WO2016122291A1 - Air-conditioning device with a system for generating oxygen and ozone for the purification and enrichment of the air in a closed environment - Google Patents

Air-conditioning device with a system for generating oxygen and ozone for the purification and enrichment of the air in a closed environment Download PDF

Info

Publication number
WO2016122291A1
WO2016122291A1 PCT/MX2015/000014 MX2015000014W WO2016122291A1 WO 2016122291 A1 WO2016122291 A1 WO 2016122291A1 MX 2015000014 W MX2015000014 W MX 2015000014W WO 2016122291 A1 WO2016122291 A1 WO 2016122291A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
ozone
oxygen
coil
solenoid valve
Prior art date
Application number
PCT/MX2015/000014
Other languages
Spanish (es)
French (fr)
Inventor
Jose Martin VELEZ DE LA ROCHA
Omar VAZQUEZ PALMA
Dino Alejandro Pardo Guzman
Juan Pedro CAMOU ESTEBAN
Original Assignee
Velez De La Rocha Jose Martin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Velez De La Rocha Jose Martin filed Critical Velez De La Rocha Jose Martin
Priority to PCT/MX2015/000014 priority Critical patent/WO2016122291A1/en
Publication of WO2016122291A1 publication Critical patent/WO2016122291A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/40Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ozonisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/60Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by adding oxygen

Definitions

  • the present invention can be applied mainly in the medical industry, home appliance industry and other sectors where it is convenient to generate an oxygen-rich atmosphere for the benefit of the people therein.
  • a proposed solution to the problem is the implementation of an oxygen concentration system to a mini-split cooling system. With the complement the device can achieve optimal levels of oxygen according to the need of the person (s) in a room.
  • This device will have the ability to maintain the common concentration of oxygen in the air (21%) or even increase it if you have a medical prescription; in case of being done, measures should be taken and the room adapted with certain indications against fires, since the standards also manage that from 23.5% of oxygen it is already considered a risk for the acceleration of combustion.
  • concentration of oxygen in the air such as cryogenics, membrane and others, but the one that best suits the need for domestic consumption and therefore that which will be used in the invention is adsorption by pressure changes ( PSA by its acronym in English).
  • the oxygen concentrator system takes advantage of the heat released in the condensing coil of the refrigeration system to aid in the regeneration of the molecular sieve used in the invention by means of a heat exchanger in the mentioned coil form.
  • FIG 1 is the component and operation diagram of an oxygen concentrator used in the present invention.
  • Figure 2 is the diagram of the main components of the ozone generator used in the present invention.
  • Figure 3 is a schematic of the operation of the ozone generator implemented in the invention.
  • FIG 4 is a schematic of the cooling system used by conventional mini-split devices.
  • Figure 5 shows the heat exchanger between elements of the cooling system and the oxygen concentration.
  • Figure 6 is a schematic of the ozone generation system implemented in the air recirculation of a mini-split refrigeration apparatus.
  • Example 1 Preferred design for the realization of the oxygen concentrator
  • the present example describes one of the preferred embodiments for the realization of the oxygen concentrating device, used in the invention.
  • the system includes a compressor (1) connected with at least one adsorption column (4) through a drying column (2) and a three-way solenoid valve (3).
  • the drying column (2) uses silica gel to trap the water molecules present in the air injected by the compressor.
  • the three-way solenoid valve (3) will allow, at the beginning of the process, the flow of gas towards the adsorption column and out of the system so that the filtrate 2 escapes and allows the process to begin again.
  • the adsorption column (4) contains zeolite 5A in the form of small spheres for the purpose of trapping oxygen from the air and allowing only the passage of gas with mostly oxygen. It is connected to the O2 storage tank (6) by a two-way solenoid valve (5) that allows the flow of air only to the storage tank (6).
  • the controller (8) monitors the pressure in the adsorption column (4) and in the storage tank (6) through the pressure sensors (SI and S2) to control the cycle through the operation of the compressor and solenoid valves ( 1, 3, 5, 7).
  • conduit (9) that contacts the adsorption column (4) in a helical manner around said column, although it may be otherwise, which conveys hot liquid from a heat exchanger coil (11).
  • This coil (11) absorbs the heat released by the cooling system while in contact with the condenser coil (14). This is achieved by generating a liquid flow in the opposite direction to the refrigerant gas during its passage through the condenser coil (14).
  • the flow of the liquid that will heat the adsorption column (4) through the helical duct (9) will be generated by a pump (8) and will also be controlled by activating an electrovalve (10) to ensure the cut of liquid flow when it's not necessary
  • the controller activates the compressor (1) together with the solenoid valve (3) to start depositing air, through the drying column (2), into the adsorption column (4).
  • the solenoid valve (5) is activated to allow the passage of oxygen-enriched gas into the storage tank.
  • the solenoid valve (5) is deactivated and the solenoid valve (3) is repositioned to allow the nitrogen contained in the column (4) to escape.
  • the pump (8) and the solenoid valve (10) are activated to start circulating hot water from the heat exchanger (11) to the helical duct (9) that makes contact with the adsorption column (4) ), in order to improve the regeneration of the zeolite contained within said column (4).
  • the hot water pump (8) and the solenoid valve (10) are deactivated, in addition to changing the position of the three-way solenoid valve (3) to allow the flow back only to the adsorption column (4) and start the process again through activation.
  • the process is semi-continuous in which the oxygen-enriched product is stored in the storage tank (6) to be administered to the environment when necessary, through the activation of the solenoid valve (7).
  • Example 3 Preferred design for the realization of the ozone generator
  • the present example describes one of the preferred embodiments for the realization of the ozone generating device, used in the invention.
  • He includes an alternating voltage source (31) connected to a transformer (32) in such a way that it fulfills the role of intensification, increasing the voltage and decreasing the current.
  • the output of the transformer is connected to a pair of plate-shaped electrodes (33 and 35), which can be rectangular or other design, separated by a dielectric material (34), generally of glass or other ceramic.
  • the system also has a fan (36) that circulates the air between the electrode plates and in turn fulfills the role of heat sink produced by the discharge of electrons in the middle between the electrodes (33 and 35). It is indicated in figure 2 that the nodes (38) and (39) of the conductor cable represent the connections to the transformer (32), connected in turn to the alternate voltage source (31).
  • the present example describes one of the preferred embodiments for the operation of the ozone generating device, used in the invention.
  • the controller (41) activates the alternating voltage source (31), so that the transformer (32) increases, by 10 to 20 times, the provided voltage and decreases the electric current in the same way.
  • the fan (36) is activated to circulate air between the electrodes (33 and 35).
  • the air that enters contains 0 2 molecules.
  • the high voltage supplied forms a strong electric field between the electrodes (33 and 34), where the dielectric (34) does not allow the formation of an electric arc.
  • an electron discharge occurs from the 0 2 molecules (37) to one of the electrodes, resulting in the separation of 0 2 molecules.
  • the function of the fan (36) is also that of cooling at the critical heating points of both the dielectric (34) and the electrode (39) separated by air.
  • Example 5 Preferred design for the realization of the cooling system
  • the system includes a compressor (13) that compresses a refrigerant gas, commonly the 407C.
  • the compressor (13) is connected to a condenser coil (14) with heat sink (15) where the refrigerant loses heat and, when subjected to high pressure, enters its liquid state.
  • the duct continues on its way to the room to cool where an expansion valve (16) is located. Then inside the room the liquid passes to an evaporating coil (17). A fan is present that recirculates the air (18) through said coil so that the molecules of the room air give heat to the refrigerant and is expanded until it returns to its gaseous state.
  • a temperature sensor (S3) is present that sends signals to the controller to monitor the cooling level and determine the compressor's operating capacity (13).
  • the cooling system begins when the controller activates the compressor (13), it compresses the refrigerant gas to pass it through the condenser coil (14) and, aided by the heat sink (15), the gas cools until it reaches its state liquid. This liquid continues through the conduit on its way to the room to cool as it passes through the expansion valve (16). The effect achieved is to reduce the pressure of the next step where it continues through an evaporating coil (17).
  • the fan (18) circulates the air in the room through said coil (17) so that the refrigerant gains heat from the air in the room and ends up in its gaseous state.
  • the refrigerant now in a gaseous state, continues its path to be sucked back by the compressor (13) and compressed in the new cycle.
  • the controller will determine the operating power of the compressor (13) to achieve the required cooling level.
  • Example 7 Operation and procedure for the heat exchanger between the cooling system and the oxygen concentration system.
  • the function of the duct (14) is to give heat to the water recirculated by the duct (11) by the technique of creating cross flows. This helps the compressed refrigerant gas to enter its liquid state more quickly.
  • the heated water is pumped, by activating the device (8) and the solenoid valve (10), into the helical duct (9) that makes contact with the adsorption column (4).
  • the zeolite contained in said column (4) it helps to achieve a complete regeneration of the zeolite during the nitrogen escape stage.
  • the solenoid valve (10) is closed and the pump (8) is deactivated so that the adsorption column (4) stops gaining heat to give rise to the new oxygen concentration cycle.
  • One or more pairs of electrodes (33 and 35) separated by a dielectric (34) will be found, each connected to the transformer (31), in turn connected to the alternate voltage source (31), through the nodes (38) and (39), as explained in example 1.
  • the alternating voltage source (31) will be the same as that used by the mini-split device.
  • the number of ozone generators placed at the outlet of the cooling system will depend on the level of ozone required in the environment.
  • the sensor (S12) will monitor the ozone level in the environment and, according to the indicated levels, the controller (48) will indicate the activation or deactivation of the alternating voltage source (31) to control the operation of the ozone generating device .
  • Said ozone generator may not work if the fan (46) of the Mini Split recirculator is not in operation.
  • a pyro-electric PIR sensor (S13) detects the presence / absence of people in the room.
  • An air duct (20) coming from outside the room is connected to the low pressure side of the recirculation unit of the evaporation unit in order to be able to inject new air into the room.
  • the amount of air or air flow injected into the room is regulated by a gate (21) operated by a small electric motor (22) controlled by the controller (8).
  • the PIR sensor (S13) detects the presence of people, it sends a signal so that the gate (21) opens and allows the flow of new air into the room in order to compensate for the oxygen in the air that is lost with the generation of ozone and maintain healthy oxygen levels in the area.
  • the timer (23) starts generating cycles of turning on and off the ozone generator to allow homogeneity in the air and avoid the typical characteristic odor emitted during production.
  • the gate (21) closes, stopping the introduction of outside air to improve the cooling efficiency of the cooling equipment and the ozone generator is controlled only by the sensor (S12 ).

Abstract

The invention relates to an air-conditioning system for interiors using a means for compressing cooling gas such as a Mini Split, which, as well as cooling a residential system, is also characterised in that it purifies and enriches the air in a closed environment as it comprises an ozone-generating device and an oxygen generator that can kill bacteria suspended in the atmosphere and catch powder particles while injecting oxygen-rich air.

Description

APARATO DE AIRE ACONDICIONADO CON SISTEMA DE GENERACIÓN DE OXÍGENO Y OZONO PARA PURIFICACIÓN Y ENRIQUECIMIENTO DEL AIRE EN UN AMBIENTE CERRADO  AIR CONDITIONING DEVICE WITH OXYGEN AND OZONE GENERATION SYSTEM FOR PURIFICATION AND ENRICHMENT OF THE AIR IN A CLOSED ENVIRONMENT
CAMPO TÉCNICO DE LA INVENCIÓN. La presente invención puede ser aplicada principalmente en la industria médica, industria de aparatos electrodomésticos y otros sectores donde es conveniente generar una atmósfera rica en oxígeno para beneficio de las personas que en ella se encuentren. TECHNICAL FIELD OF THE INVENTION. The present invention can be applied mainly in the medical industry, home appliance industry and other sectors where it is convenient to generate an oxygen-rich atmosphere for the benefit of the people therein.
ANTECEDENTES DE LA INVENCIÓN. De acuerdo con la NASA una persona promedio necesita 0.84 kg de 02 por día (y noche), con lo que se calcula un volumen de 588 litros de consumo al día, más de medio metro cúbico, lo equivalente contenido en 2.94 m3 de aire, pues la concentración de oxígeno 02 en la atmósfera es 21%. BACKGROUND OF THE INVENTION According to NASA an average person needs 0.84 kg of 0 2 per day (and night), which calculates a volume of 588 liters of consumption per day, more than half a cubic meter, the equivalent contained in 2.94 m 3 of air, because the concentration of oxygen 0 2 in the atmosphere is 21%.
Con la información anterior se estima que 4 personas presentes en una habitación de 5m x 5m x 3m sellada se terminarían el oxígeno en menos de 8 días. Sin embargo hay estándares como el de la Occupational Safety and Health Administration en EEUU que indican que una concentración menor de 19.5% significa una deficiencia de oxígeno, donde las personas disminuyen su rendimiento en tareas enérgicas y pudieran presentar síntomas como sensación de sofoco y leves mareos. Se estima entonces que transcurrido un día en la habitación sellada ya se encontraría el nivel de oxígeno a una concentración menor que la recomendada. With the above information, it is estimated that 4 people present in a sealed 5m x 5m x 3m room would complete the oxygen in less than 8 days. However, there are standards such as that of the Occupational Safety and Health Administration in the US that indicate that a concentration below 19.5% means an oxygen deficiency, where people decrease their performance in energetic tasks and may present symptoms such as hot flashes and mild dizziness. . It is then estimated that after one day in the sealed room, the oxygen level would already be found at a lower concentration than recommended.
Existen individuos con distintos padecimientos como enfisema, sarcoidosis u obstrucción pulmonar crónica que requieren de una concentración mayor de 02 para lograr la captación correcta de este gas. There are individuals with different conditions such as emphysema, sarcoidosis or chronic pulmonary obstruction that require a concentration greater than 0 2 to achieve the correct uptake of this gas.
En la actualidad existen distintas soluciones ante la creciente necesidad de las personas (con o sin afecciones pulmonares), principalmente en ciudades grandes, de disponer de sesiones con oxigenoterapia como los bares de oxígeno, las cámaras hiperbáricas y concentradores de oxígeno domésticos, donde en la mayoría de los casos son expuestos a cortos periodos a una alta concentración de oxígeno (alrededor de 90%). Una solución propuesta a la problemática es la implementación de un sistema de concentración de oxígeno a un sistema de refrigeración mini-split. Con el complemento el aparato podrá lograr niveles óptimos de oxígeno de acuerdo a la necesidad de la(s) persona(s) que se encuentren en alguna habitación. Este aparato tendrá la capacidad de mantener la concentración común de oxígeno en el aire (21%) o incluso aumentarla si se tiene una prescripción médica; en caso de hacerse se deberían tomar medidas y adecuar la habitación con determinadas indicaciones contra incendios, pues los estándares manejan también que a partir de 23.5% de oxígeno ya se considera de riesgo para la aceleración de la combustión. Existen distintas técnicas para lograr la concentración de oxígeno en el aire como por criogenia, membrana y otras, pero la que más se adecúa a la necesidad de consumo doméstico y por lo tanto la que se utilizará en la invención es adsorción por cambios de presión (PSA por sus siglas en inglés). Currently there are different solutions to the growing need of people (with or without lung conditions), mainly in large cities, to have sessions with oxygen therapy such as oxygen bars, hyperbaric chambers and domestic oxygen concentrators, where in the Most cases are exposed to short periods of high oxygen concentration (about 90%). A proposed solution to the problem is the implementation of an oxygen concentration system to a mini-split cooling system. With the complement the device can achieve optimal levels of oxygen according to the need of the person (s) in a room. This device will have the ability to maintain the common concentration of oxygen in the air (21%) or even increase it if you have a medical prescription; in case of being done, measures should be taken and the room adapted with certain indications against fires, since the standards also manage that from 23.5% of oxygen it is already considered a risk for the acceleration of combustion. There are different techniques to achieve the concentration of oxygen in the air such as cryogenics, membrane and others, but the one that best suits the need for domestic consumption and therefore that which will be used in the invention is adsorption by pressure changes ( PSA by its acronym in English).
El sistema concentrador de oxígeno aprovecha el calor liberado en el serpentín condensador del sistema de refrigeración para ayudar en la regeneración del tamiz molecular utilizado en la invención mediante un intercambiador de calor en la forma de serpentín mencionada. The oxygen concentrator system takes advantage of the heat released in the condensing coil of the refrigeration system to aid in the regeneration of the molecular sieve used in the invention by means of a heat exchanger in the mentioned coil form.
DESCRIPIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Los detalles característicos de la presente invención se muestran claramente en la siguiente descripción, figuras y ejemplos y se incluyen a manera de ilustración, por lo que no deben ser considerados como limitativos para la presente invención. The characteristic details of the present invention are clearly shown in the following description, figures and examples and are included by way of illustration, and therefore should not be considered as limiting for the present invention.
BREVE DESCRIPCION DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1 es el diagrama de componentes y funcionamiento de un concentrador de oxígeno utilizado en la presente invención. Figure 1 is the component and operation diagram of an oxygen concentrator used in the present invention.
Figura 2 es el diagrama de los principales componentes del generador de ozono utilizado en la presente invención. Figure 2 is the diagram of the main components of the ozone generator used in the present invention.
Figura 3 es un esquemático del funcionamiento del generador de ozono implementado en la invención. Figure 3 is a schematic of the operation of the ozone generator implemented in the invention.
Figura 4 es un esquemático del sistema de refrigeración utilizado por los aparatos mini-split convencionales. Figura 5 muestra el intercambiador de calor entre elementos del sistema de refrigeración y el de concentración de oxígeno. Figure 4 is a schematic of the cooling system used by conventional mini-split devices. Figure 5 shows the heat exchanger between elements of the cooling system and the oxygen concentration.
Figura 6 es un esquemático del sistema de generación de ozono implementado en la recirculación de aire de un aparato de refrigeración mini-split. Figure 6 is a schematic of the ozone generation system implemented in the air recirculation of a mini-split refrigeration apparatus.
Ejemplos Examples
Ejemplo 1. Diseño preferente para la realización del concentrador de oxígeno Example 1. Preferred design for the realization of the oxygen concentrator
utilizado como componente de la presente invención.  used as a component of the present invention.
En relación a las figuras anteriormente mencionadas, el presente ejemplo describe una de las modalidades preferentes para la realización del dispositivo concentrador de oxígeno, utilizado en la invención. El sistema incluye un compresor (1) conectado con, al menos, una columna de adsorción (4) a través de una columna de secado (2) y una electroválvula de tres vías (3). La columna de secado (2) utiliza gel de sílice para atrapar las moléculas de agua presentes en el aire inyectado por el compresor. In relation to the aforementioned figures, the present example describes one of the preferred embodiments for the realization of the oxygen concentrating device, used in the invention. The system includes a compressor (1) connected with at least one adsorption column (4) through a drying column (2) and a three-way solenoid valve (3). The drying column (2) uses silica gel to trap the water molecules present in the air injected by the compressor.
La electroválvula de tres vías (3) permitirá, al comienzo del proceso, el flujo de gas hacia la columna de adsorción y hacia fuera del sistema para que escape el 2 filtrado y dar cabida de comenzar de nuevo el proceso. The three-way solenoid valve (3) will allow, at the beginning of the process, the flow of gas towards the adsorption column and out of the system so that the filtrate 2 escapes and allows the process to begin again.
La columna de adsorción (4) contiene zeolita 5A en forma de pequeñas esferas con el propósito de atrapar el oxígeno del aire y permitir solamente el paso de gas con oxígeno en su mayoría. Está conectada con el tanque de almacenamiento de O2 (6) mediante una electroválvula de dos vías (5) que permite el flujo de aire sólo hacia el tanque de almacenamiento (6). The adsorption column (4) contains zeolite 5A in the form of small spheres for the purpose of trapping oxygen from the air and allowing only the passage of gas with mostly oxygen. It is connected to the O2 storage tank (6) by a two-way solenoid valve (5) that allows the flow of air only to the storage tank (6).
En la salida del aparato se encuentra una electroválvula de dos vías (7) que permite el flujo de salida del gas enriquecido con O2. At the outlet of the device there is a two-way solenoid valve (7) that allows the outflow of the gas enriched with O2.
El controlador (8) monitorea la presión en la columna de adsorción (4) y en el tanque de almacenamiento (6) a través de los sensores de presión (SI y S2) para controlar el ciclo a través del accionamiento del compresor y electroválvulas (1, 3, 5, 7). The controller (8) monitors the pressure in the adsorption column (4) and in the storage tank (6) through the pressure sensors (SI and S2) to control the cycle through the operation of the compressor and solenoid valves ( 1, 3, 5, 7).
Se encuentra también un conducto (9) que hace contacto con al columna de adsorción (4) en forma helicoidal alrededor de dicha columna, aunque puede ser de otra forma, que transporta líquido caliente desde un serpentín intercambiador de calor (11). Este serpentín (11) absorbe el calor liberado por el sistema de refrigeración estando en contacto con el serpentín condensador (14). Esto se logra generando un flujo de líquido en sentido contrario al del gas refrigerante durante su paso por el serpentín condensador (14). There is also a conduit (9) that contacts the adsorption column (4) in a helical manner around said column, although it may be otherwise, which conveys hot liquid from a heat exchanger coil (11). This coil (11) absorbs the heat released by the cooling system while in contact with the condenser coil (14). This is achieved by generating a liquid flow in the opposite direction to the refrigerant gas during its passage through the condenser coil (14).
La corriente del líquido que calentará la columna de adsorción (4) a través del conducto helicoidal (9) será generada por una bomba (8) y será controlada también mediante la activación de una electroválvula (10) para asegurar el corte de flujo de líquido cuando no es necesario. The flow of the liquid that will heat the adsorption column (4) through the helical duct (9) will be generated by a pump (8) and will also be controlled by activating an electrovalve (10) to ensure the cut of liquid flow when it's not necessary
Ejemplo 2. Funcionamiento y procedimiento para lograr la concentración de Example 2. Operation and procedure to achieve the concentration of
oxígeno en el aparato incluido en la invención. En relación a las figuras presentes en este documento, el presente ejemplo describe una de las modalidades preferentes para el funcionamiento del dispositivo concentrador de oxígeno, utilizado en invención. Al inicio del proceso el controlador activa el compresor (1) junto con la electroválvula (3) para comenzar a depositar aire, a través de la columna de secado (2), dentro de la columna de adsorción (4). Cuando el sensor (SI) detecta el nivel alto adecuado de presión se activa la electroválvula (5) para permitir el paso del gas enriquecido en oxígeno hacia el tanque de almacenamiento. Cuando el sensor (SI) detecta ahora el nivel bajo adecuado de presión se desactiva la electroválvula (5) y se cambia de posición la electroválvula (3) para permitir el escape del nitrógeno contenido en la columna (4). oxygen in the apparatus included in the invention. In relation to the figures present in this document, the present example describes one of the preferred embodiments for the operation of the oxygen concentrating device, used in the invention. At the beginning of the process, the controller activates the compressor (1) together with the solenoid valve (3) to start depositing air, through the drying column (2), into the adsorption column (4). When the sensor (SI) detects the appropriate high level of pressure, the solenoid valve (5) is activated to allow the passage of oxygen-enriched gas into the storage tank. When the sensor (SI) now detects the appropriate low pressure level, the solenoid valve (5) is deactivated and the solenoid valve (3) is repositioned to allow the nitrogen contained in the column (4) to escape.
Paralelamente a este último paso mencionado se activa la bomba (8) y la electroválvula (10) para comenzar a circular agua caliente desde el intercambiador de calor (11) hacia el conducto helicoidal (9) que hace contacto con la columna de adsorción (4), con el fin de mejorar la regeneración de la zeolita contenida dentro de dicha columna (4). Parallel to this last mentioned step, the pump (8) and the solenoid valve (10) are activated to start circulating hot water from the heat exchanger (11) to the helical duct (9) that makes contact with the adsorption column (4) ), in order to improve the regeneration of the zeolite contained within said column (4).
Pasado un tiempo determinado y cuando la presión dentro de la columna de adsorción (4) se iguala a la presión atmosférica se desactiva la bomba de agua caliente (8) y la electroválvula (10), además de cambiar la posición la electroválvula de tres vías (3) para que permita el flujo de nuevo sólo hacia la columna de adsorción (4) y comenzar de nuevo el proceso a través de la activación. After a certain time and when the pressure inside the adsorption column (4) is equal to the atmospheric pressure, the hot water pump (8) and the solenoid valve (10) are deactivated, in addition to changing the position of the three-way solenoid valve (3) to allow the flow back only to the adsorption column (4) and start the process again through activation.
Como se describe, el proceso es semi continuo en el cual se va almacenando el producto enriquecido de oxígeno en el tanque de almacenamiento (6) para administrar al ambiente cuando sea necesario, a través de la activación de la electroválvula (7). As described, the process is semi-continuous in which the oxygen-enriched product is stored in the storage tank (6) to be administered to the environment when necessary, through the activation of the solenoid valve (7).
Ejemplo 3. Diseño preferente para la realización del generador de ozono Example 3. Preferred design for the realization of the ozone generator
utilizado como componente de la presente invención.  used as a component of the present invention.
En relación a las figuras anteriores, el presente ejemplo describe una de las modalidades preferentes para la realización del dispositivo generador de ozono, utilizado en la invención. El sistema incluye una fuente de voltaje alterno (31) conectado a un transformador (32) de tal manera que cumple el papel de intensificación, aumentando el voltaje y disminuyendo la corriente. In relation to the previous figures, the present example describes one of the preferred embodiments for the realization of the ozone generating device, used in the invention. He The system includes an alternating voltage source (31) connected to a transformer (32) in such a way that it fulfills the role of intensification, increasing the voltage and decreasing the current.
La salida del transformador está conectada a un par de electrodos en forma de placa (33 y 35), que puede ser rectangular u otro diseño, separados por un material dieléctrico (34), generalmente de vidrio u otro cerámico. The output of the transformer is connected to a pair of plate-shaped electrodes (33 and 35), which can be rectangular or other design, separated by a dielectric material (34), generally of glass or other ceramic.
El sistema cuenta también con un abanico (36) que hace circular el aire entre las placas electrodos y a su vez cumple el papel de disipador del calor producido por la descarga de electrones en el medio entre los electrodos (33 y 35). Se indica en la figura 2 que los nodos (38) y (39) del cable conductor representan las conexiones al transformador (32), conectado a su vez a la fuente de voltaje alterno (31). The system also has a fan (36) that circulates the air between the electrode plates and in turn fulfills the role of heat sink produced by the discharge of electrons in the middle between the electrodes (33 and 35). It is indicated in figure 2 that the nodes (38) and (39) of the conductor cable represent the connections to the transformer (32), connected in turn to the alternate voltage source (31).
Ejemplo 4. Funcionamiento y procedimiento para lograr la generación de ozono Example 4. Operation and procedure to achieve ozone generation
en el aparato incluido en la invención.  in the apparatus included in the invention.
En relación a las figuras anteriormente mencionadas, el presente ejemplo describe una de las modalidades preferentes para el funcionamiento del dispositivo generador de ozono, utilizado en invención. In relation to the aforementioned figures, the present example describes one of the preferred embodiments for the operation of the ozone generating device, used in the invention.
Al inicio del proceso el controlador (41) activa la fuente de voltaje alterno (31), así el transformador (32) aumenta, alrededor de 10 a 20 veces, el voltaje proporcionado y disminuye de la misma manera la corriente eléctrica. At the beginning of the process the controller (41) activates the alternating voltage source (31), so that the transformer (32) increases, by 10 to 20 times, the provided voltage and decreases the electric current in the same way.
Se activa el abanico (36) para hacer circular aire entre los electrodos (33 y 35). El aire que entra contiene moléculas de 02. La alta tensión suministrada forma un campo eléctrico fuerte entre los electrodos (33 y 34), donde el dieléctrico (34) no permite la formación de arco eléctrico. Sí se produce una descarga de electrones desde las moléculas de 02 (37) hacia uno de los electrodos, resultando en la separación de moléculas de 02. Al salir del dicho campo eléctrico se reacomodan para formar moléculas de 02 y O3. The fan (36) is activated to circulate air between the electrodes (33 and 35). The air that enters contains 0 2 molecules. The high voltage supplied forms a strong electric field between the electrodes (33 and 34), where the dielectric (34) does not allow the formation of an electric arc. Yes, an electron discharge occurs from the 0 2 molecules (37) to one of the electrodes, resulting in the separation of 0 2 molecules. Upon exiting said electric field they rearrange to form 0 2 and O3 molecules.
La función del abanico (36) es también la de enfriamiento en los puntos críticos de calentamiento tanto del dieléctrico (34) como del electrodo (39) separado por aire. Ejemplo 5. Diseño preferente para la realización del sistema de refrigeración The function of the fan (36) is also that of cooling at the critical heating points of both the dielectric (34) and the electrode (39) separated by air. Example 5. Preferred design for the realization of the cooling system
utilizado como componente de la presente invención.  used as a component of the present invention.
En relación a la figura 2, el presente ejemplo describe una de las modalidades preferentes para la realización del dispositivo de refrigeración, utilizado en la invención. El sistema incluye un compresor (13) que comprime un gas refrigerante, comúnmente el 407C. In relation to Figure 2, the present example describes one of the preferred embodiments for the realization of the refrigeration device, used in the invention. The system includes a compressor (13) that compresses a refrigerant gas, commonly the 407C.
El compresor (13) está conectado a un serpentín condensador (14) con disipador de calor (15) donde el refrigerante pierde calor y, al estar sometido a una alta presión, pasa a su estado líquido. The compressor (13) is connected to a condenser coil (14) with heat sink (15) where the refrigerant loses heat and, when subjected to high pressure, enters its liquid state.
El conducto continúa en su trayecto hacia la habitación a enfriar donde se encuentra una válvula de expansión (16). Seguidamente dentro de la habitación el líquido pasa a un serpentín evaporador (17). Está presente un abanico que recircula el aire (18) a través de dicho serpentín para que las moléculas del aire de la habitación cedan calor al refrigerante y sea expandido hasta volver a su estado gaseoso. The duct continues on its way to the room to cool where an expansion valve (16) is located. Then inside the room the liquid passes to an evaporating coil (17). A fan is present that recirculates the air (18) through said coil so that the molecules of the room air give heat to the refrigerant and is expanded until it returns to its gaseous state.
Al salir el refrigerante del serpentín evaporador (17) en forma de gas vuelve al compresor (13) para dar inicio de nuevo al proceso. When the refrigerant leaves the evaporator coil (17) in the form of gas, it returns to the compressor (13) to start the process again.
Está presente un sensor de temperatura (S3) que envía señales al controlador para monitorizar el nivel de enfriamiento y determinar la capacidad de funcionamiento del compresor (13). A temperature sensor (S3) is present that sends signals to the controller to monitor the cooling level and determine the compressor's operating capacity (13).
Ejemplo 6. Funcionamiento y procedimiento para el aparato de refrigeración Example 6. Operation and procedure for the refrigeration apparatus
incluido en la invención.  included in the invention.
El sistema de refrigeración comienza cuando el controlador activa el compresor (13), éste comprime el gas refrigerante para hacerlo pasar por el serpentín condensador (14) y, ayudado del disipador de calor (15), el gas se enfría hasta llegar a su estado líquido. Este líquido continúa por el conducto en su camino hacia la habitación a enfriar al pasar por la válvula de expansión (16). El efecto logrado es disminuir la presión del siguiente paso donde continúa por un serpentín evaporador (17). The cooling system begins when the controller activates the compressor (13), it compresses the refrigerant gas to pass it through the condenser coil (14) and, aided by the heat sink (15), the gas cools until it reaches its state liquid. This liquid continues through the conduit on its way to the room to cool as it passes through the expansion valve (16). The effect achieved is to reduce the pressure of the next step where it continues through an evaporating coil (17).
El abanico (18) hace circular el aire de la habitación a través de dicho serpentín (17) para que el refrigerante gane calor del aire de la habitación y termine de pasar a su estado gaseoso.  The fan (18) circulates the air in the room through said coil (17) so that the refrigerant gains heat from the air in the room and ends up in its gaseous state.
El refrigerante, ahora en estado gaseoso, continúa su trayecto para ser aspirado de nuevo por el compresor (13) y ser comprimido en el nuevo ciclo. The refrigerant, now in a gaseous state, continues its path to be sucked back by the compressor (13) and compressed in the new cycle.
De acuerdo a la señal enviada por el sensor de temperatura (S3) el controlador determinará la potencia de funcionamiento del compresor (13) para lograr el nivel de enfriamiento requerido. According to the signal sent by the temperature sensor (S3) the controller will determine the operating power of the compressor (13) to achieve the required cooling level.
Ejemplo 7. Funcionamiento y procedimiento para el intercambiador de calor entre el sistema de refrigeración y el sistema de concentración de oxígeno. Example 7. Operation and procedure for the heat exchanger between the cooling system and the oxygen concentration system.
Respecto al intercambiador de calor mostrado en la figura 3, se muestra cómo se acoplan y hacen contacto los serpentines intercambiadores de calor (11 y 14). With respect to the heat exchanger shown in Figure 3, it is shown how the heat exchanger coils (11 and 14) are coupled and made contact.
La función del conducto (14) es ceder calor al agua recirculado por el conducto (11) mediante la técnica de crear flujos cruzados. Esto ayuda a que el gas refrigerante comprimido pase a su estado líquido más rápidamente. The function of the duct (14) is to give heat to the water recirculated by the duct (11) by the technique of creating cross flows. This helps the compressed refrigerant gas to enter its liquid state more quickly.
A su vez, el agua calentada es bombeada, mediante la activación del dispositivo (8) y la electroválvula (10), hacia el conducto helicoidal (9) que hace contacto con la columna de adsorción (4). Al calentar la zeolita contenida en dicha columna (4) ayuda a lograr una regeneración completa de la zeolita durante la etapa de escape de nitrógeno. In turn, the heated water is pumped, by activating the device (8) and the solenoid valve (10), into the helical duct (9) that makes contact with the adsorption column (4). By heating the zeolite contained in said column (4) it helps to achieve a complete regeneration of the zeolite during the nitrogen escape stage.
Al terminar esta etapa se cierra la electroválvula (10) y desactiva la bomba (8) para que la columna de adsorción (4) deje de ganar calor para dar pie al nuevo ciclo de concentración de oxígeno. At the end of this stage, the solenoid valve (10) is closed and the pump (8) is deactivated so that the adsorption column (4) stops gaining heat to give rise to the new oxygen concentration cycle.
En relación a las figuras incluidas en este documento, principalmente la figura 6, el presente ejemplo describe una de las modalidades preferentes para el funcionamiento de nuestra invención, consistente en la implementación de un dispositivo generador de ozono eri la salida del aire frío del sistema de refrigeración mini-split. In relation to the figures included in this document, mainly Figure 6, the present example describes one of the preferred modalities for the operation of our invention, consisting of the implementation of an ozone generating device in the cold air outlet of the mini-split cooling system.
Se encontrarán uno o más pares de electrodos (33 y 35) separados por un dieléctrico (34), conectados cada uno al transformador (31), a su vez conectado a la fuente de voltaje alterno (31), mediante los nodos (38) y (39), tal como se explica en el ejemplo 1. One or more pairs of electrodes (33 and 35) separated by a dielectric (34) will be found, each connected to the transformer (31), in turn connected to the alternate voltage source (31), through the nodes (38) and (39), as explained in example 1.
Estos dispositivos se colocarán junto ai serpentín evaporador (46) donde el abanico del mini- Split (47) presente dentro de la habitación, fungirá él papel de circulador de 02 y enfriador, como el abanico (36) de la figura 3, de esta manera el dispositivo generador de ozono funciona de una manera más efectiva. La fuente de voltaje alterno (31) será la misma que la utilizada por el aparato mini-split. El número de generadores de ozono colocados en la salida del sistema de refrigeración dependerá del nivel de ozono requerido en el ambiente. These devices will be placed next to the evaporator coil (46) where the fan of the mini-Split (47) present inside the room, the role of circulator of 0 2 and cooler, as the fan (36) of figure 3, of This way the ozone generating device works in a more effective way. The alternating voltage source (31) will be the same as that used by the mini-split device. The number of ozone generators placed at the outlet of the cooling system will depend on the level of ozone required in the environment.
El sensor (S12) monitorizará el nivel de ozono en el ambiente y, de acuerdo a los niveles indicados, el controlador (48) indicará la activación o desactivación de la fuente de voltaje alterno (31) para controlar el funcionamiento del dispositivo generador de ozono. Dicho generador de ozono no podrá funcionar si el abanico (46) recirculador del mini Split no esta en funcionamiento. Un sensor piro-eléctrico PIR (S13) detecta la presencia/ausencia de personas en la habitación. Un conducto de aire (20) que viene desde el exterior de la habitación se conecta al lado de baja presión de aire de recirculación de la unidad de evaporación para poder inyectar aire nuevo a la habitación. La cantidad de aire o flujo de aire inyectado a la habitación es regulado por una compuerta (21) operada por un pequeño motor (22) eléctrico controlado por el controlador (8). Cuando el sensor PIR (S13) detecta la presencia de personas manda una señal para que la compuerta (21) se abra y permita el flujo de aire nuevo a la habitación con el fin de compensar el oxigeno en el aire que se pierde con la generación de ozono y mantener niveles de oxigeno saludables en el área. Al mismo tiempo el temporizador (23) se inicia generando ciclos de encendido y apagado del generador de ozono para permitir una homogeneidad en el aire y evitar el olor típico característico emitido durante la producción. Cuando el sensor PIR (S13) no detecta personas (ausencia) la compuerta (21) se cierra dejando de introducir aire del exterior para así mejorar la eficiencia del enfriamiento del equipo de refrigeración y el generador de ozono se controla únicamente por el sensor (S12). The sensor (S12) will monitor the ozone level in the environment and, according to the indicated levels, the controller (48) will indicate the activation or deactivation of the alternating voltage source (31) to control the operation of the ozone generating device . Said ozone generator may not work if the fan (46) of the Mini Split recirculator is not in operation. A pyro-electric PIR sensor (S13) detects the presence / absence of people in the room. An air duct (20) coming from outside the room is connected to the low pressure side of the recirculation unit of the evaporation unit in order to be able to inject new air into the room. The amount of air or air flow injected into the room is regulated by a gate (21) operated by a small electric motor (22) controlled by the controller (8). When the PIR sensor (S13) detects the presence of people, it sends a signal so that the gate (21) opens and allows the flow of new air into the room in order to compensate for the oxygen in the air that is lost with the generation of ozone and maintain healthy oxygen levels in the area. At the same time the timer (23) starts generating cycles of turning on and off the ozone generator to allow homogeneity in the air and avoid the typical characteristic odor emitted during production. When the PIR sensor (S13) does not detect people (absence), the gate (21) closes, stopping the introduction of outside air to improve the cooling efficiency of the cooling equipment and the ozone generator is controlled only by the sensor (S12 ).

Claims

REIVINDICACIONES
Un dispositivo enriquecedor de oxígeno implementado en un aparato de refrigeración ambiental que comprende: An oxygen enrichment device implemented in an environmental refrigeration apparatus comprising:
a. Un sistema de concentración de oxígeno que a su vez integra: un compresor, una columna de secado que funciona como puerto de entrada del aire al sistema, una electroválvula de tres vías, una columna de adsorción de N2, y una electroválvula de dos vías conectada al tanque de almacenamiento de 02; b. Se cuenta también con un conducto de agua independiente en forma helicoidal alrededor y en contacto de la columna de adsorción donde participa también una bomba de agua y una electroválvula de dos vías, con una sección en forma de serpentín y que está en contacto con el serpentín condensador del sistema de refrigeración; to. An oxygen concentration system that in turn integrates: a compressor, a drying column that functions as an air inlet port to the system, a three-way solenoid valve, an N 2 adsorption column, and a two-way solenoid valve connected to the storage tank of 0 2 ; b. There is also an independent water duct in a helical shape around and in contact with the adsorption column where a water pump and a two-way solenoid valve also participate, with a section in the form of a coil and in contact with the coil refrigeration system condenser;
c. El sistema cuenta además con 2 sensores de presión en la columna de adsorción y en el tanque de almacenamiento. Los componentes actuadores y sensores mencionados anteriormente se encuentran conectados a un controlador con memoria y capacidad de procesamiento de información;  C. The system also has 2 pressure sensors in the adsorption column and in the storage tank. The actuator components and sensors mentioned above are connected to a controller with memory and information processing capacity;
d. Un sistema de generación de ozono que integra: Una fuente de voltaje alterno, un transformador dispuesto como intensificador de voltaje y reductor de corriente, un par de placas electrodos que pueden ser rectangulares o de alguna otra forma, separados por un material dieléctrico.  d. An ozone generation system that integrates: An alternating voltage source, a transformer arranged as a voltage intensifier and a current reducer, a pair of electrode plates that can be rectangular or in some other way, separated by a dielectric material.
e. Un sensor de ozono, un sensor piro eléctrico detector de presencia, un temporizador, un conducto de aire, una compuerta y el motor eléctrico manipulador de la compuerta conectados a un controlador con memoria, capacidad de procesamiento de datos y de controlar la operación de la unidad de refrigeración y de producción de ozono para mantener la temperatura y presencia de ozono en los niveles requeridos por un usuario.  and. An ozone sensor, an electric detector, presence detector, a timer, an air duct, a gate and the gate's electric motor connected to a controller with memory, data processing capacity and controlling the operation of the Ozone production and refrigeration unit to maintain the temperature and presence of ozone at the levels required by a user.
f. Un sistema de refrigeración ambiental que integra: Un compresor que inyecta aire a un conducto condensador en forma de serpentín, un abanico disipador de calor, una válvula de expansión a su vez conectada a un conducto evaporador también en forma de serpentín, un abanico recirculador del aire de la habitación, un sensor de temperatura ambiental en la sección del aparato que se encuentra dentro de la habitación. Los componentes actuadores y sensores que integran la unidad de refrigeración y la unidad de concentración de oxigeno están conectados a un sistema de procesamiento de datos capaz de controlar la temperatura y concentración de oxigeno al nivel deseado por el usuario. F. An environmental cooling system that integrates: A compressor that injects air into a condensing duct in the form of a coil, a heat dissipating fan, an expansion valve in turn connected to an evaporating duct also in the form of a coil, a recirculating fan of the room air, an ambient temperature sensor in the section of the device that is inside the room. The actuator components and sensors that integrate the refrigeration unit and the oxygen concentration unit are connected to a data processing system capable of controlling the temperature and oxygen concentration at the level desired by the user.
PCT/MX2015/000014 2015-01-27 2015-01-27 Air-conditioning device with a system for generating oxygen and ozone for the purification and enrichment of the air in a closed environment WO2016122291A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/MX2015/000014 WO2016122291A1 (en) 2015-01-27 2015-01-27 Air-conditioning device with a system for generating oxygen and ozone for the purification and enrichment of the air in a closed environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2015/000014 WO2016122291A1 (en) 2015-01-27 2015-01-27 Air-conditioning device with a system for generating oxygen and ozone for the purification and enrichment of the air in a closed environment

Publications (1)

Publication Number Publication Date
WO2016122291A1 true WO2016122291A1 (en) 2016-08-04

Family

ID=56543809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2015/000014 WO2016122291A1 (en) 2015-01-27 2015-01-27 Air-conditioning device with a system for generating oxygen and ozone for the purification and enrichment of the air in a closed environment

Country Status (1)

Country Link
WO (1) WO2016122291A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109502551A (en) * 2017-09-15 2019-03-22 修国华 For producing the method and system of ozone

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3594983A (en) * 1969-06-17 1971-07-27 Process Services Inc Gas-treating process and system
US4896514A (en) * 1987-10-31 1990-01-30 Kabushiki Kaisha Toshiba Air-conditioning apparatus
JPH06182143A (en) * 1992-08-25 1994-07-05 Nippon Ceramic Co Ltd Air purifier
JP2002224205A (en) * 2001-01-31 2002-08-13 Showa Electric Wire & Cable Co Ltd Air cleaner and method for controlling air cleaner
EP1348448A1 (en) * 2000-08-28 2003-10-01 Sharp Kabushiki Kaisha Air conditioning apparatus and ion generator used for the device
US20040231344A1 (en) * 2000-12-16 2004-11-25 Jang Ho Geun Air conditioner
US20050284168A1 (en) * 2004-06-29 2005-12-29 Lg Electronics Inc. Indoor device of separable air conditioner
US20060182672A1 (en) * 2003-07-18 2006-08-17 Hallam David R Air cleaning device
US20070236856A1 (en) * 2006-02-09 2007-10-11 Shinji Kato Ion Generator and Method for Controlling Amount of Ozone Generated in the Same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3594983A (en) * 1969-06-17 1971-07-27 Process Services Inc Gas-treating process and system
US4896514A (en) * 1987-10-31 1990-01-30 Kabushiki Kaisha Toshiba Air-conditioning apparatus
JPH06182143A (en) * 1992-08-25 1994-07-05 Nippon Ceramic Co Ltd Air purifier
EP1348448A1 (en) * 2000-08-28 2003-10-01 Sharp Kabushiki Kaisha Air conditioning apparatus and ion generator used for the device
US20040231344A1 (en) * 2000-12-16 2004-11-25 Jang Ho Geun Air conditioner
JP2002224205A (en) * 2001-01-31 2002-08-13 Showa Electric Wire & Cable Co Ltd Air cleaner and method for controlling air cleaner
US20060182672A1 (en) * 2003-07-18 2006-08-17 Hallam David R Air cleaning device
US20050284168A1 (en) * 2004-06-29 2005-12-29 Lg Electronics Inc. Indoor device of separable air conditioner
US20070236856A1 (en) * 2006-02-09 2007-10-11 Shinji Kato Ion Generator and Method for Controlling Amount of Ozone Generated in the Same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Database accession no. AN: JP - 2001023748 - A *
Database accession no. AN: JP - 25079992 - A *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109502551A (en) * 2017-09-15 2019-03-22 修国华 For producing the method and system of ozone

Similar Documents

Publication Publication Date Title
JP4386915B2 (en) Method and apparatus for improving air quality in finite space
US8696795B2 (en) Oxygen separation method and system with a plasma pump and a membrane
US20050160909A1 (en) Oxygen enrichment of indoor human environments
JP2010517706A (en) Transformer chamber with screw compressor
CN202188575U (en) Air optimizing system
CN105444261B (en) A kind of combined energy-saving type dehumidifier and its operation method
WO2016122291A1 (en) Air-conditioning device with a system for generating oxygen and ozone for the purification and enrichment of the air in a closed environment
WO2018127932A1 (en) Room oxygen enhancer with air purification
KR100894398B1 (en) Hermetic air Cleaner
CN111207462A (en) Sterilization and disinfection method and system
CN114811746B (en) Medical ward integrated positive and negative pressure automatic conversion method
WO2015111988A1 (en) Air-conditioning apparatus with oxygen control
DE10209994A1 (en) An air conditioning system has an air puification unit to hygienically clean the recirculated air.
RU148675U1 (en) PRESSURE CHAMBER
CN111976943B (en) Simple negative pressure disinfection device for ship cabin air conditioning system
US11883320B2 (en) Method of preparing cryogenic air
EP4153256A1 (en) Air purifying device
RU2665143C1 (en) Device for common air cryotherapy
RU69404U1 (en) DEVICE FOR LIFE SUPPORT OF STAGES OF MEDICAL EVACUATION
ES1288610U (en) Air purification device with a cooling medium (Machine-translation by Google Translate, not legally binding)
KR100547094B1 (en) oxygen suppling GHP air conditioner
JP2004166957A (en) Humidifier
US11826697B2 (en) Method of preparing the cryogenic air used for cryotherapy
WO2016117993A1 (en) Mini-split-type refrigeration system incorporating an ozone generator device for the disinfection of air
JP2006177634A (en) Air treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880307

Country of ref document: EP

Kind code of ref document: A1