WO2015146259A1 - Balloon catheter and method for manufacturing balloon - Google Patents

Balloon catheter and method for manufacturing balloon Download PDF

Info

Publication number
WO2015146259A1
WO2015146259A1 PCT/JP2015/051727 JP2015051727W WO2015146259A1 WO 2015146259 A1 WO2015146259 A1 WO 2015146259A1 JP 2015051727 W JP2015051727 W JP 2015051727W WO 2015146259 A1 WO2015146259 A1 WO 2015146259A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion
balloon
outer diameter
end side
effective
Prior art date
Application number
PCT/JP2015/051727
Other languages
French (fr)
Japanese (ja)
Inventor
裕太 土井
啓二 福田
左興 深澤
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2015146259A1 publication Critical patent/WO2015146259A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/104Balloon catheters used for angioplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1006Balloons formed between concentric tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M2025/0183Rapid exchange or monorail catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1079Balloon catheters with special features or adapted for special applications having radio-opaque markers in the region of the balloon

Definitions

  • the present invention relates to a balloon catheter used for dilatation of a stenosis and a method for manufacturing a balloon used for the balloon catheter.
  • a so-called percutaneous arterial dilation (PTA) or percutaneous coronary artery dilatation (PTCA) is performed using a balloon catheter.
  • PTA percutaneous arterial dilation
  • PTCA percutaneous coronary artery dilatation
  • Percutaneous Transluminal Coronary Angioplasty is widely known.
  • the balloon is introduced from outside the body into the blood vessel, and after positioning the balloon at the stenosis, which is the treatment target site, the balloon is expanded to expand the stenosis, thereby restoring blood flow. I am trying.
  • balloons provided in general balloon catheters have a straight barrel shape in which the outer diameter of the portion (expansion effective portion) that applies pressure to the stenosis is substantially constant.
  • the balloon in which the expansion effective portion is formed in a straight body shape it is possible to apply a uniform pressure over a relatively wide range of the narrowed portion.
  • the balloon when the balloon is expanded, the balloon moves in the front-rear direction due to the reaction force from the stenosis part and is displaced from the stenosis part. There is a problem that a pressing force is applied to.
  • Patent Literature 1 includes an expansion effective part (expansion function part) and a fixing part formed on the distal end side and the base end side of the expansion effective part and having a larger outer diameter than the expansion effective part.
  • a balloon catheter is disclosed.
  • the fixing portion is deformed so that the outer diameter is always larger than that of the effective expansion portion, thereby contacting the inner wall of the blood vessel prior to the effective expansion portion, and holding the entire balloon at a specific position. If such a balloon catheter is used, it is considered that the occurrence of the positional deviation of the balloon as described above can be prevented.
  • the expansion effective portion that pushes the stenosis portion is deformed so that the outer diameter is smaller than each fixed portion regardless of the increase in internal pressure.
  • the applied pressure applied to the part is smaller than the applied pressure applied to the inner wall of the blood vessel from the fixed part side. For this reason, a sufficient pressurizing force cannot be applied from the effective expansion portion to the stenosis portion, and a problem that a satisfactory treatment result cannot be obtained may arise.
  • the present invention has been made in view of the above problems, and prevents the balloon from being displaced from the stenosis when the balloon is expanded and deformed. Further, a sufficient pressure is applied to the stenosis via the effective expansion portion. It is an object of the present invention to provide a balloon catheter excellent in safety and convenience that can be imparted, and a method of manufacturing a balloon used in the balloon catheter.
  • a balloon catheter according to the present invention is a balloon catheter including a long shaft having flexibility, and a balloon capable of expansion and contraction that is disposed on a distal end side of the shaft, and the balloon is expanded.
  • An expansion effective portion that pushes the constriction portion with deformation, and is positioned on the distal end side and the base end side of the expansion effective portion, and has a larger outer diameter than each portion of the expansion effective portion in a state before being expanded and deformed.
  • a distal end side extended portion and a proximal end side extended portion formed with a maximum outer diameter portion, and until the expansion effective portion reaches a specified expansion pressure that expands and deforms to a predetermined outer diameter, the expansion effective portion
  • the predetermined expansion pressure is reached.
  • Each of the extended effective parts Outer diameter is deformed outer diameter and the same diameter or the same larger than the diameter of the maximum outer diameter portion of the outer diameter and the proximal-side extension of the maximum outer diameter of the distal-side extension part of the, and wherein the.
  • a force for positioning and holding the balloon with respect to a predetermined position from the start of the balloon expansion until the internal pressure of the balloon reaches the specified expansion pressure is expanded on the distal side.
  • the distal-side expanded portion and the proximal-side expanded portion have the same characteristics as a non-compliant balloon that has a constant diameter after exceeding the specified expansion pressure. It exhibits the same characteristics as an inflating semi-compliant balloon, and the expansion rate in the radial direction accompanying the increase in the expansion pressure after the distal expansion portion and the proximal expansion portion reach the specified expansion pressure is the radial direction of the expansion effective portion.
  • the balloon is configured to be relatively smaller than the expansion rate, priority is given to the periphery of the stenosis through the distal side expansion part and the proximal side expansion part until the internal pressure of the balloon reaches the specified expansion pressure.
  • the difference in the compliant characteristics of the distal end side expansion portion and the proximal end side expansion portion and the expansion effective portion is the adjustment by the material material, when the tubular member constituting the balloon is biaxially stretch blow molded in the mold
  • adjustment is performed by any one of the group consisting of adjustment of expansion magnification and adjustment by a suppressor that suppresses expansion deformation, it becomes possible to set compliant characteristics of each part of the balloon by a relatively simple method. Therefore, it is possible to facilitate the manufacturing work and reduce the manufacturing cost.
  • a suitable manufacturing method for manufacturing a balloon applicable to a balloon catheter that can be expanded by applying an appropriate pressure to the stenosis part, and a function for preventing positional deviation from the stenosis part. can be provided.
  • FIGS. 3A to 3C are cross-sectional views of the distal end portion of the balloon catheter. It is a figure which shows the relationship between the outer diameter of each part of a balloon, and expansion pressure.
  • 5A and 5B are views for explaining the action of the balloon catheter, and are sectional views schematically showing a state when the balloon is introduced into the blood vessel.
  • FIGS. 6A and 6B are views for explaining the action of the balloon catheter, and are cross-sectional views schematically showing a state when the stenosis portion is expanded by the balloon.
  • FIGS. 5A and 5B are views for explaining the action of the balloon catheter, and are sectional views schematically showing a state when the balloon is introduced into the blood vessel.
  • FIGS. 6A and 6B are views for explaining the action of the balloon catheter, and are cross-sectional views schematically showing a state when the stenosis portion is expanded by the balloon.
  • FIGS. 7A and 7B are cross-sectional views schematically showing a usage example of the balloon catheter according to the comparative example.
  • FIGS. 8A to 8C are cross-sectional views illustrating a method for adjusting the compliant characteristics of the balloon.
  • 9A and 9B are cross-sectional views illustrating a method for manufacturing a balloon.
  • FIGS. 5 and 6 are the embodiments.
  • FIG. 7 is a diagram for explaining the operation of the balloon catheter
  • FIG. 7 is a diagram showing a usage example of the balloon catheter according to the proportionality
  • FIG. 8 is a diagram illustrating a method for adjusting the compliant characteristics of the balloon
  • FIG. 9 is an embodiment. It is a figure where it uses for description of the manufacturing method of the balloon which concerns on.
  • the balloon catheter 10 has a long shaft 20 inserted into a living organ, for example, a coronary artery, and a balloon 100 disposed on the distal end side of the shaft 20
  • a living organ for example, a coronary artery
  • a balloon 100 disposed on the distal end side of the shaft 20
  • the present invention can be applied to catheters other than such PTCA dilatation catheters.
  • stenosis formed in living organs such as other blood vessels, bile ducts, trachea, esophagus, urethra, and other organs. Applicable to catheters for the purpose of treatment and improvement of the head.
  • a balloon catheter 10 includes a long shaft 20 having flexibility, and a balloon 100 that can be expanded and contracted and disposed on a distal end side of the shaft 20. And a hub 50 provided on the proximal end side of the shaft 20.
  • the balloon catheter 10 is a so-called rapid exchange type in which an opening 32 through which the guide wire 60 is led out is provided slightly near the distal end side of the intermediate portion of the shaft 20.
  • the side on which the hub 50 is provided is defined as the proximal side
  • the side on which the balloon 100 is provided is defined as the distal side.
  • the shaft 20 has an inner tube (inner tube shaft) 30 formed with a guide wire lumen 31 through which the guide wire 60 is inserted, and a balloon 100 for expanding.
  • An outer tube (outer tube shaft) 40 that forms an expansion lumen 41 to which an expansion medium is supplied between the outer tube and an outer peripheral surface of the inner tube 30 is provided.
  • the shaft 20 has a double tube structure in which the inner tube 30 and the outer tube 40 are arranged concentrically.
  • the inner tube 30 is inserted into the balloon 100 and the outer tube 40 from the tip to the opening 32.
  • the inner tube 30 includes two openings, an opening 32 formed at the proximal end and an opening 33 formed at the distal end.
  • a guide wire lumen 31 extends in communication with 33.
  • the inner tube 30 is made of a hollow tube material whose proximal end is curved radially outward.
  • the vicinity of the distal end of the inner tube 30 is liquid-tightly joined to the distal end side of the balloon 100 by a known method such as welding, and the vicinity of the proximal end is liquid-tightly near the connection opening 42 formed in the middle of the outer tube 40. It is joined to.
  • the guide wire 60 is inserted from the distal end side into the proximal end side in the guide wire lumen 31 with the opening portion 32 provided at the proximal end of the inner tube 30 and the opening portion 33 provided at the distal end as an inlet or an outlet, respectively.
  • the inner tube 30 does not necessarily have to be bent radially outward in the proximal end side, and may extend in a straight line and be liquid-tightly joined in the vicinity of the connection opening 42.
  • a distal tip 34 is attached to the distal end of the inner tube 30 to prevent the living organ from being damaged when the distal end of the balloon catheter 10 comes into contact with the living organ.
  • the tip chip 34 can be provided with, for example, X-ray contrast properties.
  • Examples of the material constituting the inner tube 30 include polyolefins such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, thermoplastic resins such as soft polyvinyl chloride, silicone rubber, latex rubber, etc. And various elastomers such as polyurethane elastomer, polyamide elastomer, and polyester elastomer, and crystalline plastics such as polyamide, crystalline polyethylene, and crystalline polypropylene. In these materials, for example, an antithrombotic substance such as heparin, prostaglandin, urokinase, arginine derivative or the like can be blended to obtain an antithrombotic material.
  • polyolefins such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, thermoplastic resins such as soft polyvinyl chloride, silicone rubber, latex rubber, etc.
  • the outer tube 40 is made of a hollow tube material that extends from the proximal end of the balloon 100 to the hub 50.
  • the portion from the tip of the outer tube 40 to the connection opening 42 has a double tube structure that forms an expansion lumen 41 with the inner tube 30.
  • the proximal end of the balloon 100 is liquid-tightly joined to the distal end of the outer tube 40 by a known method such as welding.
  • a hub 50 is attached to the proximal end of the outer tube 40.
  • the constituent material of the outer tube 40 for example, the same material as that of the inner tube 30 can be used. It is also possible to coat a substance having antithrombogenic properties on the portion of the outer tube 40 that comes into contact with blood (for example, the outer surface of the outer tube).
  • the hub 50 is provided with a connecting portion 51 that can be connected in a liquid-tight manner with a supply device (not shown) for supplying an expansion fluid such as an indeflator.
  • the expansion fluid can flow into the outer tube 40 via the connection portion 51 of the hub 50.
  • the expansion fluid that has flowed into the outer tube 40 is supplied to the balloon 100 via the expansion lumen 41.
  • the connecting portion 51 of the hub 50 can be configured by, for example, a known luer taper configured such that a fluid tube or the like can be connected and separated.
  • FIGS. 3A shows a state before the balloon 100 is expanded and deformed
  • FIGS. 3B and 3C show a state after the balloon 100 is expanded and deformed
  • FIG. 4 shows the relationship between the change in the outer diameter of each part of the balloon 100 and the expansion pressure (internal pressure) of the balloon 100.
  • the balloon 100 includes an expansion effective portion 110 that expands the stenosis N with expansion deformation (see FIGS. 6 (A) and (B)), and an expansion effective portion.
  • the distal end side expansion portion 120 positioned on the distal end side of 110 and the proximal end side expansion portion 130 positioned on the proximal end side of the expansion effective portion 110 are provided.
  • each of the distal-side expanded portion 120 and the proximal-side expanded portion 130 is in a state before being expanded and deformed (before and after the introduction of the balloon 100 into the living body).
  • the maximum outer diameter portions 121 and 131 having outer diameters larger than the respective portions of the expansion effective portion 110 are formed.
  • the expansion effective part 110 is provided at the approximate center of the balloon 100 in the axial direction (left-right direction in FIG. 3A).
  • the distal side expansion part 120 and the proximal side expansion part 130 are separated from the expansion effective part 110. It is provided at substantially symmetrical positions on the distal end side and the proximal end side in the axial direction as viewed.
  • the distal end side expansion portion 120 has a maximum outer diameter portion 121 having a maximum outer diameter at a substantially central position. Further, a gently inclined portion 122 extending from the maximum outer diameter portion 121 to the distal end side and the proximal end side is also formed.
  • the cross-sectional shape of the distal-side expanded portion 120 is such that the maximum outer diameter portion 121 protrudes in a direction (vertical direction in FIG. 3A) intersecting the axial direction of the balloon 100 and extends from the maximum outer diameter portion 121 to the distal end side and the proximal end. It has a mountain shape whose outer diameter gradually decreases toward the side.
  • the proximal end side extended portion 130 is formed in substantially the same shape as the distal end side extended portion 120, and has a maximum outer diameter portion 131 formed at a substantially central position, and a distal end side and a proximal end side from the maximum outer diameter portion 131. And an inclined portion 132 extending to the right.
  • the cross-sectional shape is a mountain shape in which the maximum outer diameter portion 131 protrudes in a direction intersecting the axial direction of the balloon 100 and the outer diameter gradually decreases from the maximum outer diameter portion 131 toward the distal end side and the proximal end side. .
  • the distal end side expansion portion 120 and the proximal end side expansion portion 130 are set to have substantially the same non-compliant characteristics and the outer diameter of the maximum outer diameter portion so as to be deformed in substantially the same shape when the balloon 100 is expanded. .
  • the expansion effective portion 110 is formed to be connected to the inclined portion 122 on the proximal end side of the distal end side expanded portion 120 and the inclined portion 132 on the distal end side of the proximal end side expanded portion 130, and toward the center position in the axial direction. It has a constricted shape with a gradually decreasing outer diameter.
  • each part of the expansion effective part 110, the distal end side expansion part 120, and the proximal end side expansion part 130 is not particularly limited, it should be used for expansion of a stenosis part formed in a blood vessel of a living body.
  • the length of the extension effective portion 110 is about 5 to 50 mm, more preferably about 10 to 40 mm, and the distal end side extension portion 120 and the proximal end side extension portion 130 are The length dimension is about 1 to 8 mm, and more preferably about 2 to 4 mm.
  • 4 indicates a change in the outer diameter D1 at the axial center position of the effective expansion portion 110, and the solid line indicates the outer diameter D2 of the maximum outer diameter portion 121 of the distal end side expansion portion 120 and the proximal end side expansion portion.
  • the change of the outer diameter D3 of the 130 largest outer diameter parts 131 is shown.
  • the outer diameter of each part of the balloon 100 changes as follows in consideration of each function.
  • the specified expansion pressure P 1 is a pressure when the outer diameter of the effective expansion portion 110 of the balloon 100 changes to an outer diameter that applies a pressure capable of pushing and expanding the narrowed portion N to be treated. is there.
  • This provision expansion pressure P 1 is the symptoms of stricture N, intended use and product specifications of the balloon catheter 10 but can be appropriately changed depending on, for example, the recommended extended pressure (NP which is predetermined for each product ) Can be set.
  • defined opening pressure P 1 may be set to 0.8 Mpa (8 atm).
  • the outer diameter of each part of the balloon 100 before expansion can be set as follows, for example.
  • the outer diameter D1 of the effective expansion portion 110 is preferably about 0.5 to 2.5 mm, and the outer diameter D2 of the maximum outer diameter portion 121 of the distal end side expansion portion 120 and the maximum outer diameter portion 131 of the proximal end expansion portion 130.
  • the outer diameter D3 is preferably about 1 to 5 mm.
  • the outer diameter D1 of the extension effective portion when it reaches the prescribed expansion pressure P 1 is, for example, about 1 ⁇ 5 mm is preferred.
  • the outer diameter of each part of the balloon 100 gradually increases as the expansion pressure increases from the pre-expansion stage P 0 to the specified expansion pressure P 1 , but the expansion pressure changes in this way.
  • the relationship between the outer diameter D1 of the effective expansion portion 110 ⁇ the outer diameter D2 of the maximum outer diameter portion 121 of the distal end side expansion portion 120 and the outer diameter D3 of the maximum outer diameter portion 131 of the proximal end side expansion portion 130 is maintained.
  • the distal end side extended portion 120 and the proximal end side expanded portion 130 function to position the balloon 100 at a predetermined position so that the balloon 100 is not displaced (FIGS. 5A and 5B). )).
  • the outer diameter D1 of the expansion effective portion 110 is changed to the outer diameter D2 of the maximum outer diameter portion 121 of the distal end side expansion portion 120 and It changes so that it may become the same diameter as the outer diameter D3 of the largest outer diameter part 131 of the base end side expansion part 130.
  • FIG. 6A it is possible to apply a pressing force to the constriction N from the dilation effective portion 110 (see FIG. 6A).
  • the distal-side expansion portion 120 and the proximal-side expansion portion 130 have a radial expansion rate that increases with the expansion pressure after reaching the specified expansion pressure P 1 from the radial expansion rate of the expansion effective portion 110. Is also configured to be relatively small. Therefore, since reaching the prescribed expansion pressure P 1, expanding the effective portion 110 by extending greater than the other portions, a greater pressure is applied against the stricture N (FIG. 6 (B) See).
  • Examples of the material constituting the balloon 100 include polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymers, polyesters such as polyethylene terephthalate, polyvinyl chloride, ethylene-vinyl acetate copolymers, and crosslinked ethylene-vinyl acetate copolymers. Examples include polymers, thermoplastic resins such as polyurethane, polyamides, polyamide elastomers, silicone rubbers, latex rubbers, and the like.
  • the balloon 100 can be formed into a single layer structure using these materials, or can be formed into a laminate structure of two or more layers. Similarly to the outer tube 40, the balloon 100 can be coated with a substance having antithrombotic properties.
  • the expansion pressure reaches a predetermined opening pressure P 1 is, with the increase of the opening pressure, the radial expansion of the distal extension 120 and the proximal extension 130 of the extension effective portion 110 Although it is adjusted so that it becomes smaller than the expansion coefficient in the radial direction, for example, the adjustment by the material of the material, the tubular material (parison) constituting the balloon 100 in the mold It is possible to select at least one of a group consisting of adjustment of the expansion ratio when performing biaxial stretch blow molding and adjustment by the suppressor 180 that suppresses expansion deformation.
  • the adjustment by the material is a method of adjusting the compliant characteristics of each part by making the material constituting the expansion effective part 110 different from the material constituting the distal end side extended part 120 and the proximal end side extended part 130.
  • the material constituting the distal end side extended portion 120 and the proximal end side expanded portion 130 is made of a material harder than the material constituting the expansion effective portion 110.
  • the expansion ratio is adjusted, for example, when the tube-shaped material is blow-molded using the mold.
  • the expansion effective part 110 is configured to have the same characteristics as the semi-compliant balloon, and the distal side expansion part 120 and the proximal side expansion part 130 have the same characteristics as the non-compliant balloon. It becomes possible to comprise.
  • the adjustment method using the restraining tool 180 is performed by winding an elastically deformable cylindrical member such as a rubber band around the distal end side expansion portion 120 and the proximal end side expansion portion 130, a method to configure so that the tip-side extending portion 120 and the proximal extension 130 after the pressure has reached a predetermined opening pressure P 1 by restraining force from the rubber band is unlikely to deform.
  • an elastically deformable cylindrical member such as a rubber band
  • each part of the balloon 100 for example, as shown in FIG. 8C, there is a method of changing the thickness dimension of each part after configuring each part with the same material, It is possible to adjust the film thickness of the distal end side expansion part 120 and the proximal end side expansion part 130 by making the film thickness larger than that of the expansion effective part 110. It is also possible to select a known method such as a method of incorporating particles or the like that change the compliant characteristics into a part of the material. It is also possible to make adjustments by appropriately combining the illustrated methods.
  • the balloon catheter 10 includes a contrast marker 123 indicating the position of the maximum outer diameter portion 121 of the distal end side expansion portion 120 and the position of the maximum outer diameter portion 131 of the proximal end side expansion portion 130.
  • a contrast marker 133 is provided.
  • Each contrast marker 123, 133 can be made of, for example, a metal such as platinum, gold, silver, titanium, tungsten, or an X-ray opaque material such as an alloy thereof.
  • Each contrast marker 123, 133 is formed in a ring shape that covers the outer periphery of the inner tube 30, but is not limited thereto, and may be configured in a chip shape or a block shape, for example.
  • each portion 121 by containing a radiopaque material (particles or the like) in the maximum outer diameter portion 121 of the distal end side expansion portion 120 and the maximum outer diameter portion 131 of the proximal end side expansion portion 130.
  • a contrast marker indicating 131 may be formed.
  • the contrast marker 113 may be provided similarly near the axial center position of the dilation effective portion 110.
  • the contrast marker 113 can be made of the same material and shape as the other contrast markers 123 and 133.
  • a balloon catheter 10 is introduced into a predetermined blood vessel B in which a stenosis N is formed.
  • a guide wire 60 known in the medical field can be used.
  • the balloon 100 is guided to the narrowed portion N by inserting the guide wire 60 through the guide wire lumen 31 formed in the inner tube 30.
  • each part of the balloon 100 is positioned with respect to the narrowed part N.
  • the center position of the dilation effective portion 110 of the balloon 100 is arranged near the center position in the extending direction of the stenosis N (the left-right direction in FIG.
  • each of the side expansion portions 130 is disposed on both end sides of the narrowed portion N. Positioning can be performed quickly and accurately by confirming the position of each contrast marker 113, 123, 133 under X-ray contrast.
  • the distal end side expanded portion 120 and the proximal end side expanded portion 130 are expanded and deformed to have a larger outer diameter than the expansion effective portion 110, and the distal end side is expanded.
  • the expansion part 120 and the proximal-side expansion part 130 act on the inner wall of the blood vessel around the stenosis N to hold the balloon 100. Thereby, the position of the balloon 100 in the axial direction is fixed. As a result, the displacement of the balloon 100 is preferably prevented while the expansion deformation is performed with the increase in the expansion pressure.
  • the effective portion 110 of the balloon 100 is expanded deformed to the same diameter as the front end side extension section 120 and the proximal extension 130. It is possible to apply pressure to the constriction N by the expansion effective portion 110 in a state in which the positional deviation of the balloon 100 is prevented by the distal end expansion portion 120 and the proximal end expansion portion 130.
  • the expansion effective portion 110 of the balloon 100 is further expanded and deformed as the expansion pressure increases, while the distal side expansion portion 120 and the proximal side expansion are increased.
  • the expansion rate of the part 130 is reduced. It is possible to apply a larger pressure from the effective expansion portion 110 to the stenosis N while suppressing an increase in the pressure applied to the inner wall of the blood vessel from the distal side expansion portion 120 and the proximal side expansion portion 130. . Accordingly, it is possible to push the stenosis N while reducing the load on the blood vessel inner wall around the stenosis N.
  • FIG. 7 shows a usage example of the balloon catheter 200 in proportion.
  • the balloon catheter 200 according to the comparative example includes a balloon 210 formed so that the expansion effective portion 211 maintains a straight body shape before and after expansion deformation.
  • the balloon catheter 10 when the balloon 210 is expanded, a pressurizing force is applied to the constricted portion N via the expansion effective portion 211. At this time, as shown in FIG. 7B, the balloon 210 may be displaced in the axial direction due to the reaction force received from the narrowed portion N. In particular, when a calcification symptom occurs in the stenosis N, displacement of the balloon 210 is likely to occur. When the positional deviation of the balloon 210 occurs, a pressure is applied to an unintended part of the inner wall of the blood vessel, which may damage the inner wall of the blood vessel. In addition, a sufficient pressure cannot be applied to the stenosis N, and a satisfactory therapeutic result may not be obtained. With respect to the balloon catheter 200 according to this embodiment, the balloon catheter 10 according to the present embodiment can apply an appropriate pressure to the stenosis N while preventing the displacement of the balloon 100. Therefore, the occurrence of the above problems can be suitably prevented.
  • the balloon catheter 10 of the present embodiment during the period from the start of the expansion of the balloon 100 until the internal pressure of the balloon 100 reaches a predetermined opening pressure P 1 is the balloon 100 in place the force holding and positioning can act against stricture N around through the distal end side extension section 120 and the proximal extension 130 against the internal pressure of the balloon 100 reaches a prescribed expansion pressure P 1 At this time, since it is possible to perform expansion by applying an appropriate pressure to the constriction N from the expansion effective portion 110, it is excellent in safety and convenience.
  • the distal end side expansion portion 120 and the proximal end side expansion portion 130 are configured such that the expansion rate associated with the increase in expansion pressure after reaching the specified expansion pressure P 1 is relatively smaller than the expansion rate of the expansion effective portion 110. Because it is configured to, until the internal pressure of the balloon 100 reaches a predetermined opening pressure P 1, preferentially pressure against stricture N around through the distal end side extension section 120 and the proximal extension 130 while it is possible to maintain the positioning function by applying, after the inner pressure of the balloon 100 reaches a prescribed expansion pressure P 1 is preferentially pressure against stricture N from the extended valid 110 Since it becomes possible to give, it becomes possible to expand the constriction N more reliably.
  • the difference in the compliant characteristics of the distal end side expansion portion 120 and the proximal end side expansion portion 130 and the expansion effective portion 110 is adjusted by the material material, and the tubular member constituting the balloon 100 is biaxially stretch blow molded in the mold. Therefore, the compliant characteristics of each part of the balloon 100 are set by a relatively simple method. Therefore, the manufacturing operation can be facilitated and the manufacturing cost can be reduced.
  • each portion of the balloon 100 is Positioning can be performed easily, and a smoother and quicker procedure can be realized.
  • a tubular material (parison) 190 made of a stretchable polymer is first formed. This is preferably performed by a wire coating method by extrusion.
  • a polymer what was mentioned above as a constituent material of balloon 100 can be used, for example.
  • the tubular material 190 is inserted into the mold 300, and one end of the tubular material 190 is sealed. Sealing can be performed using, for example, heat melting, high frequency sealing, forceps, or the like.
  • FIG. 9A includes a first movable mold 310 and a second movable mold 320 that are separable.
  • Each of the movable molds 310 and 320 is formed with molding surfaces 311 and 321 having a predetermined shape.
  • the basic outer shape of the balloon 100 is formed between the molding surface 311 of the first movable mold 310 and the molding surface 321 of the second movable mold 320.
  • a cavity 330 having a shape matching the previous shape is formed.
  • the heater 300 (not shown) is operated to heat the mold 300. Heating is performed until the temperature of the portion forming the balloon 100 in the tubular material 190 reaches a temperature in the range from the second order transition temperature to the first order transition temperature of the polymer, specifically, a temperature slightly exceeding the second order transition temperature.
  • the tube-shaped material 190 is heated in the mold 300 by being sent to the inside of the tube-shaped material 190 while being pressurized while extending the tube-shaped material 190 in the axial direction.
  • the part 191 is brought into close contact with the molding surfaces 311 and 321 of the movable molds 310 and 320.
  • a cooling liquid is circulated in a cooling pipe (not shown) provided in the mold 300 to cool the tubular material 190 to a secondary transition temperature or lower. Note that this cooling may be performed by simply leaving it alone without circulating the amount of the coolant.
  • the inside of the tube-shaped material 190 is set to normal pressure, and the tube-shaped material 190 in which the basic outer shape of the balloon 100 is formed is removed from the mold 300. Then, unnecessary portions are appropriately cut at the distal end portion and the proximal end portion of the tubular material 190, whereby the balloon 100 having a basic outer shape as shown in FIG. 3A is manufactured.
  • the balloon 100 applicable to the balloon catheter 10 that enables the function of preventing the positional deviation from the stenosis N and the expansion by applying an appropriate pressure to the stenosis N by the above procedure is provided. It becomes possible to do.
  • the balloon catheter according to the present invention has been described through the embodiments.
  • the present invention is not limited to the contents described in the embodiments, and can be appropriately modified based on the description of the scope of claims.
  • the present invention can also be applied to a so-called over-the-wire type balloon catheter. Even when applied to an over-the-wire type balloon catheter, the function capable of preventing the occurrence of displacement in the balloon is not impaired when performing a procedure for expanding the stenosis.
  • the outer diameter of the expansion effective portion when the specified expansion pressure is reached, is the outer diameter of the maximum outer diameter portion of the distal end side expansion portion and the maximum outer diameter portion of the proximal end side expansion portion.
  • the outer diameter of the expansion effective portion when the specified expansion pressure is reached, is the outer diameter of the maximum outer diameter portion of the distal side expansion portion and The balloon may be configured to be deformed to be larger than the outer diameter of the maximum outer diameter portion of the proximal end side expansion portion. Even in such a case, an appropriate pressure can be applied from the effective expansion portion to the stenosis portion after reaching the specified expansion pressure.
  • an example of a balloon in which the outer diameters of the distal end side expansion portion and the proximal end side expansion are formed to be substantially the same and the compliant characteristics are also formed to be substantially the same is described.
  • the function of preventing the positional deviation of the balloon it is not particularly limited to such a configuration.
  • the outer diameter is different between one expansion part and the other expansion part, It is also possible to vary the compliant characteristics in the extended portion.
  • each part of the balloon catheter includes at least a balloon having a predetermined shape including an expansion effective portion, a distal side expansion portion, and a proximal side expansion portion, and the distal side expansion portion when expanded and deformed.
  • a balloon having a predetermined shape including an expansion effective portion, a distal side expansion portion, and a proximal side expansion portion, and the distal side expansion portion when expanded and deformed.

Abstract

Provided is a balloon catheter having excellent safety and convenience, whereby a balloon is prevented from coming out of position in a stenosed part when expanded, and adequate pressure can be applied to the stenosed part via an expanding effective part. A balloon (100) provided to a balloon catheter (10) deforms so that the outside diameter of a maximum-outside-diameter part (121) of a distal-end expansion part (120) and the outside diameter of a maximum-outside-diameter part (131) of a proximal-end expansion part (130) are greater than the outside diameter of each part of an expanding effective part (110) until a prescribed expansion pressure (P1) is reached, and when the prescribed expansion pressure (P1) is reached, the balloon (100) deforms so that the outside diameter each part of the expanding effective part (110) is the same or at least the same as the outside diameter of the maximum-outside-diameter part (121) of the distal-end expansion part (120) and the outside diameter of the maximum-outside-diameter part (131) of the proximal-end expansion part (130).

Description

バルーンカテーテル、およびバルーンの製造方法Balloon catheter and balloon manufacturing method
 本発明は、狭窄部の拡張に使用されるバルーンカテーテル、および当該バルーンカテーテルに用いられるバルーンの製造方法に関する。 The present invention relates to a balloon catheter used for dilatation of a stenosis and a method for manufacturing a balloon used for the balloon catheter.
 生体の血管に形成された狭窄部を拡張させる手技として、バルーンカテーテルを使用して行われる、いわゆる、経皮的動脈拡張術(PTA:Percutaneous Transluminal Angioplasty)や経皮的冠状動脈拡張術(PTCA:Percutaneous Transluminal Coronary Angioplasty)が広く知られている。バルーンカテーテルを使用した手技では、生体外から血管内にバルーンを導入し、バルーンを治療対象部位である狭窄部に位置決めした後、バルーンを拡張して狭窄部を押し広げることで血流の回復を図っている。 As a technique for dilating a stenosis formed in a blood vessel of a living body, a so-called percutaneous arterial dilation (PTA) or percutaneous coronary artery dilatation (PTCA) is performed using a balloon catheter. Percutaneous Transluminal Coronary Angioplasty) is widely known. In the procedure using a balloon catheter, the balloon is introduced from outside the body into the blood vessel, and after positioning the balloon at the stenosis, which is the treatment target site, the balloon is expanded to expand the stenosis, thereby restoring blood flow. I am trying.
 一般的なバルーンカテーテルに備えられるバルーンは、狭窄部に加圧力を付与する部位(拡張有効部)の外径が略一定の直胴形状ものが多かった。拡張有効部が直胴形状に成形されたバルーンによれば、狭窄部の比較的広い範囲に亘って均一な加圧力を付与することが可能になる。一方で、バルーンを拡張させた際に、狭窄部からの反力によりバルーンが前後方向に移動して狭窄部から位置ずれしてしまい、本来的に加圧力を付与すべきでない血管の正常な部位に対して加圧力が付与されてしまうといった問題が生じ得る。特に、狭窄部が石灰化した石灰化病変部を拡張させる際には、石灰化による弾性および柔軟性の低下に伴ってバルーンに滑りが生じ易くなるため、上記のような位置ずれが生じ易くなってしまう。 Many of the balloons provided in general balloon catheters have a straight barrel shape in which the outer diameter of the portion (expansion effective portion) that applies pressure to the stenosis is substantially constant. According to the balloon in which the expansion effective portion is formed in a straight body shape, it is possible to apply a uniform pressure over a relatively wide range of the narrowed portion. On the other hand, when the balloon is expanded, the balloon moves in the front-rear direction due to the reaction force from the stenosis part and is displaced from the stenosis part. There is a problem that a pressing force is applied to. In particular, when expanding a calcified lesion that has been calcified by a stenosis, the balloon tends to slip as the elasticity and flexibility decrease due to calcification, and thus the above-mentioned positional deviation tends to occur. End up.
 例えば、特許文献1には、拡張有効部(拡張機能部)と、拡張有効部の先端側および基端側に形成され、拡張有効部よりも外径が大きく成形された固定部と、を有するバルーンカテーテルが開示されている。この固定部は、拡張有効部よりも常に外径が大きくなるように変形することで拡張有効部に先立って血管内壁に接触し、バルーン全体を特定の位置に保持する。このようなバルーンカテーテルを使用すれば、上述したようなバルーンの位置ずれの発生は防止し得ると考えられる。 For example, Patent Literature 1 includes an expansion effective part (expansion function part) and a fixing part formed on the distal end side and the base end side of the expansion effective part and having a larger outer diameter than the expansion effective part. A balloon catheter is disclosed. The fixing portion is deformed so that the outer diameter is always larger than that of the effective expansion portion, thereby contacting the inner wall of the blood vessel prior to the effective expansion portion, and holding the entire balloon at a specific position. If such a balloon catheter is used, it is considered that the occurrence of the positional deviation of the balloon as described above can be prevented.
特開2001-9037号公報JP 2001-9037 A
 しかしながら、上記バルーンカテーテルが備えるバルーンにおいては、狭窄部を押し広げる拡張有効部は、内圧の増加に関わらず、その外径が各固定部よりも小さくなるように変形するため、拡張有効部から狭窄部に対して付与される加圧力は、固定部側から血管内壁に対して付与される加圧力に比較して小さくなってしまう。このため、拡張有効部から狭窄部に対して十分な加圧力を付与することができず、満足な治療結果を得られないという問題が生じ得る。 However, in the balloon provided in the balloon catheter, the expansion effective portion that pushes the stenosis portion is deformed so that the outer diameter is smaller than each fixed portion regardless of the increase in internal pressure. The applied pressure applied to the part is smaller than the applied pressure applied to the inner wall of the blood vessel from the fixed part side. For this reason, a sufficient pressurizing force cannot be applied from the effective expansion portion to the stenosis portion, and a problem that a satisfactory treatment result cannot be obtained may arise.
 本発明は、上記問題に鑑みてなされたものであり、バルーンが拡張変形した際に狭窄部から位置ずれするのを防止し、さらに、拡張有効部を介して狭窄部に対して十分な加圧力を付与することが可能な安全性および利便性に優れるバルーンカテーテル、および当該バルーンカテーテルに用いられるバルーンの製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and prevents the balloon from being displaced from the stenosis when the balloon is expanded and deformed. Further, a sufficient pressure is applied to the stenosis via the effective expansion portion. It is an object of the present invention to provide a balloon catheter excellent in safety and convenience that can be imparted, and a method of manufacturing a balloon used in the balloon catheter.
 本発明に係るバルーンカテーテルは、可撓性を備える長尺状のシャフトと、前記シャフトの先端側に配置された拡張および収縮変形可能なバルーンとを備えるバルーンカテーテルであって、前記バルーンは、拡張変形に伴い狭窄部を押し広げる拡張有効部と、前記拡張有効部の先端側および基端側にそれぞれ位置し、拡張変形される前の状態において前記拡張有効部の各部よりも大きな外径をなす最大外径部が形成された先端側拡張部および基端側拡張部と、を有し、前記拡張有効部が規定の外径まで拡張変形する規定拡張圧に達するまでは、前記拡張有効部の各部の外径よりも前記先端側拡張部の最大外径部の外径および前記基端側拡張部の最大外径部の外径が大きくなるように変形し、前記規定拡張圧に達すると、前記拡張有効部の各部の外径が前記先端側拡張部の最大外径部の外径および前記基端側拡張部の最大外径部の外径と同径または同径以上に変形する、ことを特徴とする。 A balloon catheter according to the present invention is a balloon catheter including a long shaft having flexibility, and a balloon capable of expansion and contraction that is disposed on a distal end side of the shaft, and the balloon is expanded. An expansion effective portion that pushes the constriction portion with deformation, and is positioned on the distal end side and the base end side of the expansion effective portion, and has a larger outer diameter than each portion of the expansion effective portion in a state before being expanded and deformed. A distal end side extended portion and a proximal end side extended portion formed with a maximum outer diameter portion, and until the expansion effective portion reaches a specified expansion pressure that expands and deforms to a predetermined outer diameter, the expansion effective portion When the outer diameter of the maximum outer diameter portion of the distal end side expanded portion and the outer diameter of the maximum outer diameter portion of the proximal end side expanded portion are larger than the outer diameter of each portion, the predetermined expansion pressure is reached. Each of the extended effective parts Outer diameter is deformed outer diameter and the same diameter or the same larger than the diameter of the maximum outer diameter portion of the outer diameter and the proximal-side extension of the maximum outer diameter of the distal-side extension part of the, and wherein the.
 本発明に係るバルーンカテーテルによれば、バルーンの拡張を開始してからバルーンの内圧が規定拡張圧に達するまでの間は、バルーンを所定の位置に対して位置決めして保持する力を先端側拡張部および基端側拡張部を介して狭窄部周辺に対して作用させることができ、バルーンの内圧が規定拡張圧に達した際に、拡張有効部から狭窄部に対して適正な加圧力を付与して拡張を行うことが可能になる。よって、安全性および利便性に優れたバルーンカテーテルを提供することができる。 According to the balloon catheter of the present invention, a force for positioning and holding the balloon with respect to a predetermined position from the start of the balloon expansion until the internal pressure of the balloon reaches the specified expansion pressure is expanded on the distal side. Can act on the periphery of the stenosis part via the proximal part and the proximal side expansion part, and when the internal pressure of the balloon reaches the specified expansion pressure, an appropriate pressure is applied from the effective expansion part to the stenosis part Can be expanded. Therefore, the balloon catheter excellent in safety and convenience can be provided.
 先端側拡張部および基端側拡張部は、規定拡張圧を超えた後は、径が一定となるノンコンプライアントバルーンと同様の特性を有し、拡張有効部は、規定拡張圧を超えても膨張するセミコンプライアントバルーンと同様の特性を示し、先端側拡張部および基端側拡張部が、規定拡張圧に達した以降の拡張圧の増加に伴う径方向の膨張率が拡張有効部の径方向の膨張率よりも相対的に小さくなるように構成されている場合、バルーンの内圧が規定拡張圧に達するまでは、先端側拡張部および基端側拡張部を介して狭窄部周辺に対して優先的に加圧力を付与することにより位置決め機能を維持することが可能になる一方で、バルーンの内圧が規定拡張圧に達した後は拡張有効部から狭窄部に対して優先的に加圧力を付与することが可能になるため、狭窄部をより一層確実に拡張することが可能になる。 The distal-side expanded portion and the proximal-side expanded portion have the same characteristics as a non-compliant balloon that has a constant diameter after exceeding the specified expansion pressure. It exhibits the same characteristics as an inflating semi-compliant balloon, and the expansion rate in the radial direction accompanying the increase in the expansion pressure after the distal expansion portion and the proximal expansion portion reach the specified expansion pressure is the radial direction of the expansion effective portion. When the balloon is configured to be relatively smaller than the expansion rate, priority is given to the periphery of the stenosis through the distal side expansion part and the proximal side expansion part until the internal pressure of the balloon reaches the specified expansion pressure. In addition, it is possible to maintain the positioning function by applying pressure to the stenosis part preferentially from the effective expansion part after the internal pressure of the balloon reaches the specified expansion pressure. To be able to , It is possible to extend the stenosis more reliably.
 また、先端側拡張部および基端側拡張部と拡張有効部のコンプライアント特性の違いは、材料の材質による調整、バルーンを構成する管状部材を金型内で二軸延伸ブロー成形をする際の拡張倍率の調整、および拡張変形を抑制する抑制具による調整からなる群のいずれか1つによって調整されている場合、比較的簡易な方法でバルーン各部のコンプライアント特性を設定することが可能になるため、製造作業の容易化および製造コストの削減を図ることができる。 In addition, the difference in the compliant characteristics of the distal end side expansion portion and the proximal end side expansion portion and the expansion effective portion is the adjustment by the material material, when the tubular member constituting the balloon is biaxially stretch blow molded in the mold When adjustment is performed by any one of the group consisting of adjustment of expansion magnification and adjustment by a suppressor that suppresses expansion deformation, it becomes possible to set compliant characteristics of each part of the balloon by a relatively simple method. Therefore, it is possible to facilitate the manufacturing work and reduce the manufacturing cost.
 また、先端側拡張部の最大外径部および基端側拡張部の最大外径部の位置を示す造影マーカーを有する場合、狭窄部に対してバルーンの各部の位置合わせを容易に行うことが可能になるため、より一層円滑かつ迅速な手技を実現することが可能になる。 In addition, when having a contrast marker indicating the position of the maximum outer diameter portion of the distal end side expansion portion and the maximum outer diameter portion of the proximal end side expansion portion, it is possible to easily align each portion of the balloon with respect to the stenosis portion. Therefore, it becomes possible to realize an even smoother and quicker procedure.
 また、狭窄部からの位置ずれ防止機能、および、狭窄部に対して適正な加圧力を付与して拡張を行うことを可能にするバルーンカテーテルに適用可能なバルーンを製造するための好適な製造方法を提供することができる。 Also, a suitable manufacturing method for manufacturing a balloon applicable to a balloon catheter that can be expanded by applying an appropriate pressure to the stenosis part, and a function for preventing positional deviation from the stenosis part. Can be provided.
本発明の実施形態に係るバルーンカテーテルの全体構成を簡略化して示す図である。It is a figure which simplifies and shows the whole structure of the balloon catheter which concerns on embodiment of this invention. 図1に示すバルーンカテーテルの先端部を示す平面図である。It is a top view which shows the front-end | tip part of the balloon catheter shown in FIG. 図3(A)~(C)は、バルーンカテーテルの先端部の断面を示す図である。FIGS. 3A to 3C are cross-sectional views of the distal end portion of the balloon catheter. バルーンの各部の外径と拡張圧との関係を示す図である。It is a figure which shows the relationship between the outer diameter of each part of a balloon, and expansion pressure. 図5(A)、(B)は、バルーンカテーテルの作用を説明する図であって、バルーンを血管内に導入した際の様子を模式的に示す断面図である。5A and 5B are views for explaining the action of the balloon catheter, and are sectional views schematically showing a state when the balloon is introduced into the blood vessel. 図6(A)、(B)は、バルーンカテーテルの作用を説明する図であって、バルーンにより狭窄部を拡張する際の様子を模式的に示す断面図である。FIGS. 6A and 6B are views for explaining the action of the balloon catheter, and are cross-sectional views schematically showing a state when the stenosis portion is expanded by the balloon. 図7(A)、(B)は、対比例に係るバルーンカテーテルの使用例を模式的に示す断面図である。FIGS. 7A and 7B are cross-sectional views schematically showing a usage example of the balloon catheter according to the comparative example. 図8(A)~(C)は、バルーンのコンプライアント特性の調整方法を例示する断面図である。FIGS. 8A to 8C are cross-sectional views illustrating a method for adjusting the compliant characteristics of the balloon. 図9(A)、(B)は、バルーンの製造方法を説明する断面図である。9A and 9B are cross-sectional views illustrating a method for manufacturing a balloon.
 以下、本発明の実施の形態を図面を参照しつつ説明する。なお、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 図1~図3は実施形態に係るバルーンカテーテルの各部の構成の説明に供する図、図4はバルーンの各部の外径と拡張圧との関係を示す図、図5、図6は実施形態に係るバルーンカテーテルの作用の説明に供する図、図7は対比例に係るバルーンカテーテルの使用例を示す図、図8は、バルーンのコンプライアント特性の調整方法を例示する図、図9は、実施形態に係るバルーンの製造方法の説明に供する図である。 1 to 3 are diagrams for explaining the configuration of each part of the balloon catheter according to the embodiment, FIG. 4 is a diagram showing the relationship between the outer diameter of each part of the balloon and the expansion pressure, and FIGS. 5 and 6 are the embodiments. FIG. 7 is a diagram for explaining the operation of the balloon catheter, FIG. 7 is a diagram showing a usage example of the balloon catheter according to the proportionality, FIG. 8 is a diagram illustrating a method for adjusting the compliant characteristics of the balloon, and FIG. 9 is an embodiment. It is a figure where it uses for description of the manufacturing method of the balloon which concerns on.
 図1に示すように、本実施形態に係るバルーンカテーテル10は、長尺状のシャフト20を生体器官、例えば、冠状動脈に挿通させ、シャフト20の先端側に配置されたバルーン100を狭窄部(病変部)において拡張させることにより、狭窄部を押し広げて治療する、いわゆるPTCA拡張カテーテルである。ただし、本発明はこのようなPTCA拡張カテーテル以外のカテーテルに適用することが可能であり、例えば、他の血管、胆管、気管、食道、尿道、その他の臓器等の生体器官内に形成された狭窄部の治療および改善を目的とするカテーテルに適用可能である。 As shown in FIG. 1, the balloon catheter 10 according to the present embodiment has a long shaft 20 inserted into a living organ, for example, a coronary artery, and a balloon 100 disposed on the distal end side of the shaft 20 This is a so-called PTCA dilatation catheter that expands and treats the stenosis by expanding the lesion. However, the present invention can be applied to catheters other than such PTCA dilatation catheters. For example, stenosis formed in living organs such as other blood vessels, bile ducts, trachea, esophagus, urethra, and other organs. Applicable to catheters for the purpose of treatment and improvement of the head.
 図1、図2に示すように、概説すると、バルーンカテーテル10は、可撓性を備える長尺状のシャフト20と、シャフト20の先端側に配置された拡張および収縮変形可能なバルーン100と、シャフト20の基端側に設けられたハブ50とを備える。バルーンカテーテル10は、シャフト20の中間部のやや先端側寄りにガイドワイヤ60が導出される開口部32を設けた、いわゆるラピッドエクスチェンジタイプと呼ばれるものである。なお、バルーンカテーテル10においては、ハブ50が設けられた側を基端側とし、バルーン100が設けられた側を先端側とする。 As shown in FIG. 1 and FIG. 2, in general, a balloon catheter 10 includes a long shaft 20 having flexibility, and a balloon 100 that can be expanded and contracted and disposed on a distal end side of the shaft 20. And a hub 50 provided on the proximal end side of the shaft 20. The balloon catheter 10 is a so-called rapid exchange type in which an opening 32 through which the guide wire 60 is led out is provided slightly near the distal end side of the intermediate portion of the shaft 20. In the balloon catheter 10, the side on which the hub 50 is provided is defined as the proximal side, and the side on which the balloon 100 is provided is defined as the distal side.
 図2および図3(A)に示すように、シャフト20は、ガイドワイヤ60が挿通されるガイドワイヤ用ルーメン31が形成された内管(内管シャフト)30と、バルーン100を拡張するための拡張用媒体が供給される拡張用ルーメン41を内管30の外周面との間に形成する外管(外管シャフト)40とを備える。 As shown in FIGS. 2 and 3A, the shaft 20 has an inner tube (inner tube shaft) 30 formed with a guide wire lumen 31 through which the guide wire 60 is inserted, and a balloon 100 for expanding. An outer tube (outer tube shaft) 40 that forms an expansion lumen 41 to which an expansion medium is supplied between the outer tube and an outer peripheral surface of the inner tube 30 is provided.
 シャフト20は、内管30と外管40が同心状に位置合わせてして配置された二重管構造となっている。内管30は、先端部から開口部32までがバルーン100および外管40に挿入されている。 The shaft 20 has a double tube structure in which the inner tube 30 and the outer tube 40 are arranged concentrically. The inner tube 30 is inserted into the balloon 100 and the outer tube 40 from the tip to the opening 32.
 図3(A)に示すように、内管30は、基端に形成された開口部32と、先端に形成された開口部33の二つの開口部を備えており、開口部32および開口部33に連通してガイドワイヤ用ルーメン31が延在している。 As shown in FIG. 3A, the inner tube 30 includes two openings, an opening 32 formed at the proximal end and an opening 33 formed at the distal end. A guide wire lumen 31 extends in communication with 33.
 内管30は、基端側が径方向外側へ湾曲した中空状のチューブ材によって構成されている。内管30の先端近傍はバルーン100の先端側に溶着等の公知の方法により液密に接合されており、基端近傍は外管40の途中に形成された接続用開口部42付近に液密に接合されている。ガイドワイヤ60は、内管30の基端に設けられた開口部32および先端に設けられた開口部33をそれぞれ入口または出口として、ガイドワイヤ用ルーメン31内の先端側から基端側へ挿通される。 The inner tube 30 is made of a hollow tube material whose proximal end is curved radially outward. The vicinity of the distal end of the inner tube 30 is liquid-tightly joined to the distal end side of the balloon 100 by a known method such as welding, and the vicinity of the proximal end is liquid-tightly near the connection opening 42 formed in the middle of the outer tube 40. It is joined to. The guide wire 60 is inserted from the distal end side into the proximal end side in the guide wire lumen 31 with the opening portion 32 provided at the proximal end of the inner tube 30 and the opening portion 33 provided at the distal end as an inlet or an outlet, respectively. The
 なお、内管30は、基端側が必ずしも径方向外側へ湾曲していなくても良く、直線状に延びて接続用開口部42付近に液密に接合されていても良い。 The inner tube 30 does not necessarily have to be bent radially outward in the proximal end side, and may extend in a straight line and be liquid-tightly joined in the vicinity of the connection opening 42.
 内管30の先端にはバルーンカテーテル10の先端と生体器官とが接触した際に生体器官に損傷が生じることを防止するための先端チップ34が取り付けられている。この先端チップ34には、例えば、X線造影性を備えさせることが可能である。 A distal tip 34 is attached to the distal end of the inner tube 30 to prevent the living organ from being damaged when the distal end of the balloon catheter 10 comes into contact with the living organ. The tip chip 34 can be provided with, for example, X-ray contrast properties.
 内管30を構成する材料としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体等のポリオレフィン、軟質ポリ塩化ビニル等の熱可塑性樹脂、シリコーンゴム、ラテックスゴム等の各種ゴム類、ポリウレタンエラストマー、ポリアミドエラストマー、ポリエステルエラストマー等の各種エラストマー、ポリアミド、結晶性ポリエチレン、結晶性ポリプロピレン等の結晶性プラスチックが挙げられる。これらの材料中に、例えば、ヘパリン、プロスタグランジン、ウロキナーゼ、アルギニン誘導体等の抗血栓性物質を配合し、抗血栓性を有する材料とすることもできる。 Examples of the material constituting the inner tube 30 include polyolefins such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, thermoplastic resins such as soft polyvinyl chloride, silicone rubber, latex rubber, etc. And various elastomers such as polyurethane elastomer, polyamide elastomer, and polyester elastomer, and crystalline plastics such as polyamide, crystalline polyethylene, and crystalline polypropylene. In these materials, for example, an antithrombotic substance such as heparin, prostaglandin, urokinase, arginine derivative or the like can be blended to obtain an antithrombotic material.
 外管40は、バルーン100の基端からハブ50まで延びた中空状のチューブ材によって構成されている。外管40の先端から接続用開口部42までの部位は、内管30との間に拡張用ルーメン41を形成する二重管構造をなしている。外管40の先端にはバルーン100の基端が溶着等の公知の方法により液密に接合されている。外管40の基端にはハブ50が取り付けられている。 The outer tube 40 is made of a hollow tube material that extends from the proximal end of the balloon 100 to the hub 50. The portion from the tip of the outer tube 40 to the connection opening 42 has a double tube structure that forms an expansion lumen 41 with the inner tube 30. The proximal end of the balloon 100 is liquid-tightly joined to the distal end of the outer tube 40 by a known method such as welding. A hub 50 is attached to the proximal end of the outer tube 40.
 外管40の構成材料には、例えば、内管30と同様の材料を用いることが可能である。また、外管40において血液と接触する部分(例えば、外管の外面)に抗血栓性を有する物質をコーティングすることも可能である。 As the constituent material of the outer tube 40, for example, the same material as that of the inner tube 30 can be used. It is also possible to coat a substance having antithrombogenic properties on the portion of the outer tube 40 that comes into contact with blood (for example, the outer surface of the outer tube).
 図1に示すように、ハブ50には、インデフレーター等の拡張用流体を供給する供給装置(図示省略)と液密に接続可能な接続部51が設けられている。ハブ50の接続部51を介して外管40に拡張用流体を流入することが可能になっている。外管40内に流入した拡張用流体は、拡張用ルーメン41を経由してバルーン100へ供給される。ハブ50の接続部51は、例えば、流体チューブ等が接続・分離可能に構成された公知のルアーテーパー等によって構成することができる。 As shown in FIG. 1, the hub 50 is provided with a connecting portion 51 that can be connected in a liquid-tight manner with a supply device (not shown) for supplying an expansion fluid such as an indeflator. The expansion fluid can flow into the outer tube 40 via the connection portion 51 of the hub 50. The expansion fluid that has flowed into the outer tube 40 is supplied to the balloon 100 via the expansion lumen 41. The connecting portion 51 of the hub 50 can be configured by, for example, a known luer taper configured such that a fluid tube or the like can be connected and separated.
 次に、図3および図4を参照して、バルーン100の構成について説明する。図3(A)にはバルーン100を拡張変形させる前の様子が示され、図3(B)、(C)にはバルーン100を拡張変形させた後の様子が示されている。図4には、バルーン100の各部の外径の変化とバルーン100の拡張圧(内圧)との関係が示されている。 Next, the configuration of the balloon 100 will be described with reference to FIGS. 3A shows a state before the balloon 100 is expanded and deformed, and FIGS. 3B and 3C show a state after the balloon 100 is expanded and deformed. FIG. 4 shows the relationship between the change in the outer diameter of each part of the balloon 100 and the expansion pressure (internal pressure) of the balloon 100.
 図3(A)~(C)に示すように、バルーン100は、拡張変形に伴い狭窄部Nを押し広げる拡張有効部110と(図6(A)、(B)を参照)、拡張有効部110の先端側に位置する先端側拡張部120と、拡張有効部110の基端側に位置する基端側拡張部130とを備える。 As shown in FIGS. 3 (A) to 3 (C), the balloon 100 includes an expansion effective portion 110 that expands the stenosis N with expansion deformation (see FIGS. 6 (A) and (B)), and an expansion effective portion. The distal end side expansion portion 120 positioned on the distal end side of 110 and the proximal end side expansion portion 130 positioned on the proximal end side of the expansion effective portion 110 are provided.
 図3(A)に示すように、先端側拡張部120および基端側拡張部130のそれぞれには、拡張変形される前の状態(バルーン100を生体内へ導入する前、および、導入した直後であってバルーン100を拡張させる前の状態)において、拡張有効部110の各部よりも大きな外径をなす最大外径部121、131が形成されている。 As shown in FIG. 3A, each of the distal-side expanded portion 120 and the proximal-side expanded portion 130 is in a state before being expanded and deformed (before and after the introduction of the balloon 100 into the living body). In a state before the balloon 100 is expanded), the maximum outer diameter portions 121 and 131 having outer diameters larger than the respective portions of the expansion effective portion 110 are formed.
 拡張有効部110は、バルーン100の軸方向(図3(A)中の左右方向)の略中心に設けられており、先端側拡張部120および基端側拡張部130は、拡張有効部110から見て軸方向の先端側および基端側の略対称な位置に設けられている。 The expansion effective part 110 is provided at the approximate center of the balloon 100 in the axial direction (left-right direction in FIG. 3A). The distal side expansion part 120 and the proximal side expansion part 130 are separated from the expansion effective part 110. It is provided at substantially symmetrical positions on the distal end side and the proximal end side in the axial direction as viewed.
 先端側拡張部120は、その略中心位置に外径が最大となる最大外径部121が形成されている。また、最大外径部121から先端側および基端側へ延びる緩やかな傾斜部122も形成されている。先端側拡張部120の断面形状は、最大外径部121がバルーン100の軸方向と交差する方向(図3(A)中の上下方向)に突出し、最大外径部121から先端側および基端側へ向けて外径が漸減する山形になっている。 The distal end side expansion portion 120 has a maximum outer diameter portion 121 having a maximum outer diameter at a substantially central position. Further, a gently inclined portion 122 extending from the maximum outer diameter portion 121 to the distal end side and the proximal end side is also formed. The cross-sectional shape of the distal-side expanded portion 120 is such that the maximum outer diameter portion 121 protrudes in a direction (vertical direction in FIG. 3A) intersecting the axial direction of the balloon 100 and extends from the maximum outer diameter portion 121 to the distal end side and the proximal end. It has a mountain shape whose outer diameter gradually decreases toward the side.
 基端側拡張部130は、先端側拡張部120と略同一の形状に形成されており、略中心位置に形成された最大外径部131と、最大外径部131から先端側および基端側へ延びる傾斜部132とが形成されている。同様に、断面形状は、最大外径部131がバルーン100の軸方向と交差する方向に突出し、最大外径部131から先端側および基端側へ向けて外径が漸減する山形になっている。 The proximal end side extended portion 130 is formed in substantially the same shape as the distal end side extended portion 120, and has a maximum outer diameter portion 131 formed at a substantially central position, and a distal end side and a proximal end side from the maximum outer diameter portion 131. And an inclined portion 132 extending to the right. Similarly, the cross-sectional shape is a mountain shape in which the maximum outer diameter portion 131 protrudes in a direction intersecting the axial direction of the balloon 100 and the outer diameter gradually decreases from the maximum outer diameter portion 131 toward the distal end side and the proximal end side. .
 先端側拡張部120および基端側拡張部130は、バルーン100の拡張下において略同一の形状で変形するように、ノンコンプライアント特性や最大外径部の外径が略同一に設定されている。 The distal end side expansion portion 120 and the proximal end side expansion portion 130 are set to have substantially the same non-compliant characteristics and the outer diameter of the maximum outer diameter portion so as to be deformed in substantially the same shape when the balloon 100 is expanded. .
 拡張有効部110は、先端側拡張部120の基端側の傾斜部122と基端側拡張部130の先端側の傾斜部132とに連なって形成されており、軸方向の中心位置に向けて外径が漸減するくびれた形状を有する。 The expansion effective portion 110 is formed to be connected to the inclined portion 122 on the proximal end side of the distal end side expanded portion 120 and the inclined portion 132 on the distal end side of the proximal end side expanded portion 130, and toward the center position in the axial direction. It has a constricted shape with a gradually decreasing outer diameter.
 拡張有効部110、先端側拡張部120、および基端側拡張部130の各部の軸方向の長さ寸法は、特に限定されないが、生体の血管内に形成された狭窄部の拡張に使用することを目的とする場合には、例えば、拡張有効部110の長さ寸法は5~50mm程度であり、10~40mm程度であるのがより好ましく、先端側拡張部120および基端側拡張部130の長さ寸法は1~8mm程度であり、2~4mm程度であるのがより好ましい。 Although the length dimension in the axial direction of each part of the expansion effective part 110, the distal end side expansion part 120, and the proximal end side expansion part 130 is not particularly limited, it should be used for expansion of a stenosis part formed in a blood vessel of a living body. For example, the length of the extension effective portion 110 is about 5 to 50 mm, more preferably about 10 to 40 mm, and the distal end side extension portion 120 and the proximal end side extension portion 130 are The length dimension is about 1 to 8 mm, and more preferably about 2 to 4 mm.
 次に、図3および図4を参照して、バルーン100の各部の外径寸法と拡張圧との関係を説明する。図4中における一点鎖線は、拡張有効部110の軸方向中心位置における外径D1の変化を示し、実線は、先端側拡張部120の最大外径部121の外径D2および基端側拡張部130の最大外径部131の外径D3の変化を示している。バルーン100の各部の外径寸法は、それぞれの機能を考慮して以下のように変化する。 Next, with reference to FIG. 3 and FIG. 4, the relationship between the outer diameter of each part of the balloon 100 and the expansion pressure will be described. 4 indicates a change in the outer diameter D1 at the axial center position of the effective expansion portion 110, and the solid line indicates the outer diameter D2 of the maximum outer diameter portion 121 of the distal end side expansion portion 120 and the proximal end side expansion portion. The change of the outer diameter D3 of the 130 largest outer diameter parts 131 is shown. The outer diameter of each part of the balloon 100 changes as follows in consideration of each function.
 図3(A)、図4に示すように、拡張開始時(拡張圧Pの時点)からバルーン100の拡張圧が規定拡張圧Pに達するまでは、拡張有効部110の外径D1よりも、先端側拡張部120の最大外径部121の外径D2および基端側拡張部130の最大外径部131の外径D3が大きくなるように変形する。 As shown in FIGS. 3A and 4, from the start of expansion (at the time of expansion pressure P 0 ) until the expansion pressure of the balloon 100 reaches the specified expansion pressure P 1 , from the outer diameter D 1 of the expansion effective portion 110. Also, the outer diameter D2 of the maximum outer diameter portion 121 of the distal end side expansion portion 120 and the outer diameter D3 of the maximum outer diameter portion 131 of the proximal end expansion portion 130 are increased.
 ここで、規定拡張圧Pとは、バルーン100の拡張有効部110の外径が治療対象となる狭窄部Nを押し広げることが可能な加圧力を作用させる外径に変化する際の圧力である。この規定拡張圧Pは、狭窄部Nの症状、バルーンカテーテル10の使用用途や製品仕様などに応じて適宜変更することが可能であるが、例えば、製品ごとに予め定められる推奨拡張圧(NP)に設定することが可能である。脳血管内等の狭窄部の拡張に使用する場合には、例えば、規定拡張圧Pは、0.8Mpa(8atm)に設定することができる。 Here, the specified expansion pressure P 1 is a pressure when the outer diameter of the effective expansion portion 110 of the balloon 100 changes to an outer diameter that applies a pressure capable of pushing and expanding the narrowed portion N to be treated. is there. This provision expansion pressure P 1 is the symptoms of stricture N, intended use and product specifications of the balloon catheter 10 but can be appropriately changed depending on, for example, the recommended extended pressure (NP which is predetermined for each product ) Can be set. When used to extend the stenosis, such as in the brain blood vessel, for example, defined opening pressure P 1 may be set to 0.8 Mpa (8 atm).
 拡張前のバルーン100の各部の外径寸法は、例えば、次のように設定することができる。拡張有効部110の外径D1は、0.5~2.5mm程度が好ましく、先端側拡張部120の最大外径部121の外径D2および基端側拡張部130の最大外径部131の外径D3は、1~5mm程度が好ましい。また、規定拡張圧Pに達した際の拡張有効部の外径D1は、例えば、1~5mm程度が好ましい。 The outer diameter of each part of the balloon 100 before expansion can be set as follows, for example. The outer diameter D1 of the effective expansion portion 110 is preferably about 0.5 to 2.5 mm, and the outer diameter D2 of the maximum outer diameter portion 121 of the distal end side expansion portion 120 and the maximum outer diameter portion 131 of the proximal end expansion portion 130. The outer diameter D3 is preferably about 1 to 5 mm. The outer diameter D1 of the extension effective portion when it reaches the prescribed expansion pressure P 1 is, for example, about 1 ~ 5 mm is preferred.
 図4に示すように、拡張前の段階Pから規定拡張圧Pへと拡張圧が増加するのにしたがってバルーン100の各部の外径は徐々に大きくなるが、拡張圧がこのように遷移する間は、拡張有効部110の外径D1<先端側拡張部120の最大外径部121の外径D2、基端側拡張部130の最大外径部131の外径D3の関係が維持される。この遷移期間において先端側拡張部120および基端側拡張部130は、バルーン100に位置ずれが生じないように、バルーン100を所定位置に位置決めする機能を発揮する(図5(A)、(B)を参照)。 As shown in FIG. 4, the outer diameter of each part of the balloon 100 gradually increases as the expansion pressure increases from the pre-expansion stage P 0 to the specified expansion pressure P 1 , but the expansion pressure changes in this way. During this time, the relationship between the outer diameter D1 of the effective expansion portion 110 <the outer diameter D2 of the maximum outer diameter portion 121 of the distal end side expansion portion 120 and the outer diameter D3 of the maximum outer diameter portion 131 of the proximal end side expansion portion 130 is maintained. The During this transition period, the distal end side extended portion 120 and the proximal end side expanded portion 130 function to position the balloon 100 at a predetermined position so that the balloon 100 is not displaced (FIGS. 5A and 5B). )).
 図3(B)、図4に示すように、拡張圧が規定拡張圧Pに達すると、拡張有効部110の外径D1が先端側拡張部120の最大外径部121の外径D2および基端側拡張部130の最大外径部131の外径D3と同径になるように変化する。その結果、拡張有効部110から狭窄部Nに対して加圧力を付与することが可能になる(図6(A)を参照)。 As shown in FIGS. 3B and 4, when the expansion pressure reaches the specified expansion pressure P 1 , the outer diameter D1 of the expansion effective portion 110 is changed to the outer diameter D2 of the maximum outer diameter portion 121 of the distal end side expansion portion 120 and It changes so that it may become the same diameter as the outer diameter D3 of the largest outer diameter part 131 of the base end side expansion part 130. FIG. As a result, it is possible to apply a pressing force to the constriction N from the dilation effective portion 110 (see FIG. 6A).
 図3(C)、図4に示すように、拡張圧をさらに大きくすると、拡張圧の増加に伴い拡張有効部110の外径D1が、先端側拡張部120の最大外径部121の外径D2および基端側拡張部130の最大外径部131の外径D3よりも大きくなるように変化する。 As shown in FIGS. 3C and 4, when the expansion pressure is further increased, the outer diameter D <b> 1 of the expansion effective portion 110 increases as the expansion pressure increases, and the outer diameter of the maximum outer diameter portion 121 of the distal end side expansion portion 120. It changes so that it may become larger than D2 and the outer diameter D3 of the largest outer diameter part 131 of the base end side expansion part 130. FIG.
 ここで、先端側拡張部120および基端側拡張部130は、規定拡張圧Pに達した以降の拡張圧の増加に伴う径方向の膨張率が拡張有効部110の径方向の膨張率よりも相対的に小さくなるように構成されている。このため、規定拡張圧Pに達した以降は、拡張有効部110が他の部位よりも大きく拡張することで、狭窄部Nに対してより大きな加圧力が付与される(図6(B)を参照)。 Here, the distal-side expansion portion 120 and the proximal-side expansion portion 130 have a radial expansion rate that increases with the expansion pressure after reaching the specified expansion pressure P 1 from the radial expansion rate of the expansion effective portion 110. Is also configured to be relatively small. Therefore, since reaching the prescribed expansion pressure P 1, expanding the effective portion 110 by extending greater than the other portions, a greater pressure is applied against the stricture N (FIG. 6 (B) See).
 バルーン100を構成する材料としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリ塩化ビニル、エチレン-酢酸ビニル共重合体、架橋型エチレン-酢酸ビニル共重合体、ポリウレタン等の熱可塑性樹脂、ポリアミド、ポリアミドエラストマー、シリコーンゴム、ラテックスゴム等が挙げられる。バルーン100は、これらの材料を使用した単層構造に形成することができ、また二層以上のラミネート構造に形成することもできる。また、外管40と同様にバルーン100に抗血栓性を有する物質をコーティングすることができる。 Examples of the material constituting the balloon 100 include polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymers, polyesters such as polyethylene terephthalate, polyvinyl chloride, ethylene-vinyl acetate copolymers, and crosslinked ethylene-vinyl acetate copolymers. Examples include polymers, thermoplastic resins such as polyurethane, polyamides, polyamide elastomers, silicone rubbers, latex rubbers, and the like. The balloon 100 can be formed into a single layer structure using these materials, or can be formed into a laminate structure of two or more layers. Similarly to the outer tube 40, the balloon 100 can be coated with a substance having antithrombotic properties.
 前述したように、拡張圧が規定拡張圧Pに達した以降は、拡張圧の増加に伴い、先端側拡張部120および基端側拡張部130の径方向の膨張率が拡張有効部110の径方向の膨張率に比較して小さくなるように調整されるが、この調整を行う方法としては、例えば、材料の材質による調整、バルーン100を構成するチューブ状素材(パリソン)を金型内で二軸延伸ブロー成型をする際の拡張倍率の調整、および拡張変形を抑制する抑制具180による調整からなる群れの少なくとも一つを選択することができる。 As described above, since the expansion pressure reaches a predetermined opening pressure P 1 is, with the increase of the opening pressure, the radial expansion of the distal extension 120 and the proximal extension 130 of the extension effective portion 110 Although it is adjusted so that it becomes smaller than the expansion coefficient in the radial direction, for example, the adjustment by the material of the material, the tubular material (parison) constituting the balloon 100 in the mold It is possible to select at least one of a group consisting of adjustment of the expansion ratio when performing biaxial stretch blow molding and adjustment by the suppressor 180 that suppresses expansion deformation.
 材料による調整は、拡張有効部110を構成する材料と先端側拡張部120および基端側拡張部130を構成する材料とを異ならせることで各部のコンプライアント特性を調整する方法である。例えば、図8(A)に示すように、先端側拡張部120および基端側拡張部130を構成する材料の方が拡張有効部110を構成する材料よりも硬い材料で構成される。また、バルーン100をなすチューブ状素材を金型内で二軸延伸ブロー成形をする際の拡張倍率の調整は、例えば、金型を使用してチューブ状素材をブロー成形する際に、先端側拡張部120および基端側拡張部130の拡張倍率を、拡張有効部110の拡張倍率よりも高くすることで、調整可能である。これらの方法により、例えば、拡張有効部110をセミコンプライアントバルーンと同様の特性を有するように構成し、先端側拡張部120および基端側拡張部130をノンコンプライアントバルーンと同様の特性を有するように構成することが可能となる。 The adjustment by the material is a method of adjusting the compliant characteristics of each part by making the material constituting the expansion effective part 110 different from the material constituting the distal end side extended part 120 and the proximal end side extended part 130. For example, as shown in FIG. 8A, the material constituting the distal end side extended portion 120 and the proximal end side expanded portion 130 is made of a material harder than the material constituting the expansion effective portion 110. In addition, when the tube-shaped material forming the balloon 100 is biaxially stretched and blow-molded in the mold, the expansion ratio is adjusted, for example, when the tube-shaped material is blow-molded using the mold. It is possible to adjust the expansion magnification of the unit 120 and the base end side expansion unit 130 by making it higher than the expansion magnification of the expansion effective unit 110. By these methods, for example, the expansion effective part 110 is configured to have the same characteristics as the semi-compliant balloon, and the distal side expansion part 120 and the proximal side expansion part 130 have the same characteristics as the non-compliant balloon. It becomes possible to comprise.
 図8(B)に示すように、抑制具180による調整方法は、ゴムバンドのような弾性変形可能な筒状の部材を先端側拡張部120および基端側拡張部130に巻き付けておき、拡張圧が規定拡張圧Pに達した以降にゴムバンドから受ける拘束力によって先端側拡張部120および基端側拡張部130が変形し難くなるように構成する方法である。 As shown in FIG. 8B, the adjustment method using the restraining tool 180 is performed by winding an elastically deformable cylindrical member such as a rubber band around the distal end side expansion portion 120 and the proximal end side expansion portion 130, a method to configure so that the tip-side extending portion 120 and the proximal extension 130 after the pressure has reached a predetermined opening pressure P 1 by restraining force from the rubber band is unlikely to deform.
 なお、バルーン100の各部のコンプライアント特性を調整する方法としては、例えば、図8(C)に示すように、各部を同一の材料で構成した上で各部の厚み寸法を変更する方法があり、先端側拡張部120および基端側拡張部130の膜厚の方が拡張有効部110の膜厚よりも厚くすることで調整可能である。また、材料の一部にコンプライアント特性を変化させる粒子等を含有させる方法などの公知の方法を選択することも可能である。なお、例示した各方法を適宜組み合わせて調整を行うことも可能である。 In addition, as a method of adjusting the compliant characteristics of each part of the balloon 100, for example, as shown in FIG. 8C, there is a method of changing the thickness dimension of each part after configuring each part with the same material, It is possible to adjust the film thickness of the distal end side expansion part 120 and the proximal end side expansion part 130 by making the film thickness larger than that of the expansion effective part 110. It is also possible to select a known method such as a method of incorporating particles or the like that change the compliant characteristics into a part of the material. It is also possible to make adjustments by appropriately combining the illustrated methods.
 図3(A)に示すように、バルーンカテーテル10には、先端側拡張部120の最大外径部121の位置を示す造影マーカー123と、基端側拡張部130の最大外径部131の位置を示す造影マーカー133が設けられている。各造影マーカー123、133は、例えば、白金、金、銀、チタン、タングステン等の金属、またはこれらの合金等のX線不透過材料で構成することができる。各造影マーカー123、133は、内管30の外周を覆うリング形状に形成されているが、これに限らず、例えば、チップ状、ブロック状に構成されたものでもよい。また、例えば、先端側拡張部120の最大外径部121および基端側拡張部130の最大外径部131にX線不透過性の材料(粒子等)を含有させることにより、各部位121、131を示す造影マーカーを形成してもよい。 As shown in FIG. 3A, the balloon catheter 10 includes a contrast marker 123 indicating the position of the maximum outer diameter portion 121 of the distal end side expansion portion 120 and the position of the maximum outer diameter portion 131 of the proximal end side expansion portion 130. A contrast marker 133 is provided. Each contrast marker 123, 133 can be made of, for example, a metal such as platinum, gold, silver, titanium, tungsten, or an X-ray opaque material such as an alloy thereof. Each contrast marker 123, 133 is formed in a ring shape that covers the outer periphery of the inner tube 30, but is not limited thereto, and may be configured in a chip shape or a block shape, for example. Further, for example, each portion 121, by containing a radiopaque material (particles or the like) in the maximum outer diameter portion 121 of the distal end side expansion portion 120 and the maximum outer diameter portion 131 of the proximal end side expansion portion 130. A contrast marker indicating 131 may be formed.
 バルーンカテーテル10においては、拡張有効部110の軸方向の中心位置付近にも同様に造影マーカー113を設けていてもよい。造影マーカー113は、他の造影マーカー123、133と同様の材質および形状等で構成することができる。 In the balloon catheter 10, the contrast marker 113 may be provided similarly near the axial center position of the dilation effective portion 110. The contrast marker 113 can be made of the same material and shape as the other contrast markers 123 and 133.
 次に、図5および図6を参照して、実施形態に係るバルーンカテーテル10の作用を説明する。 Next, the operation of the balloon catheter 10 according to the embodiment will be described with reference to FIGS. 5 and 6.
 まず治療に際して、図5(A)に示すように、狭窄部Nが形成された所定の血管B内へバルーンカテーテル10を導入する。バルーンカテーテル10を導入する際には、医療分野において公知のガイドワイヤ60を使用することができる。内管30に形成されたガイドワイヤ用ルーメン31にガイドワイヤ60を挿通させることで、バルーン100を狭窄部Nへ案内する。この際、バルーン100の各部を狭窄部Nに対して位置決めする。例えば、バルーン100の拡張有効部110の中心位置を狭窄部Nの延在方向(図5(A)中の左右方向)の中心位置付近に配置し、バルーン100の先端側拡張部120および基端側拡張部130のそれぞれを狭窄部Nの両端側に配置する。位置決めは、X線造影下において各造影マーカー113、123、133の位置を確認しながら行うことで迅速かつ正確に行うことができる。 First, at the time of treatment, as shown in FIG. 5A, a balloon catheter 10 is introduced into a predetermined blood vessel B in which a stenosis N is formed. When introducing the balloon catheter 10, a guide wire 60 known in the medical field can be used. The balloon 100 is guided to the narrowed portion N by inserting the guide wire 60 through the guide wire lumen 31 formed in the inner tube 30. At this time, each part of the balloon 100 is positioned with respect to the narrowed part N. For example, the center position of the dilation effective portion 110 of the balloon 100 is arranged near the center position in the extending direction of the stenosis N (the left-right direction in FIG. 5A), and the distal end side expansion portion 120 and the proximal end of the balloon 100 are arranged. Each of the side expansion portions 130 is disposed on both end sides of the narrowed portion N. Positioning can be performed quickly and accurately by confirming the position of each contrast marker 113, 123, 133 under X-ray contrast.
 図5(B)に示すように、バルーン100を拡張させると、先端側拡張部120および基端側拡張部130が拡張有効部110よりも大きな外径となるように拡張変形して、先端側拡張部120および基端側拡張部130が狭窄部Nの周辺の血管内壁に対してバルーン100を保持する力を作用させる。これにより、バルーン100の軸方向の位置が固定される。その結果、拡張圧の増加に伴う拡張変形が行われる間、バルーン100の位置ずれが好適に防止される。 As shown in FIG. 5B, when the balloon 100 is expanded, the distal end side expanded portion 120 and the proximal end side expanded portion 130 are expanded and deformed to have a larger outer diameter than the expansion effective portion 110, and the distal end side is expanded. The expansion part 120 and the proximal-side expansion part 130 act on the inner wall of the blood vessel around the stenosis N to hold the balloon 100. Thereby, the position of the balloon 100 in the axial direction is fixed. As a result, the displacement of the balloon 100 is preferably prevented while the expansion deformation is performed with the increase in the expansion pressure.
 図6(A)に示すように、規定拡張圧Pに達すると、バルーン100の拡張有効部110が先端側拡張部120および基端側拡張部130と同径になるように拡張変形する。先端側拡張部120および基端側拡張部130によりバルーン100の位置ずれを防止した状態で、拡張有効部110により狭窄部Nに対して加圧力を付与することが可能になる。 As shown in FIG. 6 (A), defined extended when the pressure P 1 is reached, extended the effective portion 110 of the balloon 100 is expanded deformed to the same diameter as the front end side extension section 120 and the proximal extension 130. It is possible to apply pressure to the constriction N by the expansion effective portion 110 in a state in which the positional deviation of the balloon 100 is prevented by the distal end expansion portion 120 and the proximal end expansion portion 130.
 図6(B)に示すように、さらに拡張圧を増加させると、拡張圧の増加に伴いバルーン100の拡張有効部110がより大きく拡張変形する一方で、先端側拡張部120および基端側拡張部130の膨張率が減少する。先端側拡張部120および基端側拡張部130から血管内壁に付与される加圧力の増加を抑えつつ、拡張有効部110から狭窄部Nに対してより大きな加圧力を付与することが可能になる。したがって、狭窄部N周辺の血管内壁に掛かる負荷を軽減しながら狭窄部Nを押し広げることが可能になる。 As shown in FIG. 6B, when the expansion pressure is further increased, the expansion effective portion 110 of the balloon 100 is further expanded and deformed as the expansion pressure increases, while the distal side expansion portion 120 and the proximal side expansion are increased. The expansion rate of the part 130 is reduced. It is possible to apply a larger pressure from the effective expansion portion 110 to the stenosis N while suppressing an increase in the pressure applied to the inner wall of the blood vessel from the distal side expansion portion 120 and the proximal side expansion portion 130. . Accordingly, it is possible to push the stenosis N while reducing the load on the blood vessel inner wall around the stenosis N.
 ここで、図7には、対比例に係るバルーンカテーテル200の使用例が示される。対比例に係るバルーンカテーテル200は、拡張有効部211が拡張変形前後において直胴形状を維持するように成形されたバルーン210を備える。 Here, FIG. 7 shows a usage example of the balloon catheter 200 in proportion. The balloon catheter 200 according to the comparative example includes a balloon 210 formed so that the expansion effective portion 211 maintains a straight body shape before and after expansion deformation.
 図7(A)に示すように、バルーン210を拡張させると、拡張有効部211を介して狭窄部Nに対して加圧力が付与される。この際、図7(B)に示すように、狭窄部Nから受ける反力によりバルーン210が軸方向に位置ずれしてしまうことがある。特に、狭窄部Nに石灰化の症状が生じている場合には、バルーン210の位置ずれが発生し易くなる。バルーン210の位置ずれが発生すると、血管内壁の意図しない部位に対して加圧力が付与されてしまい、血管内壁を損傷させる虞がある。また、狭窄部Nに対して加圧力を十分に付与することができず、満足な治療成果が得られなくなる虞もある。このような対比例に係るバルーンカテーテル200に対して、本実施形態に係るバルーンカテーテル10によれば、バルーン100の位置ずれを防止しながら狭窄部Nに対して適正な加圧力を付与することが可能になるため、上記のような問題の発生を好適に防止することが可能になる。 As shown in FIG. 7A, when the balloon 210 is expanded, a pressurizing force is applied to the constricted portion N via the expansion effective portion 211. At this time, as shown in FIG. 7B, the balloon 210 may be displaced in the axial direction due to the reaction force received from the narrowed portion N. In particular, when a calcification symptom occurs in the stenosis N, displacement of the balloon 210 is likely to occur. When the positional deviation of the balloon 210 occurs, a pressure is applied to an unintended part of the inner wall of the blood vessel, which may damage the inner wall of the blood vessel. In addition, a sufficient pressure cannot be applied to the stenosis N, and a satisfactory therapeutic result may not be obtained. With respect to the balloon catheter 200 according to this embodiment, the balloon catheter 10 according to the present embodiment can apply an appropriate pressure to the stenosis N while preventing the displacement of the balloon 100. Therefore, the occurrence of the above problems can be suitably prevented.
 以上のように、本実施形態に係るバルーンカテーテル10によれば、バルーン100の拡張を開始してからバルーン100の内圧が規定拡張圧Pに達するまでの間は、バルーン100を所定の位置に対して位置決めして保持する力を先端側拡張部120および基端側拡張部130を介して狭窄部N周辺に対して作用させることができ、バルーン100の内圧が規定拡張圧Pに達した際に、拡張有効部110から狭窄部Nに対して適正な加圧力を付与して拡張を行うことが可能になるため、安全性および利便性に優れたものとなる。 As described above, according to the balloon catheter 10 of the present embodiment, during the period from the start of the expansion of the balloon 100 until the internal pressure of the balloon 100 reaches a predetermined opening pressure P 1 is the balloon 100 in place the force holding and positioning can act against stricture N around through the distal end side extension section 120 and the proximal extension 130 against the internal pressure of the balloon 100 reaches a prescribed expansion pressure P 1 At this time, since it is possible to perform expansion by applying an appropriate pressure to the constriction N from the expansion effective portion 110, it is excellent in safety and convenience.
 また、先端側拡張部120および基端側拡張部130は、規定拡張圧Pに達した以降の拡張圧の増加に伴う膨張率が拡張有効部110の膨張率よりも相対的に小さくなるように構成されているため、バルーン100の内圧が規定拡張圧Pに達するまでは、先端側拡張部120および基端側拡張部130を介して狭窄部N周辺に対して優先的に加圧力を付与することにより位置決め機能を維持することが可能になる一方で、バルーン100の内圧が規定拡張圧Pに達した後は、拡張有効部110から狭窄部Nに対して優先的に加圧力を付与することが可能になるため、狭窄部Nをより一層確実に拡張することが可能になる。 In addition, the distal end side expansion portion 120 and the proximal end side expansion portion 130 are configured such that the expansion rate associated with the increase in expansion pressure after reaching the specified expansion pressure P 1 is relatively smaller than the expansion rate of the expansion effective portion 110. because it is configured to, until the internal pressure of the balloon 100 reaches a predetermined opening pressure P 1, preferentially pressure against stricture N around through the distal end side extension section 120 and the proximal extension 130 while it is possible to maintain the positioning function by applying, after the inner pressure of the balloon 100 reaches a prescribed expansion pressure P 1 is preferentially pressure against stricture N from the extended valid 110 Since it becomes possible to give, it becomes possible to expand the constriction N more reliably.
 また、先端側拡張部120および基端側拡張部130と拡張有効部110のコンプライアント特性の違いは、材料の材質による調整、バルーン100を構成する管状部材を金型内で二軸延伸ブロー成形をする際の拡張倍率の調整、および拡張変形を抑制する抑制具による調整からなる群のいずれか1つによって調整されるため、比較的簡易な方法でバルーン100の各部のコンプライアント特性を設定することができ、製造作業の容易化および製造コストの削減を図ることができる。 Further, the difference in the compliant characteristics of the distal end side expansion portion 120 and the proximal end side expansion portion 130 and the expansion effective portion 110 is adjusted by the material material, and the tubular member constituting the balloon 100 is biaxially stretch blow molded in the mold. Therefore, the compliant characteristics of each part of the balloon 100 are set by a relatively simple method. Therefore, the manufacturing operation can be facilitated and the manufacturing cost can be reduced.
 また、先端側拡張部120の最大外径部121および基端側拡張部130の最大外径部131の位置を示す造影マーカー123、133を有するため、狭窄部Nに対してバルーン100の各部の位置合わせを容易に行うことができ、より一層円滑かつ迅速な手技を実現することが可能になる。 Further, since the contrast markers 123 and 133 indicating the positions of the maximum outer diameter portion 121 of the distal end side expansion portion 120 and the maximum outer diameter portion 131 of the proximal end side expansion portion 130 are provided, each portion of the balloon 100 is Positioning can be performed easily, and a smoother and quicker procedure can be realized.
 次に、図9を参照して、バルーンカテーテル10に備えられるバルーン100の製造方法を説明する。 Next, with reference to FIG. 9, a method for manufacturing the balloon 100 provided in the balloon catheter 10 will be described.
 まず、最初に、延伸可能なポリマーから成るチューブ状素材(パリソン)190を形成する。これは、押し出しによる電線被覆法により行うことが好ましい。ポリマーとしては、例えば、バルーン100の構成材料として前述したものを使用できる。 First, a tubular material (parison) 190 made of a stretchable polymer is first formed. This is preferably performed by a wire coating method by extrusion. As a polymer, what was mentioned above as a constituent material of balloon 100 can be used, for example.
 そして、チューブ状素材190を図9(A)に示すように、金型300内に挿入し、さらにチューブ状素材190の一端を封止する。封止は、例えば、加熱溶融、高周波によるシール、鉗子などを用いて行うことができる。 Then, as shown in FIG. 9A, the tubular material 190 is inserted into the mold 300, and one end of the tubular material 190 is sealed. Sealing can be performed using, for example, heat melting, high frequency sealing, forceps, or the like.
 図9(A)に示す金型300は、分離可能な第1の可動型310と第2の可動型320とを有する。各可動型310、320のそれぞれには所定形状の成形面311、321が形成されている。金型300を型締めすると、第1の可動型310の成形面311と第2の可動型320の成形面321との間に、バルーン100の基本外面形状(図3(A)に示す拡張変形前の形状)に合致した形状のキャビティ330が形成される。 9A includes a first movable mold 310 and a second movable mold 320 that are separable. Each of the movable molds 310 and 320 is formed with molding surfaces 311 and 321 having a predetermined shape. When the mold 300 is clamped, the basic outer shape of the balloon 100 (expanded deformation shown in FIG. 3A) is formed between the molding surface 311 of the first movable mold 310 and the molding surface 321 of the second movable mold 320. A cavity 330 having a shape matching the previous shape is formed.
 図9(A)に示すように金型300にチューブ状素材190を配置した後、図示しないヒーターを作動させて金型300を加熱する。チューブ状素材190においてバルーン100をなす部分の温度が、ポリマーの二次転移温度から一次転移温度までの範囲の温度、具体的には、二次転移温度を少し越える温度に達するまで加熱する。この際、図9(B)に示すように、軸方向にチューブ状素材190を延伸しつつ、チューブ状素材190の内部へ気体を加圧しながら送ることにより、金型300内で加熱されている部分191を各可動型310、320の成形面311、321に密着させる。そして、金型300に備えられる図示しない冷却管内に冷却液を循環し、チューブ状素材190を二次転移温度以下に冷却する。なお、この冷却は、冷却液量を循環することなく、単に放置して自然冷却してもよい。その後、チューブ状素材190の内部を常圧にし、バルーン100の基本外面形状が成形されたチューブ状素材190を金型300内から抜去する。そして、チューブ状素材190の先端部および基端部にて不要な部位を適宜切断することにより、図3(A)に示すような基本外面形状が成形されたバルーン100が製造される。 As shown in FIG. 9A, after the tube-shaped material 190 is arranged in the mold 300, the heater 300 (not shown) is operated to heat the mold 300. Heating is performed until the temperature of the portion forming the balloon 100 in the tubular material 190 reaches a temperature in the range from the second order transition temperature to the first order transition temperature of the polymer, specifically, a temperature slightly exceeding the second order transition temperature. At this time, as shown in FIG. 9 (B), the tube-shaped material 190 is heated in the mold 300 by being sent to the inside of the tube-shaped material 190 while being pressurized while extending the tube-shaped material 190 in the axial direction. The part 191 is brought into close contact with the molding surfaces 311 and 321 of the movable molds 310 and 320. Then, a cooling liquid is circulated in a cooling pipe (not shown) provided in the mold 300 to cool the tubular material 190 to a secondary transition temperature or lower. Note that this cooling may be performed by simply leaving it alone without circulating the amount of the coolant. Thereafter, the inside of the tube-shaped material 190 is set to normal pressure, and the tube-shaped material 190 in which the basic outer shape of the balloon 100 is formed is removed from the mold 300. Then, unnecessary portions are appropriately cut at the distal end portion and the proximal end portion of the tubular material 190, whereby the balloon 100 having a basic outer shape as shown in FIG. 3A is manufactured.
 以上の手順により、狭窄部Nからの位置ずれ防止機能、および、狭窄部Nに対して適正な加圧力を付与して拡張を行うことを可能にするバルーンカテーテル10に適用可能なバルーン100を提供することが可能になる。 The balloon 100 applicable to the balloon catheter 10 that enables the function of preventing the positional deviation from the stenosis N and the expansion by applying an appropriate pressure to the stenosis N by the above procedure is provided. It becomes possible to do.
 以上、実施形態を通じて本発明に係るバルーンカテーテルを説明したが、本発明は実施形態において説明した内容のみに限定されず、特許請求の範囲の記載に基づいて適宜改変することが可能である。 As described above, the balloon catheter according to the present invention has been described through the embodiments. However, the present invention is not limited to the contents described in the embodiments, and can be appropriately modified based on the description of the scope of claims.
 例えば、ラピッドエクスチェンジ型のバルーンカテーテルに適用した例を説明したが、いわゆるオーバーザワイヤタイプと呼ばれるバルーンカテーテルに適用することも可能である。オーバーザワイヤタイプのバルーンカテーテルに適用する場合においても、狭窄部を拡張する手技を実施する際にバルーンに位置ずれが発生するのを防止し得る機能が損なわれることはない。 For example, although an example in which the present invention is applied to a rapid exchange type balloon catheter has been described, the present invention can also be applied to a so-called over-the-wire type balloon catheter. Even when applied to an over-the-wire type balloon catheter, the function capable of preventing the occurrence of displacement in the balloon is not impaired when performing a procedure for expanding the stenosis.
 また、例えば、実施形態の説明においては、規定拡張圧に達した際に拡張有効部の外径が先端側拡張部の最大外径部の外径および基端側拡張部の最大外径部の外径と同径になるように構成されたバルーンの例を示したが、例えば、規定拡張圧に達した際に拡張有効部の外径が先端側拡張部の最大外径部の外径および基端側拡張部の最大外径部の外径よりも大きく変形するようにバルーンが構成されてもよい。このような場合においても、規定拡張圧に達した以降に拡張有効部から狭窄部に対して適切な加圧力を付与することが可能となる。 Further, for example, in the description of the embodiment, when the specified expansion pressure is reached, the outer diameter of the expansion effective portion is the outer diameter of the maximum outer diameter portion of the distal end side expansion portion and the maximum outer diameter portion of the proximal end side expansion portion. Although an example of a balloon configured to have the same diameter as the outer diameter has been shown, for example, when the specified expansion pressure is reached, the outer diameter of the expansion effective portion is the outer diameter of the maximum outer diameter portion of the distal side expansion portion and The balloon may be configured to be deformed to be larger than the outer diameter of the maximum outer diameter portion of the proximal end side expansion portion. Even in such a case, an appropriate pressure can be applied from the effective expansion portion to the stenosis portion after reaching the specified expansion pressure.
 また、例えば、実施形態の説明においては、先端側拡張部および基端側拡張の外径が略同一に形成され、コンプライアント特性も略同一に形成されていたバルーンの例を示したが、前述したバルーンの位置ずれを防止する機能を発揮し得る限りにおいてこのような構成に特に限定されず、例えば、一方の拡張部と他方の拡張部で外径を異ならせたり、一方の拡張部と他方の拡張部でコンプライアント特性を異ならせたりすることも可能である。 Further, for example, in the description of the embodiment, an example of a balloon in which the outer diameters of the distal end side expansion portion and the proximal end side expansion are formed to be substantially the same and the compliant characteristics are also formed to be substantially the same is described. As long as the function of preventing the positional deviation of the balloon can be exhibited, it is not particularly limited to such a configuration. For example, the outer diameter is different between one expansion part and the other expansion part, It is also possible to vary the compliant characteristics in the extended portion.
 また、バルーンカテーテルの各部の構成は、拡張有効部、先端側拡張部、および基端側拡張部を備える所定形状のバルーンが少なくとも備えられており、かつ、拡張変形させた際に先端側拡張部および基端側拡張部によりバルーンの位置ずれを防止し、さらに規定拡張圧に達した以降は拡張有効部を介して狭窄部に対して加圧力を付与し得るように構成されている限りにおいて適宜変更することが可能であり、シャフトやハブ等の構成、他の付加的な部材の使用やその使用の省略等は適宜に行い得る。 The configuration of each part of the balloon catheter includes at least a balloon having a predetermined shape including an expansion effective portion, a distal side expansion portion, and a proximal side expansion portion, and the distal side expansion portion when expanded and deformed. As long as it is configured to prevent the positional displacement of the balloon by the proximal end side expansion portion and further to apply a pressure to the stenosis portion via the effective expansion portion after reaching the specified expansion pressure, as appropriate It can be changed, and the configuration of the shaft, the hub, etc., the use of other additional members, the omission of the use, etc. can be appropriately performed.
 本出願は、2014年3月27日に出願された日本国特許出願第2014-067201号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2014-066721 filed on March 27, 2014, the disclosure of which is incorporated by reference in its entirety.
10 バルーンカテーテル、
20 シャフト、
50 ハブ、
100 バルーン、
110 拡張有効部、
120 先端側拡張部、
121 最大外径部、
122 傾斜部、
123 造影マーカー、
130 基端側拡張部、
131 最大外径部、
132 傾斜部、
133 造影マーカー、
190 チューブ状素材、
300 金型、
330 キャビティ、
B 血管、
N 狭窄部、
 規定拡張圧。
10 balloon catheter,
20 shaft,
50 hubs,
100 balloons,
110 Extended effective part,
120, the distal end side extension,
121 maximum outer diameter,
122 slope,
123 contrast marker,
130, proximal extension,
131 Maximum outer diameter,
132 sloped part,
133 contrast markers,
190 Tubular material,
300 molds,
330 cavities,
B blood vessels,
N stenosis,
P 1 specified expansion pressure.

Claims (5)

  1.  可撓性を備える長尺状のシャフトと、前記シャフトの先端側に配置された拡張および収縮変形可能なバルーンとを備えるバルーンカテーテルであって、
     前記バルーンは、
     拡張変形に伴い狭窄部を押し広げる拡張有効部と、
     前記拡張有効部の先端側および基端側にそれぞれ位置し、拡張変形される前の状態において前記拡張有効部の各部よりも大きな外径をなす最大外径部が形成された先端側拡張部および基端側拡張部と、を有し、
     前記拡張有効部が規定の外径まで拡張変形する規定拡張圧に達するまでは、前記拡張有効部の各部の外径よりも前記先端側拡張部の最大外径部の外径および前記基端側拡張部の最大外径部の外径が大きくなるように変形し、
     前記規定拡張圧に達すると、前記拡張有効部の各部の外径が前記先端側拡張部の最大外径部の外径および前記基端側拡張部の最大外径部の外径と同径または同径以上に変形する、ことを特徴とするバルーンカテーテル。
    A balloon catheter comprising an elongate shaft having flexibility, and an expandable and contractible balloon disposed on the distal end side of the shaft,
    The balloon is
    An expansion effective portion that expands the stenosis portion with expansion deformation;
    A distal-side extension portion that is positioned on the distal end side and the proximal end side of the effective extension portion, and has a maximum outer diameter portion that has a larger outer diameter than each portion of the effective extension portion in a state before being expanded and deformed; and A proximal extension, and
    Until the expansion effective portion reaches a specified expansion pressure that expands and deforms to a predetermined outer diameter, the outer diameter of the maximum outer diameter portion of the distal side expansion portion and the proximal end side than the outer diameter of each portion of the expansion effective portion It is deformed so that the outer diameter of the maximum outer diameter part of the expansion part becomes larger,
    When the specified expansion pressure is reached, the outer diameter of each portion of the effective expansion portion is the same as the outer diameter of the maximum outer diameter portion of the distal end side expansion portion and the outer diameter of the maximum outer diameter portion of the proximal end expansion portion or A balloon catheter that is deformed to have the same diameter or more.
  2.  前記先端側拡張部および前記基端側拡張部は、前記規定拡張圧に達した以降の拡張圧の増加に伴う膨張率が前記拡張有効部の膨張率よりも相対的に小さくなることを特徴とする請求項1に記載のバルーンカテーテル。 The distal end side expansion portion and the proximal end side expansion portion are characterized in that an expansion coefficient associated with an increase in expansion pressure after reaching the specified expansion pressure is relatively smaller than an expansion coefficient of the expansion effective section. The balloon catheter according to claim 1.
  3.  前記先端側拡張部および前記基端側拡張部のコンプライアント特性は、材料の材質による調整、前記バルーンを構成する管状部材を金型内で二軸延伸ブロー成型をする際の拡張倍率の調整、および拡張変形を抑制する抑制具による調整からなる群のいずれか1つによって調整されていることを特徴とする請求項2に記載のバルーンカテーテル。 The compliant characteristics of the distal end side expanded portion and the proximal end side expanded portion are adjusted depending on the material, adjustment of the expansion ratio when the tubular member constituting the balloon is biaxially stretch blow molded in a mold, The balloon catheter according to claim 2, wherein the balloon catheter is adjusted by any one of a group consisting of adjustments by a suppressor that suppresses expansion deformation.
  4.  前記先端側拡張部の最大外径部および前記基端側拡張部の最大外径部の位置を示す造影マーカーをさらに有する請求項1~3のいずれか1項に記載のバルーンカテーテル。 The balloon catheter according to any one of claims 1 to 3, further comprising a contrast marker indicating a position of a maximum outer diameter portion of the distal end side expansion portion and a maximum outer diameter portion of the proximal end expansion portion.
  5.  請求項1~4のいずれか1項に記載の前記バルーンを製造する方法であって、
     前記バルーンを成形するためのキャビティを有する金型にチューブ状素材を配置する工程と、
     前記金型内の前記チューブ状素材を加熱しながら、前記チューブ状素材に内圧と延伸力を付与して膨張させることにより前記バルーンを成形する工程と、を有するバルーンの製造方法。
    A method for producing the balloon according to any one of claims 1 to 4,
    Arranging a tubular material in a mold having a cavity for molding the balloon;
    A step of forming the balloon by applying an internal pressure and a stretching force to the tube-shaped material and expanding the tube-shaped material while heating the tube-shaped material in the mold.
PCT/JP2015/051727 2014-03-27 2015-01-22 Balloon catheter and method for manufacturing balloon WO2015146259A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-067201 2014-03-27
JP2014067201A JP2017093472A (en) 2014-03-27 2014-03-27 Balloon catheter and manufacturing method of baloon

Publications (1)

Publication Number Publication Date
WO2015146259A1 true WO2015146259A1 (en) 2015-10-01

Family

ID=54194801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051727 WO2015146259A1 (en) 2014-03-27 2015-01-22 Balloon catheter and method for manufacturing balloon

Country Status (2)

Country Link
JP (1) JP2017093472A (en)
WO (1) WO2015146259A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017013933A1 (en) * 2015-07-22 2017-01-26 オリンパス株式会社 Endoscope treatment tool
JP6211241B1 (en) * 2016-07-06 2017-10-11 オリンパス株式会社 Endoscopic treatment tool
JP2020031933A (en) * 2018-08-30 2020-03-05 国立大学法人山口大学 Balloon catheter and method of application for the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352199A (en) * 1993-05-28 1994-10-04 Numed, Inc. Balloon catheter
JP2000509304A (en) * 1996-05-02 2000-07-25 カーデイオヴァスキュラー ダイナミクス インコーポレーテッド Localized balloon
JP2002539902A (en) * 1999-03-31 2002-11-26 アドヴァンスト カーディオヴァスキュラー システムズ インコーポレーテッド Balloon catheter and stent deployment catheter system
JP2004520880A (en) * 2000-12-18 2004-07-15 ボストン サイエンティフィック リミテッド Rapid exchange catheter sheath for medical device placement and method of use
US20050049671A1 (en) * 2001-01-04 2005-03-03 Lixiao Wang Combined shaped balloon and stent protector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352199A (en) * 1993-05-28 1994-10-04 Numed, Inc. Balloon catheter
JP2000509304A (en) * 1996-05-02 2000-07-25 カーデイオヴァスキュラー ダイナミクス インコーポレーテッド Localized balloon
JP2002539902A (en) * 1999-03-31 2002-11-26 アドヴァンスト カーディオヴァスキュラー システムズ インコーポレーテッド Balloon catheter and stent deployment catheter system
JP2004520880A (en) * 2000-12-18 2004-07-15 ボストン サイエンティフィック リミテッド Rapid exchange catheter sheath for medical device placement and method of use
US20050049671A1 (en) * 2001-01-04 2005-03-03 Lixiao Wang Combined shaped balloon and stent protector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017013933A1 (en) * 2015-07-22 2017-01-26 オリンパス株式会社 Endoscope treatment tool
US10561828B2 (en) 2015-07-22 2020-02-18 Olympus Corporation Treatment tool for endoscope
JP6211241B1 (en) * 2016-07-06 2017-10-11 オリンパス株式会社 Endoscopic treatment tool
WO2018008104A1 (en) * 2016-07-06 2018-01-11 オリンパス株式会社 Treatment tool for endoscope
CN109414257A (en) * 2016-07-06 2019-03-01 奥林巴斯株式会社 Treatment instrument for endoscope
EP3482706A4 (en) * 2016-07-06 2020-02-26 Olympus Corporation Treatment tool for endoscope
JP2020031933A (en) * 2018-08-30 2020-03-05 国立大学法人山口大学 Balloon catheter and method of application for the same
JP7097571B2 (en) 2018-08-30 2022-07-08 国立大学法人山口大学 Balloon catheter

Also Published As

Publication number Publication date
JP2017093472A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US7226472B2 (en) Catheter balloon with advantageous cone design
EP2895226B1 (en) Method of manufacturing a soft tip balloon catheter
US6527741B1 (en) Angioplasty catheter system with adjustable balloon length
US9555224B2 (en) Reduced material tip for catheter and method of forming same
JP2009542363A (en) Balloon catheter shaft having high strength and flexibility and manufacturing method thereof
WO2014162842A1 (en) Balloon catheter, and production method for balloon catheter
US20090254113A1 (en) Dilatation balloon with ridges and methods
US20080255512A1 (en) Balloons Having Improved Strength and Methods for Making Same
JP6259560B2 (en) Balloon for balloon catheter
WO2015146259A1 (en) Balloon catheter and method for manufacturing balloon
US20090234282A1 (en) Outer Catheter Shaft to Balloon Joint
JP5026278B2 (en) Medical compound balloon
US6712833B1 (en) Method of making a catheter balloon
JP6078371B2 (en) Method for manufacturing balloon for balloon catheter
WO2016158584A1 (en) Dilation catheter and method for manufacturing dilation catheter
JP7432360B2 (en) Balloon catheter manufacturing method and mold
US20080255511A1 (en) Catheter Balloon Having Improved Flexibility and Methods for Making Same
JP6134154B2 (en) Balloon for balloon catheter
JP2003275319A (en) Catheter balloon and balloon expansion catheter
JP2009291501A (en) Balloon for balloon catheter
JP2015077156A (en) In-vivo indwelling object delivery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15770204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP