WO2015141408A1 - Medical instrument - Google Patents

Medical instrument Download PDF

Info

Publication number
WO2015141408A1
WO2015141408A1 PCT/JP2015/055219 JP2015055219W WO2015141408A1 WO 2015141408 A1 WO2015141408 A1 WO 2015141408A1 JP 2015055219 W JP2015055219 W JP 2015055219W WO 2015141408 A1 WO2015141408 A1 WO 2015141408A1
Authority
WO
WIPO (PCT)
Prior art keywords
lumen
stent
outer tube
refrigerant
medical device
Prior art date
Application number
PCT/JP2015/055219
Other languages
French (fr)
Japanese (ja)
Inventor
賢二 大山
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2016508625A priority Critical patent/JPWO2015141408A1/en
Publication of WO2015141408A1 publication Critical patent/WO2015141408A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod

Definitions

  • the present invention relates to a medical instrument.
  • a cylindrical stent is placed in the blood vessel to widen the stenosis (occlusion), which is the target site, and a treatment method for ensuring blood flow is known. It has been.
  • a stent delivery system is used as a medical instrument that transports and places a stent to a target site (see, for example, Patent Document 1).
  • the medical device described in Patent Document 1 includes a balloon catheter having a balloon that can be inflated and deflated at the tip.
  • the stent In order to transport the stent to the target site, first, the stent is mounted on the outside of the deflated balloon, and the stent is transported to the target site as it is. Thereafter, the balloon is inflated. As a result, the stent is expanded and plastically deformed to maintain the expanded state.
  • the stent of Patent Document 1 is made of a shape memory alloy that is restored to an expanded shape by heating at a temperature higher than the body temperature. Therefore, the medical instrument described in Patent Document 1 includes a heating element that heats the stent.
  • the heating element is composed of a coil that generates heat when energized.
  • the said stent can be heated with a heating element. As a result, the stent is brought into close contact with the blood vessel wall, and is thus reliably placed at the target site.
  • the medical device described in Patent Document 1 has a complicated structure such as a wiring for energizing the heating element in addition to the heating element, and this complexity hinders a quick procedure. There is a risk of becoming.
  • there is an optimum temperature for heating the stent when the temperature is lower than this temperature, the shape of the stent is not restored, that is, the expansion is insufficient, and as a result, the degree of adhesion with the blood vessel wall is insufficient. Then, there is a risk that the target part will deviate. On the other hand, if the temperature is higher than the optimum temperature, there is a risk that the blood vessel wall may be burned.
  • An object of the present invention is to provide a medical instrument that can perform a placement operation quickly, reliably, and safely when placing a stent in a blood vessel.
  • a medical device for placing a stent to be used in a blood vessel in the blood vessel A medical instrument comprising: an outer tube having a first lumen that houses the stent in a contracted state and a second lumen through which a coolant that cools the stent in the contracted state passes.
  • the stent has a cylindrical shape and is composed of a superelastic metal that expands due to the elastic force of the stent itself.
  • the first lumen has a distal end opening that opens at the distal end of the outer tube and is released while the stent in the contracted state is expanded; Before releasing the stent through the tip opening, the refrigerant is supplied to the second lumen, and when releasing the stent, the refrigerant is discharged from the second lumen.
  • the first lumen has a distal end opening that opens to the distal end of the outer tube and is released while the contracted stent is expanded, Before releasing the stent through the tip opening, the coolant has not been supplied to the second lumen, and when the stent is released, the refrigerant is discharged while the second lumen is released.
  • the outer tube communicates with the second lumen, and supplies the refrigerant to the second lumen.
  • the outer tube communicates with the second lumen and is supplied to the second lumen.
  • the medical device according to any one of (1) to (4), further including a discharge unit that discharges the refrigerant.
  • a heating mechanism for heating and expanding the cooled stent can be omitted, and thus the structure of the medical device can be simplified. Thereby, operation of a medical instrument becomes easy and the indwelling operation at the time of indwelling a stent in a blood vessel can be performed rapidly.
  • the body temperature can be used for heating the cooled stent, the stent can be surely heated above the transformation point of the superelastic metal. This ensures that the stent is expanded and the stent placement operation is ensured. In addition, it is possible to reliably prevent a risk of burns on the blood vessel wall, and the safety during the stent placement operation is high.
  • FIG. 1 is a longitudinal cross-sectional view sequentially illustrating an operation process of the medical instrument (first embodiment) of the present invention.
  • FIG. 2 is a longitudinal cross-sectional view sequentially illustrating an operation process of the medical instrument (first embodiment) of the present invention.
  • FIG. 3 is a longitudinal cross-sectional view sequentially illustrating the operation process of the medical instrument (first embodiment) of the present invention.
  • 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is a longitudinal sectional view showing a second embodiment of the medical instrument of the present invention.
  • FIG. 6 is a perspective view showing a third embodiment of the medical instrument of the present invention.
  • FIGS. 1 to 3 are longitudinal sectional views sequentially showing the operation process of the medical device (first embodiment) of the present invention.
  • 4 is a cross-sectional view taken along line AA in FIG.
  • the right side in FIGS. 1 to 3 (the same applies to FIGS. 5 and 6) is referred to as “base end” and the left side is referred to as “tip”.
  • the thickness direction of the guide wire is schematically shown exaggerated for easy understanding. The direction ratio is different from the actual one.
  • the medical device 1 shown in FIGS. 1 to 3 is a stent delivery system in which a stent 100 is arranged in a peripheral region such as a blood vessel of a lower limb.
  • the medical instrument 1 includes an instrument body 10 having a double tube structure having an outer tube 2 and an inner tube 3, an operation unit 4 for relatively moving the outer tube 2 and the inner tube 3, and an operation unit. 4 and a hub 5 that supports 4.
  • the stent 100 When a stenosis part or a blockage part (hereinafter referred to as “stenosis part”) occurs in the blood vessel wall, the stent 100 can be placed in the blood vessel to expand the stenosis part as a target site from the inside. Thereby, the blood flow in the blood vessel is ensured.
  • stenosis part a stenosis part or a blockage part
  • the stent 100 is a combination of a large number of linear bodies 101 in a stitch shape, and the overall shape forms a cylindrical shape.
  • the constituent material of the linear body 101 is a superelastic alloy that exhibits superelasticity in vivo (at least around 37 ° C.).
  • Superelastic alloys include any shape of the stress-strain curve caused by tension, including those where the transformation point (Af point) can be measured remarkably and those that cannot be measured. This includes everything that almost returns to its original shape.
  • the preferred composition of the superelastic alloy is a Ni—Ti alloy such as a Ni—Ti alloy of 49 to 52 atomic% Ni, a Cu—Zn alloy of 38.5 to 41.5 wt% Zn, 1 to 10 wt% X Cu—Zn—X alloy (X is at least one of Be, Si, Sn, Al, and Ga), Ni-Al alloy of 36 to 38 atomic% Al, and the like.
  • X is at least one of Be, Si, Sn, Al, and Ga
  • Ni-Al alloy of 36 to 38 atomic% Al, and the like.
  • the Ni—Ti alloy is particularly preferable.
  • the stent 100 expands to return to its original shape by the elastic force of the stent 100 itself, that is, an expansion force (Radial ⁇ Force) RF. Can be spread reliably from the inside.
  • the expansion force RF is suppressed under a temperature lower than the transformation point.
  • the transformation point is preferably lower than the in vivo temperature, for example, about 18 to 28 ° C.
  • the medical instrument 1 is used for arranging such a stent 100 in a blood vessel.
  • the medical instrument 1 includes the instrument main body 10 having the outer tube 2 and the inner tube 3, the operation unit 4, and the hub 5.
  • the configuration of each unit will be described.
  • the outer tube 2 has a first lumen 21, a second lumen 22, and a third lumen 23, which are concentrically from the inside toward the outside. It is an arranged flexible tube.
  • the total length of the outer tube 2 is not particularly limited, and is preferably 500 to 2000 mm, and more preferably 800 to 1500 mm, for example, when used for the treatment of a peripheral region.
  • the constituent material of the outer tube 2 is not particularly limited.
  • polyolefin such as polypropylene, polyethylene, and ethylene-vinyl acetate copolymer
  • polyester such as polyamide, polyethylene terephthalate, and polybutylene terephthalate
  • polyurethane polyvinyl chloride
  • polystyrene polystyrene.
  • fluorine resin such as ethylene-tetrafluoroethylene copolymer
  • various flexible resins such as polyimide, polyamide elastomer, polyester elastomer, polyurethane elastomer, polystyrene elastomer, fluorine elastomer, silicone rubber, latex rubber, etc.
  • elastomers, or a combination of two or more of them can be used.
  • the first lumen 21 is a space for storing the stent 100 in a contracted state in which the stent 100 is contracted.
  • the first lumen 21 has a distal end opening 211 opened at the distal end (distal end) of the outer tube 2 and a proximal end opening 212 opened at the proximal end (proximal end) of the outer tube 2. . Then, the stent 100 in the contracted state (stored state) is released while being expanded (see FIG. 3).
  • the second lumen 22 is a lumen that is disposed outside the first lumen 21 and through which the refrigerant C passes.
  • the stored stent 100 stored in the first lumen 21 can be cooled.
  • the cooling temperature is below the transformation point of the superelastic metal.
  • the transformation point is about 18 to 28 ° C., it is preferably ⁇ 50 to 18 ° C., more preferably 0 to 10 ° C. .
  • the expansion force RF of the stent 100 can be reliably reduced, and therefore, the operation for releasing the stent 100 from the distal end opening 211 can be easily performed as will be described later.
  • coolant C For example, a physiological saline, a contrast agent, etc. are mentioned.
  • the second lumen 22 has a distal end closed side portion 221 whose distal end is closed by the distal end wall portion 24 of the outer tube 2 and a proximal end opening portion 222 whose proximal end is opened.
  • a port 25 that communicates with the second lumen 22 through the proximal end opening 222 is provided.
  • the port 25 functions as a supply unit (see FIG. 2) for supplying the refrigerant C to the second lumen 22, and as a discharge unit (see FIG. 3) for discharging the refrigerant C supplied to the second lumen 22.
  • This is a supply / discharge port with functions. That is, the port 25 is a portion where the supply unit and the discharge unit are combined. Thereby, compared with the case where a supply part and a discharge part are each provided separately, the structure of the medical instrument 1 can be made simple.
  • the port 25 protrudes in a tubular shape from the operation unit 4 and is connected to the pump 12 via the pipe 11.
  • a valve 13 is provided in the middle of the pipe 11.
  • the pump 12 is connected to the tank 15 via a pipe 14.
  • the tank 15 is filled with a sufficiently cooled refrigerant C.
  • the refrigerant C sequentially passes through the pipe 14, the pump 12, the pipe 11, and the port 25, The second lumen 22 is reached. Thereby, the refrigerant C is supplied to the second lumen 22.
  • the pump 12 in the direction opposite to the above (reversely rotating), as shown in FIG.
  • the refrigerant C passes through the port 25, the pipe 11, the pump 12, and the pipe 14 in this order, and the tank 15 is reached. Thereby, the refrigerant C is discharged from the second lumen 22. Note that the valve 13 is closed while the pump 12 is stopped.
  • the third lumen 23 is a lumen that is disposed outside the second lumen 22 and exhibits a heat insulating function that blocks heat from the outside of the outer tube 2. Thereby, it is possible to prevent the refrigerant C passing through the second lumen 22 from being heated and heated and unintentionally increasing its temperature, and thus the stent 100 can be sufficiently and reliably cooled. it can.
  • the third lumen 23 can be filled with gas G. Thereby, as shown in FIG. 2, the third lumen 23 expands, and the heat insulating function in the third lumen 23 is reliably exhibited.
  • gas G For example, air, a carbon dioxide, nitrogen etc. are mentioned.
  • a heat insulating material such as a porous material may be filled.
  • the third lumen 23 has a distal end closed side portion 231 whose distal end is closed by the distal end wall portion 24 of the outer tube 2 and a proximal end opening portion 232 whose proximal end is opened. is doing.
  • a port 26 that communicates with the third lumen 23 via the proximal end opening 232 is provided.
  • the port 26 functions as a supply unit (see FIG. 2) for supplying the gas G to the third lumen 23 and as a discharge unit (see FIG. 3) for discharging the gas G supplied to the third lumen 23.
  • This is a supply / discharge port with functions. That is, the port 26 is a portion where the supply unit and the discharge unit are combined.
  • the port 26 protrudes in a tubular shape from the operation unit 4 in the same direction as the port 26, and is connected to the pump 17 via the pipe 16.
  • a valve 18 is provided in the middle of the pipe 16. Then, by opening the valve 18 and operating the pump 17 (forward rotation), as shown in FIG. 2, the gas G is sucked from the pump 17 and sequentially passes through the pipe 16 and the port 26. The third lumen 23 is reached. Thereby, the gas G is supplied to the third lumen 23. Further, by operating the pump 17 in the opposite direction (reverse rotation), the gas G passes through the port 26 and the pipe 16 in this order and reaches the pump 17 as shown in FIG. As a result, the gas G is discharged from the third lumen 23. Note that the valve 18 is closed while the pump 17 is stopped.
  • the first lumen 21, the second lumen 22, and the third lumen 23 are arranged concentrically in order from the inside to the outside of the outer tube 2.
  • the stent 100 in the first lumen 21 can be reliably cooled by the refrigerant C in the second lumen 22 from any position around the circumference.
  • the refrigerant C can be surely insulated from the gas G in the third lumen 23 from any position around the circumference.
  • the operation unit 4 is connected and fixed to the base end of the outer tube 2. As shown in FIG. 3, the operation part 4 moves the outer tube 2 with respect to the inner tube 3 along its longitudinal direction.
  • the operation unit 4 has a lever 41 protruding in a direction orthogonal to the moving direction of the outer tube 2.
  • a finger can be put on the lever 41, and in this state, the lever 41 can be pulled toward the proximal end or pushed toward the distal end.
  • pipe 2 can move toward a base end direction independently of the inner tube
  • the hub 5 supports the operation unit 4 so as to be movable.
  • the hub 5 has a box shape, for example, and a lever 41 protrudes from the outer surface thereof.
  • the hub 5 can be gripped with one hand and the lever 41 can be operated with the other hand.
  • the constituent material of the operation unit 4 and the hub 5 is not particularly limited, and for example, various resin materials and various metal materials can be used.
  • the inner tube 3 is inserted through the first lumen 21 of the outer tube 2.
  • the base end portion of the inner tube 3 is fixed to the hub 5.
  • the inner tube 3 has a lumen 31 through which the guide wire 200 is inserted.
  • the lumen 31 has a distal end opening 311 that opens to the distal end (distal end) of the inner tube 3 and a proximal end opening 312 that opens to the proximal end (proximal end) of the inner tube 3.
  • the guide wire 200 can be inserted into the lumen 31 via the proximal end opening 312 and protrude from the distal end opening 311.
  • the total length of the inner tube 3 is preferably longer than the total length of the outer tube 2.
  • the distal end portion 32 of the inner tube 3 can be projected from the distal end opening portion 211 of the first lumen 21 of the outer tube 2, so that the guide wire 200 projecting from the inner tube 3 guides in the blood vessel. Can be performed reliably.
  • an enlarged diameter portion 33 having an enlarged outer diameter is provided.
  • the enlarged-diameter portion 33 has a contrast property and is used to confirm the position of the distal end portion of the instrument main body portion 10 in the blood vessel under X-ray contrast.
  • a method in which a particulate X-ray opaque material is contained or the X-ray opaque material itself is used.
  • the radiopaque material for example, a noble metal such as gold, platinum, tungsten, or an alloy containing these (eg, platinum-iridium alloy) can be used.
  • the enlarged diameter portion 33 is disposed in the immediate vicinity of the proximal end side of the stent 100 housed in the first lumen 21 of the outer tube 2.
  • the stent 100 can be restricted from moving in the same direction together with the outer tube 2.
  • the diameter-enlarged portion 33 also functions as a restricting portion that restricts the movement of the stent 100 in the proximal direction.
  • the constituent material of the inner tube 3 is not particularly limited, and for example, those listed as the constituent material of the outer tube 2 can be used. In this case, the constituent material of the inner tube 3 and the constituent material of the outer tube 2 may be the same or different.
  • an initial medical device 1 is prepared at room temperature.
  • the stent 100 is stored and attached in advance in the first lumen 21 of the outer tube 2 in a contracted state.
  • the stent 100 is expanded to return to its original shape with its own expansion force RF1.
  • the outer peripheral portion 102 of the stent 100 is in close contact with the inner peripheral portion 213 that defines the first lumen 21, so that the stent 100 is reliably prevented from being detached from the first lumen 21.
  • the guide wire 200 is inserted into the inner tube 3 in this state, and the distal end opening 211 of the medical instrument 1 is inserted to the target site in the blood vessel while the guide wire 200 is advanced.
  • the refrigerant C is supplied into the second lumen 22 of the outer tube 2 and the gas G is supplied into the third lumen 23.
  • the 2nd lumen 22 and the 3rd lumen 23 each expand
  • the inner peripheral portion 213 of the first lumen 21 is reduced in diameter. Thereby, the stent 100 is pressed from the inner peripheral part 213 and further contracts compared to the initial state.
  • the stent 100 is sufficiently cooled by the refrigerant C in the second lumen 22 at a temperature lower than the transformation point.
  • the stent 100 is made of a superelastic alloy, and the expansion force RF2 is suppressed at a temperature lower than the transformation point. Therefore, the expansion force RF2 during cooling is smaller than the expansion force RF1. .
  • the degree of adhesion between the outer peripheral portion 102 of the stent 100 and the inner peripheral portion 213 of the first lumen 21 is reduced, and the stent 100 is easily detached from the first lumen 21.
  • the refrigerant C can be insulated by the gas G supplied into the third lumen 23, and therefore, the temperature rise of the refrigerant C due to body temperature can be prevented. Thereby, the stent 100 can be reliably cooled with the refrigerant C. On the other hand, it is possible to prevent the blood vessel wall from being cooled by the refrigerant C by the gas G in the third lumen 23.
  • the outer diameter of the outer tube 2 increases as a whole. Therefore, the part which the outer tube
  • the stent 100 is gradually released from the distal end opening 211 of the outer tube 2.
  • the protruding portion 103 protruding from the distal end opening portion 211 of the outer tube 2 of the stent 100 is exposed to blood and is heated above the transformation point. Thereby, the protrusion 103 is expanded and expanded with the expansion force RF1.
  • the operation at the operation unit 4 is performed until the entire stent 100 is released into the blood vessel. Thereby, the deployed stent 100 can be placed in the blood vessel.
  • the refrigerant C is recovered from the second lumen 22 while releasing the stent 100. Accordingly, excessive cooling of the stent 100 is prevented, and thus the stent 100 is heated more rapidly than the transformation point after protruding from the distal end opening 211.
  • the refrigerant C is supplied again into the first lumen 21 to expand the stent 100. Can be suppressed.
  • the refrigerant C is recovered and the gas G is recovered from the third lumen 23.
  • the refrigerant C is supplied to the second lumen 22 before the stent 100 is released through the distal end opening 211 of the first lumen 21, and the expansion force RF of the stent 100 is increased. It can be reliably lowered. Thereby, when the operation of releasing the stent 100 is performed, the sliding resistance between the outer peripheral portion 102 of the stent 100 and the inner peripheral portion 213 of the first lumen 21 is sufficiently reduced, and thus the operation is facilitated. And can be done quickly. As a result, the placement operation when placing the stent 100 in the blood vessel can be performed quickly.
  • body temperature is used for heating the stent 100 without heating it with a separately provided heating mechanism, for example.
  • the heating mechanism can be omitted, and thus the device configuration of the medical instrument 1 is simplified, and the danger of causing burns to the blood vessel wall is reliably prevented, and safety is improved. high.
  • the stent 100 is reliably heated above the transformation point by the body temperature, an expansion force RF that can be deployed without excess or deficiency is obtained. This ensures that the stent 100 is placed in the blood vessel.
  • the stent 100 presses the inner tube 3 in the proximal direction through the enlarged diameter portion 33. Due to this pressing, the inner tube 3 is partially bent, that is, undulated, and a phenomenon called “shortening” occurs in which the stent 100 is also retracted from the target site toward the proximal end.
  • the sliding resistance is sufficiently reduced, the inner tube 3 is prevented from receiving a pressing force of a level of undulation. Thereby, shortening can be prevented.
  • FIG. 5 is a longitudinal sectional view showing a second embodiment of the medical instrument of the present invention.
  • This embodiment is the same as the first embodiment except that the operation method of the medical instrument is different.
  • the refrigerant C is not yet supplied to the second lumen 22, and the gas G is also supplied to the third lumen 23. Is not supplied.
  • the refrigerant C is supplied to the second lumen 22 and the gas G is supplied to the third lumen 23 while releasing the stent 100.
  • the stent 100 is heated more rapidly than the transformation point after protruding from the distal end opening 211.
  • the operation for releasing the stent 100 and the operation for supplying the refrigerant C are performed at the same time, the procedure using the medical instrument 1 can be performed more quickly.
  • FIG. 6 is a perspective view showing a third embodiment of the medical instrument of the present invention.
  • This embodiment is the same as the first embodiment except that the shape of the second lumen is different.
  • the second lumen 22 has a spiral portion 223 having a spiral shape at the distal end portion thereof.
  • the spiral portion 223 is disposed concentrically between the first lumen 21 and the third lumen 23, and the stent 100 in the first lumen 21 is viewed from the side of the instrument body 10. overlapping. Thereby, the stent 100 can be cooled reliably.
  • the proximal end side of the spiral portion 223 communicates with the port 25, and the distal end side communicates with a port 27 provided separately from the port 25.
  • the port 27 protrudes in a tubular shape from the operation unit 4 like the port 25 and is connected to the tank 15 via the pipe 19. Then, the refrigerant C is supplied to the spiral portion 223 through the port 25 and then discharged through the port 27.
  • the port 25 is a supply port that functions as a supply unit
  • the port 27 is a discharge port that functions as a discharge unit.
  • the valve 13 is opened and the refrigerant C is circulated to cool the stent 100. After the stent 100 is released, the valve 13 is closed and the circulation of the refrigerant C is stopped.
  • the medical instrument 1 may be configured so that the valve 13 can be in an open state and a closed state in conjunction with the movement operation of the outer tube 2.
  • the third lumen 23 may be configured so that the gas G circulates similarly to the refrigerant C.
  • each part which comprises a medical instrument is a thing of arbitrary structures which can exhibit the same function Can be substituted. Moreover, arbitrary components may be added.
  • the medical instrument of the present invention may be a combination of any two or more configurations (features) of the above embodiments.
  • the second lumen is formed in a spiral shape so that the refrigerant reciprocates.
  • the second lumen simply has a “U” shape, so that the refrigerant is It may be configured to reciprocate.
  • a wall portion is provided to divide the second lumen along the circumferential direction of the outer tube into two lumens in the circumferential direction on the base end side from the distal end portion thereof, whereby the refrigerant reciprocates. Also good.
  • the second lumen may meander, and the refrigerant may reciprocate a plurality of times around the stent.
  • the medical device of the present invention is a medical device for placing a stent used by being placed in a blood vessel in the blood vessel, the first lumen housing the stent in a contracted state, and cooling the stent in the contracted state. And an outer tube having a second lumen through which the refrigerant passes. Therefore, when placing a stent in a blood vessel, the placement operation can be performed quickly, reliably and safely. Therefore, the medical device of the present invention has industrial applicability.

Abstract

A medical instrument to be used for delivering an indwelling vascular stent to a blood vessel. The medical instrument is provided with an outer tube, said outer tube comprising a first lumen for housing therein the stent in a contracted state and a second lumen for passing therethrough a refrigerant for cooling the stent in the contracted state. The stent is in a tubular shape and configured of a super-elastic metal which enables the expansion of the stent due to the elastic force of the stent per se. The medical instrument can lower the expansion force of the stent by cooling down the stent with the refrigerant to the transformation temperature of the super-elastic metal or lower.

Description

医療器具Medical instruments
 本発明は、医療器具に関する。 The present invention relates to a medical instrument.
 血管壁に狭窄部や閉塞部が生じた場合、筒状をなすステントを血管に留置して、目的部位である狭窄部(閉塞部)を広げ、これにより、血流を確保する治療方法が知られている。この治療方法には、ステントを目的部位まで搬送して、留置する医療器具としてのステントデリバリシステムが用いられる(例えば、特許文献1参照)。 When a stenosis or occlusion occurs in the blood vessel wall, a cylindrical stent is placed in the blood vessel to widen the stenosis (occlusion), which is the target site, and a treatment method for ensuring blood flow is known. It has been. In this treatment method, a stent delivery system is used as a medical instrument that transports and places a stent to a target site (see, for example, Patent Document 1).
 特許文献1に記載の医療器具は、膨張・収縮可能なバルーンを先端部に有するバルーンカテーテルを備えている。そして、ステントを目的部位まで搬送するには、まず、収縮状態にあるバルーンの外側にステントを装着して、そのまま当該ステントを目的部位まで搬送する。その後、バルーンを膨張させる。これにより、ステントが拡張されて、その拡張状態を維持するよう塑性変形する。 The medical device described in Patent Document 1 includes a balloon catheter having a balloon that can be inflated and deflated at the tip. In order to transport the stent to the target site, first, the stent is mounted on the outside of the deflated balloon, and the stent is transported to the target site as it is. Thereafter, the balloon is inflated. As a result, the stent is expanded and plastically deformed to maintain the expanded state.
 また、特許文献1のステントは、体温よりも高い温度で加熱することにより、拡張した形状に復元する形状記憶合金で構成されている。そのため、特許文献1に記載の医療器具は、ステントを加熱する加熱エレメントを備えている。加熱エレメントは、通電により発熱するコイルで構成されている。そして、この医療器具では、バルーンの膨張によりステントが拡張した後に、当該ステントを加熱エレメントで加熱することができる。これにより、ステントは、血管壁に密着した状態となり、よって、目的部位に確実に留置される。 Also, the stent of Patent Document 1 is made of a shape memory alloy that is restored to an expanded shape by heating at a temperature higher than the body temperature. Therefore, the medical instrument described in Patent Document 1 includes a heating element that heats the stent. The heating element is composed of a coil that generates heat when energized. And in this medical device, after a stent expands by expansion | swelling of a balloon, the said stent can be heated with a heating element. As a result, the stent is brought into close contact with the blood vessel wall, and is thus reliably placed at the target site.
 しかしながら、特許文献1に記載の医療器具は、加熱エレメントの他に、当該加熱エレメントを通電させるための配線が引き回される等、構造が複雑なものとなり、この複雑さが迅速な手技の妨げとなってしまうおそれが十分にある。また、ステントを加熱する温度には、最適な温度があるが、この温度よりも低い場合には、ステントの形状復元、すなわち、展開が不十分となり、結果、血管壁との密着の程度が不足して、目的部位からズレてしまうおそれがある。一方、最適な温度よりも高い場合には、血管壁に火傷を負わせてしまうおそれがある。 However, the medical device described in Patent Document 1 has a complicated structure such as a wiring for energizing the heating element in addition to the heating element, and this complexity hinders a quick procedure. There is a risk of becoming. In addition, there is an optimum temperature for heating the stent. However, when the temperature is lower than this temperature, the shape of the stent is not restored, that is, the expansion is insufficient, and as a result, the degree of adhesion with the blood vessel wall is insufficient. Then, there is a risk that the target part will deviate. On the other hand, if the temperature is higher than the optimum temperature, there is a risk that the blood vessel wall may be burned.
特表2007-503250号公報Special table 2007-503250 gazette
 本発明の目的は、血管内にステントを留置する際、その留置操作を迅速かつ確実に、また安全に行なうことができる医療器具を提供することにある。 An object of the present invention is to provide a medical instrument that can perform a placement operation quickly, reliably, and safely when placing a stent in a blood vessel.
 このような目的は、下記(1)~(11)の本発明により達成される。
 (1) 血管内で留置して用いられるステントを前記血管に配する医療器具であって、
 前記ステントを収縮状態で収納する第1のルーメンと、前記収縮状態の前記ステントを冷却する冷媒が通過する第2のルーメンとを有する外管を備えることを特徴とする医療器具。
Such an object is achieved by the present inventions (1) to (11) below.
(1) A medical device for placing a stent to be used in a blood vessel in the blood vessel,
A medical instrument comprising: an outer tube having a first lumen that houses the stent in a contracted state and a second lumen through which a coolant that cools the stent in the contracted state passes.
 (2) 前記ステントは、筒状をなし、該ステント自身の弾性力により拡張する超弾性金属で構成されたものであり、
 前記冷媒で前記ステントを前記超弾性金属の変態点以下に冷却することにより、前記ステントの拡張力を低下させる上記(1)に記載の医療器具。
(2) The stent has a cylindrical shape and is composed of a superelastic metal that expands due to the elastic force of the stent itself.
The medical device according to (1), wherein the stent is cooled below the transformation point of the superelastic metal with the refrigerant to reduce the expansion force of the stent.
 (3) 前記第1のルーメンは、前記外管の先端部に開口し、前記収縮状態の前記ステントが拡張しつつ放出される先端開口部を有し、
 前記ステントを前記先端開口部を介して放出する以前に、前記第2のルーメンに前記冷媒を供給し、前記ステントを放出する際に、その放出を行ないつつ、前記第2のルーメンから前記冷媒を回収するよう使用される上記(1)または(2)に記載の医療器具。
(3) The first lumen has a distal end opening that opens at the distal end of the outer tube and is released while the stent in the contracted state is expanded;
Before releasing the stent through the tip opening, the refrigerant is supplied to the second lumen, and when releasing the stent, the refrigerant is discharged from the second lumen. The medical device according to (1) or (2), which is used for recovery.
 (4) 前記第1のルーメンは、前記外管の先端部に開口し、前記収縮状態の前記ステントが拡張しつつ放出される先端開口部を有し、
 前記ステントを前記先端開口部を介して放出する以前には、前記第2のルーメンに前記冷媒が未だ供給されておらず、前記ステントを放出する際に、その放出を行ないつつ、前記第2のルーメンに前記冷媒を供給するよう使用される上記(1)または(2)に記載の医療器具。
(4) The first lumen has a distal end opening that opens to the distal end of the outer tube and is released while the contracted stent is expanded,
Before releasing the stent through the tip opening, the coolant has not been supplied to the second lumen, and when the stent is released, the refrigerant is discharged while the second lumen is released. The medical device according to (1) or (2), which is used to supply the refrigerant to a lumen.
 (5) 前記外管は、前記第2のルーメンに連通し、前記冷媒を前記第2のルーメンに供給する供給部と、前記第2のルーメンに連通し、前記第2のルーメンに供給された前記冷媒を排出する排出部とを有する上記(1)ないし(4)のいずれかに記載の医療器具。 (5) The outer tube communicates with the second lumen, and supplies the refrigerant to the second lumen. The outer tube communicates with the second lumen and is supplied to the second lumen. The medical device according to any one of (1) to (4), further including a discharge unit that discharges the refrigerant.
 (6) 前記供給部と前記排出部とは、それぞれ個別に設けられて用いられているか、または、兼用されている上記(5)に記載の医療器具。 (6) The medical device according to (5), wherein the supply unit and the discharge unit are individually provided and used, or are used in common.
 (7) 前記外管は、該外管の外側からの熱を遮断する断熱機能を発揮する第3のルーメンを有する上記(1)ないし(6)のいずれかに記載の医療器具。
 (8) 前記第3のルーメンには、ガスが充填される上記(7)に記載の医療器具。
(7) The medical instrument according to any one of (1) to (6), wherein the outer tube has a third lumen that exhibits a heat insulating function to block heat from outside the outer tube.
(8) The medical instrument according to (7), wherein the third lumen is filled with gas.
 (9) 前記第1のルーメンと前記第2のルーメンと前記第3のルーメンとは、前記外管の内側から外側に向かって順に同心的に配置されている部分を有する上記(7)または(8)に記載の医療器具。 (9) The above (7) or (7), wherein the first lumen, the second lumen, and the third lumen have portions arranged concentrically in order from the inside to the outside of the outer tube. The medical instrument as described in 8).
 (10) 前記第1のルーメンを挿通した内管と、
 前記外管をその長手方向に沿って前記内管に対して移動操作する操作部を備える上記(1)ないし(9)のいずれかに記載の医療器具。
(10) an inner tube inserted through the first lumen;
The medical instrument according to any one of (1) to (9), further including an operation unit configured to move the outer tube with respect to the inner tube along a longitudinal direction thereof.
 (11) 前記外管が前記内管に対して移動した際、前記内管は、前記ステントが前記外管とともに移動するのを規制する規制部を有する上記(1)ないし(10)のいずれかに記載の医療器具。 (11) Any of the above (1) to (10), wherein when the outer tube moves relative to the inner tube, the inner tube has a restricting portion that restricts movement of the stent together with the outer tube. Medical device as described in.
 本発明によれば、冷却したステントを加温して拡張させるための加温機構を省略することができ、よって、医療器具の構造を簡単なものとすることができる。これにより、医療器具の操作が容易となり、血管内にステントを留置する際の留置操作を迅速に行なうことができる。 According to the present invention, a heating mechanism for heating and expanding the cooled stent can be omitted, and thus the structure of the medical device can be simplified. Thereby, operation of a medical instrument becomes easy and the indwelling operation at the time of indwelling a stent in a blood vessel can be performed rapidly.
 また、本発明によれば、冷却したステントの加温には体温を用いることができるため、ステントを超弾性金属の変態点以上に確実に加温することができる。これにより、ステントが確実に拡張して、ステントの留置操作が確実なものとなる。また、血管壁に火傷を負わせてしまう等の危険が確実に防止され、ステントの留置操作時の安全性が高い。 Further, according to the present invention, since the body temperature can be used for heating the cooled stent, the stent can be surely heated above the transformation point of the superelastic metal. This ensures that the stent is expanded and the stent placement operation is ensured. In addition, it is possible to reliably prevent a risk of burns on the blood vessel wall, and the safety during the stent placement operation is high.
図1は、本発明の医療器具(第1実施形態)の操作過程を順に示す縦断面図である。FIG. 1 is a longitudinal cross-sectional view sequentially illustrating an operation process of the medical instrument (first embodiment) of the present invention. 図2は、本発明の医療器具(第1実施形態)の操作過程を順に示す縦断面図である。FIG. 2 is a longitudinal cross-sectional view sequentially illustrating an operation process of the medical instrument (first embodiment) of the present invention. 図3は、本発明の医療器具(第1実施形態)の操作過程を順に示す縦断面図である。FIG. 3 is a longitudinal cross-sectional view sequentially illustrating the operation process of the medical instrument (first embodiment) of the present invention. 図4は、図1中のA-A線断面図である。4 is a cross-sectional view taken along line AA in FIG. 図5は、本発明の医療器具の第2実施形態を示す縦断面図である。FIG. 5 is a longitudinal sectional view showing a second embodiment of the medical instrument of the present invention. 図6は、本発明の医療器具の第3実施形態を示す斜視図である。FIG. 6 is a perspective view showing a third embodiment of the medical instrument of the present invention.
 以下、本発明の医療器具を添付図面に示す好適な実施形態に基づいて詳細に説明する。
 <第1実施形態>
 図1~図3は、それぞれ、本発明の医療器具(第1実施形態)の操作過程を順に示す縦断面図である。図4は、図1中のA-A線断面図である。なお、以下では、説明の都合上、図1~図3中(図5、図6についても同様)の右側を「基端」、左側を「先端」と言う。また、図1~図3(図5、図6についても同様)では、理解を容易にするため、ガイドワイヤの太さ方向を誇張して模式的に図示しており、長さ方向と太さ方向の比率は実際とは異なる。
Hereinafter, the medical device of the present invention will be described in detail based on a preferred embodiment shown in the accompanying drawings.
<First Embodiment>
FIGS. 1 to 3 are longitudinal sectional views sequentially showing the operation process of the medical device (first embodiment) of the present invention. 4 is a cross-sectional view taken along line AA in FIG. In the following, for convenience of explanation, the right side in FIGS. 1 to 3 (the same applies to FIGS. 5 and 6) is referred to as “base end” and the left side is referred to as “tip”. Also, in FIGS. 1 to 3 (the same applies to FIGS. 5 and 6), the thickness direction of the guide wire is schematically shown exaggerated for easy understanding. The direction ratio is different from the actual one.
 図1~図3に示す医療器具1は、例えば下肢の血管等のペリフェラル領域にステント100を配するステントデリバリシステムである。この医療器具1は、外管2と内管3とを有する二重管構造をなす器具本体部10と、外管2と内管3とを相対的に移動操作する操作部4と、操作部4を支持するハブ5とを備えている。 The medical device 1 shown in FIGS. 1 to 3 is a stent delivery system in which a stent 100 is arranged in a peripheral region such as a blood vessel of a lower limb. The medical instrument 1 includes an instrument body 10 having a double tube structure having an outer tube 2 and an inner tube 3, an operation unit 4 for relatively moving the outer tube 2 and the inner tube 3, and an operation unit. 4 and a hub 5 that supports 4.
 まず、ステント100について説明する。
 ステント100は、血管壁に狭窄部や閉塞部(以下「狭窄部」を代表する)が生じた場合、血管内に留置されて、目的部位である狭窄部を内側から広げることができる。これにより、血管内での血流が確保される。
First, the stent 100 will be described.
When a stenosis part or a blockage part (hereinafter referred to as “stenosis part”) occurs in the blood vessel wall, the stent 100 can be placed in the blood vessel to expand the stenosis part as a target site from the inside. Thereby, the blood flow in the blood vessel is ensured.
 図1(図2、図3についても同様)に示すように、ステント100は、多数本の線状体101を編み目状に組み合わせ、全体としての形状が筒状をなすものである。 As shown in FIG. 1 (the same applies to FIGS. 2 and 3), the stent 100 is a combination of a large number of linear bodies 101 in a stitch shape, and the overall shape forms a cylindrical shape.
 線状体101の構成材料は、生体内(少なくとも37℃付近)で超弾性を示す超弾性合金である。超弾性合金には、引張りによる応力-ひずみ曲線のいずれの形状も含み、変態点(Af点)が顕著に測定できるものも、できないものも含み、応力により大きく変形(歪)し、応力の除去により元の形状にほぼ戻るものは全て含まれる。超弾性合金の好ましい組成としては、49~52原子%NiのNi-Ti合金等のNi-Ti系合金、38.5~41.5重量%ZnのCu-Zn合金、1~10重量%XのCu-Zn-X合金(Xは、Be、Si、Sn、Al、Gaのうちの少なくとも1種)、36~38原子%AlのNi-Al合金等が挙げられる。このなかでも特に好ましいものは、上記のNi-Ti系合金である。このような超弾性合金を用いることにより、変態点以上の温度下では超弾性が確実に発揮される。これにより、ステント100は、縮径する方向に外力が付与された場合、当該ステント100自身の弾性力、すなわち、拡張力(Radial Force)RFにより、元の形状に戻ろうと拡張して、狭窄部を内側から確実に広げることができる。一方、変態点未満の温度下では、拡張力RFが抑えられる。なお、変態点としては、生体内の温度よりも低く、例えば、18~28℃程度であるのがこのましい。 The constituent material of the linear body 101 is a superelastic alloy that exhibits superelasticity in vivo (at least around 37 ° C.). Superelastic alloys include any shape of the stress-strain curve caused by tension, including those where the transformation point (Af point) can be measured remarkably and those that cannot be measured. This includes everything that almost returns to its original shape. The preferred composition of the superelastic alloy is a Ni—Ti alloy such as a Ni—Ti alloy of 49 to 52 atomic% Ni, a Cu—Zn alloy of 38.5 to 41.5 wt% Zn, 1 to 10 wt% X Cu—Zn—X alloy (X is at least one of Be, Si, Sn, Al, and Ga), Ni-Al alloy of 36 to 38 atomic% Al, and the like. Of these, the Ni—Ti alloy is particularly preferable. By using such a superelastic alloy, superelasticity is reliably exhibited at temperatures above the transformation point. As a result, when an external force is applied in the direction of reducing the diameter of the stent 100, the stent 100 expands to return to its original shape by the elastic force of the stent 100 itself, that is, an expansion force (Radial 、 Force) RF. Can be spread reliably from the inside. On the other hand, the expansion force RF is suppressed under a temperature lower than the transformation point. The transformation point is preferably lower than the in vivo temperature, for example, about 18 to 28 ° C.
 このようなステント100を血管に配するのに、医療器具1が用いられる。前述したように、医療器具1は、外管2と内管3とを有する器具本体部10と、操作部4と、ハブ5とを備えている。以下、各部の構成について説明する。 The medical instrument 1 is used for arranging such a stent 100 in a blood vessel. As described above, the medical instrument 1 includes the instrument main body 10 having the outer tube 2 and the inner tube 3, the operation unit 4, and the hub 5. Hereinafter, the configuration of each unit will be described.
 図1、図74に示すように、外管2は、第1のルーメン21と、第2のルーメン22と、第3のルーメン23とを有し、これらが内側から外側に向かって同心的に配置された可撓管である。 As shown in FIG. 1 and FIG. 74, the outer tube 2 has a first lumen 21, a second lumen 22, and a third lumen 23, which are concentrically from the inside toward the outside. It is an arranged flexible tube.
 外管2の全長としては、特に限定されず、例えばペリフェラル領域の治療に用いられる場合、500~2000mmであるのが好ましく、800~1500mmであるのがより好ましい。 The total length of the outer tube 2 is not particularly limited, and is preferably 500 to 2000 mm, and more preferably 800 to 1500 mm, for example, when used for the treatment of a peripheral region.
 外管2の構成材料としては、特に限定されず、例えば、ポリプロピレン、ポリエチレン、エチレン-酢酸ビニル共重合体等のポリオレフィン、ポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリウレタン、ポリ塩化ビニル、ポリスチレン系樹脂、エチレン-テトラフルオロエチレン共重合体等のフッ素系樹脂、ポリイミド等各種可撓性を有する樹脂や、ポリアミドエラストマー、ポリエステルエラストマー、ポリウレタンエラストマー、ポリスチレンエラストマー、フッ素系エラストマー、シリコーンゴム、ラテックスゴム等の各種エラストマー、またはこれらのうちの2以上を組み合わせたものが使用可能である。 The constituent material of the outer tube 2 is not particularly limited. For example, polyolefin such as polypropylene, polyethylene, and ethylene-vinyl acetate copolymer, polyester such as polyamide, polyethylene terephthalate, and polybutylene terephthalate, polyurethane, polyvinyl chloride, and polystyrene. Resin, fluorine resin such as ethylene-tetrafluoroethylene copolymer, various flexible resins such as polyimide, polyamide elastomer, polyester elastomer, polyurethane elastomer, polystyrene elastomer, fluorine elastomer, silicone rubber, latex rubber, etc. These elastomers, or a combination of two or more of them can be used.
 第1のルーメン21は、ステント100を収縮させた収縮状態で収納する空間である。第1のルーメン21は、外管2の先端(先端部)に開口した先端開口部211と、外管2の基端(基端部)に開口した基端開口部212とを有している。そして、からは、収縮状態(収納状態)のステント100が拡張状態となりつつ放出される(図3参照)。 The first lumen 21 is a space for storing the stent 100 in a contracted state in which the stent 100 is contracted. The first lumen 21 has a distal end opening 211 opened at the distal end (distal end) of the outer tube 2 and a proximal end opening 212 opened at the proximal end (proximal end) of the outer tube 2. . Then, the stent 100 in the contracted state (stored state) is released while being expanded (see FIG. 3).
 図2、図3に示すように、第2のルーメン22は、第1のルーメン21の外側に配置され、冷媒Cが通過するルーメンである。第2のルーメン22を冷媒Cが通過することにより、第1のルーメン21に収納された収納状態のステント100を冷却することができる。この冷却温度としては、超弾性金属の変態点以下であり、例えば変態点が18~28℃程度である場合、-50~18℃であるのが好ましく、0~10℃であるのがより好ましい。これにより、ステント100の拡張力RFを確実に低下させることができ、よって、後述するようにステント100を先端開口部211から放出す際の操作を容易に行なうことができる。なお、冷媒Cとしては、特に限定されず、例えば、生理食塩水や造影剤等が挙げられる。 As shown in FIGS. 2 and 3, the second lumen 22 is a lumen that is disposed outside the first lumen 21 and through which the refrigerant C passes. When the refrigerant C passes through the second lumen 22, the stored stent 100 stored in the first lumen 21 can be cooled. The cooling temperature is below the transformation point of the superelastic metal. For example, when the transformation point is about 18 to 28 ° C., it is preferably −50 to 18 ° C., more preferably 0 to 10 ° C. . As a result, the expansion force RF of the stent 100 can be reliably reduced, and therefore, the operation for releasing the stent 100 from the distal end opening 211 can be easily performed as will be described later. In addition, it does not specifically limit as the refrigerant | coolant C, For example, a physiological saline, a contrast agent, etc. are mentioned.
 また、第2のルーメン22は、外管2の先端壁部24により先端が閉塞した先端閉側部221と、基端が開口した基端開口部222を有している。そして、基端開口部222を介して第2のルーメン22と連通するポート25が設けられている。ポート25は、冷媒Cを第2のルーメン22に供給する供給部(図2参照)としての機能と、第2のルーメン22に供給された冷媒Cを排出する排出部(図3参照)としての機能を有する供給・排出ポートである。すなわち、ポート25は、供給部と排出部とが兼用された部分となっている。これにより、供給部と排出部とをそれぞれ別途設ける場合に比べて、医療器具1の構成を簡単なものとすることができる。 Further, the second lumen 22 has a distal end closed side portion 221 whose distal end is closed by the distal end wall portion 24 of the outer tube 2 and a proximal end opening portion 222 whose proximal end is opened. A port 25 that communicates with the second lumen 22 through the proximal end opening 222 is provided. The port 25 functions as a supply unit (see FIG. 2) for supplying the refrigerant C to the second lumen 22, and as a discharge unit (see FIG. 3) for discharging the refrigerant C supplied to the second lumen 22. This is a supply / discharge port with functions. That is, the port 25 is a portion where the supply unit and the discharge unit are combined. Thereby, compared with the case where a supply part and a discharge part are each provided separately, the structure of the medical instrument 1 can be made simple.
 ポート25は、操作部4から管状に突出しており、配管11を介してポンプ12に接続されている。また、配管11の途中には、弁13が設けられている。さらに、ポンプ12は、配管14を介してタンク15に接続されている。タンク15には、十分冷却された冷媒Cが充填されている。そして、弁13を開状態として、ポンプ12を作動させる(正転させる)ことにより、図2に示すように、冷媒Cは、配管14、ポンプ12、配管11、ポート25を順に通過して、第2のルーメン22に至る。これにより、冷媒Cが第2のルーメン22に供給される。また、ポンプ12を前記とは反対方向に作動させる(逆回転させる)ことにより、図3に示すように、冷媒Cは、ポート25、配管11、ポンプ12、配管14を順に通過して、タンク15に至る。これにより、冷媒Cが第2のルーメン22から排出される。なお、ポンプ12の停止中は、弁13を閉状態とする。 The port 25 protrudes in a tubular shape from the operation unit 4 and is connected to the pump 12 via the pipe 11. A valve 13 is provided in the middle of the pipe 11. Further, the pump 12 is connected to the tank 15 via a pipe 14. The tank 15 is filled with a sufficiently cooled refrigerant C. Then, by opening the valve 13 and operating the pump 12 (forward rotation), as shown in FIG. 2, the refrigerant C sequentially passes through the pipe 14, the pump 12, the pipe 11, and the port 25, The second lumen 22 is reached. Thereby, the refrigerant C is supplied to the second lumen 22. Further, by operating the pump 12 in the direction opposite to the above (reversely rotating), as shown in FIG. 3, the refrigerant C passes through the port 25, the pipe 11, the pump 12, and the pipe 14 in this order, and the tank 15 is reached. Thereby, the refrigerant C is discharged from the second lumen 22. Note that the valve 13 is closed while the pump 12 is stopped.
 図2、図3に示すように、第3のルーメン23は、第2のルーメン22の外側に配置され、外管2の外側からの熱を遮断する断熱機能を発揮するルーメンである。これにより、第2のルーメン22を通過する冷媒Cが加熱、加温されて、その温度が不本意に上昇するのを防止することができ、よって、ステント100を十分かつ確実に冷却することができる。 As shown in FIGS. 2 and 3, the third lumen 23 is a lumen that is disposed outside the second lumen 22 and exhibits a heat insulating function that blocks heat from the outside of the outer tube 2. Thereby, it is possible to prevent the refrigerant C passing through the second lumen 22 from being heated and heated and unintentionally increasing its temperature, and thus the stent 100 can be sufficiently and reliably cooled. it can.
 第3のルーメン23には、ガスGを充填することができる。これにより、図2に示すように、第3のルーメン23が膨張して、当該第3のルーメン23での断熱機能が確実に発揮される。なお、ガスGとしては、特に限定されず、例えば、空気、二酸化炭素、窒素等が挙げられる。また、ガスGに代えて、多孔質材等のような断熱材が充填されていてもよい。 The third lumen 23 can be filled with gas G. Thereby, as shown in FIG. 2, the third lumen 23 expands, and the heat insulating function in the third lumen 23 is reliably exhibited. In addition, it does not specifically limit as gas G, For example, air, a carbon dioxide, nitrogen etc. are mentioned. Further, instead of the gas G, a heat insulating material such as a porous material may be filled.
 また、第3のルーメン23は、第2のルーメン22と同様に、外管2の先端壁部24により先端が閉塞した先端閉側部231と、基端が開口した基端開口部232を有している。そして、基端開口部232を介して第3のルーメン23と連通するポート26が設けられている。ポート26は、ガスGを第3のルーメン23に供給する供給部(図2参照)としての機能と、第3のルーメン23に供給されたガスGを排出する排出部(図3参照)としての機能を有する供給・排出ポートである。すなわち、ポート26は、供給部と排出部とが兼用された部分となっている。これにより、供給部と排出部とをそれぞれ別途設ける場合に比べて、医療器具1の構成を簡単なものとすることができる。 Similarly to the second lumen 22, the third lumen 23 has a distal end closed side portion 231 whose distal end is closed by the distal end wall portion 24 of the outer tube 2 and a proximal end opening portion 232 whose proximal end is opened. is doing. A port 26 that communicates with the third lumen 23 via the proximal end opening 232 is provided. The port 26 functions as a supply unit (see FIG. 2) for supplying the gas G to the third lumen 23 and as a discharge unit (see FIG. 3) for discharging the gas G supplied to the third lumen 23. This is a supply / discharge port with functions. That is, the port 26 is a portion where the supply unit and the discharge unit are combined. Thereby, compared with the case where a supply part and a discharge part are each provided separately, the structure of the medical instrument 1 can be made simple.
 ポート26は、ポート26と同方向に操作部4から管状に突出しており、配管16を介してポンプ17に接続されている。また、配管16の途中には、弁18が設けられている。そして、弁18を開状態として、ポンプ17を作動させる(正転させる)ことにより、図2に示すように、ガスGは、ポンプ17から吸引され、配管16、ポート26を順に通過して、第3のルーメン23に至る。これにより、ガスGが第3のルーメン23に供給される。また、ポンプ17を前記とは反対方向に作動させる(逆回転させる)ことにより、図3に示すように、ガスGは、ポート26、配管16を順に通過して、ポンプ17に至る。これにより、ガスGが第3のルーメン23から排出される。なお、ポンプ17の停止中は、弁18を閉状態とする。 The port 26 protrudes in a tubular shape from the operation unit 4 in the same direction as the port 26, and is connected to the pump 17 via the pipe 16. A valve 18 is provided in the middle of the pipe 16. Then, by opening the valve 18 and operating the pump 17 (forward rotation), as shown in FIG. 2, the gas G is sucked from the pump 17 and sequentially passes through the pipe 16 and the port 26. The third lumen 23 is reached. Thereby, the gas G is supplied to the third lumen 23. Further, by operating the pump 17 in the opposite direction (reverse rotation), the gas G passes through the port 26 and the pipe 16 in this order and reaches the pump 17 as shown in FIG. As a result, the gas G is discharged from the third lumen 23. Note that the valve 18 is closed while the pump 17 is stopped.
 前述したように、第1のルーメン21と第2のルーメン22と第3のルーメン23とは、外管2の内側から外側に向かって順に同心的に配置されている。これにより、第1のルーメン21内のステント100に対しては、その周回りのいずれの位置からも第2のルーメン22内の冷媒Cで確実に冷却することができる。また、この冷媒Cに対しては、その周回りのいずれの位置からも第3のルーメン23内のガスGで確実に断熱することができる。 As described above, the first lumen 21, the second lumen 22, and the third lumen 23 are arranged concentrically in order from the inside to the outside of the outer tube 2. Thereby, the stent 100 in the first lumen 21 can be reliably cooled by the refrigerant C in the second lumen 22 from any position around the circumference. Further, the refrigerant C can be surely insulated from the gas G in the third lumen 23 from any position around the circumference.
 外管2の基端部には、操作部4が連結、固定されている。図3に示すように、操作部4は、外管2をその長手方向に沿って内管3に対して移動操作するものである。 The operation unit 4 is connected and fixed to the base end of the outer tube 2. As shown in FIG. 3, the operation part 4 moves the outer tube 2 with respect to the inner tube 3 along its longitudinal direction.
 操作部4は、外管2の移動方向に対して直交する方向に突出したレバー41を有している。操作部4を操作する際には、レバー41に指を掛けることができ、その状態で基端方向に向かって引張ったり、または、先端方向に向かって押し込んだりすることができる。これにより、外管2は、内管3と独立して、基端方向に向かって移動したり、その反対に、先端方向に向かって移動することができる。 The operation unit 4 has a lever 41 protruding in a direction orthogonal to the moving direction of the outer tube 2. When operating the operation unit 4, a finger can be put on the lever 41, and in this state, the lever 41 can be pulled toward the proximal end or pushed toward the distal end. Thereby, the outer tube | pipe 2 can move toward a base end direction independently of the inner tube | pipe 3, and can move toward the front end direction on the contrary.
 ハブ5は、操作部4を移動可能に支持するものである。ハブ5は、例えば箱状をなし、その外表面からレバー41が突出している。そして、医療器具1を使用するときには、例えば一方の手でハブ5を把持し、他方の手でレバー41を操作することができる。 The hub 5 supports the operation unit 4 so as to be movable. The hub 5 has a box shape, for example, and a lever 41 protrudes from the outer surface thereof. When the medical instrument 1 is used, for example, the hub 5 can be gripped with one hand and the lever 41 can be operated with the other hand.
 操作部4、ハブ5の構成材料としては、特に限定されず、例えば、各種樹脂材料や各種金属材料を用いることができる。 The constituent material of the operation unit 4 and the hub 5 is not particularly limited, and for example, various resin materials and various metal materials can be used.
 図1に示すように、外管2の第1のルーメン21には、内管3が挿通している。なお、内管3の基端部は、ハブ5に固定されている。 As shown in FIG. 1, the inner tube 3 is inserted through the first lumen 21 of the outer tube 2. The base end portion of the inner tube 3 is fixed to the hub 5.
 内管3は、ガイドワイヤ200が挿通するルーメン31を有している。ルーメン31は、内管3の先端(先端部)に開口した先端開口部311と、内管3の基端(基端部)に開口した基端開口部312とを有している。これにより、ガイドワイヤ200を、基端開口部312を介してルーメン31内に挿入して、先端開口部311から突出させることができる。 The inner tube 3 has a lumen 31 through which the guide wire 200 is inserted. The lumen 31 has a distal end opening 311 that opens to the distal end (distal end) of the inner tube 3 and a proximal end opening 312 that opens to the proximal end (proximal end) of the inner tube 3. As a result, the guide wire 200 can be inserted into the lumen 31 via the proximal end opening 312 and protrude from the distal end opening 311.
 なお、内管3の全長は、外管2の全長よりも長いのが好ましい。これにより、内管3の先端部32を外管2の第1のルーメン21の先端開口部211から突出させることができ、よって、当該内管3から突出したガイドワイヤ200による血管内での案内を確実に行なうことができる。 It should be noted that the total length of the inner tube 3 is preferably longer than the total length of the outer tube 2. As a result, the distal end portion 32 of the inner tube 3 can be projected from the distal end opening portion 211 of the first lumen 21 of the outer tube 2, so that the guide wire 200 projecting from the inner tube 3 guides in the blood vessel. Can be performed reliably.
 また、内管3の長手方向の途中には、外径が拡径した拡径部33が設けられている。拡径部33は、造影性を有し、血管内での器具本体部10の先端部の位置をX線造影下で確認するのに用いられる。拡径部33に造影性を担持させるには、例えば、粒子状のX線不透過材料を含有させたり、X線不透過材料自体で構成する方法が挙げられる。X線不透過材料としては、例えば、金、白金、タングステン等の貴金属またはこれらを含む合金(例えば白金-イリジウム合金)等を用いることができる。 Further, in the middle of the inner tube 3 in the longitudinal direction, an enlarged diameter portion 33 having an enlarged outer diameter is provided. The enlarged-diameter portion 33 has a contrast property and is used to confirm the position of the distal end portion of the instrument main body portion 10 in the blood vessel under X-ray contrast. In order to make the enlarged diameter portion 33 carry contrast, for example, a method in which a particulate X-ray opaque material is contained or the X-ray opaque material itself is used. As the radiopaque material, for example, a noble metal such as gold, platinum, tungsten, or an alloy containing these (eg, platinum-iridium alloy) can be used.
 この拡径部33は、外管2の第1のルーメン21に収納されたステント100の基端側直近に配置される。これにより、図3に示すように、外管2が内管3に対して基端方向に向かって移動した際、ステント100が外管2とともに同方向に移動するのを規制することができる。この規制により、ステント100を外管2の第1のルーメン21の先端開口部211から確実に放出することができる。このように医療器具1では、拡径部33は、ステント100の基端方向への移動を規制する規制部として機能も有している。 The enlarged diameter portion 33 is disposed in the immediate vicinity of the proximal end side of the stent 100 housed in the first lumen 21 of the outer tube 2. Thereby, as shown in FIG. 3, when the outer tube 2 moves toward the proximal direction with respect to the inner tube 3, the stent 100 can be restricted from moving in the same direction together with the outer tube 2. By this restriction, the stent 100 can be reliably released from the distal end opening 211 of the first lumen 21 of the outer tube 2. As described above, in the medical instrument 1, the diameter-enlarged portion 33 also functions as a restricting portion that restricts the movement of the stent 100 in the proximal direction.
 内管3の構成材料としては、特に限定されず、例えば、外管2の構成材料として挙げたものを用いることができる。この場合、内管3の構成材料と外管2の構成材料とは同じであってもよいし、異なっていてもよい。 The constituent material of the inner tube 3 is not particularly limited, and for example, those listed as the constituent material of the outer tube 2 can be used. In this case, the constituent material of the inner tube 3 and the constituent material of the outer tube 2 may be the same or different.
 次に、医療器具1の操作方法(使用方法)について、図1~図3を参照しつつ説明する。 Next, an operation method (usage method) of the medical instrument 1 will be described with reference to FIGS.
 [1] 図1に示すように、常温下で、初期状態の医療器具1を用意する。この医療器具1では、ステント100が収縮状態で外管2の第1のルーメン21内に予め収納、装着されている。このとき、ステント100は、自身の拡張力RF1で元の形状に戻ろうと拡張している。これにより、ステント100は、外周部102が第1のルーメン21を画成する内周部213に密着しており、よって、第1のルーメン21からの離脱が確実に防止されている。 [1] As shown in FIG. 1, an initial medical device 1 is prepared at room temperature. In this medical instrument 1, the stent 100 is stored and attached in advance in the first lumen 21 of the outer tube 2 in a contracted state. At this time, the stent 100 is expanded to return to its original shape with its own expansion force RF1. As a result, the outer peripheral portion 102 of the stent 100 is in close contact with the inner peripheral portion 213 that defines the first lumen 21, so that the stent 100 is reliably prevented from being detached from the first lumen 21.
 そして、この状態のまま内管3にガイドワイヤ200を挿通させて、当該ガイドワイヤ200を先行させつつ、医療器具1の先端開口部211を血管内の目的部位にまで挿入する。 Then, the guide wire 200 is inserted into the inner tube 3 in this state, and the distal end opening 211 of the medical instrument 1 is inserted to the target site in the blood vessel while the guide wire 200 is advanced.
 [2] 次に、図2に示すように、前述したように、外管2の第2のルーメン22内に冷媒Cを供給するとともに、第3のルーメン23内にガスGを供給する。これにより、第2のルーメン22と第3のルーメン23とがそれぞれ膨張する。 [2] Next, as shown in FIG. 2, as described above, the refrigerant C is supplied into the second lumen 22 of the outer tube 2 and the gas G is supplied into the third lumen 23. Thereby, the 2nd lumen 22 and the 3rd lumen 23 each expand | swell.
 第2のルーメン22が膨張することにより、第1のルーメン21の内周部213が縮径する。これにより、ステント100は、内周部213から押圧されて、初期状態のときよりもさらに収縮していく。 When the second lumen 22 expands, the inner peripheral portion 213 of the first lumen 21 is reduced in diameter. Thereby, the stent 100 is pressed from the inner peripheral part 213 and further contracts compared to the initial state.
 この収縮に伴って、ステント100は、第2のルーメン22内の冷媒Cで、変態点よりも低い温度で十分に冷却されていく。前述したように、ステント100は、超弾性合金で構成されており、変態点未満の温度下では、拡張力RFが抑えられるため、冷却最中の拡張力RF2は、拡張力RF1よりも小さくなる。これにより、ステント100の外周部102と第1のルーメン21の内周部213との密着の程度が低下して、ステント100が第1のルーメン21から離脱し易い状態となる。 With this contraction, the stent 100 is sufficiently cooled by the refrigerant C in the second lumen 22 at a temperature lower than the transformation point. As described above, the stent 100 is made of a superelastic alloy, and the expansion force RF2 is suppressed at a temperature lower than the transformation point. Therefore, the expansion force RF2 during cooling is smaller than the expansion force RF1. . As a result, the degree of adhesion between the outer peripheral portion 102 of the stent 100 and the inner peripheral portion 213 of the first lumen 21 is reduced, and the stent 100 is easily detached from the first lumen 21.
 また、第3のルーメン23内に供給されたガスGにより、冷媒Cを断熱することができ、よって、体温による冷媒Cの温度上昇を防止することができる。これにより、冷媒Cでステント100を確実に冷却することができる。一方、血管壁に対しても、第3のルーメン23内のガスGにより、冷媒Cで冷却されてしまうのを防止することができる。 Further, the refrigerant C can be insulated by the gas G supplied into the third lumen 23, and therefore, the temperature rise of the refrigerant C due to body temperature can be prevented. Thereby, the stent 100 can be reliably cooled with the refrigerant C. On the other hand, it is possible to prevent the blood vessel wall from being cooled by the refrigerant C by the gas G in the third lumen 23.
 また、第3のルーメン23が膨張することにより、外管2は、全体として、外径が拡径する。これにより、外管2が血管壁に当接する部分が増加し、よって、外管2の血管内での留置性が向上する。 Also, as the third lumen 23 expands, the outer diameter of the outer tube 2 increases as a whole. Thereby, the part which the outer tube | pipe 2 contact | abuts to the blood vessel wall increases, Therefore, the placement property in the blood vessel of the outer tube | pipe 2 improves.
 [3] 次に、図3に示すように、操作部4のレバー41を基端方向に向かって引張る操作を行なう。これにより、外管2が基端方向に向かって移動する。この移動により、ステント100も同方向に移動しそうになるが、内管3の拡径部33に当接しているため、ステント100の移動が規制される。このときも、拡張力RFが拡張力RF2に抑えたままとなっており、ステント100の外周部102と第1のルーメン21の内周部213との密着の程度が低下している。これにより、ステント100の外周部102と第1のルーメン21の内周部213との間の摺動抵抗が低減され、よって、外管2の移動を容易に行なうことができる。 [3] Next, as shown in FIG. 3, an operation of pulling the lever 41 of the operation unit 4 in the proximal direction is performed. Thereby, the outer tube 2 moves toward the proximal direction. By this movement, the stent 100 is likely to move in the same direction, but the movement of the stent 100 is restricted because the stent 100 is in contact with the enlarged diameter portion 33 of the inner tube 3. Also at this time, the expansion force RF remains suppressed to the expansion force RF2, and the degree of close contact between the outer peripheral portion 102 of the stent 100 and the inner peripheral portion 213 of the first lumen 21 is reduced. Thereby, the sliding resistance between the outer peripheral part 102 of the stent 100 and the inner peripheral part 213 of the 1st lumen | rumen 21 is reduced, Therefore The movement of the outer tube | pipe 2 can be performed easily.
 そして、外管2の移動が継続されていくと、当該外管2の先端開口部211からステント100が徐々に放出されていく。ステント100の外管2の先端開口部211から突出した突出部103は、血液に晒されることとなり、変態点以上に加温される。これにより、突出部103は、拡張力RF1で拡張して展開していく。 As the movement of the outer tube 2 continues, the stent 100 is gradually released from the distal end opening 211 of the outer tube 2. The protruding portion 103 protruding from the distal end opening portion 211 of the outer tube 2 of the stent 100 is exposed to blood and is heated above the transformation point. Thereby, the protrusion 103 is expanded and expanded with the expansion force RF1.
 なお、操作部4での操作は、ステント100全体が血管内に放出されるまで行なわれる。これにより、展開したステント100を血管内に留置することができる。 The operation at the operation unit 4 is performed until the entire stent 100 is released into the blood vessel. Thereby, the deployed stent 100 can be placed in the blood vessel.
 また、ステント100を放出する際には、その放出を行ないつつ、第2のルーメン22から冷媒Cを回収する。これにより、ステント100に対する過剰な冷却が防止され、よって、ステント100は、先端開口部211からの突出後に、変態点以上に迅速に加温されることとなる。 Further, when releasing the stent 100, the refrigerant C is recovered from the second lumen 22 while releasing the stent 100. Accordingly, excessive cooling of the stent 100 is prevented, and thus the stent 100 is heated more rapidly than the transformation point after protruding from the distal end opening 211.
 また、ステント100の放出中に当該ステント100が第1のルーメン21内で不本意に過剰に拡張してしまった場合、第1のルーメン21内に再度冷媒Cを供給して、ステント100の拡張を抑えることができる。 In addition, when the stent 100 is unintentionally excessively expanded in the first lumen 21 during the release of the stent 100, the refrigerant C is supplied again into the first lumen 21 to expand the stent 100. Can be suppressed.
 また、冷媒Cの回収を行なうとともに、ガスGの第3のルーメン23からの回収を行なうのが好ましい。 Further, it is preferable that the refrigerant C is recovered and the gas G is recovered from the third lumen 23.
 以上のような医療器具1では、ステント100を第1のルーメン21の先端開口部211を介して放出する以前に、第2のルーメン22に冷媒Cを供給して、ステント100の拡張力RFを確実に低下させることができる。これにより、ステント100の放出操作を行なった際に、ステント100の外周部102と第1のルーメン21の内周部213との間の摺動抵抗が十分に低減され、よって、その操作を容易かつ迅速に行なうことができる。この結果、血管内にステント100を留置する際の留置操作も迅速に行なうことができる。 In the medical instrument 1 as described above, the refrigerant C is supplied to the second lumen 22 before the stent 100 is released through the distal end opening 211 of the first lumen 21, and the expansion force RF of the stent 100 is increased. It can be reliably lowered. Thereby, when the operation of releasing the stent 100 is performed, the sliding resistance between the outer peripheral portion 102 of the stent 100 and the inner peripheral portion 213 of the first lumen 21 is sufficiently reduced, and thus the operation is facilitated. And can be done quickly. As a result, the placement operation when placing the stent 100 in the blood vessel can be performed quickly.
 また、医療器具1では、ステント100の加温に、例えば別途設けた加温機構で加熱せずに、体温が用いられる。これにより、加温機構を省略することができ、よって、医療器具1の装置構成が簡単なものなり、また、血管壁に火傷を負わせてしまう等の危険が確実に防止され、安全性が高い。 Further, in the medical instrument 1, body temperature is used for heating the stent 100 without heating it with a separately provided heating mechanism, for example. Thereby, the heating mechanism can be omitted, and thus the device configuration of the medical instrument 1 is simplified, and the danger of causing burns to the blood vessel wall is reliably prevented, and safety is improved. high.
 また、ステント100は、体温により確実に変態点以上に加温されるため、過不足なく展開する程度の拡張力RFが得られる。これにより、ステント100が血管内に確実に留置される。 Further, since the stent 100 is reliably heated above the transformation point by the body temperature, an expansion force RF that can be deployed without excess or deficiency is obtained. This ensures that the stent 100 is placed in the blood vessel.
 また、外管2が基端方向に向かって移動した際、ステント100の移動が内管3の拡径部33で規制されてはいるが、外管2とステント100との間の摺動抵抗により、当該ステント100は、拡径部33を介して内管3を基端方向に向かって押圧している。この押圧により、内管3は、部分的に撓み、すなわち、波打ち、その分だけ、ステント100も目的部位から基端側へ後退してしまう「ショートニング」と言う現象が生じる。しかしながら、前述したように摺動抵抗が十分に低減されているため、内管3は、波打つ程度の押圧力を受けるのが防止される。これにより、ショートニングを防止することができる。 Further, when the outer tube 2 moves in the proximal direction, the movement of the stent 100 is restricted by the enlarged diameter portion 33 of the inner tube 3, but the sliding resistance between the outer tube 2 and the stent 100. Thus, the stent 100 presses the inner tube 3 in the proximal direction through the enlarged diameter portion 33. Due to this pressing, the inner tube 3 is partially bent, that is, undulated, and a phenomenon called “shortening” occurs in which the stent 100 is also retracted from the target site toward the proximal end. However, as described above, since the sliding resistance is sufficiently reduced, the inner tube 3 is prevented from receiving a pressing force of a level of undulation. Thereby, shortening can be prevented.
 また、例えばステント100の外周部102に薬剤が塗布されている場合でも、前述したように外管2の移動時のステント100の外周部102と第1のルーメン21の内周部213との間の摺動抵抗が低減されているため、薬剤が剥離してしまうのを防止することができる。 Further, for example, even when a drug is applied to the outer peripheral portion 102 of the stent 100, as described above, between the outer peripheral portion 102 of the stent 100 and the inner peripheral portion 213 of the first lumen 21 when the outer tube 2 moves. Since the sliding resistance is reduced, it is possible to prevent the drug from peeling off.
 <第2実施形態>
 図5は、本発明の医療器具の第2実施形態を示す縦断面図である。
Second Embodiment
FIG. 5 is a longitudinal sectional view showing a second embodiment of the medical instrument of the present invention.
 以下、この図を参照して本発明の医療器具の第2実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。 Hereinafter, the second embodiment of the medical device of the present invention will be described with reference to this figure, but the description will focus on differences from the above-described embodiment, and the description of the same matters will be omitted.
 本実施形態は、医療器具の操作方法が異なること以外は前記第1実施形態と同様である。 This embodiment is the same as the first embodiment except that the operation method of the medical instrument is different.
 本実施形態では、ステント100を外管2の先端開口部211を介して放出する以前には、第2のルーメン22に冷媒Cが未だ供給されておらず、第3のルーメン23にもガスGが供給されていない。 In the present embodiment, before the stent 100 is released through the distal end opening 211 of the outer tube 2, the refrigerant C is not yet supplied to the second lumen 22, and the gas G is also supplied to the third lumen 23. Is not supplied.
 そして、図5に示すように、ステント100を放出する際に、その放出を行ないつつ、第2のルーメン22に冷媒Cを供給するとともに、第3のルーメン23にガスGを供給する。このような操作により、ステント100に対する過剰な冷却が防止され、よって、ステント100は、先端開口部211からの突出後に、変態点以上に迅速に加温されることとなる。また、ステント100の放出操作と、冷媒Cの供給操作とを同時に行なっているため、医療器具1による手技をより迅速に行なうことができる。 As shown in FIG. 5, when releasing the stent 100, the refrigerant C is supplied to the second lumen 22 and the gas G is supplied to the third lumen 23 while releasing the stent 100. By such an operation, excessive cooling of the stent 100 is prevented, and thus the stent 100 is heated more rapidly than the transformation point after protruding from the distal end opening 211. Further, since the operation for releasing the stent 100 and the operation for supplying the refrigerant C are performed at the same time, the procedure using the medical instrument 1 can be performed more quickly.
 <第3実施形態>
 図6は、本発明の医療器具の第3実施形態を示す斜視図である。
<Third Embodiment>
FIG. 6 is a perspective view showing a third embodiment of the medical instrument of the present invention.
 以下、この図を参照して本発明の医療器具の第3実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。 Hereinafter, the third embodiment of the medical device of the present invention will be described with reference to this figure, but the description will be focused on the differences from the above-described embodiment, and the description of the same matters will be omitted.
 本実施形態は、第2のルーメンの形状が異なること以外は前記第1実施形態と同様である。 This embodiment is the same as the first embodiment except that the shape of the second lumen is different.
 図6に示すように、本実施形態では、第2のルーメン22は、その先端部に螺旋状をなす螺旋状部223を有している。この螺旋状部223は、第1のルーメン21と第3のルーメン23の間でこれらと同心的に配置されており、器具本体部10の側面視で、第1のルーメン21内のステント100と重なっている。これにより、ステント100を確実に冷却することができる。 As shown in FIG. 6, in the present embodiment, the second lumen 22 has a spiral portion 223 having a spiral shape at the distal end portion thereof. The spiral portion 223 is disposed concentrically between the first lumen 21 and the third lumen 23, and the stent 100 in the first lumen 21 is viewed from the side of the instrument body 10. overlapping. Thereby, the stent 100 can be cooled reliably.
 また、螺旋状部223の基端側は、ポート25に連通しており、先端側は、ポート25とは個別に設けられたポート27に連通している。なお、ポート27は、ポート25と同様に操作部4から管状に突出しており、配管19を介してタンク15に接続されている。そして、冷媒Cは、ポート25を介して螺旋状部223に供給され、その後、ポート27を介して排出される。このように、本実施形態では、ポート25は、供給部として機能する供給ポートとなり、ポート27は、排出部として機能する排出ポートとなっている。これにより、冷媒Cを循環させることができ、よって、医療器具1の使用中の冷媒Cの温度上昇を防止または抑制することができる。 Further, the proximal end side of the spiral portion 223 communicates with the port 25, and the distal end side communicates with a port 27 provided separately from the port 25. The port 27 protrudes in a tubular shape from the operation unit 4 like the port 25 and is connected to the tank 15 via the pipe 19. Then, the refrigerant C is supplied to the spiral portion 223 through the port 25 and then discharged through the port 27. Thus, in this embodiment, the port 25 is a supply port that functions as a supply unit, and the port 27 is a discharge port that functions as a discharge unit. Thereby, the refrigerant | coolant C can be circulated and therefore the temperature rise of the refrigerant | coolant C in use of the medical instrument 1 can be prevented or suppressed.
 このような構成の医療器具1では、操作部4により外管2を移動操作するときには、弁13を開状態として冷媒Cを循環させて、ステント100を冷却する。ステント100の放出後は、弁13を閉状態として、冷媒Cの循環を停止する。 In the medical instrument 1 having such a configuration, when the outer tube 2 is moved by the operation unit 4, the valve 13 is opened and the refrigerant C is circulated to cool the stent 100. After the stent 100 is released, the valve 13 is closed and the circulation of the refrigerant C is stopped.
 なお、医療器具1は、外管2の移動操作に連動して、弁13が開状態と、閉状態とを取り得るよう構成されていてもよい。 The medical instrument 1 may be configured so that the valve 13 can be in an open state and a closed state in conjunction with the movement operation of the outer tube 2.
 また、冷媒Cと同様にガスGも循環するよう、第3のルーメン23が構成されていてもよい。 Further, the third lumen 23 may be configured so that the gas G circulates similarly to the refrigerant C.
 以上、本発明の医療器具を図示の実施形態について説明したが、本発明は、これに限定されるものではなく、医療器具を構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。 As mentioned above, although illustrated the embodiment of the medical instrument of this invention, this invention is not limited to this, Each part which comprises a medical instrument is a thing of arbitrary structures which can exhibit the same function Can be substituted. Moreover, arbitrary components may be added.
 また、本発明の医療器具は、前記各実施形態のうちの、任意の2以上の構成(特徴)を組み合わせたものであってもよい。 Further, the medical instrument of the present invention may be a combination of any two or more configurations (features) of the above embodiments.
 また、前記第3実施形態では、第2のルーメンが螺旋状をなし、これにより冷媒が往復するよう構成されているが、第2のルーメンが単に「U」字状をなし、これにより冷媒が往復するよう構成されていてもよい。その他、外管の周方向に沿った第2のルーメンをその先端部よりも基端側で当該周方向に2つのルーメンに区切る壁部を設けて、これにより冷媒が往復するよう構成されていてもよい。 In the third embodiment, the second lumen is formed in a spiral shape so that the refrigerant reciprocates. However, the second lumen simply has a “U” shape, so that the refrigerant is It may be configured to reciprocate. In addition, a wall portion is provided to divide the second lumen along the circumferential direction of the outer tube into two lumens in the circumferential direction on the base end side from the distal end portion thereof, whereby the refrigerant reciprocates. Also good.
 また、前記第3実施形態では、第2のルーメンが蛇行しており、これにより冷媒がステントの周辺で複数回往復するよう構成されていてもよい。 In the third embodiment, the second lumen may meander, and the refrigerant may reciprocate a plurality of times around the stent.
 本発明の医療器具は、血管内で留置して用いられるステントを前記血管に配する医療器具であって、前記ステントを収縮状態で収納する第1のルーメンと、前記収縮状態の前記ステントを冷却する冷媒が通過する第2のルーメンとを有する外管を備えることを特徴とする。そのため、血管内にステントを留置する際、その留置操作を迅速かつ確実に、また安全に行なうことができる。
 従って、本発明の医療器具は、産業上の利用可能性を有する。
The medical device of the present invention is a medical device for placing a stent used by being placed in a blood vessel in the blood vessel, the first lumen housing the stent in a contracted state, and cooling the stent in the contracted state. And an outer tube having a second lumen through which the refrigerant passes. Therefore, when placing a stent in a blood vessel, the placement operation can be performed quickly, reliably and safely.
Therefore, the medical device of the present invention has industrial applicability.
 1      医療器具
 2      外管
 21     第1のルーメン
 211    先端開口部
 212    基端開口部
 213    内周部
 22     第2のルーメン
 221    先端閉塞部
 222    基端開口部
 223    螺旋状部
 23     第3のルーメン
 231    先端閉塞部
 232    基端開口部
 24     先端壁部
 25、26、27 ポート
 3      内管
 31     ルーメン
 32     先端部
 33     拡径部
 4      操作部
 41     レバー
 5      ハブ
 10     器具本体部
 11     配管
 12     ポンプ
 13     弁
 14     配管
 15     タンク
 16     配管
 17     ポンプ
 18     弁
 19     配管
 100    ステント
 101    線状体
 102    外周部
 103    突出部
 200    ガイドワイヤ
 C      冷媒
 G      ガス
 RF、RF1 拡張力
DESCRIPTION OF SYMBOLS 1 Medical instrument 2 Outer tube 21 1st lumen 211 Front end opening 212 Base end opening 213 Inner peripheral part 22 2nd lumen 221 End obstruction | occlusion part 222 Base end opening 223 Spiral part 23 3rd lumen 231 End occlusion Portion 232 Base end opening portion 24 End wall portion 25, 26, 27 Port 3 Inner pipe 31 Lumen 32 Tip portion 33 Diameter expansion portion 4 Operation portion 41 Lever 5 Hub 10 Instrument body portion 11 Piping 12 Pump 13 Valve 14 Piping 15 Tank 16 Piping 17 Pump 18 Valve 19 Piping 100 Stent 101 Linear body 102 Outer peripheral portion 103 Protruding portion 200 Guide wire C Refrigerant G Gas RF, RF1 Expansion force

Claims (11)

  1.  血管内で留置して用いられるステントを前記血管に配する医療器具であって、
     前記ステントを収縮状態で収納する第1のルーメンと、前記収縮状態の前記ステントを冷却する冷媒が通過する第2のルーメンとを有する外管を備えることを特徴とする医療器具。
    A medical device for placing a stent used by placing in a blood vessel in the blood vessel,
    A medical instrument comprising: an outer tube having a first lumen that houses the stent in a contracted state and a second lumen through which a coolant that cools the stent in the contracted state passes.
  2.  前記ステントは、筒状をなし、該ステント自身の弾性力により拡張する超弾性金属で構成されたものであり、
     前記冷媒で前記ステントを前記超弾性金属の変態点以下に冷却することにより、前記ステントの拡張力を低下させる請求項1に記載の医療器具。
    The stent has a cylindrical shape and is composed of a superelastic metal that expands by the elastic force of the stent itself,
    The medical device according to claim 1, wherein the expansion force of the stent is reduced by cooling the stent to the superelastic metal transformation point or less with the refrigerant.
  3.  前記第1のルーメンは、前記外管の先端部に開口し、前記収縮状態の前記ステントが拡張しつつ放出される先端開口部を有し、
     前記ステントを前記先端開口部を介して放出する以前に、前記第2のルーメンに前記冷媒を供給し、前記ステントを放出する際に、その放出を行ないつつ、前記第2のルーメンから前記冷媒を回収するよう使用される請求項1または2に記載の医療器具。
    The first lumen has a distal end opening that opens to the distal end of the outer tube and is released while the contracted stent is expanded;
    Before releasing the stent through the tip opening, the refrigerant is supplied to the second lumen, and when releasing the stent, the refrigerant is discharged from the second lumen. The medical device according to claim 1 or 2, which is used for recovery.
  4.  前記第1のルーメンは、前記外管の先端部に開口し、前記収縮状態の前記ステントが拡張しつつ放出される先端開口部を有し、
     前記ステントを前記先端開口部を介して放出する以前には、前記第2のルーメンに前記冷媒が未だ供給されておらず、前記ステントを放出する際に、その放出を行ないつつ、前記第2のルーメンに前記冷媒を供給するよう使用される請求項1または2に記載の医療器具。
    The first lumen has a distal end opening that opens to the distal end of the outer tube and is released while the contracted stent is expanded;
    Before releasing the stent through the tip opening, the coolant has not been supplied to the second lumen, and when the stent is released, the refrigerant is discharged while the second lumen is released. The medical device according to claim 1, wherein the medical device is used to supply the refrigerant to a lumen.
  5.  前記外管は、前記第2のルーメンに連通し、前記冷媒を前記第2のルーメンに供給する供給部と、前記第2のルーメンに連通し、前記第2のルーメンに供給された前記冷媒を排出する排出部とを有する請求項1ないし4のいずれか1項に記載の医療器具。 The outer pipe communicates with the second lumen and supplies the refrigerant to the second lumen; and the outer pipe communicates with the second lumen and supplies the refrigerant supplied to the second lumen. The medical device according to any one of claims 1 to 4, further comprising a discharge unit for discharging.
  6.  前記供給部と前記排出部とは、それぞれ個別に設けられて用いられているか、または、兼用されている請求項5に記載の医療器具。 The medical device according to claim 5, wherein the supply unit and the discharge unit are individually provided and used, or are combined.
  7.  前記外管は、該外管の外側からの熱を遮断する断熱機能を発揮する第3のルーメンを有する請求項1ないし6のいずれか1項に記載の医療器具。 The medical instrument according to any one of claims 1 to 6, wherein the outer tube has a third lumen that exhibits a heat insulating function to block heat from outside the outer tube.
  8.  前記第3のルーメンには、ガスが充填される請求項7に記載の医療器具。 The medical instrument according to claim 7, wherein the third lumen is filled with a gas.
  9.  前記第1のルーメンと前記第2のルーメンと前記第3のルーメンとは、前記外管の内側から外側に向かって順に同心的に配置されている部分を有する請求項7または8に記載の医療器具。 The medical device according to claim 7 or 8, wherein the first lumen, the second lumen, and the third lumen have portions that are concentrically arranged in order from the inside to the outside of the outer tube. Instruments.
  10.  前記第1のルーメンを挿通した内管と、
     前記外管をその長手方向に沿って前記内管に対して移動操作する操作部を備える請求項1ないし9のいずれか1項に記載の医療器具。
    An inner tube inserted through the first lumen;
    The medical instrument of any one of Claim 1 thru | or 9 provided with the operation part which moves the said outer tube | pipe with respect to the said inner tube | pipe along the longitudinal direction.
  11.  前記外管が前記内管に対して移動した際、前記内管は、前記ステントが前記外管とともに移動するのを規制する規制部を有する請求項1ないし10のいずれか1項に記載の医療器具。 The medical device according to any one of claims 1 to 10, wherein when the outer tube moves with respect to the inner tube, the inner tube has a restricting portion that restricts movement of the stent together with the outer tube. Instruments.
PCT/JP2015/055219 2014-03-19 2015-02-24 Medical instrument WO2015141408A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016508625A JPWO2015141408A1 (en) 2014-03-19 2015-02-24 Medical instruments

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-057289 2014-03-19
JP2014057289 2014-03-19

Publications (1)

Publication Number Publication Date
WO2015141408A1 true WO2015141408A1 (en) 2015-09-24

Family

ID=54144384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055219 WO2015141408A1 (en) 2014-03-19 2015-02-24 Medical instrument

Country Status (2)

Country Link
JP (1) JPWO2015141408A1 (en)
WO (1) WO2015141408A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019503213A (en) * 2015-12-03 2019-02-07 インサイテック リミテッド Urethral catheter, system and method for use during prostate treatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119266A (en) * 1987-11-02 1989-05-11 Terumo Corp Appliance for securing cavity bore
US5224953A (en) * 1992-05-01 1993-07-06 The Beth Israel Hospital Association Method for treatment of obstructive portions of urinary passageways
JP2000288092A (en) * 1999-04-12 2000-10-17 Tomio Ota Catheter
JP2003524506A (en) * 2000-03-01 2003-08-19 イナークール セラピーズ インコーポレイテッド Cryotherapy and device for angioplasty with restenosis
JP2007503250A (en) * 2003-08-26 2007-02-22 ボストン サイエンティフィック サイムド, インコーポレイテッド Stent delivery system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119266A (en) * 1987-11-02 1989-05-11 Terumo Corp Appliance for securing cavity bore
US5224953A (en) * 1992-05-01 1993-07-06 The Beth Israel Hospital Association Method for treatment of obstructive portions of urinary passageways
JP2000288092A (en) * 1999-04-12 2000-10-17 Tomio Ota Catheter
JP2003524506A (en) * 2000-03-01 2003-08-19 イナークール セラピーズ インコーポレイテッド Cryotherapy and device for angioplasty with restenosis
JP2007503250A (en) * 2003-08-26 2007-02-22 ボストン サイエンティフィック サイムド, インコーポレイテッド Stent delivery system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019503213A (en) * 2015-12-03 2019-02-07 インサイテック リミテッド Urethral catheter, system and method for use during prostate treatment

Also Published As

Publication number Publication date
JPWO2015141408A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
ES2783877T3 (en) Dual-function protrusion self-expanding device delivery apparatus
US7524329B2 (en) Self contracting stent
JP4584832B2 (en) Stent supply device
ES2649548T3 (en) Implant delivery system with mutually locked RX port orientation
JP7410940B2 (en) medical implant delivery system
CA2704920C (en) Self-expanding prosthesis
JP5128601B2 (en) Bifurcation delivery system and catheter assembly
US8636760B2 (en) System and method for delivering and deploying an occluding device within a vessel
US10064747B2 (en) System and method for delivering and deploying an occluding device within a vessel
JP4187930B2 (en) Arterial repair device and method
US8267985B2 (en) System and method for delivering and deploying an occluding device within a vessel
ES2684305T3 (en) Endoluminal prostheses with lateral branching
JP4798675B2 (en) Medical catheter device
US8449594B2 (en) Method and apparatus for caged stent delivery
EP2898920B1 (en) Articulating balloon catheter
BRPI0611054A2 (en) system for controlled release of stents and grafts
JP2017510367A (en) Implant delivery system
CN112426613A (en) Device and method for enhanced drug delivery
US20120203322A1 (en) Quick release mechanism for medical device deployment
JP2018187366A (en) Stent delivery system
JP2013223663A (en) Protective sleeve for balloon catheter, balloon catheter system, and stent delivery system
WO2015141408A1 (en) Medical instrument
JPH0316152B2 (en)
JP2018157914A (en) Scoring device and operation method for scoring device
WO2022249464A1 (en) Delivery device and endoscope system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508625

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765082

Country of ref document: EP

Kind code of ref document: A1