuentran limitados solo a los acrilatos, aunque estos compuestos vinílicos deben estar activados por un grupo funcional insaturado conjugado. La adición aza-Michael puede proceder de forma completa a temperatura ambiente o a mayor temperatura, sin catalizador o catalizada por una base o por un ácido de Lewis. La segunda etapa del curado puede activarse mediante radiación UV o térmicamente. Los materiales al final de la segunda etapa de curado pueden estar completamente reaccionados sin aporte energético, si ambas etapas de curado se realizan a temperatura ambiente. Como base pueden utilizarse aminas terciarias, que además actúan como secuestrantes del oxígeno.However, the present inventors, although using the aza-Michael addition and the polymerization of vinyl compounds in their invention, the starting materials, the materials obtained and the process both to obtain the compositions and the one used in the cross-linking thereof, they are completely different than those described in US 3,844,916. As will be appreciated, in the present invention the formulations are prepared in one step (so that the initial composition, before the addition reaction begins, already includes the radical initiator), although curing is done in two steps (dual cure), under well differentiated reaction conditions. The materials at the end of the first curing stage are stable and can be stored for a long time. Aza-Michael adducts are formed in situ within the curable composition. The materials at the end of the first curing stage may or may not be gelled, depending on the functionality of the reactive monomers / oligomers used and the relative amount thereof, depending on the application to be performed. The amines used can be linear or hyperbranched and the vinyl compounds used are not limited only to acrylates, although these vinyl compounds must be activated by a conjugated unsaturated functional group. The aza-Michael addition can proceed completely at room temperature or at a higher temperature, without catalyst or catalyzed by a base or by a Lewis acid. The second stage of curing can be activated by UV radiation or thermally. The materials at the end of the second curing stage can be fully reacted without energy input, if both curing stages are performed at room temperature. As a base tertiary amines can be used, which also act as oxygen sequestrants.
Estas aminas pueden ser añadidas a la composición, generadas in situ o formar parte de los materiales de partida. Las composiciones curables pueden estar libres de compuestos orgánicos volátiles y disolventes. Por tanto, a la vista de lo expuesto, existe la necesidad en el estado de la técnica de proporcionar nuevas composiciones y un nuevo procedimiento para la obtención de materiales vinílicos, formulados en un solo paso pero entrecruzados mediante curado dual, que puedan ser almacenados o manipulados después de la primera etapa de curado, sin las desventajas mencionadas relativas a inhibición por oxígeno, utilización de disolventes y elevado coste energético. La versatilidad de las nuevas composiciones, que conduzcan a materiales con propiedades diversas y aplicaciones industriales amplias, también es una demanda del estado de la técnica. These amines can be added to the composition, generated in situ or form part of the starting materials. Curable compositions may be free of volatile organic compounds and solvents. Therefore, in view of the foregoing, there is a need in the state of the art to provide new compositions and a new process for obtaining vinyl materials, formulated in a single step but crosslinked by curing. dual, that can be stored or handled after the first stage of curing, without the mentioned disadvantages related to oxygen inhibition, solvent use and high energy cost. The versatility of the new compositions, which lead to materials with diverse properties and wide industrial applications, is also a demand of the prior art.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La invención se refiere en un aspecto a una composición, en adelante composición de la invención, para el entrecruzamiento de una amina con un compuesto vinílico α,β- conjugado a un grupo carbonilo de éster y posterior polimerización del compuesto vinílico, caracterizado por que comprende como mínimo: a) una amina no aromática o poliamina no aromática, con por lo menos dos enlaces N-H, b) un compuesto vinílico, de fórmula general (I), que contenga como mínimo dos dobles enlaces α,β-conjugado a un grupo carbonilo de éster The invention relates in one aspect to a composition, hereinafter composition of the invention, for the cross-linking of an amine with an α, β-vinyl compound conjugated to a carbonyl ester group and subsequent polymerization of the vinyl compound, characterized in that it comprises at least: a) a non-aromatic amine or non-aromatic polyamine, with at least two NH bonds, b) a vinyl compound, of general formula (I), containing at least two double α, β-conjugated double bonds to a group ester carbonyl
Figure imgf000008_0001
Figure imgf000008_0001
donde Y y Z son cada uno independientemente un hidrógeno, restos alifáticos o aromáticos o grupos más complejos, y donde X es un resto alifático o aromático o un grupo más complejo, y c) un fotoiniciador radicalario o un iniciador térmico radicalario, aptos para iniciar la reticulación de dichos dobles enlaces α,β-conjugados a un grupo carbonilo de éster en exceso. Efectivamente, una de las ventajas de la composición de acuerdo con la invención es que la composición, una vez formada, ya tiene todos los componentes necesarios como para realizar el curado dual, es decir, una primera etapa de curado del componente a) con el componente b) y una segunda etapa de curado en la cual se reaccionan los dobles enlaces α,β-conjugados a un grupo carbonilo de éster que queden sin reaccionar tras el primer curado. La inclusión, ya desde el principio, del componente c) permite una pluralidad de aplicaciones de la composición de acuerdo con la invención. where Y and Z are each independently a hydrogen, aliphatic or aromatic moieties or more complex groups, and where X is an aliphatic or aromatic moiety or a more complex group, and c) a radical photoinitiator or a radical thermal initiator, suitable for initiating crosslinking said double α, β-conjugated bonds to an excess ester carbonyl group. Indeed, one of the advantages of the composition according to the invention is that the composition, once formed, already has all the necessary components as to perform dual curing, that is, a first curing stage of component a) with component b) and a second curing stage in which the α, β-conjugated double bonds are reacted to a carbonyl ester group that remain unreacted after the first cure. The inclusion, from the beginning, of component c) allows a plurality of applications of the composition according to the invention.
En general, en la presente descripción y reivindicaciones, se entiende que una poliamina es cualquier compuesto que comprende más de un grupo amino, y puede tener un carácter polimérico o no tenerlo. In general, in the present description and claims, it is understood that a polyamine is any compound that comprises more than one amino group, and may or may not have a polymeric character.
En general, cualquier amina o poliamina no aromáticas son viables, siendo la única limitación que tengan por lo menos dos enlaces N-H, necesarios para su polimerización. Asimismo, el compuesto vinílico b) de fórmula (I) también puede ser muy diverso, y el único requisito realmente relevante es que contenga como mínimo dos dobles enlaces α,β-conjugado a un grupo carbonilo de éster, necesarios para su polimerización. En función de los componentes a) y b) escogidos se obtendrán una pluralidad de alternativas, que todas comparten las ventajas básicas de la invención, como es el hecho de que la composición ya incluye, de entrada, todos los componentes esenciales para la realización del curado dual. In general, any non-aromatic amine or polyamine are viable, the only limitation having at least two N-H bonds, necessary for polymerization. Likewise, the vinyl compound b) of formula (I) can also be very diverse, and the only really relevant requirement is that it contains at least two double α-β-conjugated bonds to a carbonyl ester group, necessary for its polymerization. Depending on the components a) and b) chosen, a plurality of alternatives will be obtained, all of which share the basic advantages of the invention, such as the fact that the composition already includes, at the outset, all the essential components for curing. dual.
Se debe tener en cuenta que si se utilizan productos de bajo punto de ebullición, parte de estos pueden evaporarse durante el curado, modificándose la composición original de la formulación y pudiendo aparecer defectos. Aunque no es imprescindible, se recomienda una selección de materiales que eviten evaporaciones, de acuerdo con el tiempo y temperatura de curado seleccionados. It should be taken into account that if low-boiling products are used, some of them may evaporate during curing, the original composition of the formulation being modified and defects may appear. Although not essential, a selection of materials that prevent evaporation is recommended, according to the selected cure time and temperature.
Preferentemente, los dobles enlaces α,β-conjugados a un grupo carbonilo de éster están en exceso respecto de los enlaces N-H. Estrictamente hablando no es necesario que haya un exceso de dobles enlaces α,β-conjugados a un grupo carbonilo de éster para que pueda haber un curado dual, ya que, en condiciones reales, es posible que, aun quedando enlaces N-H sin reaccionar, éstos no reaccionen con los dobles enlaces α,β-conjugados a un grupo carbonilo de éster sin reaccionar por diversos motivos. Por lo tanto, puede tener lugar la segunda etapa del curado dual incluso habiendo enlaces N-H sin reaccionar. Sin embargo, es ventajoso que haya dobles enlaces α,β- conjugados a un grupo carbonilo de éster en exceso para asegurar que tiene lugar la segunda etapa de curado en una proporción significativa. Preferably, the α, β-conjugated double bonds to a carbonyl ester group are in excess of the NH bonds. Strictly speaking it is not necessary that there is an excess of double α, β-conjugated bonds to a carbonyl ester group so that there can be a dual cure, since, in real conditions, it is possible that, even if NH bonds remain unreacted, these do not react with the α, β-conjugated double bonds to an unreacted carbonyl ester group for various reasons. Therefore, the second stage of dual curing can take place even with unreacted NH bonds. However, it is advantageous that there are double α, β- bonds conjugated to an excess ester carbonyl group to ensure that the second stage of cure takes place in a significant proportion.
Preferentemente Y y Z son cada uno independientemente un hidrógeno, un radical alquilo C1 -C20, lineal o ramificado, sustituido o no, un radical alquenilo o alquinilo C2- C20, lineal o ramificado, sustituido o no, un radical cicloalquilo o cicloalquenilo C4-C20, sustituido o no, un radical arilo, que pueda poseer además restos alquílicos, halógenos u otros sustituyentes directamente unidos a los anillos aromáticos. Ventajosamente el grupo X es un radical alquilo C2-C100, lineal o ramificado, sustituido o no, un radical alquenilo o alquinilo C2-C40, lineal o ramificado, sustituido o no, un radical cicloalquilo o cicloalquenilo C4-C20, sustituido o no, un radical arilo, que pueda poseer además restos alquílicos, halógenos u otros sustituyentes directamente unidos a los anillos aromáticos, pudiendo además X estar unido a varios grupos éster α,β-conjugados. Preferably Y and Z are each independently a hydrogen, a C1-C20 alkyl radical, linear or branched, substituted or not, a C2-C20 alkenyl or alkynyl radical, linear or branched, substituted or not, a C4- cycloalkyl or cycloalkenyl radical C20, substituted or not, an aryl radical, which may also have alkyl, halogen or other substituents directly attached to the aromatic rings. Advantageously the group X is a C2-C100 alkyl radical, linear or branched, substituted or not, a C2-C40 alkenyl or alkynyl radical, linear or branched, substituted or not, a C4-C20 cycloalkyl or cycloalkenyl radical, substituted or not, an aryl radical, which may also have alkyl, halogen or other substituents directly attached to the aromatic rings, and X may also be linked to several α, β-conjugated ester groups.
Preferentemente n varía entre 2 y 50. Preferably n varies between 2 and 50.
Ventajosamente el componente a), es decir, la amina o poliamina, es una poliamina con por lo menos tres enlaces N-H. Estos tres enlaces N-H pueden ser aportados por aminas primarias, secundarias o combinaciones de ambas. Advantageously component a), that is, the amine or polyamine, is a polyamine with at least three N-H bonds. These three N-H bonds can be provided by primary, secondary amines or combinations of both.
Una solución preferente se tiene cuando la amina o poliamina posee entre 3 y 5 grupos N-H, el compuesto vinílico contiene entre 2 y 6 dobles enlaces α,β-conjugados a un grupo carbonilo de éster y, ventajosamente, la relación entre grupos N-H y dobles enlaces α,β-conjugados a un grupo carbonilo de éster está entre 0.05 y 1 . A preferred solution is when the amine or polyamine has between 3 and 5 NH groups, the vinyl compound contains between 2 and 6 α, β-conjugated double bonds to a carbonyl ester group and, advantageously, the ratio between NH and double groups α, β-conjugated bonds to a carbonyl ester group is between 0.05 and 1.
Otra solución preferente se tiene cuando la amina o poliamina posee entre 6 y 20 grupos N-H, el compuesto vinílico contiene entre 2 y 6 dobles enlaces α,β-conjugados a un grupo carbonilo de éster y, ventajosamente, la relación entre grupos N-H y dobles enlaces α,β-conjugados a un grupo carbonilo de éster está entre 0.01 y 1 . Another preferred solution is when the amine or polyamine has between 6 and 20 NH groups, the vinyl compound contains between 2 and 6 double bonds α, β-conjugated to a carbonyl ester group and, advantageously, the ratio between NH and double groups α, β-conjugated bonds to a carbonyl ester group is between 0.01 and 1.
Unas soluciones particularmente ventajosas se tienen cuando Z e Y son hidrógenos, es decir, cuando el compuesto (I) es un acrilato, o cuando son respectivamente un hidrógeno y un grupo metilo, es decir, cuando el compuesto (I) es un metacrilato. Otras soluciones particularmente ventajosas se tienen cuando el componente b) es una mezcla de acrilatos, una mezcla de metacrilatos o una mezcla de acrilatos y metacrilatos en cualquier proporción. En este sentido, son especialmente interesantes cualquiera de las siguientes alternativas: Particularly advantageous solutions are when Z and Y are hydrogens, that is, when the compound (I) is an acrylate, or when they are respectively a hydrogen and a methyl group, that is, when the compound (I) is a methacrylate. Other particularly advantageous solutions are available when component b) is a mixture of acrylates, a mixture of methacrylates or a mixture of acrylates and methacrylates in any proportion. In this sense, any of the following alternatives are especially interesting:
- el componente b) es una mezcla de bisfenol A-diacrilato de glicerolato y diacrilato de 1 ,6-hexandiol. - el componente b) es una mezcla de bisfenol A-diacrilato de glicerolato y triacrilato de trimetilolpropano. - component b) is a mixture of bisphenol A-glycerolate diacrylate and 1,6-hexanediol diacrylate. - component b) is a mixture of bisphenol A-glycerolate diacrylate and trimethylolpropane triacrylate.
- el componente b) es una mezcla de bisfenol A-diacrilato de glicerolato y trimetilolpropano dimetacrilato de trietilenglicol - component b) is a mixture of bisphenol A-glycerolate diacrylate and triethylene glycol trimethylolpropane dimethacrylate
- el componente b) es una mezcla de bisfenol A-dimetacrilato de glicerolato y diacrilato de 1 ,6-hexandiol. - component b) is a mixture of bisphenol A-glycerolate dimethacrylate and 1,6-hexanediol diacrylate.
Por lo que se refiere al componente a), es particularmente ventajoso que sea una poliamina de peso molecular entre 400 y 25.000. También es ventajoso que sea: As regards component a), it is particularly advantageous if it is a polyamine of molecular weight between 400 and 25,000. It is also advantageous that it is:
- una polieteramina, - a polyetheramine,
- una poli(etilenamina) lineal o ramificada, o - a linear or branched poly (ethylenamine), or
- una amina alifática simple de peso molecular comprendido entre 60 y 2.000. - a simple aliphatic amine of molecular weight between 60 and 2,000.
Las poliaminas comercializadas bajo los nombres comerciales Jeffamine D-230 y Lupasol FW son dos alternativas particularmente interesantes. Polyamines marketed under the trade names Jeffamine D-230 and Lupasol FW are two particularly interesting alternatives.
Una solución particularmente preferente es que la amina o poliamina sea dietilentriamina. A particularly preferred solution is that the amine or polyamine is diethylenetriamine.
El componente c) de la composición es preferentemente cualquier fotoiniciador radicalario, tanto de tipo I como de tipo II. En el caso de utilizarse un fotoiniciador de tipo II en la presente invención se obtiene la ventaja de que no se requerirán sensibilizadores ya que las aminas terciarias generadas en la primera etapa del curado reaccionan con el fotoiniciador de tipo II generando una especie activa que inicia el fotocurado de la segunda etapa. Es particularmente ventajoso que el fotoiniciador radicalario sea 2,2-dimetoxi-2-fenil acetofenona o benzofenona. Si se quiere acelerar la primera etapa del curado se pueden también añadir tanto bases como ácidos de Lewis, que preferentemente son 1 ,5-diazabiciclo[4.3.0]non-5- eno o triflato de iterbio, o aumentar la temperatura, aunque los inventores han observado que la adición aza-Michael de una amina a un compuesto vinílico α,β- conjugado a un grupo carbonilo de éster es relativamente poco dependiente de la temperatura, acelerándose un poco el curado pero no el grado de reacción alcanzado al aumentar la temperatura. Calentar durante la primera etapa, aunque puede hacerse, no parece una opción preferente, ya que supone mayor coste energético. Component c) of the composition is preferably any radical photoinitiator, both type I and type II. In the case of using a type II photoinitiator in the present invention, the advantage is obtained that no sensitizers will be required since the tertiary amines generated in the first stage of curing they react with the type II photoinitiator generating an active species that initiates the second stage photo curing. It is particularly advantageous for the radical photoinitiator to be 2,2-dimethoxy-2-phenyl acetophenone or benzophenone. If it is desired to accelerate the first stage of curing, it is also possible to add both Lewis bases and acids, which are preferably 1,5-diazabicyclo [4.3.0] non-5- ene or ytterbium triflate, or increase the temperature, although The inventors have observed that the aza-Michael addition of an amine to an α, β-vinyl compound conjugated to a carbonyl ester group is relatively little dependent on temperature, curing slightly accelerating but not the degree of reaction achieved by increasing the temperature. Heating during the first stage, although it can be done, does not seem like a preferred option, since it implies a higher energy cost.
Aunque preferentemente se piensa en la preparación de materiales a temperatura ambiente, para ciertas aplicaciones, si se requiere realizar la segunda etapa del curado mediante activación térmica se deberá añadir a la composición un iniciador radicalario térmico, que preferentemente es peróxido de metil etil cetona, y, si además se quiere que la temperatura no sea muy elevada, un promotor, que preferentemente es octoato de cobalto. Although the preparation of materials at room temperature is preferably considered, for certain applications, if the second stage of curing is required by thermal activation, a thermal radical initiator should be added to the composition, which is preferably methyl ethyl ketone peroxide, and , if it is also desired that the temperature is not very high, a promoter, which is preferably cobalt octoate.
La composición de la invención puede contener opcionalmente al menos un aditivo coadyuvante habitual en las formulaciones con monómeros y oligómeros insaturados, tales como pigmentos, colorantes, plastificantes, cargas reforzantes y no reforzantes, etc. The composition of the invention may optionally contain at least one common adjuvant additive in formulations with unsaturated monomers and oligomers, such as pigments, dyes, plasticizers, reinforcing and non-reinforcing fillers, etc.
La invención también tiene por objeto un procedimiento para la obtención de una composición para el entrecruzamiento de una amina con un compuesto vinílico α,β- conjugado a un grupo carbonilo de éster y posterior polimerización del exceso de compuesto vinílico de acuerdo con la invención, que comprende las etapas de: (i) disolver el fotoiniciador radicalario o el iniciador térmico radicalario en el componente b) de la formulación mediante agitación a temperatura ambiente, (ii) añadir a la mezcla anterior el componente a), y mantener la mezcla resultante a vacío por lo menos durante 15 minutos a temperatura ambiente. Preferentemente el vacío es inferior a 1 00 mm Hg. A subject of the invention is also a process for obtaining a composition for cross-linking an amine with an α, β-vinyl compound conjugated to a carbonyl ester group and subsequent polymerization of the excess vinyl compound according to the invention, which It comprises the steps of: (i) dissolving the radical photoinitiator or the radical thermal initiator in component b) of the formulation by stirring at room temperature, (ii) adding component a) to the previous mixture, and maintaining the resulting mixture at vacuum for at least 15 minutes at room temperature. Preferably the vacuum is less than 1 00 mm Hg.
En una posible alternativa, previamente a la etapa (ii), se disuelve en el componente a) una base o un ácido de Lewis. In a possible alternative, prior to step (ii), it is dissolved in component a) a base or a Lewis acid.
En otra alternativa posible se emplea un iniciador térmico radicalario y se añade un promotor en el componente b). In another possible alternative, a radical thermal initiator is used and a promoter is added in component b).
La invención tiene asimismo por objeto un procedimiento de recubrimiento de un sustrato caracterizado por que comprende las etapas de: A subject of the invention is also a method of coating a substrate characterized in that it comprises the steps of:
I) preparación de una composición de acuerdo con la invención, I) preparation of a composition according to the invention,
II) aplicación de la composición sobre un sustrato II) application of the composition on a substrate
III) primera etapa de curado mediante la reacción entre el compuesto a) y el compuesto b) III) first stage of curing by reaction between compound a) and compound b)
IV) segunda etapa de curado mediante la activación del fotoiniciador mediante radiación ultravioleta o del iniciador térmico mediante la aportación de calor y la reacción de los restantes dobles enlaces α,β-conjugado a un grupo carbonilo de éster entre sí. IV) second stage of curing by activating the photoinitiator by ultraviolet radiation or the thermal initiator by means of heat input and the reaction of the remaining α, β-conjugated double bonds to a carbonyl ester group with each other.
En una alternativa preferente la composición gelifica durante la primera etapa de curado, si bien en determinadas aplicaciones puede ser ventajoso que la composición gelifique durante la segunda etapa de curado. Otro objeto de la invención es un substrato recubierto de un material entrecruzado obtenible por curado de una composición siguiendo el procedimiento anterior. In a preferred alternative the composition gels during the first curing stage, although in certain applications it may be advantageous for the composition to gel during the second curing stage. Another object of the invention is a substrate coated with a crosslinked material obtainable by curing a composition following the above procedure.
Adicionalmente, la invención tiene por objeto un procedimiento de fabricación de una pieza por moldeo caracterizado por que comprende las etapas de: Additionally, the object of the invention is a method of manufacturing a part by molding characterized in that it comprises the steps of:
I) preparación de una composición de acuerdo con la invención, I) preparation of a composition according to the invention,
II) llenado de un molde con la composición III) primera etapa de curado mediante la reacción entre el compuesto a) y el compuesto b) IV) segunda etapa de curado mediante la activación de dicho fotoiniciador mediante radiación ultravioleta o de dicho iniciador térmico mediante la aportación de calor y la reacción de los restantes dobles enlaces α,β-conjugado a un grupo carbonilo de éster entre sí. II) filling a mold with composition III) first stage of curing by the reaction between compound a) and compound b) IV) second stage of curing by activating said photoinitiator by ultraviolet radiation or said thermal initiator by means of heat input and the reaction of the remaining α, β-conjugated double bonds to a carbonyl ester group with each other.
Al igual que en el caso anterior, una alternativa ventajosa se tiene cuando la composición gelifica durante la primera etapa de curado, si bien en algunos casos puede ser ventajoso que la composición gelifique durante la segunda etapa de curado. Finalmente, la invención también tiene por objeto una pieza de un material entrecruzado obtenible por curado de una composición siguiendo el procedimiento anterior. As in the previous case, an advantageous alternative is when the composition gels during the first curing stage, although in some cases it may be advantageous for the composition to gel during the second curing stage. Finally, the object of the invention is also a piece of a crosslinked material obtainable by curing a composition following the above procedure.
Los inventores han comprobado que cambios en estos procedimientos, en cuanto a tiempo y temperatura de preparación no alteran las propiedades finales de los materiales obtenidos. Aunque en algunas aplicaciones, la primera etapa de curado pueda iniciarse durante la preparación de la composición, si el tiempo utilizado no es excesivamente largo y la temperatura no muy alta, mientras el material no gelifique pueden preparase los materiales sin dificultad alguna. The inventors have verified that changes in these procedures, in terms of preparation time and temperature, do not alter the final properties of the materials obtained. Although in some applications, the first stage of curing can begin during the preparation of the composition, if the time used is not excessively long and the temperature is not very high, as long as the material does not gel, the materials can be prepared without any difficulty.
Las imprimaciones pueden realizarse sobre cualquier tipo de sustrato, aunque puede tener especial interés cuando los sustratos son termosensibles, ya que no es necesario calentar las muestras para que alcancen sus propiedades finales. En cuanto a los moldes, estos pueden ser de cualquier material, aunque cuando la segunda etapa sea fotoinducida estos deben permitir el paso total o parcial de la radiación UV, pudiendo ser por ejemplo de vidrio, de cuarzo o de algún material plástico como el polipropileno y el polietileno que dejen pasar parte de la radiación. Primers can be made on any type of substrate, although it may have special interest when the substrates are heat sensitive, since it is not necessary to heat the samples to reach their final properties. As for the molds, these can be of any material, although when the second stage is photoinduced they must allow the total or partial passage of UV radiation, being able to be for example glass, quartz or some plastic material such as polypropylene and the polyethylene that let some of the radiation pass.
Cuando se desee realizar la segunda etapa del curado mediante iniciación térmica, en lugar de un fotoiniciador debe añadirse un iniciador térmico y, si se desea, un promotor. En caso de añadirse un promotor es recomendable trabajar siempre a temperaturas bajas y tiempos cortos, para evitar que se inicie la segunda etapa del curado durante la preparación de la mezcla o incluso durante la primera etapa de curado. Especial cuidado hay que tener si se requiere almacenar la formulación al final de la primera etapa. Para conocer la cantidad óptima de promotor para que no existan prepolimerizaciones, pueden realizarse ensayos previos en un calorímetro o en estufa para determinar a qué temperatura y/o en qué tiempo se inicia el curado radicalario del componente vinílico. When it is desired to perform the second stage of curing by thermal initiation, instead of a photoinitiator, a thermal initiator and, if desired, a promoter must be added. If a promoter is added, it is advisable to always work at low temperatures and short times, to avoid starting the second stage of curing during the preparation of the mixture or even during the first stage of curing. Special care must be taken if it is required to store the formulation at the end of the first stage. In order to know the optimum amount of promoter so that there are no prepolymerizations, previous tests can be carried out in a calorimeter or in an oven to determine at what temperature and / or at what time the radical curing of the vinyl component
Si se desea acelerar la primera etapa de curado mediante bases o ácidos de Lewis, estos se disuelven preferentemente en la amina, aunque es posible disolverlos en el componente b) de la invención, en función de la miscibilidad de los componentes. If it is desired to accelerate the first stage of curing by Lewis bases or acids, these are preferably dissolved in the amine, although it is possible to dissolve them in component b) of the invention, depending on the miscibility of the components.
En otro aspecto la invención se relaciona con un procedimiento para entrecruzar mediante curado dual una amina a un compuesto vinílico α,β-conjugado a un grupo carbonilo de éster y la posterior polimerización del compuesto vinílico en exceso, en adelante procedimiento de la invención, que comprende el empleo de la composición de la invención según se ha definido anteriormente. In another aspect the invention relates to a process for cross-linking an amine to an α, β-conjugated vinyl ester compound by dual curing and subsequent polymerization of the excess vinyl compound, hereinafter process of the invention, which It comprises the use of the composition of the invention as defined above.
El procedimiento comprende el curado de dicha composición mediante dos etapas, la primera etapa se realiza preferentemente a temperatura ambiente, aunque cualquier otra temperatura es posible. El tiempo necesario para realizar esta etapa es variable y varía en función de la formulación de la composición de la invención y de la temperatura de curado. Los inventores han observado que a la temperatura de 35eC (se ha seleccionado como temperatura ambiente 35eC para que los resultados tengan validez incluso en climas cálidos), en tres horas la mayor parte de formulaciones han completado la adición aza-Michael y en caso de no ser así el avance de esta ya es muy lento. Asimismo se ha visto que la mayor parte de este proceso tiene lugar durante los primeros 45 minutos, por lo cual es posible ajustar más el tiempo de curado si se cree conveniente. Los inventores también han observado que las propiedades del producto al final de la primera etapa de curado dependen fundamentalmente de la formulación de la composición de partida, y poco de las condiciones de curado (tiempo, temperatura), siempre y cuando el curado sea cercano a completo. The process comprises curing said composition by two stages, the first stage is preferably performed at room temperature, although any other temperature is possible. The time required to perform this stage is variable and varies depending on the formulation of the composition of the invention and the curing temperature. The inventors have observed that the temperature of 35 and C (is selected as ambient 35 temperature and C for the results to be valid even in hot climates), in three hours most formulations have completed the addition aza-Michael and If this is not the case, the progress of this is already very slow. It has also been seen that most of this process takes place during the first 45 minutes, so it is possible to adjust the cure time more if it is considered convenient. The inventors have also observed that the properties of the product at the end of the first curing stage depend fundamentally on the formulation of the starting composition, and little on the curing conditions (time, temperature), as long as the curing is close to full.
Aunque en la realización preferente la primera etapa se realiza a temperatura ambiente durante tres horas y sin acelerantes, en unas realizaciones particulares y a modo de comparación la primera etapa del curado se realiza durante 24 horas y en algunos casos se han empleado como acelerantes 1 ,5-diazabiciclo[4.3.0]non-5-eno, o triflato de iterbio, actuando respectivamente como base y como ácido de Lewis. La segunda etapa del curado, la homopolimerización del exceso de compuesto vinílico, se realiza preferentemente mediante curado fotoinducido por radiación UV. Como fotoiniciador puede utilizarse cualquier tipo de fotoiniciador, tanto de tipo I como de tipo II, aunque en este último caso no es necesario añadir ningún sensibilizador. La cantidad de fotoiniciador puede ser cualquiera, aunque cantidades muy bajas pueden conducir, a materiales poco curados o a la necesidad de utilizar tiempos e intensidades de irradiación muy elevados. Por el contrario cantidades excesivamente altas pueden conducir a materiales con menor temperatura de transición vitrea. Durante la realización de la presente invención se ha observado que entre un 0,5% y un 3% (expresado en masa respecto a masa total que puede reaccionar en la segundas etapa del curado) de iniciador son suficientes para que los curados sean prácticamente completos y las propiedades finales independientes de la cantidad utilizada. En general puede utilizarse cualquier tipo de lámpara, tanto monocromática como policromática, siempre y cuando emitan dentro del rango de emisión en el cual el fotoiniciador se active. El tiempo e intensidad de la irradiación empleado prácticamente puede ser cualquiera, ya que la reacción procede con gran rapidez y eficiencia. En general se ha observado que un minuto de irradiación con una lámpara policromática de Hg-Xe de intensidad entre 1 0 y 20 mW/cm2 es suficiente para que el material alcance sus propiedades finales. En general, ensayos con tiempos más largos no han mostrado cambios significativos en el grado de avance de la reacción. Con una lámpara monocromática de 365 nm de longitud de onda de intensidad 4mW/cm2 se alcanza el curado último irradiando 8 J/cm2. Para alcanzar unas propiedades homogéneas, especialmente en muestras gruesas, es mejor repartir el tiempo de irradiación entre las dos caras de la pieza. Si se desean ajustar al mínimo el tiempo de irradiación necesario para un curado completo, debe estudiarse cada sistema en particular, teniendo en cuenta el tipo de lámpara a utilizar, la composición, el fotoiniciador utilizado y el grosor de la muestra. Although in the preferred embodiment the first stage is carried out at room temperature for three hours and without accelerators, in particular embodiments and by way of comparison the first stage of curing is carried out for 24 hours and in some cases they have been used as accelerators 1, 5 -diazabicyclo [4.3.0] non-5-eno, or ytterbium triflate, acting respectively as a base and as Lewis acid. The second stage of curing, homopolymerization of excess vinyl compound, is preferably carried out by photoinduced curing by UV radiation. As a photoinitiator, any type of photoinitiator can be used, both type I and Type II, although in the latter case it is not necessary to add any sensitizers. The amount of photoinitiator can be any, although very low amounts can lead to poorly cured materials or the need to use very high irradiation times and intensities. On the contrary, excessively high amounts can lead to materials with a lower glass transition temperature. During the realization of the present invention it has been observed that between 0.5% and 3% (expressed in mass with respect to total mass that can react in the second stage of curing) of initiator are sufficient for the curing to be practically complete and final properties independent of the amount used. In general, any type of lamp, both monochromatic and polychromatic, can be used, provided they emit within the emission range in which the photoinitiator is activated. The time and intensity of the irradiation used can be practically any, since the reaction proceeds very quickly and efficiently. In general, it has been observed that one minute of irradiation with a polychromatic Hg-Xe lamp of intensity between 1 0 and 20 mW / cm 2 is sufficient for the material to reach its final properties. In general, trials with longer times have not shown significant changes in the degree of progress of the reaction. With a monochromatic lamp of 365 nm wavelength of intensity 4mW / cm 2 the ultimate cure is achieved by radiating 8 J / cm 2 . To achieve homogeneous properties, especially in thick samples, it is better to divide the irradiation time between the two sides of the piece. If you want to adjust the irradiation time necessary for a complete cure to a minimum, each particular system should be studied, taking into account the type of lamp to be used, the composition, the photoinitiator used and the thickness of the sample.
Si se desea se puede realizar un postcurado a alta temperatura para ayudar a completar el curado. El aumento del curado es tan poco significativo que parece razonable no hacerlo, ya que supone un coste energético superior y un riesgo para la estabilidad térmica de los materiales. If desired, a high temperature post cure can be performed to help complete the cure. The increase in cure is so insignificant that it seems reasonable not to do so, since it involves a higher energy cost and a risk to the thermal stability of the materials.
Si se desea puede realizarse la segunda etapa del curado de forma térmica. En este caso en lugar de un fotoiniciador, debe utilizarse un iniciador térmico tipo peróxido o hidroperóxido. En general estos sistemas requieren trabajar a altas temperaturas por encima de los 80eC a partir de la cual el iniciador descompone. Los inventores han observado que aunque sirve cualquier iniciador radicalario térmico, algunos del tipo peróxido de benzoilo, a pesar de permitir alcanzar un curado casi completo, conducen a materiales que presentan defectos debido a la formación de dióxido de carbono. Por el contrario si se utilizan iniciadores tipo el peróxido de metil etil cetona, se obtienen materiales casi completamente curados y sin defectos aparentes. Si se quiere acelerar la reacción o disminuir la temperatura de curado debe añadirse también un promotor tipo el octoato de cobalto en el caso del peróxido de metil cetona o una amina terciaria tipo A/,A/-dimetilanilina en el caso del peróxido de benzoilo. Los tiempos de curado, y las cantidades de iniciador y promotor deben ajustarse en cada caso en función de la temperatura de curado. If desired, the second stage of thermal curing can be performed. In this case, instead of a photoinitiator, a peroxide or hydroperoxide type thermal initiator must be used. In general, these systems require working at high temperatures above 80 e C from which the initiator decomposes. The inventors have observed that although any thermal radical initiator serves, some of the benzoyl peroxide type, despite allowing almost complete cure, lead to materials that exhibit defects due to the formation of carbon dioxide. By On the contrary, if methyl ethyl ketone peroxide type initiators are used, almost completely cured materials are obtained without apparent defects. If the reaction is to be accelerated or the cure temperature decreased, a cobalt octoate type promoter should also be added in the case of methyl ketone peroxide or a tertiary amine type A /, A / -dimethylaniline in the case of benzoyl peroxide. Curing times, and amounts of initiator and promoter must be adjusted in each case depending on the cure temperature.
El procedimiento de invención no requiere que se realice el curado dual en ausencia de oxígeno, pudiéndose hacer al aire sin necesidad de ninguna prevención. Los materiales quedan siempre muy cerca del curado completo y sin ningún tipo de pegajosidad superficial. Los grupos amino terciarios del compuesto a) (caso de tenerlos) junto con los terciarios formados durante la primera etapa del curado (adición aza-Michael), minimizan el efecto de inhibición del oxígeno sobre la polimerización radicalaria del exceso de grupos vinilo. The process of the invention does not require that dual cure be performed in the absence of oxygen, and can be done in the air without the need for any prevention. The materials are always very close to complete curing and without any superficial tack. The tertiary amino groups of compound a) (if any) together with the tertiary formed during the first stage of curing (aza-Michael addition), minimize the effect of oxygen inhibition on the radical polymerization of excess vinyl groups.
Los materiales obtenidos pueden ser almacenados indefinidamente tras la primera etapa del curado, sin que sus propiedades cambien. Solamente cuando se irradia la muestra puede iniciarse la segunda etapa del curado. En algunas formulaciones donde la primera etapa de curado no ha sido completa, durante el almacenamiento esta etapa tiende a completarse lentamente pero en ningún caso se inicia la segunda etapa. The materials obtained can be stored indefinitely after the first stage of curing, without their properties changing. Only when the sample is irradiated can the second stage of cure begin. In some formulations where the first stage of cure has not been complete, during storage this stage tends to complete slowly but in no case does the second stage begin.
Para describir las realizaciones de la presente invención los inventores han establecido la siguiente nomenclatura, en cuanto a la cantidad relativa de las dos etapas de curado dual. Se entiende por formulaciones 1 /1 , 1 /2, 1 /4 y 1 /8 aquellas en que la primera etapa (adición aza-Michael de la amina al doble enlace conjugado) representa respectivamente el 100%, 50%, 25% y 12,5% respecto del curado total. El resto hasta el 100% correspondería a la segunda etapa del curado (homopolimerización del exceso de grupos vinilo) y para las formulaciones 1 /1 , 1 /2, 1 ¡A y 1 /8 equivale respectivamente al 0%, 50%, 75% y 87,5% del curado total. To describe the embodiments of the present invention, the inventors have established the following nomenclature, in terms of the relative amount of the two dual cure stages. Formulations 1/1, 1/2, 1/4 and 1/8 are understood to be those in which the first stage (aza-Michael addition of the amine to the conjugated double bond) represents 100%, 50%, 25% and 12.5% with respect to total cure. The rest up to 100% would correspond to the second stage of curing (homopolymerization of excess vinyl groups) and for the formulations 1/1, 1/2, 1 A and 1/8 equivalent respectively to 0%, 50%, 75 % and 87.5% of total cure.
Los inventores han observado que pueden prepararse materiales con composiciones variables, que van desde aquellas en que solo existe la primera etapa de curado cuando las formulaciones se preparan con cantidades estequiométricas de grupos amino respecto a grupos vinilo, hasta formulaciones donde solo exista la segunda etapa de curado (homopolimerización del compuesto vinílico en exceso), cuando no se incluye amina en la formulación. En función de los componentes utilizados en la formulación y de la cantidad relativa de las dos etapas el material presenta propiedades completamente distintas. En unas realizaciones particulares, utilizando como componente b) mezclas de acrilatos formadas por bisfenol A-diacrilato de glicerolato (BGDA) y diacrilato de 1 ,6-hexandiol (HDDA) con una relación en peso 25/75 y como amina una polieteramina, la Jeffamine D-230, se han obtenido materiales con Tgs y módulos relajados (50eC por encima de Tg) después de las dos etapas de curado que van desde 102eC y 164 MPa para la formulación donde solo hay homopolimerización de acrilatos hasta -4eC y 15 MPa cuando solo hay adición de Michael. Las formulaciones intermedias con un 50%, 25% y 12,5% de adición Michael y el resto hasta el 100% de homopolimerización de acrilatos presentan Tgs y módulos relajados intermedios entre los de las composiciones extremas y proporcionales a la cantidad relativa de cada etapa del curado. Todas las formulaciones que contienen Jeffamine D-230 presentan, tras la primera etapa de curado, Tgs que oscilan entre - 92eC y -61 eC y ninguna gelifica durante esta fase del curado. Para estas mismas formulaciones se ha observado sorprendentemente que aproximadamente solo la mitad de los grupos amino reaccionan mientras que prácticamente todos los acrilatos desaparecen (ejemplos 1 , 2, 3, 4 y 5). Se piensa que solo los grupos amino primarios son capaces de reaccionar y que los secundarios formados, aunque son potencialmente reactivos, no son capaces de hacerlo, posiblemente por efecto de los impedimentos estéricos. The inventors have observed that materials with variable compositions can be prepared, ranging from those in which there is only the first curing stage when the formulations are prepared with stoichiometric amounts of amino groups relative to vinyl groups, to formulations where only the second stage of curing (homopolymerization of excess vinyl compound), when not It includes amine in the formulation. Depending on the components used in the formulation and the relative quantity of the two stages, the material has completely different properties. In particular embodiments, using as component b) mixtures of acrylates formed by bisphenol A-glycerolate diacrylate (BGDA) and 1,6-hexanediol diacrylate (HDDA) with a 25/75 weight ratio and as a polyetheramine amine, the Jeffamine D-230, materials with T g and relaxed modules (50 e C above T g ) have been obtained after the two curing stages ranging from 102 e C and 164 MPa for the formulation where there is only homopolymerization of acrylates up to -4 e C and 15 MPa when there is only Michael addition. Intermediate formulations with 50%, 25% and 12.5% Michael addition and the rest up to 100% acrylate homopolymerization have Tg s and intermediate relaxed modules between those of the extreme compositions and proportional to the relative amount of each Curing stage All formulations containing Jeffamine D-230 have, after the first stage of curing, T g s ranging between - 92 e C and -61 e C and none gel during this curing phase. For these same formulations it has been surprisingly observed that approximately only half of the amino groups react while practically all the acrylates disappear (examples 1, 2, 3, 4 and 5). It is thought that only the primary amino groups are capable of reacting and that the secondary formed, although potentially reactive, are not capable of doing so, possibly due to the effect of steric hindrances.
Los inventores también han observado que pueden modificarse de forma significativa las propiedades que presentan los materiales al final de la primera y la segunda etapa de curado cambiando el tipo de amina utilizado. En otras realizaciones particulares se ha utilizado como componente b) una mezcla de acrilatos BGDA/HDDA con una relación en peso de 25/75 y como amina la dietilentriamina (ejemplos 6, 7, 8 y 9) y una amina hiperramificada de peso molecular 800 g/mol y nombre comercial Lupaso FG (ejemplos 10, 1 1 , 12 y 13). Esta última amina tiene una composición similar a la dietilentriamina pero posee además grupos amino terciarios en su estructura. Se ha observado que al reemplazar la Jeffamine D-230 por la dietilentriamina aumenta significativamente la Tg y el módulo relajado y el curado es casi completo después de las dos etapas de curado en casi todas las formulaciones. Para estos mismos sistemas, se observa que las formulaciones con un 100%, 50% y 25% de adición Michael (formulaciones 1 /1 , 1 /2 y 1 /4) gelifican durante la primera etapa del curado respectivamente a conversiones totales de acrilatos del 62%, 40% y 26%. Asimismo las Tgs tras la primera etapa de curado son significativamente superiores que las que presentan las formulaciones con Jeffamine D-230. Cuando se utiliza la amina hiperramificada Lupaso FG las formulaciones con un 100%, 50% y 25% de adición Michael gelifican muy rápidamente al inicio de la primera etapa del curado y a conversiones totales de acrilatos entre el 15 y el 25%, significativamente más bajas que cuando se utiliza dietilentriamina. Las Tgs tras la primera etapa de curado son superiores en las formulaciones con Lupaso FG que con dietilentriamina, al igual que las Tgs y el módulo relajado tras la segunda etapa de curado. Parece ser que la mayor funcionalidad de Lupaso FG conduce a materiales significativamente más entrecruzados y con propiedades superiores. Las conversiones al final de la primera etapa de curado son significativamente superiores que cuando se utiliza Jeffamine D- 230, aunque algo inferiores respecto a los sistemas con dietilentriamina. De forma general se puede afirmar que la velocidad de reacción y el grado de curado de la primera etapa se ven fuertemente influenciados por el tipo de amina utilizada. La adición aza-Michael en formulaciones con dietilentriamina y Lupasol® es mucho más rápida y con un avance significativamente mayor que las que contienen Jeffamine D- 230. En el caso del Lupaso FG los grupos amino terciarios existentes en su estructura pueden justificar este comportamiento y en el caso de la dietilentriamina su baja viscosidad (alta movilidad) permite alcanzar los curados más cercanos a completos. Los inventores han evidenciado que puede aumentarse al grado de entrecruzamiento y las propiedades finales de los materiales reemplazando parcial o totalmente los diacrilatos por acrilatos de mayor funcionalidad. En unas realizaciones particulares utilizando como componente b) mezclas de acrilatos formadas por BGDA, HDDA y triacrilato de trimetilolpropano (TMTA) con relaciones en peso desde 25BGDA/75HDDA hasta 25BGDA/75TMTA y como amina la dietilentriamina con un relación molar entre la primera y la segunda etapa de 1 /4 (ejemplos 8, 14 y 15), se observa como la Tg y el módulo relajado al final de ambas etapas de curado aumentan significativamente al aumentar el contenido de triacrilato. Ambos parámetros aumentan desde 56eC y 73 MPa hasta 97eC y 246 MPa cuando se reemplaza completamente el 75% de HDDA por un 75% de TMTA. También hay un aumento significativo de la Tg después de la primera etapa desde -86eC hasta -42eC. Las formulaciones intermedias presentan propiedades intermedias. Las muestras con triacrilatos sorprendentemente no gelifican durante la primera etapa del curado, aunque sí cuando se reemplaza la dietilentriamina por el Lupasol. Utilizar acrilatos con mayor contenido en grupos acrilatos, como por ejemplo el pentaacrilato de dipentaeritritol, permite obtener materiales con Tgs y módulos relajados superiores pero estos presentan ciertos defectos por la excesiva reactividad del sistema, especialmente en formulaciones con un contenido muy elevado de este componente. The inventors have also observed that the properties of the materials at the end of the first and second curing stages can be significantly modified by changing the type of amine used. In other particular embodiments, a mixture of BGDA / HDDA acrylates with a weight ratio of 25/75 and diethylenetriamine (examples 6, 7, 8 and 9) and a hyperbranched amine of molecular weight 800 have been used as component b) g / mol and trade name Lupaso FG (examples 10, 1 1, 12 and 13). The latter amine has a composition similar to diethylenetriamine but also has tertiary amino groups in its structure. It has been observed that replacing Jeffamine D-230 with diethylenetriamine significantly increases T g and the relaxed modulus and curing is almost complete after the two stages of curing in almost all formulations. For these same systems, it is observed that formulations with 100%, 50% and 25% Michael addition (formulations 1/1, 1/2 and 1/4) gel during the first stage of curing respectively to total acrylate conversions 62%, 40% and 26%. Also the T g s after the first stage of curing are significantly higher than those present the formulations with Jeffamine D-230. When the Lupaso FG hyperbranched amine is used, formulations with 100%, 50% and 25% addition Michael gel very quickly at the beginning of the first stage of curing and total acrylate conversions between 15 and 25%, significantly lower than when diethylenetriamine is used. The T g s after the first stage of cure are superior in the formulations with Lupaso FG than with diethylenetriamine, as are the T g s and the module relaxed after the second stage of cure. It seems that the greater functionality of Lupaso FG leads to significantly more crosslinked materials and superior properties. Conversions at the end of the first stage of cure are significantly higher than when Jeffamine D-230 is used, although somewhat lower compared to diethylenetriamine systems. In general, it can be said that the reaction rate and the degree of cure of the first stage are strongly influenced by the type of amine used. The addition of aza-Michael in formulations with diethylenetriamine and Lupasol ® is much faster and with significantly greater progress than those containing Jeffamine D-230. In the case of Lupaso FG, the tertiary amino groups existing in its structure can justify this behavior and in the case of diethylenetriamine, its low viscosity (high mobility) allows the closest to complete cure to be achieved. The inventors have shown that the degree of crosslinking and the final properties of the materials can be increased by partially or totally replacing the diacrylates with more functional acrylates. In particular embodiments using as component b) mixtures of acrylates formed by BGDA, HDDA and trimethylolpropane triacrylate (TMTA) with weight ratios from 25BGDA / 75HDDA to 25BGDA / 75TMTA and as diethylenetriamine amine with a molar ratio between the first and the Second stage of 1/4 (examples 8, 14 and 15), it is observed how the T g and the relaxed module at the end of both stages of curing increase significantly as the triacrylate content increases. Both parameters increase from 56 e C and 73 MPa to 97 e C and 246 MPa when 75% of HDDA is completely replaced by 75% of TMTA. There is also a significant increase in T g after the first stage from -86 e C to -42 e C. Intermediate formulations have intermediate properties. The samples with triacrylates surprisingly do not gel during the first stage of curing, although when diethylenetriamine is replaced by Lupasol. Using acrylates with a higher content of acrylate groups, such as dipentaerythritol pentaacrylate, allows materials with Tg s and higher relaxed modules to be obtained but these have certain defects due to excessive system reactivity, especially in formulations with a very high content of this component.
Aunque en muchas de las formulaciones estudiadas los inventores han utilizado acrilatos del tipo HDDA y BGDA con una relación en peso de 25/75, por ser esta una de las formulaciones ampliamente utilizadas en aplicaciones industriales, ellos han observado que el invento es aplicable a cualquier composición de estos mismos acrilatos o de cualquier otro compuesto vinílico α,β-conjugado a un grupo carbonilo de éster. En otras realizaciones particulares utilizando como componente b) mezclas de acrilatos formadas por BGDA y HDDA con relaciones en peso desde 25% BG DA/75% H D D A hasta 75%BG DA/25%H DDA y como amina la dietilentriamina con un relación molar entre la primera y la segunda etapa de 1 /4 (ejemplos 8, 16 y 17), los investigadores han observado como la Tg final del material aumenta desde 56eC para la formulación que contiene un 25% en BGDA hasta 67eC para la formulación con un 75% en BGDA y la Tg después de la primera etapa desde -86eC a -32eC. En todas estas realizaciones la adición de Michael de la primera etapa ha sido casi completa, mientras que disminuye ligeramente la homopolimerización del exceso de acrilatos al aumentar el contenido en BGDA, posiblemente debido a ciertos impedimentos espaciales al aumentar el contenido en acrilato de mayor tamaño y viscosidad. Todas las formulaciones gelifican durante la primera etapa del curado a una conversión total de acrilatos cercana al 25%. Although in many of the formulations studied the inventors have used acrylates of the type HDDA and BGDA with a weight ratio of 25/75, as this is one of the formulations widely used in industrial applications, they have observed that the invention is applicable to any Composition of these same acrylates or any other α, β-conjugated vinyl compound to a carbonyl ester group. In other particular embodiments using as component b) mixtures of acrylates formed by BGDA and HDDA with weight ratios from 25% BG DA / 75% HDDA up to 75% BG DA / 25% H DDA and as diethylenetriamine amine with a molar ratio between In the first and second stages of 1/4 (examples 8, 16 and 17), researchers have observed how the final T g of the material increases from 56 e C for the formulation containing 25% in BGDA to 67 e C for the formulation with 75% in BGDA and the T g after the first stage from -86 e C to -32 e C. In all these embodiments Michael's addition of the first stage has been almost complete, while slightly decreasing the Homopolymerization of excess acrylates by increasing the BGDA content, possibly due to certain spatial impediments by increasing the acrylate content of greater size and viscosity. All formulations gel during the first stage of curing at a total conversion of acrylates close to 25%.
Cuando en una formulación que contiene un 25%BGDA y un 75%HDDA y Lupasol®FG con un relación molar entre la primera y la segunda etapa de 1 /4, se reemplaza completamente el HDDA por dimetacrilato de trietilenglicol (TEGDMA) (ejemplos 12 y 18), la Tg aumenta desde 75eC para la formulación que contiene un 75% HDDA hasta 150eC para la formulación con un 75% en TEGDMA. En estas realizaciones el proceso reactivo transcurre relativamente de forma similar aunque los sistemas con TEGDMA gelifican mucho más rápidamente y presentan poca homogeneidad, por la baja miscibilidad entre el TEGDMA y el Lupasol®FG. Así mismo en las formulaciones con TEGDMA ambas etapas de curado son completas, reaccionando los acrilatos preferentemente en la primera etapa y los metacrilatos en la segunda. Si se reemplaza en la misma formulación el 25% de BGDA por su metacrilato análogo, el bisfenol A- dimetacrilato de glicerolato (BGMA), en lugar de reemplazarse el 75% de HDDA, se modifican muy poco las propiedades finales, a pesar de que en esta realización ambas etapas de curado, especialmente la primera, no son completas en las condiciones del estudio (ejemplos 12 y 19). When in a formulation containing 25% BGDA and 75% HDDA and Lupasol ® FG with a molar ratio between the first and second stage of 1/4, the HDDA is completely replaced by triethylene glycol dimethacrylate (TEGDMA) (examples 12 and 18), the T g increases from 75 e C for the formulation containing 75% HDDA to 150 e C for the formulation with 75% in TEGDMA. In these embodiments, the reactive process proceeds relatively similarly although the systems with TEGDMA gel much faster and have little homogeneity, due to the low miscibility between the TEGDMA and the Lupasol ® FG. Also in the formulations with TEGDMA both stages of curing are complete, reacting the acrylates preferably in the first stage and methacrylates in the second. If 25% of BGDA is replaced in the same formulation with its analogous methacrylate, glycerol bisphenol A-dimethacrylate (BGMA), instead of replacing 75% of HDDA, the final properties are modified very little, although in this embodiment both stages of curing, especially the first, are not complete under the conditions of the study (examples 12 and 19).
En todas las realizaciones particulares expuestas hasta este punto del documento se ha utilizado un 3% en peso respecto a la masa total de mezcla de 2,2-dimetoxi-2-fenil acetofenona (DMPA) como fotoiniciador. Los inventores han puesto de manifiesto que fotoiniciadores de tipo II como la benzofenona son igualmente eficientes para las composiciones inventadas. En unas realizaciones particulares con formulaciones que contienen un 25%BGDA y un 75%HDDA y dietilentriamina con una relación molar entre la primera y la segunda etapa de 1 /2, se ha visto que tanto si se utiliza DMPA como si se utiliza benzofenona, ambas etapas de curado son prácticamente completas, siendo incluso ligeramente superior con benzofenona. Con benzofenona y con DMPA se obtienen materiales con Tgs y módulos relajados prácticamente idénticos (ejemplos 7 y 20). Se ha tratado de homopolimerizar la misma mezcla de acrilatos con benzofenona, pero sin presencia de la dietilentriamina y se ha visto que este proceso no tiene lugar (ejemplo 21 ). Este resultado pone de manifiesto que las aminas terciarias formadas durando la primera etapa (adición aza-Michael) actúan de sensibilizador activando la benzofenona que puede iniciar la homopolimerización de los acrilatos en la segunda etapa. En la práctica de la presente invención se ha descubierto sorprendentemente que la adición de bases o ácidos de Lewis solo acelera ligeramente el curado en contra de lo esperado, aunque sí permite aumentar el grado de conversión alcanzado. La adición de un 2% de 1 ,5-diazabiciclo[4.3.0]non-5-eno (DBN) a una formulación con 25%BGDA/75%HDDA y Jeffamine D-230 con un relación molar entre la primera y la segunda etapa de 1/4, ha permitido aumentar la conversión total de grupos acrilatos desde el 90% hasta el 98%, así como la conversión de la primera etapa de curado en un 4% (ejemplos 3 y 22). Para formulaciones mixtas acrilatos/metacrilatos 25%BGDA/75%TEGDMA y LupasofFG con un relación molar entre la primera y la segunda etapa de 1 /4, la primera etapa del curado aumenta su conversión hasta ser completa cuando se adiciona un 1 % de DBN o de trif lato de iterbio. In all the particular embodiments set forth up to this point in the document, 3% by weight has been used with respect to the total mixture mass of 2,2-dimethoxy-2-phenyl acetophenone (DMPA) as a photoinitiator. The inventors have shown that type II photoinitiators such as benzophenone are equally efficient for the invented compositions. In particular embodiments with formulations containing 25% BGDA and 75% HDDA and diethylenetriamine with a molar ratio between the first and second stages of 1/2, it has been seen that whether DMPA is used or benzophenone is used, both stages of cure are practically complete, being even slightly superior with benzophenone. With benzophenone and DMPA, materials with T g and practically identical relaxed modules are obtained (examples 7 and 20). An attempt has been made to homopolymerize the same mixture of acrylates with benzophenone, but without the presence of diethylenetriamine and it has been found that this process does not take place (example 21). This result shows that tertiary amines formed during the first stage (aza-Michael addition) act as a sensitizer by activating benzophenone that can initiate homopolymerization of acrylates in the second stage. In the practice of the present invention it has been surprisingly discovered that the addition of Lewis bases or acids only slightly accelerates cure against expectations, although it does increase the degree of conversion achieved. The addition of 2% of 1,5-diazabicyclo [4.3.0] non-5-ene (DBN) to a formulation with 25% BGDA / 75% HDDA and Jeffamine D-230 with a molar ratio between the first and the second stage of 1/4, has allowed to increase the total conversion of acrylate groups from 90% to 98%, as well as the conversion of the first stage of curing by 4% (examples 3 and 22). For mixed formulations acrylates / methacrylates 25% BGDA / 75% TEGDMA and LupasofFG with a molar ratio between the first and second stage of 1/4, the first stage of curing increases its conversion until it is complete when 1% of DBN is added or of triflate of iterbio.
En la mayor parte de realizaciones particulares a 35eC el curado de la primera etapa se había prácticamente completado. En algunos sistemas como los que contienen Jeffamine D-230, donde esta etapa no se ha completado en 3 horas, los inventores han visto que con tiempos más largos, el curado puede ser completo. En una realización particular con una formulación 25% BG DA/75% HD DA con Jeffamine D-230 y una relación molar entre la primera y la segunda etapa de 1 /8 (ejemplo 4), los investigadores han observado como a 35eC el curado completo en la primera etapa se alcanza en 7 horas. In most of particular embodiments at 35 e C the first stage cure was practically complete. In some systems such as those containing Jeffamine D-230, where this stage has not been completed in 3 hours, the inventors have seen that with longer times, curing can be complete. In a particular embodiment with a 25% BG DA / 75% HD DA formulation with Jeffamine D-230 and a molar ratio between the first and second stages of 1/8 (example 4), the Researchers have observed that at 35 e C the complete cure in the first stage is reached in 7 hours.
Aunque no es la opción preferente, si se desea, la segunda etapa de curado puede realizarse térmicamente en lugar de fotoinducida pero debe reemplazarse el fotoiniciador por un iniciador radicalario térmico. Una realización particular que contiene un 25%BGDA y un 75%TMTA y Lupasol®FG con una relación molar entre la primera y la segunda etapa de 1 /4, se ha reticulado utilizando un 3% de peróxido de metil etil cetona como iniciador térmico. Después de la primera etapa de curado y tras una hora de curado a 150eC la conversión de dobles enlaces es del 55%, y esta aumenta hasta el 73% con un postcurado de 1 hora a 180eC, para llegar a un curado del 83% con un calentamiento adicional de 1 hora de curado a 200eC (ejemplo 23). Cuando a la misma formulación se le añadió un 0,1 % de octoato de cobalto como promotor las conversiones alcanzadas, al final de cada etapa, siguiendo la misma pauta de curado son del 65%, 85% y curado prácticamente completo (ejemplo 24). La Tg de la formulación sin octoato es de 79eC, mientras que la que contiene octoato, completamente curada, de 140eC. Asimismo los inventores han observado que trabajando con octoato de cobalto la temperatura de curado podría ser claramente inferior, especialmente si se aumenta el contenido de promotor, aunque siempre se requiere un postcurado a una temperatura elevada por encima de la Tg del material completamente curado. La pauta de curado (temperatura-tiempo) debe ajustarse para cada formulación y esta depende de la composición de la formulación (Tg del material completamente curado) y del tipo y cantidad de iniciador y promotor seleccionados. Algunos de los materiales preparados pueden ser degradados a temperaturas relativamente bajas, aunque por encima de las temperaturas de curado. Cuanta mayor proporción de adición aza-Michael tiene la composición, más degradable térmicamente es la red ya que los enlaces C-N degradan a menor temperatura que los C-C. En realizaciones particulares con formulaciones 25%BGDA/75%HDDA y cantidades variables de Jeffamine D-230, la temperatura a la que ha descompuesto un 5% el material varía desde 216eC para la formulación donde el 100% es adición aza-Michael hasta 382eC para los formulaciones donde el 100% del curado es homopolimerización de los compuestos vinílicos conjugados (ejemplos 1 , 2, 3, 4 y 5) Las ventajas más destacadas de la presente invención son: Although it is not the preferred option, if desired, the second curing stage can be performed thermally instead of photoinduced but the photoinitiator must be replaced by a thermal radical initiator. A particular embodiment containing 25% BGDA and 75% TMTA and Lupasol ® FG with a molar ratio between the first and second stage of 1/4, has been crosslinked using 3% methyl ethyl ketone peroxide as a thermal initiator . After the first stage of curing and after one hour of curing at 150 e C the conversion of double bonds is 55%, and this increases up to 73% with a post-cure of 1 hour at 180 e C, to reach a cure of 83% with an additional heating of 1 hour of curing at 200 e C (example 23). When 0.1% of cobalt octoate was added to the same formulation as a promoter, the conversions achieved at the end of each stage, following the same cure pattern are 65%, 85% and practically complete curing (example 24) . The T g of the formulation without octoate is 79 e C, while the one containing completely cured octoate is 140 e C. The inventors have also observed that when working with cobalt octoate the curing temperature could be clearly lower, especially if the promoter content is increased, although post-curing is always required at an elevated temperature above the T g of the fully cured material. The curing pattern (temperature-time) must be adjusted for each formulation and this depends on the composition of the formulation (T g of the completely cured material) and the type and amount of initiator and promoter selected. Some of the prepared materials can be degraded at relatively low temperatures, although above cure temperatures. The higher the proportion of aza-Michael addition has the composition, the more thermally degradable the network is since the CN bonds degrade at a lower temperature than the CC. In particular embodiments with 25% BGDA / 75% HDDA formulations and varying amounts of Jeffamine D-230, the temperature at which the material has decomposed 5% ranges from 216 e C for the formulation where 100% is aza-Michael addition up to 382 e C for formulations where 100% cure is homopolymerization of the conjugated vinyl compounds (examples 1, 2, 3, 4 and 5) The most outstanding advantages of the present invention are:
- Materiales termoestables completamente reticulados sin necesidad de calentamiento, con el consiguiente ahorro energético. - Materiales libres de disolventes y otros componentes volátiles orgánicos. - Fully crosslinked thermosetting materials without heating, with the consequent energy savings. - Materials free of solvents and other volatile organic components.
- Obtención de estos materiales in situ en dos etapas pero con una única formulación.  - Obtaining these materials in situ in two stages but with a single formulation.
- Materiales estables tras la primera etapa de curado que pueden estar o no gelificados, donde la segunda etapa de curado puede activarse a voluntad. - Stable materials after the first curing stage that may or may not be gelled, where the second curing stage can be activated at will.
- Materiales muy versátiles que van desde los elastómeros hasta los termoestables altamente entrecruzados. - Very versatile materials ranging from elastomers to highly crosslinked thermosets.
- Materiales aptos para cualquier aplicación industrial de sistemas vinílicos.  - Materials suitable for any industrial application of vinyl systems.
- Formulaciones de viscosidad variable que pueden utilizarse directamente como adhesivos, en moldeo, para imprimaciones y para recubrimientos.  - Variable viscosity formulations that can be used directly as adhesives, in molding, for primers and for coatings.
- Materiales aptos para cualquier sustrato, con interés especial en los termosensibles, como la madera, ya que su aplicación no requiere calentamiento.  - Materials suitable for any substrate, with special interest in heat-sensitive materials, such as wood, since their application does not require heating.
- Materiales que pueden ser preparados a medida variando su composición en función de las propiedades deseadas.  - Materials that can be prepared to measure by varying their composition depending on the desired properties.
- Materiales potencialmente eliminables de forma controlada, para la recuperación de sustratos de alto valor.  - Potentially disposable materials in a controlled manner, for the recovery of high value substrates.
Todas estas características indican que la presente invención puede tener un interés potencial en cualquier aplicación propia de los sistemas vinílicos, especialmente cuando se deseen obtener materiales con una composición y unas propiedades controladas y con bajo coste energético y sin emisión de volátiles. All these characteristics indicate that the present invention may have a potential interest in any application of vinyl systems, especially when it is desired to obtain materials with a controlled composition and properties and with low energy cost and without volatile emission.
A continuación se presentan ejemplos ilustrativos de la invención que se exponen para una mejor comprensión de la misma y en ningún caso deben considerarse una limitación del alcance de la misma. Below are illustrative examples of the invention that are set forth for a better understanding thereof and in no case should they be considered a limitation of the scope thereof.
EJEMPLOS EXAMPLES
Los siguientes métodos y aparatos se emplean para diversas determinaciones en los ejemplos.  The following methods and apparatus are used for various determinations in the examples.
En la presente invención el seguimiento del curado en ambas etapas se ha realizado mediante espectroscopia infrarroja en tiempo real. Los espectros de infrarrojo se registraron con un espectrofotómetro Brucker Vértex 70 con un accesorio de reflectancia total atenuada con control térmico y con un cristal de diamante de Specac- Teknokroma a una resolución de 4 cm"1 y acumulando 20 barridos. Para las formulaciones preferentes de la presente invención se colocó la muestra fresca de un grosor de 50 μηι sobre la superficie del ATR y se realizó la siguiente pauta de curado: una primera etapa de curado de 3 horas a 35eC, seguida de una segunda etapa a 35eC irradiando 1 minuto con una lámpara policromática de Hg-Xe Hamamatsu Lightningcure LC5. En algunas realizaciones particulares donde la segunda etapa consiste en un curado térmico, el procedimiento ha sido similar, pero en la segunda etapa en lugar de irradiar la muestra se ha colocado la superficie del ATR a la temperatura deseada. In the present invention, the monitoring of the cure in both stages has been carried out by infrared spectroscopy in real time. The infrared spectra were recorded with a Brucker Vertex 70 spectrophotometer with an attenuated total reflectance accessory with thermal control and with a Specac- Teknokroma diamond crystal at a resolution of 4 cm "1 and accumulating 20 scans. For preferred formulations of the present invention was placed the fresh sample of a 50 μηι thickness on the surface of the ATR and the following curing pattern was performed: a first curing stage of 3 hours at 35 e C, followed by a second stage at 35 e C radiating 1 minute with a polygromatic Hg- lamp Xe Hamamatsu Lightningcure LC5. In some particular embodiments where the second stage consists of thermal curing, the procedure has been similar, but in the second stage, instead of irradiating the sample, the surface of the ATR has been placed at the desired temperature.
La conversión de grupos vinílicos, en las dos etapas del curado (adición Michael y homopolimerización), se ha establecido a partir de la desaparición de las bandas asociadas al doble enlace, utilizando los cambios observados en las intensidades relativas de estas bandas. Como durante la primera etapa del curado, antes de irradiar, no puede tener lugar la homopolimerización de los grupos vinílicos y estos solo pueden reaccionar con los grupos amino, se considera que la desaparición de las insaturaciones es directamente proporcional a la adición Michael de la amina al doble enlace conjugado. Para determinar la conversión, en las formulaciones con acrilatos, se ha utilizado el pico de absorbancia cercano a los 1400 cm"1 correspondiente a la torsión del C=C, y cuando se ha trabajo con mezclas de metacrilatos y acrilatos la conversión se ha determinado utilizando las bandas en la región de 800 cm"1 (asociada al conjunto de grupos acrilato y metacrilato) y a 1400 cm"1 (asociada solo a grupos acrilato). Como patrón interno se ha utilizado la banda de carbonilo cercana a los 1750 cm"1 o la banda de absorción característica del grupo C=C de los anillos aromáticos en la región de 1600 a 1500 cm"1. La gelificacion de los materiales durante la primera etapa de curado se determinó en un analizador termomecánico TMA/SDTA 840 de Mettler-Toledo. Las muestras se impregnaron en fibra de vidrio silanizada y se colocaron entre dos discos rígidos de óxido de silicio. Se curó el material igual que en el FTIR mediante un ensayo isotérmico a 35eC aplicando una fuerza variable desde 0,0025 hasta 0,01 N. Se tomó como tiempo de gel el tiempo al cual el material gana estabilidad mecánica y se reduce bruscamente la amplitud de las oscilaciones. La conversión en la gelificacion (otgei) se determinó como la conversión alcanzada en el FTIR al mismo tiempo que gelificó en el analizador termomecánico. Al final del curado dual todos los materiales estaban gelificados. No se determinó la gelificacion en la segunda etapa del curado ya que esta tiene lugar a tiempos muy cortos no pudiendo ser detectadas por técnicas convencionales. La temperatura de transición vitrea (Tg) al final de las dos etapas de curado se ha determinado mediante un analizador dinamomecánico Q800 de TA Instruments trabajando a 1 Hz de frecuencia y en el modo de flexión a tres puntos. En este mismo ensayo se determinó el módulo relajado 50eC por encima de la Tg, que es proporcional al grado de entrecruzamiento. En cuanto a las muestras para los ensayos dinamomecánicos, se prepararon probetas de 20 x 12 x 0,1 mm3 en moldes de polipropileno o vidrio, con un espaciador de teflón para obtener el grosor deseado, siguiendo el siguiente protocolo de curado: tres horas a 35eC, seguido de irradiación a temperatura ambiente de 8 J/cm2 (4 J/cm2 por cara) con una lámpara monocromática de 365 nm. El fotocurado se realizó en una estufa UV de Viber Lormat Bio-Link Crosslinker equipado con 6 lámparas de 8 W de potencia emitiendo a una longitud de onda de 365 nm. Estas muestras, antes del ensayo dinamomecánico, fueron analizadas mediante espectroscopia infrarroja por transformada de Fourier y mostraron un grado de conversión similar a las muestras entrecruzadas directamente en el espectrofotómetro The conversion of vinyl groups, in the two stages of curing (Michael addition and homopolymerization), has been established from the disappearance of the bands associated with the double bond, using the changes observed in the relative intensities of these bands. As during the first stage of curing, before irradiation, homopolymerization of the vinyl groups cannot take place and they can only react with the amino groups, it is considered that the disappearance of the unsaturations is directly proportional to the Michael addition of the amine to the conjugated double bond. To determine the conversion, in the formulations with acrylates, the absorbance peak close to 1400 cm "1 corresponding to the torsion of C = C has been used, and when working with mixtures of methacrylates and acrylates the conversion has been determined using the bands in the region of 800 cm "1 (associated with the set of acrylate and methacrylate groups) and 1400 cm" 1 (associated only acrylate groups). As internal standard was used band close carbonyl at 1750 cm " 1 or the characteristic absorption band of the C = C group of aromatic rings in the region of 1600 to 1500 cm "1. Gelification of the materials during the first curing stage was determined on a Mettler TMA / SDTA 840 thermomechanical analyzer "Toledo. The samples were impregnated in silanized fiberglass and placed between two rigid silicon oxide discs. The material was cured the same as in the FTIR by an isothermal test at 35 and C applying a varying force ble from 0.0025 to 0.01 N. The time at which the material gains mechanical stability and the amplitude of the oscillations is sharply reduced was taken as a gel time. The conversion in gelation (otgei) was determined as the conversion achieved in the FTIR at the same time as it gelled in the thermomechanical analyzer. At the end of the dual cure all the materials were gelled. The gelation was not determined in the second stage of curing since this takes place at very short times and cannot be detected by conventional techniques. The glass transition temperature (T g ) at the end of the two curing stages has been determined by a Q800 dynamomechanical analyzer from TA Instruments working at 1 Hz frequency and in the three-point flex mode. In this same test, the relaxed module 50 e C was determined above the T g , which is proportional to the degree of cross-linking. As for the samples for the dynamomechanical tests, 20 x 12 x 0.1 mm 3 specimens were prepared in polypropylene or glass molds, with a Teflon spacer to obtain the desired thickness, following the following curing protocol: three hours at 35 e C, followed by irradiation at room temperature of 8 J / cm 2 (4 J / cm 2 per side) with a monochromatic lamp of 365 nm. The photo curing was carried out in a UV stove of Viber Lormat Bio-Link Crosslinker equipped with 6 lamps of 8 W of power emitting at a wavelength of 365 nm. These samples, before the dynamomechanical test, were analyzed by Fourier transform infrared spectroscopy and showed a degree of conversion similar to the samples cross-linked directly in the spectrophotometer.
La Tg después de la primera etapa de curado, se ha determinado por calorimetría diferencial de barrido, utilizando un calorímetro Mettler DSC-822e con un robot TS0801 RO en cápsulas de aluminio y en atmósfera de nitrógeno. Las muestras colocadas en las cápsulas se han calentando a 10eC/min después de un curado en estufa de 3 horas a 35eC y se ha tomado como Tg la temperatura del punto medio del salto de la capacidad calorífica cuando el material cambia del estado vitreo al amorfo. The T g after the first curing stage has been determined by differential scanning calorimetry, using a Mettler DSC-822e calorimeter with a TS0801 RO robot in aluminum capsules and under nitrogen atmosphere. The samples placed in the capsules have been heated to 10 e C / min after an oven cure for 3 hours at 35 e C and the temperature of the midpoint of the heat capacity jump has been taken as T g when the material changes from the vitreous state to the amorphous.
La estabilidad térmica de los materiales entrecruzados se determinó en atmósfera de nitrógeno con un flujo de 200 cm3/min (medido en condiciones normales) en una termobalanza TGA/DSC 1 de Mettler-Toledo. Las muestras de aproximadamente 10 mg fueron degradadas entre 30 y 700eC mediante un calentamiento a 10eC/min. Se ha tomado como temperatura de descomposición la temperatura a la cual el material había perdido un 5% de peso. The thermal stability of the crosslinked materials was determined under a nitrogen atmosphere with a flow of 200 cm 3 / min (measured under normal conditions) in a TGA / DSC 1 thermobalance from Mettler-Toledo. Samples of approximately 10 mg were degraded between 30 and 700 e C by heating at 10 e C / min. The temperature at which the material had lost 5% of weight has been taken as the decomposition temperature.
Ejemplo 1 (relación másica BGDA/HDDA 25/75, Jeffamine D-230 con una relación molar entre la primera y la segunda etapa de 1 /1 , 3% de DMPA) Example 1 (mass ratio BGDA / HDDA 25/75, Jeffamine D-230 with a molar ratio between the first and second stage of 1/1, 3% DMPA)
Se preparó una composición de entrecruzamiento a temperatura ambiente de una mezcla de acrilatos con una amina, mezclando homogéneamente 2,5 g de BGDA y 7,5 g de HDDA. Después se añadieron 3 g de DMPA y se agitó hasta completa disolución del DMPA. Finalmente se adicionó 4,596 g de Jeffamine D-230, se agitó y se mantuvo durante 15 minutos a vacío. Se colocaron tres partes de la composición preparada una en un molde, otra en una cápsula DSC y otra en la superficie del ATR/FTIR y se mantuvieron durante 3 horas a 35eC. Finalmente las muestras del molde y del FTIR se irradiaron tal como se ha explicado. El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de -4eC, un módulo relajado de 1 5 MPa y una temperatura de descomposición de 216eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 48% que representa directamente un 48% de la adición aza-Michael al final de la primera etapa de curado y del 97% de acrilatos al final de la segunda. El material no gelificó durante la primera etapa de curado y mostró al final de esta etapa una temperatura de transición vitrea de -61 eC. A cross-linking composition at room temperature of a mixture of acrylates with an amine was prepared, homogeneously mixing 2.5 g of BGDA and 7.5 g of HDDA. Then 3 g of DMPA was added and stirred until DMPA was completely dissolved. Finally 4,596 g of Jeffamine D-230 was added, stirred and held for 15 minutes under vacuum. Three parts of the prepared composition were placed a in a mold, another in a DSC capsule and another on the surface of the ATR / FTIR and kept for 3 hours at 35 e C. Finally, the samples of the mold and the FTIR were irradiated as explained. The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of -4 e C, a relaxed modulus of 1 5 MPa and a decomposition temperature of 216 e C. The Fourier transform infrared spectroscopy spectra recorded during curing showed an acrylate conversion of 48% that directly represents 48% of the aza-Michael addition at the end of the first curing stage and 97% of acrylates at the end of the second. The material did not gel during the first curing stage and showed at the end of this stage a glass transition temperature of -61 e C.
Ejemplo 2 (relación másica BGDA/HDDA 25/75, Jeffamine D-230 con una relación molar entre la primera y la segunda etapa de 1 /2, 3% de DMPA) Example 2 (mass ratio BGDA / HDDA 25/75, Jeffamine D-230 with a molar ratio between the first and second stage of 1/2, 3% DMPA)
Se procedió como en el ejemplo 1 pero se añadió la mitad de Jeffamine D-230, 2,298 g. El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 1 0eC, un módulo relajado de 26 MPa y una temperatura de descomposición de 230eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 32,5% que representa directamente un 65% de la adición aza-Michael al final de la primera etapa de curado y del 92% de acrilatos al final de la segunda. El material no gelificó durante la primera etapa de curado y mostró al final de esta etapa una temperatura de transición vitrea de -71 eC. The procedure was as in Example 1 but half of Jeffamine D-230, 2,298 g was added. The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 1 0 e C, a relaxed modulus of 26 MPa and a decomposition temperature of 230 e C. The Fourier transform infrared spectroscopy spectra recorded during curing they showed a 32.5% acrylate conversion that directly represents 65% of the aza-Michael addition at the end of the first curing stage and 92% of acrylates at the end of the second. The material did not gel during the first curing stage and showed at the end of this stage a glass transition temperature of -71 e C.
Ejemplo 3 (relación másica BGDA/HDDA 25/75, Jeffamine D-230 con una relación molar entre la primera y la segunda etapa de 1 /4, 3% de DMPA) Example 3 (mass ratio BGDA / HDDA 25/75, Jeffamine D-230 with a molar ratio between the first and second stage of 1/4, 3% DMPA)
Se procedió como en el ejemplo 1 pero se añadió una cuarta parte de Jeffamine D- 230, 1 ,149 g. El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 48eC, un módulo relajado de 58 MPa y una temperatura de descomposición de 258eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 13% que representa directamente un 52% de la adición aza-Michael al final de la primera etapa de curado y del 90% de acrilatos al final de la segunda. El material no gelificó durante la primera etapa de curado y mostró al final de esta etapa una temperatura de transición vitrea de -84eC. The procedure was as in Example 1 but a quarter of Jeffamine D-230, 1, 149 g was added. The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 48 e C, a relaxed modulus of 58 MPa and a decomposition temperature of 258 e C. The Fourier transform infrared spectroscopy spectra recorded during Curing showed a 13% acrylate conversion that directly represents 52% of the aza-Michael addition at the end of the first curing stage and 90% of acrylates at the end of the second. The material did not gel during the first curing stage and showed at the end of this stage a glass transition temperature of -84 e C.
Ejemplo 4 (relación másica BGDA/HDDA 25/75, Jeffamine D-230 con una relación molar entre la primera y la segunda etapa de 1 /8, 3% de DMPA) Se procedió como en el ejemplo 1 pero se añadió una octava parte de Jeffamine D- 230, 0,5745 g. El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 67eC, un módulo relajado de 86 MPa y una temperatura de descomposición de 307eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 6,25% que representa directamente un 50% de la adición aza-Michael al final de la primera etapa de curado y del 87% de acrilatos al final de la segunda. El material no gelificó durante la primera etapa de curado y mostró al final de esta etapa una temperatura de transición vitrea de -92eC. Example 4 (mass ratio BGDA / HDDA 25/75, Jeffamine D-230 with a molar ratio between the first and second stage of 1/8, 3% DMPA) The procedure was as in Example 1 but one eighth of Jeffamine D-230, 0.5745 g was added. The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 67 e C, a relaxed modulus of 86 MPa and a decomposition temperature of 307 e C. The Fourier transform infrared spectroscopy spectra recorded during Curing showed a conversion of 6.25% acrylates that directly represents 50% of the aza-Michael addition at the end of the first curing stage and 87% of acrylates at the end of the second. The material did not gel during the first curing stage and showed at the end of this stage a glass transition temperature of -92 e C.
Ejemplo 5 de comparación solo fotocurado sin adición aza-Michael (relación másica BGDA/HDDA 25/75, 3% de DMPA) Comparison example 5 only photo-cured without addition aza-Michael (mass ratio BGDA / HDDA 25/75, 3% DMPA)
Se procedió como se describe en el ejemplo uno pero sin añadir amina y sin realizar la primera etapa de curado (adición aza-Michael). El material entrecruzado al final del fotocurado mostró una temperatura de transición vitrea de 102eC, un módulo relajado de 164 MPa y una temperatura de descomposición de 382eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados mostraron una conversión de acrilatos del 88% al final del fotocurado. Ejemplo 6 (relación másica BGDA/HDDA 25/75, dietilentriamina con una relación molar entre la primera y la segunda etapa de 1 /1 , 3% de DMPA) The procedure was as described in example one but without adding amine and without performing the first curing stage (aza-Michael addition). The crosslinked material at the end of the curing showed a glass transition temperature of 102 e C, a relaxed modulus of 164 MPa and a decomposition temperature of 382 e C. The recorded Fourier transform infrared spectroscopy spectra showed a conversion of acrylates of the 88% at the end of the curing. Example 6 (mass ratio BGDA / HDDA 25/75, diethylenetriamine with a molar ratio between the first and second stage of 1/1, 3% DMPA)
Se procedió como en el ejemplo 1 , pero se sustituyó la masa de Jeffamine D-230 por 1 ,5964 g de dietilentriamina. El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 16eC, un módulo relajado de 33 MPa y una temperatura de descomposición de 232eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 72% que representa directamente un 72% de la adición aza-Michael al final de la primera etapa de curado y del 94% de acrilatos al final de la segunda. El material gelificó en 45 minutos y alcanzó una conversión en la gelificación del 62% de acrilatos durante la primera etapa de curado. Asimismo el material mostró al final de esta etapa una temperatura de transición vitrea de -45eC. The procedure was as in Example 1, but the mass of Jeffamine D-230 was replaced by 1.5964 g of diethylenetriamine. The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 16 e C, a relaxed modulus of 33 MPa and a decomposition temperature of 232 e C. The Fourier transform infrared spectroscopy spectra recorded during curing showed an acrylate conversion of 72% that directly represents 72% of the aza-Michael addition at the end of the first curing stage and 94% of acrylates at the end of the second. The material gelled in 45 minutes and achieved a conversion in gelation of 62% acrylates during the first curing stage. The material also showed at the end of this stage a glass transition temperature of -45 e C.
Ejemplo 7 (relación másica BGDA/HDDA 25/75, dietilentriamina con una relación molar entre la primera y la segunda etapa de 1 /2, 3% de DMPA) Example 7 (mass ratio BGDA / HDDA 25/75, diethylenetriamine with a molar ratio between the first and second stage of 1/2, 3% DMPA)
Se procedió como en el ejemplo 1 , pero se sustituyó la masa de Jeffamine D-230 por 0,7982 g de dietilentriamina (la mitad que en el ejemplo 6). El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 39eC, un módulo relajado de 44 MPa y una temperatura de descomposición de 242eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 45% que representa directamente un 90% de la adición aza-Michael al final de la primera etapa de curado y del 93% de acrilatos al final de la segunda. El material gelificó en 96 minutos y alcanzó una conversión en la gelificacion del 40% de acrilatos durante la primera etapa de curado. Asimismo el material mostró al final de esta etapa una temperatura de transición vitrea de -65eC. Ejemplo 8 (relación másica BGDA/HDDA 25/75, dietilentriamina con una relación molar entre la primera y la segunda etapa de 1 /4, 3% de DMPA) The procedure was as in example 1, but the mass of Jeffamine D-230 was replaced by 0.7882 g of diethylenetriamine (half as in example 6). The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 39 e C, a relaxed module of 44 MPa and a decomposition temperature of 242 e C. The Fourier transform infrared spectroscopy spectra recorded during curing showed an acrylate conversion of 45% that directly represents 90% of the addition aza-Michael at the end of the first stage of curing and 93% of acrylates at the end of the second. The material gelled in 96 minutes and achieved a conversion in gelation of 40% acrylates during the first curing stage. At the end of this stage, the material also showed a glass transition temperature of -65 e C. Example 8 (mass ratio BGDA / HDDA 25/75, diethylenetriamine with a molar ratio between the first and second stages of 1/4, 3 % DMPA)
Se procedió como en el ejemplo 1 , pero se sustituyó la masa de Jeffamine D-230 por 0,3991 g de dietilentriamina (la cuarta parte que en el ejemplo 6). El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 56eC, un módulo relajado de 73 MPa y una temperatura de descomposición de 275eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 24% que representa directamente un 96% de la adición aza-Michael al final de la primera etapa de curado y del 89% de acrilatos al final de la segunda. El material gelificó en 127 minutos durante la primera etapa de curado y alcanzó una conversión en la gelificacion del 26% de acrilatos y mostró al final de esta etapa una temperatura de transición vitrea de -86eC. The procedure was as in example 1, but the mass of Jeffamine D-230 was replaced by 0.3991 g of diethylenetriamine (a quarter as in example 6). The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 56 e C, a relaxed modulus of 73 MPa and a decomposition temperature of 275 e C. The Fourier transform infrared spectroscopy spectra recorded during curing showed an acrylate conversion of 24% that directly represents 96% of the aza-Michael addition at the end of the first curing stage and 89% of acrylates at the end of the second. The material gelled in 127 minutes during the first curing stage and reached a conversion in gelation of 26% acrylates and showed at the end of this stage a glass transition temperature of -86 e C.
Ejemplo 9 (relación másica BGDA/HDDA 25/75, dietilentriamina con una relación molar entre la primera y la segunda etapa de 1 /8, 3% de DMPA) Example 9 (mass ratio BGDA / HDDA 25/75, diethylenetriamine with a molar ratio between the first and second stage of 1/8, 3% DMPA)
Se procedió como en el ejemplo 1 , pero se sustituyó la masa de Jeffamine D-230 por 0,16955 g de dietilentriamina (la octava parte que en el ejemplo 6). El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 70eC, un módulo relajado de 92 MPa y una temperatura de descomposición de 335eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 12,5% que representa directamente un 100% de la adición aza-Michael al final de la primera etapa de curado y del 88% de acrilatos al final de la segunda. El material no gelificó durante la primera etapa de curado y mostró al final de esta etapa una temperatura de transición vitrea de -93eC. The procedure was as in example 1, but the mass of Jeffamine D-230 was replaced by 0.16555 g of diethylenetriamine (the eighth part as in example 6). The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 70 e C, a relaxed modulus of 92 MPa and a decomposition temperature of 335 e C. The Fourier transform infrared spectroscopy spectra recorded during Curing showed a 12.5% acrylate conversion that directly represents 100% of the aza-Michael addition at the end of the first curing stage and 88% of acrylates at the end of the second. The material did not gel during the first curing stage and showed at the end of this stage a glass transition temperature of -93 e C.
Ejemplo 10 (relación másica BGDA/HDDA 25/75, Lupaso FG con una relación molar entre la primera y la segunda etapa de 1 /1 , 3% de DMPA) Example 10 (mass ratio BGDA / HDDA 25/75, Lupaso FG with a molar ratio between the first and second stage of 1/1, 3% DMPA)
Se procedió como en el ejemplo 1 , pero se sustituyó la masa de Jeffamine D-230 por 2,58 g de Lupaso FG. El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 33eC, un módulo relajado de 44 MPa y una temperatura de descomposición de 249eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 62% que representa directamente un 62% de la adición aza-Michael al final de la primera etapa de curado y del 85% de acrilatos al final de la segunda. El material gelificó en 2 minutos y alcanzó una conversión en la gelificación del 25% de acrilatos durante la primera etapa de curado. Asimismo el material mostró al final de esta etapa una temperatura de transición vitrea de -33eC. The procedure was as in Example 1, but the mass of Jeffamine D-230 was replaced by 2.58 g of Lupaso FG. The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 33 e C, a relaxed modulus of 44 MPa and a decomposition temperature of 249 e C. The Fourier transform infrared spectroscopy spectra recorded during curing showed an acrylate conversion of 62% that directly represents 62% of the aza-Michael addition at the end of the first curing stage and 85% of acrylates at the end of the second. The material gelled in 2 minutes and reached a conversion in gelation of 25% acrylates during the first stage of curing. The material also showed at the end of this stage a glass transition temperature of -33 e C.
Ejemplo 11 (relación másica BGDA/HDDA 25/75, Lupasol®FG con una relación molar entre la primera y la segunda etapa de 1 /2, 3% de DMPA) Example 11 (mass ratio BGDA / HDDA 25/75, Lupasol ® FG with a molar ratio between the first and second stage of 1/2, 3% DMPA)
Se procedió como en el ejemplo 1 , pero se sustituyó la masa de Jeffamine D-230 por 1 ,29 g de Lupaso FG (la mitad que en el ejemplo 10). El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 53eC, un módulo relajado de 65 MPa y una temperatura de descomposición de 257eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 33% que representa directamente un 60% de la adición aza-Michael al final de la primera etapa de curado y del 86% de acrilatos al final de la segunda. El material gelificó en 16 minutos y alcanzó una conversión en la gelificación del 21 % de acrilatos durante la primera etapa de curado. Asimismo el material mostró al final de esta etapa una temperatura de transición vitrea de -60eC. The procedure was as in example 1, but the mass of Jeffamine D-230 was replaced by 1.29 g of Lupaso FG (half as in example 10). The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 53 e C, a relaxed modulus of 65 MPa and a decomposition temperature of 257 e C. The Fourier transform infrared spectroscopy spectra recorded during curing showed an acrylate conversion of 33% that directly represents 60% of the aza-Michael addition at the end of the first curing stage and 86% of acrylates at the end of the second. The material gelled in 16 minutes and achieved a conversion in gelation of 21% acrylates during the first curing stage. The material also showed at the end of this stage a glass transition temperature of -60 e C.
Ejemplo 12 (relación másica BGDA/HDDA 25/75, Lupasol®FG con una relación molar entre la primera y la segunda etapa de 1 /4, 3% de DMPA) Example 12 (mass ratio BGDA / HDDA 25/75, Lupasol ® FG with a molar ratio between the first and second stage of 1/4, 3% DMPA)
Se procedió como en el ejemplo 1 , pero se sustituyó la masa de Jeffamine D-230 por 0,645 g de Lupaso FG (la cuarta parte que en el ejemplo 10). El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 64eC, un módulo relajado de 87 MPa y una temperatura de descomposición de 306eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 20% que representa directamente un 80% de la adición aza-Michael al final de la primera etapa de curado y del 87% de acrilatos al final de la segunda. El material gelificó en 48 minutos y alcanzó una conversión en la gelificación del 16% de acrilatos durante la primera etapa de curado. Asimismo el material mostró al final de esta etapa una temperatura de transición vitrea de -61 eC. The procedure was as in example 1, but the mass of Jeffamine D-230 was replaced by 0.645 g of Lupaso FG (the fourth part than in example 10). The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 64 e C, a relaxed modulus of 87 MPa and a decomposition temperature of 306 e C. The Fourier transform infrared spectroscopy spectra recorded during The curing showed a 20% acrylate conversion that directly represents 80% of the aza-Michael addition at the end of the first curing stage and 87% of acrylates at the end of the second. The material gelled in 48 minutes and reached a conversion in gelation of 16% of acrylates during the first stage of curing. The material also showed at the end of this stage a glass transition temperature of -61 e C.
Ejemplo 13 (relación másica BGDA/HDDA 25/75, Lupaso FG con una relación molar entre la primera y la segunda etapa de 1 /8, 3% de DMPA) Example 13 (mass ratio BGDA / HDDA 25/75, Lupaso FG with a molar ratio between the first and second stage of 1/8, 3% DMPA)
Se procedió como en el ejemplo 1 , pero se sustituyó la masa de Jeffamine D-230 por 0,645 g de Lupaso FG (la octava parte que en el ejemplo 10). El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 72eC, un módulo relajado de 100 MPa y una temperatura de descomposición de 341 eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 10% que representa directamente un 80% de la adición aza-Michael al final de la primera etapa de curado y del 87% de acrilatos al final de la segunda. El material gelificó en 445 minutos y alcanzó una conversión en la gelificación del 12,5% de acrilatos durante la primera etapa de curado. Asimismo el material mostró al final de esta etapa una temperatura de transición vitrea de -92eC. The procedure was as in example 1, but the mass of Jeffamine D-230 was replaced by 0.645 g of Lupaso FG (the eighth part than in example 10). The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 72 e C, a relaxed modulus of 100 MPa and a decomposition temperature of 341 e C. The Fourier transform infrared spectroscopy spectra recorded during Curing showed a 10% acrylate conversion that directly represents 80% of the aza-Michael addition at the end of the first curing stage and 87% of acrylates at the end of the second. The material gelled in 445 minutes and achieved a conversion in gelation of 12.5% acrylates during the first stage of curing. The material also showed at the end of this stage a glass transition temperature of -92 e C.
Ejemplo 14 (relación másica BGDA/TMTA 37,5/37,5, dietilentriamina con una relación molar entre la primera y la segunda etapa de 1 /4, 3% de DMPA) Example 14 (mass ratio BGDA / TMTA 37.5 / 37.5, diethylenetriamine with a molar ratio between the first and second stage of 1/4, 3% DMPA)
Se procedió como en el ejemplo 1 , pero utilizando 5 g de BGDA y 5 g de TMTA como mezcla de acrilatos y 0,407 g de dietilentriamina El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 76eC, un módulo relajado de 157 MPa y una temperatura de descomposición de 318eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 22% que representa directamente un 88% de la adición aza-Michael al final de la primera etapa de curado y del 80% de acrilatos al final de la segunda. El material mostró una temperatura de transición vitrea de -62eC al final de la primera etapa de curado. Ejemplo 15 (relación másica BGDA/TMTA 25/75, dietilentriamina con una relación molar entre la primera y la segunda etapa de 1 /4, 3% de DMPA) The procedure was as in Example 1, but using 5 g of BGDA and 5 g of TMTA as a mixture of acrylates and 0.407 g of diethylenetriamine The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 76 e C , a relaxed module of 157 MPa and a decomposition temperature of 318 e C. The Fourier transform infrared spectroscopy spectra recorded during curing showed a 22% acrylate conversion that directly represents 88% of the aza-Michael addition at the end of the first stage of curing and 80% of acrylates at the end of the second. The material showed a glass transition temperature of -62 e C at the end of the first curing stage. Example 15 (mass ratio BGDA / TMTA 25/75, diethylenetriamine with a molar ratio between the first and second stage of 1/4, 3% DMPA)
Se procedió como en el ejemplo 1 , pero utilizando 2,5 g de BGDA y 7,5 g de TMTA como mezcla de acrilatos y 0,430 g de dietilentriamina El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 97eC, un módulo relajado de 246 MPa y una temperatura de descomposición de 368eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 20% que representa directamente un 80% de la adición aza-Michael al final de la primera etapa de curado y del 78% de acrilatos al final de la segunda. El material mostró una temperatura de transición vitrea de -42eC al final de la primera etapa de curado. Ejemplo 16 (relación másica BGDA/HDDA 50/50, dietilentriamina con una relación molar entre la primera y la segunda etapa de 1 /4, 3% de DMPA) The procedure was as in Example 1, but using 2.5 g of BGDA and 7.5 g of TMTA as a mixture of acrylates and 0.430 g of diethylenetriamine The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 97 e C, a relaxed module of 246 MPa and a decomposition temperature of 368 e C. The Fourier transform infrared spectroscopy spectra recorded during curing showed a 20% acrylate conversion that It directly represents 80% of the aza-Michael addition at the end of the first curing stage and 78% of acrylates at the end of the second. The material showed a glass transition temperature of -42 e C at the end of the first curing stage. Example 16 (mass ratio BGDA / HDDA 50/50, diethylenetriamine with a molar ratio between the first and second stage of 1/4, 3% DMPA)
Se procedió como en el ejemplo 1 , pero utilizando 5 g de BGDA y 5 g de HDDA como mezcla de acrilatos y 0,327 g de dietilentriamina. El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 76eC, un módulo relajado de 157 MPa y una temperatura de descomposición de 324eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 25% que representa directamente un 100% de la adición aza-Michael al final de la primera etapa de curado y del 82% de acrilatos al final de la segunda. El material gelificó en 123 minutos y alcanzó una conversión en la gelificación del 24% de acrilatos durante la primera etapa de curado. Asimismo, el material mostró al final de esta etapa una temperatura de transición vitrea de -68eC. The procedure was as in Example 1, but using 5 g of BGDA and 5 g of HDDA as a mixture of acrylates and 0.327 g of diethylenetriamine. The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 76 e C, a relaxed modulus of 157 MPa and a decomposition temperature of 324 e C. The Fourier transform infrared spectroscopy spectra recorded during Curing showed a 25% acrylate conversion that directly represents 100% of the aza-Michael addition at the end of the first curing stage and 82% of acrylates at the end of the second. The material gelled in 123 minutes and achieved a conversion in gelation of 24% acrylates during the first curing stage. Also, the material showed at the end of this stage a glass transition temperature of -68 e C.
Ejemplo 17 (relación másica BGDA/HDDA 75/25, dietilentriamina con una relación molar entre la primera y la segunda etapa de 1 /4, 3% de DMPA) Example 17 (mass ratio BGDA / HDDA 75/25, diethylenetriamine with a molar ratio between the first and second stage of 1/4, 3% DMPA)
Se procedió como en el ejemplo 1 , pero utilizando 7,5 g de BGDA y 2,5 g de HDDA como mezcla de acrilatos y 0,276 g de dietilentriamina. El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 67eC, un módulo relajado de 28 MPa y una temperatura de descomposición de 325eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 25% que representa directamente un 100% de la adición aza-Michael al final de la primera etapa de curado y del 76% de acrilatos al final de la segunda. El material mostró una temperatura de transición vitrea de -32eC al final de la primera etapa de curado. The procedure was as in Example 1, but using 7.5 g of BGDA and 2.5 g of HDDA as a mixture of acrylates and 0.276 g of diethylenetriamine. The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 67 e C, a relaxed modulus of 28 MPa and a decomposition temperature of 325 e C. The Fourier transform infrared spectroscopy spectra recorded during Curing showed a 25% acrylate conversion that directly represents 100% of the aza-Michael addition at the end of the first curing stage and 76% of acrylates at the end of the second. The material showed a glass transition temperature of -32 e C at the end of the first curing stage.
Ejemplo 18 (relación másica BGDA/TEGDMA 25/75, Lupaso FG con una relación molar entre la primera y la segunda etapa de 1 /4, 3% de DMPA) Example 18 (mass ratio BGDA / TEGDMA 25/75, Lupaso FG with a molar ratio between the first and second stage of 1/4, 3% DMPA)
Se procedió como en el ejemplo 1 , pero utilizando 2,5 g de BGDA y 7,5 g de TEGDMA como mezcla de acrilatos y metacrilatos y 0,501 g de Lupaso FG. El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 1 50eC, un módulo relajado de 83 MPa y una temperatura de descomposición de 324eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos/metacrilatos del 22% (de la cual 19% son acrilatos y el 3% metacrilatos) que representa directamente un 88% de la adición aza-Michael al final de la primera etapa de curado y del 99% de acrilatos/metacrilatos al final de la segunda. El material gelificó en la primera etapa muy rápidamente y a una conversión baja que no pudo determinarse y mostró una temperatura de transición vitrea muy ancha de difícil determinación. The procedure was as in Example 1, but using 2.5 g of BGDA and 7.5 g of TEGDMA as a mixture of acrylates and methacrylates and 0.501 g of Lupaso FG. The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 1 50 e C, a relaxed modulus of 83 MPa and a decomposition temperature of 324 e C. The infrared spectroscopy spectra by Fourier transform recorded during curing showed an acrylate / methacrylate conversion of 22% (of which 19% are acrylates and 3% methacrylates) which directly represents 88% of the aza-Michael addition at the end of the first stage of Cured and 99% acrylates / methacrylates at the end of the second. The material gelled in the first stage very quickly and at a low conversion that could not be determined and showed a very wide glass transition temperature difficult to determine.
Ejemplo 19 (relación másica BGMA/HDDA 25/75, Lupasol®FG con una relación molar entre la primera y la segunda etapa de 1 /4, 3% de DMPA) Example 19 (mass ratio BGMA / HDDA 25/75, Lupasol ® FG with a molar ratio between the first and second stage of 1/4, 3% DMPA)
Se procedió como en el ejemplo 1 , pero utilizando 2,5 g de BGMA y 7,5 g de HDDA como mezcla de acrilatos y metacrilatos y 0,601 g de Lupaso FG. El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 75eC, un módulo relajado de 86 MPa y una temperatura de descomposición de 344eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos/metacrilatos del 1 1 % (de la cual 10% son acrilatos y el 1 % metacrilatos) que representa directamente un 44% de la adición aza-Michael al final de la primera etapa de curado y del 90% de acrilatos/metacrilatos al final de la segunda. El material no gelificó durante la primera etapa del curado y mostró una temperatura de transición vitrea de -82eC al final de esta etapa. The procedure was as in Example 1, but using 2.5 g of BGMA and 7.5 g of HDDA as a mixture of acrylates and methacrylates and 0.601 g of Lupaso FG. The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 75 e C, a relaxed modulus of 86 MPa and a decomposition temperature of 344 e C. The Fourier transform infrared spectroscopy spectra recorded during curing showed a conversion of acrylates / methacrylates of 1 1% (of which 10% are acrylates and 1% methacrylates) which directly represents 44% of the aza-Michael addition at the end of the first curing stage and 90 % acrylates / methacrylates at the end of the second. The material did not gel during the first stage of curing and showed a glass transition temperature of -82 e C at the end of this stage.
Ejemplo 20 (relación másica BGDA/HDDA 25/75, dietilentriamina con una relación molar entre la primera y la segunda etapa de 1 /2, 3% de benzofenona) Example 20 (mass ratio BGDA / HDDA 25/75, diethylenetriamine with a molar ratio between the first and second stage of 1/2, 3% benzophenone)
Se procedió como en el ejemplo 7, pero se sustituyó la masa de DMPA por 3 g de benzofenona. El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 39eC, un módulo relajado de 44 MPa y una temperatura de descomposición de 242eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 44% que representa directamente un 88% de la adición aza-Michael al final de la primera etapa de curado y del 90% de acrilatos al final de la segunda. The procedure was as in Example 7, but the DMPA mass was replaced by 3 g of benzophenone. The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 39 e C, a relaxed modulus of 44 MPa and a decomposition temperature of 242 e C. The Fourier transform infrared spectroscopy spectra recorded during curing showed an acrylate conversion of 44% that directly represents 88% of the aza-Michael addition at the end of the first curing stage and 90% of acrylates at the end of the second.
Ejemplo 21 de comparación solo fotocurado sin adición aza-Michael (relación másica BGDA/HDDA 25/75, 3% de benzofenona) Comparison example 21 only photo-cured without addition aza-Michael (mass ratio BGDA / HDDA 25/75, 3% benzophenone)
Se procedió como se describe en el ejemplo 20 pero sin añadir dietilentriamina y sin realizar la primera etapa de curado (adición aza-Michael). El material al final del fotocurado no había entrecruzado. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados mostraron una conversión de acrilatos del 0% después de 1 minuto de irradiación y del 3% después de 15 minutos. Ejemplo 22 (relación másica BGDA/HDDA 25/75, Jeffamine D-230 con una relación molar entre la primera y la segunda etapa de 1 /4, 3% de DMPA, 2% de 1 ,5- diazabiciclo[4.3.0]non-5-eno) The procedure was as described in example 20 but without adding diethylenetriamine and without performing the first curing stage (aza-Michael addition). The material at the end of photo curing had not intersected. Registered Fourier transform infrared spectroscopy spectra showed an acrylate conversion of 0% after 1 minute of irradiation and 3% after 15 minutes. Example 22 (mass ratio BGDA / HDDA 25/75, Jeffamine D-230 with a molar ratio between the first and second stage of 1/4, 3% DMPA, 2% 1, 5- diazabicyclo [4.3.0] non-5-eno)
Se procedió como en el ejemplo 3 pero se añadió además 2 g de 1 ,5- diazabiciclo[4.3.0]non-5-eno. Aunque no se midieron las propiedades de esta formulación por esperarse similares a las del ejemplo 3 si que mediante los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado se observó una conversión de acrilatos del 17% que representa directamente un 68% de la adición aza-Michael al final de la primera etapa de curado y del 98% de acrilatos al final de la segunda.  The procedure was as in Example 3 but 2 g of 1, 5-diazabicyclo [4.3.0] non-5-ene was also added. Although the properties of this formulation were not measured because they were expected to be similar to those of example 3, if by means of the Fourier transform infrared spectroscopy spectra recorded during curing, an acrylate conversion of 17% was observed, which directly represents 68% of the aza-Michael addition at the end of the first curing stage and 98% acrylates at the end of the second.
Ejemplo 23 (relación másica BGDA/TMTA 25/75, Lupaso FG con una relación molar entre la primera y la segunda etapa de 1 /4, 3% de peróxido de metil etil cetona) Se procedió como en el ejemplo 12, pero utilizando 2,5 g de BGDA y 7,5 g de TMTA como mezcla de acrilatos y reemplazando la masa de DMPA por 3 g de peróxido de metil etil cetona. La segunda etapa de curado en lugar del protocolo habitual consistió en la siguiente secuencia de tratamiento térmico: 1 hora a 150eC, seguido de 1 hora a 180eC, para finalizar con 1 hora a 200eC. El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 79eC, un módulo relajado de 129 MPa y una temperatura de descomposición de 310eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 17% que representa directamente un 68% de la adición aza-Michael al final de la primera etapa de curado, del 55% de acrilatos al final del calentamiento de 1 hora a 150eC, del 73% de acrilatos al final del calentamiento de 1 hora a 180eC y del 83% de acrilatos al final del calentamiento de 1 hora a 200eC. Example 23 (mass ratio BGDA / TMTA 25/75, Lupaso FG with a molar ratio between the first and second stage of 1/4, 3% methyl ethyl ketone peroxide) Proceed as in example 12, but using 2 , 5 g of BGDA and 7.5 g of TMTA as a mixture of acrylates and replacing the DMPA mass with 3 g of methyl ethyl ketone peroxide. The second stage of curing instead of the usual protocol consisted of the following heat treatment sequence: 1 hour at 150 e C, followed by 1 hour at 180 e C, to end with 1 hour at 200 e C. The material crosslinked at the end of the two stages of dual curing showed a glass transition temperature of 79 e C, a relaxed module of 129 MPa and a decomposition temperature of 310 e C. The Fourier transform infrared spectroscopy spectra recorded during curing showed a conversion of 17% acrylates directly representing 68% of the aza-Michael addition at the end of the first curing stage, 55% of acrylates at the end of heating for 1 hour at 150 e C, 73% of acrylates at the end 1 hour heating at 180 e C and 83% acrylates at the end of 1 hour heating at 200 e C.
Ejemplo 24 (relación másica BGDA/TMTA 25/75, Lupasol®FG con una relación molar entre la primera y la segunda etapa de 1/4, 3% de peróxido de metil etil cetona, 0,1 % de octoato de cobalto) Example 24 (mass ratio BGDA / TMTA 25/75, Lupasol ® FG with a molar ratio between the first and second stage of 1/4, 3% methyl ethyl ketone peroxide, 0.1% cobalt octoate)
Se procedió como en el ejemplo 23, pero añadiendo además 0,1 g de octoato de cobalto. El material entrecruzado al final de las dos etapas del curado dual mostró una temperatura de transición vitrea de 140eC, un módulo relajado de 223 MPa y una temperatura de descomposición de 313eC. Los espectros de espectroscopia infrarroja por transformada de Fourier registrados durante el curado mostraron una conversión de acrilatos del 20% que representa directamente un 80% de la adición aza-Michael al final de la primera etapa de curado, del 65% de acrilatos al final del calentamiento de 1 hora a 150eC, del 85% de acrilatos al final del calentamiento de 1 hora a 180eC y del 95% de acrilatos al final del calentamiento de 1 hora a 200eC. The procedure was as in example 23, but also adding 0.1 g of cobalt octoate. The crosslinked material at the end of the two stages of dual curing showed a glass transition temperature of 140 e C, a relaxed module of 223 MPa and a Decomposition temperature of 313 e C. The Fourier transform infrared spectroscopy spectra recorded during curing showed a 20% acrylate conversion that directly represents 80% of the aza-Michael addition at the end of the first curing stage, 65% of acrylates at the end of 1 hour heating at 150 e C, 85% of acrylates at the end of 1 hour heating at 180 e C and 95% of acrylates at the end of 1 hour heating at 200 e C .

Claims

REIVINDICACIONES
1 - Composición para el entrecruzamiento de una amina con un compuesto vinílico α,β-conjugado a un grupo carbonilo de éster y posterior polimerización del compuesto vinílico, caracterizado por que comprende como mínimo: a) una amina no aromática o poliamina no aromática, con por lo menos dos enlaces N-H, b) un compuesto vinílico, de fórmula general (I), que contenga como mínimo dos dobles enlaces α,β-conjugados a un grupo carbonilo de éster 1 - Composition for the cross-linking of an amine with an α, β-conjugated vinyl compound to a carbonyl ester group and subsequent polymerization of the vinyl compound, characterized in that it comprises at least: a) a non-aromatic amine or non-aromatic polyamine, with at least two NH bonds, b) a vinyl compound, of general formula (I), containing at least two α, β-conjugated double bonds to a carbonyl ester group
Figure imgf000035_0001
donde Y y Z son cada uno independientemente un hidrógeno, restos alifáticos o aromáticos o grupos más complejos, y donde X es un resto alifático o aromático o un grupo más complejo, y c) un fotoiniciador radicalario o un iniciador térmico radicalario, aptos para iniciar la reticulación de dichos dobles enlaces α,β-conjugados a un grupo carbonilo de éster en exceso.
Figure imgf000035_0001
where Y and Z are each independently a hydrogen, aliphatic or aromatic moieties or more complex groups, and where X is an aliphatic or aromatic moiety or a more complex group, and c) a radical photoinitiator or a radical thermal initiator, suitable for initiating crosslinking said double α, β-conjugated bonds to an excess ester carbonyl group.
2 - Composición según la reivindicación 1 , caracterizada por que dichos dobles enlaces α,β-conjugados a un grupo carbonilo de éster están en exceso respecto de dichos enlaces N-H. 2 - Composition according to claim 1, characterized in that said α, β-conjugated double bonds to a carbonyl ester group are in excess of said N-H bonds.
3 - Composición según una de las reivindicaciones 1 ó 2, caracterizada por que Y y Z son cada uno independientemente un hidrógeno, un radical alquilo C1 -C20, lineal o ramificado, sustituido o no, un radical alquenilo o alquinilo C2-C20, lineal o ramificado, sustituido o no, un radical cicloalquilo o cicloalquenilo C4-C20, sustituido o no, un radical arilo, que preferentemente posee además restos alquílicos, halógenos u otros sustituyentes directamente unidos a los anillos aromáticos. 3 - Composition according to one of claims 1 or 2, characterized in that Y and Z are each independently a hydrogen, a linear or branched C1-C20 alkyl radical, substituted or not, a linear C2-C20 alkenyl or alkynyl radical or branched, substituted or not, a C4-C20 cycloalkyl or cycloalkenyl radical, substituted or not, a aryl radical, which preferably also has alkyl, halogen or other substituents directly attached to the aromatic rings.
4 - Composición según cualquiera de las reivindicaciones 1 a 3, caracterizada por que el grupo X es un radical alquilo C2-C100, lineal o ramificado, sustituido o no, un radical alquenilo o alquinilo C2-C40, lineal o ramificado, sustituido o no, un radical cicloalquilo o cicloalquenilo C4-C20, sustituido o no, un radical arilo, que preferentemente posee además restos alquílicos, halógenos u otros sustituyentes directamente unidos a los anillos aromáticos, preferentemente X está además unido a varios grupos éster α,β- conjugados. 4 - Composition according to any one of claims 1 to 3, characterized in that the group X is a C2-C100 alkyl radical, linear or branched, substituted or not, a C2-C40 alkenyl or alkynyl radical, linear or branched, substituted or not , a C4-C20 cycloalkyl or cycloalkenyl radical, substituted or not, an aryl radical, which preferably also has alkyl, halogen or other substituents directly attached to the aromatic rings, preferably X is also linked to several α, β-conjugated ester groups .
5 - Composición según cualquiera de las reivindicaciones 1 a 4, caracterizada por que n varía entre 2 y 50. 6 - Composición según cualquiera de las reivindicaciones 1 a 5, caracterizada por que dicha amina o poliamina es una poliamina con por lo menos tres enlaces N-H. 5 - Composition according to any one of claims 1 to 4, characterized in that n varies between 2 and 50. 6 - Composition according to any one of claims 1 to 5, characterized in that said amine or polyamine is a polyamine with at least three bonds NH.
7 - Composición según cualquiera de las reivindicaciones 1 a 6, caracterizada por que dicha amina o poliamina posee entre 3 y 5 grupos N-H, dicho compuesto vinílico contiene entre 2 y 6 dobles enlaces α,β-conjugados a un grupo carbonilo de éster y, preferentemente, la relación entre grupos N-H y dobles enlaces α,β-conjugados a un grupo carbonilo de éster está entre 0.05 y 1 . 7 - Composition according to any one of claims 1 to 6, characterized in that said amine or polyamine has between 3 and 5 NH groups, said vinyl compound contains between 2 and 6 double α, β-conjugated double bonds to a carbonyl ester group and, preferably, the ratio between NH groups and α, β-conjugated double bonds to a carbonyl ester group is between 0.05 and 1.
8 - Composición según cualquiera de las reivindicaciones 1 a 6, caracterizada por que dicha amina o poliamina posee entre 6 y 20 grupos N-H, dicho compuesto vinílico contiene entre 2 y 6 dobles enlaces α,β-conjugados a un grupo carbonilo de éster y, preferentemente, la relación entre grupos N-H y dobles enlaces α,β-conjugados a un grupo carbonilo de éster está entre 0.01 y 1 . 9 - Composición según cualquiera de las reivindicaciones 1 a 8, caracterizada porque8 - Composition according to any of claims 1 to 6, characterized in that said amine or polyamine has between 6 and 20 NH groups, said vinyl compound contains between 2 and 6 double α, β-conjugated double bonds to a carbonyl ester group and, preferably, the ratio between NH groups and α, β-conjugated double bonds to a carbonyl ester group is between 0.01 and 1. 9 - Composition according to any of claims 1 to 8, characterized in that
Z e Y son hidrógenos. Z and Y are hydrogens.
1 0 - Composición según cualquiera de las reivindicaciones 1 a 8, caracterizada porque Z e Y son respectivamente un hidrógeno y un grupo metilo. 1 1 - Composición según cualquiera de las reivindicaciones 1 a 8, caracterizada por que el componente b) es una mezcla de acrilatos, una mezcla de metacrilatos o una mezcla de acrilatos y metacrilatos en cualquier proporción. 1 2 - Composición según la reivindicación 1 1 , caracterizada por que el componente b) es una mezcla de bisfenol A-diacrilato de glicerolato y diacrilato de 1 ,6-hexandiol. 1 0 - Composition according to any one of claims 1 to 8, characterized in that Z and Y are respectively a hydrogen and a methyl group. 1 - Composition according to any one of claims 1 to 8, characterized in that component b) is a mixture of acrylates, a mixture of methacrylates or a mixture of acrylates and methacrylates in any proportion. 1 - Composition according to claim 1, characterized in that component b) is a mixture of bisphenol A-glycerolate diacrylate and 1,6-hexanediol diacrylate.
1 3 - Composición según la reivindicación 1 1 , caracterizada por que el componente b) es una mezcla de bisfenol A-diacrilato de glicerolato y triacrilato de trimetilolpropano. 1 3 - Composition according to claim 1, characterized in that the component b) is a mixture of bisphenol A-glycerolate diacrylate and trimethylolpropane triacrylate.
14 - Composición según la reivindicación 1 1 , caracterizada por que el componente b) es una mezcla de bisfenol A-diacrilato de glicerolato y trimetilolpropano dimetacrilato de trietilenglicol 1 5 - Composición según la reivindicación 1 1 , caracterizada por que el componente b) es una mezcla de bisfenol A-dimetacrilato de glicerolato y diacrilato de 1 ,6-hexandiol. 14 - Composition according to claim 1, characterized in that component b) is a mixture of bisphenol A-glycerolate diacrylate and triethylene glycol trimethylolpropane dimethacrylate 1 - Composition according to claim 1, characterized in that component b) is a mixture of bisphenol A-glycerolate dimethacrylate and 1,6-hexanediol diacrylate.
1 6 - Composición según cualquiera de las reivindicaciones 1 a 1 5, caracterizada por que dicha amina o poliamina es una poliamina de peso molecular entre 400 y 25.000. 1 - Composition according to any one of claims 1 to 1, characterized in that said amine or polyamine is a polyamine of molecular weight between 400 and 25,000.
1 7 - Composición según cualquiera de las reivindicaciones 1 a 1 6, caracterizada por que dicha amina o poliamina es una polieteramina o una poli(etilenamina) lineal o ramificada. 1 8 - Composición según cualquiera de las reivindicaciones 1 a 1 5, caracterizada por que dicha amina o poliamina es una amina alifática simple de peso molecular comprendido entre 60 y 2.000. 1 - Composition according to any one of claims 1 to 1 6, characterized in that said amine or polyamine is a polyetheramine or a linear or branched poly (ethylenamine). 1-8 - Composition according to any one of claims 1 to 1, characterized in that said amine or polyamine is a simple aliphatic amine of molecular weight between 60 and 2,000.
1 9 - Composición según cualquiera de las reivindicaciones 1 a 1 5, caracterizada por que dicha amina o poliamina es dietilentriamina. 1 9 - Composition according to any one of claims 1 to 1, characterized in that said amine or polyamine is diethylenetriamine.
20 - Composición según cualquiera de las reivindicaciones 1 a 1 9, caracterizada por que el componente c) es un fotoiniciador radicalario. 21 - Composición según la reivindicación 20, caracterizada por que el fotoiniciador radicalario es 2,2-dimetoxi-2-fenil acetofenona o benzofenona. 22 - Composición según cualquiera de las reivindicaciones 1 a 21 , caracterizada por que comprende, adicionalmente, una base o un ácido de Lewis. 20 - Composition according to any one of claims 1 to 9, characterized in that component c) is a radical photoinitiator. 21 - Composition according to claim 20, characterized in that the radical photoinitiator is 2,2-dimethoxy-2-phenyl acetophenone or benzophenone. 22 - Composition according to any one of claims 1 to 21, characterized in that it additionally comprises a Lewis base or acid.
23 - Composición según la reivindicación 22, caracterizada por que dicha base o dicho ácido de Lewis es 1 ,5-diazabiciclo[4.3.0]non-5-eno o triflato de iterbio. 23 - Composition according to claim 22, characterized in that said base or said Lewis acid is 1,5-diazabicyclo [4.3.0] non-5-eno or ytterbium triflate.
24 - Composición según cualquiera de las reivindicaciones 1 a 1 9, caracterizada por que el componente c) es un iniciador térmico radicalario. 25 - Composición según la reivindicación 24, caracterizada por que el iniciador térmico radicalario es peróxido de metil etil cetona. Composition according to any one of claims 1 to 9, characterized in that component c) is a radical thermal initiator. 25 - Composition according to claim 24, characterized in that the radical initiator is methyl ethyl ketone peroxide.
26 - Composición según una de las reivindicaciones 24 ó 25, caracterizada por que comprende, adicionalmente, un promotor. 26 - Composition according to one of claims 24 or 25, characterized in that it additionally comprises a promoter.
27 - Composición según la reivindicación 26, caracterizada por que dicho promotor es octoato de cobalto. 27 - Composition according to claim 26, characterized in that said promoter is cobalt octoate.
28 - Procedimiento para la obtención de una composición para el entrecruzamiento de una amina con un compuesto vinílico α,β-conjugado a un grupo carbonilo de éster y posterior polimerización del exceso de compuesto vinílico, según cualquiera de las reivindicaciones 1 a 27, que comprende las etapas de: (i) disolver el fotoiniciador radicalario o el iniciador térmico radicalario en el componente b) de la formulación mediante agitación a temperatura ambiente, (ii) añadir a la mezcla anterior el componente a), y mantener la mezcla resultante a vacío por lo menos durante 15 minutos a temperatura ambiente. 28 - Method for obtaining a composition for the cross-linking of an amine with an α, β-conjugated vinyl compound to a carbonyl ester group and subsequent polymerization of the excess of vinyl compound, according to any one of claims 1 to 27, comprising the steps of: (i) dissolving the radical photoinitiator or the radical thermal initiator in component b) of the formulation by stirring at room temperature, (ii) adding component a) to the previous mixture, and keeping the resulting mixture in vacuo at least for 15 minutes at room temperature.
29 - Procedimiento para la obtención de una composición según la reivindicación 28, caracterizado por que dicho vacío es inferior a 1 00 mm Hg. 29 - Method for obtaining a composition according to claim 28, characterized in that said vacuum is less than 1 00 mm Hg.
30 - Procedimiento para la obtención de una composición según una de las reivindicaciones 28 ó 29, caracterizado por que previamente a dicha etapa (ii), se disuelve en dicho componente a) una base o un ácido de Lewis. 31 - Procedimiento para la obtención de una composición según una de las reivindicaciones 28 ó 29, caracterizado por que se emplea un iniciador térmico radicalario y se añade un promotor en el componente b). 32 - Procedimiento de recubrimiento de un sustrato caracterizado por que comprende las etapas de: I) preparación de una composición según cualquiera de las reivindicaciones 1 a 27, 30 - Method for obtaining a composition according to one of claims 28 or 29, characterized in that prior to said step (ii), a Lewis base or acid is dissolved in said component a). 31 - Procedure for obtaining a composition according to one of claims 28 or 29, characterized in that a radical thermal initiator is used and a promoter is added in component b). 32 - Method of coating a substrate characterized in that it comprises the steps of: I) preparation of a composition according to any one of claims 1 to 27,
II) aplicación de dicha composición sobre un sustrato II) application of said composition on a substrate
III) primera etapa de curado mediante la reacción entre dicho compuesto a) y dicho compuesto b) III) first stage of curing by reaction between said compound a) and said compound b)
IV) segunda etapa de curado mediante la activación de dicho fotoiniciador mediante radiación ultravioleta o de dicho iniciador térmico mediante la aportación de calor y la reacción de los restantes dobles enlaces α,β-conjugado a un grupo carbonilo de éster entre sí. IV) second stage of curing by activating said photoinitiator by ultraviolet radiation or said thermal initiator by means of heat input and the reaction of the remaining α, β-conjugated double bonds to a carbonyl ester group with each other.
33 - Procedimiento según la reivindicación 32, caracterizado por que dicha composición gelifica durante dicha primera etapa de curado. 34 - Procedimiento según la reivindicación 32, caracterizado por que dicha composición gelifica durante dicha segunda etapa de curado. 33 - Method according to claim 32, characterized in that said composition gels during said first curing stage. 34 - Method according to claim 32, characterized in that said composition gels during said second curing stage.
35 - Substrato recubierto de un material entrecruzado obtenible por curado de una composición siguiendo el procedimiento de una cualquiera de las reivindicaciones 32 a 34. 35 - Substrate coated with a crosslinked material obtainable by curing a composition following the procedure of any one of claims 32 to 34.
36 - Procedimiento de fabricación de una pieza por moldeo caracterizado por que comprende las etapas de: I) preparación de una composición según las reivindicaciones 1 a 27, 36 - Method of manufacturing a part by molding characterized in that it comprises the steps of: I) preparation of a composition according to claims 1 to 27,
II) llenado de un molde con dicha composición II) filling a mold with said composition
III) primera etapa de curado mediante la reacción entre dicho compuesto a) y dicho compuesto b) III) first stage of curing by reaction between said compound a) and said compound b)
IV) segunda etapa de curado mediante la activación de dicho fotoiniciador mediante radiación ultravioleta o de dicho iniciador térmico mediante la aportación de calor y la reacción de los restantes dobles enlaces α,β-conjugado a un grupo carbonilo de éster entre sí. IV) second stage of curing by activating said photoinitiator by ultraviolet radiation or said thermal initiator by means of heat input and the reaction of the remaining α, β-conjugated double bonds to a carbonyl ester group with each other.
37 - Procedimiento según la reivindicación 36, caracterizado por que dicha composición gelifica durante dicha primera etapa de curado. 37 - Method according to claim 36, characterized in that said composition gels during said first curing stage.
38 - Procedimiento según la reivindicación 36, caracterizado por que dicha composición gelifica durante dicha segunda etapa de curado. 38 - Method according to claim 36, characterized in that said composition gels during said second curing stage.
39 - Pieza de un material entrecruzado obtenible por curado de una composición siguiendo el procedimiento de una cualquiera de las reivindicaciones 36 a 38. 39 - Piece of a crosslinked material obtainable by curing a composition following the procedure of any one of claims 36 to 38.
PCT/ES2016/070251 2015-04-17 2016-04-13 Composition for the cross-linking of an amine with a vinyl compound α,β- conjugated to a carbonyl group of esters, and subsequent polymerisation of the vinyl compound and corresponding methods WO2016166397A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201530523 2015-04-17
ES201530523A ES2538180B2 (en) 2015-04-17 2015-04-17 Composition for crosslinking an amine with an alpha vinyl compound, beta-conjugated to a carbonyl ester group and subsequent polymerization of the vinyl compound and corresponding procedures

Publications (1)

Publication Number Publication Date
WO2016166397A1 true WO2016166397A1 (en) 2016-10-20

Family

ID=53371985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070251 WO2016166397A1 (en) 2015-04-17 2016-04-13 Composition for the cross-linking of an amine with a vinyl compound α,β- conjugated to a carbonyl group of esters, and subsequent polymerisation of the vinyl compound and corresponding methods

Country Status (2)

Country Link
ES (1) ES2538180B2 (en)
WO (1) WO2016166397A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018063095A1 (en) * 2016-09-29 2018-04-05 Nipsea Technologies Pte Ltd Crosslinking agent for polymer emulsions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914165A (en) * 1972-09-18 1975-10-21 Desoto Inc Radiation curable non-gelled michael addition reaction products
WO2012121822A1 (en) * 2011-03-04 2012-09-13 3M Innovative Properties Company Polyether hybrid epoxy curatives
WO2014186197A1 (en) * 2013-05-13 2014-11-20 3M Innovative Properties Company Coating compositions containing polysiloxane michael adducts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914165A (en) * 1972-09-18 1975-10-21 Desoto Inc Radiation curable non-gelled michael addition reaction products
WO2012121822A1 (en) * 2011-03-04 2012-09-13 3M Innovative Properties Company Polyether hybrid epoxy curatives
WO2014186197A1 (en) * 2013-05-13 2014-11-20 3M Innovative Properties Company Coating compositions containing polysiloxane michael adducts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D. P. NAIR ET AL.: "Two-stage reactive polymer network forming systems", ADVANCED FUNCTIONAL MATERIALS, vol. 22, no. 7, 2012, pages 1502 - 1510, XP055097405 *

Also Published As

Publication number Publication date
ES2538180B2 (en) 2015-11-06
ES2538180A1 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
ES2426004T3 (en) Radiation curable coatings for metal substrates of multifunctional acrylate oligomers
Sideridou et al. Reactivity of benzoyl peroxide/amine system as an initiator for the free radical polymerization of dental and orthopaedic dimethacrylate monomers: effect of the amine and monomer chemical structure
Chiang et al. A study of monomer's effect on adhesion strength of UV-curable resins
Temel et al. Synthesis and characterization of one-component polymeric photoinitiator by simultaneous double click reactions and its use in photoinduced free radical polymerization
AU2013314661B2 (en) Dental composition
ES2763039T3 (en) Method for Frontal Polymerization of Cationically Polymerizable Monomers
JP2009080452A (en) Photosensitive resin composition
Rodrigues et al. Influence of hydroxyethyl acrylamide addition to dental adhesive resin
US9340636B2 (en) Thiol-containing dual cure polymers and methods using same
JP5976076B2 (en) Functional resin composition for controlled polymerization stress
US20200347263A1 (en) Process for the manufacture of a crosslinkable composition
WO2001000684A1 (en) Liquid oligomers containing unsaturation
JP2019524969A (en) Polymerizable composition, method for producing the same, and article containing the same
BRPI0510100B1 (en) michael, uv curable resin, non-crosslinked, liquid, modified michael donor or recipient, coating, and article
EP2103592A3 (en) Hydroxyl-containing monomer, polymer, resist composition, and patterning process
JP2007511641A (en) Binary curing reaction product of self-initiated polyfunctional acrylate and alicyclic epoxy compound
CN103282340B (en) The 3-oxopentanoic acid ester replaced and purposes in the coating composition thereof
Gencoglu et al. A Water Soluble, Low Migration, and Visible Light Photoinitiator by Thioxanthone‐Functionalization of Poly (ethylene glycol)‐Containing Poly (β‐amino ester)
WO2019216321A1 (en) Photoreactive composition, reaction product, and method for producing reaction product
JP2007217447A (en) Hydroxy group-containing polymerizable compound and method for producing the same
ES2538180B2 (en) Composition for crosslinking an amine with an alpha vinyl compound, beta-conjugated to a carbonyl ester group and subsequent polymerization of the vinyl compound and corresponding procedures
ES2273906T3 (en) METHOD FOR PREPARING THERM-FUSABLE SELF-ADHESIVE ACRYLATE MASSES.
Konuray et al. New allyl-functional catalytic comonomers for sequential thiol-Michael and radical thiol-ene reactions
ES2757584T3 (en) Preparation of crosslinkable copolymers of branched vinyl ester and vinyl silane for curing at room temperature and use thereof
JP7345107B2 (en) photocurable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779659

Country of ref document: EP

Kind code of ref document: A1