WO2015170869A1 - Method and system for detecting surrounding moving object using cooperative communication - Google Patents

Method and system for detecting surrounding moving object using cooperative communication Download PDF

Info

Publication number
WO2015170869A1
WO2015170869A1 PCT/KR2015/004503 KR2015004503W WO2015170869A1 WO 2015170869 A1 WO2015170869 A1 WO 2015170869A1 KR 2015004503 W KR2015004503 W KR 2015004503W WO 2015170869 A1 WO2015170869 A1 WO 2015170869A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement information
information
moving object
area
traffic
Prior art date
Application number
PCT/KR2015/004503
Other languages
French (fr)
Korean (ko)
Inventor
서승우
최믿음
최승탁
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140085790A external-priority patent/KR101637374B1/en
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2015170869A1 publication Critical patent/WO2015170869A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/012Measuring and analyzing of parameters relative to traffic conditions based on the source of data from other sources than vehicle or roadside beacons, e.g. mobile networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data

Definitions

  • the present disclosure relates to a system and a method for detecting a surrounding mobile object using cooperative communication, and more particularly, to a system and a method for extending the scope of detection and improving the accuracy through cooperative communication.
  • LIDARs laser scanners
  • radars cameras
  • the location information may be provided, or information about objects located in a blind spot of the vehicle may be provided.
  • Such sensor-based environmental awareness technology greatly contributes to driving safety of the vehicle in that it provides the driver of the vehicle with object information of a location that is difficult to see with the naked eye, but has some technical limitations.
  • One such limitation is that conventional sensor-based environmental techniques cannot collect location information for objects located outside the detection area of the sensor.
  • conventional sensor-based environmental techniques cannot collect location information for objects located outside the detection area of the sensor.
  • the position of the surrounding objects collected through the sensors on the map due to the error of the GPS signal used when determining the global position of the vehicle, there is a limit that the global position of the surrounding objects are also displayed incorrectly.
  • Another object of the present disclosure is to provide a peripheral moving object detection system and method that can more accurately detect and track the speed or position of surrounding moving objects including itself, even when errors such as GPS signals occur.
  • a system for detecting a surrounding moving object using cooperative communication includes: a sensing unit including one or more sensors and generating sensing information by detecting moving objects located within a detection range of the one or more sensors; A communication unit which transmits first local measurement information indicating the traffic information of the moving objects generated based on the sensing information to the outside and receives at least one second local measurement information from the outside; And combining the pre-generated extended measurement information, the first area measurement information and the second area measurement information, so that the traffic information of the extended measurement information, the traffic information of the first area measurement information, and the second area measurement information. And a fusion processing unit for generating new extended measurement information including traffic information.
  • the apparatus may further include a preprocessor configured to extract the traffic information of the moving objects from the sensing information to generate the first area measurement information.
  • the apparatus may further include an input / output interface configured to receive a user input for controlling the communication unit.
  • the movable body equipped with the one or more sensors may recognize the surrounding environment in all directions.
  • the traffic information may include information representing an absolute position, relative position, speed, or direction of the moving object.
  • the fusion processing unit estimates traffic information of the moving objects when generating the new extended measurement information by fusing the previously generated extended measurement information, the first local measurement information, and the second local measurement information. Tracking improves position accuracy.
  • the fusion processing unit extracts feature information overlapping the previously generated extended measurement information, the first area measurement information, and the second area measurement information.
  • the fusion processing unit may compare the traffic information of the first moving object with the traffic information of the second moving object, and as a result of the comparison, the difference between the traffic information of the first moving object and the traffic information of the second moving object is a threshold value. If it is similar within the range, it is determined that the first mobile body and the second mobile body represent the same mobile body, and the traffic information of the first mobile body and the traffic information of the second mobile body are put into a plurality of measurement values, and the single state is estimated to be accurate. To improve.
  • the fusion processor determines the identity of the first mobile unit and the other mobile unit by comparing the traffic information with the first mobile unit, another mobile unit having a difference in traffic information with the first mobile unit within a threshold value may be selected.
  • the mobile body having the smallest difference in traffic information from the first mobile body is determined to be the same mobile body as the first mobile body.
  • first traffic information for the first area of the first area measurement information and the second traffic information for the second area of the second area measurement information overlap each other, Comparing a first topology representing a moving object distribution in the first region and a second topology representing a moving object distribution in the second region, and if the similarity between the first topology and the second topology is higher than a predetermined criterion. It is determined that the moving bodies in the first region constituting the first topology and the moving bodies in the second region constituting the second topology represent the same moving bodies.
  • the fusion processor compares a first topology representing a mobile body distribution in the first region with a second topology representing a mobile body distribution in the second region, and determines whether the first mobile body is the same mobile body. If two or more moving objects whose similarity between the second topology and the second topology is higher than a predetermined criterion are determined, the moving object having the most similar topology is determined to be the same moving object.
  • the fusion processor may be configured such that when the moving objects in the first region constituting the first topology and the moving bodies in the second region constituting the second topology represent the same moving bodies, the first topology and the first The extended measurement information is generated by linearly and nonlinearly converting the first area measurement information or the second area measurement information so that the two topologies overlap each other.
  • the similarity between the first topology and the second topology is determined in advance when the magnitude of an error vector representing a difference between the first topology and the second topology is equal to or less than a predetermined value. It is judged to be higher than the determined standard.
  • the convergence processing unit when the convergence processing unit generates the new extended measurement information by fusing the first area measurement information and the at least one second area measurement information, the area measurement information of a more adjacent moving object is preferentially hierarchically. Fuse to generate extended measurement information.
  • the convergence processor when the convergence processor generates the extended measurement information by fusing the first area measurement information and the at least one second area measurement information, the GPS of the moving objects in the at least one second area measurement information.
  • the second geo-measurement information transmitted by a more adjacent mobile body is fused first.
  • the convergence processing unit may fuse the generated new extended measurement information with other second local measurement information received from another moving object to further include traffic information of the second second local measurement information. Update the information or create another extended measurement information in place of the new extended measurement information.
  • the new extended measurement information is configured to have a wider detection range for the moving object or more accurate traffic information than the first local measurement information.
  • a method for detecting positions of surrounding moving objects of a moving object through a detection system mounted on a moving object includes receiving second local measurement information of the other moving object through cooperative communication with other moving objects. ; Traffic information of the first area measurement information and the second area measurement are merged with the received second area measurement information, the first area measurement information generated by the detection system, and the extended measurement information previously generated by the detection system. Generating new extension measurement information configured to include traffic information of the information and traffic information of the previously generated extension measurement information; And outputting traffic information on the surrounding mobiles to the user based on the generated new extended measurement information.
  • the method may further include receiving another second geo-measuring information from another moving object; And fusing the received second local measurement information with the new extended measurement information to update the new extended measurement information to further cover the traffic information of the second local measurement information or to substitute another new extended measurement information. Generating extended measurement information.
  • the detection range of the surrounding mobile object detection system may be dramatically increased.
  • the location information of the moving objects may be estimated more accurately with reference to the received local measurement information.
  • a safer and more efficient driving strategy can be established according to the wider detection range, so that problems such as traffic congestion can be avoided in advance, and information on blind spots that could not be detected by the equipped sensors can be obtained. It can reduce the risk.
  • peripheral vehicle detection system uses open cooperative communication, unlike the conventional technologies, which have limited access to traffic information, anyone without any special limitation has an advantage of always obtaining necessary information.
  • each mobile entity participating in the cooperative communication functions as a receiving entity and a transmitting entity at the same time, it does not need a separate infrastructure dedicated to providing information to the mobile entity, and thus a cooperative communication system can be constructed at a relatively low cost. Can be.
  • FIG. 1 is a diagram illustrating an outline of a peripheral moving object detection system according to an exemplary embodiment of the present specification.
  • FIG. 2 is a block diagram illustrating a detailed configuration of a surrounding moving object detection system according to an exemplary embodiment of the present specification.
  • FIG. 3 is a diagram conceptually illustrating a method in which the convergence processor 130 illustrated in FIG. 1 generates extended measurement information by fusing a plurality of geometric information.
  • FIG. 4 is a diagram for describing an example of generating extended measurement information for a wide range of areas by using cooperative communication 1000 between a plurality of moving objects.
  • FIG. 5 is a flowchart illustrating a method of generating, by a nearby moving object detecting system, local measurement information through its sensor and transmitting the same to another moving object according to one embodiment of the present specification.
  • FIG. 6 is a flowchart illustrating a method of detecting a location of surrounding moving objects by a nearby moving object detection system through cooperative communication with another moving object, according to an exemplary embodiment.
  • the surrounding moving object detection system 100 (hereinafter, referred to as a detection system) is mounted on a moving object 10 such as a vehicle, and other moving objects 21, 22, and 23 within its detection range DR. , 24) to generate local measurement information (LI) around the moving object 10.
  • the local measurement information refers to traffic information such as the speed, location, direction, etc. of oneself and surrounding moving objects measured or detected by a certain moving object detection system (for example, 100).
  • the detection system 100 receives local measurement information from another mobile body (eg, 22) through cooperative communication, and then fuses the local measurement information generated by itself with the extended measurement information (EI). information).
  • the extended measurement information refers to traffic information newly generated by comparing and combining certain local measurement information with other local measurement information to have a wider range or higher accuracy.
  • the detection system 100 may provide the local measurement information generated by itself through other cooperative communication to another mobile.
  • the detection system 100 detects the peripheral moving objects 21, 22, 23, and 24 with respect to the omnidirectional direction of the moving object 10 (ie, 360 degree detection).
  • the cooperative communication between the detection system 100 and another moving object is performed in the form of broadcast both transmission and reception. That is, the geospatial information transmitted from a certain mobile object is transmitted to a plurality of arbitrary mobile objects without specifying a destination, and the receiving mobile object receives any of the geometric information transmitted from other mobile objects for itself. Can be used to generate extended measurement information.
  • such a detection system 100 allows all moving objects 10, 21, 22, 23, 24 to be inaccurately aware of their position and to localize some of them (e.g. 21, 22).
  • the moving object 10 may be more advantageously used to refer to such local measurement information to newly know or more accurately estimate the location information of itself or surrounding moving objects.
  • the detection system 100 includes a sensing unit 110, a preprocessor 120, a fusion processor 130, an input / output interface 140, and a communication unit 150.
  • the sensing unit 110 includes at least one sensor to detect sensing information such as the position, speed, acceleration, direction, or size of the detection system 100 itself and surrounding moving objects.
  • the sensing unit 110 includes at least one sensor that can detect sensing information of itself or a moving object, such as a laser scanner (LiDAR), a GPS receiver, a radar (RADAR), or a camera.
  • the GPS receiver refers to a module that acquires global position information of the moving object 10 or the detection system 100 through satellite information received from a GPS satellite.
  • the sensing unit 110 includes at least one sensor for recognizing the surrounding environment in all directions of the moving object 10 (see FIG. 1), and when the sensing unit 110 includes two or more sensors, each sensor is a moving object. By being provided at different positions of the front surface of the whole of (10), respectively, even if the other moving object is located in proximity to one sensor so that the sensor can no longer detect the moving object, It can be configured to detect beyond the moving object through other sensors.
  • the sensing information detected by the sensing unit 110 through its sensors is transmitted to the preprocessor 120.
  • the preprocessor 120 generates the local measurement information LI by processing the sensing information transmitted from the sensing unit 110.
  • the preprocessor 120 extracts traffic information related to the traffic of the mobile body (for example, the position, speed, direction, etc. of the mobile body) from the transmitted sensing information.
  • the preprocessing unit 120 generates regional measurement information (LI) representing the traffic of itself and surrounding mobiles based on the extracted traffic information.
  • LI regional measurement information
  • the preprocessing unit 120 may selectively extract only data necessary for generating the local measurement information LI among the sensing information and filter the remaining data, thereby minimizing the amount of traffic information to be processed.
  • the preprocessor 120 may assign a unique ID to each of the detected moving objects based on the traffic information.
  • the position of the moving object indicated by the local measurement information may include an absolute position such as a global coordinate of the moving object or a relative position between the moving object and another moving object (for example, relative distance between moving objects and possible directions). Can be.
  • the local measurement information LI generated by the preprocessor 120 is provided to the fusion processor 130 to generate the extended measurement information EI, or is provided to the communication unit 150 to be transmitted to another moving object.
  • the local measurement information LI generated by the preprocessor 120 may be provided to the communication unit 150 via the fusion processor 130.
  • the fusion processor 130 may use the local measurement information LI (hereinafter, referred to as magnetic local measurement information) generated by the preprocessor 120 and the local measurement information received from another moving object (eg, 22 in FIG. 1) (hereinafter, referred to as another region). Measurement information) is fused to generate extended measurement information (EI) with an extended detection range or improved accuracy than magnetic local measurement information.
  • LI local measurement information
  • EI extended measurement information
  • the fusion processing unit 130 fuses the existing extended measurement information EI with the local measurement information received from another moving object and expands the existing extended measurement information. It is possible to generate new extended measurement information with extended detection range or improved accuracy than (EI).
  • the fusion processing unit 130 when the plurality of local measurement information is received from a plurality of peripheral moving objects, the fusion processing unit 130, for example, by first fusion local measurement information of the nearest moving object with its own local measurement information, the first extended measurement information Receive in a hierarchical fusion method based on the proximity between itself and the surrounding moving object, such as a method for generating a second extended measurement information by generating the first extended measurement information and fusing the first extended measurement information with the local measurement information of the next adjacent moving object. Collected local measurement information.
  • the fusion processor 130 may refer to the GPS position information or the strength of the communication signal received from the neighboring mobiles to determine the proximity to the neighboring mobiles. For example, the fusion processor 130 may determine that a nearby mobile body that is displayed closer to the GPS position information or transmits a stronger communication signal is a relatively closer mobile body.
  • the fusion processing unit 130 may more accurately estimate the location information of the surrounding mobile objects known to the user by comparing the local measurement information or the extended measurement information EI with the local measurement information received from another moving object. have. For example, when the fusion processor 130 fuses its own local measurement information or extended measurement information (EI) with the local measurement information of another mobile object received, the convergence processing unit 130 of the moving objects shown in the local measurement information or extended measurement information (EI) Location accuracy can be improved by estimating and tracking traffic information.
  • the convergence processor 130 extracts feature information that overlaps with its local measurement information or extended measurement information (EI) and local measurement information of another mobile object received, and thus, traffic information of neighboring mobile objects, for example, Absolute and relative coordinates of surrounding moving bodies can be estimated.
  • EI extended measurement information
  • the fusion processing unit 130 may determine the state of each moving object on the magnetic localization information such as position, speed, and direction in order to fuse the magnetic localization information (or the previously generated extended measurement information) with other local measurement information. It is possible to track the state of each moving object by recording the change of parameter value, for example, and the result of tracking the state of each moving object is different from the local measurement information (for example, its own area). It can be used to determine whether the moving objects on the measurement information and other local measurement information) are the same moving objects.
  • the fusion processing unit 130 compares the traffic information of the first mobile object on the magnetic localization information (or the parasitic extended measurement information) with the traffic information of the second mobile object on the other local measurement information, and compares the result. If the difference between the traffic information of the first mobile and the traffic information of the second mobile is similar within a threshold value, it may be determined that the first mobile and the second mobile represent the same mobile. In this case, the convergence processor improves accuracy by estimating a single state by placing the traffic information of the first mobile body and the traffic information of the second mobile body into a plurality of measurement values.
  • the fusion processor 130 determines the identity of the first mobile body and the other mobile body by comparing the traffic information with the first mobile body described above, another mobile body having a difference in traffic information with the first mobile body within a threshold value is determined.
  • the mobile body having the smallest difference in traffic information from the first mobile body can be determined as the same mobile body as the first mobile body.
  • the fusion processor 130 may locate the first moving object on the magnetic local measurement information and the second moving object on the other local measurement information.
  • the magnetic localization information or other localization information may be shifted, i.e., linear and nonlinearly converted so that the positions of the overlap with each other.
  • the fusion processor 130 may determine that the first moving object and the second moving object represent the same moving object.
  • the second moving object on the other area measurement information may indicate a moving object that has transmitted other area measurement information.
  • each represents the same moving object on the magnetic localization information and the other local measurement information.
  • traffic information of the moving objects may be further referred to to determine whether moving objects having overlapping positions on the magnetic localization information and other local measurement information represent the same moving object.
  • the convergence processor 130 may include the first traffic information of the first area on the magnetic area measurement information (or the previously generated extended measurement information) and the second traffic information of the second area on the other area measurement information.
  • the first topology representing the mobile body distribution in the first region and the second topology representing the mobile body distribution in the second region are compared, and the similarity between the first topology and the second topology is above a predetermined reference. In a high case, it may be determined that the moving bodies in the first region constituting the first topology and the moving bodies in the second region constituting the second topology represent the same moving bodies.
  • the fusion processor 130 when the fusion processor 130 compares the first topology representing the mobile body distribution in the first region and the second topology representing the mobile body distribution in the second region, the fusion processor 130 determines whether the first mobile body is the same mobile body. When there are two or more moving objects whose similarity between the topology and the second topology is higher than a predetermined criterion, the moving objects having the most similar topology may be determined as the same moving object.
  • the similarity determination between the first topology and the second topology may, for example, obtain an error vector representing a difference between the first topology and the second topology, and then calculate the magnitude of the error vector. If it is smaller than the threshold value, the method may determine that the similarity between the first topology and the second topology is higher than a predetermined criterion, but the present invention is not limited thereto, and is well known in the art for determining similarity between topologies. General methods may be used in place of or in addition to the above methods.
  • the convergence processor 130 may include the first traffic information of the first area on the magnetic area measurement information (or the previously generated extended measurement information) and the second traffic information of the second area on the other area measurement information.
  • the extended measurement information may be generated by matching the positions of the transmitting mobile and other mobiles on the other area measurement information based on the position of the transmitting mobile object detected by the sensing unit 110.
  • the fusion processor 130 may more accurately correct the traffic information (particularly, location information) of the mobile objects overlapped on the respective local measurement information with reference to the magnetic local measurement information and the received other local measurement information. Specifically, when the fusion processing unit 130 generates the extended measurement information by fusing the magnetic local measurement information (or the extended measurement information) with other local measurement information, the same moving object on the magnetic local measurement information and the other local measurement information is generated. Traffic data can be combined into one traffic data. For example, when the speed of a moving object is displayed as 100 and 110 in the magnetic localization information and the other local measurement information, respectively, the fusion processing unit 130 gives priority to the information determined to be more accurate of the two data, which is the moving object.
  • the fusion processor 130 may give more priority to the data on the magnetic area measurement information detected through the sensing unit 110 than the data on the other area measurement information, and thus the self-measurement information).
  • 100 of the phase data is determined to be the speed of the moving object).
  • the determined integrated traffic information may be used as traffic information of the generated extension measurement information.
  • the fusion processor 130 tracks the traffic information of the moving object with reference to the magnetic localization information, the received other local measurement information, or the extended measurement information (for example, tracks the change of traffic information over time). ), The position, velocity or direction of travel of the moving object can be estimated from the result. In addition, the fusion processor 130 may analyze and predict a difference in the direction of travel between the moving object on which the detection system 100 is mounted and another moving object.
  • the fusion processing unit 130 may perform convergence with local measurement information or extended measurement information including traffic information of a moving object whose absolute position is known.
  • the absolute position of the moving object can be estimated.
  • the fusion processor 130 may assign a unique ID or identify a unique ID to a transmitting mobile object that has transmitted other geometric information, and may assign the unique ID to the specific mobile object on the generated extended measurement information. Can match.
  • the unique ID may be assigned or identified with reference to meta information (for example, a serial number of a product or a chassis number of the moving object) transmitted from the transmitting mobile object.
  • the input / output interface 150 provides input / output means for controlling the detection system 100 and outputting the result.
  • the detection system 100 can vary its cooperative radius of communication in a manner that adjusts the strength of the communication signal to be transmitted or received, and such a change in the cooperative radius of communication may be user input via the input / output interface 150. Can be controlled according to.
  • the detection system 100 may change the area or direction in which the cooperative communication is to be performed by adjusting the direction of the cooperative communication signal according to a user input through the input / output interface 150.
  • the detection system 100 may set or change a period for transmitting magnetic area measurement information or receiving other area measurement information according to a user input through the input / output interface 150.
  • the detection system 100 may display a current cooperative communication radius or area to the user in response to a user input through the input / output interface 150 or limit a possible cooperative communication radius or area to a certain range.
  • the communicator 150 performs cooperative communication between the detection system 100 and another mobile object.
  • the communication unit 150 receives the magnetic localization information LI from the preprocessing unit 120 or the fusion processing unit 130 and transmits it to another mobile unit (for example, in the form of broadcasting) or from other mobile units. Receives other area measurement information and transmits it to the fusion processor 130.
  • the communication unit 150 may further transmit the extended measurement information EI generated by the fusion processing unit 130 to another moving object.
  • the communication unit 150 for example, according to a user input through the input and output interface 140, the surrounding environment (for example, traffic or communication environment), traffic information of the other mobile body measured by the sensing unit 110, or The cooperative communication radius may be changed by adjusting the signal strength of the cooperative communication with reference to the traffic information of the detection system 100 measured by another mobile.
  • the communication unit 150 may, for example, according to a user input through the input / output interface 140, may include a surrounding environment (eg, a traffic or communication environment), traffic information of another mobile object measured by the sensing unit 110, or By referring to the traffic information of the detection system 100 measured by another mobile, it is possible to change the area or direction in which the cooperative communication is performed by adjusting the direction of the cooperative communication signal.
  • a surrounding environment eg, a traffic or communication environment
  • traffic information of another mobile object measured by the sensing unit 110 e.g, a traffic or communication environment
  • the communication unit 150 may, for example, according to a user input through the input / output interface 140, may include a surrounding environment (eg, a traffic or communication environment), traffic information of another mobile object measured by the sensing unit 110, or By referring to the traffic information of the detection system 100 measured by another mobile, it is possible to change the area or direction in which the cooperative communication is performed by adjusting the direction of the cooperative communication signal.
  • the communication unit 150 may limit possible cooperative communication radius or area within a certain range, for example, according to a user input through the input / output interface 150.
  • the communication unit 150 may transmit the ID of the moving object on which the detection system 100 is mounted together with the magnetic area measurement information LI.
  • the ID of the mobile object to be transmitted may be determined by referring to unique meta information related to the mobile object (for example, a serial number of a product or a chassis number of the mobile object) or a communication address used for cooperative communication.
  • the communication unit 150 may give priority to the other local measurement information received according to a predetermined criterion. Then, different regional measurement information may be differentially transmitted to the convergence processor 130 according to the assigned priority (for example, after the highest priority has been transmitted to the convergence processor 130, the local measurement information may be transferred to the convergence processor 130). And other regional measurement information are sequentially transmitted to the fusion processing unit 130 within a range that does not overlap.
  • the predetermined criterion for determining the priority among other geometric information is, for example, the shorter the distance to the other mobile body that has transmitted other geometric information, or the communication signal for transmitting other geometric information (for example, the more the strength of the carrier (carrier), the higher priority can be given to the corresponding geographic measurement information.
  • the detection system 100 receives the other local measurement information through the cooperative communication with other mobile objects and fuses it with the self-localized information generated by itself, thereby expanding the mobile traffic information over a wider range. Create extended measurement information that provides. At this time, the traffic information of the extended measurement information is corrected to have a higher accuracy than the traffic information of the own local measurement information with reference to the plurality of local measurement information.
  • the detection system 100 may detect a position, a speed, a direction, and the like even with respect to a moving object that is located outside the detection range of the sensor provided by the detection system. Accordingly, the detection range of the peripheral moving object detection system 100 is dramatically wider. Can lose.
  • a safer and more efficient driving strategy can be established according to the wider detection range, so users can avoid problems such as traffic congestion in advance, and also obtain information on blind spots that could not be detected by the equipped sensor alone. The risk of occurrence is reduced.
  • peripheral vehicle detection system 100 uses open cooperative communication, unlike the conventional technologies, in which access to traffic information is limited, anyone without any particular limitation has an advantage of obtaining necessary information from other vehicles.
  • each mobile entity participating in the cooperative communication functions as a receiving entity and a transmitting entity at the same time, it does not need a separate infrastructure dedicated to providing information to the mobile entity, and thus a cooperative communication system can be constructed at a relatively low cost. Can be.
  • FIG. 3 is a diagram conceptually illustrating a method in which the convergence processor 130 illustrated in FIG. 1 generates extended measurement information by fusing a plurality of geometric information.
  • FIG. 3 a method of generating extended measurement information EI by fusion of two pieces of local measurement information LI1 and LI2 having a partially overlapping topology is described.
  • the illustrated local measurement information LI1 and LI2 may be different local measurement information each received from another moving object, one of which is magnetic localization information generated by the detection system 100 and the other is local measurement information. It may be.
  • one of them may be existing extended measurement information generated by the detection system 100 (although it is indicated here as local measurement information), and the other may be other local measurement information.
  • the extended measurement information EI generated through the fusion 131 becomes newly created or updated extended measurement information instead of the existing extended measurement information.
  • the location of the moving objects is displayed as small squares in each of the area measurement information LI1 and LI2.
  • Each area measurement information LI1 and LI2 has regions having similar topologies A and A '.
  • the fusion processor 130 determines the similarity between the topologies A and A 'of the regions, and then determines whether they are topologies representing the same moving bodies. Since a detailed method of determining the similarity between the topologies has already been described with reference to FIG. 2, the description thereof is omitted here.
  • the fusion processor 130 may perform local measurement information LI1, such that the topologies A and A' overlap each other for the fusion 131. LI2) is converted linearly and nonlinearly.
  • the second area measurement information LI2 is linearly and nonlinearly converted to overlap the first area measurement information LI1.
  • the result of fusion 131 of the local measurement information LI1 and LI2 so that the positions of the corresponding moving bodies overlap with each other is generated and output as the extended measurement information EI.
  • the extended measurement information EI may represent traffic information of moving objects over a wider range than the individual area measurement information LI1 and LI2.
  • the first area measurement information LI1 displays only the topology A and three moving objects located on its left side
  • the second area measurement information LI2 displays the topology A 'and the other three located on its right side.
  • the extended measurement information may display all moving objects displayed in the first area measurement information LI1 and the second area measurement information LI2 as one measurement information. Therefore, in general, instead of referring to only one piece of geometric information, it is possible to collect a wider range of traffic information by referring to the extended measurement information in which they are fused.
  • FIG. 4 is a diagram for describing an example of generating extended measurement information for a wide range of areas by using cooperative communication 1000 between a plurality of moving objects.
  • the plurality of moving objects 1010, 1020, and 1030 transmit and receive their local measurement information with other mobile objects through the cooperative communication 1000, and fuse such local measurement information for a wider range. Create extended measurement information.
  • FIG. 4 it is assumed that three moving bodies 1010, 1020, and 1030 are provided with the detection system 100 of the present disclosure, respectively.
  • the moving objects 1010, 1020, and 1030 provided with the detection system 100 generate local measurement information using their own sensors, and broadcast the generated local measurement information to other moving objects.
  • Individual geospatial information 1011, 1021, and 1031 generated by each of the moving objects 1010, 1020, and 1030 may display traffic information only within a detection range of a sensor included in each of the moving objects 1010, 1020, and 1030.
  • the first area measurement information 1011 of the first moving object 1010 displays traffic information only for three moving objects including itself within the first detection range 1012.
  • the second area measurement information 1021 of the second mobile object 1020 displays traffic information only for five mobile objects including itself within the second detection range 1022
  • the third mobile object 1030 may be configured to display traffic information.
  • the third area measurement information 1031 displays traffic information only for four mobile objects including itself within the third detection range 1032.
  • the first area measurement information 1011 and the second area measurement information 1021 commonly include traffic information for the moving object a, and the second area measurement information 1021 and the third area measurement information 1031. Is commonly assumed to include traffic information for mobile b.
  • Each of the moving objects 1010, 1020, and 1030 transmits local measurement information 1011, 1021, and 1031 generated by the moving objects to other moving objects.
  • the moving objects 1010, 1020, and 1030 transmit local measurement information 1011, 1021, and 1031 through cooperative communication using the communication units 1013, 1023, and 1033, and the communication units 1013, 1023, and 1033 at this time.
  • any of the moving objects 1010, 1020, 1030 receives the local measurement information transmitted by the other moving objects and fuses with the local measurement information generated by itself, thereby detecting each sensor of the moving objects 1010, 1020, 1030.
  • the extended measurement information 1100 covering the detection range is generated.
  • the convergence of the local measurement information (1011, 1021, 1031) is performed based on the moving objects (a, b) commonly displayed in the two or more local measurement information.
  • the linear or nonlinear transformation of the first or second geometric information is performed such that the mobile object a on the first geometric information 1011 and the mobile object a on the second geometric information 1021 overlap each other.
  • One extended measurement by linearly and nonlinearly converting the second or third area measurement information such that the moving object b on the second area measurement information 1021 and the moving object b on the third area measurement information 1031 overlap each other.
  • the cooperative communication system 1000 by providing the local measurement information (1011, 1021, 1031) between the moving objects (1010, 1020, 1030) through the cooperative communication system 1000, even for a mobile object located outside the detection range of the sensor provided by the moving object Traffic information can be obtained, and the wider detection range enables traffic information on blind spots that could not be detected previously, as well as establishing safer and more efficient driving strategies.
  • FIG. 5 is a flowchart illustrating a method of generating, by a nearby moving object detecting system, local measurement information through its sensor and transmitting the same to another moving object according to one embodiment of the present specification.
  • the method for generating and transmitting local measurement information includes steps S110 to S140.
  • the detection system 100 detects moving objects located within a detection range of the sensor through the sensing unit 110.
  • the detection result is provided to the preprocessor 120 as sensing information.
  • the preprocessor 120 filters unnecessary data among the provided sensing information to extract traffic information (eg, position, speed, direction, etc.) of the moving objects. Through such a filtering process, the preprocessor 120 minimizes the capacity of traffic information to be processed.
  • traffic information eg, position, speed, direction, etc.
  • the preprocessor 120 In operation S130, the preprocessor 120 generates regional measurement information based on the extracted traffic information.
  • the generated local measurement information is provided to the fusion processing unit 130 or the communication unit 150.
  • step S140 the communication unit 150 transmits the area measurement information received from the preprocessor 120 or via the fusion processor 130 through cooperative communication with other mobile objects.
  • the transmission of the local measurement information may be performed in the form of broadcasting (broadcasting) simultaneously transmitted to a plurality of arbitrary moving objects without specifying a destination.
  • the transmitted local measurement information is referred to another mobile object to generate extended measurement information.
  • sensing unit 110 the preprocessor 120, and the communication unit 150 are the same as those described with reference to FIGS. 1 to 4.
  • a local measurement information providing means for generating extended measurement information is disclosed.
  • the mobile communication of the local measurement information uses an open cooperative communication, there is an advantage that anyone can always obtain the necessary local measurement information without any special limitation, unlike the conventional technologies that have limited access to traffic information.
  • each mobile unit participating in the cooperative communication functions as a receiving entity and a transmitting entity at the same time, it does not need a separate infrastructure dedicated to providing information about the mobile unit, thus reducing the detection system 100 at a relatively low cost.
  • FIG. 6 is a flowchart illustrating a method of detecting a location of surrounding moving objects by a nearby moving object detection system through cooperative communication with another moving object, according to an exemplary embodiment.
  • the method for detecting the surrounding moving object includes steps S210 to S250.
  • step S210 the communication unit 150 of the detection system 100 receives the local measurement information of the other mobile through the cooperative communication.
  • the fusion processor 130 receives the received local measurement information from the communication unit 150 and generates extended measurement information by fusing the local measurement information generated by the detection system 100.
  • the detection system 100 determines whether new area measurement information is received from another moving object.
  • the method for detecting the surrounding moving objects proceeds to step S240. Otherwise, the method of detecting the surrounding moving objects proceeds to step S250.
  • step S240 the fusion processing unit 130 fuses the new area measurement information with the existing extended measurement information to generate new extended measurement information to replace the existing extended measurement information, or update the existing extended measurement information.
  • the method for detecting the surrounding moving objects proceeds to step S250.
  • the detection system 100 outputs traffic information including necessary geographic information or information on a moving object to the user, based on the generated or updated extended measurement information. Alternatively, the detection system 100 may output the generated or updated extended measurement information itself.
  • the position or speed can be detected even for moving objects located outside the detection range of the sensor.
  • the detection range of the surrounding moving object detection system can be dramatically expanded.
  • a safer and more efficient driving strategy can be established according to the wider detection range, so that problems such as traffic congestion can be avoided in advance, and information on blind spots that could not be detected by the equipped sensors can be obtained. It can reduce the risk.

Abstract

A system for detecting a surrounding moving object using cooperative communication according to the present specification comprises: a sensing unit which has at least one sensor and detects moving objects located within the detection range of the sensor to generate sensing information; a communication unit which transmits first local measurement information indicative of traffic information of the moving objects generated on the basis of the sensing information to the outside and receives at least one second local measurement information from the outside; and a convergence processing unit which combines pre-generated extension measurement information, the first local measurement information, and the second local measurement information so as to generate new extension measurement information containing traffic information of the extension measurement information, traffic information of the first local measurement information, and traffic information of the second local measurement information.

Description

협력 통신을 이용하여 주변 이동체를 탐지하는 방법 및 시스템Method and system for detecting nearby moving objects using cooperative communication
본 명세서는 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템 및 방법에 관한 것으로서, 더욱 상세하게는 협력 통신을 통해 탐지의 범위를 확장시키고, 정확도를 향상시키는 시스템 및 방법에 관한 것이다.The present disclosure relates to a system and a method for detecting a surrounding mobile object using cooperative communication, and more particularly, to a system and a method for extending the scope of detection and improving the accuracy through cooperative communication.
최근 주행중 차량의 안전을 보장하기 위해 다양한 센서 기반 환경 인식 기술들이 활용되고 있다. 그러한 기술들에서는, 예를 들어, 레이저 스캐너(LIDAR), 레이더, 카메라와 같이 주변에 존재하는 물체들을 전방위적으로 탐지할 수 있는 차량 탑재된(on-vehicle) 센서들을 통해, 차량 주변의 물체들에 대한 위치 정보를 제공하거나, 차량의 사각지대에 위치한 물체들의 정보를 제공할 수 있다. Recently, various sensor-based environmental awareness technologies are used to ensure the safety of the vehicle while driving. In such technologies, objects around the vehicle, for example, via on-vehicle sensors capable of detecting the surrounding objects omnidirectionally, such as laser scanners (LIDARs), radars, cameras, etc. The location information may be provided, or information about objects located in a blind spot of the vehicle may be provided.
이와 같은, 센서 기반 환경 인식 기술들은 차량의 운전자에게 육안으로 보기힘든 위치의 물체 정보까지 제공한다는 점에서 차량의 주행 안전에 크게 기여하지만, 몇 가지 기술적 한계도 가지고 있다.Such sensor-based environmental awareness technology greatly contributes to driving safety of the vehicle in that it provides the driver of the vehicle with object information of a location that is difficult to see with the naked eye, but has some technical limitations.
그러한 한계 중 하나는, 종래의 센서 기반 환경 기술들이 센서의 탐지영역 밖에 위치한 물체에 대해서는 위치 정보를 수집할 수 없다는 점이다. 또한, 센서들을 통해 수집된 주변 물체들의 위치를 지도상에 표시할 때, 차량의 글로벌 위치를 판단할 때 사용되는 GPS 신호의 오차로 인해, 주변 물체들의 글로벌 위치도 잘못 표시되는 한계가 있다.One such limitation is that conventional sensor-based environmental techniques cannot collect location information for objects located outside the detection area of the sensor. In addition, when displaying the position of the surrounding objects collected through the sensors on the map, due to the error of the GPS signal used when determining the global position of the vehicle, there is a limit that the global position of the surrounding objects are also displayed incorrectly.
본 명세서의 목적은 센서의 탐지범위 밖에 있는 이동체까지 탐지가능 하도록, 그 탐지범위가 향상된 주변 이동체 탐지 시스템 및 방법을 제공하는 데 있다. It is an object of the present specification to provide a peripheral moving object detection system and method having an improved detection range to detect a moving object outside the detection range of a sensor.
본 명세서의 다른 목적은 GPS 신호등의 오차가 발생하는 경우에도, 자신을 포함한 주변 이동체들의 속도나 위치 등을 더욱 정확하게 탐지 및 추적할 수 있는 주변 이동체 탐지 시스템 및 방법을 제공하는 데 있다.Another object of the present disclosure is to provide a peripheral moving object detection system and method that can more accurately detect and track the speed or position of surrounding moving objects including itself, even when errors such as GPS signals occur.
본 명세서의 실시 예에 따른, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템은, 하나 이상의 센서를 구비하고, 상기 하나 이상의 센서의 탐지범위 내에 위치한 이동체들을 감지하여 센싱 정보를 생성하는 센싱부; 상기 센싱 정보에 기반하여 생성된 상기 이동체들의 트래픽 정보를 나타내는 제 1 지역측정정보를 외부로 송신하고, 외부로부터 적어도 하나의 제 2 지역측정정보를 수신하는 통신부; 및 미리 생성된 확장측정정보, 상기 제 1 지역측정정보 및 상기 제 2 지역측정정보를 융합하여, 상기 확장측정정보의 트래픽 정보, 상기 제 1 지역측정정보의 트래픽 정보 및 상기 제 2 지역측정정보의 트래픽 정보를 포괄하는 새로운 확장측정정보를 생성하는 융합처리부를 포함한다.According to an embodiment of the present disclosure, a system for detecting a surrounding moving object using cooperative communication includes: a sensing unit including one or more sensors and generating sensing information by detecting moving objects located within a detection range of the one or more sensors; A communication unit which transmits first local measurement information indicating the traffic information of the moving objects generated based on the sensing information to the outside and receives at least one second local measurement information from the outside; And combining the pre-generated extended measurement information, the first area measurement information and the second area measurement information, so that the traffic information of the extended measurement information, the traffic information of the first area measurement information, and the second area measurement information. And a fusion processing unit for generating new extended measurement information including traffic information.
실시 예로서, 상기 센싱 정보로부터 상기 이동체들의 트래픽 정보를 추출하여 상기 제 1 지역측정정보를 생성하는 전처리부를 더 포함할 수 있다.In an embodiment, the apparatus may further include a preprocessor configured to extract the traffic information of the moving objects from the sensing information to generate the first area measurement information.
실시 예로서, 상기 통신부를 제어하기 위한 사용자 입력을 수신하는 입출력 인터페이스를 더 포함할 수 있다.In an embodiment, the apparatus may further include an input / output interface configured to receive a user input for controlling the communication unit.
실시 예로서, 상기 하나 이상의 센서가 탑재된 이동체는 모든 방향에 대한 주변 환경을 인식할 수 있다.In an embodiment, the movable body equipped with the one or more sensors may recognize the surrounding environment in all directions.
실시 예로서, 상기 트래픽 정보들은 이동체의 절대위치, 상대위치, 속도, 또는 방향을 나타내는 정보를 포함할 수 있다.In an embodiment, the traffic information may include information representing an absolute position, relative position, speed, or direction of the moving object.
실시 예로서, 상기 융합처리부는 상기 미리 생성된 확장측정정보, 상기 제 1 지역측정정보 및 상기 제 2 지역측정정보를 융합하여 상기 새로운 확장측정정보를 생성할 때, 상기 이동체들의 트래픽 정보를 추정 및 트래킹하여 위치 정확도를 향상시킨다. 실시 예로서, 상기 융합처리부는 상기 미리 생성된 확장측정정보, 상기 제 1 지역측정정보, 및 상기 제 2 지역측정정보에 중복되어 나타나는 특징 정보를 추출한다.In an embodiment, the fusion processing unit estimates traffic information of the moving objects when generating the new extended measurement information by fusing the previously generated extended measurement information, the first local measurement information, and the second local measurement information. Tracking improves position accuracy. In an embodiment, the fusion processing unit extracts feature information overlapping the previously generated extended measurement information, the first area measurement information, and the second area measurement information.
실시 예로서, 상기 융합처리부는, 상기 제 1 이동체의 트래픽 정보와 상기 제 2 이동체의 트래픽 정보를 비교하고, 비교 결과 상기 제 1 이동체의 트래픽 정보와 상기 제 2 이동체의 트래픽 정보의 차이가 임계값 이내로 유사하면 상기 제 1 이동체와 상기 제 2 이동체가 서로 동일한 이동체를 나타내는 것으로 판단하고, 상기 제 1 이동체의 트래픽 정보와 상기 제 2 이동체의 트래픽 정보를 복수의 측정값으로 놓고 단일 상태를 추정하여 정확도를 향상시킨다.In an embodiment, the fusion processing unit may compare the traffic information of the first moving object with the traffic information of the second moving object, and as a result of the comparison, the difference between the traffic information of the first moving object and the traffic information of the second moving object is a threshold value. If it is similar within the range, it is determined that the first mobile body and the second mobile body represent the same mobile body, and the traffic information of the first mobile body and the traffic information of the second mobile body are put into a plurality of measurement values, and the single state is estimated to be accurate. To improve.
실시 예로서, 상기 융합처리부는 상기 제 1 이동체와의 트래픽 정보 비교를 통해 상기 제 1 이동체와 다른 이동체의 동일성을 판단할 때, 상기 제 1 이동체와의 트래픽 정보 차이가 임계값 이내인 다른 이동체가 둘 이상인 경우, 상기 제 1 이동체와의 트래픽 정보 차이가 가장 작은 이동체를 상기 제 1 이동체와 동일한 이동체로 판단한다.In an embodiment, when the fusion processor determines the identity of the first mobile unit and the other mobile unit by comparing the traffic information with the first mobile unit, another mobile unit having a difference in traffic information with the first mobile unit within a threshold value may be selected. In the case of two or more, the mobile body having the smallest difference in traffic information from the first mobile body is determined to be the same mobile body as the first mobile body.
실시 예로서, 상기 융합처리부는, 상기 제 1 지역측정정보의 제 1 영역에 대한 제 1 트래픽 정보와 상기 제 2 지역측정정보의 제 2 영역에 대한 제 2 트래픽 정보가 서로 중복이 되면, 상기 제 1 영역 내의 이동체 분포를 나타내는 제 1 토폴로지(topology)와 상기 제 2 영역 내의 이동체 분포를 나타내는 제 2 토폴로지를 비교하고, 비교 결과 상기 제 1 토폴로지와 상기 제 2 토폴로지 사이의 유사도가 미리 결정된 기준보다 높으면, 상기 제 1 토폴로지를 구성하는 상기 제 1 영역 내의 이동체들과 상기 제 2 토폴로지를 구성하는 상기 제 2 영역 내의 이동체들이 서로 동일한 이동체들을 나타내는 것으로 판단한다.In an embodiment, when the first traffic information for the first area of the first area measurement information and the second traffic information for the second area of the second area measurement information overlap each other, Comparing a first topology representing a moving object distribution in the first region and a second topology representing a moving object distribution in the second region, and if the similarity between the first topology and the second topology is higher than a predetermined criterion. It is determined that the moving bodies in the first region constituting the first topology and the moving bodies in the second region constituting the second topology represent the same moving bodies.
실시 예로서, 상기 융합처리부는 상기 제 1 영역 내의 이동체 분포를 나타내는 제 1 토폴로지(topology)와 상기 제 2 영역 내의 이동체 분포를 나타내는 제 2 토폴로지를 비교하여 동일한 이동체인지 판단할 때, 상기 제 1 토폴로지와 상기 제 2 토폴로지 사이의 유사도가 미리 결정된 기준보다 높은 이동체가 둘 이상일 경우, 가장 유사한 토폴로지를 갖는 이동체를 동일한 이동체로 판단한다.In an embodiment, the fusion processor compares a first topology representing a mobile body distribution in the first region with a second topology representing a mobile body distribution in the second region, and determines whether the first mobile body is the same mobile body. If two or more moving objects whose similarity between the second topology and the second topology is higher than a predetermined criterion are determined, the moving object having the most similar topology is determined to be the same moving object.
실시 예로서, 상기 융합처리부는 상기 제 1 토폴로지를 구성하는 상기 제 1 영역 내의 이동체들과 상기 제 2 토폴로지를 구성하는 상기 제 2 영역 내의 이동체들이 서로 동일한 이동체들을 나타내면, 상기 제 1 토폴로지와 상기 제 2 토폴로지가 서로 겹치도록 상기 제 1 지역측정정보 또는 상기 제 2 지역측정정보를 선형 및 비선형 변환시켜 상기 확장측정정보를 생성한다.In an embodiment, the fusion processor may be configured such that when the moving objects in the first region constituting the first topology and the moving bodies in the second region constituting the second topology represent the same moving bodies, the first topology and the first The extended measurement information is generated by linearly and nonlinearly converting the first area measurement information or the second area measurement information so that the two topologies overlap each other.
실시 예로서, 상기 제 1 토폴로지와 상기 제 2 토폴로지 사이의 상기 유사도는, 상기 제 1 토폴로지와 상기 제 2 토폴로지 사이의 차이를 나타내는 에러 벡터(error vector)의 크기가 미리 결정된 값 이하일 때, 상기 미리 결정된 기준보다 높은 것으로 판단된다.In an embodiment, the similarity between the first topology and the second topology is determined in advance when the magnitude of an error vector representing a difference between the first topology and the second topology is equal to or less than a predetermined value. It is judged to be higher than the determined standard.
실시 예로서, 상기 융합처리부는 상기 제 1 지역측정정보와 상기 적어도 하나의 제 2 지역측정정보를 융합하여 상기 새로운 확장측정정보를 생성할 때, 더 인접한 이동체의 지역측정정보를 우선으로 계층적으로 융합하여 확장측정정보를 생성한다.In an embodiment, when the convergence processing unit generates the new extended measurement information by fusing the first area measurement information and the at least one second area measurement information, the area measurement information of a more adjacent moving object is preferentially hierarchically. Fuse to generate extended measurement information.
실시 예로서, 상기 융합처리부는 상기 제 1 지역측정정보와 상기 적어도 하나의 제 2 지역측정정보를 융합하여 확장측정정보를 생성할 때, 상기 적어도 하나의 제 2 지역측정정보 내에서의 이동체들의 GPS 위치를 비교하거나 상기 적어도 하나의 제 2 지역측정정보의 통신 신호 세기를 비교하여, 더 인접한 이동체가 송신한 제 2 지역측정정보를 우선적으로 융합한다.In an embodiment, when the convergence processor generates the extended measurement information by fusing the first area measurement information and the at least one second area measurement information, the GPS of the moving objects in the at least one second area measurement information. By comparing the positions or by comparing the communication signal strength of the at least one second geo-measuring information, the second geo-measurement information transmitted by a more adjacent mobile body is fused first.
실시 예로서, 상기 융합처리부는 상기 생성된 새로운 확장측정정보와 또 다른 이동체로부터 수신된 다른 제 2 지역측정정보를 융합하여, 상기 다른 제 2 지역측정정보의 트래픽 정보를 더 포괄하도록 상기 새로운 확장측정정보를 갱신하거나 상기 새로운 확장측정정보를 대신하여 또 다른 확장측정정보를 생성한다.In an embodiment, the convergence processing unit may fuse the generated new extended measurement information with other second local measurement information received from another moving object to further include traffic information of the second second local measurement information. Update the information or create another extended measurement information in place of the new extended measurement information.
실시 예로서, 상기 새로운 확장측정정보는 상기 제 1 지역측정정보보다 이동체에 대한 탐지범위가 더 넓거나, 더 정확한 트래픽 정보를 갖도록 구성된다. In an embodiment, the new extended measurement information is configured to have a wider detection range for the moving object or more accurate traffic information than the first local measurement information.
본 명세서의 실시 예들에 따른 이동체에 탑재된 탐지 시스템을 통해 상기 이동체의 주변 이동체들의 위치를 탐지하는 방법은, 다른 이동체들과의 협력 통신을 통해 상기 다른 이동체의 제 2 지역측정정보를 수신하는 단계; 상기 수신된 제 2 지역측정정보, 상기 탐지 시스템이 생성한 제 1 지역측정정보 및 상기 탐지 시스템이 미리 생성한 확장측정정보와 융합하여, 상기 제 1 지역측정정보의 트래픽 정보, 상기 제 2 지역측정정보의 트래픽 정보 및 상기 미리 생성한 확장측정정보의 트래픽 정보를 포괄하도록 구성된 새로운 확장측정정보를 생성하는 단계; 및 상기 생성된 새로운 확장측정정보에 기반하여, 상기 주변 이동체들에 대한 트래픽 정보를 사용자에게 출력하는 단계를 포함한다.According to embodiments of the present disclosure, a method for detecting positions of surrounding moving objects of a moving object through a detection system mounted on a moving object includes receiving second local measurement information of the other moving object through cooperative communication with other moving objects. ; Traffic information of the first area measurement information and the second area measurement are merged with the received second area measurement information, the first area measurement information generated by the detection system, and the extended measurement information previously generated by the detection system. Generating new extension measurement information configured to include traffic information of the information and traffic information of the previously generated extension measurement information; And outputting traffic information on the surrounding mobiles to the user based on the generated new extended measurement information.
실시 예로서, 다른 이동체로부터 다른 제 2 지역측정정보를 수신하는 단계; 및 상기 수신된 제 2 지역측정정보를 상기 새로운 확장측정정보와 융합하여, 상기 제 2 지역측정정보의 트래픽 정보를 더 포괄하도록 상기 새로운 확장측정정보를 갱신하거나 상기 새로운 확장측정정보를 대신하여 또 다른 확장측정정보를 생성하는 단계를 더 포함한다.In another embodiment, the method may further include receiving another second geo-measuring information from another moving object; And fusing the received second local measurement information with the new extended measurement information to update the new extended measurement information to further cover the traffic information of the second local measurement information or to substitute another new extended measurement information. Generating extended measurement information.
본 명세서의 실시 예들에 따르면, 다른 이동체와의 협력 통신을 통해 센서의 탐지범위 밖에 위치한 이동체에 대해서도 위치나 속도 등을 탐지할 수 있으며, 그에 따라 주변 이동체 탐지 시스템의 탐지 범위가 비약적으로 넓어질 수 있고, 수신된 지역측정정보를 참조하여 이동체들의 위치 정보를 더욱 정확하게 추정할 수 있다. According to the embodiments of the present disclosure, it is possible to detect a position or a speed, etc., even for a mobile object located outside the detection range of the sensor through cooperative communication with other mobile objects, and thus, the detection range of the surrounding mobile object detection system may be dramatically increased. The location information of the moving objects may be estimated more accurately with reference to the received local measurement information.
또한, 넓어진 탐지범위에 따라 더욱 안전하고 효율적인 주행 전략 수립이 가능하므로 교통 정체와 같은 문제들을 미리 회피할 수 있고, 구비된 센서만으로는 탐지할 수 없었던 사각 영역에 대한 정보도 얻을 수 있으므로 주행중 사고 발생의 위험성을 감소시킬 수 있다.In addition, a safer and more efficient driving strategy can be established according to the wider detection range, so that problems such as traffic congestion can be avoided in advance, and information on blind spots that could not be detected by the equipped sensors can be obtained. It can reduce the risk.
또한, 주변 이동체 탐지 시스템은 개방형의 협력 통신을 이용하므로, 트래픽 정보에 대한 접근성이 제한적이었던 종래의 기술들과는 달리, 특별한 제한없이 누구라도 언제나 필요한 정보를 얻을 수 있는 장점이 있다. In addition, since the peripheral vehicle detection system uses open cooperative communication, unlike the conventional technologies, which have limited access to traffic information, anyone without any special limitation has an advantage of always obtaining necessary information.
나아가, 협력 통신에 참여하는 각 이동체들은 정보의 수신 주체이면서 동시에 송신 주체로 기능하므로, 이동체에 대한 정보 제공을 전담할 별도의 인프라를 필요로 하지 않아, 상대적으로 적은 비용으로 협력 통신 시스템을 구축할 수 있다.Furthermore, since each mobile entity participating in the cooperative communication functions as a receiving entity and a transmitting entity at the same time, it does not need a separate infrastructure dedicated to providing information to the mobile entity, and thus a cooperative communication system can be constructed at a relatively low cost. Can be.
도 1은 본 명세서의 일 실시 예에 따른, 주변 이동체 탐지 시스템의 개요를 나타내는 도면이다.1 is a diagram illustrating an outline of a peripheral moving object detection system according to an exemplary embodiment of the present specification.
도 2는 본 명세서의 일 실시 예에 따른, 주변 이동체 탐지 시스템의 상세 구성을 도시하는 블록도이다.2 is a block diagram illustrating a detailed configuration of a surrounding moving object detection system according to an exemplary embodiment of the present specification.
도 3은 도 1에 도시된 융합 처리부(130)가 복수의 지역측정정보들을 융합하여 확장측정정보를 생성하는 방법을 개념적으로 도시하는 도면이다.3 is a diagram conceptually illustrating a method in which the convergence processor 130 illustrated in FIG. 1 generates extended measurement information by fusing a plurality of geometric information.
도 4는 복수의 이동체들 간의 협력 통신(1000)을 이용하여 광범위한 영역에 대해 확장측정정보를 생성하는 예를 설명하기 위한 도면이다.FIG. 4 is a diagram for describing an example of generating extended measurement information for a wide range of areas by using cooperative communication 1000 between a plurality of moving objects.
도 5는 본 명세서의 일 실시 예에 따른, 주변 이동체 탐지 시스템이 자신의 센서를 통해 지역측정정보를 생성하고, 그것을 다른 이동체에 송출하는 방법을 예시적으로 나타내는 순서도이다.FIG. 5 is a flowchart illustrating a method of generating, by a nearby moving object detecting system, local measurement information through its sensor and transmitting the same to another moving object according to one embodiment of the present specification.
도 6은 본 명세서의 일 실시 예에 따른, 주변 이동체 탐지 시스템이 다른 이동체와의 협력 통신을 통해 주변 이동체들의 위치를 탐지하는 방법을 예시적으로 나타내는 순서도이다.FIG. 6 is a flowchart illustrating a method of detecting a location of surrounding moving objects by a nearby moving object detection system through cooperative communication with another moving object, according to an exemplary embodiment.
후술하는 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시 예를 예시로서 도시하는 첨부 도면들을 참조한다. 상세한 설명의 실시 예들은 당업자가 본 명세서에 기재된 발명을 실시하기 위한 상세 설명을 개시하는 목적으로 제공된다. DETAILED DESCRIPTION The following detailed description refers to the accompanying drawings that show, by way of illustration, specific embodiments in which the invention may be practiced. Embodiments of the detailed description are provided for the purpose of disclosing the detailed description for those skilled in the art to practice the invention described herein.
본 명세서의 각 실시 예들은 서로 상이한 경우를 설명할 수 있으나, 그것이 각 실시 예들이 상호 배타적임을 의미하는 것은 아니다. 예를 들어, 상세한 설명의 일 실시 예와 관련하여 설명된 특정 형상, 구조 및 특성은 본 발명의 사상 및 범위를 벗어나지 않으면서 다른 실시 예에서도 동일하게 구현될 수 있다. 또한, 여기서 개시되는 실시 예들의 개별 구성요소의 위치 또는 배치는 본 발명의 사상 및 범위를 벗어나지 않으면서 다양하게 변경될 수 있음이 이해되어야 한다. Each embodiment of the present specification may describe a different case, but it does not mean that the embodiments are mutually exclusive. For example, specific shapes, structures, and characteristics described in connection with one embodiment of the detailed description can be equally implemented in other embodiments without departing from the spirit and scope of the invention. In addition, it is to be understood that the location or arrangement of individual components of the embodiments disclosed herein may be variously changed without departing from the spirit and scope of the invention.
한편, 여러 실시 예들에서 동일하거나 유사한 참조번호는 동일하거나 유사한 구성요소를 지칭한다. 첨부된 도면들에서 각 구성 요소들의 크기는 설명을 위하여 과장될 수 있으며, 실제 적용되는 크기와 같거나 유사할 필요는 없다.Meanwhile, in various embodiments, the same or similar reference numerals refer to the same or similar components. In the accompanying drawings, the size of each component may be exaggerated for description, and need not be the same or similar to the size actually applied.
도 1은 본 명세서의 일 실시 예에 따른, 주변 이동체 탐지 시스템의 개요를 나타내는 도면이다. 도 1을 참조하면, 주변 이동체 탐지 시스템(100, 이하 탐지 시스템)은 차량과 같은 이동체(10)에 탑재되며, 자신의 감지범위(detection range, DR)내에 있는 다른 이동체들(21, 22, 23, 24)을 감지하여 이동체(10) 주변의 지역측정정보(LI, local measurement information)를 생성한다. 여기서, 지역측정정보는 어떤 이동체 탐지 시스템(예를 들어, 100)이 자신의 센서를 이용해 측정 또는 탐지한 자신 및 주변 이동체들의 속도, 위치, 방향 등과 같은 트래픽 정보를 의미한다. 그리고, 탐지 시스템(100)은 협력통신을 통해 다른 이동체(예를 들어, 22)로부터 지역측정정보를 수신한 후 그것과 자신이 생성한 지역측정정보를 융합하여, 확장측정정보(EI, extended measurement information)를 생성한다. 여기서, 확장측정정보는 어떤 지역측정정보와 다른 지역측정정보를 비교 및 결합하여, 더욱 넓은 범위 또는 더욱 높은 정확도를 갖도록 새롭게 생성된 트래픽 정보를 의미한다. 한편, 탐지 시스템(100)은 협력통신을 통해 자신이 생성한 지역측정정보를 다른 이동체에 제공할 수도 있다.1 is a diagram illustrating an outline of a peripheral moving object detection system according to an exemplary embodiment of the present specification. Referring to FIG. 1, the surrounding moving object detection system 100 (hereinafter, referred to as a detection system) is mounted on a moving object 10 such as a vehicle, and other moving objects 21, 22, and 23 within its detection range DR. , 24) to generate local measurement information (LI) around the moving object 10. Here, the local measurement information refers to traffic information such as the speed, location, direction, etc. of oneself and surrounding moving objects measured or detected by a certain moving object detection system (for example, 100). In addition, the detection system 100 receives local measurement information from another mobile body (eg, 22) through cooperative communication, and then fuses the local measurement information generated by itself with the extended measurement information (EI). information). In this case, the extended measurement information refers to traffic information newly generated by comparing and combining certain local measurement information with other local measurement information to have a wider range or higher accuracy. On the other hand, the detection system 100 may provide the local measurement information generated by itself through other cooperative communication to another mobile.
이러한 탐지 시스템(100)은 이동체(10)의 전방향에 대해 주변 이동체(21, 22, 23, 24)를 탐지한다(즉, 360도 탐지). 또한, 탐지 시스템(100)과 다른 이동체(더욱 정확하게는, 다른 이동체에 탑재된 이동체 탐지 시스템) 사이의 협력통신은 송신 및 수신 모두 방송(broadcast) 형태로 수행된다. 즉, 어떤 이동체에서 송신되는 지역측정정보는 목적지를 특정함이 없이 다수의 임의의 이동체들을 향해 전송되고, 수신하는 이동체도 다른 이동체들로부터 송신된 지역측정정보들 중 어떤 것이라도 수신하여 자신을 위한 확장측정정보를 생성하는 데 이용할 수 있다.The detection system 100 detects the peripheral moving objects 21, 22, 23, and 24 with respect to the omnidirectional direction of the moving object 10 (ie, 360 degree detection). In addition, the cooperative communication between the detection system 100 and another moving object (more precisely, the moving object detection system mounted on the other moving object) is performed in the form of broadcast both transmission and reception. That is, the geospatial information transmitted from a certain mobile object is transmitted to a plurality of arbitrary mobile objects without specifying a destination, and the receiving mobile object receives any of the geometric information transmitted from other mobile objects for itself. Can be used to generate extended measurement information.
특히, 이러한 탐지 시스템(100)은 가령 모든 이동체들(10, 21, 22, 23, 24)이 자신의 위치를 부정확하게 알고 있고 그 중 일부 이동체들(예를 들어, 21, 22)에서 지역측정정보 전송이 가능한 제한적인 상황에서, 이동체(10)가 그러한 지역측정정보를 참조하여 자신이나 주변 이동체의 위치 정보를 새롭게 알거나 더욱 정확히 추정하는 데 더욱 유리하게 활용될 수 있다.In particular, such a detection system 100, for example, allows all moving objects 10, 21, 22, 23, 24 to be inaccurately aware of their position and to localize some of them (e.g. 21, 22). In a limited situation in which information can be transmitted, the moving object 10 may be more advantageously used to refer to such local measurement information to newly know or more accurately estimate the location information of itself or surrounding moving objects.
이하에서는, 탐지 시스템(100)의 구체적인 구성 및 동작방법을 실시 예를 통해 개시하여, 탐지 시스템(100)의 기술적 특징 및 효과에 대해 더욱 상세히 설명한다.Hereinafter, the specific configuration and operation method of the detection system 100 will be described with reference to embodiments, and the technical features and effects of the detection system 100 will be described in more detail.
도 2는 본 명세서의 일 실시 예에 따른, 탐지 시스템의 상세 구성을 도시하는 블록도이다. 도 2를 참조하면, 탐지 시스템(100)은 센싱부(110), 전처리부(120), 융합처리부(130), 입출력 인터페이스(140) 및 통신부(150)를 포함한다.2 is a block diagram showing a detailed configuration of a detection system according to an embodiment of the present disclosure. 2, the detection system 100 includes a sensing unit 110, a preprocessor 120, a fusion processor 130, an input / output interface 140, and a communication unit 150.
센싱부(110)는 적어도 하나의 센서를 구비하여, 탐지 시스템(100) 자신 및 주변의 이동체들의 위치, 속도, 가속도, 방향 또는 크기 등과 같은 센싱 정보를 탐지한다. 센싱부(110)는 레이저 스캐너(LiDAR), GPS 수신기, 레이더(RADAR) 또는 카메라 등과 같이 자신 또는 이동체의 센싱 정보를 탐지할 수 있는 적어도 하나의 센서를 포함한다. 여기서, GPS 수신기는 GPS 위성으로부터 수신되는 위성 정보를 통해, 이동체(10) 또는 탐지 시스템(100)의 글로벌 위치 정보를 획득하는 모듈을 의미한다.The sensing unit 110 includes at least one sensor to detect sensing information such as the position, speed, acceleration, direction, or size of the detection system 100 itself and surrounding moving objects. The sensing unit 110 includes at least one sensor that can detect sensing information of itself or a moving object, such as a laser scanner (LiDAR), a GPS receiver, a radar (RADAR), or a camera. Here, the GPS receiver refers to a module that acquires global position information of the moving object 10 or the detection system 100 through satellite information received from a GPS satellite.
실시 예로서, 센싱부(110)는 이동체(10, 도 1 참조)의 모든 방향에 대한 주변 환경 인식을 위해 적어도 하나 이상의 센서를 포함하고, 두 개 이상의 센서를 포함하는 경우, 각각의 센서는 이동체(10)의 전면(全面)의 서로 다른 위치에 각각 구비됨으로써, 어느 하나의 센서에 다른 이동체가 근접 위치하여 그 센서가 그 이동체 너머를 감지하는 것이 더 이상 불가능한 경우라 하더라도, 다른 위치에 구비된 다른 센서를 통해 그 이동체 너머를 탐지할 수 있도록 구성될 수 있다.In an embodiment, the sensing unit 110 includes at least one sensor for recognizing the surrounding environment in all directions of the moving object 10 (see FIG. 1), and when the sensing unit 110 includes two or more sensors, each sensor is a moving object. By being provided at different positions of the front surface of the whole of (10), respectively, even if the other moving object is located in proximity to one sensor so that the sensor can no longer detect the moving object, It can be configured to detect beyond the moving object through other sensors.
센싱부(110)가 자신의 센서들을 통해 탐지한 센싱 정보는 전처리부(120)로 전달된다.The sensing information detected by the sensing unit 110 through its sensors is transmitted to the preprocessor 120.
전처리부(120)는 센싱부(110)로부터 전달된 센싱 정보들을 처리하여 지역측정정보(LI)를 생성한다. 먼저, 전처리부(120)는 전달된 센싱 정보로부터 이동체의 트래픽(예를 들어, 이동체의 위치, 속도, 방향 등)과 관련된 트래픽 정보를 추출한다. 그리고, 전처리부(120)는 추출된 트래픽 정보를 기반으로 자신 및 주변 이동체들의 트래픽을 나타내는 지역측정정보(LI)를 생성한다. 이와 같이, 전처리부(120)는 센싱 정보들 중 지역측정정보(LI) 생성에 필요한 데이터만을 선택적으로 추출하고 나머지 데이터들은 필터링함으로써, 처리할 트래픽 정보의 용량을 최소화할 수 있다.The preprocessor 120 generates the local measurement information LI by processing the sensing information transmitted from the sensing unit 110. First, the preprocessor 120 extracts traffic information related to the traffic of the mobile body (for example, the position, speed, direction, etc. of the mobile body) from the transmitted sensing information. In addition, the preprocessing unit 120 generates regional measurement information (LI) representing the traffic of itself and surrounding mobiles based on the extracted traffic information. As such, the preprocessing unit 120 may selectively extract only data necessary for generating the local measurement information LI among the sensing information and filter the remaining data, thereby minimizing the amount of traffic information to be processed.
실시 예로서, 전처리부(120)는 트래픽 정보에 기반하여, 탐지된 이동체들 각각에 고유 ID(identification)를 부여할 수 있다.In an embodiment, the preprocessor 120 may assign a unique ID to each of the detected moving objects based on the traffic information.
실시 예로서, 지역측정정보가 나타내는 이동체의 위치는, 이동체의 글로벌 좌표와 같은 절대위치 또는 이동체와 다른 이동체 사이의 상대위치(예를 들어, 이동체들간의 상대거리 및 상대방향으로 가능한)를 포함할 수 있다. In an embodiment, the position of the moving object indicated by the local measurement information may include an absolute position such as a global coordinate of the moving object or a relative position between the moving object and another moving object (for example, relative distance between moving objects and possible directions). Can be.
전처리부(120)에서 생성된 지역측정정보(LI)는 확장측정정보(EI) 생성을 위해 융합처리부(130)에 제공되거나, 다른 이동체로 전송되기 위해 통신부(150)에 제공된다. 실시 예로서, 전처리부(120)에서 생성된 지역측정정보(LI)는 융합처리부(130)를 경유하여 통신부(150)에 제공될 수 있다.The local measurement information LI generated by the preprocessor 120 is provided to the fusion processor 130 to generate the extended measurement information EI, or is provided to the communication unit 150 to be transmitted to another moving object. In an embodiment, the local measurement information LI generated by the preprocessor 120 may be provided to the communication unit 150 via the fusion processor 130.
융합처리부(130)는 전처리부(120)에서 생성된 지역측정정보(LI, 이하 자기 지역측정정보)와 다른 이동체(예를 들어, 도 1의 22)로부터 수신된 지역측정정보(이하, 다른 지역측정정보)를 융합하여 자기 지역측정정보보다 탐지범위가 확장되거나 정확도가 향상된 확장측정정보(EI)를 생성한다.The fusion processor 130 may use the local measurement information LI (hereinafter, referred to as magnetic local measurement information) generated by the preprocessor 120 and the local measurement information received from another moving object (eg, 22 in FIG. 1) (hereinafter, referred to as another region). Measurement information) is fused to generate extended measurement information (EI) with an extended detection range or improved accuracy than magnetic local measurement information.
실시 예로서, 융합처리부(130)는 미리 생성된 자신의 확장측정정보(EI)가 있는 경우, 기존의 확장측정정보(EI)와 다른 이동체로부터 수신된 지역측정정보를 융합하여 기존의 확장측정정보(EI)보다 탐지범위가 확장되거나 정확도가 향상된 새로운 확장측정정보를 생성할 수 있다. As an exemplary embodiment, when the extended measurement information EI is generated in advance, the fusion processing unit 130 fuses the existing extended measurement information EI with the local measurement information received from another moving object and expands the existing extended measurement information. It is possible to generate new extended measurement information with extended detection range or improved accuracy than (EI).
한편, 융합처리부(130)는 복수의 주변 이동체들로부터 복수의 지역측정정보가 수신되는 경우, 예를 들어 가장 인접한 이동체의 지역측정정보를 자신의 지역측정정보와 융합하여 일차적으로 제 1 확장측정정보를 생성하고 제 1 확장측정정보를 다음으로 인접한 이동체의 지역측정정보와 융합하여 더욱 확장된 제 2 확장측정정보를 생성하는 방식과 같이, 자신과 주변 이동체간의 인접도에 기반한 계층적 융합 방식으로 수신된 지역측정정보들을 융합할 수 있다. On the other hand, when the plurality of local measurement information is received from a plurality of peripheral moving objects, the fusion processing unit 130, for example, by first fusion local measurement information of the nearest moving object with its own local measurement information, the first extended measurement information Receive in a hierarchical fusion method based on the proximity between itself and the surrounding moving object, such as a method for generating a second extended measurement information by generating the first extended measurement information and fusing the first extended measurement information with the local measurement information of the next adjacent moving object. Collected local measurement information.
이때, 융합처리부(130)는 주변 이동체와의 인접도를 판단하기 위해, GPS 위치정보 또는 주변 이동체들로부터 수신되는 통신 신호의 세기를 참조할 수 있다. 가령, 융합처리부(130)는 GPS 위치정보 상에서 더 인접하여 표시되거나 더 강한 통신 신호를 송신하는 주변 이동체를 상대적으로 더 인접한 이동체로 판단할 수 있다.In this case, the fusion processor 130 may refer to the GPS position information or the strength of the communication signal received from the neighboring mobiles to determine the proximity to the neighboring mobiles. For example, the fusion processor 130 may determine that a nearby mobile body that is displayed closer to the GPS position information or transmits a stronger communication signal is a relatively closer mobile body.
실시 예로서, 융합처리부(130)는 자신의 지역측정정보 또는 확장측정정보(EI)와 다른 이동체로부터 수신된 지역측정정보를 비교하여, 자신이 알고 있는 주변 이동체들의 위치 정보를 더욱 정확하게 추정할 수 있다. 예를 들어, 융합처리부(130)는 자신의 지역측정정보 또는 확장측정정보(EI)와 수신한 다른 이동체의 지역측정정보를 융합할 때, 지역측정정보 또는 확장측정정보(EI)에 나타난 이동체들의 트래픽 정보를 추정 및 트래킹하여 위치 정확도를 향상시킬 수 있다.In an embodiment, the fusion processing unit 130 may more accurately estimate the location information of the surrounding mobile objects known to the user by comparing the local measurement information or the extended measurement information EI with the local measurement information received from another moving object. have. For example, when the fusion processor 130 fuses its own local measurement information or extended measurement information (EI) with the local measurement information of another mobile object received, the convergence processing unit 130 of the moving objects shown in the local measurement information or extended measurement information (EI) Location accuracy can be improved by estimating and tracking traffic information.
실시 예로서, 융합처리부(130)는 자신의 지역측정정보 또는 확장측정정보(EI)와 수신된 다른 이동체의 지역측정정보에 중복되어 나타나는 특징 정보를 추출하여 주변 이동체들의 트래픽 정보, 예를 들어, 주변 이동체들의 절대좌표 및 상대좌표를 추정할 수 있다. In an embodiment, the convergence processor 130 extracts feature information that overlaps with its local measurement information or extended measurement information (EI) and local measurement information of another mobile object received, and thus, traffic information of neighboring mobile objects, for example, Absolute and relative coordinates of surrounding moving bodies can be estimated.
이때, 융합처리부(130)는 자기 지역측정정보(또는, 기생성된 확장측정정보)와 다른 지역측정정보를 융합하기 위해, 자기 지역측정정보 상의 각 이동체들의 상태를 위치, 속도, 방향과 같은 파라미터로 나타내고, 가령 파라미터 값의 변화 추이를 기록하는 방식으로, 각 이동체들의 상태를 추적할 수 있고, 이와 같이 각 이동체들의 상태를 추적한 결과는, 서로 다른 지역측정정보들(예를 들어, 자기 지역측정정보와 다른 지역측정정보) 상의 이동체들이 서로 동일한 이동체인지 아닌지를 판별하는 데 사용될 수 있다.In this case, the fusion processing unit 130 may determine the state of each moving object on the magnetic localization information such as position, speed, and direction in order to fuse the magnetic localization information (or the previously generated extended measurement information) with other local measurement information. It is possible to track the state of each moving object by recording the change of parameter value, for example, and the result of tracking the state of each moving object is different from the local measurement information (for example, its own area). It can be used to determine whether the moving objects on the measurement information and other local measurement information) are the same moving objects.
실시 예로서, 융합처리부(130)는, 자기 지역측정정보(또는, 기생성된 확장측정정보) 상의 제 1 이동체의 트래픽 정보와 다른 지역측정정보 상의 제 2 이동체의 트래픽 정보를 비교하고, 비교 결과 제 1 이동체의 트래픽 정보와 제 2 이동체의 트래픽 정보의 차이가 임계값 이내로 유사하면 제 1 이동체와 제 2 이동체가 서로 동일한 이동체를 나타내는 것으로 판단할 수 있다. 이때, 융합처리부는 제 1 이동체의 트래픽 정보와 제 2 이동체의 트래픽 정보를 복수의 측정값으로 놓고 단일 상태를 추정하여 정확도를 향상시키게 된다.In an embodiment, the fusion processing unit 130 compares the traffic information of the first mobile object on the magnetic localization information (or the parasitic extended measurement information) with the traffic information of the second mobile object on the other local measurement information, and compares the result. If the difference between the traffic information of the first mobile and the traffic information of the second mobile is similar within a threshold value, it may be determined that the first mobile and the second mobile represent the same mobile. In this case, the convergence processor improves accuracy by estimating a single state by placing the traffic information of the first mobile body and the traffic information of the second mobile body into a plurality of measurement values.
실시 예로서, 융합처리부(130)는 앞서 설명한 제 1 이동체와의 트래픽 정보 비교를 통해 제 1 이동체와 다른 이동체의 동일성을 판단할 때, 제 1 이동체와의 트래픽 정보 차이가 임계값 이내인 다른 이동체가 둘 이상인 경우, 제 1 이동체와의 트래픽 정보 차이가 가장 작은 이동체를 제 1 이동체와 동일한 이동체로 판단할 수 있다.In an embodiment, when the fusion processor 130 determines the identity of the first mobile body and the other mobile body by comparing the traffic information with the first mobile body described above, another mobile body having a difference in traffic information with the first mobile body within a threshold value is determined. When is more than two, the mobile body having the smallest difference in traffic information from the first mobile body can be determined as the same mobile body as the first mobile body.
융합처리부(130)는 자기 지역측정정보(또는, 기생성된 확장측정정보)와 다른 지역측정정보를 융합하는 과정에서, 자기 지역측정정보 상의 제 1 이동체의 위치와 다른 지역측정정보 상의 제 2 이동체의 위치가 서로 겹치도록 자기 지역측정정보 또는 다른 지역측정정보를 시프트(shift), 즉, 선형 및 비선형 변환 시킬 수 있다. 이때, 제 1 이동체의 트래픽 정보와 제 2 이동체의 트래픽 정보가 서로 중복되면, 융합처리부(130)는 제 1 이동체와 제 2 이동체가 서로 동일한 이동체를 나타내는 것으로 판단할 수 있다. 이때, 다른 지역측정정보 상의 제 2 이동체는 다른 지역측정정보를 송신한 이동체를 나타낼 수 있다.In the process of fusing the magnetic local measurement information (or the parasitic extended measurement information) and the other local measurement information, the fusion processor 130 may locate the first moving object on the magnetic local measurement information and the second moving object on the other local measurement information. The magnetic localization information or other localization information may be shifted, i.e., linear and nonlinearly converted so that the positions of the overlap with each other. In this case, when the traffic information of the first moving object and the traffic information of the second moving object overlap each other, the fusion processor 130 may determine that the first moving object and the second moving object represent the same moving object. In this case, the second moving object on the other area measurement information may indicate a moving object that has transmitted other area measurement information.
나아가, 자기 지역측정정보 또는 다른 지역측정정보를 선형 및 비선형 변환시킨 결과, 제 1 및 제 2 이동체 외에도 자기 지역측정정보 상의 위치와 다른 지역측정정보 상의 위치가 겹쳐지는 다른 이동체가 더 있다면, 그러한 이동체는 자기 지역측정정보 및 다른 지역측정정보 상에서 각각 동일한 이동체를 나타내는 것으로 판단될 수 있다. 실시 예로서, 자기 지역측정정보 및 다른 지역측정정보 상의 위치가 겹치는 이동체들이 서로 동일한 이동체를 나타내는 것인지 판단하기 위해, 이동체들의 트래픽 정보가 더 참조될 수 있다.Further, as a result of linear and nonlinear conversion of the magnetic localization information or other local measurement information, if there are other moving objects in addition to the position on the magnetic local measurement information and the position on the other local measurement information in addition to the first and second moving objects, such moving objects It may be determined that each represents the same moving object on the magnetic localization information and the other local measurement information. In an embodiment, traffic information of the moving objects may be further referred to to determine whether moving objects having overlapping positions on the magnetic localization information and other local measurement information represent the same moving object.
실시 예로서, 융합처리부(130)는 자기 지역측정정보(또는, 기생성된 확장측정정보) 상의 제 1 영역에 대한 제 1 트래픽 정보와 다른 지역측정정보 상의 제 2 영역에 대한 제 2 트래픽 정보가 서로 중복이 되면, 제 1 영역 내의 이동체 분포를 나타내는 제 1 토폴로지(topology)와 제 2 영역 내의 이동체 분포를 나타내는 제 2 토폴로지를 비교하고, 제 1 토폴로지와 제 2 토폴로지의 유사도가 미리 결정된 기준이상으로 높은 경우, 제 1 토폴로지를 구성하는 제 1 영역 내의 이동체들과 제 2 토폴로지를 구성하는 제 2 영역 내의 이동체들이 서로 동일한 이동체들을 나타내는 것으로 판단할 수 있다. In an embodiment, the convergence processor 130 may include the first traffic information of the first area on the magnetic area measurement information (or the previously generated extended measurement information) and the second traffic information of the second area on the other area measurement information. When overlapping with each other, the first topology representing the mobile body distribution in the first region and the second topology representing the mobile body distribution in the second region are compared, and the similarity between the first topology and the second topology is above a predetermined reference. In a high case, it may be determined that the moving bodies in the first region constituting the first topology and the moving bodies in the second region constituting the second topology represent the same moving bodies.
실시 예로서, 융합처리부(130)는 앞서 설명한 제 1 영역 내의 이동체 분포를 나타내는 제 1 토폴로지(topology)와 제 2 영역 내의 이동체 분포를 나타내는 제 2 토폴로지를 비교하여 동일한 이동체인지 판단할 때, 제 1 토폴로지와 제 2 토폴로지 사이의 유사도가 미리 결정된 기준보다 높은 이동체가 둘 이상일 경우, 가장 유사한 토폴로지를 갖는 이동체를 동일한 이동체로 판단할 수 있다.In an embodiment, when the fusion processor 130 compares the first topology representing the mobile body distribution in the first region and the second topology representing the mobile body distribution in the second region, the fusion processor 130 determines whether the first mobile body is the same mobile body. When there are two or more moving objects whose similarity between the topology and the second topology is higher than a predetermined criterion, the moving objects having the most similar topology may be determined as the same moving object.
실시 예로서, 제 1 토폴로지와 제 2 토폴로지 간의 유사도 판단은 예를 들어, 제 1 토폴로지와 제 2 토폴로지 간의 차이를 나타내는 에러 벡터(error vector)를 구한 후 그것의 크기를 산출하고, 산출된 크기가 문턱값 이하로 작은 경우 제 1 토폴로지와 제 2 토폴로지 사이의 유사도가 미리 결정된 기준 이상으로 높은 것으로 판단하는 방법에 따를 수 있으나, 이에 한정되는 것은 아니며 토폴로지 간의 유사도를 판단하기 위한 당해 기술분야에 널리 알려진 일반적인 방법들이 위 방법을 대체하여 또는 그것에 추가적으로 사용될 수 있다.In an embodiment, the similarity determination between the first topology and the second topology may, for example, obtain an error vector representing a difference between the first topology and the second topology, and then calculate the magnitude of the error vector. If it is smaller than the threshold value, the method may determine that the similarity between the first topology and the second topology is higher than a predetermined criterion, but the present invention is not limited thereto, and is well known in the art for determining similarity between topologies. General methods may be used in place of or in addition to the above methods.
실시 예로서, 융합처리부(130)는 자기 지역측정정보(또는, 기생성된 확장측정정보) 상의 제 1 영역에 대한 제 1 트래픽 정보와 다른 지역측정정보 상의 제 2 영역에 대한 제 2 트래픽 정보가 서로 중복이 되면, 상기 다른 지역측정정보를 송신한 다른 이동체(송신 이동체)의 위치가 센싱부(110)의 탐지 영역(DR) 내에 포함되는지 판단하고, 센싱부(110)의 탐지 영역에 포함되는 경우, 센싱부(110)를 통해 탐지된 송신 이동체의 위치를 기준으로 다른 지역측정정보 상의 송신 이동체 및 다른 이동체들의 위치를 매칭시키는 방법으로, 확장측정정보를 생성할 수 있다.In an embodiment, the convergence processor 130 may include the first traffic information of the first area on the magnetic area measurement information (or the previously generated extended measurement information) and the second traffic information of the second area on the other area measurement information. When overlapping with each other, it is determined whether the position of another mobile body (transmitting mobile body) which has transmitted the other area measurement information is included in the detection area DR of the sensing unit 110, and is included in the detection area of the sensing unit 110. In this case, the extended measurement information may be generated by matching the positions of the transmitting mobile and other mobiles on the other area measurement information based on the position of the transmitting mobile object detected by the sensing unit 110.
한편, 융합처리부(130)는, 자기 지역측정정보 및 수신한 다른 지역측정정보들을 참조하여, 각 지역측정정보들 상에서 중복된 이동체들의 트래픽 정보(특히, 위치 정보)를 더욱 정확하게 보정할 수 있다. 구체적으로, 융합처리부(130)는 자기 지역측정정보(또는, 확장측정정보)를 다른 지역측정정보와 융합하여 확장측정정보를 생성할 때, 자기 지역측정정보 및 다른 지역측정정보 상의 동일한 이동체에 대한 트래픽 데이터들을 하나의 트래픽 데이터로 통합할 수 있다. 예를 들어, 어떤 이동체의 속도가 자기 지역측정정보 및 다른 지역측정정보에서 각각 100, 110으로 나타난 경우, 융합처리부(130)는 두 데이터 중 더 정확한 것으로 판단된 정보에 우선순위를 두어, 그것을 이동체의 통합 데이터로 결정할 수 있다(예를 들어, 융합처리부(130)는 다른 지역측정정보 상의 데이터보다는 센싱부(110)를 통해 탐지된 자기 지역측정정보 상의 데이터에 더 우선순위를 두어, 자기 측정정보상의 데이터인 100이 그 이동체의 속도인 것으로 결정한다). 다만, 이는 예시적인 것으로서, 본 명세서의 범위는 이에 한정되지 않는다. 예를 들어, 융합처리부(130)는 트래픽 정보의 평균을 취하거나(가령, (100+110)/2=105), 복수의 트래픽 정보들의 중간값을 취하거나, 트래픽 정보들의 평균으로부터의 편차가 가장 작은 트래픽 정보를 취하여 통합 트래픽 정보를 결정할 수도 있다. Meanwhile, the fusion processor 130 may more accurately correct the traffic information (particularly, location information) of the mobile objects overlapped on the respective local measurement information with reference to the magnetic local measurement information and the received other local measurement information. Specifically, when the fusion processing unit 130 generates the extended measurement information by fusing the magnetic local measurement information (or the extended measurement information) with other local measurement information, the same moving object on the magnetic local measurement information and the other local measurement information is generated. Traffic data can be combined into one traffic data. For example, when the speed of a moving object is displayed as 100 and 110 in the magnetic localization information and the other local measurement information, respectively, the fusion processing unit 130 gives priority to the information determined to be more accurate of the two data, which is the moving object. (Eg, the fusion processor 130 may give more priority to the data on the magnetic area measurement information detected through the sensing unit 110 than the data on the other area measurement information, and thus the self-measurement information). 100 of the phase data is determined to be the speed of the moving object). However, this is merely an example, and the scope of the present specification is not limited thereto. For example, the convergence processor 130 may take the average of the traffic information (eg, (100 + 110) / 2 = 105), take the median of the plurality of traffic information, or the deviation from the average of the traffic information. The smallest traffic information may be taken to determine the aggregated traffic information.
실시 예로서, 결정된 통합 트래픽 정보는 생성되는 확장측정정보의 트래픽 정보로서 사용될 수 있다.In an embodiment, the determined integrated traffic information may be used as traffic information of the generated extension measurement information.
그리고, 융합처리부(130)는, 자기 지역측정정보, 수신한 다른 지역측정정보들 또는 확장측정정보를 참조하여 이동체의 트래픽 정보를 추적하고(가령, 시간의 경과에 따른 트래픽 정보의 변화 추이를 추적), 그 결과로부터 이동체의 위치, 속도 또는 진행방향을 예측할 수 있다. 나아가, 융합처리부(130)는 그로부터 탐지 시스템(100)이 탑재된 이동체와 다른 이동체와의 진행방향 차이를 분석 및 예측할 수 있다.The fusion processor 130 tracks the traffic information of the moving object with reference to the magnetic localization information, the received other local measurement information, or the extended measurement information (for example, tracks the change of traffic information over time). ), The position, velocity or direction of travel of the moving object can be estimated from the result. In addition, the fusion processor 130 may analyze and predict a difference in the direction of travel between the moving object on which the detection system 100 is mounted and another moving object.
실시 예로서, 융합처리부(130)는 어떤 이동체에 대한 위치 정보가 상대위치로 표시된 정보인 경우, 절대위치가 알려진 이동체의 트래픽 정보를 포함하는 지역측정정보 또는 확장측정정보와의 융합을 통해, 해당 이동체의 절대위치를 추정할 수 있다. 예를 들어, 제 1 지역측정정보 상의 A 이동체의 위치가 글로벌 좌표로(x,y)=(10, 10)이고, 제 2 지역측정정보 상의 A 이동체와 B 이동체 사이의 상대위치가'A 이동체는 B 이동체로부터 x축 방향으로 10만큼 떨어져 있음' 일 때, 융합처리부(130)는 제 1 지역측정정보와 제 2 지역측정정보를 융합하여, 제 2 지역측정정보 상의 B 이동체의 절대위치를 (10+10, 10) = (20, 10)으로 결정할 수 있다. In an embodiment, when the location information of a moving object is information displayed as a relative position, the fusion processing unit 130 may perform convergence with local measurement information or extended measurement information including traffic information of a moving object whose absolute position is known. The absolute position of the moving object can be estimated. For example, the position of the moving object A on the first geometric information is (x, y) = (10, 10) in the global coordinates, and the relative position between the moving object A and the moving body B on the second local measurement information is' A moving object. Is separated by 10 in the x-axis direction from the moving object B ', the fusion processing unit 130 fuses the first local measurement information and the second local measurement information to determine the absolute position of the moving object B on the second local measurement information ( 10 + 10, 10) = (20, 10).
실시 예로서, 융합처리부(130)는 다른 지역측정정보를 송신한 송신 이동체에 대해 고유 ID를 부여하거나 그것의 고유 ID를 식별하고, 부여 또는 식별된 고유 ID를 생성된 확장측정정보 상의 특정 이동체와 매칭시킬 수 있다. 이때, 고유 ID는 송신 이동체에서 송신되는 메타 정보(예를 들어, 제품의 시리얼 번호, 또는 이동체의 차대 번호 등)를 참조하여, 부여 또는 식별될 수 있다.In an embodiment, the fusion processor 130 may assign a unique ID or identify a unique ID to a transmitting mobile object that has transmitted other geometric information, and may assign the unique ID to the specific mobile object on the generated extended measurement information. Can match. In this case, the unique ID may be assigned or identified with reference to meta information (for example, a serial number of a product or a chassis number of the moving object) transmitted from the transmitting mobile object.
입출력 인터페이스(150)는 탐지 시스템(100)의 제어 및 결과 출력을 위한 입출력 수단을 제공한다. 예를 들어, 탐지 시스템(100)은 송신 또는 수신할 통신 신호의 세기를 조정하는 방식으로 그것의 협력 통신 반경을 가변할 수 있고, 이러한 협력 통신 반경의 변경은 입출력 인터페이스(150)를 통한 사용자 입력에 따라 제어될 수 있다. The input / output interface 150 provides input / output means for controlling the detection system 100 and outputting the result. For example, the detection system 100 can vary its cooperative radius of communication in a manner that adjusts the strength of the communication signal to be transmitted or received, and such a change in the cooperative radius of communication may be user input via the input / output interface 150. Can be controlled according to.
또는, 탐지 시스템(100)은 입출력 인터페이스(150)를 통한 사용자 입력에 따라 협력 통신 신호의 방향성을 조정함으로써, 협력 통신을 수행할 영역 또는 방향을 가변할 수 있다. Alternatively, the detection system 100 may change the area or direction in which the cooperative communication is to be performed by adjusting the direction of the cooperative communication signal according to a user input through the input / output interface 150.
또는, 탐지 시스템(100)은 입출력 인터페이스(150)를 통한 사용자 입력에 따라 자기 지역측정정보를 송신하거나 다른 지역측정정보를 수신할 주기를 설정 또는 변경할 수 있다. Alternatively, the detection system 100 may set or change a period for transmitting magnetic area measurement information or receiving other area measurement information according to a user input through the input / output interface 150.
또는, 탐지 시스템(100)은 입출력 인터페이스(150)를 통한 사용자 입력에 응답하여, 현재의 협력 통신 반경 또는 영역을 사용자에게 표시하거나, 가능한 협력 통신 반경 또는 영역을 일정 범위 이내로 제한할 수 있다.Alternatively, the detection system 100 may display a current cooperative communication radius or area to the user in response to a user input through the input / output interface 150 or limit a possible cooperative communication radius or area to a certain range.
통신부(150)는 탐지 시스템(100)과 다른 이동체 사이의 협력 통신을 수행한다. 통신부(150)는 전처리부(120) 또는 융합처리부(130)로부터 자기 지역측정정보(LI)를 전달받아 다른 이동체를 향해 송신하거나(예를 들어, 방송(broadcasting) 형태로), 다른 이동체들로부터 다른 지역측정정보를 수신하여 융합처리부(130)에 전달한다. 실시 예로서, 통신부(150)는 융합처리부(130)가 생성한 확장측정정보(EI)를 다른 이동체를 향해 더 송신할 수 있다. The communicator 150 performs cooperative communication between the detection system 100 and another mobile object. The communication unit 150 receives the magnetic localization information LI from the preprocessing unit 120 or the fusion processing unit 130 and transmits it to another mobile unit (for example, in the form of broadcasting) or from other mobile units. Receives other area measurement information and transmits it to the fusion processor 130. In an embodiment, the communication unit 150 may further transmit the extended measurement information EI generated by the fusion processing unit 130 to another moving object.
한편, 통신부(150)는, 예를 들어, 입출력 인터페이스(140)를 통한 사용자 입력에 따라, 주변 환경(가령, 트래픽 또는 통신 환경), 센싱부(110)가 측정한 다른 이동체의 트래픽 정보, 혹은 다른 이동체가 측정한 탐지 시스템(100)의 트래픽 정보를 참조하여, 협력 통신의 신호 세기를 조정함으로써 협력 통신 반경을 변경할 수 있다.On the other hand, the communication unit 150, for example, according to a user input through the input and output interface 140, the surrounding environment (for example, traffic or communication environment), traffic information of the other mobile body measured by the sensing unit 110, or The cooperative communication radius may be changed by adjusting the signal strength of the cooperative communication with reference to the traffic information of the detection system 100 measured by another mobile.
또한, 통신부(150)는, 예를 들어, 입출력 인터페이스(140)를 통한 사용자 입력에 따라, 주변 환경(가령, 트래픽 또는 통신 환경), 센싱부(110)가 측정한 다른 이동체의 트래픽 정보, 혹은 다른 이동체가 측정한 탐지 시스템(100)의 트래픽 정보를 참조하여, 협력 통신 신호의 방향성을 조정함으로써 협력 통신을 수행할 영역 또는 방향을 변경할 수 있다.In addition, the communication unit 150 may, for example, according to a user input through the input / output interface 140, may include a surrounding environment (eg, a traffic or communication environment), traffic information of another mobile object measured by the sensing unit 110, or By referring to the traffic information of the detection system 100 measured by another mobile, it is possible to change the area or direction in which the cooperative communication is performed by adjusting the direction of the cooperative communication signal.
또한, 통신부(150)는, 예를 들어, 입출력 인터페이스(150)를 통한 사용자 입력에 따라, 가능한 협력 통신 반경 또는 영역을 일정 범위 이내로 제한할 수 있다.In addition, the communication unit 150 may limit possible cooperative communication radius or area within a certain range, for example, according to a user input through the input / output interface 150.
실시 예로서, 통신부(150)는 탐지 시스템(100)이 탑재된 이동체의 ID를 자기 지역측정정보(LI)와 함께 송신할 수 있다. 송신되는 이동체의 ID는 이동체와 관련된 고유한 메타 정보(예를 들어, 제품의 시리얼 번호, 또는 이동체의 차대 번호 등)나 협력 통신에 사용되는 통신 어드레스 등을 참조하여 결정될 수 있다. In an embodiment, the communication unit 150 may transmit the ID of the moving object on which the detection system 100 is mounted together with the magnetic area measurement information LI. The ID of the mobile object to be transmitted may be determined by referring to unique meta information related to the mobile object (for example, a serial number of a product or a chassis number of the mobile object) or a communication address used for cooperative communication.
실시 예로서, 통신부(150)는 다른 이동체들로부터 수신된 다른 지역측정정보가 둘 이상인 경우, 미리 결정된 기준에 따라 수신된 다른 지역측정정보들 간에 우선순위를 부여할 수 있다. 그리고, 부여된 우선순위에 따라 다른 지역측정정보들을 차별적으로 융합처리부(130)에 전달할 수 있다(예를 들어, 가장 높은 우선순위가 부여된 지역측정정보를 융합처리부(130)에 전달한 후, 그것과 중복되지 않는 범위내에서 다른 지역측정정보들을 융합처리부(130)에 순차적으로 전달함). In an embodiment, when the communication unit 150 has two or more other local measurement information received from other moving objects, the communication unit 150 may give priority to the other local measurement information received according to a predetermined criterion. Then, different regional measurement information may be differentially transmitted to the convergence processor 130 according to the assigned priority (for example, after the highest priority has been transmitted to the convergence processor 130, the local measurement information may be transferred to the convergence processor 130). And other regional measurement information are sequentially transmitted to the fusion processing unit 130 within a range that does not overlap.
이때, 다른 지역측정정보들 간의 우선 순위를 결정하기 위한 미리 결정된 기준은, 예를 들어, 다른 지역측정정보를 송신한 다른 이동체와의 거리가 짧을수록, 또는 다른 지역측정정보를 전달하는 통신 신호(예를 들어, 캐리어(carrier))의 세기가 셀수록 해당 지역측정정보에 더 높은 우선순위를 부여하는 것일 수 있다. In this case, the predetermined criterion for determining the priority among other geometric information is, for example, the shorter the distance to the other mobile body that has transmitted other geometric information, or the communication signal for transmitting other geometric information ( For example, the more the strength of the carrier (carrier), the higher priority can be given to the corresponding geographic measurement information.
지금까지 설명한 구성들에 따르면, 탐지 시스템(100)은 다른 이동체와의 협력 통신을 통해 다른 지역측정정보들을 수신하고 이를 자신이 생성한 자기 지역측정정보와 융합함으로써, 더욱 넓은 범위에 걸쳐 이동체 트래픽 정보를 제공하는 확장측정정보를 생성한다. 이때, 확장측정정보의 트래픽 정보는 복수의 지역측정정보들을 참조하여, 자기 지역측정정보의 트래픽 정보보다 더 높은 정확도를 갖도록 보정된다.According to the configurations described so far, the detection system 100 receives the other local measurement information through the cooperative communication with other mobile objects and fuses it with the self-localized information generated by itself, thereby expanding the mobile traffic information over a wider range. Create extended measurement information that provides. At this time, the traffic information of the extended measurement information is corrected to have a higher accuracy than the traffic information of the own local measurement information with reference to the plurality of local measurement information.
그에 따라, 탐지 시스템(100)은 자신이 구비한 센서의 탐지범위 밖에 위치한 이동체에 대해서도 위치, 속도, 방향 등을 탐지할 수 있으며, 그에 따라 주변 이동체 탐지 시스템(100)의 탐지 범위는 비약적으로 넓어질 수 있다. Accordingly, the detection system 100 may detect a position, a speed, a direction, and the like even with respect to a moving object that is located outside the detection range of the sensor provided by the detection system. Accordingly, the detection range of the peripheral moving object detection system 100 is dramatically wider. Can lose.
또한, 넓어진 탐지범위에 따라 더욱 안전하고 효율적인 주행 전략 수립이 가능하므로 사용자는 교통 정체와 같은 문제들을 미리 회피할 수 있고, 구비된 센서만으로는 탐지할 수 없었던 사각 영역에 대한 정보도 얻을 수 있으므로 주행중 사고 발생의 위험성이 감소한다.In addition, a safer and more efficient driving strategy can be established according to the wider detection range, so users can avoid problems such as traffic congestion in advance, and also obtain information on blind spots that could not be detected by the equipped sensor alone. The risk of occurrence is reduced.
또한, 주변 이동체 탐지 시스템(100)은 개방형의 협력 통신을 이용하므로, 트래픽 정보에 대한 접근성이 제한적이었던 종래의 기술들과는 달리, 특별한 제한없이 누구라도 다른 이동체로부터 필요한 정보를 얻을 수 있는 장점이 있다. In addition, since the peripheral vehicle detection system 100 uses open cooperative communication, unlike the conventional technologies, in which access to traffic information is limited, anyone without any particular limitation has an advantage of obtaining necessary information from other vehicles.
나아가, 협력 통신에 참여하는 각 이동체들은 정보의 수신 주체이면서 동시에 송신 주체로 기능하므로, 이동체에 대한 정보 제공을 전담할 별도의 인프라를 필요로 하지 않아, 상대적으로 적은 비용으로 협력 통신 시스템을 구축할 수 있다.Furthermore, since each mobile entity participating in the cooperative communication functions as a receiving entity and a transmitting entity at the same time, it does not need a separate infrastructure dedicated to providing information to the mobile entity, and thus a cooperative communication system can be constructed at a relatively low cost. Can be.
도 3은 도 1에 도시된 융합 처리부(130)가 복수의 지역측정정보들을 융합하여 확장측정정보를 생성하는 방법을 개념적으로 도시하는 도면이다. 도 3에서는 토폴로지가 일부 중복되는 두 개의 지역측정정보들(LI1, LI2)을 융합하여 확장측정정보(EI)를 생성하는 방법이 설명된다. 3 is a diagram conceptually illustrating a method in which the convergence processor 130 illustrated in FIG. 1 generates extended measurement information by fusing a plurality of geometric information. In FIG. 3, a method of generating extended measurement information EI by fusion of two pieces of local measurement information LI1 and LI2 having a partially overlapping topology is described.
도시된 지역측정정보들(LI1, LI2)은 각각이 다른 이동체로부터 수신된 다른 지역측정정보일 수도 있고, 어느 하나가 탐지 시스템(100)이 생성한 자기 지역측정정보이고 다른 하나가 다른 지역측정정보일 수도 있다. The illustrated local measurement information LI1 and LI2 may be different local measurement information each received from another moving object, one of which is magnetic localization information generated by the detection system 100 and the other is local measurement information. It may be.
또는, 그 중 하나가 탐지 시스템(100)이 생성한 기존의 확장측정정보일 수도 있고(비록 여기서는 지역측정정보로 표시되었지만), 다른 하나가 다른 지역측정정보일 수도 있다. 이 경우, 융합(131)을 통해 생성된 확장측정정보(EI)는 기존의 확장측정정보를 대신하여 새롭게 생성 또는 갱신된 확장측정정보가 된다.Alternatively, one of them may be existing extended measurement information generated by the detection system 100 (although it is indicated here as local measurement information), and the other may be other local measurement information. In this case, the extended measurement information EI generated through the fusion 131 becomes newly created or updated extended measurement information instead of the existing extended measurement information.
도 3을 참조하면, 지역측정정보들(LI1, LI2) 각각에는 이동체들의 위치가 작은 사각형들로서 표시된다. 그리고, 각 지역측정정보(LI1, LI2)는 서로 유사한 토폴로지들(A, A')를 갖는 영역들이 있다. 이 경우, 융합처리부(130)는 각 영역들의 토폴로지들(A, A')간의 유사도를 판단한 후, 그것들이 서로 동일한 이동체들을 나타내는 토폴로지들 인지를 판단한다. 토폴로지들간의 유사도를 판단하는 구체적인 방법은 도 2에서 이미 설명하였으므로, 여기서는 그에 대한 설명을 생략한다.Referring to FIG. 3, the location of the moving objects is displayed as small squares in each of the area measurement information LI1 and LI2. Each area measurement information LI1 and LI2 has regions having similar topologies A and A '. In this case, the fusion processor 130 determines the similarity between the topologies A and A 'of the regions, and then determines whether they are topologies representing the same moving bodies. Since a detailed method of determining the similarity between the topologies has already been described with reference to FIG. 2, the description thereof is omitted here.
토폴로지들(A, A')이 서로 동일한 이동체들을 나타내는 것으로 판단되면, 융합처리부(130)는 융합(131)을 위해, 토폴로지들(A, A')이 서로 겹치도록 지역측정정보들(LI1, LI2)을 선형 및 비선형 변환시킨다. 여기서는, 제 2 지역측정정보(LI2)를 선형 및 비선형 변환시켜 제 1 지역측정정보(LI1)와 겹치게 만드는 것으로 예시한다. 대응하는 이동체들의 위치가 서로 겹쳐지도록 지역측정정보들(LI1, LI2)을 융합(131)합 결과는 확장측정정보(EI)로서 생성 및 출력된다.When it is determined that the topologies A and A 'represent the same moving bodies, the fusion processor 130 may perform local measurement information LI1, such that the topologies A and A' overlap each other for the fusion 131. LI2) is converted linearly and nonlinearly. In this example, the second area measurement information LI2 is linearly and nonlinearly converted to overlap the first area measurement information LI1. The result of fusion 131 of the local measurement information LI1 and LI2 so that the positions of the corresponding moving bodies overlap with each other is generated and output as the extended measurement information EI.
위와 같은 방법에 따르면, 확장측정정보(EI)는 개별 지역측정정보(LI1, LI2)보다 더욱 넓은 범위에 걸쳐 이동체들의 트래픽 정보를 나타낼 수 있다. 예를 들어, 제 1 지역측정정보(LI1)는 토폴로지(A) 및 그 좌측에 위치한 세 개의 이동체만을 표시하고, 제 2 지역측정정보(LI2)는 토폴로지(A') 및 그 우측에 위치한 다른 세 개의 이동체만을 표시하지만, 확장측정정보는 제 1 지역측정정보(LI1) 및 제 2 지역측정정보(LI2)에 표시된 모든 이동체들을 하나의 측정정보로서 표시할 수 있다. 따라서, 일반적으로 어느 하나의 지역측정정보만을 참조하는 대신, 그것들이 융합된 확장측정정보를 참조함으로써 더 넓은 범위의 트래픽 정보를 수집할 수 있다.According to the above method, the extended measurement information EI may represent traffic information of moving objects over a wider range than the individual area measurement information LI1 and LI2. For example, the first area measurement information LI1 displays only the topology A and three moving objects located on its left side, and the second area measurement information LI2 displays the topology A 'and the other three located on its right side. Although only two moving objects are displayed, the extended measurement information may display all moving objects displayed in the first area measurement information LI1 and the second area measurement information LI2 as one measurement information. Therefore, in general, instead of referring to only one piece of geometric information, it is possible to collect a wider range of traffic information by referring to the extended measurement information in which they are fused.
한편, 각 지역측정정보들(LI1, L2)의 동일 이동체에 대한 트래픽 정보들이 서로 상이한 경우, 그것들을 종합하여 도출되는 바람직한 값을 확장측정정보의 트래픽 정보로 결정함은 앞서 설명한 바와 동일하다. On the other hand, when the traffic information for the same moving object of each of the local measurement information (LI1, L2) is different from each other, it is the same as described above to determine the preferred value derived by combining them as the traffic information of the extended measurement information.
도 4는 복수의 이동체들 간의 협력 통신(1000)을 이용하여 광범위한 영역에 대해 확장측정정보를 생성하는 예를 설명하기 위한 도면이다. 도 4를 참조하면, 복수의 이동체들(1010, 1020, 1030)은 협력 통신(1000)을 통해 자신의 지역측정정보들을 다른 이동체들과 주고 받으며, 그러한 지역측정정보들을 융합하여 더욱 넓은 범위에 대한 확장측정정보를 생성한다.FIG. 4 is a diagram for describing an example of generating extended measurement information for a wide range of areas by using cooperative communication 1000 between a plurality of moving objects. Referring to FIG. 4, the plurality of moving objects 1010, 1020, and 1030 transmit and receive their local measurement information with other mobile objects through the cooperative communication 1000, and fuse such local measurement information for a wider range. Create extended measurement information.
도 4에서, 세 개의 이동체들(1010, 1020, 1030)에 본 명세서의 탐지 시스템(100)이 각각 구비된다고 가정한다. 그리고, 탐지 시스템(100)이 구비된 이동체들(1010, 1020, 1030)은 자신의 센서들을 이용하여 지역측정정보를 각각 생성하고, 생성된 지역측정정보들을 다른 이동체들을 향해 방송한다고 가정한다. In FIG. 4, it is assumed that three moving bodies 1010, 1020, and 1030 are provided with the detection system 100 of the present disclosure, respectively. In addition, it is assumed that the moving objects 1010, 1020, and 1030 provided with the detection system 100 generate local measurement information using their own sensors, and broadcast the generated local measurement information to other moving objects.
이동체들(1010, 1020, 1030) 각각이 생성하는 개별 지역측정정보(1011, 1021, 1031)는 각 이동체들(1010, 1020, 1030)에 구비된 센서의 탐지범위 내에서만 트래픽 정보를 표시할 수 있다. 예를 들어, 제 1 이동체(1010)의 제 1 지역측정정보(1011)는 제 1 탐지범위(1012) 내에 있는 자신을 포함한 세 개의 이동체에 대해서만 트래픽 정보를 표시한다. 유사하게, 제 2 이동체(1020)의 제 2 지역측정정보(1021)는 제 2 탐지범위(1022) 내에 있는 자신을 포함한 다섯 개의 이동체에 대해서만 트래픽 정보를 표시하고, 제 3 이동체(1030)의 제 3 지역측정정보(1031)는 제 3 탐지범위(1032) 내에 있는 자신을 포함한 네 개의 이동체에 대해서만 트래픽 정보를 표시한다.Individual geospatial information 1011, 1021, and 1031 generated by each of the moving objects 1010, 1020, and 1030 may display traffic information only within a detection range of a sensor included in each of the moving objects 1010, 1020, and 1030. have. For example, the first area measurement information 1011 of the first moving object 1010 displays traffic information only for three moving objects including itself within the first detection range 1012. Similarly, the second area measurement information 1021 of the second mobile object 1020 displays traffic information only for five mobile objects including itself within the second detection range 1022, and the third mobile object 1030 may be configured to display traffic information. The third area measurement information 1031 displays traffic information only for four mobile objects including itself within the third detection range 1032.
이때, 제 1 지역측정정보(1011)와 제 2 지역측정정보(1021)는 공통적으로 이동체(a)에 대한 트래픽 정보를 포함하고, 제 2 지역측정정보(1021)와 제 3 지역측정정보(1031)는 공통적으로 이동체(b)에 대한 트래픽 정보를 포함한다고 가정한다.At this time, the first area measurement information 1011 and the second area measurement information 1021 commonly include traffic information for the moving object a, and the second area measurement information 1021 and the third area measurement information 1031. Is commonly assumed to include traffic information for mobile b.
그리고, 이동체들(1010, 1020, 1030) 각각은 자신이 생성한 지역측정정보(1011, 1021, 1031)을 다른 이동체들을 향해 송신한다. 이때, 이동체들(1010, 1020, 1030)은 통신부(1013, 1023, 1033)를 이용한 협력 통신을 통해 지역측정정보(1011, 1021, 1031)를 송신하는데, 이때의 통신부(1013, 1023, 1033)는 탐지 시스템(100)에 임베디드된 형태로 구비될 수도 있고, 탐지 시스템(100)의 다른 모듈들과 하드웨어적으로 독립된 통신단말기(예를 들어, 사용자가 휴대하는 스마트폰)의 형태로 구비될 수도 있다.Each of the moving objects 1010, 1020, and 1030 transmits local measurement information 1011, 1021, and 1031 generated by the moving objects to other moving objects. In this case, the moving objects 1010, 1020, and 1030 transmit local measurement information 1011, 1021, and 1031 through cooperative communication using the communication units 1013, 1023, and 1033, and the communication units 1013, 1023, and 1033 at this time. May be provided in the form embedded in the detection system 100, or may be provided in the form of a communication terminal (for example, a smart phone carried by a user) that is independent of other modules of the detection system 100 in hardware. have.
그리고, 이동체들(1010, 1020, 1030) 중 임의의 이동체는 다른 이동체들이 송신한 지역측정정보들을 수신하여 자신이 생성한 지역측정정보와 융합함으로써, 이동체들(1010, 1020, 1030)의 각 센서 탐지범위를 포괄하는 확장측정정보(1100)를 생성한다. 이때, 지역측정정보들(1011, 1021, 1031)의 융합은 둘 이상의 지역측정정보들에서 공통적으로 표시되는 이동체(a, b)를 기준으로 수행된다. 예를 들어, 제 1 지역측정정보(1011) 상의 이동체(a)와 제 2 지역측정정보(1021) 상의 이동체(a)가 서로 겹치도록 제 1 또는 제 2 지역측정정보를 선형 및 비선형 변환시키고, 제 2 지역측정정보(1021) 상의 이동체(b)와 제 3 지역측정정보(1031) 상의 이동체(b)가 서로 겹치도록 제 2 또는 제 3 지역측정정보를 선형 및 비선형 변환시킴으로써, 하나의 확장측정정보(1100)를 생성한다. In addition, any of the moving objects 1010, 1020, 1030 receives the local measurement information transmitted by the other moving objects and fuses with the local measurement information generated by itself, thereby detecting each sensor of the moving objects 1010, 1020, 1030. The extended measurement information 1100 covering the detection range is generated. At this time, the convergence of the local measurement information (1011, 1021, 1031) is performed based on the moving objects (a, b) commonly displayed in the two or more local measurement information. For example, the linear or nonlinear transformation of the first or second geometric information is performed such that the mobile object a on the first geometric information 1011 and the mobile object a on the second geometric information 1021 overlap each other. One extended measurement by linearly and nonlinearly converting the second or third area measurement information such that the moving object b on the second area measurement information 1021 and the moving object b on the third area measurement information 1031 overlap each other. Generates information 1100.
한편, 융합을 통한 확장측정정보(1100)의 생성과정에서, 도 1 내지 도 3에서 설명한 다른 기술적 수단들이 추가적으로 또는 병행적으로 더 적용될 수 있다.Meanwhile, in the process of generating the extended measurement information 1100 through fusion, other technical means described with reference to FIGS. 1 to 3 may be additionally or additionally applied.
이러한 방법에 따르면, 협력 통신 시스템(1000)을 통해 이동체들(1010, 1020, 1030) 간에 지역측정정보(1011, 1021, 1031)를 제공함으로써, 이동체가 구비한 센서의 탐지범위 밖에 위치한 이동체에 대해서도 트래픽 정보를 얻을 수 있고, 그러한 넓어진 탐지범위에 의해 기존에 탐지할 수 없었던 사각 영역에 대한 트래픽 정보를 획득함은 물론 더욱 안전하고 효율적인 주행 전략 수립도 가능해진다.According to this method, by providing the local measurement information (1011, 1021, 1031) between the moving objects (1010, 1020, 1030) through the cooperative communication system 1000, even for a mobile object located outside the detection range of the sensor provided by the moving object Traffic information can be obtained, and the wider detection range enables traffic information on blind spots that could not be detected previously, as well as establishing safer and more efficient driving strategies.
도 5는 본 명세서의 일 실시 예에 따른, 주변 이동체 탐지 시스템이 자신의 센서를 통해 지역측정정보를 생성하고, 그것을 다른 이동체에 송출하는 방법을 예시적으로 나타내는 순서도이다. 도 5를 참조하면, 지역측정정보의 생성 및 송출 방법은 S110 단계 내지 S140 단계를 포함한다.FIG. 5 is a flowchart illustrating a method of generating, by a nearby moving object detecting system, local measurement information through its sensor and transmitting the same to another moving object according to one embodiment of the present specification. Referring to FIG. 5, the method for generating and transmitting local measurement information includes steps S110 to S140.
S110 단계에서, 탐지 시스템(100)은 센싱부(110)를 통해 센서의 탐지범위 내에 위치한 이동체들을 탐지한다. 탐지한 결과는 센싱 정보로서 전처리부(120)에 제공된다.In operation S110, the detection system 100 detects moving objects located within a detection range of the sensor through the sensing unit 110. The detection result is provided to the preprocessor 120 as sensing information.
S120 단계에서, 전처리부(120)는 제공된 센싱 정보들 중에서 불필요한 데이터들을 필터링하여, 이동체들에 대한 트래픽 정보(예를 들어, 이동체의 위치, 속도, 방향 등)를 추출한다. 이와 같은, 필터링 과정을 통해, 전처리부(120)는 처리할 트래픽 정보의 용량을 최소화시킨다.In operation S120, the preprocessor 120 filters unnecessary data among the provided sensing information to extract traffic information (eg, position, speed, direction, etc.) of the moving objects. Through such a filtering process, the preprocessor 120 minimizes the capacity of traffic information to be processed.
S130 단계에서, 전처리부(120)는 추출된 트래픽 정보를 기반으로 지역측정정보를 생성한다. 생성된 지역측정정보는 융합처리부(130) 또는 통신부(150)에 제공된다.In operation S130, the preprocessor 120 generates regional measurement information based on the extracted traffic information. The generated local measurement information is provided to the fusion processing unit 130 or the communication unit 150.
S140 단계에서, 통신부(150)는 전처리부(120)로부터 또는 융합처리부(130)를 경유하여 전달받은 지역측정정보를 다른 이동체와의 협력 통신을 통해 송신한다. 이때, 지역측정정보의 송신은 목적지를 특정함이 없이 다수의 임의의 이동체들을 향해 동시 전송되는 방송(broadcasting) 형태로 수행될 수 있다. 송신되는 지역측정정보는 다른 이동체가 확장측정정보를 생성하는 데 참조된다.In step S140, the communication unit 150 transmits the area measurement information received from the preprocessor 120 or via the fusion processor 130 through cooperative communication with other mobile objects. In this case, the transmission of the local measurement information may be performed in the form of broadcasting (broadcasting) simultaneously transmitted to a plurality of arbitrary moving objects without specifying a destination. The transmitted local measurement information is referred to another mobile object to generate extended measurement information.
한편, 센싱부(110), 전처리부(120) 및 통신부(150)에 대해 여기서 설명되지 않은 다른 세부 사항들은 도 1 내지 도 4에서 설명한 바와 동일하다.Meanwhile, other details that are not described herein regarding the sensing unit 110, the preprocessor 120, and the communication unit 150 are the same as those described with reference to FIGS. 1 to 4.
위와 같은 방법에 따르면, 확장측정정보 생성을 위한 지역측정정보 제공 수단이 개시된다. 이때, 지역측정정보의 이동체간 전달은 개방형의 협력 통신을 이용하므로, 트래픽 정보에 대한 접근성이 제한적이었던 종래의 기술들과는 달리 특별한 제한없이 누구라도 언제나 필요한 지역측정정보를 얻을 수 있는 장점이 있다. According to the above method, a local measurement information providing means for generating extended measurement information is disclosed. At this time, since the mobile communication of the local measurement information uses an open cooperative communication, there is an advantage that anyone can always obtain the necessary local measurement information without any special limitation, unlike the conventional technologies that have limited access to traffic information.
나아가, 협력 통신에 참여하는 각 이동체들은 정보의 수신 주체이면서 동시에 송신 주체로 기능하므로, 이동체에 대한 정보 제공을 전담할 별도의 인프라를 필요로 하지 않아, 상대적으로 적은 비용으로 탐지 시스템(100)을 위한 협력 통신을 구축할 수 있다.Furthermore, since each mobile unit participating in the cooperative communication functions as a receiving entity and a transmitting entity at the same time, it does not need a separate infrastructure dedicated to providing information about the mobile unit, thus reducing the detection system 100 at a relatively low cost. Establish cooperative communication for
도 6은 본 명세서의 일 실시 예에 따른, 주변 이동체 탐지 시스템이 다른 이동체와의 협력 통신을 통해 주변 이동체들의 위치를 탐지하는 방법을 예시적으로 나타내는 순서도이다. 도 6을 참조하면, 주변 이동체를 탐지하는 방법은 S210 단계 내지 S250 단계를 포함한다.FIG. 6 is a flowchart illustrating a method of detecting a location of surrounding moving objects by a nearby moving object detection system through cooperative communication with another moving object, according to an exemplary embodiment. Referring to FIG. 6, the method for detecting the surrounding moving object includes steps S210 to S250.
S210 단계에서, 탐지 시스템(100)의 통신부(150)는 협력 통신을 통해 다른 이동체의 지역측정정보를 수신한다. In step S210, the communication unit 150 of the detection system 100 receives the local measurement information of the other mobile through the cooperative communication.
S220 단계에서, 융합처리부(130)는 수신된 지역측정정보를 통신부(150)로부터 전달받아, 탐지 시스템(100)이 생성한 지역측정정보와 융합함으로써 확장측정정보를 생성한다.In operation S220, the fusion processor 130 receives the received local measurement information from the communication unit 150 and generates extended measurement information by fusing the local measurement information generated by the detection system 100.
S230 단계에서, 탐지 시스템(100)은 다른 이동체로부터 새로운 지역측정정보가 수신되었는지 판단한다. 새로운 지역측정정보가 수신되었으면, 주변 이동체들을 탐지하는 방법은 S240 단계로 진행한다. 그렇지 않으면, 주변 이동체들을 탐지하는 방법은 S250 단계로 진행한다.In operation S230, the detection system 100 determines whether new area measurement information is received from another moving object. When the new area measurement information is received, the method for detecting the surrounding moving objects proceeds to step S240. Otherwise, the method of detecting the surrounding moving objects proceeds to step S250.
S240 단계에서, 융합처리부(130)는 새로운 지역측정정보를 기존의 확장측정정보와 융합시켜, 기존의 확장측정정보를 대체하는 새로운 확장측정정보를 생성한거나, 기존의 확장측정정보를 갱신한다. 생성 또는 갱신이 완료되면, 주변 이동체들을 탐지하는 방법은 S250 단계로 진행한다.In step S240, the fusion processing unit 130 fuses the new area measurement information with the existing extended measurement information to generate new extended measurement information to replace the existing extended measurement information, or update the existing extended measurement information. When the generation or update is completed, the method for detecting the surrounding moving objects proceeds to step S250.
S250 단계에서, 탐지 시스템(100)은 생성 또는 갱신된 확장측정정보에 기반하여, 필요한 지리적 정보 또는 이동체의 정보를 포함하는 트래픽 정보를 사용자에게 출력한다. 또는, 탐지 시스템(100)은 생성 또는 갱신된 확장측정정보 자체를 출력할 수도 있다.In operation S250, the detection system 100 outputs traffic information including necessary geographic information or information on a moving object to the user, based on the generated or updated extended measurement information. Alternatively, the detection system 100 may output the generated or updated extended measurement information itself.
한편, 융합처리부(130) 및 통신부(150)에 대해 여기서 설명되지 않은 다른 세부 사항들은 도 1 내지 도 4에서 설명한 바와 동일하다.Meanwhile, other details that are not described herein regarding the fusion processing unit 130 and the communication unit 150 are the same as those described with reference to FIGS. 1 to 4.
위와 같은 방법에 따르면, 다른 이동체와의 지역측정정보를 융합시켜 더 넓은 탐지범위를 갖는 확장측정정보를 생성함으로써, 센서의 탐지범위 밖에 위치한 이동체에 대해서도 위치나 속도 등을 탐지할 수 있으며, 그에 따라 주변 이동체 탐지 시스템의 탐지 범위가 비약적으로 넓어질 수 있다. According to the above method, by combining local measurement information with other moving objects to generate extended measurement information having a wider detection range, the position or speed can be detected even for moving objects located outside the detection range of the sensor. The detection range of the surrounding moving object detection system can be dramatically expanded.
또한, 넓어진 탐지범위에 따라 더욱 안전하고 효율적인 주행 전략 수립이 가능하므로 교통 정체와 같은 문제들을 미리 회피할 수 있고, 구비된 센서만으로는 탐지할 수 없었던 사각 영역에 대한 정보도 얻을 수 있으므로 주행중 사고 발생의 위험성을 감소시킬 수 있다.In addition, a safer and more efficient driving strategy can be established according to the wider detection range, so that problems such as traffic congestion can be avoided in advance, and information on blind spots that could not be detected by the equipped sensors can be obtained. It can reduce the risk.
본 발명의 상세한 설명에서는 구체적인 실시 예를 들어 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한 각 실시 예는 여러 가지 형태로 변형될 수 있다. In the detailed description of the present invention, a specific embodiment has been described. However, each embodiment may be modified in various forms without departing from the scope of the present invention.
또한, 여기서 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 발명의 범위는 상술한 실시 예에 한정되는 것은 아니며, 첨부된 특허 청구범위에서 제시되는 바에 따라 정해져야 한다.In addition, although specific terms have been used herein, they are used only for the purpose of describing the present invention and are not used to limit the scope of the present invention as defined in the meaning or claims. Therefore, the scope of the present invention is not limited to the above-described embodiment, but should be defined as set forth in the appended claims.

Claims (20)

  1. 하나 이상의 센서를 구비하고, 상기 하나 이상의 센서의 탐지범위 내에 위치한 이동체들을 감지하여 트래픽 정보를 생성하는 센싱부; A sensing unit having one or more sensors and generating traffic information by detecting moving objects located within a detection range of the one or more sensors;
    상기 트래픽 정보를 나타내는 제 1 지역측정정보를 외부로 송신하고, 외부로부터 적어도 하나의 제 2 지역측정정보를 수신하는 통신부; 및A communication unit which transmits first area measurement information indicating the traffic information to the outside and receives at least one second area measurement information from the outside; And
    미리 생성된 확장측정정보, 상기 제 1 지역측정정보 및 상기 제 2 지역측정정보를 융합하여, 상기 확장측정정보의 트래픽 정보, 상기 제 1 지역측정정보의 트래픽 정보 및 상기 제 2 지역측정정보의 트래픽 정보를 포괄하는 새로운 확장측정정보를 생성하는 융합처리부를 포함하는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템.The previously generated extended measurement information, the first area measurement information and the second area measurement information are merged to obtain traffic information of the extended measurement information, traffic information of the first area measurement information, and traffic of the second area measurement information. And a fusion processor for generating new extended measurement information encompassing the information.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 센싱 정보로부터 상기 이동체들의 트래픽 정보를 추출하여 상기 제 1 지역측정정보를 생성하는 전처리부를 더 포함하는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템.And a preprocessor configured to extract traffic information of the moving objects from the sensing information to generate the first area measurement information.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 통신부를 제어하기 위한 사용자 입력을 수신하는 입출력 인터페이스를 더 포함하는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템. And an input / output interface for receiving a user input for controlling the communication unit.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 융합처리부는,The fusion processing unit,
    상기 미리 생성된 확장측정정보, 상기 제 1 지역측정정보 및 상기 제 2 지역측정정보를 융합하여 상기 새로운 확장측정정보를 생성할 때, 상기 이동체들의 트래픽 정보를 추정 및 트래킹하여, 위치 정확도를 개선하는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템.When the new extended measurement information is generated by fusing the previously generated extended measurement information, the first area measurement information and the second area measurement information, traffic information of the moving objects is estimated and tracked to improve location accuracy. System for detecting nearby moving objects using cooperative communication.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 융합처리부는, The fusion processing unit,
    상기 미리 생성된 확장측정정보, 상기 제 1 지역측정정보, 및 상기 제 2 지역측정정보에 중복되어 나타나는 특징 정보를 추출하는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템.And extracting feature information overlapping the pre-generated extended measurement information, the first area measurement information, and the second area measurement information.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 융합처리부는, The fusion processing unit,
    상기 특징 정보를 이용하여 상기 이동체들의 트래픽 정보를 추정하는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템.And estimate surrounding traffic information of the moving objects using the feature information.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 융합처리부는, The fusion processing unit,
    상기 제 1 지역측정정보의 제 1 이동체와 상기 제 2 지역측정정보의 제 2 이동체가 서로 동일한 이동체를 나타냄을 확인하고, 상기 제 1 이동체와 상기 제 2 이동체의 위치가 서로 겹치도록 상기 제 1 지역측정정보 또는 상기 제 2 지역측정정보를 선형 및 비선형 변환시켜 상기 확장측정정보를 생성하는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템.Confirming that the first moving object of the first area measurement information and the second moving object of the second area measurement information represent the same moving object, and the first area so that the positions of the first moving object and the second moving object overlap each other; And linearly and non-linearly convert the measurement information or the second area measurement information to generate the extended measurement information.
  8. 제 6 항에 있어서,The method of claim 6,
    상기 융합처리부는, The fusion processing unit,
    상기 미리 생성된 확장측정정보의 제 1 이동체와 상기 제 2 지역측정정보의 제 2 이동체가 서로 동일한 이동체를 나타냄을 확인하고, 상기 제 1 이동체와 상기 제 2 이동체의 위치가 서로 겹치도록 상기 제 1 지역측정정보 또는 상기 제 2 지역측정정보를 선형 및 비선형 변환시켜 상기 확장측정정보를 갱신하는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템.It is confirmed that the first moving object of the pre-generated extended measurement information and the second moving object of the second area measurement information represent the same moving object, and the first moving object and the second moving object overlap with each other. And linearly and non-linearly convert the area measurement information or the second area measurement information to update the extended measurement information.
  9. 제 5 항에 있어서,The method of claim 5,
    상기 융합처리부는, The fusion processing unit,
    상기 제 1 지역측정정보 또는 상기 미리 생성된 확장측정정보의 제 1 이동체의 트래픽 정보와 상기 제 2 지역측정정보의 제 2 이동체의 트래픽 정보를 비교하고, 비교 결과 상기 제 1 이동체의 트래픽 정보와 상기 제 2 이동체의 트래픽 정보의 차이가 임계값 이내로 유사하면 상기 제 1 이동체와 상기 제 2 이동체가 서로 동일한 이동체를 나타내는 것으로 판단하고, 상기 제 1 이동체의 트래픽 정보와 상기 제 2 이동체의 트래픽 정보를 복수의 측정값으로 놓고 단일 상태를 추정하여 정확도를 향상시키는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템.The traffic information of the first mobile body of the first area measurement information or the previously generated extended measurement information is compared with the traffic information of the second mobile body of the second area measurement information, and as a result of the comparison, the traffic information of the first mobile body and the If the difference between the traffic information of the second mobile body is similar within a threshold value, it is determined that the first mobile body and the second mobile body represent the same mobile body, and the traffic information of the first mobile body and the traffic information of the second mobile body are plural. A system for detecting nearby moving objects using collaborative communications that improves accuracy by estimating a single state by placing a measurement of.
  10. 제 5 항에 있어서,The method of claim 5,
    상기 융합처리부는, The fusion processing unit,
    상기 제 1 지역측정정보 또는 상기 미리 생성된 확장측정정보의 제 1 이동체와의 트래픽 정보 비교를 통해 상기 제 1 이동체와 다른 이동체의 동일성을 판단할 때, 상기 제 1 이동체와의 트래픽 정보 차이가 임계값 이내인 다른 이동체가 둘 이상인 경우, 상기 제 1 이동체와의 트래픽 정보 차이가 가장 작은 이동체를 상기 제 1 이동체와 동일한 이동체로 판단하는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템.When determining the sameness of the first moving object and the other moving object by comparing the traffic information with the first moving object of the first area measurement information or the pre-generated extended measurement information, the difference of the traffic information with the first moving object is critical. And when there are two or more different moving objects within the value, determining the moving object having the smallest difference in traffic information from the first moving object as the same moving object as the first moving object.
  11. 제 5 항에 있어서,The method of claim 5,
    상기 융합처리부는, The fusion processing unit,
    상기 제 1 지역측정정보의 제 1 영역에 대한 제 1 트래픽 정보와 상기 제 2 지역측정정보의 제 2 영역에 대한 제 2 트래픽 정보가 서로 중복이 되면, 상기 제 1 영역 내의 이동체 분포를 나타내는 제 1 토폴로지(topology)와 상기 제 2 영역 내의 이동체 분포를 나타내는 제 2 토폴로지를 비교하고, 비교 결과 상기 제 1 토폴로지와 상기 제 2 토폴로지 사이의 유사도가 미리 결정된 기준보다 높으면, 상기 제 1 토폴로지를 구성하는 상기 제 1 영역 내의 이동체들과 상기 제 2 토폴로지를 구성하는 상기 제 2 영역 내의 이동체들이 서로 동일한 이동체들을 나타내는 것으로 판단하는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템.When the first traffic information for the first area of the first area measurement information and the second traffic information for the second area of the second area measurement information overlap each other, a first vehicle indicating a distribution of the moving body in the first area; Comparing a topology and a second topology representing a distribution of moving objects in the second region, and if the similarity between the first topology and the second topology is higher than a predetermined criterion, configuring the first topology And determine that the moving objects in the first area and the moving objects in the second area constituting the second topology represent the same moving objects.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 융합처리부는, The fusion processing unit,
    상기 제 1 영역 내의 이동체 분포를 나타내는 제 1 토폴로지(topology)와 상기 제 2 영역 내의 이동체 분포를 나타내는 제 2 토폴로지를 비교하여 동일한 이동체인지 판단할 때, 상기 제 1 토폴로지와 상기 제 2 토폴로지 사이의 유사도가 미리 결정된 기준보다 높은 이동체가 둘 이상일 경우, 가장 유사한 토폴로지를 갖는 이동체를 동일한 이동체로 판단하는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템.Similarity between the first topology and the second topology when comparing a first topology representing a mobile body distribution in the first region and a second topology representing a mobile body distribution in the second region to determine whether the same mobile body is the same. Is more than two moving objects higher than a predetermined criterion, the moving object having the most similar topology is determined as the same moving object.
  13. 제 11 항에 있어서,The method of claim 11,
    상기 융합처리부는, The fusion processing unit,
    상기 제 1 토폴로지를 구성하는 상기 제 1 영역 내의 이동체들과 상기 제 2 토폴로지를 구성하는 상기 제 2 영역 내의 이동체들이 서로 동일한 이동체들을 나타내면, 상기 제 1 토폴로지와 상기 제 2 토폴로지가 서로 겹치도록 상기 제 1 지역측정정보 또는 상기 제 2 지역측정정보를 선형 및 비선형 변환시켜 상기 확장측정정보를 생성하는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템.If the moving bodies in the first region constituting the first topology and the moving bodies in the second region constituting the second topology represent the same moving bodies, the first and second topologies overlap each other. A system for detecting a surrounding moving object by using cooperative communication, wherein the area measurement information or the second area measurement information is linearly and nonlinearly converted to generate the extended measurement information.
  14. 제 11 항에 있어서,The method of claim 11,
    상기 제 1 토폴로지와 상기 제 2 토폴로지 사이의 상기 유사도는, The similarity between the first topology and the second topology is
    상기 제 1 토폴로지와 상기 제 2 토폴로지 사이의 차이를 나타내는 에러 벡터(error vector)의 크기가 미리 결정된 값 이하일 때, 상기 미리 결정된 기준보다 높은 것으로 판단되는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템.A system for detecting a surrounding mobile object using cooperative communication, which is determined to be higher than the predetermined criterion when the magnitude of an error vector representing a difference between the first topology and the second topology is less than or equal to a predetermined value. .
  15. 제 1 항에 있어서, The method of claim 1,
    상기 융합처리부는, The fusion processing unit,
    상기 제 1 지역측정정보와 상기 적어도 하나의 제 2 지역측정정보를 융합하여 상기 새로운 확장측정정보를 생성할 때, 더 인접한 이동체의 지역측정정보를 우선으로 계층적으로 융합하여 확장측정정보를 생성하는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템.When generating the new extended measurement information by fusing the first area measurement information and the at least one second area measurement information, the area measurement information of a more adjacent moving object is first hierarchically fused to generate extended measurement information. System for detecting nearby moving objects using cooperative communication.
  16. 제 15 항에 있어서, The method of claim 15,
    상기 융합처리부는, The fusion processing unit,
    상기 제 1 지역측정정보와 상기 적어도 하나의 제 2 지역측정정보를 융합하여 확장측정정보를 생성할 때, 상기 적어도 하나의 제 2 지역측정정보 내에서의 이동체들의 GPS 위치를 비교하거나 상기 적어도 하나의 제 2 지역측정정보의 통신 신호 세기를 비교하여, 더 인접한 이동체가 송신한 제 2 지역측정정보를 우선적으로 융합하는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템.When generating the extended measurement information by fusing the first area measurement information and the at least one second area measurement information, comparing GPS positions of moving objects within the at least one second area measurement information or the at least one And comparing the communication signal strengths of the second area measurement information to preferentially fuse the second area measurement information transmitted by the more adjacent mobile objects.
  17. 제 1 항에 있어서, The method of claim 1,
    상기 융합처리부는, The fusion processing unit,
    상기 생성된 새로운 확장측정정보와 또 다른 이동체로부터 수신된 다른 제 2 지역측정정보를 융합하여, 상기 다른 제 2 지역측정정보의 트래픽 정보를 더 포괄하도록 상기 새로운 확장측정정보를 갱신하거나 상기 새로운 확장측정정보를 대신하여 또 다른 확장측정정보를 생성하는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템.Fusing the generated new extended measurement information with other second local measurement information received from another moving object to update the new extended measurement information or to further cover the traffic information of the other second local measurement information; A system for detecting nearby moving objects using collaborative communication that generates another extended measurement information in place of the information.
  18. 제 1 항에 있어서,The method of claim 1,
    상기 새로운 확장측정정보는, The new extended measurement information,
    상기 제 1 지역측정정보보다 이동체에 대한 탐지범위가 더 넓거나, 더 정확한 트래픽 정보를 갖도록 구성되는, 협력 통신을 이용하여 주변 이동체를 탐지하는 시스템.And detect a surrounding mobile object using cooperative communication, wherein the detection range for the mobile object is wider or have more accurate traffic information than the first local measurement information.
  19. 이동체에 탑재된 탐지 시스템을 통해 상기 이동체의 주변 이동체들의 위치를 탐지하는 방법에 있어서,In the method for detecting the position of the moving objects around the moving object through a detection system mounted on the moving object,
    다른 이동체들과의 협력 통신을 통해 상기 다른 이동체의 제 2 지역측정정보를 수신하는 단계;Receiving second geo-measurement information of the other mobile unit through cooperative communication with other mobile units;
    상기 수신된 제 2 지역측정정보, 상기 탐지 시스템이 생성한 제 1 지역측정정보 및 상기 탐지 시스템이 미리 생성한 확장측정정보와 융합하여, 상기 제 1 지역측정정보의 트래픽 정보, 상기 제 2 지역측정정보의 트래픽 정보 및 상기 미리 생성한 확장측정정보의 트래픽 정보를 포괄하도록 구성된 새로운 확장측정정보를 생성하는 단계; 및 Traffic information of the first area measurement information and the second area measurement are merged with the received second area measurement information, the first area measurement information generated by the detection system, and the extended measurement information previously generated by the detection system. Generating new extension measurement information configured to include traffic information of the information and traffic information of the previously generated extension measurement information; And
    상기 생성된 새로운 확장측정정보에 기반하여, 상기 주변 이동체들에 대한 트래픽 정보를 사용자에게 출력하는 단계를 포함하는, 협력 통신을 이용하여 주변 이동체를 탐지하는 방법. And outputting traffic information on the surrounding mobiles to the user based on the generated new extended measurement information.
  20. 제 19 항에 있어서,The method of claim 19,
    다른 이동체로부터 다른 제 2 지역측정정보를 수신하는 단계; 및Receiving other second local measurement information from another moving object; And
    상기 수신된 제 2 지역측정정보를 상기 새로운 확장측정정보와 융합하여, 상기 제 2 지역측정정보의 트래픽 정보를 더 포괄하도록 상기 새로운 확장측정정보를 갱신하거나 상기 새로운 확장측정정보를 대신하여 또 다른 확장측정정보를 생성하는 단계를 더 포함하는, 협력 통신을 이용하여 주변 이동체를 탐지하는 방법.Fusing the received second regional measurement information with the new extended measurement information to update the new extended measurement information to further cover the traffic information of the second local measurement information or to perform another expansion instead of the new extended measurement information; Generating measurement information, the method comprising the step of detecting surrounding moving objects using cooperative communication.
PCT/KR2015/004503 2014-05-07 2015-05-06 Method and system for detecting surrounding moving object using cooperative communication WO2015170869A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0054290 2014-05-07
KR20140054290 2014-05-07
KR10-2014-0085790 2014-07-09
KR1020140085790A KR101637374B1 (en) 2014-05-07 2014-07-09 Method and system for detecting nearby vehicle using cooperative commmunication

Publications (1)

Publication Number Publication Date
WO2015170869A1 true WO2015170869A1 (en) 2015-11-12

Family

ID=54392678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004503 WO2015170869A1 (en) 2014-05-07 2015-05-06 Method and system for detecting surrounding moving object using cooperative communication

Country Status (1)

Country Link
WO (1) WO2015170869A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108932453A (en) * 2017-05-23 2018-12-04 杭州海康威视数字技术股份有限公司 A kind of vehicle spare tyre detection method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050103194A (en) * 2003-02-06 2005-10-27 바이에리셰 모토렌 베르케 악티엔게젤샤프트 Method and device for visualizing a motor vehicle environment with environment-dependent fusion of an infrared image and a visual image
JP2007095038A (en) * 2005-08-18 2007-04-12 Gm Global Technology Operations Inc System and method for determining host lane
US20100198513A1 (en) * 2009-02-03 2010-08-05 Gm Global Technology Operations, Inc. Combined Vehicle-to-Vehicle Communication and Object Detection Sensing
US20110118979A1 (en) * 2009-11-19 2011-05-19 Robert Bosch Gmbh Automotive location data integrity
US20110311148A1 (en) * 2008-12-22 2011-12-22 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoektno Method and apparatus for identifying combinations of matching regions in images

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050103194A (en) * 2003-02-06 2005-10-27 바이에리셰 모토렌 베르케 악티엔게젤샤프트 Method and device for visualizing a motor vehicle environment with environment-dependent fusion of an infrared image and a visual image
JP2007095038A (en) * 2005-08-18 2007-04-12 Gm Global Technology Operations Inc System and method for determining host lane
US20110311148A1 (en) * 2008-12-22 2011-12-22 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoektno Method and apparatus for identifying combinations of matching regions in images
US20100198513A1 (en) * 2009-02-03 2010-08-05 Gm Global Technology Operations, Inc. Combined Vehicle-to-Vehicle Communication and Object Detection Sensing
US20110118979A1 (en) * 2009-11-19 2011-05-19 Robert Bosch Gmbh Automotive location data integrity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108932453A (en) * 2017-05-23 2018-12-04 杭州海康威视数字技术股份有限公司 A kind of vehicle spare tyre detection method and device

Similar Documents

Publication Publication Date Title
US10061993B2 (en) Warning method of obstacles and device of obstacles
WO2017119737A1 (en) Method and device for sharing image information in communication system
WO2018139773A1 (en) Slam method and device robust to changes in wireless environment
US20180083914A1 (en) Communication apparatus, server apparatus, communication system, computer program product, and communication method
US10812941B2 (en) Positioning method and device
US11315420B2 (en) Moving object and driving support system for moving object
WO2019225817A1 (en) Vehicle position estimation device, vehicle position estimation method, and computer-readable recording medium for storing computer program programmed to perform said method
EP2549752A1 (en) Surveillance camera terminal
WO2014077441A1 (en) Apparatus and method for detecting nearby vehicles though inter-vehicle communication
WO2020004817A1 (en) Apparatus and method for detecting lane information, and computer-readable recording medium storing computer program programmed to execute same method
CN109099920B (en) Sensor target accurate positioning method based on multi-sensor association
WO2020235734A1 (en) Method for estimating distance to and location of autonomous vehicle by using mono camera
WO2017188523A1 (en) Traffic information big data operation system using recognition of license plate of transportation means, server therefor, and user terminal therefor
CN112711055B (en) Indoor and outdoor seamless positioning system and method based on edge calculation
CN113885062A (en) Data acquisition and fusion equipment, method and system based on V2X
WO2020149714A1 (en) Cpm message division method using object state sorting
WO2014027714A1 (en) System and method for detecting change in route by means of image recognition information
JP2018180860A (en) Traffic information system
WO2018016663A1 (en) Vehicle to pedestrian (v2p) collision prevention system and method therefor
WO2015170869A1 (en) Method and system for detecting surrounding moving object using cooperative communication
WO2013022153A1 (en) Apparatus and method for detecting lane
CN103975221A (en) Coordinate conversion table creation system and coordinate conversion table creation method
CN113099529A (en) Indoor vehicle navigation method, vehicle-mounted terminal, field terminal server and system
WO2021201304A1 (en) Method and device for assisting autonomous driving
KR101637374B1 (en) Method and system for detecting nearby vehicle using cooperative commmunication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789833

Country of ref document: EP

Kind code of ref document: A1