WO2016136040A1 - Fm reception device and fm reception method - Google Patents

Fm reception device and fm reception method Download PDF

Info

Publication number
WO2016136040A1
WO2016136040A1 PCT/JP2015/081367 JP2015081367W WO2016136040A1 WO 2016136040 A1 WO2016136040 A1 WO 2016136040A1 JP 2015081367 W JP2015081367 W JP 2015081367W WO 2016136040 A1 WO2016136040 A1 WO 2016136040A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
detection
frequency
local oscillation
Prior art date
Application number
PCT/JP2015/081367
Other languages
French (fr)
Japanese (ja)
Inventor
奥畑 康秀
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Publication of WO2016136040A1 publication Critical patent/WO2016136040A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers

Definitions

  • the present invention relates to a receiving technique, and more particularly to an FM receiving apparatus and an FM receiving method for receiving an FM signal.
  • a direct conversion FM (Frequency Modulation) receiver converts an RF signal into a baseband signal by quadrature detection, and then amplifies the baseband signal with an amplifier. Since an unnecessary DC component is output by the amplifier, the FM receiver reduces the DC component included in the baseband signal by the coupling capacitor. Further, the FM receiver FM-detects a baseband signal with a reduced DC component (see, for example, Patent Document 1).
  • the direct conversion type FM receiver includes a coupling capacitor
  • not only unnecessary DC components by the amplifier are reduced, but also DC components and low frequency components of the baseband signal may be reduced.
  • Such a reduction causes distortion components after FM detection.
  • the baseband signal is only a direct current component, and thus all signals are cut by the coupling capacitor. .
  • only the noise received by the antenna and the noise generated inside are subjected to FM detection, so that the signal after FM detection becomes only noise.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a technique for improving the quality of an FM detected signal.
  • an FM receiver includes a local oscillator that outputs a local oscillation signal, and a baseband by orthogonally detecting the FM signal using the local oscillation signal output from the local oscillator.
  • a quadrature detector that outputs a signal, a reduction unit that reduces a DC component included in the baseband signal output from the quadrature detector, and a baseband signal that is centered on the origin of polar coordinates on the IQ plane.
  • a correction unit that reproduces a DC component by correction, an FM detection of a baseband signal corrected by the correction unit to generate a detection signal, and a detection signal generated by the FM detection unit are smoothed and an offset is set. Adder to be added, and control to control the frequency of the local oscillation signal based on the smoothed and offset detection signal No. generates, and a AFC unit for feeding back the control signal to the local oscillator.
  • Another aspect of this embodiment is an FM reception method.
  • This method includes a step of performing quadrature detection of an FM signal using a local oscillation signal output from a local oscillator, outputting a baseband signal, a step of reducing a direct current component included in the baseband signal, and a baseband signal.
  • a step of reproducing the DC component a step of generating a detection signal by FM detection of the corrected baseband signal, and a step of generating the detected signal Smoothing and adding an offset; generating a control signal for controlling the frequency of the local oscillation signal based on the smoothed offset-added detection signal; and feeding back the control signal to the local oscillator; Is provided.
  • any combination of the above-described constituent elements and a representation of the present embodiment converted between a method, an apparatus, a system, a recording medium, a computer program, etc. are also effective as an aspect of the present embodiment.
  • the quality of the FM detected signal can be improved.
  • FIG. 1 is a diagram illustrating a configuration of a receiving apparatus according to Embodiment 1.
  • FIG. It is a figure which shows the structure of the DC correction value detection part of FIG. It is a figure which shows the several area
  • FIG. It is a figure which shows the structure of the DC correction value detection part of FIG. It is a figure which shows the several area
  • FIG. 6 is a diagram illustrating a configuration of a receiving apparatus according to a second embodiment.
  • FIG. 10 is a diagram illustrating a configuration of a receiving apparatus according to a third embodiment. 10 is a flowchart showing a control procedure by the receiving device of FIG. 9.
  • the first embodiment relates to a direct conversion type FM receiver mainly composed of a quadrature detector and an FM detector.
  • a coupling capacitor between the quadrature detector and the FM detector, it is not necessary to perform correction even if there is a deviation of the origin of the orthogonal coordinates between the quadrature detector and the FM detector.
  • the output of the quadrature detector stops at one point on the circle of the IQ plane coordinates, The level of the signal input to the FM detector is attenuated by the coupling capacitor so as to approach the origin.
  • Arctan detection in the FM detector outputs the amount of change in phase rotation, so if the input is concentrated near the origin, phase rotation due to irregular noise will be detected. As a result, the result of FM detection becomes noise. On the other hand, when the received signal is unmodulated, the FM detection result should be silent. To cope with this, the AFC is performed so that the rotation of the quadrature detection output does not stop on the IQ plane coordinates, that is, the frequency of the reception signal and the frequency of the local oscillation signal are kept constant. Instead of setting the convergence target of the frequency shift to zero, it converges to the offset value.
  • the baseband signal is converted into an amplitude signal and a phase signal, and then the deviation of the baseband signal from the origin is detected. Further, the baseband signal is corrected using this shift as a correction value. That is, since the constellation is a circle, the above processing corrects the center of the circle to be the origin of the I and Q planes. Thereby, the DC component on the spectrum of the baseband band is equivalently reproduced, and the distortion of the FM detection signal is suppressed.
  • FIG. 1 illustrates a configuration of a receiving device 100 according to the first embodiment.
  • the receiving apparatus 100 includes an antenna 10, a quadrature detection unit 12, a first reduction unit 30, a second reduction unit 32, a first ADC unit 14, a second ADC unit 16, a correction unit 34, an FM detection unit 24, an averaging unit 60, and an addition Section 62, offset storage section 64, AFC section 66, DAC section 68, and local oscillator 28.
  • the quadrature detection unit 12 includes a first amplification unit 40, a distribution unit 42, a phase shift unit 44, a first mixer 46, a first LPF unit 48, a second amplification unit 50, a second mixer 52, a second LPF unit 54, and a third amplification.
  • the correction unit 34 includes a first correction unit 18, a second correction unit 20, and a DC correction value detection unit 22, and the AFC unit 66 includes a third LPF unit 70 and a fourth amplification unit 72.
  • the antenna 10 receives an RF (Radio Frequency) signal from a transmission device (not shown).
  • the antenna 10 outputs the received RF signal (hereinafter also referred to as “received signal”) to the first amplifying unit 40.
  • the first amplifying unit 40 is an LNA (Low Noise Amplifier) and amplifies the RF signal from the antenna 10.
  • the first amplification unit 40 outputs the amplified RF signal to the distribution unit 42.
  • the distribution unit 42 separates the RF signal from the first amplification unit 40 into two systems.
  • the distributor 42 outputs the separated RF signal to the first mixer 46 and the second mixer 52.
  • the local oscillator 28 adjusts the frequency of the local oscillation signal according to the control signal from the DAC unit 68, and outputs the local oscillation signal whose frequency is adjusted to the phase shift unit 44 and the first mixer 46.
  • the local oscillator 28 increases the frequency of the local oscillation signal as the voltage of the control signal increases.
  • the phase shifter 44 shifts the local oscillation signal from the local oscillator 28 by 90 degrees.
  • the phase shifter 44 outputs the phase-shifted local oscillation signal to the second mixer 52.
  • the first mixer 46 multiplies the RF signal from the distributor 42 and the local oscillation signal from the local oscillator 28 to generate an I-phase baseband signal (hereinafter referred to as “I signal”).
  • the first mixer 46 outputs the I signal to the first LPF unit 48.
  • the second mixer 52 multiplies the RF signal from the distribution unit 42 and the local oscillation signal from the phase shift unit 44 to generate a Q-phase baseband signal (hereinafter referred to as “Q signal”).
  • Q signal Q-phase baseband signal
  • the first LPF unit 48 performs band limitation by removing a signal having a frequency equal to or higher than the cutoff frequency from the I signal from the first mixer 46.
  • the first LPF unit 48 outputs a low-frequency component I signal (hereinafter also referred to as “I signal”) to the second amplifying unit 50.
  • the second LPF unit 54 performs band limitation by removing a signal having a frequency equal to or higher than the cutoff frequency from the Q signal from the second mixer 52.
  • the second LPF unit 54 outputs a low-frequency component Q signal (hereinafter also referred to as “Q signal”) to the third amplifying unit 56.
  • the second amplification unit 50 amplifies the I signal from the first LPF unit 48
  • the third amplification unit 56 amplifies the Q signal from the second LPF unit 54.
  • the quadrature detection unit 12 performs quadrature detection of the RF signal.
  • the quadrature detection unit 12 is composed of an analog device, for example, one chip.
  • the I signal output from the second amplifying unit 50 and the Q signal output from the third amplifying unit 56 may include unnecessary DC components due to the configuration. As a result, a DC offset voltage is added to these signals.
  • the first reduction unit 30 inputs the I signal from the second amplification unit 50.
  • the first reduction unit 30 is configured by, for example, a coupling capacitor, and reduces the direct current component included in the I signal.
  • the first reduction unit 30 outputs an I signal (hereinafter also referred to as “I signal”) having a reduced DC component to the first ADC unit 14.
  • the second reduction unit 32 receives the Q signal from the third amplification unit 56.
  • the second reduction unit 32 is configured with a coupling capacitor, and reduces the direct current component included in the Q signal.
  • the second reduction unit 32 outputs a Q signal (hereinafter also referred to as “Q signal”) having a reduced direct current component to the second ADC unit 16. Due to the first reduction unit 30 and the second reduction unit 32, the DC offset voltage of the baseband signal output from the quadrature detection unit 12 does not affect thereafter.
  • the first ADC unit 14 performs analog / digital conversion on the I signal from the first reduction unit 30.
  • the first ADC unit 14 outputs an I signal (hereinafter also referred to as “I signal”) converted into a digital signal to the first correction unit 18.
  • the second ADC unit 16 performs analog / digital conversion on the Q signal from the second reduction unit 32.
  • the second ADC unit 16 outputs a Q signal converted to a digital signal (hereinafter also referred to as “Q signal”) to the second correction unit 20.
  • the correction unit 34 includes the first correction unit 18, the second correction unit 20, and the DC correction value detection unit 22.
  • the DC correction value detection unit 22 detects a deviation from the origin of the constellation on the IQ plane.
  • the first correction unit 18 and the second correction unit 20 correct the deviation from the origin of the constellation on the IQ plane.
  • the first correction unit 18 receives the I signal output from the first ADC unit 14 and also receives the I-phase correction value 200 from the DC correction value detection unit 22. The first correction unit 18 adds the I signal and the I-phase correction value 200 to perform correction using the I-phase correction value 200 on the I signal. The first correction unit 18 outputs the corrected I signal as the I signal 204 to the DC correction value detection unit 22 and the FM detection unit 24.
  • the second correction unit 20 receives the Q signal output from the second ADC unit 16 and also receives the Q-phase correction value 202 from the DC correction value detection unit 22.
  • the second correction unit 20 adds the Q signal and the Q-phase correction value 202 to perform correction using the Q-phase correction value 202 on the Q signal.
  • the second correction unit 20 outputs the corrected Q signal as the Q signal 206 to the DC correction value detection unit 22 and the FM detection unit 24.
  • the DC correction value detection unit 22 receives the I signal 204 from the first correction unit 18 and the Q signal 206 from the second correction unit 20, and based on them, the I phase correction value 200 and the Q phase correction value. 202 is generated. The I-phase correction value 200 and the Q-phase correction value 202 will be described later. The DC correction value detection unit 22 outputs the I-phase correction value 200 to the first correction unit 18 and outputs the Q-phase correction value 202 to the second correction unit 20.
  • the configuration of the DC correction value detection unit 22 will be described with reference to FIG.
  • FIG. 2 shows the configuration of the DC correction value detection unit 22.
  • the DC correction value detection unit 22 includes a first squaring unit 110, a second squaring unit 112, a phase determination unit 114, a first addition unit 116, a DEMUX 118, a first averaging unit 120, a second averaging unit 122, 3 average part 124, 4th average part 126, 2nd addition part 128, and 3rd addition part 130 are included.
  • the first squaring unit 110 receives the I signal 204 and derives the square value thereof.
  • the first squaring unit 110 outputs the square value of the I signal 204 to the phase determination unit 114 and the first addition unit 116.
  • the second squaring unit 112 receives the Q signal 206 and derives the square value thereof.
  • the second squaring unit 112 outputs the square value of the Q signal 206 to the phase determination unit 114 and the first addition unit 116.
  • the first addition unit 116 inputs the square value of the I signal 204 from the first squaring unit 110 and the square value of the Q signal 206 from the second squaring unit 112.
  • the first adder 116 adds the square value of the I signal 204 and the square value of the Q signal 206.
  • the result of the addition is the power value P of the I signal 204 and the Q signal 206.
  • the power value P is a square value of the amplitude signal when the I signal 204 and the Q signal 206 are converted into polar coordinates. Therefore, the processing by the first squaring unit 110, the second squaring unit 112, and the first adding unit 116 corresponds to a process for deriving an amplitude signal.
  • the first addition unit 116 outputs the power value P to the DEMUX 118.
  • the phase determination unit 114 receives the I signal 204 and the Q signal 206 and also receives the square value of the I signal 204 from the first squaring unit 110 and the square value of the Q signal 206 from the second squaring unit 112. Enter. Based on these values, the phase determination unit 114 identifies the phase region. To explain this, FIG. 3 is used. FIG. 3 shows a plurality of regions defined in the phase determination unit 114. This is the IQ plane, the horizontal axis corresponds to the I axis, and the vertical axis corresponds to the Q axis. As shown, the four phase regions A1 to A4 are defined so as not to overlap each other.
  • phase region A1 is in the range of ⁇ / 2 from 7 ⁇ / 4 to ⁇ / 4
  • the phase region A2 is in the range of ⁇ / 2 from ⁇ / 4 to 3 ⁇ / 4
  • the phase region A3 Is a range of ⁇ / 2 from 3 ⁇ / 4 to 5 ⁇ / 4
  • the phase region A4 is a range of ⁇ / 2 from 5 ⁇ / 4 to 7 ⁇ / 4.
  • the phase determination unit 114 performs classification into four phase regions A1, A2, A3, and A4 based on the following determination conditions. A1: I 2 ⁇ Q 2 , I ⁇ 0 A2: I 2 ⁇ Q 2 , Q ⁇ 0 A3: I 2 ⁇ Q 2 , I ⁇ 0 A4: I 2 ⁇ Q 2 , Q ⁇ 0
  • the phase determination unit 114 outputs the identified phase region as the phase region signal 208.
  • phase region signal 208 is also A1, A2, A3, A4, A1,.
  • A2 changes sequentially.
  • Such processing by the phase determination unit 114 corresponds to processing for deriving a phase signal when the I signal 204 and the Q signal 206 are subjected to polar coordinate conversion.
  • the DEMUX 118 sequentially inputs the power value P from the first addition unit 116 and the phase region signal 208 of the phase determination unit 114.
  • the power value P and the phase region signal 208 are synchronized.
  • the DEMUX 118 outputs the power value P as one of the power values P1 to P4 according to the phase region indicated by the phase region signal 208. More specifically, the DEMUX 118 outputs a power value P1 if it is the phase region A1, outputs a power value P2 if it is the phase region A2, and outputs a power value P3 if it is the phase region A3. If it is A4, the power value P3 is output. That is, the DEMUX 118 is a distributor (Demultiplexer) that distributes the power value P from the power values P1 to P4 in accordance with the phase region indicated by the phase region signal 208.
  • the first averaging unit 120 calculates the average power P1 for a certain period of the input power value P1, and outputs the average power P1 to the second addition unit 128.
  • For the average for example, a moving average is used.
  • the second averaging unit 122 calculates the average power P2 for a certain period of the input power value P2, and outputs the average power P2 to the third addition unit 130.
  • the third averaging unit 124 calculates the average power P3 for a certain period of the input power value P3 and outputs the average power P3 to the second addition unit 128.
  • the fourth averaging unit 126 calculates the average power P4 for a certain period of the input power value P4 and outputs the average power P4 to the third addition unit 130.
  • the processing from the first averaging unit 120 to the fourth averaging unit 126 corresponds to deriving the average value of the amplitude signal for each phase region.
  • the second adding unit 128 receives the average power P1 from the first averaging unit 120 and the average power P3 from the third averaging unit 124. The second addition unit 128 subtracts the average power P1 from the average power P3. The second addition unit 128 outputs the subtraction result as the I-phase correction value 200.
  • the third adding unit 130 receives the average power P2 from the second averaging unit 122 and the average power P4 from the fourth averaging unit 126. The third addition unit 130 subtracts the average power P2 from the average power P4. The third addition unit 130 outputs the subtraction result as the Q phase correction value 202.
  • the DC correction value detection unit 22 obtains a deviation from the origin of the I signal 204 and the Q signal 206 based on the power value for each phase region, that is, the average value of the value corresponding to the amplitude signal.
  • a deviation from the origin of the I signal 204 and the Q signal 206 is output as an I-phase correction value 200 and a Q-phase correction value 202.
  • the I-phase correction value 200 and the Q-phase correction value 202 are derived so that the amplitude in each of a plurality of phase regions defined on the IQ plane is close, that is, the I and Q of the baseband signal on the IQ plane.
  • This corresponds to deriving a correction value for correcting the position of the pattern so as to be a circle centered on the origin of polar coordinates.
  • the input of the DC correction value detection unit 22 is the output from the first correction unit 18 and the second correction unit 20, but is not limited thereto, and is extracted from the input side of the first correction unit 18 and the second correction unit 20.
  • the correction may be performed by the first correction unit 18 and the second correction unit 20, and the I signal 204 and the Q signal 206 may be output.
  • the correction unit 34 is a polar coordinate origin correction unit on the IQ plane, but is not limited to the above-described embodiment. For example, if the constellation is deviated from the origin, there will be an amplitude component. Therefore, from the I-axis and Q-axis components of the maximum and minimum vectors of the vector from the origin to one point on the constellation. A baseband signal may be corrected by deriving a correction value. Returning to FIG.
  • the FM detection unit 24 performs FM detection on the corrected baseband signal.
  • the FM detection for example, Arctan detection is executed.
  • Arctan detection each of the I signal 204 and the Q signal 206 is defined as two sides of a triangle, and angles thereof are derived. Since the change in the angle per unit time becomes the angular velocity, that is, the frequency, the FM modulation can be demodulated.
  • the FM detection unit 24 outputs a detection signal that is a result of the FM detection.
  • the output detection signal is, for example, an audio signal.
  • an audio signal Of course, not only audio signals but also all modulation schemes that can be detected by FM detectors can be handled.
  • the averaging unit 60 inputs the detection signal from the FM detection unit 24.
  • the averaging unit 60 outputs the average voltage to the adding unit 62 by averaging the detection signal over a certain period.
  • a moving average is used for the average.
  • the average voltage is proportional to the frequency of the difference between the center frequency of the received signal and the output frequency of the local oscillation signal. Therefore, for example, if the average voltage is “0”, these frequencies match.
  • the frequency shift between the received signal and the local oscillation signal is converged to zero by AFC, the I signal and the Q signal stop at one point on the coordinate circle, and FM
  • the level of the signal input to the detector 24 is attenuated so as to approach the origin. In order to cope with this, the following processing is executed.
  • the offset storage unit 64 stores a predetermined offset value.
  • the adding unit 62 receives the offset value from the offset storage unit 64 and the average voltage from the averaging unit 60.
  • the adding unit 62 adds an offset value to the average voltage and outputs the result to the third LPF unit 70.
  • the AFC unit 66 controls the center frequency of the received signal and the frequency of the local oscillation signal to be the same, but the adding unit 62 adds a certain offset value.
  • the local oscillation signal has a frequency offset corresponding to the offset value.
  • this frequency offset is set to a frequency that is not reduced by the first reduction unit 30 and the second reduction unit 32, the I signal and the Q signal do not become DC components even when the RF signal is unmodulated.
  • the frequency is the same as the frequency offset. Therefore, even when an unmodulated RF signal is input, the detection signal does not become noise.
  • the third LPF unit 70 inputs an average voltage (hereinafter also referred to as “average voltage”) to which the offset value is added from the addition unit 62.
  • the third LPF unit 70 performs low-pass processing on the average voltage.
  • the third LPF unit 70 outputs the average voltage (hereinafter also referred to as “average voltage”) subjected to the low-pass processing to the fourth amplifying unit 72.
  • the fourth amplifying unit 72 generates a control signal by amplifying the average voltage from the third LPF unit 70.
  • the gain of the AFC loop is determined by the amplification in the fourth amplification unit 72.
  • the DAC unit 68 performs digital / analog conversion on the control signal from the fourth amplification unit 72 and outputs an analog signal control signal (hereinafter also referred to as “control signal”) to the local oscillator 28.
  • control signal an analog signal control signal
  • the AFC unit 66 generates a control signal for controlling the frequency of the local oscillation signal based on the average voltage added with the offset in the adding unit 62, and feeds back the control signal to the local oscillator 28.
  • the addition of the offset corresponds to controlling the frequency of the local oscillation signal output from the local oscillator 28 so that the phase component subjected to polar coordinate conversion in the DC correction value detection unit 22 rotates.
  • AFC control is not limited to the above-described embodiment. If the frequency of the local oscillator 28 is set by a fractional PLL, AFC control is also possible by setting the frequency division ratio. In this case, conversion to an analog voltage by the DAC unit 68 is not necessary.
  • the DC component of the baseband signal output from the quadrature detection unit 12 is the first reduction unit 30 and the second The detection unit 32 is suppressed by the reduction unit 32, and the detection signal is distorted.
  • FIG. 4 shows the transmission spectrum converted into the baseband band of the transmission signal for the receiving apparatus 100.
  • the horizontal axis represents frequency and the vertical axis represents power.
  • This shows the transmission spectrum of an FM modulated signal with a modulated signal of 1 kHz and a deviation of 1.5 kHz.
  • the line spectrum is 1 kHz apart and symmetrical from the center frequency.
  • the offset value output from the offset storage unit 64 corresponds to an offset frequency of 1 kHz.
  • the baseband signals output from the first reduction unit 30 and the second reduction unit 32 are as shown in FIG.
  • FIG. 5 shows the quadrature detection spectrum of the baseband signal output from the first reduction unit 30 and the second reduction unit 32.
  • the horizontal axis represents frequency and the vertical axis represents power.
  • FIG. 6 shows I and Q patterns of the transmission signal and the baseband signal.
  • the horizontal axis indicates the I axis
  • the vertical axis indicates the Q axis.
  • the I and Q patterns of the transmission signal to be compared are indicated by dotted lines and are circles centered on the origin.
  • the I and Q patterns of the baseband signal are circles whose center points are deviated from the origin as indicated by the solid line.
  • FIG. 7 shows the modulation waveform of the transmission signal and the demodulation waveform of the detection signal.
  • the horizontal axis indicates time, and the vertical axis indicates amplitude.
  • the modulation waveform of the transmission signal to be compared is indicated by a dotted line and has a sin wave shape.
  • the detection signal is indicated by a solid line, and a distortion component is generated due to suppression of the DC component.
  • the DC correction value detection unit 22 derives a correction value for correcting the position of the I and Q pattern of the baseband signal on the IQ plane into a circle whose center is the polar coordinate origin.
  • the DC correction value detection unit 22 generates an I-phase correction value 200 and a Q-phase correction value 202 for correcting the center of the I and Q pattern circles of the baseband signal in FIG.
  • the first correction unit 18 performs correction using the I-phase correction value 200
  • the second correction unit 20 performs correction using the Q-phase correction value 202, distortion of the detection signal is suppressed. That is, the first correction unit 18 and the second correction unit 20 are equivalently restoring the suppressed DC component of the baseband signal.
  • This configuration can be realized in terms of hardware by a CPU, memory, or other LSI of any computer, and in terms of software, it can be realized by a program loaded in the memory, but here it is realized by their cooperation.
  • Draw functional blocks Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof.
  • the first reduction unit 30 and the second reduction unit 32 are configured by coupling capacitors.
  • the first ADC unit 14 and the second ADC unit 16 digitize the I signal and the Q signal, and then perform digital processing. It may be realized by HPF (High Pass Filter).
  • the frequency of the received signal since a certain offset is added between the frequency of the received signal and the frequency of the local transmission signal, it is possible to suppress the possibility that the baseband signal is completely cut even when an unmodulated signal is input. .
  • the possibility that the baseband signal is completely cut is suppressed, it is possible to avoid the FM detection output from being only noise as in the case where the RF signal is not received. Further, since it is avoided that the FM detection output is only noise, the quality of the FM detected signal can be improved.
  • the IQ plane when the center is shifted from the origin by the I signal and Q signal whose DC components are reduced, this is corrected, so that the missing DC component on the baseband band spectrum can be reproduced. In addition, since the missing DC component is reproduced, distortion of the detection signal can be suppressed.
  • the second embodiment relates to an FM receiver that is a direct conversion type and has a coupling capacitor disposed between a quadrature detector and an FM detector.
  • the AFC is executed after adding the offset value to the detection signal.
  • the control signal to be input to the local oscillator is FM-modulated without using AFC. As a result, the frequency of the local oscillation signal varies in accordance with the FM modulation.
  • FIG. 8 illustrates a configuration of the receiving device 100 according to the second embodiment.
  • the receiving apparatus 100 includes an antenna 10, a quadrature detection unit 12, a first reduction unit 30, a second reduction unit 32, a first ADC unit 14, a second ADC unit 16, a correction unit 34, an FM detection unit 24, a first local oscillator 90, A second local oscillator 92 is included.
  • the quadrature detection unit 12 includes a first amplification unit 40, a distribution unit 42, a phase shift unit 44, a first mixer 46, a first LPF unit 48, a second amplification unit 50, a second mixer 52, a second LPF unit 54, and a third amplification.
  • the correction unit 34 includes a first correction unit 18, a second correction unit 20, and a DC correction value detection unit 22. Here, it demonstrates centering on the difference from before.
  • the first local oscillator 90 outputs the first local oscillation signal to the second local oscillator 92.
  • the second local oscillator 92 adjusts the frequency of the second local oscillation signal in accordance with the first local oscillation signal from the first local oscillator 90, and the second local oscillation signal whose frequency is adjusted is transferred to the first mixer 46. It outputs to the phase part 44. This corresponds to outputting the second local oscillation signal frequency-modulated by the first local oscillation signal from the first local oscillator 90 to the quadrature detection unit 12.
  • the first mixer 46 and the second mixer 52 of the quadrature detection unit 12 perform quadrature detection of the FM signal from the distribution unit 42 using the second local oscillation signal output from the second local oscillator 92 and output a baseband signal. To do. That is, the second local oscillation signal corresponds to the local oscillation signal in the first embodiment.
  • the baseband signal is generated by quadrature detection of the RF signal using the second local oscillation signal that is FM-modulated by the first local oscillation signal. Therefore, even when the received signal is unmodulated and the frequency of the received signal matches the frequency of the second local oscillation signal, the baseband signal does not become a constant value, so that it is prevented from being completely suppressed. . Even when the baseband signal includes a DC component as in the first embodiment, the correction unit 34 corrects the DC component.
  • the detection signal output from the FM detection unit 24 combines the modulation component of the reception signal and the frequency component of the first local oscillation signal.
  • the oscillation frequency of the first local oscillation signal is the lower limit frequency of the modulation component. Separation is possible by setting a lower frequency, that is, a frequency lower than the demodulation band.
  • the second local oscillation signal is frequency-modulated, it is possible to suppress the baseband signal from being continuously reduced by the reduction unit. Further, since the frequency of the first local oscillation signal from the first local oscillator is set to a frequency lower than the demodulation band, it is possible to suppress the baseband signal from being continuously reduced by the reduction unit regardless of the presence or absence of modulation.
  • the first local oscillator 90 is a modulation frequency generator that generates a predetermined modulation frequency
  • the second local oscillator 92 outputs a second local transmission signal modulated at the predetermined modulation frequency.
  • the modulation frequency may not be generated by the oscillator.
  • FM modulation can be performed at a predetermined modulation frequency by setting a frequency division ratio.
  • a device for setting a frequency division ratio for example, a CPU can be said to be a modulation frequency generator.
  • Example 3 relates to an FM receiving apparatus that is a direct conversion type and has a coupling capacitor disposed between a quadrature detector and an FM detector, as before.
  • an offset value is added to the detection signal and then AFC is executed.
  • the control signal is FM modulated.
  • AFC control can only operate after FM detection of the received signal.
  • the local oscillation signal is FM-modulated, unlike the AFC control, the operation is possible until the reception signal is detected by FM, but the C / N of the local oscillation signal is deteriorated.
  • Reciprocal mixing and S / N tend to deteriorate.
  • these are combined, and the processing is switched after the signal detection stage. Before the signal is detected, the local oscillation signal is FM-modulated, and after the signal is detected, AFC control is executed.
  • FIG. 9 illustrates a configuration of the receiving device 100 according to the third embodiment.
  • the receiving apparatus 100 includes an antenna 10, a quadrature detection unit 12, a first reduction unit 30, a second reduction unit 32, a first ADC unit 14, a second ADC unit 16, a correction unit 34, an FM detection unit 24, an averaging unit 60, and an addition Unit 62, offset storage unit 64, AFC unit 66, DAC unit 68, first local oscillator 90, second local oscillator 92, control unit 94, and selection unit 96.
  • the quadrature detection unit 12 includes a first amplification unit 40, a distribution unit 42, a phase shift unit 44, a first mixer 46, a first LPF unit 48, a second amplification unit 50, a second mixer 52, a second LPF unit 54, and a third amplification.
  • the correction unit 34 includes a first correction unit 18, a second correction unit 20, and a DC correction value detection unit 22, and the AFC unit 66 includes a third LPF unit 70 and a fourth amplification unit 72.
  • it demonstrates centering on the difference from before.
  • the selection unit 96 inputs the first control signal from the DAC unit 68 and the first local oscillation signal from the first local oscillator 90.
  • the first control signal corresponds to the control signal in the first embodiment.
  • the selection unit 96 also receives a selection signal from the control unit 94.
  • the selection unit 96 selects one of the first control signal and the first local oscillation signal as the second control signal according to the selection signal.
  • the selection unit 96 outputs the selected second control signal to the second local oscillator 92.
  • the second local oscillator 92 adjusts the frequency of the second local oscillation signal in accordance with the second control signal from the selection unit 96, and the second local oscillation signal with the adjusted frequency is sent to the first mixer 46 and the phase shift unit 44. Output to.
  • the control unit 94 inputs the detection signal from the FM detection unit 24.
  • the control unit 94 generates a selection signal based on the detection signal.
  • the selection signal indicates a signal to be selected by the control unit 94, that is, the first control signal or the first local oscillation signal.
  • the control unit 94 corresponds to monitoring whether the antenna 10 receives an RF signal, that is, monitoring whether a carrier is detected.
  • a noise squelch circuit detects noise components in a part of the band equal to or higher than the demodulation band of the detection signal output from the FM detection unit 24. If the noise is less than a predetermined level, the noise is suppressed by the carrier and the RF signal is output. It is determined that the signal is received. If the noise is equal to or higher than a predetermined level, it is determined that the RF signal is not received because the noise is not suppressed.
  • the control unit 94 When the RF signal is not received, the control unit 94 generates a selection signal for selecting the first local oscillation signal and outputs the selection signal to the selection unit 96.
  • the selection unit 96 selects the first local oscillation signal based on the selection signal, and inputs a second control signal corresponding to the first local oscillation signal to the second local oscillator 92.
  • the second local oscillator 92 outputs an FM-modulated second local oscillation signal. In this state, even if an unmodulated signal having the same frequency as the frequency of the second local oscillation signal is received, the I signal and the Q signal do not become constant values, so the baseband signal is not completely suppressed.
  • the control unit 94 detects this.
  • the oscillation frequency of the first local oscillation signal is multiplexed with the detection signal output from the FM detection unit 24.
  • the oscillation frequency of the first local oscillation signal is set within the demodulation band, the first local oscillation signal is output as a detection signal and demodulated.
  • the control unit 94 when detecting that the RF signal is received, the control unit 94 generates a selection signal for selecting the first control signal and outputs the selection signal to the selection unit 96.
  • the selection unit 96 selects the first control signal based on the selection signal, and inputs the second control signal corresponding to the first control signal to the second local oscillator 92.
  • the second local oscillator 92 outputs a second local oscillation signal subjected to AFC control.
  • control unit 94 varies the frequency of the second local oscillation signal by generating a selection signal for selecting the first local oscillation signal when no carrier is detected. On the other hand, when detecting the carrier, the control unit 94 switches to a selection signal for selecting the first control signal, thereby stopping the frequency modulation of the second local oscillation signal.
  • FIG. 10 is a flowchart illustrating a control procedure by the receiving apparatus 100.
  • the selection unit 96 selects the first local oscillation signal (S10). If the control unit 94 does not detect a carrier (N in S12), it waits. If the control unit 94 detects a carrier (Y in S12), the selection unit 96 selects the first control signal and the DC correction value detection unit 22 is turned on (S14). If the center frequency of the received signal is positive (Y in S16), the AFC unit 66 performs AFC control to + ⁇ f (S18). On the other hand, if the center frequency of the received signal is not positive (N in S16), the AFC unit 66 performs AFC control to ⁇ f (S20).
  • the FM-modulated second local oscillation signal is output. Therefore, even if an unmodulated signal having the same frequency as the frequency of the second local oscillation signal is received. , I signal and Q signal can be suppressed from becoming constant values. Further, since the I signal and the Q signal do not become constant values, it is possible to suppress the complete suppression. Further, since the first control signal is output when the RF signal is received, it is possible to prevent unnecessary signals from being included in the demodulated signal even when the oscillation frequency of the second local oscillation signal is within the demodulation band. .
  • the quality of the FM detected signal can be improved.

Abstract

According to the present invention, a quadrature detection unit 12 performs quadrature detection on an FM signal by means of a local oscillation signal output from a local oscillator 28, and outputs a baseband signal. A first reduction unit 30 and second reduction unit 32 reduce a DC component included in the baseband signal. A correction unit 34 reproduces the DC component by correcting the baseband signal so as to be centered on the origin of the polar coordinates on an IQ plane. An FM detection unit 24 performs FM detection on the corrected baseband signal and generates a detection signal. An addition unit 62 smooths the detection signal and adds an offset. An AFC unit 66 generates a control signal for controlling the frequency of the local oscillation signal on the basis of the detection signal which has been smoothed and to which an offset has been added, and feeds the control signal back to the local oscillator 28.

Description

FM受信装置、FM受信方法FM receiver and FM receiving method
 本発明は、受信技術に関し、特にFM信号を受信するFM受信装置、FM受信方法に関する。 The present invention relates to a receiving technique, and more particularly to an FM receiving apparatus and an FM receiving method for receiving an FM signal.
 ダイレクト・コンバージョン方式のFM(Frequency Modulation)受信機は、直交検波によってRF信号をベースバンド信号に変換してから、ベースバンド信号をアンプにて増幅する。アンプによって不要な直流成分が出力されるので、FM受信機は、カップリングコンデンサにて、ベースバンド信号に含まれた直流成分を低減する。さらに、FM受信機は、直流成分が低減されたベースバンド信号をFM検波する(例えば、特許文献1参照)。 A direct conversion FM (Frequency Modulation) receiver converts an RF signal into a baseband signal by quadrature detection, and then amplifies the baseband signal with an amplifier. Since an unnecessary DC component is output by the amplifier, the FM receiver reduces the DC component included in the baseband signal by the coupling capacitor. Further, the FM receiver FM-detects a baseband signal with a reduced DC component (see, for example, Patent Document 1).
特開平3-16349号公報Japanese Patent Laid-Open No. 3-16349
 ダイレクト・コンバージョン方式のFM受信機がカップリングコンデンサを備える場合、アンプによる不要な直流成分が低減されるだけではなく、ベースバンド信号の直流成分や低周波成分も低減されることがある。そのような低減によって、FM検波後に歪み成分が発生する。また、無変調の信号を受信し、さらに受信信号の周波数がローカル発振信号の周波数と同一である場合、ベースバンド信号は直流成分のみになるので、カップリングコンデンサにおいてすべての信号がカットされてしまう。その結果、アンテナで受信されるノイズや内部で発生するノイズだけが、FM検波されるので、FM検波後の信号がノイズだけになってしまう。 When the direct conversion type FM receiver includes a coupling capacitor, not only unnecessary DC components by the amplifier are reduced, but also DC components and low frequency components of the baseband signal may be reduced. Such a reduction causes distortion components after FM detection. Also, when an unmodulated signal is received and the frequency of the received signal is the same as the frequency of the local oscillation signal, the baseband signal is only a direct current component, and thus all signals are cut by the coupling capacitor. . As a result, only the noise received by the antenna and the noise generated inside are subjected to FM detection, so that the signal after FM detection becomes only noise.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、FM検波した信号の品質を改善する技術を提供することである。 The present invention has been made in view of such a situation, and an object thereof is to provide a technique for improving the quality of an FM detected signal.
 上記課題を解決するために、本実施形態のある態様のFM受信装置は、ローカル発振信号を出力するローカル発振器と、ローカル発振器から出力されたローカル発振信号によって、FM信号を直交検波してベースバンド信号を出力する直交検波器と、直交検波器から出力されたベースバンド信号に含まれた直流成分を低減する低減部と、ベースバンド信号を、IQ平面上において極座標の原点を中心とするように補正することにより直流成分を再生する補正部と、補正部において補正したベースバンド信号をFM検波して、検波信号を生成するFM検波部と、FM検波部において生成した検波信号を平滑しオフセットを加える加算部と、平滑されオフセットを加えられた検波信号をもとに、ローカル発振信号の周波数を制御するための制御信号を生成し、ローカル発振器へ制御信号をフィードバックするAFC部と、を備える。 In order to solve the above-described problem, an FM receiver according to an aspect of the present embodiment includes a local oscillator that outputs a local oscillation signal, and a baseband by orthogonally detecting the FM signal using the local oscillation signal output from the local oscillator. A quadrature detector that outputs a signal, a reduction unit that reduces a DC component included in the baseband signal output from the quadrature detector, and a baseband signal that is centered on the origin of polar coordinates on the IQ plane. A correction unit that reproduces a DC component by correction, an FM detection of a baseband signal corrected by the correction unit to generate a detection signal, and a detection signal generated by the FM detection unit are smoothed and an offset is set. Adder to be added, and control to control the frequency of the local oscillation signal based on the smoothed and offset detection signal No. generates, and a AFC unit for feeding back the control signal to the local oscillator.
 本実施形態の別の態様は、FM受信方法である。この方法は、ローカル発振器から出力されたローカル発振信号によって、FM信号を直交検波して、ベースバンド信号を出力するステップと、ベースバンド信号に含まれた直流成分を低減するステップと、ベースバンド信号を、IQ平面上において極座標の原点を中心とするように補正することにより直流成分を再生するステップと、補正ベースバンド信号をFM検波して、検波信号を生成するステップと、生成した検波信号を平滑してオフセットを加えるステップと、平滑されオフセットを加えられた検波信号をもとに、ローカル発振信号の周波数を制御するための制御信号を生成し、ローカル発振器へ制御信号をフィードバックするステップと、を備える。 Another aspect of this embodiment is an FM reception method. This method includes a step of performing quadrature detection of an FM signal using a local oscillation signal output from a local oscillator, outputting a baseband signal, a step of reducing a direct current component included in the baseband signal, and a baseband signal. Are corrected so that the origin of the polar coordinates is centered on the IQ plane, a step of reproducing the DC component, a step of generating a detection signal by FM detection of the corrected baseband signal, and a step of generating the detected signal Smoothing and adding an offset; generating a control signal for controlling the frequency of the local oscillation signal based on the smoothed offset-added detection signal; and feeding back the control signal to the local oscillator; Is provided.
 なお、以上の構成要素の任意の組合せ、本実施形態の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本実施形態の態様として有効である。 It should be noted that any combination of the above-described constituent elements and a representation of the present embodiment converted between a method, an apparatus, a system, a recording medium, a computer program, etc. are also effective as an aspect of the present embodiment.
 本実施形態によれば、FM検波した信号の品質を改善できる。 According to the present embodiment, the quality of the FM detected signal can be improved.
実施例1に係る受信装置の構成を示す図である。1 is a diagram illustrating a configuration of a receiving apparatus according to Embodiment 1. FIG. 図1のDC補正値検出部の構成を示す図である。It is a figure which shows the structure of the DC correction value detection part of FIG. 図2の位相判定部において規定される複数の領域を示す図である。It is a figure which shows the several area | region prescribed | regulated in the phase determination part of FIG. 図1の受信装置に対する送信信号の送信スペクトルを示す図である。It is a figure which shows the transmission spectrum of the transmission signal with respect to the receiver of FIG. 図1の第1低減部、第2低減部から出力されるベースバンド信号の直交検波スペクトルを示す図である。It is a figure which shows the quadrature detection spectrum of the baseband signal output from the 1st reduction part of FIG. 1, and a 2nd reduction part. 図4、図5における送信信号、ベースバンド信号のI、Qパターンを示す図である。It is a figure which shows the I and Q pattern of the transmission signal in FIG. 4, FIG. 5, and a baseband signal. 図4、図5における送信信号、検波信号の波形を示す図である。It is a figure which shows the waveform of the transmission signal in FIG. 4, FIG. 5, and a detection signal. 実施例2に係る受信装置の構成を示す図である。FIG. 6 is a diagram illustrating a configuration of a receiving apparatus according to a second embodiment. 実施例3に係る受信装置の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a receiving apparatus according to a third embodiment. 図9の受信装置による制御手順を示すフローチャートである。10 is a flowchart showing a control procedure by the receiving device of FIG. 9.
(実施例1)
 本発明を具体的に説明する前に、まず概要を述べる。実施例1は、主に直交検波器とFM検波器とにより構成されるダイレクト・コンバージョン型のFM受信装置に関する。直交検波器とFM検波器との間にカップリングコンデンサを配置することによって、直交検波器とFM検波器との間の直交座標の原点ずれがあっても、補正を行う必要がなくなる。しかしながら、無変調信号を受信したときに、AFCにより、受信信号とローカル発振信号との周波数ずれをゼロに収束させると、直交検波器の出力がIQ平面座標の円上の1点で停止し、FM検波器に入力される信号のレベルがカップリングコンデンサによって原点付近に近づくように減衰する。FM検波器におけるArctan検波は、位相回転の変化量を出力するので、入力が原点付近に集中すると、不規則なノイズによる位相の回転が検出されてしまう。その結果、FM検波の結果は、ノイズになる。一方、受信信号が無変調である場合には、FM検波の結果は無音となるべきものである。これに対応するために、直交検波出力がIQ平面座標上での回転が停止することがないように、つまり、受信信号の周波数とローカル発振信号の周波数とが一定の周波数を保つように、AFCの周波数ずれの収束目標をゼロとせず、オフセット値に収束させる。
(Example 1)
Before describing the present invention specifically, an outline will be given first. The first embodiment relates to a direct conversion type FM receiver mainly composed of a quadrature detector and an FM detector. By arranging a coupling capacitor between the quadrature detector and the FM detector, it is not necessary to perform correction even if there is a deviation of the origin of the orthogonal coordinates between the quadrature detector and the FM detector. However, when the unmodulated signal is received, if the frequency shift between the received signal and the local oscillation signal is converged to zero by AFC, the output of the quadrature detector stops at one point on the circle of the IQ plane coordinates, The level of the signal input to the FM detector is attenuated by the coupling capacitor so as to approach the origin. Arctan detection in the FM detector outputs the amount of change in phase rotation, so if the input is concentrated near the origin, phase rotation due to irregular noise will be detected. As a result, the result of FM detection becomes noise. On the other hand, when the received signal is unmodulated, the FM detection result should be silent. To cope with this, the AFC is performed so that the rotation of the quadrature detection output does not stop on the IQ plane coordinates, that is, the frequency of the reception signal and the frequency of the local oscillation signal are kept constant. Instead of setting the convergence target of the frequency shift to zero, it converges to the offset value.
 しかしながら、受信信号が変調されている状態で、直交検波されたベースバンド信号にDC成分が含まれるような場合、そのDC成分も抑圧されてしまうので、FM検波信号が歪んでしまう。これに対応するために、本実施例に係るFM受信装置では、ベースバンド信号を振幅信号と位相信号とに極座標変換してから、ベースバンド信号の原点からのずれを検出する。また、このずれを補正値としてベースバンド信号を補正する。つまり、コンスタレーションは円となっているので、上記の処理によって、円の中心がI、Q平面の原点になるような補正がなされる。これにより、ベースバンド帯域のスペクトル上のDC成分が等価的に再生され、FM検波信号の歪が抑制される。 However, when the received signal is modulated and the DC component is included in the orthogonally detected baseband signal, the DC component is also suppressed, and the FM detection signal is distorted. In order to cope with this, in the FM receiver according to the present embodiment, the baseband signal is converted into an amplitude signal and a phase signal, and then the deviation of the baseband signal from the origin is detected. Further, the baseband signal is corrected using this shift as a correction value. That is, since the constellation is a circle, the above processing corrects the center of the circle to be the origin of the I and Q planes. Thereby, the DC component on the spectrum of the baseband band is equivalently reproduced, and the distortion of the FM detection signal is suppressed.
 図1は、実施例1に係る受信装置100の構成を示す。受信装置100は、アンテナ10、直交検波部12、第1低減部30、第2低減部32、第1ADC部14、第2ADC部16、補正部34、FM検波部24、平均化部60、加算部62、オフセット記憶部64、AFC部66、DAC部68、ローカル発振器28を含む。直交検波部12は、第1増幅部40、分配部42、移相部44、第1ミキサ46、第1LPF部48、第2増幅部50、第2ミキサ52、第2LPF部54、第3増幅部56を含み、補正部34は、第1補正部18、第2補正部20、DC補正値検出部22を含み、AFC部66は、第3LPF部70、第4増幅部72を含む。 FIG. 1 illustrates a configuration of a receiving device 100 according to the first embodiment. The receiving apparatus 100 includes an antenna 10, a quadrature detection unit 12, a first reduction unit 30, a second reduction unit 32, a first ADC unit 14, a second ADC unit 16, a correction unit 34, an FM detection unit 24, an averaging unit 60, and an addition Section 62, offset storage section 64, AFC section 66, DAC section 68, and local oscillator 28. The quadrature detection unit 12 includes a first amplification unit 40, a distribution unit 42, a phase shift unit 44, a first mixer 46, a first LPF unit 48, a second amplification unit 50, a second mixer 52, a second LPF unit 54, and a third amplification. The correction unit 34 includes a first correction unit 18, a second correction unit 20, and a DC correction value detection unit 22, and the AFC unit 66 includes a third LPF unit 70 and a fourth amplification unit 72.
 アンテナ10は、図示しない送信装置からのRF(Radio Frequency)信号を受信する。アンテナ10は、受信したRF信号(以下、「受信信号」ということもある)を第1増幅部40へ出力する。第1増幅部40は、LNA(Low Noise Amplifier)であり、アンテナ10からのRF信号を増幅する。第1増幅部40は、増幅したRF信号を分配部42へ出力する。分配部42は、第1増幅部40からのRF信号を2系統に分離する。分配部42は、分離したRF信号を第1ミキサ46、第2ミキサ52へ出力する。 The antenna 10 receives an RF (Radio Frequency) signal from a transmission device (not shown). The antenna 10 outputs the received RF signal (hereinafter also referred to as “received signal”) to the first amplifying unit 40. The first amplifying unit 40 is an LNA (Low Noise Amplifier) and amplifies the RF signal from the antenna 10. The first amplification unit 40 outputs the amplified RF signal to the distribution unit 42. The distribution unit 42 separates the RF signal from the first amplification unit 40 into two systems. The distributor 42 outputs the separated RF signal to the first mixer 46 and the second mixer 52.
 ローカル発振器28は、DAC部68からの制御信号に応じてローカル発振信号の周波数を調節し、周波数が調節されたローカル発振信号を移相部44、第1ミキサ46へ出力する。ここで、ローカル発振器28は、制御信号の電圧が高くなるほど、ローカル発振信号の周波数を高くする。移相部44は、ローカル発振器28からのローカル発振信号を90度位相シフトする。移相部44は、位相シフトしたローカル発振信号を第2ミキサ52へ出力する。 The local oscillator 28 adjusts the frequency of the local oscillation signal according to the control signal from the DAC unit 68, and outputs the local oscillation signal whose frequency is adjusted to the phase shift unit 44 and the first mixer 46. Here, the local oscillator 28 increases the frequency of the local oscillation signal as the voltage of the control signal increases. The phase shifter 44 shifts the local oscillation signal from the local oscillator 28 by 90 degrees. The phase shifter 44 outputs the phase-shifted local oscillation signal to the second mixer 52.
 第1ミキサ46は、分配部42からのRF信号とローカル発振器28からのローカル発振信号とを乗算することによって、I相のベースバンド信号(以下、「I信号」という)を生成する。第1ミキサ46は、I信号を第1LPF部48へ出力する。第2ミキサ52は、分配部42からのRF信号と移相部44からのローカル発振信号とを乗算することによって、Q相のベースバンド信号(以下、「Q信号」という)を生成する。第2ミキサ52は、Q信号を第2LPF部54へ出力する。 The first mixer 46 multiplies the RF signal from the distributor 42 and the local oscillation signal from the local oscillator 28 to generate an I-phase baseband signal (hereinafter referred to as “I signal”). The first mixer 46 outputs the I signal to the first LPF unit 48. The second mixer 52 multiplies the RF signal from the distribution unit 42 and the local oscillation signal from the phase shift unit 44 to generate a Q-phase baseband signal (hereinafter referred to as “Q signal”). The second mixer 52 outputs the Q signal to the second LPF unit 54.
 第1LPF部48は、第1ミキサ46からのI信号のうち遮断周波数以上の周波数の信号を除去することによって帯域制限を実行する。第1LPF部48は、低域成分のI信号(以下、これもまた「I信号」という)を第2増幅部50へ出力する。第2LPF部54は、第2ミキサ52からのQ信号のうち遮断周波数以上の周波数の信号を除去することによって帯域制限を実行する。第2LPF部54は、低域成分のQ信号(以下、これもまた「Q信号」という)を第3増幅部56へ出力する。 The first LPF unit 48 performs band limitation by removing a signal having a frequency equal to or higher than the cutoff frequency from the I signal from the first mixer 46. The first LPF unit 48 outputs a low-frequency component I signal (hereinafter also referred to as “I signal”) to the second amplifying unit 50. The second LPF unit 54 performs band limitation by removing a signal having a frequency equal to or higher than the cutoff frequency from the Q signal from the second mixer 52. The second LPF unit 54 outputs a low-frequency component Q signal (hereinafter also referred to as “Q signal”) to the third amplifying unit 56.
 第2増幅部50は、第1LPF部48からのI信号を増幅し、第3増幅部56は、第2LPF部54からのQ信号を増幅する。以上のように、直交検波部12は、RF信号を直交検波している。また、直交検波部12は、アナログのデバイスで構成され、例えば1チップで構成される。アナログのデバイスは構成上、第2増幅部50から出力されるI信号と、第3増幅部56から出力されるQ信号とは、不要な直流成分が含まれる場合がある。その結果、これらの信号には、DCオフセット電圧が加算される。 The second amplification unit 50 amplifies the I signal from the first LPF unit 48, and the third amplification unit 56 amplifies the Q signal from the second LPF unit 54. As described above, the quadrature detection unit 12 performs quadrature detection of the RF signal. The quadrature detection unit 12 is composed of an analog device, for example, one chip. In analog devices, the I signal output from the second amplifying unit 50 and the Q signal output from the third amplifying unit 56 may include unnecessary DC components due to the configuration. As a result, a DC offset voltage is added to these signals.
 第1低減部30は、第2増幅部50からのI信号を入力する。第1低減部30は、例えば、カップリングコンデンサで構成されており、I信号に含まれた直流成分を低減する。第1低減部30は、直流成分を低減したI信号(以下、これもまた「I信号」という)を第1ADC部14へ出力する。第2低減部32は、第3増幅部56からのQ信号を入力する。第2低減部32も、第1低減部30と同様に、カップリングコンデンサで構成されており、Q信号に含まれた直流成分を低減する。第2低減部32は、直流成分を低減したQ信号(以下、これもまた「Q信号」という)を第2ADC部16へ出力する。第1低減部30および第2低減部32により、直交検波部12から出力されるベースバンド信号のDCオフセット電圧は、以降に影響を及ぼさなくなる。 The first reduction unit 30 inputs the I signal from the second amplification unit 50. The first reduction unit 30 is configured by, for example, a coupling capacitor, and reduces the direct current component included in the I signal. The first reduction unit 30 outputs an I signal (hereinafter also referred to as “I signal”) having a reduced DC component to the first ADC unit 14. The second reduction unit 32 receives the Q signal from the third amplification unit 56. Similarly to the first reduction unit 30, the second reduction unit 32 is configured with a coupling capacitor, and reduces the direct current component included in the Q signal. The second reduction unit 32 outputs a Q signal (hereinafter also referred to as “Q signal”) having a reduced direct current component to the second ADC unit 16. Due to the first reduction unit 30 and the second reduction unit 32, the DC offset voltage of the baseband signal output from the quadrature detection unit 12 does not affect thereafter.
 第1ADC部14は、第1低減部30からのI信号に対してアナログ/デジタル変換を実行する。第1ADC部14は、デジタル信号に変換したI信号(以下、これもまた「I信号」という)を第1補正部18へ出力する。第2ADC部16は、第2低減部32からのQ信号に対してアナログ/デジタル変換を実行する。第2ADC部16は、デジタル信号に変換したQ信号(以下、これもまた「Q信号」という)を第2補正部20へ出力する。 The first ADC unit 14 performs analog / digital conversion on the I signal from the first reduction unit 30. The first ADC unit 14 outputs an I signal (hereinafter also referred to as “I signal”) converted into a digital signal to the first correction unit 18. The second ADC unit 16 performs analog / digital conversion on the Q signal from the second reduction unit 32. The second ADC unit 16 outputs a Q signal converted to a digital signal (hereinafter also referred to as “Q signal”) to the second correction unit 20.
 前述のごとく、第1補正部18と、第2補正部20と、およびDC補正値検出部22とを含めて補正部34とする。DC補正値検出部22は、IQ平面上でのコンスタレーションの原点からのずれを検出する。第1補正部18および第2補正部20は、IQ平面上でのコンスタレーションの原点からのずれを補正する。 As described above, the correction unit 34 includes the first correction unit 18, the second correction unit 20, and the DC correction value detection unit 22. The DC correction value detection unit 22 detects a deviation from the origin of the constellation on the IQ plane. The first correction unit 18 and the second correction unit 20 correct the deviation from the origin of the constellation on the IQ plane.
 第1補正部18は、第1ADC部14から出力されたI信号を入力するとともに、DC補正値検出部22からのI相補正値200も入力する。第1補正部18は、I信号とI相補正値200とを加算することによって、I信号に対してI相補正値200による補正を実行する。第1補正部18は、補正したI信号をI信号204としてDC補正値検出部22、FM検波部24に出力する。 The first correction unit 18 receives the I signal output from the first ADC unit 14 and also receives the I-phase correction value 200 from the DC correction value detection unit 22. The first correction unit 18 adds the I signal and the I-phase correction value 200 to perform correction using the I-phase correction value 200 on the I signal. The first correction unit 18 outputs the corrected I signal as the I signal 204 to the DC correction value detection unit 22 and the FM detection unit 24.
 第2補正部20は、第2ADC部16から出力されたQ信号を入力するとともに、DC補正値検出部22からのQ相補正値202も入力する。第2補正部20は、Q信号とQ相補正値202とを加算することによって、Q信号に対してQ相補正値202による補正を実行する。第2補正部20は、補正したQ信号をQ信号206としてDC補正値検出部22、FM検波部24に出力する。 The second correction unit 20 receives the Q signal output from the second ADC unit 16 and also receives the Q-phase correction value 202 from the DC correction value detection unit 22. The second correction unit 20 adds the Q signal and the Q-phase correction value 202 to perform correction using the Q-phase correction value 202 on the Q signal. The second correction unit 20 outputs the corrected Q signal as the Q signal 206 to the DC correction value detection unit 22 and the FM detection unit 24.
 DC補正値検出部22は、第1補正部18からのI信号204と、第2補正部20からのQ信号206とを入力し、これらをもとにI相補正値200、Q相補正値202を生成する。I相補正値200、Q相補正値202については後述する。DC補正値検出部22は、I相補正値200を第1補正部18に出力し、Q相補正値202を第2補正部20に出力する。ここでは、図2を使用しながら、DC補正値検出部22の構成を説明する。 The DC correction value detection unit 22 receives the I signal 204 from the first correction unit 18 and the Q signal 206 from the second correction unit 20, and based on them, the I phase correction value 200 and the Q phase correction value. 202 is generated. The I-phase correction value 200 and the Q-phase correction value 202 will be described later. The DC correction value detection unit 22 outputs the I-phase correction value 200 to the first correction unit 18 and outputs the Q-phase correction value 202 to the second correction unit 20. Here, the configuration of the DC correction value detection unit 22 will be described with reference to FIG.
 図2は、DC補正値検出部22の構成を示す。DC補正値検出部22は、第1二乗化部110、第2二乗化部112、位相判定部114、第1加算部116、DEMUX118、第1平均化部120、第2平均化部122、第3平均化部124、第4平均化部126、第2加算部128、第3加算部130を含む。 FIG. 2 shows the configuration of the DC correction value detection unit 22. The DC correction value detection unit 22 includes a first squaring unit 110, a second squaring unit 112, a phase determination unit 114, a first addition unit 116, a DEMUX 118, a first averaging unit 120, a second averaging unit 122, 3 average part 124, 4th average part 126, 2nd addition part 128, and 3rd addition part 130 are included.
 第1二乗化部110は、I信号204を入力し、これの二乗値を導出する。第1二乗化部110は、I信号204の二乗値を位相判定部114、第1加算部116に出力する。第2二乗化部112は、Q信号206を入力し、これの二乗値を導出する。第2二乗化部112は、Q信号206の二乗値を位相判定部114、第1加算部116に出力する。 The first squaring unit 110 receives the I signal 204 and derives the square value thereof. The first squaring unit 110 outputs the square value of the I signal 204 to the phase determination unit 114 and the first addition unit 116. The second squaring unit 112 receives the Q signal 206 and derives the square value thereof. The second squaring unit 112 outputs the square value of the Q signal 206 to the phase determination unit 114 and the first addition unit 116.
 第1加算部116は、第1二乗化部110から、I信号204の二乗値を入力するとともに、第2二乗化部112から、Q信号206の二乗値を入力する。第1加算部116は、I信号204の二乗値とQ信号206の二乗値を加算する。加算した結果が、I信号204とQ信号206との電力値Pである。電力値Pは、I信号204、Q信号206を極座標変換したときの振幅信号の二乗値である。そのため、第1二乗化部110、第2二乗化部112、第1加算部116による処理は、振幅信号を導出する処理に相当する。第1加算部116は、電力値PをDEMUX118に出力する。 The first addition unit 116 inputs the square value of the I signal 204 from the first squaring unit 110 and the square value of the Q signal 206 from the second squaring unit 112. The first adder 116 adds the square value of the I signal 204 and the square value of the Q signal 206. The result of the addition is the power value P of the I signal 204 and the Q signal 206. The power value P is a square value of the amplitude signal when the I signal 204 and the Q signal 206 are converted into polar coordinates. Therefore, the processing by the first squaring unit 110, the second squaring unit 112, and the first adding unit 116 corresponds to a process for deriving an amplitude signal. The first addition unit 116 outputs the power value P to the DEMUX 118.
 位相判定部114は、I信号204、Q信号206を入力するとともに、第1二乗化部110から、I信号204の二乗値を入力し、第2二乗化部112から、Q信号206の二乗値を入力する。位相判定部114は、これらの値をもとに、位相領域の特定を実行する。これを説明するために、図3を使用する。図3は、位相判定部114において規定される複数の領域を示す。これは、IQ平面であり、横軸がI軸に相当し、縦軸がQ軸に相当する。図示のごとく、A1からA4の4つの位相領域が、互いに重ならないように規定される。ここで、位相領域A1は、7π/4からπ/4までのπ/2の範囲であり、位相領域A2は、π/4から3π/4までのπ/2の範囲であり、位相領域A3は、3π/4から5π/4までのπ/2の範囲であり、位相領域A4は、5π/4から7π/4までのπ/2の範囲である。 The phase determination unit 114 receives the I signal 204 and the Q signal 206 and also receives the square value of the I signal 204 from the first squaring unit 110 and the square value of the Q signal 206 from the second squaring unit 112. Enter. Based on these values, the phase determination unit 114 identifies the phase region. To explain this, FIG. 3 is used. FIG. 3 shows a plurality of regions defined in the phase determination unit 114. This is the IQ plane, the horizontal axis corresponds to the I axis, and the vertical axis corresponds to the Q axis. As shown, the four phase regions A1 to A4 are defined so as not to overlap each other. Here, the phase region A1 is in the range of π / 2 from 7π / 4 to π / 4, the phase region A2 is in the range of π / 2 from π / 4 to 3π / 4, and the phase region A3 Is a range of π / 2 from 3π / 4 to 5π / 4, and the phase region A4 is a range of π / 2 from 5π / 4 to 7π / 4.
 以下では、表記を明確にするために、I信号204を「I」と示し、Q信号206を「Q」と示し、I信号204の二乗値を「I」と示し、Q信号206の二乗値を「Q」と示す。位相判定部114は、以下の判定条件をもとに、4つの位相領域A1、A2、A3、A4への分類を実行する。
 A1 : I≧Q、I≧0
 A2 : I<Q、Q≧0
 A3 : I≧Q、I<0
 A4 : I<Q、Q<0
 位相判定部114は、特定した位相領域を位相領域信号208として出力する。特定された位相領域が、時間の経過とともに、例えば、A1、A2、A3、A4、A1、A2、・・と順次変化する場合、位相領域信号208も、A1、A2、A3、A4、A1、A2、・・と順次変化する。このような位相判定部114による処理は、I信号204、Q信号206を極座標変換したときの位相信号を導出する処理に相当する。図2に戻る。
In the following, for the sake of clarity, the I signal 204 is indicated as “I”, the Q signal 206 is indicated as “Q”, the square value of the I signal 204 is indicated as “I 2 ”, and the square of the Q signal 206 is indicated. The value is indicated as “Q 2 ”. The phase determination unit 114 performs classification into four phase regions A1, A2, A3, and A4 based on the following determination conditions.
A1: I 2 ≧ Q 2 , I ≧ 0
A2: I 2 <Q 2 , Q ≧ 0
A3: I 2 ≧ Q 2 , I <0
A4: I 2 <Q 2 , Q <0
The phase determination unit 114 outputs the identified phase region as the phase region signal 208. When the identified phase region changes with time, for example, A1, A2, A3, A4, A1, A2,... Sequentially, the phase region signal 208 is also A1, A2, A3, A4, A1,. A2 changes sequentially. Such processing by the phase determination unit 114 corresponds to processing for deriving a phase signal when the I signal 204 and the Q signal 206 are subjected to polar coordinate conversion. Returning to FIG.
 DEMUX118は、第1加算部116からの電力値Pと、位相判定部114の位相領域信号208とを順次入力する。なお、電力値Pと位相領域信号208は同期されている。DEMUX118は、位相領域信号208に示された位相領域に応じて、電力値Pを電力値P1からP4のいずれかとして出力する。具体的に説明すると、DEMUX118は、位相領域A1であれば電力値P1を出力し、位相領域A2であれば電力値P2を出力し、位相領域A3であれば電力値P3を出力し、位相領域A4であれば電力値P3を出力する。つまりDEMUX118は、位相領域信号208に示された位相領域に応じて、電力値Pを電力値P1からP4に分配する分配器(Demultiplexer)である。 The DEMUX 118 sequentially inputs the power value P from the first addition unit 116 and the phase region signal 208 of the phase determination unit 114. The power value P and the phase region signal 208 are synchronized. The DEMUX 118 outputs the power value P as one of the power values P1 to P4 according to the phase region indicated by the phase region signal 208. More specifically, the DEMUX 118 outputs a power value P1 if it is the phase region A1, outputs a power value P2 if it is the phase region A2, and outputs a power value P3 if it is the phase region A3. If it is A4, the power value P3 is output. That is, the DEMUX 118 is a distributor (Demultiplexer) that distributes the power value P from the power values P1 to P4 in accordance with the phase region indicated by the phase region signal 208.
 第1平均化部120は、入力される電力値P1の一定期間における平均電力P1を計算し、平均電力P1を第2加算部128に出力する。平均には、例えば、移動平均が使用される。第2平均化部122は、入力される電力値P2の一定期間における平均電力P2を計算し、平均電力P2を第3加算部130に出力する。第3平均化部124は、入力される電力値P3の一定期間における平均電力P3を計算し、平均電力P3を第2加算部128に出力する。第4平均化部126は、入力される電力値P4の一定期間における平均電力P4を計算し、平均電力P4を第3加算部130に出力する。第1平均化部120から第4平均化部126の処理は、位相領域別に振幅信号の平均値を導出することに相当する。 The first averaging unit 120 calculates the average power P1 for a certain period of the input power value P1, and outputs the average power P1 to the second addition unit 128. For the average, for example, a moving average is used. The second averaging unit 122 calculates the average power P2 for a certain period of the input power value P2, and outputs the average power P2 to the third addition unit 130. The third averaging unit 124 calculates the average power P3 for a certain period of the input power value P3 and outputs the average power P3 to the second addition unit 128. The fourth averaging unit 126 calculates the average power P4 for a certain period of the input power value P4 and outputs the average power P4 to the third addition unit 130. The processing from the first averaging unit 120 to the fourth averaging unit 126 corresponds to deriving the average value of the amplitude signal for each phase region.
 第2加算部128は、第1平均化部120からの平均電力P1を入力するとともに、第3平均化部124からの平均電力P3を入力する。第2加算部128は、平均電力P3から平均電力P1を減算する。第2加算部128は、減算結果をI相補正値200として出力する。第3加算部130は、第2平均化部122からの平均電力P2を入力するとともに、第4平均化部126からの平均電力P4を入力する。第3加算部130は、平均電力P4から平均電力P2を減算する。第3加算部130は、減算結果をQ相補正値202として出力する。このように、DC補正値検出部22は、位相領域毎の電力値、つまり振幅信号に相当した値の平均値をもとに、I信号204、Q信号206の原点からのずれを求め、これをI相補正値200、Q相補正値202として出力する。これは、IQ平面に規定された複数の位相領域のそれぞれにおける振幅が近くなるようにI相補正値200、Q相補正値202を導出すること、つまりIQ平面上におけるベースバンド信号のI,Qパターンの位置を極座標の原点を中心とした円となるように補正する補正値を導出することに相当する。 The second adding unit 128 receives the average power P1 from the first averaging unit 120 and the average power P3 from the third averaging unit 124. The second addition unit 128 subtracts the average power P1 from the average power P3. The second addition unit 128 outputs the subtraction result as the I-phase correction value 200. The third adding unit 130 receives the average power P2 from the second averaging unit 122 and the average power P4 from the fourth averaging unit 126. The third addition unit 130 subtracts the average power P2 from the average power P4. The third addition unit 130 outputs the subtraction result as the Q phase correction value 202. As described above, the DC correction value detection unit 22 obtains a deviation from the origin of the I signal 204 and the Q signal 206 based on the power value for each phase region, that is, the average value of the value corresponding to the amplitude signal. Are output as an I-phase correction value 200 and a Q-phase correction value 202. This is because the I-phase correction value 200 and the Q-phase correction value 202 are derived so that the amplitude in each of a plurality of phase regions defined on the IQ plane is close, that is, the I and Q of the baseband signal on the IQ plane. This corresponds to deriving a correction value for correcting the position of the pattern so as to be a circle centered on the origin of polar coordinates.
 DC補正値検出部22の入力を、第1補正部18、第2補正部20からの出力としたが、これに限らず、第1補正部18、第2補正部20の入力側より抽出し、第1補正部18、第2補正部20にて補正し、I信号204、Q信号206を出力もよい。 The input of the DC correction value detection unit 22 is the output from the first correction unit 18 and the second correction unit 20, but is not limited thereto, and is extracted from the input side of the first correction unit 18 and the second correction unit 20. The correction may be performed by the first correction unit 18 and the second correction unit 20, and the I signal 204 and the Q signal 206 may be output.
 補正部34は、IQ平面上における極座標の原点補正手段であるが、上記した実施例に限らない。例えば、コンスタレーションが原点からずれていれば振幅分が存在することになるため、原点からコンスタレーション上の1点までのベクトルの最大値および最小値のベクトルのI軸、Q軸の各成分から補正値を導出して、ベースバンド信号を補正してもよい。図1に戻る。 The correction unit 34 is a polar coordinate origin correction unit on the IQ plane, but is not limited to the above-described embodiment. For example, if the constellation is deviated from the origin, there will be an amplitude component. Therefore, from the I-axis and Q-axis components of the maximum and minimum vectors of the vector from the origin to one point on the constellation. A baseband signal may be corrected by deriving a correction value. Returning to FIG.
 FM検波部24は、補正されたベースバンド信号をFM検波する。FM検波として、例えば、Arctan検波が実行される。Arctan検波では、I信号204およびQ信号206のそれぞれを三角形の2辺として、その角度が導出される。単位時間あたりの角度の変化が角速度、つまり周波数になるので、FM変調の復調が可能になる。FM検波部24は、FM検波の結果である検波信号を出力する。出力される検波信号は、例えば音声信号である。むろん音声信号に限らずFM検波器により検波可能な変調方式すべてに対応できる。 The FM detection unit 24 performs FM detection on the corrected baseband signal. As the FM detection, for example, Arctan detection is executed. In Arctan detection, each of the I signal 204 and the Q signal 206 is defined as two sides of a triangle, and angles thereof are derived. Since the change in the angle per unit time becomes the angular velocity, that is, the frequency, the FM modulation can be demodulated. The FM detection unit 24 outputs a detection signal that is a result of the FM detection. The output detection signal is, for example, an audio signal. Of course, not only audio signals but also all modulation schemes that can be detected by FM detectors can be handled.
 平均化部60は、FM検波部24からの検波信号を入力する。平均化部60は、検波信号を一定期間にわたって平均化することによって、平均電圧を加算部62に出力する。なお、平均には、例えば、移動平均が使用される。平均電圧は、受信信号の中心周波数とローカル発振信号の出力周波数との差の周波数に比例する。そのため、例えば、平均電圧が「0」であれば、これらの周波数が一致している。前述のごとく、無変調信号を受信したときに、AFCにより、受信信号とローカル発振信号との周波数ずれをゼロに収束させると、I信号およびQ信号が座標円上の1点で停止し、FM検波部24に入力される信号のレベルが原点付近に近づくように減衰してしまう。これに対応するために、下記の処理が実行される。 The averaging unit 60 inputs the detection signal from the FM detection unit 24. The averaging unit 60 outputs the average voltage to the adding unit 62 by averaging the detection signal over a certain period. For the average, for example, a moving average is used. The average voltage is proportional to the frequency of the difference between the center frequency of the received signal and the output frequency of the local oscillation signal. Therefore, for example, if the average voltage is “0”, these frequencies match. As described above, when an unmodulated signal is received, if the frequency shift between the received signal and the local oscillation signal is converged to zero by AFC, the I signal and the Q signal stop at one point on the coordinate circle, and FM The level of the signal input to the detector 24 is attenuated so as to approach the origin. In order to cope with this, the following processing is executed.
 オフセット記憶部64は、予め定められたオフセット値を記憶する。加算部62は、オフセット記憶部64からのオフセット値を入力するとともに、平均化部60からの平均電圧を入力する。加算部62は、平均電圧にオフセット値を加え、その結果を第3LPF部70に出力する。加算部62におけるオフセット値の加算がない場合、AFC部66によって、受信信号の中心周波数とローカル発振信号の周波数が同じになるように制御されるが、加算部62が一定のオフセット値を加えるので、ローカル発振信号は、オフセット値に応じた周波数オフセットを有する。この周波数オフセットが、第1低減部30、第2低減部32において低減されない周波数に設定されると、RF信号が無変調になった場合でも、I信号およびQ信号は、直流成分にならずに、周波数オフセットと同じ周波数になる。そのため、無変調のRF信号が入力された場合でも、検波信号はノイズにならない。 The offset storage unit 64 stores a predetermined offset value. The adding unit 62 receives the offset value from the offset storage unit 64 and the average voltage from the averaging unit 60. The adding unit 62 adds an offset value to the average voltage and outputs the result to the third LPF unit 70. When there is no addition of the offset value in the adding unit 62, the AFC unit 66 controls the center frequency of the received signal and the frequency of the local oscillation signal to be the same, but the adding unit 62 adds a certain offset value. The local oscillation signal has a frequency offset corresponding to the offset value. If this frequency offset is set to a frequency that is not reduced by the first reduction unit 30 and the second reduction unit 32, the I signal and the Q signal do not become DC components even when the RF signal is unmodulated. The frequency is the same as the frequency offset. Therefore, even when an unmodulated RF signal is input, the detection signal does not become noise.
 第3LPF部70は、加算部62から、オフセット値が加えられた平均電圧(以下、これも「平均電圧」という)を入力する。第3LPF部70は、平均電圧に対して、低域通過処理を実行する。第3LPF部70は、低域通過処理を実行した平均電圧(以下、これもまた「平均電圧」という)を第4増幅部72に出力する。第4増幅部72は、第3LPF部70からの平均電圧を増幅することによって、制御信号を生成する。第4増幅部72における増幅によって、AFCループのゲインが決められる。 The third LPF unit 70 inputs an average voltage (hereinafter also referred to as “average voltage”) to which the offset value is added from the addition unit 62. The third LPF unit 70 performs low-pass processing on the average voltage. The third LPF unit 70 outputs the average voltage (hereinafter also referred to as “average voltage”) subjected to the low-pass processing to the fourth amplifying unit 72. The fourth amplifying unit 72 generates a control signal by amplifying the average voltage from the third LPF unit 70. The gain of the AFC loop is determined by the amplification in the fourth amplification unit 72.
 DAC部68は、第4増幅部72からの制御信号をデジタル/アナログ変換して、アナログ信号の制御信号(以下、これもまた「制御信号」という)をローカル発振器28へ出力する。このように、AFC部66は、加算部62においてオフセットを加えた平均電圧をもとに、ローカル発振信号の周波数を制御するための制御信号を生成し、ローカル発振器28へ制御信号をフィードバックする。オフセットが加えられていることは、DC補正値検出部22において極座標変換した位相成分が回転するように、ローカル発振器28から出力されるローカル発振信号の周波数を制御することに相当する。 The DAC unit 68 performs digital / analog conversion on the control signal from the fourth amplification unit 72 and outputs an analog signal control signal (hereinafter also referred to as “control signal”) to the local oscillator 28. As described above, the AFC unit 66 generates a control signal for controlling the frequency of the local oscillation signal based on the average voltage added with the offset in the adding unit 62, and feeds back the control signal to the local oscillator 28. The addition of the offset corresponds to controlling the frequency of the local oscillation signal output from the local oscillator 28 so that the phase component subjected to polar coordinate conversion in the DC correction value detection unit 22 rotates.
 AFC制御は、上記した実施例に限らない。ローカル発振器28がフラクショナルPLLにより周波数設定がなされるものであれば、分周比の設定によりAFC制御も可能である。この場合、DAC部68によるアナログ電圧への変換は必要なくなる。 AFC control is not limited to the above-described embodiment. If the frequency of the local oscillator 28 is set by a fractional PLL, AFC control is also possible by setting the frequency division ratio. In this case, conversion to an analog voltage by the DAC unit 68 is not necessary.
 このように、受信信号の周波数とローカル発振信号の周波数との間に一定のオフセットがある場合でも、直交検波部12から出力されたベースバンド信号のDC成分が、第1低減部30と第2低減部32とによって抑圧されてしまい、検波信号が歪んでしまう。 In this way, even when there is a certain offset between the frequency of the received signal and the frequency of the local oscillation signal, the DC component of the baseband signal output from the quadrature detection unit 12 is the first reduction unit 30 and the second The detection unit 32 is suppressed by the reduction unit 32, and the detection signal is distorted.
 図4は、受信装置100に対する送信信号のベースバンド帯域に変換された送信スペクトルを示す。横軸が周波数を示し、縦軸が電力を示す。これは、変調信号1kHz、デビエーション1.5kHzのFM変調された信号の送信スペクトルを示す。図示のごとく、センター周波数から左右対称となる1kHz間隔の線スペクトルとなっている。 FIG. 4 shows the transmission spectrum converted into the baseband band of the transmission signal for the receiving apparatus 100. The horizontal axis represents frequency and the vertical axis represents power. This shows the transmission spectrum of an FM modulated signal with a modulated signal of 1 kHz and a deviation of 1.5 kHz. As shown in the figure, the line spectrum is 1 kHz apart and symmetrical from the center frequency.
 ここで、オフセット記憶部64から出力されるオフセット値が、1kHzのオフセット周波数に相当すると想定する。この場合に第1低減部30、第2低減部32から出力されるベースバンド信号は、図5のように示される。図5は、第1低減部30、第2低減部32から出力されるベースバンド信号の直交検波スペクトルを示す。横軸が周波数を示し、縦軸が電力を示す。図示のごとく、1kHzの周波数オフセットがあり、DCに周波数変換された信号成分が抑圧される。これをIQ平面で示すと、図6のようになる。図6は、送信信号、ベースバンド信号のI、Qパターンを示す。横軸がI軸を示し、縦軸がQ軸を示す。比較対象である送信信号のI、Qパターンは、点線で示されており、原点を中心として円である。一方、ベースバンド信号では、DC成分が抑圧されるので、ベースバンド信号のI、Qパターンは、実線で示すように、中心点が原点からずれた円になる。 Here, it is assumed that the offset value output from the offset storage unit 64 corresponds to an offset frequency of 1 kHz. In this case, the baseband signals output from the first reduction unit 30 and the second reduction unit 32 are as shown in FIG. FIG. 5 shows the quadrature detection spectrum of the baseband signal output from the first reduction unit 30 and the second reduction unit 32. The horizontal axis represents frequency and the vertical axis represents power. As shown in the figure, there is a frequency offset of 1 kHz, and the signal component frequency-converted to DC is suppressed. This is shown in FIG. 6 in the IQ plane. FIG. 6 shows I and Q patterns of the transmission signal and the baseband signal. The horizontal axis indicates the I axis, and the vertical axis indicates the Q axis. The I and Q patterns of the transmission signal to be compared are indicated by dotted lines and are circles centered on the origin. On the other hand, since the DC component is suppressed in the baseband signal, the I and Q patterns of the baseband signal are circles whose center points are deviated from the origin as indicated by the solid line.
 このようなベースバンド信号をFM検波部24において検波した検波信号は、図7のように示される。図7は、送信信号の変調波形、検波信号の復調波形を示す。横軸が時間を示し、縦軸が振幅を示す。比較対象である送信信号の変調波形は、点線で示されており、sin波の形状を有する。一方、検波信号は、実線で示されており、DC成分が抑圧されることによる歪成分が発生している。 A detection signal obtained by detecting such a baseband signal by the FM detection unit 24 is shown in FIG. FIG. 7 shows the modulation waveform of the transmission signal and the demodulation waveform of the detection signal. The horizontal axis indicates time, and the vertical axis indicates amplitude. The modulation waveform of the transmission signal to be compared is indicated by a dotted line and has a sin wave shape. On the other hand, the detection signal is indicated by a solid line, and a distortion component is generated due to suppression of the DC component.
 DC補正値検出部22は、IQ平面上におけるベースバンド信号のI,Qパターンの位置を極座標の原点が中心となる円に補正する補正値を導出する。DC補正値検出部22は、図6におけるベースバンド信号のI、Qパターン円の中心が原点になるように補正するためのI相補正値200、Q相補正値202が生成される。また、第1補正部18では、I相補正値200による補正がなされ、第2補正部20では、Q相補正値202による補正がなされるので、検波信号の歪が抑圧される。つまり第1補正部18および第2補正部20は、等価的にベースバンド信号の抑圧されたDC成分を復元していることになる。 The DC correction value detection unit 22 derives a correction value for correcting the position of the I and Q pattern of the baseband signal on the IQ plane into a circle whose center is the polar coordinate origin. The DC correction value detection unit 22 generates an I-phase correction value 200 and a Q-phase correction value 202 for correcting the center of the I and Q pattern circles of the baseband signal in FIG. In addition, since the first correction unit 18 performs correction using the I-phase correction value 200 and the second correction unit 20 performs correction using the Q-phase correction value 202, distortion of the detection signal is suppressed. That is, the first correction unit 18 and the second correction unit 20 are equivalently restoring the suppressed DC component of the baseband signal.
 この構成は、ハードウエア的には、任意のコンピュータのCPU、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。 This configuration can be realized in terms of hardware by a CPU, memory, or other LSI of any computer, and in terms of software, it can be realized by a program loaded in the memory, but here it is realized by their cooperation. Draw functional blocks. Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof.
 例えば、第1低減部30、第2低減部32は、カップリングコンデンサによる構成を実施例としたが、第1ADC部14、第2ADC部16によりI信号およびQ信号をデジタル化した後、デジタル処理によるHPF(High Pass Filter)によって実現してもよい。 For example, the first reduction unit 30 and the second reduction unit 32 are configured by coupling capacitors. However, the first ADC unit 14 and the second ADC unit 16 digitize the I signal and the Q signal, and then perform digital processing. It may be realized by HPF (High Pass Filter).
 本実施例によれば、受信信号の周波数とローカル発信信号の周波数との間に一定のオフセットを加えるので、無変調信号が入力された場合でもベースバンド信号がすべてカットされてしまうおそれを抑制できる。また、ベースバンド信号がすべてカットされてしまうおそれが抑制されるので、RF信号を受信していない場合と同じようにFM検波出力がノイズだけになることを回避できる。また、FM検波出力がノイズだけになることが回避されるので、FM検波した信号の品質を改善できる。また、IQ平面において、直流成分が低減されたI信号、Q信号により中心が原点からずれている場合にこれを補正するので、ベースバンド帯域のスペクトル上の欠落したDC成分を再生できる。また、欠落したDC成分が再生されるので、検波信号の歪みを抑制できる。 According to this embodiment, since a certain offset is added between the frequency of the received signal and the frequency of the local transmission signal, it is possible to suppress the possibility that the baseband signal is completely cut even when an unmodulated signal is input. . In addition, since the possibility that the baseband signal is completely cut is suppressed, it is possible to avoid the FM detection output from being only noise as in the case where the RF signal is not received. Further, since it is avoided that the FM detection output is only noise, the quality of the FM detected signal can be improved. Further, in the IQ plane, when the center is shifted from the origin by the I signal and Q signal whose DC components are reduced, this is corrected, so that the missing DC component on the baseband band spectrum can be reproduced. In addition, since the missing DC component is reproduced, distortion of the detection signal can be suppressed.
(実施例2)
 次に、実施例2を説明する。実施例2は、実施例1と同様に、ダイレクト・コンバージョン型であり、かつ直交検波器とFM検波器との間にカップリングコンデンサを配置したFM受信装置に関する。実施例1では、受信信号の周波数とローカル発振信号の周波数とを一致させなくするために、検波信号にオフセット値を加算してからAFCを実行させている。一方、実施例2では、受信信号の周波数とローカル発振信号の周波数とを一致させなくするために、AFCを使用せず、ローカル発振器に入力すべき制御信号をFM変調させる。これにより、ローカル発振信号の周波数は、FM変調に合わせて変動する。
(Example 2)
Next, Example 2 will be described. As in the first embodiment, the second embodiment relates to an FM receiver that is a direct conversion type and has a coupling capacitor disposed between a quadrature detector and an FM detector. In the first embodiment, in order to make the frequency of the reception signal and the frequency of the local oscillation signal not coincide with each other, the AFC is executed after adding the offset value to the detection signal. On the other hand, in the second embodiment, in order not to make the frequency of the received signal coincide with the frequency of the local oscillation signal, the control signal to be input to the local oscillator is FM-modulated without using AFC. As a result, the frequency of the local oscillation signal varies in accordance with the FM modulation.
 図8は、実施例2に係る受信装置100の構成を示す。受信装置100は、アンテナ10、直交検波部12、第1低減部30、第2低減部32、第1ADC部14、第2ADC部16、補正部34、FM検波部24、第1ローカル発振器90、第2ローカル発振器92を含む。直交検波部12は、第1増幅部40、分配部42、移相部44、第1ミキサ46、第1LPF部48、第2増幅部50、第2ミキサ52、第2LPF部54、第3増幅部56を含み、補正部34は、第1補正部18、第2補正部20、DC補正値検出部22を含む。ここでは、これまでとの差異を中心に説明する。 FIG. 8 illustrates a configuration of the receiving device 100 according to the second embodiment. The receiving apparatus 100 includes an antenna 10, a quadrature detection unit 12, a first reduction unit 30, a second reduction unit 32, a first ADC unit 14, a second ADC unit 16, a correction unit 34, an FM detection unit 24, a first local oscillator 90, A second local oscillator 92 is included. The quadrature detection unit 12 includes a first amplification unit 40, a distribution unit 42, a phase shift unit 44, a first mixer 46, a first LPF unit 48, a second amplification unit 50, a second mixer 52, a second LPF unit 54, and a third amplification. The correction unit 34 includes a first correction unit 18, a second correction unit 20, and a DC correction value detection unit 22. Here, it demonstrates centering on the difference from before.
 第1ローカル発振器90は、第1ローカル発振信号を第2ローカル発振器92へ出力する。第2ローカル発振器92は、第1ローカル発振器90からの第1ローカル発振信号に応じて第2ローカル発振信号の周波数を調節し、周波数が調節された第2ローカル発振信号を第1ミキサ46、移相部44へ出力する。これは、第1ローカル発振器90からの第1ローカル発振信号によって周波数変調された第2ローカル発振信号を直交検波部12へ出力することに相当する。直交検波部12の第1ミキサ46、第2ミキサ52は、第2ローカル発振器92から出力された第2ローカル発振信号によって、分配部42からのFM信号を直交検波して、ベースバンド信号を出力する。つまり、第2ローカル発振信号は、実施例1におけるローカル発振信号に相当する。 The first local oscillator 90 outputs the first local oscillation signal to the second local oscillator 92. The second local oscillator 92 adjusts the frequency of the second local oscillation signal in accordance with the first local oscillation signal from the first local oscillator 90, and the second local oscillation signal whose frequency is adjusted is transferred to the first mixer 46. It outputs to the phase part 44. This corresponds to outputting the second local oscillation signal frequency-modulated by the first local oscillation signal from the first local oscillator 90 to the quadrature detection unit 12. The first mixer 46 and the second mixer 52 of the quadrature detection unit 12 perform quadrature detection of the FM signal from the distribution unit 42 using the second local oscillation signal output from the second local oscillator 92 and output a baseband signal. To do. That is, the second local oscillation signal corresponds to the local oscillation signal in the first embodiment.
 このように、第1ローカル発振信号によってFM変調された第2ローカル発振信号を使用して、RF信号を直交検波することによって、ベースバンド信号が生成されている。そのため、受信信号が無変調で、かつ受信信号の周波数と第2ローカル発振信号の周波数とが一致した場合でも、ベースバンド信号は一定の値にならないので、完全に抑圧されることが防止される。また、実施例1と同様にベースバンド信号にDC成分が含まれている場合でも、補正部34によってDC成分が補正される。また、FM検波部24から出力される検波信号には、受信信号の変調成分と第1ローカル発振信号の周波数成分が合成されているが、第1ローカル発振信号の発振周波数を変調成分の下限周波数よりも低い周波数、つまり復調帯域よりも低い周波数に設定すれば、分離可能である。 Thus, the baseband signal is generated by quadrature detection of the RF signal using the second local oscillation signal that is FM-modulated by the first local oscillation signal. Therefore, even when the received signal is unmodulated and the frequency of the received signal matches the frequency of the second local oscillation signal, the baseband signal does not become a constant value, so that it is prevented from being completely suppressed. . Even when the baseband signal includes a DC component as in the first embodiment, the correction unit 34 corrects the DC component. In addition, the detection signal output from the FM detection unit 24 combines the modulation component of the reception signal and the frequency component of the first local oscillation signal. The oscillation frequency of the first local oscillation signal is the lower limit frequency of the modulation component. Separation is possible by setting a lower frequency, that is, a frequency lower than the demodulation band.
 本実施例によれば、第2ローカル発振信号を周波数変調するので、ベースバンド信号が連続して低減部で低減されることを抑制できる。また、第1ローカル発振器からの第1ローカル発振信号の周波数を復調帯域よりも低い周波数にするので、変調の有無に関わらず低減部でベースバンド信号が連続して低減されることを抑制できる。 According to the present embodiment, since the second local oscillation signal is frequency-modulated, it is possible to suppress the baseband signal from being continuously reduced by the reduction unit. Further, since the frequency of the first local oscillation signal from the first local oscillator is set to a frequency lower than the demodulation band, it is possible to suppress the baseband signal from being continuously reduced by the reduction unit regardless of the presence or absence of modulation.
 第1ローカル発振器90は、所定の変調周波数を生成する変調周波数生成器であり、第2ローカル発振器92は、所定の変調周波数で変調された第2ローカル発信信号を出力していることになる。つまり周波数変調された第2ローカル発信信号を直交検波部12に出力すればよいので、変調周波数は発振器により発生されるものでなくてもよい。例えば、第2ローカル発振器92が、フラクショナルPLLにより周波数制御されるものであれば、分周比の設定により、所定の変調周波数によりFM変調をかけることも可能である。この場合分周比の設定を行うもの、例えばCPUが変調周波数生成器といえる。 The first local oscillator 90 is a modulation frequency generator that generates a predetermined modulation frequency, and the second local oscillator 92 outputs a second local transmission signal modulated at the predetermined modulation frequency. In other words, since the frequency-modulated second local transmission signal may be output to the quadrature detection unit 12, the modulation frequency may not be generated by the oscillator. For example, if the frequency of the second local oscillator 92 is controlled by a fractional PLL, FM modulation can be performed at a predetermined modulation frequency by setting a frequency division ratio. In this case, a device for setting a frequency division ratio, for example, a CPU can be said to be a modulation frequency generator.
(実施例3)
 次に、実施例3を説明する。実施例3は、これまでと同様に、ダイレクト・コンバージョン型であり、かつ直交検波器とFM検波器との間にカップリングコンデンサを配置したFM受信装置に関する。受信信号の周波数とローカル発振信号の周波数とを一致させなくするために、実施例1では、検波信号にオフセット値を加算してからAFCを実行させ、実施例2では、ローカル発振器に入力すべき制御信号をFM変調させている。AFC制御は、受信信号をFM検波してからでないと動作できない。一方、ローカル発振信号をFM変調させる場合は、AFC制御と異なって、受信信号をFM検波するまでも動作可能であるが、ローカル発振信号のC/Nを悪化させているので、受信特性としてのレシプロカルミキシングやS/Nが悪化する傾向にある。実施例3では、これらを組み合わせ、信号検出段階とその後で処理が切りかえられる。信号を検出する前は、ローカル発振信号をFM変調し、信号を検出した後は、AFC制御を実行する。
(Example 3)
Next, Example 3 will be described. The third embodiment relates to an FM receiving apparatus that is a direct conversion type and has a coupling capacitor disposed between a quadrature detector and an FM detector, as before. In order to make the frequency of the received signal and the frequency of the local oscillation signal not coincide with each other, in the first embodiment, an offset value is added to the detection signal and then AFC is executed. The control signal is FM modulated. AFC control can only operate after FM detection of the received signal. On the other hand, when the local oscillation signal is FM-modulated, unlike the AFC control, the operation is possible until the reception signal is detected by FM, but the C / N of the local oscillation signal is deteriorated. Reciprocal mixing and S / N tend to deteriorate. In the third embodiment, these are combined, and the processing is switched after the signal detection stage. Before the signal is detected, the local oscillation signal is FM-modulated, and after the signal is detected, AFC control is executed.
 図9は、実施例3に係る受信装置100の構成を示す。受信装置100は、アンテナ10、直交検波部12、第1低減部30、第2低減部32、第1ADC部14、第2ADC部16、補正部34、FM検波部24、平均化部60、加算部62、オフセット記憶部64、AFC部66、DAC部68、第1ローカル発振器90、第2ローカル発振器92、制御部94、選択部96を含む。直交検波部12は、第1増幅部40、分配部42、移相部44、第1ミキサ46、第1LPF部48、第2増幅部50、第2ミキサ52、第2LPF部54、第3増幅部56を含み、補正部34は、第1補正部18、第2補正部20、DC補正値検出部22を含み、AFC部66は、第3LPF部70、第4増幅部72を含む。ここでは、これまでとの差異を中心に説明する。 FIG. 9 illustrates a configuration of the receiving device 100 according to the third embodiment. The receiving apparatus 100 includes an antenna 10, a quadrature detection unit 12, a first reduction unit 30, a second reduction unit 32, a first ADC unit 14, a second ADC unit 16, a correction unit 34, an FM detection unit 24, an averaging unit 60, and an addition Unit 62, offset storage unit 64, AFC unit 66, DAC unit 68, first local oscillator 90, second local oscillator 92, control unit 94, and selection unit 96. The quadrature detection unit 12 includes a first amplification unit 40, a distribution unit 42, a phase shift unit 44, a first mixer 46, a first LPF unit 48, a second amplification unit 50, a second mixer 52, a second LPF unit 54, and a third amplification. The correction unit 34 includes a first correction unit 18, a second correction unit 20, and a DC correction value detection unit 22, and the AFC unit 66 includes a third LPF unit 70 and a fourth amplification unit 72. Here, it demonstrates centering on the difference from before.
 選択部96は、DAC部68からの第1制御信号と、第1ローカル発振器90からの第1ローカル発振信号とを入力する。ここで、第1制御信号は、実施例1における制御信号に相当する。また、選択部96は、制御部94からの選択信号も入力する。選択部96は、選択信号にしたがって、第1制御信号と第1ローカル発振信号とのうちの1つを第2制御信号として選択する。選択部96は、選択した第2制御信号を第2ローカル発振器92に出力する。第2ローカル発振器92は、選択部96からの第2制御信号に応じて第2ローカル発振信号の周波数を調節し、周波数が調節された第2ローカル発振信号を第1ミキサ46、移相部44へ出力する。 The selection unit 96 inputs the first control signal from the DAC unit 68 and the first local oscillation signal from the first local oscillator 90. Here, the first control signal corresponds to the control signal in the first embodiment. The selection unit 96 also receives a selection signal from the control unit 94. The selection unit 96 selects one of the first control signal and the first local oscillation signal as the second control signal according to the selection signal. The selection unit 96 outputs the selected second control signal to the second local oscillator 92. The second local oscillator 92 adjusts the frequency of the second local oscillation signal in accordance with the second control signal from the selection unit 96, and the second local oscillation signal with the adjusted frequency is sent to the first mixer 46 and the phase shift unit 44. Output to.
 制御部94は、FM検波部24からの検波信号を入力する。制御部94は、検波信号をもとに、選択信号を生成する。選択信号には、制御部94において選択すべき信号、つまり第1制御信号あるいは第1ローカル発振信号が示されている。ここで、制御部94は、アンテナ10においてRF信号が受信されているか否かを監視していること、つまりキャリアを検出しているか否かを監視していることに相当する。例えば、ノイズスケルチ回路である。ノイズスケルチ回路は、FM検波部24からの出力である検波信号の復調帯域以上の一部の帯域のノイズ成分の検出し、ノイズが所定のレベル未満であればキャリアによりノイズが抑圧されRF信号が受信されていると判定し、ノイズが所定のレベル以上であればノイズが抑圧されていないためRF信号が受信されていないと判定する。 The control unit 94 inputs the detection signal from the FM detection unit 24. The control unit 94 generates a selection signal based on the detection signal. The selection signal indicates a signal to be selected by the control unit 94, that is, the first control signal or the first local oscillation signal. Here, the control unit 94 corresponds to monitoring whether the antenna 10 receives an RF signal, that is, monitoring whether a carrier is detected. For example, a noise squelch circuit. The noise squelch circuit detects noise components in a part of the band equal to or higher than the demodulation band of the detection signal output from the FM detection unit 24. If the noise is less than a predetermined level, the noise is suppressed by the carrier and the RF signal is output. It is determined that the signal is received. If the noise is equal to or higher than a predetermined level, it is determined that the RF signal is not received because the noise is not suppressed.
 制御部94は、RF信号が受信されていない場合に、第1ローカル発振信号を選択させるための選択信号を生成し、その選択信号を選択部96に出力する。選択部96は、この選択信号をもとに第1ローカル発振信号を選択して、それに応じた第2制御信号を第2ローカル発振器92に入力する。その結果、第2ローカル発振器92は、FM変調された第2ローカル発振信号を出力する。この状態では、第2ローカル発振信号の周波数と同じ周波数の無変調信号が受信されても、I信号およびQ信号は一定の値にならないので、ベースバンド信号は完全に抑圧されない。 When the RF signal is not received, the control unit 94 generates a selection signal for selecting the first local oscillation signal and outputs the selection signal to the selection unit 96. The selection unit 96 selects the first local oscillation signal based on the selection signal, and inputs a second control signal corresponding to the first local oscillation signal to the second local oscillator 92. As a result, the second local oscillator 92 outputs an FM-modulated second local oscillation signal. In this state, even if an unmodulated signal having the same frequency as the frequency of the second local oscillation signal is received, the I signal and the Q signal do not become constant values, so the baseband signal is not completely suppressed.
 このような状況下において、RF信号が受信されると、制御部94はこれを検出する。ここで、FM検波部24から出力される検波信号には、第1ローカル発振信号の発振周波数が多重される。第1ローカル発振信号の発振周波数を復調帯域内に設定した場合、第1ローカル発振信号が検波信号として出力され復調されてしまう。 In such a situation, when an RF signal is received, the control unit 94 detects this. Here, the oscillation frequency of the first local oscillation signal is multiplexed with the detection signal output from the FM detection unit 24. When the oscillation frequency of the first local oscillation signal is set within the demodulation band, the first local oscillation signal is output as a detection signal and demodulated.
 そのため、制御部94は、RF信号が受信されたことを検出した場合に、第1制御信号を選択させるための選択信号を生成し、その選択信号を選択部96に出力する。選択部96は、この選択信号をもとに第1制御信号を選択して、それに応じた第2制御信号を第2ローカル発振器92に入力する。その結果、第2ローカル発振器92は、AFC制御された第2ローカル発振信号を出力する。これにより、第2ローカル発振信号の発振周波数が復調帯域内の場合でも、検波信号に不要な信号が含まれなくなる。 Therefore, when detecting that the RF signal is received, the control unit 94 generates a selection signal for selecting the first control signal and outputs the selection signal to the selection unit 96. The selection unit 96 selects the first control signal based on the selection signal, and inputs the second control signal corresponding to the first control signal to the second local oscillator 92. As a result, the second local oscillator 92 outputs a second local oscillation signal subjected to AFC control. Thereby, even when the oscillation frequency of the second local oscillation signal is within the demodulation band, an unnecessary signal is not included in the detection signal.
 つまり、制御部94は、キャリアを検出していない場合に、第1ローカル発振信号を選択させるための選択信号を生成することによって、第2ローカル発振信号の周波数を変動させる。一方、制御部94は、キャリアを検出すると、第1制御信号を選択させるための選択信号に切りかえることによって、第2ローカル発振信号の周波数の変調を停止する。 That is, the control unit 94 varies the frequency of the second local oscillation signal by generating a selection signal for selecting the first local oscillation signal when no carrier is detected. On the other hand, when detecting the carrier, the control unit 94 switches to a selection signal for selecting the first control signal, thereby stopping the frequency modulation of the second local oscillation signal.
 以上の構成による受信装置100の動作を説明する。図10は、受信装置100による制御手順を示すフローチャートである。選択部96は、第1ローカル発振信号を選択する(S10)。制御部94がキャリアを検出しなければ(S12のN)、待機する。制御部94がキャリアを検出すれば(S12のY)、選択部96は、第1制御信号を選択するとともに、DC補正値検出部22がオンされる(S14)。受信信号の中心周波数がプラスであれば(S16のY)、AFC部66は、+ΔfにAFC制御する(S18)。一方、受信信号の中心周波数がプラスでなければ(S16のN)、AFC部66は、-ΔfにAFC制御する(S20)。 The operation of the receiving apparatus 100 configured as above will be described. FIG. 10 is a flowchart illustrating a control procedure by the receiving apparatus 100. The selection unit 96 selects the first local oscillation signal (S10). If the control unit 94 does not detect a carrier (N in S12), it waits. If the control unit 94 detects a carrier (Y in S12), the selection unit 96 selects the first control signal and the DC correction value detection unit 22 is turned on (S14). If the center frequency of the received signal is positive (Y in S16), the AFC unit 66 performs AFC control to + Δf (S18). On the other hand, if the center frequency of the received signal is not positive (N in S16), the AFC unit 66 performs AFC control to −Δf (S20).
 本実施例によれば、RF信号が受信されていない場合に、FM変調された第2ローカル発振信号を出力するので、第2ローカル発振信号の周波数と同じ周波数の無変調信号が受信されても、I信号およびQ信号が一定の値になることを抑制できる。また、I信号およびQ信号が一定の値にならないので、完全に抑圧されることを抑制できる。また、RF信号が受信された場合に、第1制御信号を出力するので、第2ローカル発振信号の発振周波数が復調帯域内の場合でも、復調信号に不要な信号が含まれなくすることができる。 According to the present embodiment, when the RF signal is not received, the FM-modulated second local oscillation signal is output. Therefore, even if an unmodulated signal having the same frequency as the frequency of the second local oscillation signal is received. , I signal and Q signal can be suppressed from becoming constant values. Further, since the I signal and the Q signal do not become constant values, it is possible to suppress the complete suppression. Further, since the first control signal is output when the RF signal is received, it is possible to prevent unnecessary signals from being included in the demodulated signal even when the oscillation frequency of the second local oscillation signal is within the demodulation band. .
 以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to the combination of each component and each processing process, and such modifications are also within the scope of the present invention. .
 10 アンテナ、 12 直交検波部、 14 第1ADC部、 16 第2ADC部、 18 第1補正部、 20 第2補正部、 22 DC補正値検出部、 24 FM検波部、 28 ローカル発振器、 30 第1低減部、 32 第2低減部、 34 補正部、 40 第1増幅部、 42 分配部、 44 移相部、 46 第1ミキサ、 48 第1LPF部、 50 第2増幅部、 52 第2ミキサ、 54 第2LPF部、 56 第3増幅部、 60 平均化部、 62 加算部、 64 オフセット記憶部、 66 AFC部、 68 DAC部、 70 第3LPF部、 72 第4増幅部、 90 第1ローカル発振器、 92 第2ローカル発振器、 94 制御部、 96 選択部、 100 受信装置。 10 antenna, 12 quadrature detection unit, 14 1st ADC unit, 16 2nd ADC unit, 18 1st correction unit, 20 2nd correction unit, 22 DC correction value detection unit, 24 FM detection unit, 28 local oscillator, 30 1st reduction Part, 32 second reduction part, 34 correction part, 40 first amplification part, 42 distribution part, 44 phase shift part, 46 first mixer, 48 first LPF part, 50 second amplification part, 52 second mixer, 54 second mixer 2 LPF section, 56 3rd amplification section, 60 averaging section, 62 addition section, 64 offset storage section, 66 AFC section, 68 DAC section, 70 3rd LPF section, 72 4th amplification section, 90 1st local oscillator, 92nd section 2 local oscillators, 94 control units, 96 selection units, 100 receivers .
 本実施形態によれば、FM検波した信号の品質を改善できる。 According to the present embodiment, the quality of the FM detected signal can be improved.

Claims (2)

  1.  ローカル発振信号を出力するローカル発振器と、
     前記ローカル発振器から出力されたローカル発振信号によって、FM信号を直交検波してベースバンド信号を出力する直交検波器と、
     前記直交検波器から出力されたベースバンド信号に含まれた直流成分を低減する低減部と、
     前記ベースバンド信号を、IQ平面上において極座標の原点を中心とするように補正することにより直流成分を再生する補正部と、
     前記補正部において補正したベースバンド信号をFM検波して、検波信号を生成するFM検波部と、
     前記FM検波部において生成した検波信号を平滑しオフセットを加える加算部と、
     平滑されオフセットを加えられた検波信号をもとに、ローカル発振信号の周波数を制御するための制御信号を生成し、前記ローカル発振器へ制御信号をフィードバックするAFC部と、
     を備えることを特徴とするFM受信装置。
    A local oscillator that outputs a local oscillation signal;
    A quadrature detector that quadrature-detects an FM signal and outputs a baseband signal based on the local oscillation signal output from the local oscillator;
    A reduction unit for reducing a direct current component included in a baseband signal output from the quadrature detector;
    A correction unit that reproduces a direct current component by correcting the baseband signal so that the origin of polar coordinates is centered on the IQ plane;
    An FM detection unit for generating a detection signal by performing FM detection on the baseband signal corrected by the correction unit;
    An addition unit that smoothes the detection signal generated in the FM detection unit and adds an offset;
    An AFC unit that generates a control signal for controlling the frequency of the local oscillation signal based on the detection signal that has been smoothed and offset, and that feeds back the control signal to the local oscillator;
    An FM receiving apparatus comprising:
  2.  ローカル発振器から出力されたローカル発振信号によって、FM信号を直交検波して、ベースバンド信号を出力するステップと、
     ベースバンド信号に含まれた直流成分を低減するステップと、
     前記ベースバンド信号を、IQ平面上において極座標の原点を中心とするように補正することにより直流成分を再生するステップと、
     補正ベースバンド信号をFM検波して、検波信号を生成するステップと、
     生成した検波信号を平滑してオフセットを加えるステップと、
     平滑されオフセットを加えられた検波信号をもとに、ローカル発振信号の周波数を制御するための制御信号を生成し、前記ローカル発振器へ制御信号をフィードバックするステップと、
     を備えることを特徴とするFM受信方法。
    A quadrature detection of the FM signal based on the local oscillation signal output from the local oscillator, and outputting a baseband signal;
    Reducing the DC component contained in the baseband signal;
    Regenerating the DC component by correcting the baseband signal so that the origin of polar coordinates is centered on the IQ plane;
    FM detecting the corrected baseband signal to generate a detection signal;
    Smoothing the generated detection signal and adding an offset;
    Generating a control signal for controlling the frequency of the local oscillation signal based on the smoothed and offset-added detection signal, and feeding back the control signal to the local oscillator;
    An FM receiving method comprising:
PCT/JP2015/081367 2015-02-23 2015-11-06 Fm reception device and fm reception method WO2016136040A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-032458 2015-02-23
JP2015032458A JP6264308B2 (en) 2015-02-23 2015-02-23 FM receiver and FM receiving method

Publications (1)

Publication Number Publication Date
WO2016136040A1 true WO2016136040A1 (en) 2016-09-01

Family

ID=56788191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081367 WO2016136040A1 (en) 2015-02-23 2015-11-06 Fm reception device and fm reception method

Country Status (2)

Country Link
JP (1) JP6264308B2 (en)
WO (1) WO2016136040A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114785657A (en) * 2021-01-22 2022-07-22 东芝泰格有限公司 Communication apparatus and communication method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944025A (en) * 1988-08-09 1990-07-24 At&E Corporation Direct conversion FM receiver with offset

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944025A (en) * 1988-08-09 1990-07-24 At&E Corporation Direct conversion FM receiver with offset

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114785657A (en) * 2021-01-22 2022-07-22 东芝泰格有限公司 Communication apparatus and communication method

Also Published As

Publication number Publication date
JP2016157995A (en) 2016-09-01
JP6264308B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
JP2018526944A (en) Extract carrier signal from modulated signal
US10270483B2 (en) FM reception device, FM reception method for receiving FM signals
WO2011086640A1 (en) Transmitter apparatus, wireless communication apparatus and transmission method
US10122395B2 (en) FM reception device, FM reception method for receiving FM signals
US8396433B2 (en) Radio communication apparatus and DC offset adjustment method
JP5935631B2 (en) Compensation device and wireless communication device
JP6264308B2 (en) FM receiver and FM receiving method
US9503296B2 (en) FM receiver and FM receiving method for receiving FM signal
US7227912B2 (en) Receiver with mirror frequency suppression
WO2018142745A1 (en) Receiving apparatus, receiving method, and program
JP3408452B2 (en) Quadrature demodulator
JP6217389B2 (en) FM receiver and FM receiving method
JP6237309B2 (en) FM receiver and FM receiving method
JP4749259B2 (en) Receiver
JP3335414B2 (en) Amplitude modulated adjacent interference canceler by frequency conversion.
JP2002217992A (en) Modulation device and modulation method
JP2012090101A (en) Demodulation device
JP2008022187A5 (en)
JP2017220752A (en) Noise cancelling device, receiving device, and noise cancelling method
JP5618863B2 (en) Wireless receiver
JP3596973B2 (en) Direct conversion AM receiver
JP2022038850A (en) Receiving device
JP2002335129A (en) Fm demodulator and receiver
JP2009005272A (en) Pilot pll circuit and fm stereo demodulation circuit
EP1944872A1 (en) Am receiving apparatus and am receiving method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883330

Country of ref document: EP

Kind code of ref document: A1