WO2015105038A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2015105038A1
WO2015105038A1 PCT/JP2015/000008 JP2015000008W WO2015105038A1 WO 2015105038 A1 WO2015105038 A1 WO 2015105038A1 JP 2015000008 W JP2015000008 W JP 2015000008W WO 2015105038 A1 WO2015105038 A1 WO 2015105038A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition plate
partition
refrigerator
door
heating unit
Prior art date
Application number
PCT/JP2015/000008
Other languages
French (fr)
Japanese (ja)
Inventor
濱田 和幸
健一 柿田
美桃子 井下
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014001323A external-priority patent/JP2015129605A/en
Priority claimed from JP2014031345A external-priority patent/JP5919582B2/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to DE212015000043.5U priority Critical patent/DE212015000043U1/en
Priority to CN201590000227.4U priority patent/CN205860637U/en
Publication of WO2015105038A1 publication Critical patent/WO2015105038A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/02Details of doors or covers not otherwise covered
    • F25D2323/021French doors

Definitions

  • This invention relates to the refrigerator which closed the front opening of the storage room provided in the upper part of the main body in the double doors type with the left and right doors arranged side by side.
  • Home-use large-capacity refrigerators are commercialized as refrigerators with many doors in each storage room along with diversification of cooling storage temperature to meet various user needs.
  • forms such as a type in which a vertically long freezer room and a vegetable room are juxtaposed below the upper refrigerator compartment, and a side-by-side type in which a freezer compartment and a refrigerator compartment are juxtaposed on the left and right have been commercialized.
  • a partition plate made of a thin steel plate that forms the suction surface of the door gasket of the rotating partition is first overlapped by folding the flat suction surface and its both side edges inward. Further, it is bent inward to have a shape having an angle portion, and the outer peripheral surface of the partition plate and the outer surface of the heat insulating member provided inside the partition plate are covered with a synthetic resin partition frame.
  • a configuration in which the partition plate is engaged and held by the partition frame body, and a surface heater is attached to the inner surface of the partition plate to prevent condensation generated on the surface of the partition plate is widely used (see, for example, Patent Document 1). .
  • FIG. 11 shows a configuration of a double door type door in the refrigerator storage room 3 of the conventional refrigerator.
  • the rotary partition 13 is configured such that the left door 7 and the right door 8 are closed, the door gasket 11 of the left door 7 and the right door. 8 door gasket 12 is adsorbed.
  • the basic structure of the rotating partition 13 includes a partition plate 16 made of a thin steel plate, which is a magnetic body that forms an attracting surface, a molded heat insulating member 18 made of polystyrene foam that forms a heat insulating layer, and the rotating partition 13 that covers these components.
  • a partition frame 17 made of synthetic resin that forms the outer shell, a surface heater 19 (heating unit) made of an aluminum foil heater or the like disposed on the inner surface of the partition plate 16, and an upper end of the rotary partition 13 are arranged.
  • a cap member 58 having a guide groove formed on the upper end surface.
  • cap member 58 for the purpose of fitting the refrigerated storage chamber 3 and the rotary partition 13 also serves to cover and connect the upper ends of the partition plate 16 and the partition frame 17.
  • the door gaskets 11 and 12 cooled by the temperature effect of the refrigerator compartment which has become a low temperature are in direct contact with the partition plate 16 made of a thin steel plate having a high thermal conductivity.
  • the surface temperature of the air-released portion of the battery was lowered, the capacity of the surface heater was increased more than necessary, and the amount of power consumption was increased.
  • This invention solves said subject and aims at providing the refrigerator which can reduce the electric power input to heating parts, such as a heater of a rotary partition.
  • This invention solves said subject and aims at providing the refrigerator which can reduce the heater capacity
  • the partition plate is made of a non-insulating thin steel plate and has a large area.
  • an electric part such as a surface heater is affixed to the inner surface, it is necessary to provide a ground wire in consideration of leakage. There is a problem that the configuration is complicated and the cost is high.
  • This invention solves said subject, and aims at providing the refrigerator which abolishes a ground wire and can attain cost reduction with a simple structure.
  • the refrigerator of the present invention has a front opening of a storage room closed by a double door with left and right doors arranged side by side, and a rotary partition extending in the vertical direction is provided on the inner surface of at least one of the left and right doors on the opposite side.
  • the rotating partition is a partition plate that forms at least a suction surface of the door gasket, a heat insulating material disposed inside the rotating partition, a partition frame that covers a peripheral portion of the partition plate and an outer surface of the heat insulating material, And a heating unit disposed on the inner surface of the partition plate.
  • a partition plate and a partition frame are formed with a synthetic resin.
  • the refrigerator of the present invention is provided with a rotating partition body that is closed in a double-spreading manner with left and right doors arranged in parallel with the front opening of the storage room, and that extends in the vertical direction on the inner surface of at least one of the left and right doors.
  • the rotating partition is a partition plate that forms at least a suction surface of the door gasket, a heat insulating material disposed inside the rotating partition, a partition frame that covers a peripheral portion of the partition plate and an outer surface of the heat insulating material, And a heating portion linearly disposed on the inner surface of the partition plate. Then, the partition plate and the partition frame are made of synthetic resin.
  • the heat generation amount that is, the watt density is made variable by the portion where the heating part is divided into a plurality of parts.
  • FIG. 1 is a front view showing a state in which the double doors of a refrigerator in the first and fourth embodiments of the present invention are opened.
  • FIG. 2 is a cross-sectional view of an essential part showing a closed state of the refrigerator compartment door in the first and fourth embodiments of the present invention.
  • FIG. 3 is a graph for explaining the relationship between the energization rate of the heating section and the surface temperature of the partition plate in the first and fourth embodiments of the present invention.
  • FIG. 4 is a cross-sectional view of a main part of the rotating partition of the refrigerator in the second embodiment of the present invention.
  • FIG. 5 is a graph illustrating the relationship between the energization rate of the heating unit of the refrigerator and the surface temperature of the partition plate according to the second embodiment of the present invention.
  • FIG. 6 is a graph for explaining the adsorption force between the rotary partition and the door gasket of the refrigerator according to the second embodiment of the present invention.
  • FIG. 7 is an exploded perspective view of the rotating partition plate of the refrigerator in the third embodiment of the present invention.
  • FIG. 8 is a cross-sectional view taken along the line 8-8 in FIG. 2, showing the main part of the refrigerator according to the fourth embodiment of the present invention.
  • FIG. 9 is a configuration diagram of the heating unit of the refrigerator in the fifth embodiment of the present invention.
  • FIG. 10 is a graph for explaining the relationship between the heating value of the heating part and the partition plate surface temperature in each part of the heating part of the refrigerator in the fifth embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a closed state of a refrigerator compartment door of a conventional refrigerator.
  • FIG. 12 is an exploded perspective view of a rotating partition of a conventional refrigerator.
  • FIG. 1 is a front view showing a state in which a double door type left door 102 and a right door 103 are opened in the refrigerator 100 according to the first embodiment of the present invention.
  • the refrigerator 100 has a left door 102 located on the left side and a right door 103 located on the right side, and FIG. 1 shows a state in which the left door 102 and the right door 103 are opened.
  • the portion where the left door 102 and the right door 103 are provided is a portion of the refrigerated storage chamber 105, the ice making chamber 106 below the left door 102, and the frozen storage chamber 107 and vegetable compartment 108 below the ice making chamber 106.
  • a switching chamber 109 is provided on the right side of the ice making chamber 106 under the right door 103.
  • the left door 102 and the right door 103 are each pivotally supported by a hinge part so as to open to the left and right sides, and a rotating partition 200 is provided on the non-pivot side of the left door 102.
  • the rotating partition 200 rotates in accordance with the opening / closing operation of the left door 102.
  • the non-pivot side of the left door 102 and the right door 103 is closed via the door gasket 110 to be refrigerated. Cold air leakage from the storage chamber 105 to the outside of the refrigerator 100 is prevented.
  • a heat insulating partition member (not shown) is disposed between the refrigerator compartment 105, the ice making chamber 106, the frozen storage chamber 107, the vegetable compartment 108, and the switching chamber 109.
  • Steel plate covers 501, 502, and 503 are disposed on the front surface, and are closed via door gaskets 110 of the respective storage chamber doors to prevent cold air leakage from the respective storage chambers to the outside of the refrigerator 100.
  • the rotary partition 200 has a partition plate 210 that forms an adsorption surface 111 with the door gasket 110, and a heat insulating material 220 made of styrene foam disposed inside the rotary partition 200. Furthermore, the rotary partition 200 has a synthetic resin partition frame 230 that covers the peripheral edge of the partition plate 210 and the outer surface of the heat insulating material 220, and a heating unit 240 disposed at the center of the inner surface of the partition plate 210.
  • the partition plate 210 is made of synthetic resin, and two magnetic bodies 211 are attached to the inner surface.
  • the magnetic body 211 is configured in almost the entire height of the rotary partition 200 with respect to the height direction of the refrigerator, and the magnetic body configured in the door gasket 110 when the left door 102 and the right door 103 are closed. It arrange
  • rectangular plastic magnets are used as the magnetic body 211 and the magnetic body 112.
  • the heating unit 240 and the magnetic body 211 are held in pressure contact between the partition plate 210 and the heat insulating material 220.
  • the heating unit 240 is a surface heater in which an aluminum foil is attached to a linear heater.
  • the door gaskets 11 and 12 cooled by the temperature effect of the refrigerated storage chamber 3 having a low temperature are directly applied to the partition plate 16 made of a thin steel plate having high thermal conductivity.
  • the surface temperature of the air release part of the partition plate 16 is lowered more than necessary.
  • suction surface 111 of the door gasket 110 of the rotary partition 200 was made from the synthetic resin.
  • the surface temperature of the partition plate 210 in the present embodiment Is about 3K higher than the surface temperature of the conventional partition plate.
  • the energization rate for maintaining the dew point temperature when the outside air conditions are 30 ° C. and 75% is approximately 40% in the present embodiment, compared with 50% in the conventional example. It can be seen that it can be reduced by 10%. This is because the partition plate 210 with which the door gasket 110 contacts is made of a synthetic resin having a low thermal conductivity, so that a decrease in the temperature of the atmosphere opening portion 212 of the partition plate 210 is suppressed.
  • the front opening of the storage chamber is closed in a double-split manner with the left door 102 and the right door 103 disposed side by side, and at least one of the left door 102 and the right door 103 is pivoted.
  • a rotary partition 200 extending in the vertical direction is provided on the inner surface of the support side to serve as a suction surface for the door gasket 110.
  • the rotary partition plate 201 includes a partition plate 210 that forms at least a suction surface of the door gasket 110 and a heat insulating material 220 disposed inside the rotary partition body 200.
  • a synthetic resin partition frame 230 covering the peripheral edge of the partition plate 210 and the outer surface of the heat insulating material 220, and a heating unit 240 disposed on the inner surface of the partition plate 210 are provided.
  • the partition plate 210 is made of synthetic resin, the surface temperature of the partition plate 210 can be maintained high, and the input to the heating unit 240 can be reduced.
  • the magnetic body 211 is disposed on the inner surface of the partition plate 210 so as to face the magnetic body 112 configured inside the door gasket 110, and the door gasket 110 and the rotary partition body 200 can be adsorbed. it can.
  • FIG. 4 is a cross-sectional view of a main part of the rotating partition of the refrigerator according to the second embodiment of the present invention
  • FIG. 5 is a diagram illustrating the current ratio and partition plate of the heating unit of the refrigerator according to the second embodiment of the present invention. It is the graph explaining the relationship of the surface temperature of.
  • FIG. 6 is a graph illustrating the adsorption force between the rotating partition and the door gasket of the refrigerator according to the second embodiment of the present invention. Note that the same components as those in the first embodiment of the present invention are denoted by the same reference numerals and description thereof is omitted.
  • the heating unit 240 disposed in the central portion and the portions where the magnetic body 211 disposed on both sides of the heating unit 240 is in contact with the partition plate 310 are respectively Recesses 312 and 313 are formed. That is, the thickness is reduced with respect to the basic plate thickness of the partition plate 310, and the heating unit 240 and the magnetic body 211 are fixed to the recesses 312 and 313 so as to fit in each other.
  • the heating unit 240 and the magnetic body 211 are held in pressure contact between the partition plate 310 and a heat insulating material (not shown).
  • the surface temperature of the partition plate 310 in the present embodiment is the present invention. It is about 1K higher than the surface temperature of the partition plate 210 in the first embodiment. Moreover, it turns out that the electricity supply rate for maintaining the dew point temperature when external air conditions are 30 degreeC and 75% can be reduced about 2%. This is because the distance from the heating unit 240 to the surface of the partition plate 310 is small and the thermal resistance is small because the heating unit 240 is fixed in the recess 312.
  • the reduced thickness portion can be limited by forming the recess 312, the basic thickness of the partition plate 310 can be maintained, and the partition plate 310 can be formed without lowering the strength of the structure more than necessary. Therefore, deformation of the rotary partition 200 can be prevented.
  • the adsorption force between the partition plate 310 and the door gasket 110 in the case of the present embodiment is increased as compared with the configuration of the first embodiment of the present invention. This is because the distance between the magnetic body 211 and the magnetic body 112 in the door gasket 110 is reduced by forming the recess 313 in contact with the magnetic body 211.
  • the reduced thickness portion can be limited by forming the recess 313, the basic thickness of the partition plate 310 can be maintained, and without reducing the strength of the structure more than necessary, the partition plate 310 and The deformation of the rotary partition 200 having the partition plate 310 as a constituent element can be prevented.
  • the inner surface of the partition plate 310 and the arrangement portion of the heating unit 240 are configured to be thinner than the basic plate thickness of the partition plate 310, thereby reducing the thermal resistance. Input to the heating unit 240 can be reduced.
  • the inner surface of the partition plate 310 and the portion where the magnetic body 211 is disposed are configured to be thinner than the basic plate thickness of the partition plate 310, and the door gasket 110 and the rotating partition body can be favorably adsorbed by reducing the distance. be able to.
  • the basic thickness of the partition plate 310 can be maintained, and deformation of the rotating partition can be prevented.
  • FIG. 7 is an exploded perspective view of the rotating partition plate of the refrigerator according to the third embodiment of the present invention.
  • symbol is attached
  • the rotating partition 400 includes a synthetic resin partition plate 410 that forms an adsorption surface 111 with the door gasket 110, and a polystyrene foam heat insulating material (not shown) disposed inside the rotating partition 400. Is provided.
  • the rotary partition 400 includes a synthetic resin partition frame 430 that covers the peripheral edge of the partition plate 410 and the outer surface of the heat insulating material, a heating unit 240 disposed at the center of the inner surface of the partition plate 410, and the partition plate 410.
  • the two magnetic bodies 211 are provided on the inner surface.
  • a guide groove 431 is formed on the upper end surface of the partition frame 430, and the guide groove 431 is engaged with a guide pin (not shown) protruding downward from the ceiling surface of the refrigerator 100.
  • the heating unit 240 is disposed on the inner surface of the synthetic resin partition plate 410, so that it is not necessary to deal with electric leakage and can have a simple configuration. .
  • the partition plate 410 is made of resin, the upper end surface has a degree of freedom, can be engaged with the partition frame 430, and the guide groove 431 is formed on the upper end surface of the partition frame 430. Therefore, a simple configuration can be obtained without using a separate cap.
  • the basic configuration of the refrigerator in the fourth embodiment of the present invention is the same as the refrigerator in the first embodiment of the present invention shown in FIGS. 1 and 2, and the refrigerator in the first embodiment of the present invention. Different parts will be explained.
  • FIG. 8 is a cross-sectional view taken along the line 8-8 in FIG. 2, and shows a cross section of the main part of the rotating partition of the refrigerator in the present embodiment.
  • the heating unit 240 provided in the rotary partition 200 of the refrigerator in the present embodiment is a linear member such as a linear heater, and is arranged between the magnetic members 211 in parallel with the magnetic member 211 as shown in FIG. Is done.
  • the heating unit 240 is not affected by the arrangement of the magnetic body 211, and the portion of the partition plate 210 that is most likely to condense can be efficiently heated with low thermal resistance. Can do.
  • FIG. 9 is a specific configuration diagram of the heating unit of the refrigerator in the fifth embodiment of the present invention
  • FIG. 10 is the heating value of the heating unit in each part of the heating unit of the refrigerator in the fifth embodiment of the present invention. It is a graph explaining the relationship between a partition plate surface temperature.
  • the same components as those in the first to fourth embodiments of the present invention are denoted by the same reference numerals and description thereof is omitted.
  • the heating unit 240 is a linear heater having a length L, and is approximately the same length as the rotary partition 200 of the refrigerator 100 in the first embodiment of the present invention shown in FIG. 1. 2 is disposed at the center of the synthetic resin partition plate 210 shown in FIG.
  • the heating unit 240 has a variable calorific value, that is, a watt density.
  • the part a, the part b, and the part c are variable.
  • the resistance value can be changed by changing the winding pitch of the linear winding resistance wire, or the resistance paste component of the printing resistor can be changed.
  • the heating unit 240 is divided into three parts, a part a, a part b, and a part c, but may be divided into a plurality of parts according to the purpose.
  • the heating unit 240 when the heating unit 240 is not energized, the surface temperature of the partition plate 210 is low at the central part (part b) as shown by the dotted line, and the temperature increases toward both ends (parts a and b). This is because non-uniform temperature distribution occurs due to the sealing property and heat conduction between the refrigerated storage chamber 105 and the door gasket 110, or the influence of cold air circulation in the refrigerated storage chamber 105.
  • the heating unit 240 when the heating unit 240 is energized, since the surface temperature of the partition plate 210 is in the dew condensation region, it is necessary to energize the heating unit 240 to raise each part to a temperature higher than the dew condensation boundary line.
  • the heating value of the heating unit 240 is variable depending on the part. That is, as indicated by the solid line, the part b increases the amount of heat generation, and the part a and part c decrease.
  • the surface temperature (dotted line) of the partition plate 210 without energization to the heating unit 240 can be a uniform surface temperature (solid line) exceeding the dew point boundary line as much as necessary.
  • the heating value for the area surrounded by the diagonal line is unnecessary, and the power consumption can be reduced accordingly.
  • the present invention provides a rotating partition body that is closed in a double-split manner with the left and right doors in which the front opening of the storage chamber is juxtaposed, and extends vertically on the inner surface of at least one of the left and right doors on the side opposite to the pivot.
  • the rotating partition is a partition plate that forms at least an adsorption surface of the door gasket, a heat insulating material disposed inside the rotating partition, a partition frame that covers the peripheral edge of the partition plate and the outer surface of the heat insulating material, And a heating unit disposed on the inner surface of the partition plate.
  • the partition plate and the partition frame body are formed of synthetic resin. With this configuration, condensation on the surface of the partition plate of the rotating partition can be prevented with a minimum of input.
  • the magnetic body is disposed on the inner surface of the partition body, so that the adsorbing force between the door gasket and the partition plate can be ensured.
  • the magnetic material is arranged at a position facing the magnetic material formed in the door gasket in a state where the left and right doors are closed, so that the door gasket can obtain a good adsorption force.
  • the temperature of the surface of the partition plate can be increased by configuring the arrangement portion of the heating portion on the inner surface of the partition plate to be thinner than the basic plate thickness of the partition plate.
  • the magnetic material disposed on the inner surface of the partition plate is configured to be thinner than the basic plate thickness of the partition plate, whereby the magnetic force generated on the surface of the partition plate can be enhanced.
  • the heating part is arranged in a straight line, the heating part is not affected by the arrangement of the magnetic body, and the part of the partition plate that is most likely to be condensed in a state of low thermal resistance. Can be efficiently heated, so energy can be saved.
  • the heating section is arranged between the magnetic bodies, so that it is possible to configure a rotating partition body that ensures both adsorption force and surface temperature in a limited space.
  • the heat generation amount that is, the watt density is made variable by dividing the heating portion into a plurality of parts, the partition plate surface temperature of the rotating partition is made uniform, and thus there is no variation in temperature distribution. The required power input can be reduced.
  • the refrigerator according to the present invention is such that the partition plate which is the adsorption surface of the rotating partition and the door gasket is made of resin, and power consumption can be reduced while preventing condensation. It can also be applied to. Moreover, the method of arranging a magnetic body on the inner surface of the resin flange and adsorbing it with the door gasket can also be applied to the front cover of the heat insulating partition member that partitions the storage compartments of the refrigerator.

Abstract

A refrigerator whereby a front surface opening of a cooling and storage chamber is sealed by a left-side door (102) and a right-side door (103) that open from the center. A rotating partitioning body (200) is provided that spans the vertical direction, on the inside surface of an opposite pivotal-support side of at least either the left-side door (102) or the right-side door (103), and forms an adhesion surface (111) with a door gasket (110). In addition, the rotating partitioning body (200) comprises: a partitioning plate (210) forming the adhesion surface (111) with at least the door gasket (110); a heat-insulating material (220) arranged inside the rotating partitioning body (200); a composite resin partitioning frame (230) that covers a ridge section of the partitioning plate (210) and the outer surface of the heat-insulating material (220); and a heating unit (240) arranged on the inside surface of the partitioning plate (210). The partitioning plate (210) comprises composite resin and prevents condensation and reduces power consumption.

Description

冷蔵庫refrigerator
 本発明は、本体上部に設けた貯蔵室の前面開口を、併置した左右扉で観音開き式に閉塞した冷蔵庫に関する。 This invention relates to the refrigerator which closed the front opening of the storage room provided in the upper part of the main body in the double doors type with the left and right doors arranged side by side.
 家庭用の大容量冷蔵庫は、多様なユーザニーズに対応すべく冷却貯蔵温度の多様化とともに貯蔵室ごとに多くの扉を設けた冷蔵庫が商品化されている。そして、冷凍室を上部に配置したトップフリーザータイプ、上部の冷蔵室と下部の野菜室との間に冷凍室を配置したミドルフリーザータイプ、冷凍室を最下部に配置したボトムフリーザタイプなどの形態が商品化されてきた。さらに、上部の冷蔵室の下方に縦長の冷凍室と野菜室を併置したタイプ、冷凍室と冷蔵室とを左右に併置したサイドバイサイドタイプなどの形態が商品化されてきた。 Home-use large-capacity refrigerators are commercialized as refrigerators with many doors in each storage room along with diversification of cooling storage temperature to meet various user needs. There are top freezer type with the freezer compartment at the top, middle freezer type with the freezer compartment between the upper refrigerator compartment and the lower vegetable compartment, and the bottom freezer type with the freezer compartment at the bottom. It has been commercialized. Furthermore, forms such as a type in which a vertically long freezer room and a vegetable room are juxtaposed below the upper refrigerator compartment, and a side-by-side type in which a freezer compartment and a refrigerator compartment are juxtaposed on the left and right have been commercialized.
 このような商品環境の中で、近年では、使い勝手を考慮して、使用頻度が高く収納容積の最も大きい冷蔵室を観音開き式の扉として最上段に配置し、その下方に製氷室や温度切替室、そしてその下方に野菜室、最下部に冷凍室を設置したタイプの冷蔵庫が主流になっている。このタイプの冷蔵庫では、冷蔵室の観音開き式扉の一方の開放端側の内面に閉扉時には他方の扉側へ回動する仕切体を取付けてガスケットの吸着面を設けるようにしている。 In such a product environment, in recent years, considering ease of use, a refrigerator room that is frequently used and has the largest storage capacity has been placed at the top as a double door, and an ice making room and a temperature switching room are located below it. Refrigerators with a vegetable compartment below and a freezer compartment at the bottom are the mainstream. In this type of refrigerator, a partition that turns to the other door side when the door is closed is attached to the inner surface of one open end of the double door of the refrigerator compartment so as to provide an adsorption surface for the gasket.
 更に、近年の冷蔵庫における観音開き式の扉では、扉が大型化して縦方向寸法も長くなっており、縦方向に長い仕切体が湾曲することによる外面意匠上の課題が発生する。その課題を解決するために、回転仕切体の扉ガスケットの吸着面を形成する薄鋼板製の仕切板を、まず平板状の吸着面とその両側端縁を内方に折り返して重ね合わせている。さらに内方に折曲してアングル部を有する形状とし、仕切板の周縁部および仕切板の庫内側に設けた断熱部材の外面を合成樹脂製の仕切枠で覆う。加えて、この仕切枠体で仕切板を係合保持し、仕切板内面に面ヒータを貼付けて仕切板表面の発生する結露を防止した構成が広く普及している(例えば、特許文献1参照)。 Furthermore, in the case of the double doors in recent refrigerators, the doors are enlarged and the longitudinal dimensions are long, and there are problems in the design of the outer surface due to the curved long partition in the longitudinal direction. In order to solve the problem, a partition plate made of a thin steel plate that forms the suction surface of the door gasket of the rotating partition is first overlapped by folding the flat suction surface and its both side edges inward. Further, it is bent inward to have a shape having an angle portion, and the outer peripheral surface of the partition plate and the outer surface of the heat insulating member provided inside the partition plate are covered with a synthetic resin partition frame. In addition, a configuration in which the partition plate is engaged and held by the partition frame body, and a surface heater is attached to the inner surface of the partition plate to prevent condensation generated on the surface of the partition plate is widely used (see, for example, Patent Document 1). .
 以下、図11、図12を用いて、従来の冷蔵庫の回転仕切体の仕様を説明する。 Hereinafter, the specifications of the conventional rotary partition of the refrigerator will be described with reference to FIGS. 11 and 12.
 図11は従来の冷蔵庫の冷蔵貯蔵室3における観音開き式扉の構成を示し、回転仕切体13は、左側扉7と右側扉8が閉じた状態で、左側扉7の扉ガスケット11と、右側扉8の扉ガスケット12と吸着している。 FIG. 11 shows a configuration of a double door type door in the refrigerator storage room 3 of the conventional refrigerator. The rotary partition 13 is configured such that the left door 7 and the right door 8 are closed, the door gasket 11 of the left door 7 and the right door. 8 door gasket 12 is adsorbed.
 回転仕切体13の基本構成としては、吸着面を形成する磁性体である薄鋼板製の仕切板16と断熱層を形成する発泡スチロール製の成形断熱部材18と、これらを覆って回転仕切体13の外郭を形成する合成樹脂製の仕切枠体17と、仕切板16の内面には配設されたアルミ箔ヒータなどからなる面ヒータ19(加温部)と、回転仕切体13の上端部に配設され、上端面にガイド溝が形成されたキャップ部材58とから構成されている。 The basic structure of the rotating partition 13 includes a partition plate 16 made of a thin steel plate, which is a magnetic body that forms an attracting surface, a molded heat insulating member 18 made of polystyrene foam that forms a heat insulating layer, and the rotating partition 13 that covers these components. A partition frame 17 made of synthetic resin that forms the outer shell, a surface heater 19 (heating unit) made of an aluminum foil heater or the like disposed on the inner surface of the partition plate 16, and an upper end of the rotary partition 13 are arranged. And a cap member 58 having a guide groove formed on the upper end surface.
 一般的には、上記の構成では、鋼板製の仕切板16と面ヒータ19が直接接触しているため、漏電対応として仕切板16と冷蔵庫本体を接続するアース線を配設する必要がある。 Generally, in the above configuration, since the steel plate partition plate 16 and the surface heater 19 are in direct contact with each other, it is necessary to provide a ground wire for connecting the partition plate 16 and the refrigerator main body in order to prevent leakage.
 また、冷蔵貯蔵室3と回転仕切体13の勘合を目的としたキャップ部材58は、仕切板16と仕切枠体17のそれぞれの上部終端を覆って連結する役目も果たしている。 Further, the cap member 58 for the purpose of fitting the refrigerated storage chamber 3 and the rotary partition 13 also serves to cover and connect the upper ends of the partition plate 16 and the partition frame 17.
 しかしながら、上記従来の構成では、低温となった冷蔵室の温度影響で冷やされた扉ガスケット11、12が、熱伝導率の高い薄鋼板製の仕切板16に直接接触することで、仕切板16の大気開放部の表面温度が低下し、必要以上に面ヒータの容量が大きくなり消費電力量が増加するという課題を有していた。 However, in the above-described conventional configuration, the door gaskets 11 and 12 cooled by the temperature effect of the refrigerator compartment which has become a low temperature are in direct contact with the partition plate 16 made of a thin steel plate having a high thermal conductivity. As a result, the surface temperature of the air-released portion of the battery was lowered, the capacity of the surface heater was increased more than necessary, and the amount of power consumption was increased.
 本発明は、上記の課題を解決するもので、回転仕切体のヒータ等の加温部への電力入力を低減できる冷蔵庫を提供することを目的とする。 This invention solves said subject and aims at providing the refrigerator which can reduce the electric power input to heating parts, such as a heater of a rotary partition.
 本発明は、上記の課題を解決するもので、回転仕切体のヒータ容量を低減できる冷蔵庫を提供することを目的とする。 This invention solves said subject and aims at providing the refrigerator which can reduce the heater capacity | capacitance of a rotary partition.
 また、上記従来の構成では、仕切板が絶縁性のない薄鋼板製でその面積も大きく、内面に面ヒータ等電気部品を貼付ける場合に、漏電への配慮からアース線を配設する必要があり、構成が複雑で、高コストになるという課題を有していた。 In the above conventional configuration, the partition plate is made of a non-insulating thin steel plate and has a large area. When an electric part such as a surface heater is affixed to the inner surface, it is necessary to provide a ground wire in consideration of leakage. There is a problem that the configuration is complicated and the cost is high.
 本発明は、上記の課題を解決するもので、アース線を廃止し、簡単な構成で低コスト化が図れる冷蔵庫を提供することを目的とする。 This invention solves said subject, and aims at providing the refrigerator which abolishes a ground wire and can attain cost reduction with a simple structure.
特開2010-249491号公報JP 2010-249491 A
 本発明の冷蔵庫は、貯蔵室の前面開口を、併置した左右扉で観音開き式に閉塞し、左右扉の少なくともいずれか一方の反枢支側の内面に縦方向に亙る回転仕切体を設けて扉ガスケットの吸着面としている。また、回転仕切体は、少なくとも扉ガスケットの吸着面を形成する仕切板と、回転仕切体内部に配設された断熱材と、仕切板の周縁部および断熱材の外面を覆う仕切枠体と、仕切板内面に配設された加温部とを備える。そして、仕切板と仕切枠体とを合成樹脂で形成したものである。 The refrigerator of the present invention has a front opening of a storage room closed by a double door with left and right doors arranged side by side, and a rotary partition extending in the vertical direction is provided on the inner surface of at least one of the left and right doors on the opposite side. The adsorption surface of the gasket. In addition, the rotating partition is a partition plate that forms at least a suction surface of the door gasket, a heat insulating material disposed inside the rotating partition, a partition frame that covers a peripheral portion of the partition plate and an outer surface of the heat insulating material, And a heating unit disposed on the inner surface of the partition plate. And a partition plate and a partition frame are formed with a synthetic resin.
 これによって、回動仕切板の結露を防止するための加温部への入力を抑制でき、省エネルギーを図ることができる。また、これによってアース線を廃止することができ、簡単な構成で低コスト化が図れる。 This makes it possible to suppress the input to the heating unit for preventing the condensation of the rotating partition plate and to save energy. In addition, the ground wire can be abolished, and the cost can be reduced with a simple configuration.
 また、本発明の冷蔵庫は、貯蔵室の前面開口を併置した左右扉で観音開き式に閉塞し、左右扉の少なくともいずれか一方の反枢支側の内面に縦方向に亙る回転仕切体を設けて扉ガスケットの吸着面としている。また、回転仕切体は、少なくとも扉ガスケットの吸着面を形成する仕切板と、回転仕切体内部に配設された断熱材と、仕切板の周縁部および断熱材の外面を覆う仕切枠体と、仕切板内面に直線状的に配設された加温部とを備える。そして、仕切板と仕切枠体とを合成樹脂製で形成したものである。 Further, the refrigerator of the present invention is provided with a rotating partition body that is closed in a double-spreading manner with left and right doors arranged in parallel with the front opening of the storage room, and that extends in the vertical direction on the inner surface of at least one of the left and right doors. The suction surface of the door gasket. In addition, the rotating partition is a partition plate that forms at least a suction surface of the door gasket, a heat insulating material disposed inside the rotating partition, a partition frame that covers a peripheral portion of the partition plate and an outer surface of the heat insulating material, And a heating portion linearly disposed on the inner surface of the partition plate. Then, the partition plate and the partition frame are made of synthetic resin.
 これにより、回動仕切体の結露を防止するための加温部への電力入力が抑制され、アース線を廃止することができる。さらに仕切体に内側に磁性体を配設するスペースが確保でき、簡単な構成で低コスト化が図れる。 This makes it possible to suppress the power input to the heating unit for preventing condensation of the rotating partition and to eliminate the ground wire. Further, a space for arranging the magnetic body inside the partition can be secured, and the cost can be reduced with a simple configuration.
 また、本発明の冷蔵庫は、加温部を複数に分割した部位により、発熱量すなわちワット密度を可変としたものである。これにより、仕切板の表面温度が均一になり、加温部への無駄な電力入力がさらに削減でき、省エネルギーを図ることができる。 In the refrigerator of the present invention, the heat generation amount, that is, the watt density is made variable by the portion where the heating part is divided into a plurality of parts. Thereby, the surface temperature of a partition plate becomes uniform, the wasteful electric power input to a heating part can further be reduced, and energy saving can be aimed at.
図1は、本発明の第1および第4の実施の形態における冷蔵庫の観音開き式扉を開扉した状態を示す正面図である。FIG. 1 is a front view showing a state in which the double doors of a refrigerator in the first and fourth embodiments of the present invention are opened. 図2は、本発明の第1および第4の実施の形態における冷蔵室扉の閉扉状態を示す要部断面図である。FIG. 2 is a cross-sectional view of an essential part showing a closed state of the refrigerator compartment door in the first and fourth embodiments of the present invention. 図3は、本発明の第1および第4の実施の形態における加温部の通電率と仕切板の表面温度の関係を説明するグラフである。FIG. 3 is a graph for explaining the relationship between the energization rate of the heating section and the surface temperature of the partition plate in the first and fourth embodiments of the present invention. 図4は、本発明の第2の実施の形態における冷蔵庫の回転仕切体の要部断面図である。FIG. 4 is a cross-sectional view of a main part of the rotating partition of the refrigerator in the second embodiment of the present invention. 図5は、本発明の第2の実施の形態における冷蔵庫の加温部の通電率と仕切板の表面温度の関係を説明したグラフである。FIG. 5 is a graph illustrating the relationship between the energization rate of the heating unit of the refrigerator and the surface temperature of the partition plate according to the second embodiment of the present invention. 図6は、本発明の第2の実施の形態における冷蔵庫の回転仕切体と扉ガスケットとの吸着力を説明するグラフである。FIG. 6 is a graph for explaining the adsorption force between the rotary partition and the door gasket of the refrigerator according to the second embodiment of the present invention. 図7は、本発明の第3の実施の形態における冷蔵庫の回転仕切板の分解斜視図である。FIG. 7 is an exploded perspective view of the rotating partition plate of the refrigerator in the third embodiment of the present invention. 図8は、本発明の第4の実施の形態における冷蔵庫要部を示す図2の8-8断面図である。FIG. 8 is a cross-sectional view taken along the line 8-8 in FIG. 2, showing the main part of the refrigerator according to the fourth embodiment of the present invention. 図9は、本発明の第5の実施の形態における冷蔵庫の加温部の構成図である。FIG. 9 is a configuration diagram of the heating unit of the refrigerator in the fifth embodiment of the present invention. 図10は、本発明の第5の実施の形態における冷蔵庫の加温部各部位における加温部の発熱量と仕切板表面温度の関係を説明するグラフである。FIG. 10 is a graph for explaining the relationship between the heating value of the heating part and the partition plate surface temperature in each part of the heating part of the refrigerator in the fifth embodiment of the present invention. 図11は、従来の冷蔵庫の冷蔵室扉の閉扉状態を示す断面図である。FIG. 11 is a cross-sectional view showing a closed state of a refrigerator compartment door of a conventional refrigerator. 図12は、従来の冷蔵庫の回転仕切体の分解斜視図である。FIG. 12 is an exploded perspective view of a rotating partition of a conventional refrigerator.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.
 (第1の実施の形態)
 図1は、本発明の第1の実施の形態における冷蔵庫100の、観音開き式の左側扉102および右側扉103を開扉した状態を示す正面図である。
(First embodiment)
FIG. 1 is a front view showing a state in which a double door type left door 102 and a right door 103 are opened in the refrigerator 100 according to the first embodiment of the present invention.
 冷蔵庫100は向かって左側に位置する左側扉102と向かって右側に位置する右側扉103を有し、図1においては、左側扉102と右側扉103を開扉させた状態を示している。左側扉102と右側扉103とが設けられている部分は冷蔵貯蔵室105の部分であり、左側扉102の下は製氷室106、さらに製氷室106の下は冷凍貯蔵室107、野菜室108が配置されている。右側扉103の下で製氷室106の右隣には切替室109が設けられている。 The refrigerator 100 has a left door 102 located on the left side and a right door 103 located on the right side, and FIG. 1 shows a state in which the left door 102 and the right door 103 are opened. The portion where the left door 102 and the right door 103 are provided is a portion of the refrigerated storage chamber 105, the ice making chamber 106 below the left door 102, and the frozen storage chamber 107 and vegetable compartment 108 below the ice making chamber 106. Has been placed. A switching chamber 109 is provided on the right side of the ice making chamber 106 under the right door 103.
 左側扉102と右側扉103はそれぞれヒンジ部により枢支されて左側と右側に開くように構成されており、左側扉102の非枢支側には回転仕切体200を設けている。この回転仕切体200は、左側扉102の開閉動作に応じて回転し、閉扉された状態では、左側扉102および右側扉103の非枢支側を、扉ガスケット110を介して閉塞して、冷蔵貯蔵室105内から冷蔵庫100の外への冷気漏れを防止している。 The left door 102 and the right door 103 are each pivotally supported by a hinge part so as to open to the left and right sides, and a rotating partition 200 is provided on the non-pivot side of the left door 102. The rotating partition 200 rotates in accordance with the opening / closing operation of the left door 102. When the door is closed, the non-pivot side of the left door 102 and the right door 103 is closed via the door gasket 110 to be refrigerated. Cold air leakage from the storage chamber 105 to the outside of the refrigerator 100 is prevented.
 ここで、冷蔵貯蔵室105、製氷室106、冷凍貯蔵室107、野菜室108および切替室109の各貯蔵室間には断熱仕切部材(図示せず)が配置されており、この断熱仕切部材の前面には、鋼板製のカバー501、502、503が配設され、各貯蔵室扉の扉ガスケット110を介して閉塞し、各貯蔵室から冷蔵庫100の外への冷気漏れを防止している。 Here, a heat insulating partition member (not shown) is disposed between the refrigerator compartment 105, the ice making chamber 106, the frozen storage chamber 107, the vegetable compartment 108, and the switching chamber 109. Steel plate covers 501, 502, and 503 are disposed on the front surface, and are closed via door gaskets 110 of the respective storage chamber doors to prevent cold air leakage from the respective storage chambers to the outside of the refrigerator 100.
 図2において、回転仕切体200は、扉ガスケット110との吸着面111を形成する仕切板210と、回転仕切体200内部に配設された発泡スチロール製の断熱材220を有する。さらに、回転仕切体200は、仕切板210の周縁部および断熱材220の外面を覆う合成樹脂製の仕切枠体230と、仕切板210内面中央に配設された加温部240を有する。 In FIG. 2, the rotary partition 200 has a partition plate 210 that forms an adsorption surface 111 with the door gasket 110, and a heat insulating material 220 made of styrene foam disposed inside the rotary partition 200. Furthermore, the rotary partition 200 has a synthetic resin partition frame 230 that covers the peripheral edge of the partition plate 210 and the outer surface of the heat insulating material 220, and a heating unit 240 disposed at the center of the inner surface of the partition plate 210.
 ここで、仕切板210は、合成樹脂製であり、内面には2つの磁性体211が取り付けられている。磁性体211は、冷蔵庫の高さ方向に対して回転仕切体200の高さほぼ全域に構成されており、左側扉102と右側扉103が閉扉した状態において、扉ガスケット110内に構成された磁性体112と対向するように配置されている。本実施の形態では磁性体211および磁性体112として直方体のプラスチックマグネットを使用した。 Here, the partition plate 210 is made of synthetic resin, and two magnetic bodies 211 are attached to the inner surface. The magnetic body 211 is configured in almost the entire height of the rotary partition 200 with respect to the height direction of the refrigerator, and the magnetic body configured in the door gasket 110 when the left door 102 and the right door 103 are closed. It arrange | positions so that the body 112 may be opposed. In this embodiment, rectangular plastic magnets are used as the magnetic body 211 and the magnetic body 112.
 更に、加温部240および磁性体211は、仕切板210と断熱材220の間で圧接して保持されている。 Further, the heating unit 240 and the magnetic body 211 are held in pressure contact between the partition plate 210 and the heat insulating material 220.
 加温部240は、線状ヒータにアルミ箔を貼り付けた面ヒータである。 The heating unit 240 is a surface heater in which an aluminum foil is attached to a linear heater.
 以上のように構成された冷蔵庫について、以下その動作、作用について説明する。 About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
 まず、従来の構成では、図11で示すように、低温となった冷蔵貯蔵室3の温度影響で冷やされた扉ガスケット11,12が、熱伝導率の高い薄鋼板製の仕切板16に直接接触することで、必要以上に仕切板16の大気開放部の表面温度が低下する。そして、低下した表面温度を補って露点温度以上にするために、面ヒータ19の容量を大きくする必要があった。これに対して、本実施の形態の場合、回転仕切体200の扉ガスケット110の吸着面111を形成する仕切板210を合成樹脂製とした。このことで、図3の加温部の通電率と仕切板の表面温度の関係を説明したグラフにおいて、まず、同一の通電率の条件では、本実施の形態の場合の仕切板210の表面温度は、従来の仕切板の表面温度に対して約3K高い。また、図3に示すように、外気条件が30℃、75%のときの露点温度を維持するための通電率は、従来例が50%に対して本実施の形態が約40%であり約10%低減できることがわかる。これは、扉ガスケット110が接触する仕切板210を熱伝導率の小さな合成樹脂にしたことで、仕切板210の大気開放部212の温度の低下が抑制されたことによる。 First, in the conventional configuration, as shown in FIG. 11, the door gaskets 11 and 12 cooled by the temperature effect of the refrigerated storage chamber 3 having a low temperature are directly applied to the partition plate 16 made of a thin steel plate having high thermal conductivity. By contacting, the surface temperature of the air release part of the partition plate 16 is lowered more than necessary. And in order to make up for the lowered surface temperature to be higher than the dew point temperature, it is necessary to increase the capacity of the surface heater 19. On the other hand, in the case of this Embodiment, the partition plate 210 which forms the adsorption | suction surface 111 of the door gasket 110 of the rotary partition 200 was made from the synthetic resin. Thus, in the graph illustrating the relationship between the energization rate of the heating unit and the surface temperature of the partition plate in FIG. 3, first, under the condition of the same energization rate, the surface temperature of the partition plate 210 in the present embodiment. Is about 3K higher than the surface temperature of the conventional partition plate. In addition, as shown in FIG. 3, the energization rate for maintaining the dew point temperature when the outside air conditions are 30 ° C. and 75% is approximately 40% in the present embodiment, compared with 50% in the conventional example. It can be seen that it can be reduced by 10%. This is because the partition plate 210 with which the door gasket 110 contacts is made of a synthetic resin having a low thermal conductivity, so that a decrease in the temperature of the atmosphere opening portion 212 of the partition plate 210 is suppressed.
 加えて、扉ガスケット110内に構成された磁性体112と対向するように、磁性体211を配置することで、扉ガスケット110との吸着という、回転仕切体200の基本機能を確保することができる。 In addition, by disposing the magnetic body 211 so as to face the magnetic body 112 configured in the door gasket 110, it is possible to ensure the basic function of the rotating partition 200, such as adsorption to the door gasket 110. .
 以上のように、本実施の形態においては、貯蔵室の前面開口を、併置した左側扉102と右側扉103で観音開き式に閉塞し、左側扉102と右側扉103の少なくともいずれか一方の反枢支側の内面に縦方向に亙る回転仕切体200を設けて扉ガスケット110の吸着面としている。また、回転仕切板201が、少なくとも扉ガスケット110の吸着面を形成する仕切板210と、回転仕切体200の内部に配設された断熱材220を備える。また、仕切板210の周縁部および断熱材220の外面を覆う合成樹脂製の仕切枠体230と、仕切板210の内面に配設された加温部240とを備える。そして、仕切板210を合成樹脂製としたものであり、仕切板210の表面温度を高く維持でき、加温部240への入力を削減することができる。 As described above, in the present embodiment, the front opening of the storage chamber is closed in a double-split manner with the left door 102 and the right door 103 disposed side by side, and at least one of the left door 102 and the right door 103 is pivoted. A rotary partition 200 extending in the vertical direction is provided on the inner surface of the support side to serve as a suction surface for the door gasket 110. Further, the rotary partition plate 201 includes a partition plate 210 that forms at least a suction surface of the door gasket 110 and a heat insulating material 220 disposed inside the rotary partition body 200. Further, a synthetic resin partition frame 230 covering the peripheral edge of the partition plate 210 and the outer surface of the heat insulating material 220, and a heating unit 240 disposed on the inner surface of the partition plate 210 are provided. Further, the partition plate 210 is made of synthetic resin, the surface temperature of the partition plate 210 can be maintained high, and the input to the heating unit 240 can be reduced.
 加えて、扉ガスケット110の内部に構成された磁性体112と対向するように、仕切板210の内面に磁性体211を配置したものであり、扉ガスケット110と回転仕切体200を吸着させることができる。 In addition, the magnetic body 211 is disposed on the inner surface of the partition plate 210 so as to face the magnetic body 112 configured inside the door gasket 110, and the door gasket 110 and the rotary partition body 200 can be adsorbed. it can.
 (第2の実施の形態)
 図4は本発明の第2の実施の形態における冷蔵庫の回転仕切体の要部断面図であり、図5は本発明の第2の実施の形態における冷蔵庫の加温部の通電率と仕切板の表面温度の関係を説明したグラフである。図6は本発明の第2の実施の形態における冷蔵庫の回転仕切体と扉ガスケットとの吸着力を説明したグラフである。なお、本発明の第1の実施の形態と同一構成については同一符号を付して、説明を省略する。
(Second Embodiment)
FIG. 4 is a cross-sectional view of a main part of the rotating partition of the refrigerator according to the second embodiment of the present invention, and FIG. 5 is a diagram illustrating the current ratio and partition plate of the heating unit of the refrigerator according to the second embodiment of the present invention. It is the graph explaining the relationship of the surface temperature of. FIG. 6 is a graph illustrating the adsorption force between the rotating partition and the door gasket of the refrigerator according to the second embodiment of the present invention. Note that the same components as those in the first embodiment of the present invention are denoted by the same reference numerals and description thereof is omitted.
 図4において、仕切板310の内面の形状としては、中央部に配設された加温部240及び加温部240の両側に配設される磁性体211が仕切板310に接する部分は、それぞれ凹部312、313となっている。つまり、仕切板310の基本板厚に対して、減肉してあり、この凹部312、313に対して、加温部240及び磁性体211がそれぞれはまり込むように固定されている。 In FIG. 4, as the shape of the inner surface of the partition plate 310, the heating unit 240 disposed in the central portion and the portions where the magnetic body 211 disposed on both sides of the heating unit 240 is in contact with the partition plate 310 are respectively Recesses 312 and 313 are formed. That is, the thickness is reduced with respect to the basic plate thickness of the partition plate 310, and the heating unit 240 and the magnetic body 211 are fixed to the recesses 312 and 313 so as to fit in each other.
 更に、加温部240及び磁性体211は、仕切板310と断熱材(図示せず)の間で圧接して保持されている。 Furthermore, the heating unit 240 and the magnetic body 211 are held in pressure contact between the partition plate 310 and a heat insulating material (not shown).
 以上のように構成された冷蔵庫について、以下その動作、作用について説明する。 About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
 図5の加温部の通電率と仕切板の表面温度の関係を説明したグラフにおいて、まず、同一の通電率の条件では、本実施の形態の場合の仕切板310の表面温度は、本発明の第1の実施の形態における仕切板210の表面温度に対して約1K高い。また、外気条件が30℃、75%のときの露点温度を維持するための通電率は、約2%低減できることがわかる。これは、凹部312に加温部240をはめこんで固定したことで、加温部240から仕切板310の表面までの距離が小さく、熱抵抗が小さくなったことによる。 In the graph illustrating the relationship between the energization rate of the heating unit and the surface temperature of the partition plate in FIG. 5, first, under the conditions of the same energization rate, the surface temperature of the partition plate 310 in the present embodiment is the present invention. It is about 1K higher than the surface temperature of the partition plate 210 in the first embodiment. Moreover, it turns out that the electricity supply rate for maintaining the dew point temperature when external air conditions are 30 degreeC and 75% can be reduced about 2%. This is because the distance from the heating unit 240 to the surface of the partition plate 310 is small and the thermal resistance is small because the heating unit 240 is fixed in the recess 312.
 また、凹部312を形成することで、厚みを薄くした減肉部が限定できることから、仕切板310の基本肉厚が維持でき、必要以上に構造体の強度を低下させることなく、仕切板310しいては回転仕切体200の変形を防止することができる。 In addition, since the reduced thickness portion can be limited by forming the recess 312, the basic thickness of the partition plate 310 can be maintained, and the partition plate 310 can be formed without lowering the strength of the structure more than necessary. Therefore, deformation of the rotary partition 200 can be prevented.
 図6において、本実施の形態の場合の仕切板310と扉ガスケット110間の吸着力は、本発明の第1の実施の形態の構成に比べて増加している。これは、磁性体211が接する凹部313を形成したことで、磁性体211と、扉ガスケット110内の磁性体112との距離が減少したことによる。 In FIG. 6, the adsorption force between the partition plate 310 and the door gasket 110 in the case of the present embodiment is increased as compared with the configuration of the first embodiment of the present invention. This is because the distance between the magnetic body 211 and the magnetic body 112 in the door gasket 110 is reduced by forming the recess 313 in contact with the magnetic body 211.
 また、凹部313を形成することで、厚みを薄くした減肉部が限定できることから、仕切板310の基本肉厚が維持でき、必要以上に構造体の強度を低下させることなく、仕切板310および仕切板310を構成要素としている回転仕切体200の変形を防止することができる。 In addition, since the reduced thickness portion can be limited by forming the recess 313, the basic thickness of the partition plate 310 can be maintained, and without reducing the strength of the structure more than necessary, the partition plate 310 and The deformation of the rotary partition 200 having the partition plate 310 as a constituent element can be prevented.
 以上のように、本実施の形態においては、仕切板310の内面で、かつ加温部240の配設部を、仕切板310の基本板厚より薄く構成したものであり、熱抵抗の低減により加温部240への入力を削減することができる。 As described above, in the present embodiment, the inner surface of the partition plate 310 and the arrangement portion of the heating unit 240 are configured to be thinner than the basic plate thickness of the partition plate 310, thereby reducing the thermal resistance. Input to the heating unit 240 can be reduced.
 また、仕切板310の内面で、かつ磁性体211の配設部を、仕切板310の基本板厚より薄く構成したものであり、距離低減により、扉ガスケット110と回転仕切体を良好に吸着させることができる。 In addition, the inner surface of the partition plate 310 and the portion where the magnetic body 211 is disposed are configured to be thinner than the basic plate thickness of the partition plate 310, and the door gasket 110 and the rotating partition body can be favorably adsorbed by reducing the distance. be able to.
 また、加温部240及び磁性体211の配設部のみ凹形状としたことで、仕切板310の基本肉厚が維持でき、回転仕切体の変形を防止することができる。 In addition, since only the heating portion 240 and the arrangement portion of the magnetic body 211 are concave, the basic thickness of the partition plate 310 can be maintained, and deformation of the rotating partition can be prevented.
 (第3の実施の形態)
 図7は本発明の第3の実施の形態における冷蔵庫の回転仕切板の分解斜視図である。なお、本発明の第1の実施の形態および第2の実施の形態と同一構成については同一符号を付して、説明を省略する。
(Third embodiment)
FIG. 7 is an exploded perspective view of the rotating partition plate of the refrigerator according to the third embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as the 1st Embodiment and 2nd Embodiment of this invention, and description is abbreviate | omitted.
 図7において、回転仕切体400は、扉ガスケット110との吸着面111を形成する合成樹脂製の仕切板410と、回転仕切体400内部に配設された発泡スチロール製の断熱材(図示せず)を備える。また、回転仕切体400は、仕切板410の周縁部および断熱材の外面を覆う合成樹脂製の仕切枠体430と、仕切板410内面中央に配設された加温部240と、仕切板410の内面に配設した2つの磁性体211を備える。 In FIG. 7, the rotating partition 400 includes a synthetic resin partition plate 410 that forms an adsorption surface 111 with the door gasket 110, and a polystyrene foam heat insulating material (not shown) disposed inside the rotating partition 400. Is provided. The rotary partition 400 includes a synthetic resin partition frame 430 that covers the peripheral edge of the partition plate 410 and the outer surface of the heat insulating material, a heating unit 240 disposed at the center of the inner surface of the partition plate 410, and the partition plate 410. The two magnetic bodies 211 are provided on the inner surface.
 このとき、仕切枠体430の上端面にガイド溝431が形成されており、ガイド溝431は冷蔵庫100の天井面から下方に突設されたガイドピン(図示せず)が係合している。 At this time, a guide groove 431 is formed on the upper end surface of the partition frame 430, and the guide groove 431 is engaged with a guide pin (not shown) protruding downward from the ceiling surface of the refrigerator 100.
 以上のように、本実施の形態においては、加温部240は、合成樹脂製の仕切板410の内面に配設されているので、漏電対応の必要がなく、簡素な構成とすることができる。 As described above, in the present embodiment, the heating unit 240 is disposed on the inner surface of the synthetic resin partition plate 410, so that it is not necessary to deal with electric leakage and can have a simple configuration. .
 加えて、仕切板410が樹脂製で、上部端面の形状に自由度があり、仕切枠体430との係合が可能で、かつ仕切枠体430の上端面にガイド溝431を成形されているので、別途キャップを用いることなく、簡素な構成とすることができる。 In addition, the partition plate 410 is made of resin, the upper end surface has a degree of freedom, can be engaged with the partition frame 430, and the guide groove 431 is formed on the upper end surface of the partition frame 430. Therefore, a simple configuration can be obtained without using a separate cap.
 (第4の実施の形態)
 以下、本発明の第4の実施の形態における冷蔵庫について説明する。
(Fourth embodiment)
Hereinafter, the refrigerator in the 4th Embodiment of this invention is demonstrated.
 本発明の第4の実施の形態における冷蔵庫の基本構成は、図1、図2に示す本発明の第1の実施の形態における冷蔵庫と同様であり、本発明の第1の実施の形態における冷蔵庫と異なる部分を説明する。 The basic configuration of the refrigerator in the fourth embodiment of the present invention is the same as the refrigerator in the first embodiment of the present invention shown in FIGS. 1 and 2, and the refrigerator in the first embodiment of the present invention. Different parts will be explained.
 図8は図2の8-8断面図であり、本実施の形態における冷蔵庫の回転仕切体の要部断面を示す。本実施の形態における冷蔵庫の回転仕切体200に設ける加温部240は線状ヒータ等の直線状なもので、図8に示すように、磁性体211の間に磁性体211と並行して配置される。 FIG. 8 is a cross-sectional view taken along the line 8-8 in FIG. 2, and shows a cross section of the main part of the rotating partition of the refrigerator in the present embodiment. The heating unit 240 provided in the rotary partition 200 of the refrigerator in the present embodiment is a linear member such as a linear heater, and is arranged between the magnetic members 211 in parallel with the magnetic member 211 as shown in FIG. Is done.
 この構成により、加温部240が磁性体211の配置に影響されずに、熱抵抗が少ない状態で仕切板210の最も結露する可能性のある部分を効率良く加温できるので、省エネルギーを図ることができる。 With this configuration, the heating unit 240 is not affected by the arrangement of the magnetic body 211, and the portion of the partition plate 210 that is most likely to condense can be efficiently heated with low thermal resistance. Can do.
 (第5の実施の形態)
 図9は本発明の第5の実施の形態における冷蔵庫の加温部の具体構成図、図10は本発明の第5の実施の形態における冷蔵庫の加温部各部位における加温部の発熱量と仕切板表面温度の関係を説明するグラフである。なお、本発明の第1~第4の実施の形態と同一構成については同一符号を付して、説明を省略する。
(Fifth embodiment)
FIG. 9 is a specific configuration diagram of the heating unit of the refrigerator in the fifth embodiment of the present invention, and FIG. 10 is the heating value of the heating unit in each part of the heating unit of the refrigerator in the fifth embodiment of the present invention. It is a graph explaining the relationship between a partition plate surface temperature. The same components as those in the first to fourth embodiments of the present invention are denoted by the same reference numerals and description thereof is omitted.
 図9において、加温部240は長さLを持つ直線状のヒータであり、図1に示す本発明の第1の実施の形態における冷蔵庫100の回転仕切体200の長さとほぼ同じ長さで、図2に示す合成樹脂製の仕切板210の中央に配置される。加温部240はその発熱量すなわちワット密度が可変であり、図9では部位a、部位b、部位cと3区分を可変としている。尚、加温部240を構成するヒータの発熱量を可変にする具体的な部としては、線状巻線抵抗線の巻きピッチを変えて抵抗値を可変したり、印刷抵抗の抵抗ペースト成分を可変してシート抵抗としたり、抵抗値の異なる発熱抵抗線を直列接続すれば可能である。また、本実施の形態では加温部240を部位a、部位b、部位cと3区分としたが、目的に応じて複数区分とすれば良い。 In FIG. 9, the heating unit 240 is a linear heater having a length L, and is approximately the same length as the rotary partition 200 of the refrigerator 100 in the first embodiment of the present invention shown in FIG. 1. 2 is disposed at the center of the synthetic resin partition plate 210 shown in FIG. The heating unit 240 has a variable calorific value, that is, a watt density. In FIG. 9, the part a, the part b, and the part c are variable. In addition, as a specific part that makes the heating value of the heater constituting the heating unit 240 variable, the resistance value can be changed by changing the winding pitch of the linear winding resistance wire, or the resistance paste component of the printing resistor can be changed. This can be achieved by varying the sheet resistance or connecting in series resistance heating wires with different resistance values. In the present embodiment, the heating unit 240 is divided into three parts, a part a, a part b, and a part c, but may be divided into a plurality of parts according to the purpose.
 以上のように構成された冷蔵庫について、以下その動作、作用について図10を用いて説明する。 About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below using FIG.
 まず、加温部240に通電がない場合、仕切板210の表面温度は点線で示す様に、中央部(部位b)では低く、両端に向かうほど温度は高くなる(部位a、b)。これは冷蔵貯蔵室105と扉ガスケット110の密閉性や熱伝導、あるいは冷蔵貯蔵室105内の冷気循環影響により温度分布の不均一が発生してしまうからである。次に、加温部240を通電する場合、仕切板210の表面温度が結露領域にあるので、加温部240を通電して各部位を結露境界線以上の温度に昇温させる必要がある。 First, when the heating unit 240 is not energized, the surface temperature of the partition plate 210 is low at the central part (part b) as shown by the dotted line, and the temperature increases toward both ends (parts a and b). This is because non-uniform temperature distribution occurs due to the sealing property and heat conduction between the refrigerated storage chamber 105 and the door gasket 110, or the influence of cold air circulation in the refrigerated storage chamber 105. Next, when the heating unit 240 is energized, since the surface temperature of the partition plate 210 is in the dew condensation region, it is necessary to energize the heating unit 240 to raise each part to a temperature higher than the dew condensation boundary line.
 この時、一点鎖線で示す発熱量一定の従来の加温部であるヒータでは、各部位の温度上昇が一定のため、最も温度の低い部位bに発熱量を合わせる必要があり、部位a、部位cに対しては一点鎖線の様に不必要な温度上昇が発生してしまう。 At this time, in a heater that is a conventional heating unit with a constant calorific value indicated by a one-dot chain line, since the temperature rise of each part is constant, it is necessary to match the calorific value with the part b having the lowest temperature. For c, an unnecessary temperature increase occurs as shown by the alternate long and short dash line.
 一方、本実施の形態では図10に示す様に、加温部240をの発熱量を部位により可変にしている。すなわち実線で示す様に、部位bは発熱量を大きくし、部位a、部位cでは小さくする。こうすることで、加温部240への通電なしの仕切板210の表面温度(点線)は、露点境界線を必要最小限越えた均一な表面温度(実線)にすることができる。これを加温部の発熱量で従来と比較すると、斜線で囲った領域分の発熱量が不要で、その分消費電力量が削減できる。 On the other hand, in the present embodiment, as shown in FIG. 10, the heating value of the heating unit 240 is variable depending on the part. That is, as indicated by the solid line, the part b increases the amount of heat generation, and the part a and part c decrease. By doing so, the surface temperature (dotted line) of the partition plate 210 without energization to the heating unit 240 can be a uniform surface temperature (solid line) exceeding the dew point boundary line as much as necessary. Compared with the conventional heating value of the heating part, the heating value for the area surrounded by the diagonal line is unnecessary, and the power consumption can be reduced accordingly.
 以上説明したように、本発明は、貯蔵室の前面開口を併置した左右扉で観音開き式に閉塞し、左右扉の少なくともいずれか一方の反枢支側の内面に縦方向に亙る回転仕切体を設けて扉ガスケットの吸着面とする。また、回転仕切体が、少なくとも扉ガスケットの吸着面を形成する仕切板と、回転仕切体内部に配設された断熱材と、仕切板の周縁部および断熱材の外面を覆う仕切枠体と、仕切板内面に配設された加温部とを備える。また、仕切板と仕切枠体とを合成樹脂で形成する。この構成により、回転仕切体の仕切板表面の結露を最小限の入力で防止することができる。 As described above, the present invention provides a rotating partition body that is closed in a double-split manner with the left and right doors in which the front opening of the storage chamber is juxtaposed, and extends vertically on the inner surface of at least one of the left and right doors on the side opposite to the pivot. Provided as the suction surface of the door gasket. In addition, the rotating partition is a partition plate that forms at least an adsorption surface of the door gasket, a heat insulating material disposed inside the rotating partition, a partition frame that covers the peripheral edge of the partition plate and the outer surface of the heat insulating material, And a heating unit disposed on the inner surface of the partition plate. Further, the partition plate and the partition frame body are formed of synthetic resin. With this configuration, condensation on the surface of the partition plate of the rotating partition can be prevented with a minimum of input.
 また、本発明は、仕切体の内面に磁性体を配設したことにより、扉ガスケットと仕切板の吸着力を確保することができる。 Further, according to the present invention, the magnetic body is disposed on the inner surface of the partition body, so that the adsorbing force between the door gasket and the partition plate can be ensured.
 また、本発明は、磁性体は、左右扉が閉塞した状態において、扉ガスケット内に構成された磁性体と対向する位置に配置したことにより、扉ガスケットは良好な吸着力を得ることができる。 Further, according to the present invention, the magnetic material is arranged at a position facing the magnetic material formed in the door gasket in a state where the left and right doors are closed, so that the door gasket can obtain a good adsorption force.
 また、本発明は、仕切板内面の加温部の配設部は、仕切板の基本板厚より薄く構成したことにより、仕切板表面の温度を上昇させることができる。 Further, according to the present invention, the temperature of the surface of the partition plate can be increased by configuring the arrangement portion of the heating portion on the inner surface of the partition plate to be thinner than the basic plate thickness of the partition plate.
 また、本発明は、仕切板内面の磁性体の配設部は、仕切板の基本板厚より薄く構成したことにより、仕切板表面に生じる磁力を強化することができる。 Further, according to the present invention, the magnetic material disposed on the inner surface of the partition plate is configured to be thinner than the basic plate thickness of the partition plate, whereby the magnetic force generated on the surface of the partition plate can be enhanced.
 また、本発明は、加温部を直線状に配設したことにより、加温部が磁性体の配置に影響されずに、熱抵抗が少ない状態で仕切板の最も結露する可能性のある部分を効率良く加温できるので、省エネルギーを図ることができる。 Further, according to the present invention, since the heating part is arranged in a straight line, the heating part is not affected by the arrangement of the magnetic body, and the part of the partition plate that is most likely to be condensed in a state of low thermal resistance. Can be efficiently heated, so energy can be saved.
 また、本発明は、加温部は磁性体が複数ある場合に、磁性体の間に配置したことにより、限られたスペースで吸着力と表面温度を両立確保した回転仕切体が構成できる。 Further, according to the present invention, when there are a plurality of magnetic bodies, the heating section is arranged between the magnetic bodies, so that it is possible to configure a rotating partition body that ensures both adsorption force and surface temperature in a limited space.
 また、本発明は、加温部を複数に分割した部位により、発熱量すなわちワット密度を可変としたことにより、回転仕切体の仕切板表面温度が均一化されるので、温度分布ばらつきがなくなり不必要な電力入力が削減できる。 Further, according to the present invention, since the heat generation amount, that is, the watt density is made variable by dividing the heating portion into a plurality of parts, the partition plate surface temperature of the rotating partition is made uniform, and thus there is no variation in temperature distribution. The required power input can be reduced.
 以上のように、本発明にかかる冷蔵庫は、回転仕切体と扉ガスケットの吸着面である仕切板を樹脂製としたものであり、結露を防止しつつ消費電力を削減できるので、業務用冷蔵庫等にも適用できる。また、樹脂製のフランジ内面に磁性体を配設して、扉ガスケットとの吸着を行う方法は、冷蔵庫の各貯蔵室を仕切る断熱仕切部材の前面のカバーにも応用できる。 As described above, the refrigerator according to the present invention is such that the partition plate which is the adsorption surface of the rotating partition and the door gasket is made of resin, and power consumption can be reduced while preventing condensation. It can also be applied to. Moreover, the method of arranging a magnetic body on the inner surface of the resin flange and adsorbing it with the door gasket can also be applied to the front cover of the heat insulating partition member that partitions the storage compartments of the refrigerator.
 3,105 冷蔵貯蔵室
 7,102 左側扉
 8,103 右側扉
 11,12,110 扉ガスケット
 13,200,400 回転仕切体
 16,210,410 仕切板
 17,230,430 仕切枠体
 18 成形断熱部材
 19 面ヒータ
 58 キャップ部材
 100 冷蔵庫
 112 磁性体
 211 磁性体
 220 断熱材
 240 加温部
 310 仕切板
 312 凹部
 313 凹部
 431 ガイド溝
 501,502,503 カバー
3,105 refrigerator compartment 7,102 left door 8,103 right door 11,12,110 door gasket 13,200,400 rotating partition 16,210,410 partition plate 17,230,430 partition frame 18 molded heat insulating member 19 Surface heater 58 Cap member 100 Refrigerator 112 Magnetic body 211 Magnetic body 220 Heat insulating material 240 Heating part 310 Partition plate 312 Recessed part 313 Recessed part 431 Guide groove 501, 502, 503 Cover

Claims (8)

  1. 貯蔵室の前面開口を、併置した左右扉で観音開き式に閉塞し、前記左右扉の少なくともいずれか一方の反枢支側の内面に縦方向にわたる回転仕切体を設けて扉ガスケットとの吸着面とした冷蔵庫において、前記回転仕切体は、少なくとも扉ガスケットとの吸着面を形成する仕切板と、前記回転仕切体内部に配設された断熱材と、前記仕切板の周縁部および前記断熱材の外面を覆う仕切枠体と、前記仕切板内面に配設された加温部とを備え、前記仕切板と前記仕切枠体とを合成樹脂で形成した冷蔵庫。 The front opening of the storage chamber is closed in a double-split manner with the left and right doors juxtaposed, and a rotating partition extending in the vertical direction is provided on the inner surface of at least one of the left and right doors on the side opposite to the pivot, In the refrigerator, the rotating partition includes at least a partition plate that forms an adsorption surface with the door gasket, a heat insulating material disposed inside the rotating partition, a peripheral portion of the partition plate, and an outer surface of the heat insulating material. A refrigerator comprising: a partition frame body that covers the interior of the partition plate; and a heating portion disposed on an inner surface of the partition plate, wherein the partition plate and the partition frame body are formed of a synthetic resin.
  2. 前記仕切体の内面に磁性体を配設した請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein a magnetic body is disposed on an inner surface of the partition.
  3. 前記磁性体は、前記左右扉が閉塞した状態において、前記扉ガスケット内に構成された磁性体と対向する位置に配置した請求項2に記載の冷蔵庫。 The refrigerator according to claim 2, wherein the magnetic body is disposed at a position facing the magnetic body configured in the door gasket in a state where the left and right doors are closed.
  4. 前記仕切板内面の前記加温部の配設部は、前記仕切板の基本板厚より薄く構成した請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein an arrangement portion of the heating portion on the inner surface of the partition plate is configured to be thinner than a basic plate thickness of the partition plate.
  5. 前記仕切板内面の前記磁性体の配設部は、前記仕切板の基本板厚より薄く構成した請求項2または3のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 2 and 3, wherein an arrangement portion of the magnetic body on the inner surface of the partition plate is configured to be thinner than a basic plate thickness of the partition plate.
  6. 前記加温部を直線状に配設した請求項1記載の冷蔵庫。 The refrigerator according to claim 1, wherein the heating unit is arranged linearly.
  7. 前記磁性体を複数で構成するとともに、前記加温部を複数ある前記磁性体の間に配置した請求項6に記載の冷蔵庫。 The refrigerator according to claim 6, wherein a plurality of the magnetic bodies are configured and the heating unit is disposed between the plurality of magnetic bodies.
  8. 前記加温部を複数の部位に分割し、発熱量を可変とした請求項6または7のいずれか一項に記載の冷蔵庫。 The refrigerator as described in any one of Claim 6 or 7 which divided | segmented the said heating part into several site | parts, and made calorific value variable.
PCT/JP2015/000008 2014-01-08 2015-01-05 Refrigerator WO2015105038A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE212015000043.5U DE212015000043U1 (en) 2014-01-08 2015-01-05 fridge
CN201590000227.4U CN205860637U (en) 2014-01-08 2015-01-05 Freezer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-001323 2014-01-08
JP2014001323A JP2015129605A (en) 2014-01-08 2014-01-08 refrigerator
JP2014-031345 2014-02-21
JP2014031345A JP5919582B2 (en) 2014-02-21 2014-02-21 refrigerator

Publications (1)

Publication Number Publication Date
WO2015105038A1 true WO2015105038A1 (en) 2015-07-16

Family

ID=53523868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000008 WO2015105038A1 (en) 2014-01-08 2015-01-05 Refrigerator

Country Status (3)

Country Link
CN (1) CN205860637U (en)
DE (1) DE212015000043U1 (en)
WO (1) WO2015105038A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10345030B2 (en) * 2017-01-06 2019-07-09 Panasonic Corporation Refrigerator
JP2021025664A (en) * 2019-07-31 2021-02-22 パナソニックIpマネジメント株式会社 refrigerator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578902A (en) * 1984-09-25 1986-04-01 Ardco, Inc. Reversible refrigerator door with improved electrical outlet mounting arrangement
JPH0542983U (en) * 1991-11-13 1993-06-11 三洋電機株式会社 Storage cabinet connection device
JPH06300422A (en) * 1993-04-14 1994-10-28 Matsushita Refrig Co Ltd Door device for freezer refrigerator
JPH11248332A (en) * 1998-02-26 1999-09-14 Fukushima Kogyo Kk Refrigerator equipped with heater for prevention of vapor condensation
JPH11311478A (en) * 1998-04-28 1999-11-09 Toshiba Corp Partition wall of refrigerator
JPH11344282A (en) * 1998-06-02 1999-12-14 Hoshizaki Electric Co Ltd Cooling storeroom
JP2004097200A (en) * 2001-12-28 2004-04-02 Enplas Corp Plastic plate and set-up body of the plastic plate
JP2009228964A (en) * 2008-03-21 2009-10-08 Toshiba Corp Refrigerator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5269720B2 (en) 2009-03-26 2013-08-21 株式会社東芝 refrigerator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578902A (en) * 1984-09-25 1986-04-01 Ardco, Inc. Reversible refrigerator door with improved electrical outlet mounting arrangement
JPH0542983U (en) * 1991-11-13 1993-06-11 三洋電機株式会社 Storage cabinet connection device
JPH06300422A (en) * 1993-04-14 1994-10-28 Matsushita Refrig Co Ltd Door device for freezer refrigerator
JPH11248332A (en) * 1998-02-26 1999-09-14 Fukushima Kogyo Kk Refrigerator equipped with heater for prevention of vapor condensation
JPH11311478A (en) * 1998-04-28 1999-11-09 Toshiba Corp Partition wall of refrigerator
JPH11344282A (en) * 1998-06-02 1999-12-14 Hoshizaki Electric Co Ltd Cooling storeroom
JP2004097200A (en) * 2001-12-28 2004-04-02 Enplas Corp Plastic plate and set-up body of the plastic plate
JP2009228964A (en) * 2008-03-21 2009-10-08 Toshiba Corp Refrigerator

Also Published As

Publication number Publication date
CN205860637U (en) 2017-01-04
DE212015000043U1 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2015162894A1 (en) Refrigerator
EP2946155B1 (en) Refrigerator
JP4859898B2 (en) Freezer refrigerator
EP3159636A1 (en) Home appliance door and home appliance
JP5961822B2 (en) refrigerator
CN101171477A (en) Refrigerating device with frame heating
JP5934953B1 (en) refrigerator
CN108278826A (en) Refrigerator
WO2015105038A1 (en) Refrigerator
JP5919582B2 (en) refrigerator
JP2015129605A (en) refrigerator
JP5934951B2 (en) refrigerator
US20160273827A1 (en) Low wattage flipper mullion
JP2018112385A (en) refrigerator
JP6901370B2 (en) refrigerator
CN203286849U (en) Wine rack for refrigerator
TW201942532A (en) Refrigerator-freezer
JP5392935B1 (en) Tray passage sealing member in partition wall of allocation vehicle and tray passage sealing structure using the same
CN206449987U (en) Freezer
CN204630232U (en) Refrigerator
JP5923684B2 (en) Refrigerator door device
JP6467593B2 (en) refrigerator
JP2003121064A (en) Refrigerator
JP2018066498A (en) refrigerator
CN108240155B (en) Household electrical appliance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15734845

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 212015000043

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15734845

Country of ref document: EP

Kind code of ref document: A1