WO2015194800A1 - Method for manufacturing sheet forming mold, and sheet forming mold and retroreflective sheet - Google Patents

Method for manufacturing sheet forming mold, and sheet forming mold and retroreflective sheet Download PDF

Info

Publication number
WO2015194800A1
WO2015194800A1 PCT/KR2015/005946 KR2015005946W WO2015194800A1 WO 2015194800 A1 WO2015194800 A1 WO 2015194800A1 KR 2015005946 W KR2015005946 W KR 2015005946W WO 2015194800 A1 WO2015194800 A1 WO 2015194800A1
Authority
WO
WIPO (PCT)
Prior art keywords
cube corner
mold pattern
corner mold
sheet
pattern
Prior art date
Application number
PCT/KR2015/005946
Other languages
French (fr)
Korean (ko)
Inventor
오종민
Original Assignee
미래나노텍㈜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미래나노텍㈜ filed Critical 미래나노텍㈜
Publication of WO2015194800A1 publication Critical patent/WO2015194800A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves

Definitions

  • the present invention relates to a sheet forming mold manufacturing method and a sheet forming mold and a retroreflective sheet, comprising a sheet forming mold for forming a retroreflective sheet, a method for manufacturing the same, and a retroreflective sheet manufactured using the sheet forming mold. It is about.
  • the retroreflective sheet can reflect incident light on the main surface of the sheet in the same direction as the incident direction. Because of this unique feature, retroreflective sheets have been used extensively for a wide variety of identifiable applications involving traffic and personal safety signs. Examples of typical uses of retroreflective sheets include the placement of retroreflective sheets on road signs, traffic cones, and barricades that specifically enhance discrimination under poor lighting conditions such as night driving conditions or in inclement weather conditions. Can be.
  • the retroreflective sheet has a structured surface that includes one or more cube corner pattern arrangements that enhance the visibility of the object.
  • a cube corner retroreflective sheet is formed as an array of interconnected hard, cube corner patterns that retroreflect incident light on the sheet major surface.
  • the basic cube corner pattern known in the art related to retroreflective is a tetrahedral structure having three sides intersecting at the cube vertices (vertical vertices) and a triangular bottom face as shown in FIG. 1.
  • the optical axis (optical axis) of the cube corner pattern is a line extending from the cube vertex to the center point of the bottom surface, and refers to an axis extending from the cube vertex and dividing the internal space of the cube corner pattern into three parts.
  • Light incident on the bottom surface of the cube corner pattern is reflected from each of the three sides of the pattern and returns as reflected light in the same direction as the incident direction.
  • the triangle on each side of the cube corner pattern of the triangular pyramid of the cube corner type retroreflective sheet has both a region where no retroreflection occurs and a region where the retroreflection occurs.
  • the cube corner pattern formed by the effective area where the retroreflection occurs may be formed into various cube corner patterns depending on how the effective area is cut. For example, the size or shape of the effective retroreflective area may vary depending on the shape of the cube corner pattern.
  • cube corner patterns typically exhibit the highest optical efficiency for light incident on the bottom surface of these cube corner patterns almost along the optical axis.
  • the amount of light retroreflected by the cube corner retroreflective sheet decreases as the incident angle deviates from the optical axis.
  • light incident at a large angle of incidence of about 85 degrees or more with respect to an axis perpendicular to the bottom surface of the cube corner type retroreflective sheet is usually close to the bottom surface, so that the retroreflectivity is low and from about 30 degrees to the bottom surface of the retroreflective sheet. Since light incident at a small angle of incidence in the range of 40 degrees is close to the optical axis, the retroreflectivity of incident light is high.
  • the maximum retroreflective efficiency of the cube corner retroreflective sheet is related to the shape of the cube corner pattern on the structured surface of the retroreflective sheet. Therefore, if the shape of the cube corner pattern is deformed, it may correspondingly cause distortion of the optical properties of the cube corner retroreflective sheet.
  • the cube corner pattern of the retroreflective sheet is made of a material having a relatively high elastic modulus sufficient to suppress the physical deformation of the cube corner pattern during bending or elastic extension of the sheet. is average.
  • the retroreflective sheeting is flexible enough to be able to attach to the curved or flexible base itself, or to be wound onto a roll to facilitate storage and transportation. It is often desirable.
  • the master mold (master mold) containing is produced first, and a retroreflective sheet is manufactured.
  • a mold for forming a cube corner type retroreflective sheet can be produced as a molded object obtained by replicating a master mold by nickel electroplating, chemical vapor deposition, or physical vapor deposition.
  • a lamella assembly 100 composed of a plurality of flakes 10 is provided, and three side surfaces are provided on a processing surface of some or all of the plurality of flakes 10: 10a to 10f.
  • a plurality of mold patterns P cube corner mold patterns
  • one or more flakes 10 are removed from the flakes 10 of the flake assembly 100, thereby changing the shape of the structured surface of the machined surface. Therefore, the ratio of the effective area to which retroreflection is made is improved.
  • the effective area (dotted area) in which retroreflection is made is the first foil 10a, the third foil 10c, and the fourth foil 10d.
  • the sixth thin film 10f, etc. may reduce the retroreflective efficiency. Accordingly, as shown in FIG. 4, the second flakes 10b, the fifth flakes 10e, and the like of the flake assembly 100 having an ineffective area are removed, and the remaining flakes are the first flakes 10a and the third flakes 10c.
  • the effective area for retroreflective reflection can be increased as shown in FIG. 5 to increase the retroreflective efficiency.
  • the technical problem of the present invention is to further secure an effective area for causing retroreflection.
  • Another object of the present invention is to provide a mold for forming a sheet capable of improving the retroreflective efficiency of the retroreflective sheet.
  • the technical problem of the present invention is to reduce the manufacturing cost in manufacturing the mold for sheet molding.
  • Embodiment of this invention is a manufacturing method of the sheet
  • the adjacent first cube corner mold pattern and the second cube corner mold pattern are formed to be adjacent as one common side.
  • the common side is formed at right angles to the array line of the lamella assembly.
  • the process of forming a plurality of triangular pyramid-shaped cube corner mold patterns when the bottom surface of the cube corner mold pattern is a triangle of the first square, the second square and the third square, traversing the array line of the lamella assembly Forming a first groove line and a second groove line which are intersected so as to form a first angle of the cube corner mold pattern on the upper surface of the array; Forming a third groove line intersecting the first groove line to have a second angle of the cube corner mold pattern, and having a third groove line intersected with the second groove line to have a third angle of the cube corner mold pattern.
  • the third groove line is formed at right angles to the array line of the lamella assembly.
  • the first flakes, the second flakes, and the third flakes are sequentially arranged in the lamella assembly, and each cube corner mold pattern includes three vertices and three vertices.
  • the first cube corner mold pattern and the second cube corner mold pattern are formed on the array top surface across the first flakes, the second flakes, and the third flakes in the form of a triangular pyramid having a vertex connected to each other.
  • the first flake may include a 1A non-effective area including a 1-1 vertex of the first cube corner mold pattern and a 1-1 non-effective area and a 2-1 vertex of the second cube corner mold pattern.
  • a second effective area including a second A non-effective area wherein the second flake includes a first-second vertex of the first cube corner mold pattern and a first effective area in which retroreflection occurs, and a second of the second cube corner mold pattern
  • the third lamella comprises a first B non-effective area in which retroreflective occurs, including the first to third vertices of the first cube corner mold pattern, And a second B-effective area in which retroreflection does not occur, including the second to third vertices of the second cube corner mold pattern.
  • Moving the one or more flakes of the lamella assembly in the direction of the alignment line comprises: a second having a first effective area in the first cube corner mold pattern and a second effective area in the second cube corner mold pattern The flakes are moved in the direction of the alignment line.
  • the movement of the second flakes may include moving the second flakes by the tangential length between the total area of the first effective area and the second effective area and the total area of the first A invalid area and the second A invalid area.
  • the retroreflective sheet production method of the present invention comprises the steps of: providing a sheet molding mold manufactured by a sheet molding mold manufacturing method produced by an embodiment of the present invention; And forming a retroreflective sheet which is a molded object by the sheet forming mold.
  • Sheet molding mold which is embodiment of this invention, Bottom surface; And a structural screen formed on the opposite side of the bottom surface, wherein the structural screen includes a plurality of truncated cube corner mold patterns and a triangular pyramidal cube corner mold pattern.
  • the truncated cube corner mold pattern is formed such that the adjacent first truncated cube corner mold pattern and the second truncated cube corner mold pattern are adjacent as one first common edge.
  • the triangular pyramidal cube corner mold pattern is formed such that adjacent first triangular pyramidal cube corner mold patterns and second triangular pyramidal cube corner mold patterns are adjacent as one second common edge.
  • the retroreflective efficiency of the retroreflective sheet can be improved through the movement of the flakes in manufacturing the sheet forming mold using the flake assembly. Moreover, according to embodiment of this invention, the effective area which causes reflex reflection by the movement of a flake can be ensured further. In addition, according to an embodiment of the present invention by using only by moving without removing the flakes in the lamella assembly, it is possible to reduce the manufacturing cost.
  • 1 is a view showing a state in which the incidence angle and the reflection angle in the cube corner is the same.
  • FIG. 2 is a perspective view of a flake assembly conventionally composed of a plurality of flakes.
  • FIG 3 is a view showing a state of removing the flakes having an ineffective area in the flake assembly in the prior art.
  • FIG. 4 is a diagram showing an arrangement top surface of a lamella assembly prior to removing a lamella having a conventional non-effective area.
  • FIG. 5 is a diagram illustrating an arrangement top surface of a lamella assembly after removing a lamella having an ineffective area.
  • FIG. 6 is a flowchart illustrating a mold manufacturing process for forming a sheet according to an embodiment of the present invention.
  • FIG. 7 is a front view and a perspective view showing a lamella according to an embodiment of the present invention.
  • FIG. 8 is a perspective view illustrating a lamella assembly in which a plurality of flakes are arranged according to an embodiment of the present invention.
  • FIG. 9 is a view showing a state in which a plurality of triangular pyramid-shaped cube corner mold pattern is formed on the lamella assembly according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an arrangement top surface of a lamella assembly after forming a cube corner mold pattern in the form of a plurality of triangular pyramids according to an embodiment of the present invention.
  • FIG. 11 is a diagram showing an effective area and an invalid area before moving a lamella according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a state in which one or more flakes are moved in the direction of the alignment line according to an embodiment of the present invention.
  • FIG. 13 is a diagram showing the top arrangement surface of the lamella assembly after lamella movement in accordance with an embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a top arrangement surface of the lamella assembly showing a state in which an effective area in which retroreflective reflection is made by the movement of the lamella according to an embodiment of the present invention is additionally formed.
  • 15 is a cross-sectional view after the movement of the lamella in accordance with an embodiment of the present invention.
  • FIG. 6 is a flowchart showing a sheet forming mold manufacturing process according to an embodiment of the present invention
  • Figure 7 is a front view and a perspective view showing a flake according to an embodiment of the present invention
  • Figure 8 is an embodiment of the present invention
  • 9 is a perspective view illustrating a flake assembly in which a plurality of flakes is arranged
  • FIG. 9 is a view illustrating a cube corner mold pattern having a plurality of triangular pyramid shapes formed on a flake assembly according to an embodiment of the present invention.
  • the present invention can produce a sheet forming mold for molding a cube corner type retroreflective sheeting using the lamella assembly 100 in which a plurality of flakes 10 are arranged.
  • each lamella 10 is arranged to touch each other, to provide a lamella assembly 100 having a plurality of array lines (L1, L2, L3) which is a boundary line between adjacent flakes (S610).
  • laminae (10) refers to four sides 12, 14, 20, and 22 connecting the upper surface 16, the lower surface 18, the upper surface 16 and the lower surface 18.
  • the branch refers to a right-sided polyhedron, and the upper surface 16 is a region corresponding to the processing surface on which the mold pattern is processed.
  • the four sides connecting the upper surface 16 and the lower surface 18 are composed of two arrangement surfaces 12 and 14 and two end surfaces 20 and 22.
  • the flake 10 includes a first array surface 12 and a second array surface 14 on the opposite side thereof.
  • the lamella 10 includes an upper surface 16 between the first and second array surfaces 12 and 14 and a lower surface 18 on the opposite side thereof.
  • the lamella 10 includes a first end face 20 and a second end face 22 on the opposite side.
  • the lamella 10 is a rectangular polyhedron whose opposing faces are substantially parallel. However, it is not necessary to limit that the opposing faces of the lamella 10 must be parallel.
  • the flake 10 can also be expressed in three-dimensional spatial characteristics by superimposing the Cartesian coordinate system on the structure.
  • the first reference plane 24 is located at the center between the alignment surfaces 12, 14.
  • the first reference plane 24, also called the x-z plane has a y-axis as a normal vector.
  • the second reference plane 26, also called the x-y plane extends substantially coplanar with the top surface 16 of the lamella 10 and has a z-axis as a normal vector.
  • a third reference plane 28 called the y-z plane is located at the center between the first end face 20 and the second end face 22 and has the x axis as a normal vector.
  • various geometrical characteristics of the embodiments are described with reference to the Cartesian coordinate planes described above. However, it should be understood that such geometrical characteristics may be described using other coordinate systems or based on the structure of the lamella 10.
  • the lamella 10 may be formed of a material having dimensional stability that can maintain close tolerances.
  • the lamella 10 may be made from a variety of materials, such as cuttable plastics (eg, polyethylene terephthalate, polymethyl methacrylate, and polycarbonate) and metals including brass, nickel, copper, and aluminum.
  • the physical dimensions of the lamella 10 are mainly limited by the cutting limits.
  • the flakes 10 preferably have a thickness of at least 0.1 mm, a height of 5.0 mm to 100.0 mm, and a width of 10 mm to 500 mm. However, this measure is only illustrative.
  • the plurality of flakes 10 to prepare the lamella assembly 100 is arranged so that the array surface of the side of the adjacent lamella 10 is in contact with each other. That is, the plurality of flakes 10a to 10n are assembled together so that the first array surface 12 of one flake 10 contacts the second array surface 14 of the adjacent flake 10. It is preferable that the plurality of flakes 10 is assembled by a fixture capable of fixing the plurality of flakes 10 adjacent to each other.
  • jig can be used a variety of known jig, the detail structure of the jig is not critical to the present invention.
  • the lamella assembly 100 consisting of a plurality of flakes 10 will have a plurality of array lines, which are lines between the sides of adjacent flakes 10. This arrangement line is thus parallel to the first reference plane 24.
  • the plurality of flakes 10; 10a to 10n may have their respective upper surfaces 16 substantially in the same plane.
  • the arrangement coupling of the plurality of flakes 10 causes the array top surface 106, which is the top surface of the lamella assembly 100, to be parallel to the second reference plane 26.
  • the array top surface 106 of the lamella assembly 100 corresponds to the surface to which the top surfaces of the plurality of flakes 10 are coupled.
  • each cube corner mold pattern 200 preferably extends over the top surface of the two or more flakes 10.
  • the cube corner mold pattern 200 is a pattern of the mold which cuts out the cube corner pattern of the retroreflective sheet which is a to-be-molded body.
  • the cube corner is a tetrahedral structure that reflects light in the incidence direction regardless of the light incidence direction as shown in FIG. 1, and has three sides intersecting at the vertices of the triangular pyramid and a triangular bottom surface facing the vertex. It is a tetrahedral structure in the form of a triangular pyramid. Therefore, the cube corner mold pattern 200 has a three-dimensional tetrahedral pattern in the form of a triangular pyramid.
  • An embodiment of the present invention is formed to have one common side between adjacent cube corner mold pattern 200.
  • FIG. 10 illustrates an array top surface of a lamella assembly after forming a plurality of triangular pyramid-shaped cube corner mold patterns 200.
  • the first cube corner mold pattern 210 and the second cube corner mold pattern 220 are shown as thick lines, but are not different from other cube corner mold patterns.
  • first cube corner mold pattern 210 and the second cube corner mold pattern 220 are formed to be adjacent to each other, and one side of the bottom surface of the first cube corner mold pattern 210 and the second cube corner mold pattern 220 are formed.
  • the first cube corner mold pattern 210 and the second cube corner mold pattern 220 are formed to be adjacent to each other so that one side of the bottom surface of the bottom surface thereof is common to each other.
  • This common side is to be formed at right angles to the array lines (L; L1, L2, L3) of the lamella assembly 100. That is, the common side is formed in the Y direction perpendicular to the array line L in the X direction.
  • the adjacent first cube corner molds may be formed on the array top surface 106 across the first lamella 10a, the second lamella 10b, and the third lamella 10c.
  • the common side between the first cube corner mold pattern 210 and the second cube corner mold pattern 220 may include a first array line L1 that is a boundary between the first foil 10a and the second foil 10b, It may be formed in a direction perpendicular to the second array line (L2) that is the boundary between the second flake 10b and the third flake 10c.
  • forming the cube corner mold pattern 200 in the form of a triangular pyramid can be formed by intersecting the 'V' shaped groove line on the array top surface 106. That is, when the bottom surface of the cube corner mold pattern 200 is a triangle having a first angle ⁇ , a second angle ⁇ and a third angle ⁇ , first, an array line of the lamella assembly 100 is formed. A first groove line 111 and a second groove having a 'V' shape intersecting and intersecting to form the first angle ⁇ of the cube corner mold pattern 200 on the upper surface 106 of the array 106. Line 112 is formed.
  • the triangular pyramid that is a cube corner mold pattern 200, and the bottom surface of the triangular pyramid is formed as a first square angle ⁇ , a second square angle ⁇ , and a third square angle ⁇ as a triangle.
  • the first angle ⁇ , the second angle ⁇ , and the third angle ⁇ may have the same angle and may have different angles.
  • the second site angle of the cube corner mold pattern 200 is formed.
  • the third groove line 113 is formed to cross the first groove line 111 and the second groove line 112 on the arrangement upper surface 106 so as to form ⁇ ) and the third site angle ⁇ . That is, the third corner of the cube corner mold pattern 200 intersects with the first groove line 111 that is cut in a 'V' shape to have the second corner angle ⁇ of the cube corner mold pattern 200.
  • the third groove line 113 is formed to be dug in the 'V' shape to cross the second groove line 112 to have a ( ⁇ ).
  • a plurality of third groove lines 113 having a substantially V-shape are formed along an axis substantially parallel to the axes on which each common side shown in FIG. 10 extends, preferably an axis coaxial with the axes. do.
  • the third groove line 113 of the first cube corner mold pattern 210 is formed at right angles to each of the array lines L of the lamella assembly 100, so that the adjacent second cube corner mold patterns 220 are common to each other. It will act as a side.
  • the V-shaped first groove line 111, the second groove line 112, and the third groove line 113 are preferably formed using appropriate material removal techniques. It is formed by removing a portion of the array top surface of the plurality of lamella assemblies 100 using suitable material removal techniques. In the present invention, the use of various material removal techniques, including precision cutting techniques such as milling, ruling and fly-cutting, can be used. Alternatively, the groove line may be formed by chemical etching or laser ablation. According to one embodiment, a diamond cutting tool having an included angle of 84.946 ° may be formed by a high precision cutting operation that repeatedly moves across the array top surface 106 of the plurality of lamella assemblies 100. Can be.
  • first groove line 111, the second groove line 112, and the third groove line 113 When the first groove line 111, the second groove line 112, and the third groove line 113 are formed, a repeating pattern of triangular pyramids having a tetrahedron pyramidal structure is formed on the upper surface 106 of the lamella assembly.
  • a structural screen is formed that includes.
  • the first groove line 111 and the second groove line 112 are formed to cross the common side of the triangular pyramid, and form an inner back angle substantially perpendicular thereto. In cube corner retroreflective techniques, the relationship between these surfaces is generally referred to as a "vertical relationship to each other.”
  • the term “aproximately mutually perpendicular” or “substantially mutually perpendicular” is used to describe a retroreflected light as described in US Patent No.
  • the surface of the triangular pyramid extends across at least a portion of the machining surface of the three flakes 10.
  • the first surface and the second surface of the triangular pyramid intersect the first array line L1, and the third and fourth surfaces intersect the second array line L2.
  • the cube corner mold pattern 200 of various shapes by changing the position and angle of the angle of the first groove line 111, the second groove line 112 and the third groove line 113. . Therefore, by changing the position and angle of the angle of the first groove line 111, the second groove line 112 and the third groove line 113 so as to have an effective area where reflex reflection occurs for each flake 10, or recursion It can be made to have an effective area where reflection does not occur. For example, one flake 10 may include an effective area where reflex reflection occurs and another flake 10 may include an invalid area where reflex reflection occurs.
  • FIG. 11 shows the effective area and the invalid area before moving a flake
  • the dotted area is the effective area of the target area where the retroreflection occurs
  • the non-dotted area is the effective area of the target area where the retroreflection does not occur.
  • reflex reflection does not occur 100% even in ineffective area, but for convenience of explanation, it is described as an area where reflex reflection does not occur.
  • the first cube corner mold in a state in which the first flake 10a, the second flake 10b, the third flake 10c and the fourth flake 10d are sequentially arranged in the lamella assembly 100.
  • the pattern 210 and the second cube corner mold pattern 220 are arranged on the top surface 106 of the lamella assembly 100 across the first lamella 10a, the second lamella 10b, and the third lamella 10c. Assume that each of the phases is formed. Accordingly, the first cube corner mold pattern 210 is formed across the first foil 10a, the second foil 10b, and the third foil 10c, and likewise, the second cube corner mold pattern 220 may be formed in the first shape. It may be formed across the flake 10a, the second flake 10b, the third flake 10c.
  • each cube corner mold pattern 200 has a triangular pyramid consisting of three vertices and vertices connected to the three vertices. Accordingly, in the first cube corner mold pattern 210, one vertex 211 (hereinafter referred to as 'first-first vertex') is positioned on the first foil 10a and the other vertex 212 on the second foil 10b. ; 1st-2nd vertex) is located, and the other vertex 213 (hereinafter, 1st-3rd vertex) is located at the third foil 10c.
  • one vertex 221 (hereinafter referred to as 'second-1 vertex') is positioned on the first foil 10a and another vertex (2 vertex) is formed on the second foil 10b. 222; or less, 'second-2 vertex'), and the other vertex 223 (hereinafter, 'third or third vertex') is located on the third foil 10c.
  • the first cube corner mold pattern 210 and the second cube corner mold pattern 220 may have effective areas and recursions where recursive reflection occurs according to positions and angles of the first groove line 111 to the third groove line 113. It has an ineffective area where reflection does not occur. The effective area and the ineffective area are along the positions and angles of the first groove line 111 to the third groove line 113.
  • the first foil 10a, the second foil 10b, the third foil 10c and It is formed in the fourth foil 10c.
  • the first foil 10a includes a first-first vertex 211 of the first cube corner mold pattern 210, and includes a first A non-effective area and a second cube in which no retroreflection occurs. Including the second-first vertex 221 of the corner mold pattern 220 to have a second effective area 2A of which no retroreflection occurs.
  • the first foil 10a may have only an invalid area when limited to the first cube corner mold pattern 210 and the second cube corner mold pattern 220, but may be expanded to another cube corner mold pattern 200. If so, the effective area of the cube corner mold pattern 200 exists.
  • the second foil 10b includes a first-second vertex 212 of the first cube corner mold pattern 210 and includes a first effective area 1C and a second cube corner mold pattern 220 in which retroreflection occurs. It has a second effective area (2C) that the retroreflection occurs, including the 2-2 vertex (222) of the ().
  • the third foil 10c includes the first-three vertices 213 of the first cube corner mold pattern 210, and includes a first B effective area 1B and a second cube corner mold in which retroreflection does not occur.
  • the second third vertex 223 of the pattern 220 may be included to have a second effective area 2B of which no retroreflection occurs.
  • the first groove line 111, the second groove line 112, and the third groove line 113 having a 'V' shape are formed on the upper surface 106 of the lamella assembly 100.
  • one or more lamellas 10 of the lamella assembly 100 are moved in the direction of the array line, as shown in FIG.
  • the shape of the cube corner mold pattern 200 on the array top surface 106 is changed.
  • FIG. 1 For reference, FIG. 1
  • FIG. 12 illustrates a state before movement.
  • the moved flakes will protrude from the cross section.
  • the protruding portion of the flake is cut so that the cross section has a plane.
  • the first cube mold pattern is formed across the first lamella 10a, the second lamella 10b, and the third lamella 10c to form a first effective area only in the second lamella 10b. It is assumed that the second cube mold pattern is formed across the first foil 10a, the second foil 10b, and the third foil 10c to form a second effective area only in the second foil 10b. In this case, only the second foil 10b having the first effective area 1C in the first cube corner mold pattern 210 and the second effective area 2C in the second cube corner mold pattern 220 is provided. Move in the direction of the array line.
  • FIG. 11 is a view showing the top arrangement surface of the lamella assembly 100 after the movement of the second lamella 10b and the fourth lamella 10d. 13 after the movement of the lamella 10 is compared with FIGS.
  • the triangular pyramid is again formed in the ineffective area after the movement, and additionally has an effective area in which retroreflection is performed as shown in FIG. 14. Accordingly, it can be seen that the effective area (hatched area) of FIG. 14 after the movement is further increased as compared with the effective area (dotted area) of FIG. 11 before the movement. Therefore, the retroreflective efficiency can be improved.
  • the sheet forming mold produced by the manufacturing method of the present invention includes a bottom surface and a structure screen formed on the opposite side of the bottom surface, and such a structure surface is shown in FIG.
  • the lateral truncated cube corner mold pattern P1 having vertices a1, a2, a3, a4, a5, a6 as the original effective area, and vertices b1, b2, b3, b4.
  • the triangular pyramidal cube corner mold pattern P2 is included in plurality.
  • the truncated cube corner mold pattern P1 is a shape in which a part of the truncated cube corner mold pattern P1 is cut in a vertical direction in a lateral direction (horizontal direction, XY direction) rather than in the form of a complete triangular pyramid. That is, the truncated cube corner mold pattern P1 refers to a mold pattern in which an invalid area portion including some vertices, which are not in the form of a complete triangular pyramid, is cut and has only an effective area (point area).
  • the triangular pyramidal cube corner mold pattern P2 is a pattern having a triangular pyramid including a new effective area (hatched area) in addition to the non-effective area due to the movement of the lamella 10.
  • the truncated cube corner mold pattern P1 is formed such that the adjacent first truncated cube corner mold pattern and the second truncated cube corner mold pattern are adjacent through one first common edge.
  • the triangular pyramidal cube corner mold pattern P2 is formed such that adjacent first triangular pyramidal cube corner mold patterns and second triangular pyramidal cube corner mold patterns are adjacent through one second common edge.
  • Figure 15 (a) is a view showing a cross-sectional view of the G-G 'direction after the movement according to an embodiment of the present invention
  • Figure 15 (b) is a view of the HH' direction after the movement according to an embodiment of the present invention It is a figure showing a cross section
  • FIG. 15 (a) it can be seen that a truncated cube corner mold pattern P1 is formed.
  • a triangular pyramidal cube corner mold pattern P2 is newly formed, and as a whole, It can be seen that the effective area for retroreflection is increased.
  • the sheet molding mold utilized a lamella assembly consisting of a plurality of flakes, but is not limited thereto.
  • the sheet forming mold forms an array of a plurality of cube corner mold patterns on an upper surface of one polyhedron, and then cuts several times in a direction parallel to the first reference plane to form a plurality of flakes. It can also be implemented by moving parts of the flakes.
  • the retroreflective sheet which is a molded object including a plurality of truncated cube corner patterns and triangular pyramidal cube corner patterns can be manufactured by the sheet forming mold manufacturing method manufactured by the embodiment of the present invention. That is, the sheet molding mold manufactured by the sheet manufacturing mold manufacturing method which is an Example of this invention is provided. And the retroreflective sheet which is a to-be-molded object which contains a plurality of truncated cube corner pattern and a triangular pyramidal cube corner pattern can be manufactured by shape

Abstract

The present invention relates to a method for manufacturing a sheet forming mold, and a sheet forming mold and a retroreflective sheet, and to a sheet forming mold for forming a retroreflective sheet, a method for manufacturing the sheet forming mold, and the retroreflective sheet manufactured by using the sheet forming mold. One embodiment of the present invention relates to the method for manufacturing the sheet forming mold forming a cube corner retroreflective sheet by using a flake assembly in which a plurality of flakes are aligned, comprising the steps of: preparing the flake assembly having a plurality of array lines, which are a boundary line between the adjacent flakes, by aligning the flakes such that the lateral sides of each flake come into contact with each other; forming a plurality of cube corner mold patterns having triangular pyramid shapes on the upper surface of a flake assembly array; and changing the shapes of the cube corner mold patterns on the upper surface of the array by moving at least one flake of the flake assembly in the direction of the array line.

Description

시트 성형용 몰드 제조 방법 및 시트 성형용 몰드 및 재귀반사 시트Mold manufacturing method for sheet forming and sheet forming mold and retroreflective sheet
본 발명은 시트 성형용 몰드 제조 방법 및 시트 성형용 몰드 및 재귀반사 시트로서, 재귀반사 시트를 성형하는 시트 성형용 몰드와 이를 제조하는 방법 및 이러한 시트 성형용 몰드를 사용하여 제작한 재귀반사 시트에 관한 것이다.The present invention relates to a sheet forming mold manufacturing method and a sheet forming mold and a retroreflective sheet, comprising a sheet forming mold for forming a retroreflective sheet, a method for manufacturing the same, and a retroreflective sheet manufactured using the sheet forming mold. It is about.
재귀반사 시트는 시트의 주요 표면상에서 입사광을 입사된 방향과 동일한 방향을 향해 반사시킬 수 있다. 이러한 독특한 기능으로 인하여 교통 및 개인 안전표지와 관련된 폭넓고 다양한 식별성 강화 용도에 재귀반사 시트가 광범위하게 사용되어 왔다. 재귀반사 시트의 전형적인 용도의 예로는, 구체적으로 야간 운전 조건과 같은 불량한 조명 조건 하에서 또는 궂은 날씨 조건에서 식별성을 강화시키는 도로 표지판, 교통안전용 원추체, 및 바리케이드 상에 재귀반사 시트를 배치하는 것을 들 수 있다. The retroreflective sheet can reflect incident light on the main surface of the sheet in the same direction as the incident direction. Because of this unique feature, retroreflective sheets have been used extensively for a wide variety of identifiable applications involving traffic and personal safety signs. Examples of typical uses of retroreflective sheets include the placement of retroreflective sheets on road signs, traffic cones, and barricades that specifically enhance discrimination under poor lighting conditions such as night driving conditions or in inclement weather conditions. Can be.
재귀반사 시트는 물체의 가시도를 강화시키는 1개 이상의 큐브 코너 패턴 배열을 포함하는 구조화된 표면을 갖는다. 전형적으로, 큐브 코너형 재귀반사 시트는 시트 주요 표면상에서 입사광을 재귀반사시키는 단단하고 큐브 코너 패턴이 상호 연결되어 어레이로서 형성되어 있다. 재귀반사 관련 해당 기술 분야에 알려져 있는 기본적인 큐브 코너 패턴은, 도 1에 도시한 바와 같이 큐브 꼭지점(삼각뿔의 정점)에서 교차하는 3개의 측면과 정점을 마주보는 삼각형 바닥면을 갖는 사면체 구조물이다. 이러한 큐브 코너 패턴의 광축(광축)은 큐브 정점으로부터 바닥면의 중심점까지 이르는 선으로서, 큐브 정점에서 연장되어 큐브 코너 패턴의 내부 공간을 3등분하는 축을 일컫는다. 큐브 코너 패턴의 바닥면상에 입사된 광은 패턴의 3개 측면 각각으로부터 반사되어 입사된 방향과 동일한 방향으로 반사광으로서 되돌아 간다. The retroreflective sheet has a structured surface that includes one or more cube corner pattern arrangements that enhance the visibility of the object. Typically, a cube corner retroreflective sheet is formed as an array of interconnected hard, cube corner patterns that retroreflect incident light on the sheet major surface. The basic cube corner pattern known in the art related to retroreflective is a tetrahedral structure having three sides intersecting at the cube vertices (vertical vertices) and a triangular bottom face as shown in FIG. 1. The optical axis (optical axis) of the cube corner pattern is a line extending from the cube vertex to the center point of the bottom surface, and refers to an axis extending from the cube vertex and dividing the internal space of the cube corner pattern into three parts. Light incident on the bottom surface of the cube corner pattern is reflected from each of the three sides of the pattern and returns as reflected light in the same direction as the incident direction.
큐브 코너형 재귀반사 시트의 삼각뿔 형태의 큐브 코너 패턴의 각 면의 삼각형에는 재귀반사가 일어나지 않는 영역과 재귀반사가 일어나는 영역이 모두 존재하게 된다. 재귀반사 일어나는 유효면적으로 형성된 큐브 코너 패턴은 유효면적을 어떻게 절삭하느냐에 따라 다양한 큐브 코너 패턴으로 형성될 수 있다. 예컨대, 큐브 코너 패턴의 형상에 따라 재귀반사 유효면적의 크기나 형태가 달라질 수 있다The triangle on each side of the cube corner pattern of the triangular pyramid of the cube corner type retroreflective sheet has both a region where no retroreflection occurs and a region where the retroreflection occurs. The cube corner pattern formed by the effective area where the retroreflection occurs may be formed into various cube corner patterns depending on how the effective area is cut. For example, the size or shape of the effective retroreflective area may vary depending on the shape of the cube corner pattern.
또한, 통상적으로, 큐브 코너 패턴은 거의 광축을 따라 이들 큐브 코너 패턴의 바닥면으로 입사하는 빛에 대해 최고의 광학 효율을 나타낸다. 큐브 코너 재귀반사시트에 의해 재귀반사되는 광량(光量)은 입사각이 광축으로부터 벗어남에 따라 저하한다. 예컨대, 큐브 코너형 재귀반사 시트의 바닥면에 대하여 수직인 축에 관하여 약 85도 이상의 큰 입사각으로 입사하는 빛은 통상 바닥면에 근접하므로 재귀반사율이 낮고 재귀반사 시트의 바닥면으로부터 약 30도 내지 40도 범위의 작은 입사각으로 입사하는 빛은 광축에 근접하므로 입사광에 대한 재귀반사율은 높다.Also, cube corner patterns typically exhibit the highest optical efficiency for light incident on the bottom surface of these cube corner patterns almost along the optical axis. The amount of light retroreflected by the cube corner retroreflective sheet decreases as the incident angle deviates from the optical axis. For example, light incident at a large angle of incidence of about 85 degrees or more with respect to an axis perpendicular to the bottom surface of the cube corner type retroreflective sheet is usually close to the bottom surface, so that the retroreflectivity is low and from about 30 degrees to the bottom surface of the retroreflective sheet. Since light incident at a small angle of incidence in the range of 40 degrees is close to the optical axis, the retroreflectivity of incident light is high.
큐브 코너형 재귀반사 시트의 최대 재귀반사 효율은 재귀반사 시트의 구조화면(structured surface)상의 큐브 코너 패턴의 형상과 관계가 있다. 따라서, 큐브 코너 패턴의 형상이 변형되면, 그에 대응하여 큐브 코너형 재귀반사 시트의 광학 특성의 왜곡을 초래할 수 있다. 이러한 바람직하지 않은 물리적인 변형을 억제하기 위해서, 재귀반사 시트의 큐브 코너 패턴은 시트의 굴곡이나 탄성 신장 중에 큐브 코너 패턴의 물리적 변형을 억제하기에 충분할 정도의 비교적 높은 탄성률을 갖는 재료로 제조되는 것이 보통이다. 전술한 바와 같이, 재귀반사 시트는 굴곡되어 있거나 또는 그 자체가 가요성이 있는 바닥면에 부착될 수 있을 정도로, 또는 보관 및 운송을 용이하게 하기 위해 롤에 감길 수 있을 정도로 충분한 가요성을 갖는 것이 바람직한 경우가 많다. 전통적으로는, 원하는 큐브 코너 패턴 형상의 네거티브 형태(negative image: 큐브 코너 요소의 요철 형상과 반대의 요철 형상) 또는 포지티브 형태(positive image: 큐브 코너 요소의 요철 형상과 동일한 요철 형상) 중 어느 하나를 포함하는 마스터 몰드(master mold)를 우선 제작하여, 재귀반사 시트를 제조한다.The maximum retroreflective efficiency of the cube corner retroreflective sheet is related to the shape of the cube corner pattern on the structured surface of the retroreflective sheet. Therefore, if the shape of the cube corner pattern is deformed, it may correspondingly cause distortion of the optical properties of the cube corner retroreflective sheet. In order to suppress such undesired physical deformation, the cube corner pattern of the retroreflective sheet is made of a material having a relatively high elastic modulus sufficient to suppress the physical deformation of the cube corner pattern during bending or elastic extension of the sheet. is average. As mentioned above, the retroreflective sheeting is flexible enough to be able to attach to the curved or flexible base itself, or to be wound onto a roll to facilitate storage and transportation. It is often desirable. Traditionally, either the negative image of the desired cube corner pattern shape (the concave-convex shape opposite to the concave-convex shape of the cube corner element) or the positive image (the convex shape same as the concave-convex shape of the cube corner element) The master mold (master mold) containing is produced first, and a retroreflective sheet is manufactured.
니켈 전기 도금법, 화학적 기상 증착법 또는 물리적 기상 증착법을 이용하여 마스터 몰드를 복제한 피성형체(彼成形體)로서 큐브 코너형 재귀반사 시트 성형용 몰드를 제작할 수 있다.A mold for forming a cube corner type retroreflective sheet can be produced as a molded object obtained by replicating a master mold by nickel electroplating, chemical vapor deposition, or physical vapor deposition.
큐브 코너형 재귀반사 시트를 제조하는 데 사용되는 큐브 코너형 재귀반사 시트 성형용 몰드를 형성하는 다양한 공정이 제시되어 있다. 그 중에서 한국등록특허 10-0574610의 경우, 복수의 박편을 이용하여 시트 성형용 몰드를 제작하고 있다.Various processes for forming a mold for forming a cube corner retroreflective sheet used to make a cube corner retroreflective sheet are presented. Among them, in the case of Korean Patent No. 10-0574610, a mold for forming a sheet is manufactured using a plurality of flakes.
상술하면, 도 2에 도시한 바와 같이 복수의 박편(10)으로 구성되는 박편 조립체(100)를 마련하고, 복수의 박편(10: 10a~10f) 중 일부 또는 전부의 가공면상에 3개의 측면으로 삼각뿔 형태로 된 복수의 몰드 패턴(P;큐브 코너 몰드 패턴)을 형성한다. 그 후 도 3에 도시한 바와 같이 박편 조립체(100)의 박편(10) 들 중에서 하나 이상의 박편(10)을 제거하여, 가공면의 구조화면(structured surface)의 형상을 변경한다. 따라서 재귀반사가 이루어지는 유효면적의 비율을 향상시키도록 하였다.In detail, as shown in FIG. 2, a lamella assembly 100 composed of a plurality of flakes 10 is provided, and three side surfaces are provided on a processing surface of some or all of the plurality of flakes 10: 10a to 10f. A plurality of mold patterns P (cube corner mold patterns) in the form of a triangular pyramid are formed. 3, one or more flakes 10 are removed from the flakes 10 of the flake assembly 100, thereby changing the shape of the structured surface of the machined surface. Therefore, the ratio of the effective area to which retroreflection is made is improved.
즉, 도 2의 가공면을 상부에서 바라본 평면도인 도 4를 참고하면, 재귀반사가 이루어지는 유효 면적(점표시 영역)이 제1박편(10a), 제3박편(10c), 제4박편(10d), 제6박편(10f) 등에만 존재하는 경우, 재귀반사 효율이 떨어질 수 있다. 따라서 도 4와 같이 비유효 면적을 가지는 박편 조립체(100)의 제2박편(10b), 제5박편(10e) 등을 제거하고, 나머지 박편들인 제1박편(10a), 제3박편(10c), 제4편(10d) 등을 서로 붙임으로써 도 5와 같이 재귀반사 유효 면적을 증대시켜 재귀반사 효율이 높아지도록 할 수 있다.That is, referring to FIG. 4, which is a plan view of the machining surface of FIG. 2 from above, the effective area (dotted area) in which retroreflection is made is the first foil 10a, the third foil 10c, and the fourth foil 10d. ) And the sixth thin film 10f, etc., may reduce the retroreflective efficiency. Accordingly, as shown in FIG. 4, the second flakes 10b, the fifth flakes 10e, and the like of the flake assembly 100 having an ineffective area are removed, and the remaining flakes are the first flakes 10a and the third flakes 10c. By attaching the fourth piece 10d to each other, the effective area for retroreflective reflection can be increased as shown in FIG. 5 to increase the retroreflective efficiency.
그런데, 이와 같이 박편(10)의 일부를 제거하고 시트 성형용 몰드를 제작할 경우, 최종적으로 제거되어야 할 제2박편(10b), 제5박편(10e) 등에 대해서도 큐브 코너 몰드 패턴을 가공해야 하는 공정상의 비효율성 문제가 있다. 또한 제거되는 박편(10b, 10e)들을 사용하지 못하고 폐기해야 하기 때문에 제조 원가의 비효율성 문제가 있다. However, in the case of removing a portion of the flake 10 and manufacturing a mold for forming a sheet, a process of processing a cube corner mold pattern also for the second flake 10b, the fifth flake 10e, etc., which should be finally removed. There is a problem of inefficiency. In addition, there is a problem of inefficiency of manufacturing costs because the flakes (10b, 10e) to be removed are not used and must be disposed of.
선행기술문헌 : 한국등록특허 10-0574610 Prior Art Documents: Korean Patent Registration 10-0574610
본 발명의 기술적 과제는 재귀반사를 일으키는 유효면적을 추가적으로 확보하는데 있다. 또한 본 발명의 기술적 과제는 재귀반사 시트의 재귀반사 효율을 향상시킬 수 있는 시트 성형용 몰드를 제공하는데 있다. 또한 본 발명의 기술적 과제는 시트 성형용 몰드를 제작함에 있어서 제작 비용을 절감하도록 하는데 있다.The technical problem of the present invention is to further secure an effective area for causing retroreflection. Another object of the present invention is to provide a mold for forming a sheet capable of improving the retroreflective efficiency of the retroreflective sheet. In addition, the technical problem of the present invention is to reduce the manufacturing cost in manufacturing the mold for sheet molding.
본 발명의 실시 형태는 박편을 복수개로 배열시킨 박편 조립체를 이용하여 큐브 코너형 재귀반사 시트를 성형하는 시트 성형용 몰드의 제조 방법에 있어서, 각 박편의 측면이 서로 닿도록 배열되어, 인접한 박편간의 경계 라인인 배열 라인을 복수개 가지는 박편 조립체를 마련하는 과정; 상기 박편 조립체의 배열 상부면 상에, 삼각뿔 형태의 큐브 코너 몰드 패턴을 복수개 형성하는 과정; 상기 박편 조립체의 하나 이상의 박편을 상기 배열 라인의 방향으로 이동시켜, 상기 배열 상부면 상의 큐브 코너 몰드 패턴의 형상을 변경시키는 과정;을 포함한다.Embodiment of this invention is a manufacturing method of the sheet | seat shaping | molding mold which shape | molds a cube corner type retroreflective sheet | seat using the flake assembly which arranged the plurality of flakes, Comprising: It is arrange | positioned so that the side surface of each flake may contact each other, Providing a flake assembly having a plurality of array lines that are boundary lines; Forming a plurality of cube corner mold patterns in the form of a triangular pyramid on an upper surface of the array of flake assemblies; And moving the one or more flakes of the lamella assembly in the direction of the array line to change the shape of the cube corner mold pattern on the array top surface.
상기 삼각뿔 형태의 큐브 코너 몰드 패턴을 복수개 형성하는 과정은, 인접한 제1큐브 코너 몰드 패턴과 제2큐브 코너 몰드 패턴이 하나의 공통변으로서 인접되도록 형성한다.In the process of forming a plurality of triangular pyramid-shaped cube corner mold patterns, the adjacent first cube corner mold pattern and the second cube corner mold pattern are formed to be adjacent as one common side.
상기 공통변을 상기 박편 조립체의 배열 라인에 직각으로 형성한다.The common side is formed at right angles to the array line of the lamella assembly.
상기 삼각뿔 형태의 큐브 코너 몰드 패턴을 복수개 형성하는 과정은, 상기 큐브 코너 몰드 패턴의 바닥면이 제1사잇각, 제2사잇각 및 제3사잇각으로 된 삼각형이라 할 때, 상기 박편 조립체의 배열 라인을 횡단하여 상기 배열 상부면 상에서 상기 큐브 코너 몰드 패턴의 제1사잇각을 이루도록 교차하여 파여진 제1홈라인 및 제2홈라인을 형성하는 과정; 상기 큐브 코너 몰드 패턴의 제2사잇각을 가지도록 상기 제1홈라인과 교차하고, 상기 큐브 코너 몰드 패턴의 제3사잇각을 가지도록 상기 제2홈라인과 교차하여 파여진 제3홈라인을 형성하는 과정;을 포함한다.The process of forming a plurality of triangular pyramid-shaped cube corner mold patterns, when the bottom surface of the cube corner mold pattern is a triangle of the first square, the second square and the third square, traversing the array line of the lamella assembly Forming a first groove line and a second groove line which are intersected so as to form a first angle of the cube corner mold pattern on the upper surface of the array; Forming a third groove line intersecting the first groove line to have a second angle of the cube corner mold pattern, and having a third groove line intersected with the second groove line to have a third angle of the cube corner mold pattern. Process;
상기 제3홈라인을 상기 박편 조립체의 배열 라인에 직각으로 형성한다.The third groove line is formed at right angles to the array line of the lamella assembly.
상기 삼각뿔 형태의 큐브 코너 몰드 패턴을 복수개 형성하는 과정은, 제1박편, 제2박편, 제3박편이 상기 박편 조립체에서 차례로 배열되고, 각 큐브 코너 몰드 패턴은 세 개의 꼭지점과 상기 세 개의 꼭지점과 연결되는 정점으로 된 삼각뿔 형태를 가진다고 할 때, 상기 제1큐브 코너 몰드 패턴과 제2큐브 코너 몰드 패턴이 상기 제1박편, 제2박편, 제3박편을 가로질러 상기 배열 상부면 상에서 형성된다.In the process of forming a plurality of triangular pyramid-shaped cube corner mold patterns, the first flakes, the second flakes, and the third flakes are sequentially arranged in the lamella assembly, and each cube corner mold pattern includes three vertices and three vertices. The first cube corner mold pattern and the second cube corner mold pattern are formed on the array top surface across the first flakes, the second flakes, and the third flakes in the form of a triangular pyramid having a vertex connected to each other.
상기 제1박편은, 제1큐브 코너 몰드 패턴의 제1-1꼭지점을 포함하여 재귀반사가 일어나지 않는 제1A비유효 면적, 제2큐브 코너 몰드 패턴의 제2-1꼭지점을 포함하여 재귀반사가 일어나지 않는 제2A비유효 면적을 포함하며, 상기 제2박편은, 제1큐브 코너 몰드 패턴의 제1-2꼭지점을 포함하여 재귀반사가 일어나는 제1유효 면적, 제2큐브 코너 몰드 패턴의 제2-2꼭지점을 포함하여 재귀반사가 일어나는 제2유효 면적을 포함하며, 상기 제3박편은, 제1큐브 코너 몰드 패턴의 제1-3꼭지점을 포함하여 재귀반사가 일어나지 않는 제1B비유효 면적, 제2큐브 코너 몰드 패턴의 제2-3꼭지점을 포함하여 재귀반사가 일어나지 않는 제2B비유효 면적을 포함한다.The first flake may include a 1A non-effective area including a 1-1 vertex of the first cube corner mold pattern and a 1-1 non-effective area and a 2-1 vertex of the second cube corner mold pattern. A second effective area including a second A non-effective area, wherein the second flake includes a first-second vertex of the first cube corner mold pattern and a first effective area in which retroreflection occurs, and a second of the second cube corner mold pattern A second effective area in which retroreflective occurs, including a second vertex, wherein the third lamella comprises a first B non-effective area in which retroreflective occurs, including the first to third vertices of the first cube corner mold pattern, And a second B-effective area in which retroreflection does not occur, including the second to third vertices of the second cube corner mold pattern.
상기 박편 조립체의 하나 이상의 박편을 상기 배열 라인의 방향으로 이동시키는 과정은, 상기 제1큐브 코너 몰드 패턴에서의 제1유효 면적 및 상기 제2큐브 코너 몰드 패턴에서의 제2유효 면적을 가지는 제2박편을 상기 배열 라인의 방향으로 이동시킨다.Moving the one or more flakes of the lamella assembly in the direction of the alignment line comprises: a second having a first effective area in the first cube corner mold pattern and a second effective area in the second cube corner mold pattern The flakes are moved in the direction of the alignment line.
상기 제2박편의 이동은, 상기 제1유효 면적 및 제2유효 면적의 전체 면적과 상기 제1A비유효 면적 및 제2A비유효 면적의 전체 면적간의 접선 길이만큼 상기 제2박편을 상기 배열 라인의 방향으로 이동시킨다.The movement of the second flakes may include moving the second flakes by the tangential length between the total area of the first effective area and the second effective area and the total area of the first A invalid area and the second A invalid area. To move in the direction of
본 발명의 재귀반사 시트 제조 방법은, 본 발명의 실시 형태에 의해 제작된 시트 성형용 몰드 제조 방법에 의해 제조된 시트 성형용 몰드를 마련하는 과정; 상기 시트 성형용 몰드에 의해 피성형체인 재귀반사 시트를 성형하는 과정;을 포함한다.The retroreflective sheet production method of the present invention comprises the steps of: providing a sheet molding mold manufactured by a sheet molding mold manufacturing method produced by an embodiment of the present invention; And forming a retroreflective sheet which is a molded object by the sheet forming mold.
본 발명의 실시 형태인 시트 성형용 몰드는, 바닥면; 상기 바닥면의 반대쪽에 형성된 구조화면을 포함하며, 상기 구조화면은, 절두형 큐브 코너 몰드 패턴 및 삼각뿔형 큐브 코너 몰드 패턴을 복수개 포함한다.Sheet molding mold which is embodiment of this invention, Bottom surface; And a structural screen formed on the opposite side of the bottom surface, wherein the structural screen includes a plurality of truncated cube corner mold patterns and a triangular pyramidal cube corner mold pattern.
상기 절두형 큐브 코너 몰드 패턴은, 인접한 제1절두형 큐브 코너 몰드 패턴과 제2절두형 큐브 코너 몰드 패턴이 하나의 제1공통변으로서 인접되도록 형성된다.The truncated cube corner mold pattern is formed such that the adjacent first truncated cube corner mold pattern and the second truncated cube corner mold pattern are adjacent as one first common edge.
상기 삼각뿔형 큐브 코너 몰드 패턴은, 인접한 제1삼각뿔형 큐브 코너 몰드 패턴 및 제2삼각뿔형 큐브 코너 몰드 패턴이 하나의 제2공통변으로서 인접되도록 형성된다.The triangular pyramidal cube corner mold pattern is formed such that adjacent first triangular pyramidal cube corner mold patterns and second triangular pyramidal cube corner mold patterns are adjacent as one second common edge.
본 발명의 실시 형태에 따르면 박편 조립체를 이용하여 시트 성형용 몰드를 제작하는데 있어서 박편의 이동을 통하여 재귀반사 시트의 재귀반사 효율을 향상시킬 수 있다. 또한 본 발명의 실시 형태에 따르면 박편의 이동에 의하여 재귀반사를 일으키는 유효면적을 추가적으로 확보할 수 있다. 또한 본 발명의 실시 형태에 따르면 박편 조립체 내의 박편을 제거하지 않고 이동만을 수행하여 활용함으로써, 제작 비용을 절감할 수 있다.According to the embodiment of the present invention, the retroreflective efficiency of the retroreflective sheet can be improved through the movement of the flakes in manufacturing the sheet forming mold using the flake assembly. Moreover, according to embodiment of this invention, the effective area which causes reflex reflection by the movement of a flake can be ensured further. In addition, according to an embodiment of the present invention by using only by moving without removing the flakes in the lamella assembly, it is possible to reduce the manufacturing cost.
도 1은 큐브 코너에서 입사각 및 반사각의 방향이 동일한 모습을 도시한 도면이다.1 is a view showing a state in which the incidence angle and the reflection angle in the cube corner is the same.
도 2는 종래에 복수의 박편으로 구성되는 박편 조립체의 사시도이다.2 is a perspective view of a flake assembly conventionally composed of a plurality of flakes.
도 3은 종래에 박편 조립체 내에서 비유효 면적을 가지는 박편을 제거하는 모습을 도시한 그림이다.3 is a view showing a state of removing the flakes having an ineffective area in the flake assembly in the prior art.
도 4는 종래에 비유효 면적을 가지는 박편을 제거하기 전의 박편 조립체의 배열 상부면을 도시한 그림이다.4 is a diagram showing an arrangement top surface of a lamella assembly prior to removing a lamella having a conventional non-effective area.
도 5는 종래에 비유효 면적을 가지는 박편을 제거한 후 박편 조립체의 배열 상부면을 도시한 그림이다.FIG. 5 is a diagram illustrating an arrangement top surface of a lamella assembly after removing a lamella having an ineffective area.
도 6은 본 발명의 실시예에 따른 시트 성형용 몰드 제조 과정을 도시한 플로차트이다.6 is a flowchart illustrating a mold manufacturing process for forming a sheet according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 박편을 도시한 정면도 및 사시도이다.7 is a front view and a perspective view showing a lamella according to an embodiment of the present invention.
도 8은 본 발명의 실시예에 따른 복수의 박편이 배열된 박편 조립체를 도시한 사시도이다.8 is a perspective view illustrating a lamella assembly in which a plurality of flakes are arranged according to an embodiment of the present invention.
도 9는 본 발명의 실시예에 따라 박편 조립체에 복수의 삼각뿔 형태의 큐브 코너 몰드 패턴을 형성한 모습을 도시한 그림이다.9 is a view showing a state in which a plurality of triangular pyramid-shaped cube corner mold pattern is formed on the lamella assembly according to an embodiment of the present invention.
도 10은 본 발명의 실시예에 따라 복수의 삼각뿔 형태의 큐브 코너 몰드 패턴을 형성한 후의 박편 조립체의 배열 상부면을 도시한 그림이다.FIG. 10 is a diagram illustrating an arrangement top surface of a lamella assembly after forming a cube corner mold pattern in the form of a plurality of triangular pyramids according to an embodiment of the present invention.
도 11은 본 발명의 실시예에 따라 박편의 이동 전에 유효 면적 및 비유효 면적을 도시한 그림이다.11 is a diagram showing an effective area and an invalid area before moving a lamella according to an embodiment of the present invention.
도 12는 본 발명의 실시예에 따라 하나 이상의 박편을 배열 라인의 방향으로 이동시키는 모습을 도시한 그림이다.12 is a diagram illustrating a state in which one or more flakes are moved in the direction of the alignment line according to an embodiment of the present invention.
도 13은 본 발명의 실시예에 따라 박편 이동 후의 박편 조립체의 상부 배열면을 도시한 그림이다.FIG. 13 is a diagram showing the top arrangement surface of the lamella assembly after lamella movement in accordance with an embodiment of the present invention. FIG.
도 14는 본 발명의 실시예에 따라 박편의 이동에 의해 재귀반사가 이루어지는 유효 면적을 추가적으로 생긴 모습을 도시한 박편 조립체의 상부 배열면을 도시한 그림이다.FIG. 14 is a diagram illustrating a top arrangement surface of the lamella assembly showing a state in which an effective area in which retroreflective reflection is made by the movement of the lamella according to an embodiment of the present invention is additionally formed.
도 15는 본 발명의 실시예에 따라 박편의 이동 후의 단면도이다.15 is a cross-sectional view after the movement of the lamella in accordance with an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 발명의 이해를 위해 도면은 과장되거나 확대될 수 있으며, 도면상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention in more detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention and to those skilled in the art to fully understand the scope of the invention. It is provided to inform you. BRIEF DESCRIPTION OF THE DRAWINGS The drawings may be exaggerated or enlarged for purposes of understanding, and like reference numerals designate like elements in the drawings.
도 6은 본 발명의 실시예에 따른 시트 성형용 몰드 제조 과정을 도시한 플로차트이며, 도 7은 본 발명의 실시예에 따른 박편을 도시한 정면도 및 사시도이며, 도 8은 본 발명의 실시예에 따른 복수의 박편이 배열된 박편 조립체를 도시한 사시도이며, 도 9는 본 발명의 실시예에 따라 박편 조립체에 복수의 삼각뿔 형태의 큐브 코너 몰드 패턴을 형성한 모습을 도시한 그림이며, 도 10은 본 발명의 실시예에 따라 복수의 삼각뿔 형태의 큐브 코너 몰드 패턴을 형성한 후의 박편 조립체의 배열 상부면을 도시한 그림이다.6 is a flowchart showing a sheet forming mold manufacturing process according to an embodiment of the present invention, Figure 7 is a front view and a perspective view showing a flake according to an embodiment of the present invention, Figure 8 is an embodiment of the present invention 9 is a perspective view illustrating a flake assembly in which a plurality of flakes is arranged, and FIG. 9 is a view illustrating a cube corner mold pattern having a plurality of triangular pyramid shapes formed on a flake assembly according to an embodiment of the present invention. Is a diagram showing the arrangement top surface of the lamella assembly after forming a plurality of triangular pyramid-shaped cube corner mold pattern according to an embodiment of the present invention.
본 발명은 박편(10)을 복수개로 배열시킨 박편 조립체(100)를 이용하여 큐브 코너형 재귀반사 시트를 성형하는 시트 성형용 몰드를 제작할 수 있다.The present invention can produce a sheet forming mold for molding a cube corner type retroreflective sheeting using the lamella assembly 100 in which a plurality of flakes 10 are arranged.
이를 위하여 우선, 각 박편(10)의 측면이 서로 닿도록 배열되어, 인접한 박편간의 경계 라인인 배열 라인(L1,L2,L3)을 복수개 가지는 박편 조립체(100)를 마련한다(S610).To this end, first, the side surfaces of each lamella 10 are arranged to touch each other, to provide a lamella assembly 100 having a plurality of array lines (L1, L2, L3) which is a boundary line between adjacent flakes (S610).
여기서 박편(10;薄片;laminae)이라 함은 상부면(16), 하부면(18), 상부면(16) 및 하부면(18)을 잇는 4개의 측면(12,14,20,22)을 가지는 직각 다면체를 말하는 것으로서, 상부면(16)이 몰드 패턴이 가공되는 가공면에 해당되는 영역이다. 상부면(16) 및 하부면(18)을 잇는 4개의 측면은, 2개의 배열면(12,14)과 2개의 단부면(20,22)으로 이루어진다.Herein, laminae (10) refers to four sides 12, 14, 20, and 22 connecting the upper surface 16, the lower surface 18, the upper surface 16 and the lower surface 18. The branch refers to a right-sided polyhedron, and the upper surface 16 is a region corresponding to the processing surface on which the mold pattern is processed. The four sides connecting the upper surface 16 and the lower surface 18 are composed of two arrangement surfaces 12 and 14 and two end surfaces 20 and 22.
상술하면, 박편(10)은 제1배열면(12)과 그 반대측의 제2배열면(14)을 포함한다. 또한, 박편(10)은 제1배열면(12)과 제2배열면(14) 사이를 잇는 상부면(16)과 그 반대측의 하부면(18)을 포함한다. 박편(10)은 제1단부면(20)과 그 반대측의 제2단부면(22)을 포함한다. 바람직한 실시예에서, 박편(10)은 그 대향 면들이 실질적으로 평행한 직각 다면체이다. 그러나, 박편(10)의 대향 면들이 반드시 평행하여야 한다고 한정할 필요는 없다.In detail, the flake 10 includes a first array surface 12 and a second array surface 14 on the opposite side thereof. In addition, the lamella 10 includes an upper surface 16 between the first and second array surfaces 12 and 14 and a lower surface 18 on the opposite side thereof. The lamella 10 includes a first end face 20 and a second end face 22 on the opposite side. In a preferred embodiment, the lamella 10 is a rectangular polyhedron whose opposing faces are substantially parallel. However, it is not necessary to limit that the opposing faces of the lamella 10 must be parallel.
또한 설명의 편의상, 박편(10)은 그 구조에 데카르트 좌표계를 중첩시킴으로써 3차원 공간적인 특성으로도 표현할 수 있다. 제1기준 평면(24)은 배열면(12, 14) 사이의 중심에 위치한다. x-z 평면이라고도 불리는 제1기준 평면(24)은 y 축을 법선 벡터로 갖는다. x-y 평면이라고도 불리는 제2기준 평면(26)은 박편(10)의 상부면(16)과 실질적으로 동평면(同平面)으로 연장되며 z 축을 법선 벡터로 갖는다. y-z 평면이라 불리는 제3기준 평면(28)은 제1단부면(20)과 제2단부면(22) 사이의 중심에 위치하며 x 축을 법선 벡터로 갖는다. 명확성을 기하기 위하여, 본 실시예들의 다양한 기하학적 특성들에 대해 전술한 데카르트 좌표 평면들을 기준으로 설명한다. 그러나, 이러한 기하학적 특성은 다른 좌표계를 사용하거나 또는 박편(10)의 구조를 기준으로 하여 설명될 수 있다는 것을 이해해야 한다.In addition, for convenience of explanation, the flake 10 can also be expressed in three-dimensional spatial characteristics by superimposing the Cartesian coordinate system on the structure. The first reference plane 24 is located at the center between the alignment surfaces 12, 14. The first reference plane 24, also called the x-z plane, has a y-axis as a normal vector. The second reference plane 26, also called the x-y plane, extends substantially coplanar with the top surface 16 of the lamella 10 and has a z-axis as a normal vector. A third reference plane 28 called the y-z plane is located at the center between the first end face 20 and the second end face 22 and has the x axis as a normal vector. For the sake of clarity, various geometrical characteristics of the embodiments are described with reference to the Cartesian coordinate planes described above. However, it should be understood that such geometrical characteristics may be described using other coordinate systems or based on the structure of the lamella 10.
박편(10)은 정밀 공차(公差)를 유지할 수 있는 치수 안정성이 있는 재료로 형성될 수 있다. 박편(10)은 절삭가능한 플라스틱(예를 들면, 폴리에틸렌 테라프탈레이트, 폴리메틸 메타크릴레이트 및 폴리카보네이트)과, 황동, 니켈, 구리 및 알루미늄을 포함하는 금속과 같은 다양한 재료들로 제작될 수 있다. 박편(10)의 물리적 치수는 주로 절삭 한계에 의해 제한된다. 박편(10)은 두께가 적어도 0.1 mm, 높이가 5.0 mm 내지 100.0 mm, 폭이 10 mm 내지 500 mm인 것이 바람직하다. 그러나 이 측정치는 예시적인 것일 뿐이다. The lamella 10 may be formed of a material having dimensional stability that can maintain close tolerances. The lamella 10 may be made from a variety of materials, such as cuttable plastics (eg, polyethylene terephthalate, polymethyl methacrylate, and polycarbonate) and metals including brass, nickel, copper, and aluminum. The physical dimensions of the lamella 10 are mainly limited by the cutting limits. The flakes 10 preferably have a thickness of at least 0.1 mm, a height of 5.0 mm to 100.0 mm, and a width of 10 mm to 500 mm. However, this measure is only illustrative.
이러한 복수의 박편(10)을 이용하여 인접한 박편(10)의 측면인 배열면이 서로 닿도록 배열된 박편 조립체(100)를 마련한다. 즉, 복수의 박편(10a~10n)은 하나의 박편(10)의 제1배열면(12)이 인접한 박편(10)의 제2배열면(14)에 접촉하도록 함께 조립된다. 복수의 박편(10)은 서로 인접해 있는 복수의 박편(10)을 고정시킬 수 있는 치구(治具: fixture)에 의하여 조립되는 것이 바람직하다. 이러한 치구는 공지된 다양한 치구가 사용될 수 있는데, 치구의 세부 구조가 본 발명에 긴요한 것이 아니다.Using the plurality of flakes 10 to prepare the lamella assembly 100 is arranged so that the array surface of the side of the adjacent lamella 10 is in contact with each other. That is, the plurality of flakes 10a to 10n are assembled together so that the first array surface 12 of one flake 10 contacts the second array surface 14 of the adjacent flake 10. It is preferable that the plurality of flakes 10 is assembled by a fixture capable of fixing the plurality of flakes 10 adjacent to each other. Such jig can be used a variety of known jig, the detail structure of the jig is not critical to the present invention.
복수의 박편(10)으로 된 박편 조립체(100)는 인접한 박편(10)의 측면간의 라인인 배열 라인을 복수개 가지게 된다. 따라서 이러한 배열 라인은 제1기준 평면(24)과 평행하게 된다. 참고로, 복수의 박편(10;10a~10n)은 그 각각의 상부면(16)이 실질적으로 동일 평면에 있게 된다. 또한 복수의 박편(10)의 배열 결합으로 인하여 박편 조립체(100)의 상부면인 배열 상부면(106)은 제2기준 평면(26)과 평행하게 된다. 박편 조립체(100)의 배열 상부면(106)은 복수의 박편(10)의 상부면이 결합된 면에 해당된다.The lamella assembly 100 consisting of a plurality of flakes 10 will have a plurality of array lines, which are lines between the sides of adjacent flakes 10. This arrangement line is thus parallel to the first reference plane 24. For reference, the plurality of flakes 10; 10a to 10n may have their respective upper surfaces 16 substantially in the same plane. In addition, the arrangement coupling of the plurality of flakes 10 causes the array top surface 106, which is the top surface of the lamella assembly 100, to be parallel to the second reference plane 26. The array top surface 106 of the lamella assembly 100 corresponds to the surface to which the top surfaces of the plurality of flakes 10 are coupled.
한편, 복수의 박편을 배열하여 고정시킨 박편 조립체(100)를 마련한 후, 복수의 박편(10)을 배열시킨 박편 조립체(100) 형태로 고정한 상태에서 복수의 박편(10)의 배열 상부면(106) 상에, 도 9에 도시한 바와 같이 삼각뿔 형태의 큐브 코너 몰드 패턴(200)을 복수개 형성한다(S620). 즉, 각 큐브 코너 몰드 패턴(200)은 2개 이상의 박편(10)의 상부면에 걸쳐 뻗어 있는 것이 바람직하다.On the other hand, after providing the lamella assembly 100 is arranged and fixed to the plurality of flakes, the array top surface 106 of the plurality of flakes 10 in a state of being fixed in the form of the lamella assembly 100 arranged the plurality of flakes 10 9, a plurality of cube corner mold patterns 200 having a triangular pyramid shape are formed (S620). That is, each cube corner mold pattern 200 preferably extends over the top surface of the two or more flakes 10.
큐브 코너 몰드 패턴(200)은 피성형체(彼成形體)인 재귀반사 시트의 큐브 코너 패턴을 찍어내는 몰드의 패턴이다. 큐브 코너라 함은, 도 1에 도시한 바와 같이 빛의 입사 방향에 의하지 않고 입사 방향으로 빛을 반사시키는 사면체 구조물로서, 삼각뿔의 정점에서 교차하는 3개의 측면과 정점을 마주보는 삼각형 바닥면을 갖는 삼각뿔 형태의 사면체 구조물이다. 따라서 큐브 코너 몰드 패턴(200)은 삼각뿔 형태의 입체적 사면체의 패턴을 가진다.The cube corner mold pattern 200 is a pattern of the mold which cuts out the cube corner pattern of the retroreflective sheet which is a to-be-molded body. The cube corner is a tetrahedral structure that reflects light in the incidence direction regardless of the light incidence direction as shown in FIG. 1, and has three sides intersecting at the vertices of the triangular pyramid and a triangular bottom surface facing the vertex. It is a tetrahedral structure in the form of a triangular pyramid. Therefore, the cube corner mold pattern 200 has a three-dimensional tetrahedral pattern in the form of a triangular pyramid.
본 발명의 실시예는 인접한 큐브 코너 몰드 패턴(200)간에 하나의 공통변을 가지도록 형성한다. 복수의 삼각뿔 형태의 큐브 코너 몰드 패턴(200)을 형성한 후의 박편 조립체의 배열 상부면을 도시한 도 10을 참조한다. 설명의 편의를 위하여 제1큐브 코너 몰드 패턴(210)과 제2큐브 코너 몰드 패턴(220)을 굵은 선으로 표시하였지만, 다른 큐브 코너 몰드 패턴과 다르지는 않다.An embodiment of the present invention is formed to have one common side between adjacent cube corner mold pattern 200. Reference is made to FIG. 10 which illustrates an array top surface of a lamella assembly after forming a plurality of triangular pyramid-shaped cube corner mold patterns 200. For convenience of description, the first cube corner mold pattern 210 and the second cube corner mold pattern 220 are shown as thick lines, but are not different from other cube corner mold patterns.
즉, 제1큐브 코너 몰드 패턴(210)과 제2큐브 코너 몰드 패턴(220)이 인접하도록 형성하며, 제1큐브 코너 몰드 패턴(210)의 바닥면의 일변과 제2큐브 코너 몰드 패턴(220)의 바닥면의 일변이 서로 공통된 변을 사용하도록, 제1큐브 코너 몰드 패턴(210)과 제2큐브 코너 몰드 패턴(220)을 인접하여 형성한다. 이러한 공통변은 박편 조립체(100)의 배열 라인(L;L1,L2,L3)에 직각으로 형성되도록 한다. 즉, X 방향의 배열 라인(L)에 직각된 Y 방향으로 공통변을 형성한다.That is, the first cube corner mold pattern 210 and the second cube corner mold pattern 220 are formed to be adjacent to each other, and one side of the bottom surface of the first cube corner mold pattern 210 and the second cube corner mold pattern 220 are formed. The first cube corner mold pattern 210 and the second cube corner mold pattern 220 are formed to be adjacent to each other so that one side of the bottom surface of the bottom surface thereof is common to each other. This common side is to be formed at right angles to the array lines (L; L1, L2, L3) of the lamella assembly 100. That is, the common side is formed in the Y direction perpendicular to the array line L in the X direction.
예를 들어, 제1박편(10a), 제2박편(10b), 제3박편(10c) 및 제4박편(10d)이 박편 조립체(100)에서 차례로 배열된 상태에서, 인접한 제1큐브 코너 몰드 패턴(210)과 제2큐브 코너 몰드 패턴(220)이 제1박편(10a), 제2박편(10b) 및 제3박편(10c)을 가로질러 배열 상부면(106) 상에서 형성될 수 있다. 이때, 제1큐브 코너 몰드 패턴(210)과 제2큐브 코너 몰드 패턴(220)간의 공통변은, 제1박편(10a) 및 제2박편(10b)의 경계인 제1배열 라인(L1)과, 제2박편(10b) 및 제3박편(10c)의 경계인 제2배열 라인(L2)에 직각된 방향으로 형성될 수 있다.For example, with the first flake 10a, the second flake 10b, the third flake 10c and the fourth flake 10d arranged in sequence in the lamella assembly 100, the adjacent first cube corner molds The pattern 210 and the second cube corner mold pattern 220 may be formed on the array top surface 106 across the first lamella 10a, the second lamella 10b, and the third lamella 10c. In this case, the common side between the first cube corner mold pattern 210 and the second cube corner mold pattern 220 may include a first array line L1 that is a boundary between the first foil 10a and the second foil 10b, It may be formed in a direction perpendicular to the second array line (L2) that is the boundary between the second flake 10b and the third flake 10c.
한편, 삼각뿔 형태의 큐브 코너 몰드 패턴(200)을 형성하는 것은, 배열 상부면(106)에 'V'자 형태의 홈라인을 서로 교차함으로써 형성할 수 있다. 즉, 큐브 코너 몰드 패턴(200)의 바닥면이 제1사잇각(α), 제2사잇각(β) 및 제3사잇각(γ)으로 된 삼각형이라 할 때, 우선, 박편 조립체(100)의 배열 라인(L)을 횡단하여 배열 상부면(106) 상에서 큐브 코너 몰드 패턴(200)의 제1사잇각(α)을 이루도록 교차하여 파여진 'V'자 형태의 제1홈라인(111) 및 제2홈라인(112)을 형성한다. 참고로, 큐브 코너 몰드 패턴(200)인 삼각뿔을 가지는데, 삼각뿔의 바닥면은 삼각형으로서 제1사잇각(α), 제2사잇각(β), 제3사잇각(γ)으로서 이루어진다. 제1사잇각(α), 제2사잇각(β), 제3사잇각(γ)은 동일한 사잇각을 가질 수 있으며, 각각 다른 사잇각을 가질 수 있다.On the other hand, forming the cube corner mold pattern 200 in the form of a triangular pyramid can be formed by intersecting the 'V' shaped groove line on the array top surface 106. That is, when the bottom surface of the cube corner mold pattern 200 is a triangle having a first angle α, a second angle β and a third angle γ, first, an array line of the lamella assembly 100 is formed. A first groove line 111 and a second groove having a 'V' shape intersecting and intersecting to form the first angle α of the cube corner mold pattern 200 on the upper surface 106 of the array 106. Line 112 is formed. For reference, it has a triangular pyramid that is a cube corner mold pattern 200, and the bottom surface of the triangular pyramid is formed as a first square angle α, a second square angle β, and a third square angle γ as a triangle. The first angle α, the second angle β, and the third angle γ may have the same angle and may have different angles.
제1사잇각(α)을 가지며 교차하는 제1홈라인(111) 및 제2홈라인(112)을 배열 상부면(106) 상에서 형성한 후에는, 큐브 코너 몰드 패턴(200)의 제2사잇각(β) 및 제3사잇각(γ)을 이루도록, 배열 상부면(106) 상에서 제1홈라인(111) 및 제2홈라인(112)과 교차하여 파여진 제3홈라인(113)을 형성한다. 즉, 큐브 코너 몰드 패턴(200)의 제2사잇각(β)을 가지도록 'V'자 형태로 파여진 제1홈라인(111)과 교차하며, 동시에 큐브 코너 몰드 패턴(200)의 제3사잇각(γ)을 가지도록 제2홈라인(112)과 교차하도록 'V'자 형태로 파여진 제3홈라인(113)을 형성한다. 실질적으로 V자 형태인 복수의 제3홈라인(113)이, 도 10에 도시되어 있는 각 공통변이 뻗어 있는 축들과 실질적으로 평행한 축, 바람직하게는 그 축들과 동축(同軸)인 축을 따라 형성된다. 예컨대, 제1큐브 코너 몰드 패턴(210)의 제3홈라인(113)이 박편 조립체(100)의 각 배열 라인(L)에 직각으로 형성되어, 인접한 제2큐브 코너 몰드 패턴(220)간의 공통변으로 작용하게 된다.After the first groove line 111 and the second groove line 112 having the first site angle α and intersecting the first groove line 111 and the second groove line 112 are formed on the array top surface 106, the second site angle of the cube corner mold pattern 200 is formed. The third groove line 113 is formed to cross the first groove line 111 and the second groove line 112 on the arrangement upper surface 106 so as to form β) and the third site angle γ. That is, the third corner of the cube corner mold pattern 200 intersects with the first groove line 111 that is cut in a 'V' shape to have the second corner angle β of the cube corner mold pattern 200. The third groove line 113 is formed to be dug in the 'V' shape to cross the second groove line 112 to have a (γ). A plurality of third groove lines 113 having a substantially V-shape are formed along an axis substantially parallel to the axes on which each common side shown in FIG. 10 extends, preferably an axis coaxial with the axes. do. For example, the third groove line 113 of the first cube corner mold pattern 210 is formed at right angles to each of the array lines L of the lamella assembly 100, so that the adjacent second cube corner mold patterns 220 are common to each other. It will act as a side.
참고로, V자 형태의 제1홈라인(111), 제2홈라인(112) 및 제3홈라인(113)은 적절한 재료 제거 기술을 사용하여 각각 형성되는 것이 바람직하다. 적절한 재료 제거 기술을 사용하여 복수의 박편 조립체(100)의 배열 상부면의 일부를 제거함으로써 형성된다. 본 발명에서는 밀링(milling), 룰링(ruling) 및 플라이커팅(fly-cutting)과 같은 정밀 절삭 기술을 비롯한 각종 재료 제거 기술을 사용하는 것이 이용될 수 있다. 또는 화학적 에칭 또는 레이저 융제법(融除法: laser ablation)을 사용하여 홈라인을 형성할 수 있다. 한 가지 실시예에 따르면, 84.946°의 날끝각(included angle)을 가진 다이아몬드 절삭 공구를 복수의 박편 조립체(100)의 배열 상부면(106)을 가로질러 반복적으로 이동시키는 고정밀 절삭 작업에 의해 형성될 수 있다.For reference, the V-shaped first groove line 111, the second groove line 112, and the third groove line 113 are preferably formed using appropriate material removal techniques. It is formed by removing a portion of the array top surface of the plurality of lamella assemblies 100 using suitable material removal techniques. In the present invention, the use of various material removal techniques, including precision cutting techniques such as milling, ruling and fly-cutting, can be used. Alternatively, the groove line may be formed by chemical etching or laser ablation. According to one embodiment, a diamond cutting tool having an included angle of 84.946 ° may be formed by a high precision cutting operation that repeatedly moves across the array top surface 106 of the plurality of lamella assemblies 100. Can be.
제1홈라인(111), 제2홈라인(112) 및 제3홈라인(113)을 형성하면, 박편 조립체의 배열 상부면(106) 상에, 4면체인 피라미드 구조인 삼각뿔의 반복 패턴을 포함하는 구조화면이 형성된다. 이들 제1홈라인(111) 및 제2홈라인(112)이 삼각뿔의 공통변을 교차하도록 형성되며, 이들 사이에 실질적으로 직각인 내측 이면각을 형성하게 된다. 큐브 코너 재귀반사 기술에서는, 이들 표면 사이의 관계를 일반적으로 "서로 수직인 관계"라 부른다. "거의 서로 수직(aproximately mutually perpendicular)"이라는 용어 또는 "실질적으로 서로 수직(substantially mutually perpendicular)"이라는 용어는 아펠돈(Appeldorn) 등의 미국 특허 제4,775,219호에서 설명되고 있는 바와 같이, 재귀반사된 광의 분포를 변경시키는 데 유용한 완전한 직교로부터 약간 벗어날 수 있다고 하는 의미로 일반적으로 사용되는 용어이다. 중요한 것은, 삼각뿔의 표면이 3개의 박편(10)의 가공면의 적어도 일부를 가로질러 뻗어 있다는 것이며. 특히, 삼각뿔의 제1표면 및 제2표면은 제1배열 라인(L1)을 교차하고, 제3표면 및 제4표면은 제2배열 라인(L2)을 교차한다는 점이다.When the first groove line 111, the second groove line 112, and the third groove line 113 are formed, a repeating pattern of triangular pyramids having a tetrahedron pyramidal structure is formed on the upper surface 106 of the lamella assembly. A structural screen is formed that includes. The first groove line 111 and the second groove line 112 are formed to cross the common side of the triangular pyramid, and form an inner back angle substantially perpendicular thereto. In cube corner retroreflective techniques, the relationship between these surfaces is generally referred to as a "vertical relationship to each other." The term "aproximately mutually perpendicular" or "substantially mutually perpendicular" is used to describe a retroreflected light as described in US Patent No. 4,775,219 to Appeldorn et al. The term is commonly used to mean that it can deviate slightly from the perfect orthogonality that is useful for altering the distribution. Importantly, the surface of the triangular pyramid extends across at least a portion of the machining surface of the three flakes 10. In particular, the first surface and the second surface of the triangular pyramid intersect the first array line L1, and the third and fourth surfaces intersect the second array line L2.
한편, 제1홈라인(111), 제2홈라인(112) 및 제3홈라인(113)의 위치와 사잇각 각도를 변화시켜 여러 가지 형상의 큐브 코너 몰드 패턴(200)을 제작하는 것이 가능하다. 따라서 제1홈라인(111), 제2홈라인(112) 및 제3홈라인(113)의 위치와 사잇각 각도를 변화시켜 박편(10)별로 재귀반사가 일어나는 유효 면적을 가지도록 하거나, 또는 재귀반사가 일어나지 않는 비유효 면적을 가지도록 할 수 있다. 예를 들어 어느 하나의 박편(10)에는 재귀 반사가 일어나는 유효 면적을 포함하며, 다른 박편(10)에는 재귀 반사가 일어나는 비유효 면적을 포함할 수 있다.On the other hand, it is possible to manufacture the cube corner mold pattern 200 of various shapes by changing the position and angle of the angle of the first groove line 111, the second groove line 112 and the third groove line 113. . Therefore, by changing the position and angle of the angle of the first groove line 111, the second groove line 112 and the third groove line 113 so as to have an effective area where reflex reflection occurs for each flake 10, or recursion It can be made to have an effective area where reflection does not occur. For example, one flake 10 may include an effective area where reflex reflection occurs and another flake 10 may include an invalid area where reflex reflection occurs.
박편의 이동 전에 유효 면적 및 비유효 면적이 도시한 도 11과 함께 설명한다. 도 11에서 점표시된 영역이 재귀반사가 일어나는 대상 면적인 유효 면적이며, 점표시되지 않은 영역이 재귀반사가 일어나지 않는 대상 면적인 비유효 면적이다. 실제로는 비유효 면적에서도 재귀반사가 100% 일어나지 않는 것은 아니나, 설명의 편의를 위해 재귀반사가 일어나지 않는 영역으로 설명한다.It demonstrates with FIG. 11 which shows the effective area and the invalid area before moving a flake | flake. In FIG. 11, the dotted area is the effective area of the target area where the retroreflection occurs, and the non-dotted area is the effective area of the target area where the retroreflection does not occur. In practice, reflex reflection does not occur 100% even in ineffective area, but for convenience of explanation, it is described as an area where reflex reflection does not occur.
설명의 편의를 위하여, 제1박편(10a), 제2박편(10b), 제3박편(10c) 및 제4박편(10d)이 박편 조립체(100)에서 차례로 배열된 상태에서 제1큐브 코너 몰드 패턴(210)과 제2큐브 코너 몰드 패턴(220)이 제1박편(10a), 제2박편(10b), 제3박편(10c) 을 가로질러 박편 조립체(100)의 배열 상부면(106) 상에 각각 형성되었다고 가정한다. 따라서 제1큐브 코너 몰드 패턴(210)은 제1박편(10a), 제2박편(10b), 제3박편(10c)을 가로질러 형성되며, 마찬가지로 제2큐브 코너 몰드 패턴(220)은 제1박편(10a), 제2박편(10b), 제3박편(10c)을 가로질러 형성될 수 있다.For convenience of description, the first cube corner mold in a state in which the first flake 10a, the second flake 10b, the third flake 10c and the fourth flake 10d are sequentially arranged in the lamella assembly 100. The pattern 210 and the second cube corner mold pattern 220 are arranged on the top surface 106 of the lamella assembly 100 across the first lamella 10a, the second lamella 10b, and the third lamella 10c. Assume that each of the phases is formed. Accordingly, the first cube corner mold pattern 210 is formed across the first foil 10a, the second foil 10b, and the third foil 10c, and likewise, the second cube corner mold pattern 220 may be formed in the first shape. It may be formed across the flake 10a, the second flake 10b, the third flake 10c.
이때, 각 큐브 코너 몰드 패턴(200)은 세 개의 꼭지점과 상기 세 개의 꼭지점과 연결되는 정점으로 된 삼각뿔 형태를 가진다. 따라서 제1큐브 코너 몰드 패턴(210)은, 제1박편(10a)에 하나의 꼭지점(211;이하, '제1-1꼭지점')이 위치하며, 제2박편(10b)에 다른 꼭지점(212;이하, '제1-2꼭지점')이 위치하며, 제3박편(10c)에 나머지 다른 하나의 꼭지점(213;이하, '제1-3꼭지점')이 위치한다. 마찬가지로, 제2큐브 코너 몰드 패턴(220)은, 제1박편(10a)에 하나의 꼭지점(221;이하, '제2-1꼭지점')이 위치하며, 제2박편(10b)에 다른 꼭지점(222;이하, '제2-2꼭지점')이 위치하며, 제3박편(10c)에 나머지 다른 하나의 꼭지점(223;이하, '제3-3꼭지점')이 위치한다.At this time, each cube corner mold pattern 200 has a triangular pyramid consisting of three vertices and vertices connected to the three vertices. Accordingly, in the first cube corner mold pattern 210, one vertex 211 (hereinafter referred to as 'first-first vertex') is positioned on the first foil 10a and the other vertex 212 on the second foil 10b. ; 1st-2nd vertex) is located, and the other vertex 213 (hereinafter, 1st-3rd vertex) is located at the third foil 10c. Similarly, in the second cube corner mold pattern 220, one vertex 221 (hereinafter referred to as 'second-1 vertex') is positioned on the first foil 10a and another vertex (2 vertex) is formed on the second foil 10b. 222; or less, 'second-2 vertex'), and the other vertex 223 (hereinafter, 'third or third vertex') is located on the third foil 10c.
제1큐브 코너 몰드 패턴(210) 및 제2큐브 코너 몰드 패턴(220)은 제1홈라인(111) 내지 제3홈라인(113)의 위치와 사잇각에 따라서, 재귀 반사가 일어나는 유효 면적과 재귀 반사가 일어나지 않는 비유효 면적을 가진다. 이러한 유효 면적과 비유효 면적이 제1홈라인(111) 내지 제3홈라인(113)의 위치와 사잇각을 따라서 제1박편(10a), 제2박편(10b), 제3박편(10c) 및 제4박편(10c)에 형성된다. The first cube corner mold pattern 210 and the second cube corner mold pattern 220 may have effective areas and recursions where recursive reflection occurs according to positions and angles of the first groove line 111 to the third groove line 113. It has an ineffective area where reflection does not occur. The effective area and the ineffective area are along the positions and angles of the first groove line 111 to the third groove line 113. The first foil 10a, the second foil 10b, the third foil 10c and It is formed in the fourth foil 10c.
본 발명의 실시예는, 제1박편(10a)에는, 제1큐브 코너 몰드 패턴(210)의 제1-1꼭지점(211)을 포함하여 재귀반사가 일어나지 않는 제1A비유효 면적, 제2큐브 코너 몰드 패턴(220)의 제2-1꼭지점(221)을 포함하여 재귀반사가 일어나지 않는 제2A비유효 면적(2A)을 가지도록 한다. 참고로, 제1박편(10a)에는 제1큐브 코너 몰드 패턴(210) 및 제2큐브 코너 몰드 패턴(220)으로 국한할 때 비유효 면적만 존재하나, 다른 큐브 코너 몰드 패턴(200)으로 확장할 경우 해당 큐브 코너 몰드 패턴(200)의 유효 면적이 존재한다.According to an embodiment of the present invention, the first foil 10a includes a first-first vertex 211 of the first cube corner mold pattern 210, and includes a first A non-effective area and a second cube in which no retroreflection occurs. Including the second-first vertex 221 of the corner mold pattern 220 to have a second effective area 2A of which no retroreflection occurs. For reference, the first foil 10a may have only an invalid area when limited to the first cube corner mold pattern 210 and the second cube corner mold pattern 220, but may be expanded to another cube corner mold pattern 200. If so, the effective area of the cube corner mold pattern 200 exists.
또한 제2박편(10b)에는, 제1큐브 코너 몰드 패턴(210)의 제1-2꼭지점(212)을 포함하여 재귀반사가 일어나는 제1유효 면적(1C), 제2큐브 코너 몰드 패턴(220)의 제2-2꼭지점(222)을 포함하여 재귀반사가 일어나는 제2유효 면적(2C)을 가지도록 한다.In addition, the second foil 10b includes a first-second vertex 212 of the first cube corner mold pattern 210 and includes a first effective area 1C and a second cube corner mold pattern 220 in which retroreflection occurs. It has a second effective area (2C) that the retroreflection occurs, including the 2-2 vertex (222) of the ().
마지막으로 제3박편(10c)에는, 제1큐브 코너 몰드 패턴(210)의 제1-3꼭지점(213)을 포함하여 재귀반사가 일어나지 않는 제1B비유효 면적(1B), 제2큐브 코너 몰드 패턴(220)의 제2-3꼭지점(223)을 포함하여 재귀반사가 일어나지 않는 제2B비유효 면적(2B)을 가지도록 한다.Lastly, the third foil 10c includes the first-three vertices 213 of the first cube corner mold pattern 210, and includes a first B effective area 1B and a second cube corner mold in which retroreflection does not occur. The second third vertex 223 of the pattern 220 may be included to have a second effective area 2B of which no retroreflection occurs.
한편, 상기에서 설명한 바와 같이 박편 조립체(100)의 배열 상부면(106)에서 'V자' 형태의 제1홈라인(111), 제2홈라인(112) 및 제3홈라인(113)을 그어서, 복수의 큐브 코너 몰드 패턴(200)을 어레이 형태로 일정하게 형성한 후에는, 박편 조립체(100)의 하나 이상의 박편(10)을 도 12에 도시한 바와 같이 배열 라인의 방향으로 이동시켜, 배열 상부면(106) 상의 큐브 코너 몰드 패턴(200)의 형상을 변경시킨다. 비유효 면적을 최소화하기 위하여 박편 조립체(100)를 구성하는 박편(10) 중에서 일부의 박편(10)을 배열 라인 방향(X축 방향)을 따라 이동시켜, 재귀반사가 일어나는 유효 면적을 증대시키기 위함이다. 참고로 도 12는 이동 전의 모습을 도시한 것으로서, 어느 하나 이상의 박편이 배열 라인과 평행한 방향을 따라 이동하게 될 경우, 이동된 박편이 단면에서 돌출되어 형성될 것이다. 이동에 의해 박편의 돌출된 부분을 절단하여 단면이 평면을 가지도록 한다.Meanwhile, as described above, the first groove line 111, the second groove line 112, and the third groove line 113 having a 'V' shape are formed on the upper surface 106 of the lamella assembly 100. Then, after uniformly forming the plurality of cube corner mold patterns 200 in the form of an array, one or more lamellas 10 of the lamella assembly 100 are moved in the direction of the array line, as shown in FIG. The shape of the cube corner mold pattern 200 on the array top surface 106 is changed. In order to increase the effective area in which retroreflection occurs by moving a portion of the flakes 10 along the array line direction (X-axis direction) among the flakes 10 constituting the flake assembly 100 to minimize the effective area. to be. For reference, FIG. 12 illustrates a state before movement. When any one or more flakes are moved along a direction parallel to the alignment line, the moved flakes will protrude from the cross section. By moving, the protruding portion of the flake is cut so that the cross section has a plane.
예를 들어, 제1큐브 몰드 패턴이 제1박편(10a), 제2박편(10b), 제3박편(10c)을 가로질러 형성되어 제2박편(10b)에만 제1유효 면적이 형성되고, 제2큐브 몰드 패턴이 제1박편(10a), 제2박편(10b), 제3박편(10c)을 가로질러 형성되어 제2박편(10b)에만 제2유효 면적이 형성되었다고 가정한다. 이럴 경우, 제1큐브 코너 몰드 패턴(210)에서의 제1유효 면적(1C) 및 상기 제2큐브 코너 몰드 패턴(220)에서의 제2유효 면적(2C)을 가지는 제2박편(10b)만을 배열 라인의 방향으로 이동시킨다.For example, the first cube mold pattern is formed across the first lamella 10a, the second lamella 10b, and the third lamella 10c to form a first effective area only in the second lamella 10b. It is assumed that the second cube mold pattern is formed across the first foil 10a, the second foil 10b, and the third foil 10c to form a second effective area only in the second foil 10b. In this case, only the second foil 10b having the first effective area 1C in the first cube corner mold pattern 210 and the second effective area 2C in the second cube corner mold pattern 220 is provided. Move in the direction of the array line.
제2박편(10b)의 이동은, 도 11에 도시한 바와 같이 제1유효 면적(1C) 및 제2유효 면적(1C)의 전체 면적과 제1A비유효 면적(1A) 및 제2A비유효 면적(2A)의 전체 면적간의 접선 길이(K)만큼 제2박편(10b)을 배열 라인의 방향으로 이동시킨다. 이러한 이동량을 가져야만, 인접한 박편(10)간의 유효 면적끼리 접하고, 비유효 면적끼리 접하게 된다. 도 13은 제2박편(10b), 제4박편(10d)의 이동 후의 박편 조립체(100)의 상부 배열면을 도시한 그림이다. 박편(10)의 이동 후의 도 13를 박편(10) 이동 전의 도 11 및 도 12와 비교할 때, 박편(10)의 이동이 있은 후에 제1박편(10a)의 유효 면적과 인접한 제2박편(10b)의 유효 면적이 접하게 되고, 제1박편(10a)의 비유효 면적과 인접한 제2박편(10b)의 비유효 면적이 접하게 됨을 알 수 있다.As shown in FIG. 11, the movement of the 2nd flake 10b has the total area of 1st effective area 1C and the 1st effective area 1C, 1A non-effective area 1A, and 2A non-effective area. The second foil 10b is moved in the direction of the array line by the tangent length K between the entire areas of 2A. Only with this movement amount, the effective areas between adjacent flakes 10 are in contact with each other, and the ineffective areas are in contact with each other. FIG. 13 is a view showing the top arrangement surface of the lamella assembly 100 after the movement of the second lamella 10b and the fourth lamella 10d. 13 after the movement of the lamella 10 is compared with FIGS. 11 and 12 before the movement of the lamella 10, the second lamella 10b adjacent to the effective area of the first lamella 10a after the movement of the lamella 10 has occurred. It can be seen that the effective area of) is in contact with, and the ineffective area of the second flake 10b adjacent to the ineffective area of the first flake 10a.
특히, 이동 후의 비유효 면적에는 다시 삼각뿔이 형성되어, 도 14와 같이 재귀반사가 이루어지는 유효 면적을 추가적으로 가지게 된다. 따라서 이동 전의 도 11의 유효 면적(점표시 영역)과 비교할 때 이동 후의 도 14의 유효 면적(빗금 영역)이 더 증대됨을 알 수 있다. 따라서 재귀반사 효율이 향상될 수 있다.In particular, the triangular pyramid is again formed in the ineffective area after the movement, and additionally has an effective area in which retroreflection is performed as shown in FIG. 14. Accordingly, it can be seen that the effective area (hatched area) of FIG. 14 after the movement is further increased as compared with the effective area (dotted area) of FIG. 11 before the movement. Therefore, the retroreflective efficiency can be improved.
결국, 본 발명의 제조 방법에 의해 제작되는 시트 성형용 몰드는, 바닥면과, 상기 바닥면의 반대쪽에 형성된 구조화면을 포함하게 되며, 이러한 구조화면(structure surface)은, 도 14에 도시한 바와 같이 원래의 유효 면적으로서 a1,a2,a3,a4,a5,a6의 꼭지점을 가지는 측방향 절두형(截頭形) 큐브 코너 몰드 패턴(P1)과, b1,b2,b3,b4의 꼭지점을 가지는 삼각뿔형 큐브 코너 몰드 패턴(P2)을 복수개 포함하게 된다.As a result, the sheet forming mold produced by the manufacturing method of the present invention includes a bottom surface and a structure screen formed on the opposite side of the bottom surface, and such a structure surface is shown in FIG. Similarly, the lateral truncated cube corner mold pattern P1 having vertices a1, a2, a3, a4, a5, a6 as the original effective area, and vertices b1, b2, b3, b4. The triangular pyramidal cube corner mold pattern P2 is included in plurality.
여기서 절두형 큐브 코너 몰드 패턴(P1)은 완전한 삼각뿔 형태가 아닌 측방향(수평방향, XY방향) 면에서 수직 방향으로 일부가 절단된 형상이다. 즉, 절두형 큐브 코너 몰드 패턴(P1)은 완전한 삼각뿔 형태가 아닌 일부 꼭지점을 포함한 비유효 면적 부분이 절단되어, 유효 면적(점영역)만을 가지는 몰드 패턴을 말한다. 또한 삼각뿔형 큐브 코너 몰드 패턴(P2)은 박편(10)의 이동에 의하여, 비유효 면적 이외에 새로운 유효 면적(빗금영역)을 포함한 삼각뿔을 가지는 패턴이다.Here, the truncated cube corner mold pattern P1 is a shape in which a part of the truncated cube corner mold pattern P1 is cut in a vertical direction in a lateral direction (horizontal direction, XY direction) rather than in the form of a complete triangular pyramid. That is, the truncated cube corner mold pattern P1 refers to a mold pattern in which an invalid area portion including some vertices, which are not in the form of a complete triangular pyramid, is cut and has only an effective area (point area). In addition, the triangular pyramidal cube corner mold pattern P2 is a pattern having a triangular pyramid including a new effective area (hatched area) in addition to the non-effective area due to the movement of the lamella 10.
따라서 절두형 큐브 코너 몰드 패턴(P1)은, 인접한 제1절두형 큐브 코너 몰드 패턴과 제2절두형 큐브 코너 몰드 패턴이 하나의 제1공통변을 통해서 인접되도록 형성된다. 또한, 삼각뿔형 큐브 코너 몰드 패턴(P2)은, 인접한 제1삼각뿔형 큐브 코너 몰드 패턴 및 제2삼각뿔형 큐브 코너 몰드 패턴이 하나의 제2공통변을 통해서 인접되도록 형성된다.Therefore, the truncated cube corner mold pattern P1 is formed such that the adjacent first truncated cube corner mold pattern and the second truncated cube corner mold pattern are adjacent through one first common edge. Further, the triangular pyramidal cube corner mold pattern P2 is formed such that adjacent first triangular pyramidal cube corner mold patterns and second triangular pyramidal cube corner mold patterns are adjacent through one second common edge.
참고로, 도 15(a)는 본 발명의 실시예에 따라 이동 후의 G-G'방향의 단면도를 도시한 그림이며, 도 15(b)는 본 발명의 실시예에 따라 이동 후의 H-H' 방향의 단면도를 도시한 그림이다For reference, Figure 15 (a) is a view showing a cross-sectional view of the G-G 'direction after the movement according to an embodiment of the present invention, Figure 15 (b) is a view of the HH' direction after the movement according to an embodiment of the present invention It is a figure showing a cross section
도 15(a)를 참조하면, 절두형 큐브 코너 몰드 패턴(P1)이 형성되어 있음을 알 수 있으며, 도 15(b)를 참조하면 삼각뿔형 큐브 코너 몰드 패턴(P2)이 새롭게 형성되어, 전체적으로 재귀반사가 이루어지는 유효면적이 증대됨을 알 수 있다.Referring to FIG. 15 (a), it can be seen that a truncated cube corner mold pattern P1 is formed. Referring to FIG. 15 (b), a triangular pyramidal cube corner mold pattern P2 is newly formed, and as a whole, It can be seen that the effective area for retroreflection is increased.
한편, 본 실시예에서는 시트 성형용 몰드는 복수의 박편으로 된 박편 조립체를 활용하였으나, 이에 한정되지 않는다. 예를 들면, 시트 성형용 몰드는 하나의 다각면체의 상부면에 복수의 큐브 코너 몰드 패턴의 어레이를 형성한 후, 제1기준 평면과 평행한 방향으로 여러번 절삭하여 복수개의 박편을 형성하고, 절삭된 박편의 일부를 이동시키는 방식으로 구현할 수도 있다. On the other hand, in the present embodiment, the sheet molding mold utilized a lamella assembly consisting of a plurality of flakes, but is not limited thereto. For example, the sheet forming mold forms an array of a plurality of cube corner mold patterns on an upper surface of one polyhedron, and then cuts several times in a direction parallel to the first reference plane to form a plurality of flakes. It can also be implemented by moving parts of the flakes.
한편, 본 발명의 실시예에 의해 제조된 시트 성형용 몰드 제조 방법에 의하여, 절두형 큐브 코너 패턴 및 삼각뿔형 큐브 코너 패턴을 복수개 포함하는 피성형체인 재귀반사 시트를 제조할 수 있다. 즉, 본 발명의 실시예인 시트 성형용 몰드 제조 방법에 의해 제조된 시트 성형용 몰드를 마련한다. 그리고, 마련된 시트 성형용 몰드에 의해 피성형체인 재귀반사 시트를 성형함으로써, 절두형 큐브 코너 패턴 및 삼각뿔형 큐브 코너 패턴을 복수개 포함하는 피성형체인 재귀반사 시트를 제조할 수 있다.Meanwhile, the retroreflective sheet which is a molded object including a plurality of truncated cube corner patterns and triangular pyramidal cube corner patterns can be manufactured by the sheet forming mold manufacturing method manufactured by the embodiment of the present invention. That is, the sheet molding mold manufactured by the sheet manufacturing mold manufacturing method which is an Example of this invention is provided. And the retroreflective sheet which is a to-be-molded object which contains a plurality of truncated cube corner pattern and a triangular pyramidal cube corner pattern can be manufactured by shape | molding the retroreflective sheet which is a to-be-molded object with the provided sheet shaping | molding mold.
본 발명을 첨부 도면과 전술된 바람직한 실시예를 참조하여 설명하였으나, 본 발명은 그에 한정되지 않으며, 후술되는 특허청구범위에 의해 한정된다. 따라서, 본 기술분야의 통상의 지식을 가진 자라면 후술되는 특허청구범위의 기술적 사상에서 벗어나지 않는 범위 내에서 본 발명을 다양하게 변형 및 수정할 수 있다.Although the invention has been described with reference to the accompanying drawings and the preferred embodiments described above, the invention is not limited thereto, but is defined by the claims that follow. Accordingly, one of ordinary skill in the art may variously modify and modify the present invention without departing from the spirit of the following claims.

Claims (14)

  1. 복수개 박편을 배열시킨 박편 조립체를 이용하여 큐브 코너형 재귀반사 시트를 성형하는 시트 성형용 몰드의 제조 방법에 있어서,In the manufacturing method of the sheet | seat shaping | molding mold which shape | molds a cube corner type retroreflective sheeting using the flake assembly which arranged several flakes,
    각 박편의 측면이 서로 닿도록 배열되어, 인접한 박편간의 경계 라인인 배열 라인을 복수개 가지는 박편 조립체를 마련하는 과정;Preparing a lamella assembly having a plurality of array lines, the side surfaces of each of the flakes being in contact with each other, the boundary line between adjacent flakes;
    상기 박편 조립체의 배열 상부면 상에, 삼각뿔 형태의 큐브 코너 몰드 패턴을 복수개 형성하는 과정; 및Forming a plurality of cube corner mold patterns in the form of a triangular pyramid on an upper surface of the array of flake assemblies; And
    상기 박편 조립체의 하나 이상의 박편을 상기 배열 라인의 방향으로 이동시켜, 상기 배열 상부면 상의 큐브 코너 몰드 패턴의 형상을 변경시키는 과정;Moving one or more flakes of the lamella assembly in the direction of the array line to change the shape of the cube corner mold pattern on the array top surface;
    을 포함하는 시트 성형용 몰드 제조 방법.Sheet molding mold manufacturing method comprising a.
  2. 청구항 1에 있어서, 상기 삼각뿔 형태의 큐브 코너 몰드 패턴을 복수개 형성하는 과정은, The process of claim 1, wherein the forming of the triangular pyramid-shaped cube corner mold pattern is provided in plural.
    인접한 제1큐브 코너 몰드 패턴과 제2큐브 코너 몰드 패턴이 하나의 공통변을 통해서 인접되도록 형성하는 과정을 포함하는 시트 성형용 몰드 제조 방법.And forming adjacent ones of the first cube corner mold pattern and the second cube corner mold pattern to be adjacent to each other through one common side.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 공통변을 상기 박편 조립체의 배열 라인에 직각으로 형성하는 시트 성형용 몰드 제조 방법.And forming the common side at right angles to the array line of the lamella assembly.
  4. 청구항 2에 있어서, 상기 삼각뿔 형태의 큐브 코너 몰드 패턴을 복수개 형성하는 과정은,The process of claim 2, wherein the forming of the triangular pyramid-shaped cube corner mold pattern is provided in plural.
    상기 큐브 코너 몰드 패턴의 바닥면이 제1사잇각, 제2사잇각 및 제3사잇각으로 된 삼각형이라 할 때, 상기 박편 조립체의 배열 라인을 횡단하여 상기 배열 상부면 상에서 상기 큐브 코너 몰드 패턴의 제1사잇각을 이루도록 교차하여 파여진 제1홈라인 및 제2홈라인을 형성하는 과정; 및When the bottom surface of the cube corner mold pattern is a triangle consisting of first, second and third angles, the first angle of the cube corner mold pattern on the top surface of the array is crossed across the array line of the lamella assembly. Forming a first groove line and a second groove line which are intersected to form a groove; And
    상기 큐브 코너 몰드 패턴의 제2사잇각을 가지도록 상기 제1홈라인과 교차하고, 상기 큐브 코너 몰드 패턴의 제3사잇각을 가지도록 상기 제2홈라인과 교차하여 파여진 제3홈라인을 형성하는 과정;Forming a third groove line intersecting the first groove line to have a second angle of the cube corner mold pattern, and having a third groove line intersected with the second groove line to have a third angle of the cube corner mold pattern. process;
    을 포함하는 시트 성형용 몰드 제조 방법.Sheet molding mold manufacturing method comprising a.
  5. 청구항 4에 있어서, 상기 제3홈라인을 상기 박편 조립체의 배열 라인에 직각으로 형성하는 시트 성형용 몰드 제조 방법.The method according to claim 4, wherein the third groove line is formed at right angles to the array line of the lamella assembly.
  6. 청구항 2에 있어서, 상기 삼각뿔 형태의 큐브 코너 몰드 패턴을 복수개 형성하는 과정은, The process of claim 2, wherein the forming of the triangular pyramid-shaped cube corner mold pattern is provided in plural.
    제1박편, 제2박편, 제3박편이 상기 박편 조립체에서 차례로 배열되고, 각 큐브 코너 몰드 패턴은 세 개의 꼭지점과 상기 세 개의 꼭지점과 연결되는 정점으로 된 삼각뿔 형태를 가진다고 할 때,When the first flakes, the second flakes, and the third flakes are arranged in sequence in the lamella assembly, each cube corner mold pattern has a triangular pyramid shape having three vertices and vertices connected to the three vertices.
    상기 제1큐브 코너 몰드 패턴과 제2큐브 코너 몰드 패턴이 상기 제1박편, 제2박편, 제3박편을 가로질러 상기 배열 상부면 상에서 형성되는 시트 성형용 몰드 제조 방법.And a first cube corner mold pattern and a second cube corner mold pattern are formed on the array top surface across the first, second, and third foils.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 제1박편은, 제1큐브 코너 몰드 패턴의 제1-1꼭지점을 포함하여 재귀반사가 일어나지 않는 제1A비유효 면적, 제2큐브 코너 몰드 패턴의 제2-1꼭지점을 포함하여 재귀반사가 일어나지 않는 제2A비유효 면적을 포함하며,The first flake may include a 1A non-effective area including a 1-1 vertex of the first cube corner mold pattern and a 1-1 non-effective area and a 2-1 vertex of the second cube corner mold pattern. Includes a 2A non-effective area that does not occur,
    상기 제2박편은, 제1큐브 코너 몰드 패턴의 제1-2꼭지점을 포함하여 재귀반사가 일어나는 제1유효 면적, 제2큐브 코너 몰드 패턴의 제2-2꼭지점을 포함하여 재귀반사가 일어나는 제2유효 면적을 포함하며,The second flake may include a first effective area in which retroreflection occurs including the first-second vertex of the first cube corner mold pattern, and a second retroreflection including the second-second vertex of the second cube corner mold pattern. Includes 2 effective areas,
    상기 제3박편은, 제1큐브 코너 몰드 패턴의 제1-3꼭지점을 포함하여 재귀반사가 일어나지 않는 제1B비유효 면적, 제2큐브 코너 몰드 패턴의 제2-3꼭지점을 포함하여 재귀반사가 일어나지 않는 제2B비유효 면적을 포함하는 시트 성형용 몰드 제조 방법.The third flake may include a first B-effective area in which no retroreflection occurs, including the first-three vertices of the first cube corner mold pattern, and the second-three vertices of the second cube corner mold pattern. A method for producing a mold for forming a sheet, comprising a second B-effective area which does not occur.
  8. 청구항 7에 있어서, 상기 박편 조립체의 하나 이상의 박편을 상기 배열 라인의 방향으로 이동시키는 과정은,The process of claim 7 wherein the step of moving the one or more flakes of the lamella assembly in the direction of the alignment line,
    상기 제1큐브 코너 몰드 패턴에서의 제1유효 면적 및 상기 제2큐브 코너 몰드 패턴에서의 제2유효 면적을 가지는 제2박편을 상기 배열 라인의 방향으로 이동시키는 시트 성형용 몰드 제조 방법.And a second flake having a first effective area in the first cube corner mold pattern and a second effective area in the second cube corner mold pattern in the direction of the alignment line.
  9. 청구항 8에 있어서, 상기 제2박편의 이동은, The method of claim 8, wherein the movement of the second foil,
    상기 제1유효 면적 및 제2유효 면적의 전체 면적과 상기 제1A비유효 면적 및 제2A비유효 면적의 전체 면적간의 접선 길이만큼 상기 제2박편을 상기 배열 라인의 방향으로 이동시키는 시트 성형용 몰드 제조 방법.A sheet forming mold for moving the second lamella in the direction of the alignment line by the tangential length between the total area of the first effective area and the second effective area and the total area of the first A invalid area and the second A invalid area. Manufacturing method.
  10. 청구항 1 내지 청구항 9 중 어느 하나의 시트 성형용 몰드 제조 방법에 의해 제조된 시트 성형용 몰드를 마련하는 과정; 및Providing a sheet forming mold manufactured by the method for manufacturing a sheet forming mold according to any one of claims 1 to 9; And
    상기 시트 성형용 몰드에 의해 피성형체인 재귀반사 시트를 성형하는 과정;Molding a retroreflective sheet that is a molded object by the sheet molding mold;
    을 포함하는 재귀반사 시트 제조 방법.Retroreflective sheet production method comprising a.
  11. 바닥면;Bottom surface;
    상기 바닥면의 반대쪽에 형성된 구조화면을 포함하며,It includes a structural screen formed on the opposite side of the bottom surface,
    상기 구조화면은, 절두형 큐브 코너 몰드 패턴 및 삼각뿔형 큐브 코너 몰드 패턴을 복수개 포함하는 시트 성형용 몰드.The structure screen is a sheet forming mold comprising a plurality of truncated cube corner mold pattern and triangular pyramidal cube corner mold pattern.
  12. 청구항 11에 있어서, 상기 절두형 큐브 코너 몰드 패턴은,The method of claim 11, wherein the truncated cube corner mold pattern,
    인접한 제1절두형 큐브 코너 몰드 패턴과 제2절두형 큐브 코너 몰드 패턴이 하나의 제1공통변을 통하여 인접되도록 형성된 시트 성형용 몰드.A sheet forming mold, wherein adjacent first truncated cube corner mold patterns and second truncated cube corner mold patterns are adjacent to each other through one first common edge.
  13. 청구항 11에 있어서, 상기 삼각뿔형 큐브 코너 몰드 패턴은,The method according to claim 11, wherein the triangular pyramidal cube corner mold pattern,
    인접한 제1삼각뿔형 큐브 코너 몰드 패턴 및 제2삼각뿔형 큐브 코너 몰드 패턴이 하나의 제2공통변을 통하여 인접되도록 형성된 시트 성형용 몰드.A sheet forming mold, wherein adjacent first triangular pyramid cube corner mold patterns and second triangular pyramidal cube corner mold patterns are adjacent to each other through one second common edge.
  14. 청구항 11 내지 13 중 어느 하나의 시트 성형용 몰드에 의해 제조되어, 절두형 큐브 코너 패턴 및 삼각뿔형 큐브 코너 패턴을 복수개 포함하는 피성형체인 재귀반사 시트.The retroreflective sheet manufactured by the sheet forming mold of any one of Claims 11-13 which is a to-be-molded object containing a plurality of truncated cube corner patterns and a triangular pyramidal cube corner pattern.
PCT/KR2015/005946 2014-06-16 2015-06-12 Method for manufacturing sheet forming mold, and sheet forming mold and retroreflective sheet WO2015194800A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140072675A KR102200725B1 (en) 2014-06-16 2014-06-16 Method for manufacturing sheet casting mold and apparatus for the same and retroreflection sheet
KR10-2014-0072675 2014-06-16

Publications (1)

Publication Number Publication Date
WO2015194800A1 true WO2015194800A1 (en) 2015-12-23

Family

ID=54935732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005946 WO2015194800A1 (en) 2014-06-16 2015-06-12 Method for manufacturing sheet forming mold, and sheet forming mold and retroreflective sheet

Country Status (2)

Country Link
KR (1) KR102200725B1 (en)
WO (1) WO2015194800A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101941372B1 (en) * 2017-07-27 2019-04-12 김현대 Sheet Mold Forming Method which is manufactured from Conventional Cube-corner Prism Structure Sheet Forming Pattern to Forming Pattern without Retro-reflective Dead area, Pattern thereof and Retro-reflective Sheet thereof
KR101942754B1 (en) * 2017-12-15 2019-01-28 엠피닉스 주식회사 Mold for Fresnel lens production and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243618A (en) * 1978-10-23 1981-01-06 Avery International Corporation Method for forming retroreflective sheeting
US6120280A (en) * 1995-07-28 2000-09-19 Nippon Carbide Kogyo Kabushiki Kaisha Microprism master mold
KR100574610B1 (en) * 1997-07-02 2006-04-28 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 Retroreflective cube corner sheeting, molds therefor, and methods of making the same
KR20070015187A (en) * 2004-04-01 2007-02-01 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Retroreflective sheeting with controlled cap-y
US20140027293A1 (en) * 2008-04-09 2014-01-30 Orafol Americas Inc. Pin based method of precision diamond turning to make prismatic mold and sheeting

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045230A (en) * 1998-02-05 2000-04-04 3M Innovative Properties Company Modulating retroreflective article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243618A (en) * 1978-10-23 1981-01-06 Avery International Corporation Method for forming retroreflective sheeting
US6120280A (en) * 1995-07-28 2000-09-19 Nippon Carbide Kogyo Kabushiki Kaisha Microprism master mold
KR100574610B1 (en) * 1997-07-02 2006-04-28 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 Retroreflective cube corner sheeting, molds therefor, and methods of making the same
KR20070015187A (en) * 2004-04-01 2007-02-01 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Retroreflective sheeting with controlled cap-y
US20140027293A1 (en) * 2008-04-09 2014-01-30 Orafol Americas Inc. Pin based method of precision diamond turning to make prismatic mold and sheeting

Also Published As

Publication number Publication date
KR102200725B1 (en) 2021-01-12
KR102200725B9 (en) 2021-09-17
KR20150144053A (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP4235750B2 (en) Thin plate used for mold for molding retroreflective cube corner product, mold assembly including the thin plate, and retroreflective sheet manufactured from the mold assembly
EP2056132B1 (en) Triangular pyramid type cubic corner retroreflection article, and its manufacturing method
JP3590064B2 (en) Retroreflective corner cube article and method of making the same
JP4310421B2 (en) A tiled retroreflective sheet consisting of cube corner elements with steep slopes
JP2002509495A (en) Retroreflective cube corner sheet mold, sheet forming the mold, and method of manufacturing the sheet
WO2015194800A1 (en) Method for manufacturing sheet forming mold, and sheet forming mold and retroreflective sheet
JP5409769B2 (en) Precision diamond turning pin-based method for making prismatic molds and sheet materials
JP2002508085A (en) Cube corner type retroreflective sheet, mold for the same, and method of manufacturing the mold
JP3590065B2 (en) Retroreflective corner cube article and method of making the same
CA2504627A1 (en) Tri-level cube corner ruling
EP2431774B1 (en) Hexagonal corner cube retroreflective article
JP3824471B2 (en) Cube corner type retroreflective sheet and cube corner mold
WO2014104781A1 (en) Retro reflection sheet using cube corner having modified structure
AU2012332746B2 (en) Rulable multi-directional prism cluster retroreflective sheeting
JP2016513031A (en) Cube corner reflector and method thereof
EP2360498B1 (en) Retroreflective article
CN220576420U (en) Pyramid array daughter board splicing die with different structures
CN215741803U (en) Mutually-embedded building block
CN218557698U (en) Processing tool for corner micro-prism array optical female die
US20220413193A1 (en) Screen provided with retroreflective microstructures
CN117805951A (en) Manufacturing method of corner type microprism array
WO2022097458A1 (en) Forming mold, plate members of forming mold, and method for manufacturing forming mold
CA1096832A (en) Retroreflector
KR20140030002A (en) Method for manufacturing master mold for production retro-reflector
JPS63159802A (en) Lens optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809563

Country of ref document: EP

Kind code of ref document: A1