WO2015088200A1 - Method for preparing super-absorbent resin - Google Patents

Method for preparing super-absorbent resin Download PDF

Info

Publication number
WO2015088200A1
WO2015088200A1 PCT/KR2014/011933 KR2014011933W WO2015088200A1 WO 2015088200 A1 WO2015088200 A1 WO 2015088200A1 KR 2014011933 W KR2014011933 W KR 2014011933W WO 2015088200 A1 WO2015088200 A1 WO 2015088200A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
water
superabsorbent polymer
crosslinking agent
superabsorbent
Prior art date
Application number
PCT/KR2014/011933
Other languages
French (fr)
Korean (ko)
Inventor
정화윤
한장선
유철희
김미영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140172998A external-priority patent/KR101700907B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2016534212A priority Critical patent/JP6321805B2/en
Priority to EP14870573.4A priority patent/EP3067370B2/en
Priority to US15/103,552 priority patent/US9701796B2/en
Priority to CN201480067388.5A priority patent/CN105814088B/en
Publication of WO2015088200A1 publication Critical patent/WO2015088200A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels

Definitions

  • the present invention relates to a method for producing a super absorbent polymer. More specifically, it is related with the manufacturing method of a super absorbent polymer which can obtain the superabsorbent polymer which shows not only a high water holding capacity but also a fast absorption rate and liquid permeability.
  • Super Absorbent Polymer is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight.As a developer, a super absorbent material (SAM) and an absorbent gel (AGM) They are named differently.
  • SAM super absorbent material
  • AGM absorbent gel
  • Such super absorbent polymers have been put into practical use as physiological tools, and are currently used in sanitary products such as paper diapers for children, horticultural soil repair agents, civil engineering, building index materials, seedling sheets, freshness-retaining agents in food distribution, and It is widely used as a material for steaming.
  • Reverse phase suspension polymerization is disclosed, for example, in Japanese Patent Laid-Open Nos. 56-161408, 57-158209, and 57-198714.
  • a thermal polymerization method in which a polymer gel is broken and kneaded in a kneader having several shafts, and a photopolymerization method in which polymerization and drying are simultaneously performed by irradiating ultraviolet rays or the like on a belt with a high concentration of aqueous solution Etc. are known.
  • the hydrous gel polymer obtained through the polymerization reaction as described above is generally pulverized through a drying process and marketed as a powder product.
  • Permeability in products using superabsorbent polymers is a measure of the fluidity of the liquid to be absorbed. Permeability may vary depending on the particle size distribution of the crosslinked resin, the shape of the particles and the connectivity of the openings between the particles, the surface modification of the swollen gel, etc. ⁇ Pass through the swollen particles according to the permeation of the superabsorbent resin composition The fluidity of the liquid varies. When the transmittance is low, the liquid cannot easily flow through the super absorbent polymer composition.
  • One method of increasing the transmittance in a super absorbent polymer is to perform surface crosslinking reaction after the resin is evaporated.
  • a method of adding silica or clay together with the surface crosslinking agent has been used.
  • US Pat. Nos. 5,140,076 and 4,734,478 disclose the addition of silica during surface crosslinking of dry superabsorbent resin powders.
  • the present invention provides a method for producing a superabsorbent polymer that can satisfy the demand for slimming of the thickness of the sanitary article by exhibiting a high water absorption capacity as well as fast absorption rate and solution permeability. It is aimed at
  • Thermally polymerizing or photopolymerizing the monomer composition including a water-soluble ethylenically unsaturated monomer, an internal crosslinking agent, and a polymerization initiator to form a hydrogel polymer having a gel strength of 10,000 to 13,000 Pa;
  • It provides a method for producing a super absorbent polymer comprising the step of performing a surface crosslinking reaction by mixing the ground polymer and the surface crosslinking agent.
  • the manufacturing method of the superabsorbent polymer of the present invention it is possible to provide a superabsorbent polymer having improved physical properties without having a deterioration in water-retaining capacity or pressure-absorbing capacity while having an improved absorption rate and permeability. Accordingly, it is possible to reduce the ratio of the fiber material of the sanitary article and to implement a thin thickness, to meet the trend of slimming of the sanitary article and to improve the satisfaction for convenience.
  • a gel strength is 10,000 to 10,000 by thermal polymerization or photopolymerization of a monomer composition including a water-soluble ethylenically unsaturated monomer, an internal crosslinking agent, and a polymerization initiator. Forming a hydrous gel phase polymer of 13,000 Pa;
  • the inventors of the present invention continue to study the superabsorbent polymer having high water-retaining ability and high absorption rate and liquid permeability, and the gel strength of the hydrogel polymer which becomes the base resin of the superabsorbent polymer.
  • (Gd Strength) satisfies a predetermined range and further optimizes the process conditions in the step of coarsely pulverizing the hydrogel polymer, it is possible to improve the physical properties of the final superabsorbent polymer, thereby making the hygiene to which ultra-thin technology is applied. It was confirmed that the article can be produced to complete the present invention. '
  • the monomer composition which is a raw material of the super absorbent polymer includes a water-soluble ethylenically unsaturated monomer, an internal crosslinking agent and a polymerization initiator.
  • the water-soluble ethylenically unsaturated monomer may be used without any limitation any monomers commonly used in the production of superabsorbent polymers. Any one or more monomers selected from the group consisting of anionic monomers and salts thereof, nonionic hydrophilic-containing monomers and amino group-containing unsaturated monomers and quaternized compounds thereof can be used.
  • an alkali metal salt such as acrylic acid or a salt thereof, for example acrylic acid or a sodium salt thereof can be used, and it is possible to prepare a super absorbent polymer having better physical properties by using such a monomer.
  • the alkali metal salt of acrylic acid is used as a monomer, at least a part of the acrylic acid may be neutralized with a basic compound such as caustic soda (NaOH). More specifically, the acrylic acid may be at least about 50 mol%, black at least about 60 mol%, black at least about 70 mol%, and through this, it is possible to more effectively achieve the overall physical properties of the superabsorbent polymer of the present invention.
  • the water-soluble ethylenically unsaturated monomer is an acidic group.
  • the degree of neutralization may be about 50 mol% or more.
  • the concentration of the water-soluble ethylenically unsaturated monomer, in which the 20 against the total weight of monomer composition including a source material and a solvent of the water-absorbent resin to about 60 parts by weight 0/0, preferably from about 40 to about 50 weight 0 / It may be ⁇ , and may be appropriate concentration in consideration of the polymerization time and reaction conditions.
  • concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and there may be a problem in economics.
  • the concentration is too high, a part of the monomer may be precipitated or the grinding efficiency of the polymerized hydrogel polymer may be low. Etc. may cause problems in the process and may decrease the physical properties of the super absorbent polymer.
  • the curing amount of the water-soluble ethylenically unsaturated monomer is 100% in terms of the uniformity of the internal crosslinking.
  • the internal crosslinking agent has a curing amount of about 90% to about 180%, more preferably about 95% to about 170%, based on 100% of the curing amount of the water-soluble ethylenically unsaturated monomer Compound.
  • the curing amount of acrylic acid is about 200 mJ / cm 2, so that the internal crosslinking agent It may have a cure dose of about 160 to about 400 mJ / cm 2 , preferably about 180 to about 360 mJ / cm 2 , more preferably about 190 to about 340 mJ / cm 2 .
  • the cure dose means the amount of energy required for cure. That is, the larger the number indicating the amount of curing, the more energy is required for curing. Values expressed by the amount of curing may be measured using a photometer.
  • the illuminance of a lamp is set to a predetermined hardening machine accessory, and a sample can be sent on the belt of a hardening machine, and can be evaluated through a UV hardening machine. At this time, it can be measured by evaluating how many times the curing machine has passed based on the speed of the conveyor of the curing machine and the amount of light, and calculating the total energy after the surface has been cured.
  • the "curing amounts extra amount of sample during measurement is not limited.
  • the measurement may be carried out by rolling a solution of about 0.5 cm thick in 100 mm saale and putting it on a conveyor belt to operate the belt.
  • PETTA Pentaerythritol Triacrylate
  • NPG (PO) 2DA 2mol% propoxylated Neopentylglycol Diacrylate
  • TMP (EO) 9TA 9mol% ethoxylated Trimethylolpropane triacrylate (TMPTA)
  • an acrylate-based hydrocarbon compound suitable for the production method of the super absorbent polymer of the present invention can be selected and used as the internal crosslinking agent.
  • the internal crosslinking agent usable in the production method of the present invention is not limited to the materials exemplified in Table 1 above, and as described above, it satisfies the relative curing amount range with respect to the curing amount of the single-group water-soluble ethylenically unsaturated monomer. Any material can be used without limitation.
  • the internal crosslinking agent is about 4,000 to about 7,500 ppm, preferably about 4,500 to 7,000 ppm, more preferably based on the total weight of the water-soluble ethylenically unsaturated monomer included in the monomer composition. Preferably in a concentration of about 5,000 to 6,500 ppm.
  • concentration of the internal crosslinking agent satisfies the above-mentioned range, it is possible to obtain a super optimized superabsorbent polymer having a more optimized physical property while satisfying the gel strength of about 10,000 to about 13,000 Pa.
  • the concentration of each of the internal crosslinking agents can be adjusted according to the amount of curing of the internal crosslinking agents used in a mixed manner within the range in which the concentration of the entire internal crosslinking agent is satisfied.
  • the curing amount of each internal crosslinking agent (unit: J / cm 2 ) * the corresponding internal
  • the sum of the concentrations of the crosslinkers ranges from about 800 to about 1,800, preferably from about 800 to about 1,600, more preferably from about 1,000 to about 1,500.
  • the concentration of each internal crosslinking agent may be adjusted to be used.
  • the polymerization initiator used in the polymerization in the method for producing a super absorbent polymer of the present invention is not particularly limited as long as it is generally used for producing the super absorbent polymer.
  • the polymerization initiator may use a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method.
  • a thermal polymerization initiator may be additionally included.
  • the photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
  • photopolymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. Ketal), acyl phosphine and alpha-aminoketone may be used at least one selected from the group consisting of.
  • acylphosphine commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide) can be used.
  • lucirin TPO that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide) can be used.
  • a wider variety of photoinitiators are well described in Rein old Schwalm's book, "UV Coatings: Basics, Recent Developments and New Application (El
  • the photopolymerization initiator may be included in a concentration of about 0.01 to about 1.0 weight 0 /. When the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow. When the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
  • the thermal polymerization initiator may be used at least one selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide and ascorbic acid.
  • persulfate-based initiators include sodium persulfate (Sodium persulfate; Na 2 S 2 0 8 ), potassium persulfate (K 2 S 2 0 8 ), ammonium persulfate ((NH 4 ) 2 S 2 0 8 ), and the like.
  • Examples are 2, 2-azobis (2-amidinopropane) dihydrochloride, 2, 2-azobis- (N, N-dimethylene) isobutyra Mydine dihydrochloride (2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride), 2- (carbamoyl azo) isobutyronitrile (2- (carbamoylazo) is 3utylonitril), 2, 2-azo bis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2,2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride), 4, 4-azobis- and the like - (4-cyano-ballet rigs acid) (4, 4 -azobis- (4- cyanovaleric acid)). More various thermal polymerization initiators are well specified in Odian's Principle of Polymerization (Wiley, 1981), p203, and are not limited to the examples described above.
  • the thermal polymerization initiator may be included in a concentration of about 0.001 to about 5% by weight based on the total amount of the monomer composition.
  • concentration of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, and the effect of the addition of the thermal polymerization initiator may be insignificant.
  • concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven. have.
  • the monomer composition of the super absorbent polymer may further include additives such as thickeners, plasticizers, preservative stabilizers, antioxidants and the like as necessary.
  • Raw materials such as the above-mentioned water-soluble ethylenically unsaturated monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents and additives may be prepared in the form of a monomer composition solution dissolved in a solvent.
  • the solvent that can be used at this time can be used without limitation of the composition as long as it can dissolve the above-mentioned components, for example, water, ethanol, ethylene glycol diethylene glycol, triethylene glycol, 1,4-butanediol, propylene Glycol ethylene glycol monobutyl ether, propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone cyclonuxanone, cyclopentanone, diethylene glycol monomethyl ether diethylene glycol ethyl ether, toluene , Xylene, butyrolactone, carbyl at least one selected from methyl cellosolve acetate and N, N-dimethylacetamide It can be used in combination.
  • the solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, can be generally carried out in a reactor having a stirring shaft, such as kneader, in the case of performing the thermal polymerization, and, when the photopolymerization proceeds, Although it can be carried out in a semi-unggi equipped with a conveyor belt, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
  • the photo-polymerization and the polymerization step is the polymerization temperature is irradiated with about 35 ° C or higher, or light of from about 35 to, and from about 9CTC performing a heat polymerization step, the same time about 100 to ultraviolet (UV) region of about 400 nm Can be done.
  • UV ultraviolet
  • the hydrogel polymer obtained by supplying hot air to the reactor such as a kneader having a stirring shaft or by heating and heating the reactor may be a semi-ungunggi outlet according to the shape of the stirring shaft provided in the reactor.
  • the hydrogel polymer discharged may be in the form of several centimeters to several millimeters.
  • the size of the water-containing gel polymer obtained may vary depending on the concentration and the injection speed of the monomer composition to be injected, a water-containing gel polymer having a weight average particle diameter of 2 to 50 mm can be obtained.
  • the form of the hydrogel polymer generally obtained may be a hydrogel gel-like polymer on a sheet having a width of the belt.
  • the thickness of the polymer sheet depends on the concentration and the injection speed of the monomer composition to be injected, but it is usually preferable to supply the monomer composition so that a polymer on the sheet having a thickness of about 0.5 to about 5 cm can be obtained.
  • the hydrogel polymer can be formed by photopolymerization.
  • the water content of the hydrogel polymer obtained by the above method may be about 40 to about 80% by weight.
  • the term "water content” as used throughout the specification refers to the value of the moisture content of the total hydrogel polymer weight minus the weight of the polymer in the dry state. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of drying the temperature of the polymer through infrared heating. At this time, the drying conditions are raised to a temperature of about 180 ° C at room temperature and maintained at 180 ° C. The total drying time is set to 20 minutes, including 5 minutes of temperature rise step, the moisture content is measured.
  • the polymerization proceeds in the manner described above to obtain a hydrous gel polymer having a gel strength in the range of about 10,000 to about 13,000 Pa, or about 10,500 to about 12,800 Pa, or about 10,500 to about 12,600 Pa.
  • Gel strength is a measure for evaluating the degree of crosslinking of the polymer. The higher the gel strength, the higher the crosslinking density of the polymerized hydrogel polymer.
  • the gel strength of the hydrous gel phase polymer is too low or too high out of the above range, excessive water solubility occurs in the subsequent coarse grinding step or damage of the hydrogel polymer occurs, thereby achieving sufficient water retention and absorption rate. There is a problem that is difficult to do.
  • the water-retaining capacity is controlled by adjusting the polymerization conditions so that the gel strength of the hydrogel polymer before coarse grinding is satisfied in the above range, and further optimizing the process conditions in the coarse grinding step described below. It is possible to produce a superabsorbent polymer having excellent harmonized physical properties, which exhibits synergistic effects to the extent that (CRC), pressure absorption capacity (AUP), solution permeability (SFC) and absorption rate (FSR) are excellent at the same time. Next, the step of coarsely crushing the obtained hydrogel polymer is performed.
  • the coarsely pulverizing step may be performed by injecting the hydrogel polymer into a chopper or the like and pushing it to an outlet or perforated panel in which a plurality of holes having a predetermined size are formed.
  • the extruder used to push the hydrogel polymer may be used a single or multiple screw type extruder.
  • a constant pressure is applied to the hydrogel polymer, and the original gel strength and morphology of the hydrogel polymer by this pressure ), And the surface area becomes wider.
  • the physical properties of the polymer after performing the coarse grinding step may vary according to the diameter of the hole.
  • the smaller the diameter of the hole the greater the pressure applied to the hydrous gel-like polymer and the higher the surface area, the faster the absorption rate.
  • the possibility of damage of the gel polymer is increased, so that the water-retaining ability is lowered and the residual monomers are increased. Therefore, it is not easy to find an optimized coarse grinding condition for obtaining a superabsorbent polymer having high water retention capacity and fast absorption rate and having harmonized physical properties.
  • the gel strength (unit: Pa) of the hydrous gel polymer before coarse grinding, and the hole formed in the outlet or the porous plate for coarsely grinding the hydrogel polymer in the coarse grinding step The diameter of the hole (unit: mm) was confirmed that the final superabsorbent polymer can exhibit the optimized physical properties when in the range satisfying the following formula (1).
  • Equation 1 X is the diameter of the hole (unit: mm), and y is the gel strength (unit: Pa) of the hydrous gel polymer before coarse grinding.
  • the diameter of the hole may be in the range of about 6.5 to about 10 mm.
  • the particles may be concaved with each other during the grinding process, or the residual monomers may be increased, and when the diameter is too large, exceeding 10 mm, the surface may be irregularly contracted during the subsequent drying process. There is a problem that the quality of the final resin is uneven.
  • the resulting superabsorbent polymer has moderate unevenness on the surface with little generation of residual monomers. Can increase the absorption rate.
  • the drying temperature of the drying step may be about 150 to about 250 ° C. dry If the temperature is less than 150 ° C, the drying time may be too long and the physical properties of the final superabsorbent polymer may be lowered. If the drying silver exceeds 250 ° C, only the surface of the polymer is dried too much, resulting in subsequent grinding Fine powder may generate
  • the process may be performed for about 20 to about 90 minutes in consideration of process efficiency and the like, but is not limited thereto.
  • the drying method of the drying step may be selected and used without limitation in the configuration as long as it is commonly used as a drying process of the hydrous gel polymer. Specifically, the drying step may be performed by a method of hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the water content of the polymer after such a drying step may be about 0.1 to about 10 weight 0 /.
  • the polymer powder obtained after the grinding step may have a particle diameter of about 150 to about 850.
  • the grinder used to grind to such a particle size is specifically a pin mill, hammer mill, screw mill, roll mill, disc mill or jog. Although a jog mill or the like may be used, the present invention is not limited to the above-described example.
  • a separate process of classifying the polymer powder obtained after grinding according to the particle size may be performed.
  • the polymer having a particle size of about 150 to about 850 may be classified and commercialized only through the surface crosslinking reaction step for the polymer powder having such a particle size.
  • the surface crosslinking reaction is performed by mixing the ground polymer with the surface crosslinking agent.
  • Surface crosslinking is the step of increasing the crosslink density near the surface of the superabsorbent polymer particles with respect to the crosslink density inside the particles.
  • the surface crosslinking agent is applied to the surface of the super absorbent polymer particles. Therefore, this reaction is a super absorbent polymer Occurs on the surface of the particles, which improves the crosslinkability on the surface of the particles without substantially affecting the interior of the particles.
  • the surface crosslinked superabsorbent resin particles thus have a higher degree of crosslinking in the vicinity of the surface than in the interior.
  • the surface crosslinking agent is not limited as long as it is a compound capable of reacting with the functional group of the polymer.
  • the surface crosslinking agent may be a polyhydric alcohol compound; Epoxy compounds; Polyamine compounds; Haloepoxy compound; Condensation products of haloepoxy compounds; Oxazoline compounds; Mono-, di- or polyoxazolidinone compounds; Cyclic urea compounds; Polyvalent metal salts; and one or more selected from the group consisting of alkylene carbonate compounds can be used.
  • examples of the polyhydric alcohol compound include mono-, di-, tri-, tetra- or polyethylene glycol, monopropylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4-trimethyl-1,3 -Pentanediol, polypropylene glycol, glycerol, polyglycerol, 2-butene-1,4-di, 1,4-butanedi, 1,3-butanedi, 1,5-pentanedi, ' 1,6
  • One or more kinds selected from the group consisting of -nucleic acid diol and 1,2-cyclonucleic acid dimethanol can be used.
  • Ethylene glycol diglycidyl ether and glycidol may be used as the epoxy compound, and polyamine compounds may be ethylenediamine, diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, or pentaethylenenucleoamine. , 1 or more types selected from the group consisting of polyethyleneimine and polyamide polyamine can be used.
  • the haloepoxy compound epichlorohydrin, epibromohydrin and ⁇ -methyl epichlorohydrin can be used.
  • 2-oxazolidinone etc. can be used, for example.
  • alkylene carbonate compound ethylene carbonate etc.
  • these may be used alone or in combination with each other.
  • water and alcohol may be further mixed together and added in the form of the surface crosslinking solution.
  • water and alcohol are added, there is an advantage that the surface crosslinker can be evenly dispersed in the polymer.
  • the content of water and alcohol to be added is not particularly limited, but 100 parts by weight of the polymer for the purpose of inducing even dispersion of the surface crosslinking agent, preventing aggregation of the polymer powder and optimizing the surface penetration depth of the crosslinking agent.
  • it is preferably added at a ratio of about 2 to about 20 parts by weight.
  • the temperature raising means for surface crosslinking reaction is not specifically limited. It can be heated by supplying a heat medium or by directly supplying a heat source.
  • the type of heat medium that can be used may be a heated fluid such as steam, hot air, hot oil, etc., but the present invention is not limited thereto.
  • the target silver may be selected appropriately.
  • the heat source directly supplied may be a method of heating through electricity-heating, gas, but the present invention is not limited to the above examples.
  • the total content of the surface crosslinking agent included in the surface crosslinking solution may be appropriately selected according to the kind or reaction conditions of the additional surface crosslinking agent, but, based on 100 parts by weight of the pulverized polymer, about 0.01 to about 10 parts by weight, Preferably from about 0.01 to about 5 parts by weight can be used.
  • the content of the surface crosslinking agent is too small, the surface crosslinking reaction hardly occurs, and when the content of the surface crosslinking agent is too large, Due to the excessive surface crosslinking reaction, deterioration of absorption capacity and physical properties may occur.
  • the superabsorbent polymer obtained according to the production method of the present invention as described above has improved water retention, solution permeability and absorption rate, and exhibits harmonized properties of the above properties. Therefore, it is possible to obtain a super absorbent polymer that exhibits high permeability and absorption rate without deteriorating water holding capacity.
  • the present invention provides a synergistic effect by combining a complex physical property that simultaneously optimizes the centrifugal water retention capacity (CRC), the pressure absorption capacity (AUL), the solution permeability (SFC), and the absorption rate (FSR).
  • CRC centrifugal water retention capacity
  • AUL pressure absorption capacity
  • SFC solution permeability
  • FSR absorption rate
  • CRC Centrifuge Retention Capacity
  • AUL Absorbency Under Load
  • the solution permeability (SFC: Saline Flow Conductivity) may be measured according to the method described in US Pat. No. 5,669,894.
  • Absorption rate or free swell rate (FSR) may be a value measured according to WO 2009/016055.
  • the centrifugal water retention capacity (CRC) for the physiological saline may be calculated according to the following Equation 1.
  • W 0 (g) is the weight of the super absorbent polymer (g)
  • W (g) is the weight of the device measured after dehydration at 250G for 3 minutes using a centrifuge without using the super absorbent polymer
  • W 2 ( g) is the weight of the device measured after submerging the superabsorbent polymer in 0.9 mass% of physiological saline for 30 minutes, followed by dehydration at 250 G for 3 minutes using a centrifuge.
  • the weight W 0 (g) of the superabsorbent polymer may be measured by the weight of the superabsorbent polymer classified as 300 to 600 micrometers ( ⁇ ).
  • the centrifugal water retention capacity (CRC) of physiological saline of the superabsorbent polymer is about 25 g / g or more, preferably about 26 g / g or more, more preferably about 27 g / g or more, for example about 25 to about 34 g / g, or about 25 to about 32 g / g, or from about 26 to about 30 g / g.
  • CRC centrifugal water retention capacity
  • the centrifugal water retention capacity (CRC) for the physiological saline is less than 25 g / g, the water repellency of the final product, such as sanitary products is lowered may cause a problem of poor physical properties of the final product.
  • a pressurized absorption capacity (AUL) of 0.9 psi with respect to physiological saline may be calculated by the following Equation 2.
  • AUL (g / g) [ W 4 (g) - W 3 (g)] / W 0 (g)
  • W 0 (g) is the weight (g) of the superabsorbent polymer
  • W 3 (g) is the weight and the sum of the high to give a load to the water-absorbent resin
  • W 4 (g ) Is the sum of the weight of the superabsorbent polymer absorbed by water after supplying the superabsorbent polymer for 1 hour under a load (0.9 psi) and the weight of the device capable of applying a load to the superabsorbent polymer.
  • 0.9 psi of pressure absorbency is 300 to 600 micrometers Cam
  • the superabsorbent weight W 0 (g) may be measured by the weight of the super absorbent polymer classified as 300 to 600 micrometers On).
  • the pressure absorbing capacity (AUL) of 0.9 psi of the superabsorbent polymer may be about 20 g / g or more, preferably about 22 g / g or more, and more preferably about 23 g / g or more, for example About 20 to about 32 g / g, or about 22 to about 30 g / g, or about 23 to about 28 g / g.
  • W 0 (g) described in Formulas 1 to 2 corresponds to the weight (g) of the superabsorbent polymer applied to each property value, and may be the same or different.
  • the solution permeability (SFC) in the superabsorbent polymer of the present invention can be measured and calculated according to US Pat. No. 5,669,894.
  • the solution permeability (SFC) of the super absorbent polymer is about 70 * l (T 7 cm 3 * sec / g or more, preferably about 80 * 10 " 7 cm 3 * sec / g or more, more preferably about 90 * 10 _7 cm 3 * sec / g or more, for example about 70 * 10 -7 to about 150 * 10 "7 cm 3 * sec / g, or about 80 * 10 " 7 to about 140 * KT 7 cni 3 * sec / g, or about 90 * l (r 7 to about i30 * UT 7 cm 3 * sec / g.)
  • Solution Permeability (SFC) is an evaluation of the flowability of liquids absorbed in superabsorbent resins. If the solution permeability (SFC) is less than 70 * 10 "7 cm 3 * sec / g, the pressure absorption capacity is lowered, which may cause a problem of poor physical properties of the final product.
  • the absorption rate is disclosed in WO WO.
  • the absorption rate (FSR) of physiological saline of the superabsorbent polymer may be about 0.25 g / g / s or more, preferably about 0.27 g / g / s or more, and more preferably about 0.30 g / g / s or more. And, for example, about 0.25 to about 0.5 g / g / s, or about 0.27 to about 0.5 gg / s, or about 0.27 to about 0.45 g / gs.
  • Absorption rate (FSR) is a value for evaluating the free swelling rate of superabsorbent polymers. When the absorption rate (FSR) is less than 0.25 g / g / s, the absorption rate of the final product is lowered, resulting in poor physical properties of the final product. Problems may arise.
  • the superabsorbent polymer obtained according to the production method of the present invention exhibits fast absorption rate and solution permeability under pressure while maintaining water retention capacity and pressurized absorption capacity above a certain level, and exhibits harmonized properties of the above properties.
  • the solution permeability is high in the superabsorbent polymer
  • the water holding capacity and the pressure absorbing capacity tend to be low.
  • the crosslinking degree is high and the strength of the superabsorbent polymer is high, the water holding ability is high, but the solution permeability and the absorption rate are low.
  • the solution permeability and the absorption rate are high, the water holding ability and solution permeability are relatively low. At the same time there is a difficulty in raising.
  • the superabsorbent polymer obtained according to the manufacturing method of the present invention can provide a superabsorbent polymer having improved physical properties without deterioration in water-retaining capacity or pressure-absorbing capacity while having an improved absorption rate and solution permeability.
  • nucleic acid 1,6-diol diacrylate rate was heunhap by injecting (1,6- hexandiol diacrylate, molecular weight 226 g mol, mol, Cure Dose 320 mJ / cm 2) 10 g , and slowly added dropwise to 32 parts by weight 0/0 sodium hydroxide solution 660 g.
  • the solution was poured into a Vat-shaped tray (15 cm x 15 cm) mounted in a square polymerizer with a light irradiating device mounted on the top and preheated to 80 t, and irradiated with light to start light. After 25 seconds, the gel was generated from the surface, and after 50 seconds, it was confirmed that the polymerization reaction occurred at the same time as the foaming. After 3 minutes, the polymerized sheet was taken out and the gel strength of the polymerized hydrogel was measured. .
  • the cemented sheet was cut into 3 cm x 3 cm and then chopped using a meat chopper having a hole diameter of 8 mm to prepare a powder. .
  • the powder was dried in an oven capable of transferring air volume up and down.
  • the hot air at 180 ° C. was heated uniformly from 20 minutes to below and 20 minutes from above to below to dry uniformly, and after drying, the moisture content of the dried body was 2% or less.
  • the resultant was pulverized with a grinder and classified to select a 150 to 850 IM size to prepare a base resin.
  • Example 1 the amount of the acrylic acid in the dilution increment of 5 0/0 pulley glycol diacrylate with 50 g instead of 46 g, and the dilution to the weight of acrylic acid 5 0/0 1,6 nucleic diacrylate A super absorbent polymer was prepared in the same manner as in Example 1, except that 9 g was used instead of 10 g. .
  • Example 4 the amount of the acrylic acid in the dilution increment of 5 0/0 pulley glycol diacrylate with 50 g instead of 46 g, and the dilution to the weight of acrylic acid 5 0/0 1,6 nucleic diacrylate
  • Example 1 the same method as in Example 1 was used except that a meat chopper having a diameter of 6.5 mm was used instead of a meat chopper having a diameter of 8 mm. An absorbent resin was prepared.
  • Example 5 the same method as in Example 1 was used except that a meat chopper having a diameter of 6.5 mm was used instead of a meat chopper having a diameter of 8 mm. An absorbent resin was prepared.
  • Example 1 the superabsorbency is the same as in Example 1 except that a meat chopper having a diameter of 10 mm is used instead of a meat chopper having a diameter of 8 mm. Resin was prepared. Comparative Example 1 In Example 1, the amount of 5% by weight of polyethylene glycol diacrylate as the usage rate of 62 g instead of 50 g, and the acrylic acid 5 parts by dilution 0/0 1,6 nucleic diacrylate diluted acid A super absorbent polymer was prepared in the same manner as in Example 1, except that 21 g was used instead of 10 g. Comparative Example 2
  • Example 1 the amount of 5% by weight of polyethylene glycol diacrylate diluted in acrylic acid is 31 g instead of 50 g, and 5% by weight of 1,6-nucleic acid diol diacrylate diluted in acrylic acid is not used.
  • Super absorbent polymer was prepared in the same manner as in Example 1. . Comparative Example 3
  • Example 1 the amount of 5% by weight polyethylene glycol diacrylate diluted in acrylic acid is 62 g instead of 50 g, and the amount of 5% by weight 1,6-nucleodiol diacrylate diluted in acrylic acid is 10 g. Instead, it is 21 g, and the superabsorbency is the same as in Example 1 except that a meat hopper having a hole diameter of 16 mm is used instead of a meat chopper having a hole diameter of 8 mm. Resin was prepared. Comparative Example 4
  • Example 1 the amount of 5% by weight of polyethylene glycol diacrylate diluted in acrylic acid is 31 g instead of 50 g, and 5% by weight 0 /. 1,6-nucleic acid diacrylate diluted in acrylic acid is not used.
  • the superabsorbent polymer was prepared in the same manner as in Example 1, except that the meat chopper having a diameter of 16 mm was used instead of the meat chopper having a diameter of 8 mm. . Comparative Example 5
  • Example 1 a meat chopper having a diameter of 16 mm is used instead of a meat chopper having a diameter of 8 mm.
  • Superabsorbent polymer was prepared in the same manner as in Example 1, except that.
  • Examples 1 to 5 and Comparative Examples 1 to 5 main process conditions are shown in Table 2 below.
  • PEGDA polyethyleneglycol diacrylate
  • HDDA 1,6-hexanediol diacrylate (1,6-hexanediol diacrylate).
  • the gel strength was measured by the following method.
  • the hydrogel was sucked into a filter paper so that no water remained between the particles during testing before placing between the rheometer and the parallel plate.
  • the swollen hydrous gel was measured with a rheometer with 2 g. At this time, the test conditions of the rheometer, Plate Gap Size 2 mm; Strain amplitude 1%; Oscilation frequency 10 radian / sec; ambient tempeature 22 ° C; plate 25mm, measured by TA Instruments-AR Series. The measured value was taken for 5 minutes and then averaged.
  • CRC Centrifuge Retention Capacity
  • the resultant super-absorbent resin W 0 (g, about 0.2g) after the sealing (seal) placed uniformly on the envelope of the nonwoven fabric was immersed in saline solution of 0.9% by weight at room temperature. After 30 minutes, the envelope was centrifuged and drained at 250 G for 3 minutes, and then the mass W 2 (g) of the envelope was measured. Moreover, the mass W and (g) at that time were measured after carrying out the same operation without using the super absorbent polymer.
  • W 0 (g) is the weight of superabsorbent polymer (g)
  • W ⁇ g does not use superabsorbent polymer, but 250G using a centrifuge. Device weight measured after dehydration for 3 minutes,
  • W 2 (g) is a device weight including the superabsorbent polymer after submerging the superabsorbent polymer in 0.9 mass% physiological saline at room temperature for 30 minutes, followed by dehydration at 250 G for 3 minutes using a centrifuge.
  • a stainless steel 400 mesh wire was mounted on the bottom of a plastic cylinder having an inner diameter of 25 mm.
  • the superabsorbent polymers W 0 (g, 0.16 g) of Examples 1 to 5 and Comparative Examples 1 to 5 were evenly sprayed on the wire mesh under conditions of a room temperature and a humidity of 50%, and a load of 5.1 kPa (0.9 psi) was applied thereon.
  • the even more uniform piston has a smaller outer diameter than 25 mm, no cylindrical inner wall, and no up and down movement.
  • the weight W 3 (g) of the apparatus was measured.
  • a glass filter of 90 mm diameter and a thickness of 5 mm was placed inside a petri dish having a diameter of 150 mm, and a physiological saline composed of 0.90 wt% sodium chloride was made at the same level as the upper surface of the glass filter.
  • One sheet of filter paper 90 mm in diameter was loaded thereon.
  • the measuring device was placed on the filter paper and the liquid was absorbed for 1 hour under load. After 1 hour, the measuring device was lifted up and the weight W 4 (g) was measured.
  • AUL (g / g) [W 4 (g)-W 3 (g)] / W 0 (g)
  • W 0 (g) is the weight of superabsorbent polymer (g)
  • W 3 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device capable of applying a load to the superabsorbent polymer
  • W 4 (g) moisturizes the superabsorbent polymer for 1 hour under load (0.9 psi). It is the sum total of the weight of the superabsorbent polymer absorbed by the water after supply and the weight of the device capable of applying a load to the superabsorbent polymer.
  • the absorption rate (FSR) was measured according to the method described in WO 2009/016055.
  • the super absorbent polymers of Examples 1 to 5 according to the present invention have a water-retaining capacity (CRC), pressure-absorbing capacity (AUP), solution permeability (SFC) and absorption rate ( It is possible to provide an excellent superabsorbent polymer having a harmonized physical property that exhibits a synergistic effect to a high degree at the same time.
  • CRC water-retaining capacity
  • AUP pressure-absorbing capacity
  • SFC solution permeability
  • absorption rate It is possible to provide an excellent superabsorbent polymer having a harmonized physical property that exhibits a synergistic effect to a high degree at the same time.

Abstract

The present invention relates to a method for preparing a super-absorbent resin. According to the method for preparing a super-absorbent resin, a super-absorbent resin which has an improved absorption rate and solution permeability, no deterioration in water retaining capacity or pressurized absorptive capacity, and improved physical properties can be provided.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
고흡수성 수지의 제조 방법  Manufacturing method of super absorbent polymer
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술분야】 .  Technical Field
본 발명은 고흡수성 수지의 제조 방법에 관한 것이다. 보다 상세하게는, 높은 보수능뿐 아니라 빠른 흡수 속도 및 통액성을 나타내는 고흡수성 수지를 수득할 수 있는, 고흡수성 수지의 제조 방법에 관한 것이다.  The present invention relates to a method for producing a super absorbent polymer. More specifically, it is related with the manufacturing method of a super absorbent polymer which can obtain the superabsorbent polymer which shows not only a high water holding capacity but also a fast absorption rate and liquid permeability.
본 출원은 2013년 12월 10일에 한국특허청에 제출된 한국 특허 출원 제 10-2013— 0153325호 및 2014년 12월 4일에 한국특허청에 제출된 한국 특허 출원 제 10-2014-0172998호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.  This application is subject to the Korean Patent Application No. 10-2013-0153325 filed with the Korean Patent Office on December 10, 2013 and the Korean Patent Application No. 10-2014-0172998 filed with the Korean Patent Office on December 4, 2014. Claiming benefit, the entire contents of which are incorporated herein by reference.
【배경기술】  Background Art
고흡수성 수지 (Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다.  Super Absorbent Polymer (SAP) is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight.As a developer, a super absorbent material (SAM) and an absorbent gel (AGM) They are named differently. Such super absorbent polymers have been put into practical use as physiological tools, and are currently used in sanitary products such as paper diapers for children, horticultural soil repair agents, civil engineering, building index materials, seedling sheets, freshness-retaining agents in food distribution, and It is widely used as a material for steaming.
상기와 같은 고흡수성 수지를 제조하는 방법으로는 역상현탁중합에 의한 방법 또는 수용액 중합에 의한 방법 등이 알려져 있다. 역상현탁중합에 대해서는 예를 들면 일본 특개소 56-161408, 특개소 57-158209, 및 특개소 57-198714 등에 개시되어 있다.  As a method for producing such a super absorbent polymer, a method by reverse phase suspension polymerization or a method by aqueous solution polymerization is known. Reverse phase suspension polymerization is disclosed, for example, in Japanese Patent Laid-Open Nos. 56-161408, 57-158209, and 57-198714.
수용액 중합에 의한 방법으로는 또 다시, 여러 개의 축을 구비한 반죽기 내에서 중합겔을 파단, 넁각하면서 중합하는 열중합 방법, 및 고농도 수용액을 벨트상에서 자외선 등을 조사하여 중합과 건조를 동시에 행하는 광중합 방법 등이 알려져 있다.  As a method of aqueous solution polymerization, a thermal polymerization method in which a polymer gel is broken and kneaded in a kneader having several shafts, and a photopolymerization method in which polymerization and drying are simultaneously performed by irradiating ultraviolet rays or the like on a belt with a high concentration of aqueous solution Etc. are known.
상기와 같은 중합 반응을 거쳐 얻은 함수겔상 중합체는 일반적으로 건조공정을 거쳐 분쇄한 뒤 분말상의 제품으로 시판된다. 고흡수성 수지를 이용한 제품에서 투과율 (permeability)은 흡수되는 액체의 유동성을 측정하는 척도이다. 투과율은 가교 결합된 수지의 입자 크기 분포, 입자 형상 및 입자들 사이의 개구부의 연결성, 팽윤된 겔의 표면 개질 등의 특성에 따라 달라질 수 있다ᅳ 고흡수성 수지 조성물의 투과을에 따라 팽윤된 입자들을 통과하는 액체의 유동성이 달라진다. 투과율이 낮으면 액체가 고흡수성 수지 조성물을 통하여 용이하게 유동할 수 없게 된다. The hydrous gel polymer obtained through the polymerization reaction as described above is generally pulverized through a drying process and marketed as a powder product. Permeability in products using superabsorbent polymers is a measure of the fluidity of the liquid to be absorbed. Permeability may vary depending on the particle size distribution of the crosslinked resin, the shape of the particles and the connectivity of the openings between the particles, the surface modification of the swollen gel, etc. 통과 Pass through the swollen particles according to the permeation of the superabsorbent resin composition The fluidity of the liquid varies. When the transmittance is low, the liquid cannot easily flow through the super absorbent polymer composition.
고흡수성 수지에서 투과율을 증가시키는 한 가지 방법으로 수지 증합 후 표면 가교 반웅을 수행하는 방법이 있으며 이때 표면 가교제와 함께 실리카 (silica)나 클레이 (clay) 등을 첨가하는 방법이 이용되어 왔다. 예를 들면, 미국 특허 제 5,140,076호 및 제 4,734,478호는 건조 고흡수성 수지 분말의 표면 가교결합 중의 실리카의 첨가를 개시하고 있다.  One method of increasing the transmittance in a super absorbent polymer is to perform surface crosslinking reaction after the resin is evaporated. In this case, a method of adding silica or clay together with the surface crosslinking agent has been used. For example, US Pat. Nos. 5,140,076 and 4,734,478 disclose the addition of silica during surface crosslinking of dry superabsorbent resin powders.
그러나, 상기 실리카나 클레이 등을 첨가함에 따라 투과율은 향상되나 이에 비례하여 보수능 또는 가압 흡수능의 저하가 나타나고 이동시 외부의 물리적 충격에 의해 고흡수성 수지와 분리되기 쉬운 문제점이 있다.  However, as the silica or clay is added, the transmittance is improved. However, there is a problem in that water-repellency or pressure-absorbing capacity is decreased in proportion to the silica and clay, and it is easy to be separated from the super absorbent polymer by an external physical impact during movement.
또한, 위생 용품의 슬림화 추세에 따라 높은 보수능뿐 아니라 빠른 흡수 속도와 통액성에 대한 요구가 높아지고 있으나, 상기 물성들은 서로 상반되는 특성을 지녀 이를 동시에 달성하기는 쉽지 않다.  In addition, according to the trend of slimming of hygiene products, there is a high demand for fast absorption rate and liquid permeability as well as high water-retaining ability. However, the physical properties are not easy to achieve at the same time.
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
상기와 같은 종래 기술의 문제점을 해결하고자, 본 발명은 높은 보수능뿐 아니라 빠른 흡수 속도 및 용액 투과도를 나타내어 위생 용품의 두께의 슬림화에 대한 수요를 만족시킬 수 있는 고흡수성 수지를 제조하는 방법을 제공하는 것을 목적으로 한다ᅳ  In order to solve the problems of the prior art as described above, the present invention provides a method for producing a superabsorbent polymer that can satisfy the demand for slimming of the thickness of the sanitary article by exhibiting a high water absorption capacity as well as fast absorption rate and solution permeability. It is aimed at
【과제의 해결 수단】.  [Solution of problem].
상기의 목적을 달성하기 위하여 본 발명은,  In order to achieve the above object, the present invention,
수용성 에틸렌계 불포화 단량체, 내부 가교제 및 중합 개시제를 포함하는 단량체 조성물에 열중합 또는 광중합을 진행하여 겔 강도 (Gel Strength)가 10,000 내지 13,000Pa인 함수겔상 중합체를 형성하는 단계;  Thermally polymerizing or photopolymerizing the monomer composition including a water-soluble ethylenically unsaturated monomer, an internal crosslinking agent, and a polymerization initiator to form a hydrogel polymer having a gel strength of 10,000 to 13,000 Pa;
상기 함수겔상 중합체를 조분쇄하는 단계;  Coarsely pulverizing the hydrogel polymer;
상기 조분쇄된 함수겔상 중합체를 건조하는 단계; 상기 건조된 중합체를 분쇄하는 단계; 및 Drying the coarsely pulverized hydrogel polymer; Pulverizing the dried polymer; And
상기 분쇄된 중합체와 표면 가교제를 흔합하여 표면 가교 반웅을 수행하는 단계를 포함하는, 고흡수성 수지의 제조 방법을 제공한다.  It provides a method for producing a super absorbent polymer comprising the step of performing a surface crosslinking reaction by mixing the ground polymer and the surface crosslinking agent.
【발명의 효과】  【Effects of the Invention】
본 발명의 고흡수성 수지의 제조 방법에 따르면, 향상된 흡수 속도 및 투과도를 가지면서도 보수능 또는 가압 흡수능의 저하가 없어 물성이 향상된 고흡수성 수지를 제공할 수 있다. 이에 따라, 위생 용품의 섬유재 비율을 줄이고 얇은 두께를 구현할 수 있어, 위생 용품의 슬림화 추세에 부합하고 편의성에 대한 만족도를 향상시킬 수 있다.  According to the manufacturing method of the superabsorbent polymer of the present invention, it is possible to provide a superabsorbent polymer having improved physical properties without having a deterioration in water-retaining capacity or pressure-absorbing capacity while having an improved absorption rate and permeability. Accordingly, it is possible to reduce the ratio of the fiber material of the sanitary article and to implement a thin thickness, to meet the trend of slimming of the sanitary article and to improve the satisfaction for convenience.
【발명을 실시하가 위한 구체적인 내용】  [Specific contents for carrying out invention]
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징 , 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.  The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise", "comprise" or "have" are intended to indicate that there is a feature, step, component, or combination thereof that is practiced, and that one or more other features or steps, It should be understood that it does not exclude in advance the possibility of the presence or the addition of components, or combinations thereof.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.  As the invention allows for various changes and numerous modifications, particular embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to a particular disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.  As the invention allows for various changes and numerous modifications, particular embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
이하, 발명의 구체적인 구현예에 따라 고흡수성 수지를 제조하는 방법에 대해 보다 상세히 설명하기로 한다. 본 발명의 일 구현예에 따른 고흡수성 수지의 제조 방법은, 수용성 에틸렌계 불포화 단량체, 내부 가교제 및 중합 개시제를 포함하는 단량체 조성물에 열중합 또는 광증합을 진행하여 겔 강도 (Gel Strength)가 10,000 내지 13,000Pa인 함수겔상 중합체를 형성하는 단계; Hereinafter, a method of preparing a super absorbent polymer according to a specific embodiment of the present invention will be described in more detail. In the method for preparing a super absorbent polymer according to an embodiment of the present invention, a gel strength is 10,000 to 10,000 by thermal polymerization or photopolymerization of a monomer composition including a water-soluble ethylenically unsaturated monomer, an internal crosslinking agent, and a polymerization initiator. Forming a hydrous gel phase polymer of 13,000 Pa;
상기 함수겔상 중합체를 조분쇄하는 단계;  Coarsely pulverizing the hydrogel polymer;
상기 조분쇄된 함수겔상 중합체를 건조하는 단계;  Drying the coarsely pulverized hydrogel polymer;
상기 건조된 중합체를 분쇄하는 단계; 및  Pulverizing the dried polymer; And
상기 분쇄된 중합체와 표면 가교제를 흔합하여 표면 가교 반응을 수행하는 단계를 포함한다.  Mixing the ground polymer with the surface crosslinking agent to perform a surface crosslinking reaction.
본 발명자들은 높은 보수능을 가지면서 빠른 흡수 속도 및 통액성을 나타내는 고흡수성 수지에 대한 연구를 거듭하는 과정에서, 고흡수성 수지의 베이스 수지 (base resin)가 되는 함수겔상 중합체 (hydrogel)의 겔 강도 (Gd Strength)가 소정의 범위를 만족하고, 나아가 상기 함수겔상 중합체를 조분쇄하는 단계에서의 공정 조건을 최적화할 때, 최종 고흡수성 수지에서의 물성 향상이 가능하고, 이를 통해 초박형 기술이 적용된 위생 용품을 생산할 수 있음을 확인하여 본 발명을 완성하였다. ' The inventors of the present invention continue to study the superabsorbent polymer having high water-retaining ability and high absorption rate and liquid permeability, and the gel strength of the hydrogel polymer which becomes the base resin of the superabsorbent polymer. When (Gd Strength) satisfies a predetermined range and further optimizes the process conditions in the step of coarsely pulverizing the hydrogel polymer, it is possible to improve the physical properties of the final superabsorbent polymer, thereby making the hygiene to which ultra-thin technology is applied. It was confirmed that the article can be produced to complete the present invention. '
본 발명의 고흡수성 수지의 제조 방법에서, 상기 고흡수성 수지의 원료 물질인 단량체 조성물은 수용성 에틸렌계 불포화 단량체, 내부 가교제 및 증합 개시제를 포함한다.  In the method for producing a super absorbent polymer of the present invention, the monomer composition which is a raw material of the super absorbent polymer includes a water-soluble ethylenically unsaturated monomer, an internal crosslinking agent and a polymerization initiator.
상기 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에 통상 사용되는 임의의 단량체를 별다른 제한 없이 사용할 수 있다. 여기에는 음이온성 단량체와 그 염, 비이온계 친수성 함유 단량체 및 아미노기 함유 불포화 단량체 및 그의 4급화물로 이루어진 군에서 선택되는 어느 하나 이상의 단량체를 사용할 수 있다.  The water-soluble ethylenically unsaturated monomer may be used without any limitation any monomers commonly used in the production of superabsorbent polymers. Any one or more monomers selected from the group consisting of anionic monomers and salts thereof, nonionic hydrophilic-containing monomers and amino group-containing unsaturated monomers and quaternized compounds thereof can be used.
구체적으로는 (메타)아크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, Specifically, (meth) acrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid,
2-아크릴로일에탄 술폰산, 2-메타아크릴로일에탄술폰산, 2-2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2-
(메타)아크릴로일프로판술폰산 또는 2- (메타)아크릴아미드 -2-메틸 프로판 술폰산의 음이온성 단량체와 그 염; (메타)아크릴아미드, N-치환 (메타)아크릴레이트, 2- 히드록시에틸 (메타)아크릴레이트, 2-히드록시프로필 (메타)아크릴레이트, 메록시폴리에틸렌글리콜 (메타)아크릴레이트 또는 폴리에틸렌 글리콜 (메타)아크릴레이트의 비이온계 "친수성 함유 단량체; 및 (Ν,Ν)- 디메틸아미노에틸 (메타) 아크릴레이트 또는 (Ν,Ν)- 디메틸아미노프로필 (메타)아크릴아미드의 아미노기 함유 볼포화 단량체 및 그의 4급화물로 이루어진 군에서 선택된 어느 하나 이상을 사용할 수 있다. Anionic monomers and salts thereof of (meth) acryloylpropanesulfonic acid or 2- (meth) acrylamide-2-methyl propane sulfonic acid; (Meth) acrylamide, N-substituted (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate or polyethylene Nonionic " hydrophilic containing monomers of glycol (meth) acrylate; and amino group-containing ball saturations of (Ν, Ν) -dimethylaminoethyl (meth) acrylate or (Ν, Ν) -dimethylaminopropyl (meth) acrylamide Any one or more selected from the group consisting of monomers and quaternized compounds thereof can be used.
더욱 바람직하게는 아크릴산 또는 그 염, 예를 들어, 아크릴산 또는 그 나트륨염 등의 알칼리 금속염을 사용할 수 있는데, 이러한 단량체를 사용하여 보다 우수한 물성을 갖는 고흡수성 수지의 제조가 가능해진다. 상기 아크릴산의 알칼리 금속염을 단량체로 사용하는 경우, 상기 아크릴산의 적어도 일부를 가성소다 (NaOH)와 같은 염기성 화합물로 중화시켜 사용할 수 있다. 보다 구체적으로, 상기 아크릴산은 약 50 몰% 이상, 흑은 약 60 몰% 이상, 흑은 약 70 몰% 이상 중화된 것으로 될 수 있고, 이를 통해 본 발명 고흡수성 수지의 제반 물성을 보다 효과적으로 달성할 수 있다. 즉, 상기 수용성 에틸렌계 불포화 단량체는 산성기에. 대한 중화도가 약 50 몰% 이상이 될 수 있다.  More preferably, an alkali metal salt such as acrylic acid or a salt thereof, for example acrylic acid or a sodium salt thereof can be used, and it is possible to prepare a super absorbent polymer having better physical properties by using such a monomer. When the alkali metal salt of acrylic acid is used as a monomer, at least a part of the acrylic acid may be neutralized with a basic compound such as caustic soda (NaOH). More specifically, the acrylic acid may be at least about 50 mol%, black at least about 60 mol%, black at least about 70 mol%, and through this, it is possible to more effectively achieve the overall physical properties of the superabsorbent polymer of the present invention. Can be. In other words, the water-soluble ethylenically unsaturated monomer is an acidic group. The degree of neutralization may be about 50 mol% or more.
상기 수용성 에틸렌계 불포화 단량체의 농도는, 상기 고흡수성 수지의 원료 물질 및 용매를 포함하는 단량체 조성물의 전체 중량에 대해 약 20 내지 약 60 중량0 /0, 바람직하게는 약 40 내지 약 50 중량0 /。로 될 수 있으며, 중합 시간 및 반웅 조건 등을 고려해 적절한 농도로 될 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수 있고, 반대로 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄 시 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될 수 있다. The concentration of the water-soluble ethylenically unsaturated monomer, in which the 20 against the total weight of monomer composition including a source material and a solvent of the water-absorbent resin to about 60 parts by weight 0/0, preferably from about 40 to about 50 weight 0 / It may be。, and may be appropriate concentration in consideration of the polymerization time and reaction conditions. However, when the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and there may be a problem in economics. On the contrary, when the concentration is too high, a part of the monomer may be precipitated or the grinding efficiency of the polymerized hydrogel polymer may be low. Etc. may cause problems in the process and may decrease the physical properties of the super absorbent polymer.
본 발명의 고흡수성 수지 제조 방법에서 중합시 사용되는 내부 가교제로는 내부 가교의 균일성 측면에서 수용성 에틸렌계 불포화 단량체의 경화량 (cure dose)을 100%라 할 때, 상기 경화량 대비 약 80% 내지 약 200%의 경화량을 갖는 화합물일 수 있다. 바람직하게는, 상기 내부 가교제는 상기 수용성 에틸렌계 불포화 단량체의 경화량 100%를 기준으로 약 90% 내지 약 180%,의 경화량, 좀더 바람직하게는 약 95% 내지 약 170%의 경화량을 갖는 화합물일 수 있다.  As the internal crosslinking agent used during polymerization in the method of preparing a super absorbent polymer, the curing amount of the water-soluble ethylenically unsaturated monomer is 100% in terms of the uniformity of the internal crosslinking. To a compound having a curing amount of about 200%. Preferably, the internal crosslinking agent has a curing amount of about 90% to about 180%, more preferably about 95% to about 170%, based on 100% of the curing amount of the water-soluble ethylenically unsaturated monomer Compound.
예를 들어, 상기 수용성 에틸렌계 불포화 단량체로 아크릴산 (acrylic acid, AA)를 사용할 때, 아크릴산의 경화량은 약 200 mJ/cm2이므로,상기 내부 가교제는 약 160 내지 약 400 mJ/cm2, 바람직하게는 약 180 내지 약 360 mJ/cm2, 좀더 바람직하게는 약 190 내지 약 340 mJ/cm2의 경화량 (cure dose)을 갖는 것일 수 있다. 여기서, 상기 경화량 (cure dose)이란, 경화에 필요한 에너지량을 의미한다. 즉, 상기 경화량을 나타내는 숫자가 클수록 경화를 위해 필요한 에너지가 많아지게 된다. 상기 경화량으로 표현되는 값들은 광량계를 이용하여 측정할 수 있다. 예컨대, 미리 정해진 경화기 악세사리에 램프의 조도를 셋팅해 놓고, 경화기의 벨트상으로 시료를 보내서 UV 경화기를 통과하여 평가할 수 있다. 이때, 경화기의 컨베이어의 속도, 광량을 기준으로 경화기를 몇번 통과했는지를 평가하며, 표면이 경화된 후의 토탈 에너지를 산출하는 방식으로 측정할 수 있다. 따라서, 상기 '경화량 측정시 별도의 시료량에는 제한이 없다. 또한, 좀 더 구체적인 예로서, 이러한 측정을 할 때에는 100 mm 샤알레에 용액을 0.5 cm 정도의 두께로 을린 뒤 컨베이어 벨트상에 올리고 벨트를 가동하여 측정할 수 있다. For example, when acrylic acid (acrylic acid, AA) is used as the water-soluble ethylenically unsaturated monomer, the curing amount of acrylic acid is about 200 mJ / cm 2, so that the internal crosslinking agent It may have a cure dose of about 160 to about 400 mJ / cm 2 , preferably about 180 to about 360 mJ / cm 2 , more preferably about 190 to about 340 mJ / cm 2 . Here, the cure dose means the amount of energy required for cure. That is, the larger the number indicating the amount of curing, the more energy is required for curing. Values expressed by the amount of curing may be measured using a photometer. For example, the illuminance of a lamp is set to a predetermined hardening machine accessory, and a sample can be sent on the belt of a hardening machine, and can be evaluated through a UV hardening machine. At this time, it can be measured by evaluating how many times the curing machine has passed based on the speed of the conveyor of the curing machine and the amount of light, and calculating the total energy after the surface has been cured. Thus, the "curing amounts extra amount of sample during measurement is not limited. In addition, as a more specific example, the measurement may be carried out by rolling a solution of about 0.5 cm thick in 100 mm saale and putting it on a conveyor belt to operate the belt.
아크 ¾레이트계 탄화수소 화합물 중 몇 가지 물질에 대한 경화량은 하기 표 1에 나타낸 바와 같다.  The amount of hardening for some of the arc ¾ate-based hydrocarbon compounds is shown in Table 1 below.
【표 1】  Table 1
Figure imgf000007_0001
PETTA: Pentaerythritol Triacrylate
Figure imgf000007_0001
PETTA: Pentaerythritol Triacrylate
NPG(PO)2DA: 2mol% propoxylated Neopentylglycol Diacrylate  NPG (PO) 2DA: 2mol% propoxylated Neopentylglycol Diacrylate
TMP(EO)9TA: 9mol% ethoxylated TMPTA(Trimethylolpropane triacrylate)  TMP (EO) 9TA: 9mol% ethoxylated Trimethylolpropane triacrylate (TMPTA)
* 아크릴산의 경화량: 200 mJ/cm2 * Curing amount of acrylic acid: 200 mJ / cm 2
* 경화량 정보제공: 미원스페셜티 케미칼  * Curing Amount Information: Miwon Specialty Chemical
상기 표 1의 물질에 따른 경화량을 참조하여, 본 발명의 고흡수성 수지의 제조 방법에 적합한 아크릴레이트계 탄화수소 화합물을 내부 가교제로 선택하여 사용할 수 있다. 그러나, 본 발명의 제조 방법에서 사용 가능한 내부 가교제가 상기 표 1에 예시된 물질에 한정되는 것은 아니며, 상술한 바 대로 싱-기 수용성 에틸렌계 불포화 단량체의 경화량에 대한 상대적인 경화량 범위를 만족하는 물질이라면 제한없이 사용될 수 있다. With reference to the amount of curing according to the material of Table 1, an acrylate-based hydrocarbon compound suitable for the production method of the super absorbent polymer of the present invention can be selected and used as the internal crosslinking agent. However, the internal crosslinking agent usable in the production method of the present invention is not limited to the materials exemplified in Table 1 above, and as described above, it satisfies the relative curing amount range with respect to the curing amount of the single-group water-soluble ethylenically unsaturated monomer. Any material can be used without limitation.
본 발명의 일 실시예에 따르면, 상기 내부 가교제로, 다양한 아크릴레이트계 탄화수소 화합물 중에서 경화량이 수용성 에틸렌계 불포화 단량체의 경화량 (cure dose) 100%를 기준으로, 약 80% 내지 약 200%, 바람직하게는 약 90% 내지 약 180%, 보다 바람직하게는 약 95% 내지 약 170%의 경화량을 화합물을 사용하며, 보다 바람직하게는 이러한 경화량 범위를 갖는 화합물을 2종 이상 흔합하여 사용함으로써, 겔 강도 (Gel Strength)가 약 10,000 내지 약 13,000Pa의 범위인 함수겔상 중합체를 수득할 수 있다.  According to an embodiment of the present invention, the internal crosslinking agent, the curing amount of the various acrylate-based hydrocarbon compounds, based on 100% of the cure dose of the water-soluble ethylenically unsaturated monomer, from about 80% to about 200%, preferably Preferably, the curing amount of about 90% to about 180%, more preferably about 95% to about 170% is used, and more preferably, two or more kinds of compounds having such curing amount range are mixed and used. It is possible to obtain a hydrous gel polymer having a Gel Strength in the range of about 10,000 to about 13,000 Pa.
또한 본 발명의 일 실시예에 따르면, 상기 내부 가교제는 상기 단량체 조성물에 포함된 상기 수용성 에틸렌계 불포화 단량체의 전체 중량에 대하여, 약 4,000 내지 약 7,500ppm, 바람직하게는 약 4,500 내지 7,000ppm, 좀더 바람직하게는 약 5,000 내지 6,500ppm의 농도로 포함될 수 있다. 상기 내부 가교제의 농도가 상술한 범위를 만족할 때, 겔 강도 (Gel Strength)가 약 10,000 내지 약 13,000Pa를 만족하면서 보다 최적화된 물성의 고흡수성 수지를 수득할 수 있다ᅳ 또한, 상기 내부 가교제로 2종 이상을 흔합하여 사용할 경우, 전체 내부 가교제의 농도가 상기 농도를 만족하는 범위 내에서, 흔합 사용하는 내부 가교제의 경화량에 따라 각각의 농도를 조절할 수 있다.  In addition, according to one embodiment of the present invention, the internal crosslinking agent is about 4,000 to about 7,500 ppm, preferably about 4,500 to 7,000 ppm, more preferably based on the total weight of the water-soluble ethylenically unsaturated monomer included in the monomer composition. Preferably in a concentration of about 5,000 to 6,500 ppm. When the concentration of the internal crosslinking agent satisfies the above-mentioned range, it is possible to obtain a super optimized superabsorbent polymer having a more optimized physical property while satisfying the gel strength of about 10,000 to about 13,000 Pa. In the case where a mixture of two or more species is used in combination, the concentration of each of the internal crosslinking agents can be adjusted according to the amount of curing of the internal crosslinking agents used in a mixed manner within the range in which the concentration of the entire internal crosslinking agent is satisfied.
보다 구체적으로, 각 내부 가교제의 경화량 (단위: J/cm2) * 해당 내부 가교제의 농도 (수용성 에틸렌계 불포화 단량체의 전체 중량에 대한 농도, 단위: ppm)의 합이, 약 800 내지 약 1,800, 바람직하게는 약 800 내지 약 1,600, 보다 바람직하게는 약 1,000 내지 약 1,500의 범위가 되도록 각 내부 가교제의 농도를 조절하여 사용할 수 있다. More specifically, the curing amount of each internal crosslinking agent (unit: J / cm 2 ) * the corresponding internal The sum of the concentrations of the crosslinkers (concentration relative to the total weight of the water-soluble ethylenically unsaturated monomer, in ppm) ranges from about 800 to about 1,800, preferably from about 800 to about 1,600, more preferably from about 1,000 to about 1,500. The concentration of each internal crosslinking agent may be adjusted to be used.
본 발명의 고흡수성 수지 제조 방법에서 중합시 사용되는 중합 개시제는 고흡수성 수지의 제조에 일반적으로 사용되는 것이면 특별히 한정되지 않는다. 구체적으로, 상기 중합 개시제는 중합 방법에 따라 열중합 개시제 또는 UV 조사에 따른 광중합 개시제를 사용할 수 있다. 다만 광중합 방법에 의하더라도, 자외선 조사 등의 조사에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 포함할 수도 있다.  The polymerization initiator used in the polymerization in the method for producing a super absorbent polymer of the present invention is not particularly limited as long as it is generally used for producing the super absorbent polymer. Specifically, the polymerization initiator may use a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method. However, even with the photopolymerization method, since a certain amount of heat is generated by irradiation such as ultraviolet irradiation and a certain amount of heat is generated in accordance with the progress of the polymerization reaction, which is an exothermic reaction, a thermal polymerization initiator may be additionally included.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.  The photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone), 하이드록실 알킬케톤 (hydroxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (Benzyl Dimethyl Ketal), 아실포스핀 (acyl phosphine) 및 알파 -아미노케톤 (α-aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸 -벤조일-트리메틸 포스핀 옥사이드 (2,4,6-trimethyl- benzoyl-trimethyl phosphine oxide)를 사용할 수 있다. 보다 다양한 광개시제에 대해서는 Rein old Schwalm 저서인 " UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년) " pi 15에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.  Examples of the photopolymerization initiator include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. Ketal), acyl phosphine and alpha-aminoketone may be used at least one selected from the group consisting of. On the other hand, as a specific example of acylphosphine, commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide) can be used. . A wider variety of photoinitiators are well described in Rein old Schwalm's book, "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)" pi 15, and are not limited to the examples described above.
상기 광중합 개시제는 상기 단량체 조성물의 전체 증량에 대하여 약 0.01 내지 약 1.0 중량0 /。의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다. 또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨 (Sodium persulfate; Na2S208), 과황산칼륨 (Potassium persulfate; K2S208), 과황산암모늄 (Ammonium persulfate;(NH4)2S208) 등이 있으며, 아조 (Azo)계 개시제의 예로는 2, 2-아조비스 -(2-아미디노프로판)이염산염 (2, 2-azobis(2-amidinopropane) dihydrochloride), 2, 2-아조비스 -(N, N—디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis-(N, N-dimethylene)isobutyramidine dihydrochloride), 2- (카바모일아조)이소부티로니트릴 (2-(carbamoylazo)is이 3utylonitril), 2, 2-아조비스 [2-(2- 이미다졸린 -2-일)프로판] 디하이드로클로라이드 (2,2-azobis[2-(2-imidazolin-2- yl)propane] dihydrochloride), 4,4-아조비스 -(4-시아노발레릭 산) (4,4-azobis-(4- cyanovaleric acid)) 등이 있다. 보다 다양한 열중합 개시제에 대해서는 Odian 저서인 'Principle of Polymerization(Wiley, 1981)', p203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다. The photopolymerization initiator may be included in a concentration of about 0.01 to about 1.0 weight 0 /. When the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow. When the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven. In addition, the thermal polymerization initiator may be used at least one selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide and ascorbic acid. Specifically, examples of persulfate-based initiators include sodium persulfate (Sodium persulfate; Na 2 S 2 0 8 ), potassium persulfate (K 2 S 2 0 8 ), ammonium persulfate ((NH 4 ) 2 S 2 0 8 ), and the like. Examples are 2, 2-azobis (2-amidinopropane) dihydrochloride, 2, 2-azobis- (N, N-dimethylene) isobutyra Mydine dihydrochloride (2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride), 2- (carbamoyl azo) isobutyronitrile (2- (carbamoylazo) is 3utylonitril), 2, 2-azo bis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2,2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride), 4, 4-azobis- and the like - (4-cyano-ballet rigs acid) (4, 4 -azobis- (4- cyanovaleric acid)). More various thermal polymerization initiators are well specified in Odian's Principle of Polymerization (Wiley, 1981), p203, and are not limited to the examples described above.
상기 열중합 개시제는 상기 단량체 조성물의 전체 증량에 대하여 약 0.001 내지 약 으5 중량 %의 농도로 포함될 수 있다. 이러한 열 중합 개시제의 농도가 지나치게 낮을 경우 추가적인 열중합이 거의 일어나지 않아 열중합 개시제의 추가에 따른 효과가 미미할 수 있고, 열중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.  The thermal polymerization initiator may be included in a concentration of about 0.001 to about 5% by weight based on the total amount of the monomer composition. When the concentration of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, and the effect of the addition of the thermal polymerization initiator may be insignificant. When the concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven. have.
본 발명의 제조 방법에서, 고흡수성 수지의 상기 단량체 조성물은 필요에 따라 증점제 (thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할 수 있다.  In the production method of the present invention, the monomer composition of the super absorbent polymer may further include additives such as thickeners, plasticizers, preservative stabilizers, antioxidants and the like as necessary.
상술한 수용성 에틸렌계 불포화 단량체, 광중합 개시제, 열중합 개시제, 내부 가교제 및 첨가제와 같은 원료 물질은 용매에 용해된 단량체 조성물 용액의 형태로 준비될 수 있다.  Raw materials such as the above-mentioned water-soluble ethylenically unsaturated monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents and additives may be prepared in the form of a monomer composition solution dissolved in a solvent.
이 때 사용할 수 있는 상기 용매는 상술한 성분들을 용해할 수 있으면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄올, 에틸렌글리콜 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르 디에틸렌글리콜에틸에테르, 를루엔, 크실렌, 부틸로락톤, 카르비를 메틸셀로솔브아세테이트 및 N, N-디메틸아세트아미드 등에서 선택된 1종 이상을 조합하여 사용할 수 있다. The solvent that can be used at this time can be used without limitation of the composition as long as it can dissolve the above-mentioned components, for example, water, ethanol, ethylene glycol diethylene glycol, triethylene glycol, 1,4-butanediol, propylene Glycol ethylene glycol monobutyl ether, propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone cyclonuxanone, cyclopentanone, diethylene glycol monomethyl ether diethylene glycol ethyl ether, toluene , Xylene, butyrolactone, carbyl at least one selected from methyl cellosolve acetate and N, N-dimethylacetamide It can be used in combination.
상기 용매는 단량체 조성물의 총 함량에 대하여 상술한 성분을 제외한 잔량으로 포함될 수 있다.  The solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
한편, 이와 같은 단량체 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 형성하는 방법 또한 통상 사용되는 중합 방법이면, 특별히 구성의 한정이 없다.  On the other hand, if the method of forming a hydrogel polymer by thermally polymerizing or photopolymerizing such a monomer composition is also the polymerization method normally used, there will be no restriction | limiting in particular in a structure.
구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열증합을 진행하는 경우, 니더 (kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반웅기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 본 발명은 상술한 중합 방법에 한정되지는 않는다.  Specifically, the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, can be generally carried out in a reactor having a stirring shaft, such as kneader, in the case of performing the thermal polymerization, and, when the photopolymerization proceeds, Although it can be carried out in a semi-unggi equipped with a conveyor belt, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
일 예로, 상기 중합 공정은 중합온도는 약 35 °C 이상 또는 약 35 내지 약 9CTC로 열중합 공정을 수행하며, 이와 함께 약 100 내지 약 400 nm의 자외선 (UV) 영역의 빛을 조사하여 광중합을 수행할 수 있다. For example, the photo-polymerization and the polymerization step is the polymerization temperature is irradiated with about 35 ° C or higher, or light of from about 35 to, and from about 9CTC performing a heat polymerization step, the same time about 100 to ultraviolet (UV) region of about 400 nm Can be done.
또한, 상술한 바와 같이 교반축을 구비한 니더 (kneader)와 같은 반응기에, 열풍을 공급하거나 반응기를 가열하여 열중합을 하여 얻어진 함수겔상 중합체는 반응기에 구비된 교반축의 형태에 따라, 반웅기 배출구로 배출되는 함수겔상 중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔상 중합체의 크기는 주입되는 단량체 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 중량 평균 입경이 2 내지 50 mm 인 함수겔상 중합체가 얻어질 수 있다.  In addition, as described above, the hydrogel polymer obtained by supplying hot air to the reactor such as a kneader having a stirring shaft or by heating and heating the reactor may be a semi-ungunggi outlet according to the shape of the stirring shaft provided in the reactor. The hydrogel polymer discharged may be in the form of several centimeters to several millimeters. Specifically, the size of the water-containing gel polymer obtained may vary depending on the concentration and the injection speed of the monomer composition to be injected, a water-containing gel polymer having a weight average particle diameter of 2 to 50 mm can be obtained.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반웅기에서 광중합을 진행하는 경우, 통상 얻어지는 함수겔상 중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔상 증합체일 수 있다. 이 때, 중합체 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라지나, 통상 약 0.5 내지 약 5cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반응이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다. 본 발명의 고흡수성 수지의 제조 방법에서 바람직하게는, 광중합에 의해 함수겔상 중합체를 형성할 수 있다. In addition, when the photopolymerization is carried out in a semi-unggi equipped with a movable conveyor belt as described above, the form of the hydrogel polymer generally obtained may be a hydrogel gel-like polymer on a sheet having a width of the belt. At this time, the thickness of the polymer sheet depends on the concentration and the injection speed of the monomer composition to be injected, but it is usually preferable to supply the monomer composition so that a polymer on the sheet having a thickness of about 0.5 to about 5 cm can be obtained. When the monomer composition is supplied to such an extent that the thickness of the polymer on the sheet is too thin, it is not preferable because the production efficiency is low, and when the thickness of the polymer on the sheet exceeds 5 cm, the polymerization reaction does not occur evenly over the entire thickness. You may not. In the manufacturing method of the superabsorbent polymer of the present invention, preferably, the hydrogel polymer can be formed by photopolymerization.
이때 이와 같은 방법으로 얻어진 함수겔상 중합체의 통상 함수율은 약 40 내지 약 80 중량 %일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔상 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 을려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180 °C까지 온도를 상승시킨 뒤 180°C에서 유지하는 방식으로 총 건조시간은 온도 상승 단계 5분을 포함하여 20분으로 설정하여, 함수율을 측정한다. In this case, the water content of the hydrogel polymer obtained by the above method may be about 40 to about 80% by weight. On the other hand, the term "water content" as used throughout the specification refers to the value of the moisture content of the total hydrogel polymer weight minus the weight of the polymer in the dry state. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of drying the temperature of the polymer through infrared heating. At this time, the drying conditions are raised to a temperature of about 180 ° C at room temperature and maintained at 180 ° C. The total drying time is set to 20 minutes, including 5 minutes of temperature rise step, the moisture content is measured.
상술한 방법으로 중합을 진행하여, 겔 강도 (Gel Strength)가 약 10,000 내지 약 13,000Pa, 또는 약 10,500 내지 약 12,800Pa, 또는 약 10,500 내지 약 12,600Pa의 범위인 함수겔상 중합체를 수득한다. 겔 강도는 중합체의 가교도를 평가하는 척도로, 겔 강도가 높을수록 중합된 함수겔 중합체의 가교 밀도가 높다고 할 수 있다. 한편, 상기 함수겔상 중합체의 겔 강도가 상기 범위를 벗어나 너무 낮거나 높으면, 후속하는 조분쇄 단계에서 수가용 성분이 지나치게 많이 발생하거나 상기 함수겔상 중합체의 손상이 일어나, 충분한 보수능과 흡수 속도를 달성하기 어려운 문제점이 있다.  The polymerization proceeds in the manner described above to obtain a hydrous gel polymer having a gel strength in the range of about 10,000 to about 13,000 Pa, or about 10,500 to about 12,800 Pa, or about 10,500 to about 12,600 Pa. Gel strength is a measure for evaluating the degree of crosslinking of the polymer. The higher the gel strength, the higher the crosslinking density of the polymerized hydrogel polymer. On the other hand, if the gel strength of the hydrous gel phase polymer is too low or too high out of the above range, excessive water solubility occurs in the subsequent coarse grinding step or damage of the hydrogel polymer occurs, thereby achieving sufficient water retention and absorption rate. There is a problem that is difficult to do.
본 발명의 고흡수성 수지의 제조 방법에 따르면, 조분쇄 전의 함수겔 중합체의 겔 강도를 상기 범위를 상기 만족하도록 중합 조건을 조절하고, 또한 후술하는 조분쇄 단계에서의 공정 조건을 최적화함으로써, 보수능 (CRC), 가압 흡수능 (AUP), 용액 투과도 (SFC) 및 흡수 속도 (FSR)가 동시에 우수한 정도로 시너지 효과를 발휘하는, 조화된 물성의 우수한 고흡수성 수지를 제조할 수 있다. 다음에, 얻어진 함수겔상 중합체를 조분쇄하는 단계를 수행한다.  According to the manufacturing method of the superabsorbent polymer of the present invention, the water-retaining capacity is controlled by adjusting the polymerization conditions so that the gel strength of the hydrogel polymer before coarse grinding is satisfied in the above range, and further optimizing the process conditions in the coarse grinding step described below. It is possible to produce a superabsorbent polymer having excellent harmonized physical properties, which exhibits synergistic effects to the extent that (CRC), pressure absorption capacity (AUP), solution permeability (SFC) and absorption rate (FSR) are excellent at the same time. Next, the step of coarsely crushing the obtained hydrogel polymer is performed.
상기 조분쇄하는 단계는 상기 함수겔상 중합체를 쵸퍼 (Chopper) 등에 투입하여 일정한 크기를 갖는 다수의 홀 (hole)이 형성되어 있는 출구 또는 다공판 (perforated panel) 등으로 밀어내는 방식으로 수행될 수 있다. 이때 상기 함수겔상 중합체를 밀어내기 위해 사용되는 압출기는 단일 또는 다중 스크류형 압출기를 사용할 수 있다. 상기와 같이 함수겔상 중합체를 홀이 형성되어 있는 출구로 밀어내어 조분쇄를 할 때, 상기 함수겔상 중합체에 일정한 압력이 가해지게 되며, 이러한 압력에 의해 함수겔상 중합체의 원래의 겔 강도 및 모폴로지 (morphology)에 변형이 일어나며, 표면적이 넓어지게 된다. 이때, 홀의 직경에 따라 조분쇄 단계를 수행한 후의 중합체의 물성이 달라질 수 있다ᅳ 예를 들어, 홀의 직경이 작을수록 함수겔상 중합체에 가해지는 압력이 커지고 표면적이 증가되어 흡수 속도가 빨라지지만, 함수겔상 중합체의 손상 가능성이 높아져 보수능은 저하되며 잔류 모노머가 많아지게 되는 문제점이 있다. 따라서, 높은 보수능을 가지면서 빠른 흡수 속도를 나타내어 조화된 물성을 갖는 고흡수성 수지를 얻기 위한 최적화된 조분쇄 조건을 찾는 것은 용이하지 않다. The coarsely pulverizing step may be performed by injecting the hydrogel polymer into a chopper or the like and pushing it to an outlet or perforated panel in which a plurality of holes having a predetermined size are formed. . At this time, the extruder used to push the hydrogel polymer may be used a single or multiple screw type extruder. As described above, when the hydrogel polymer is pushed out to the hole where the hole is formed, coarsely pulverized, a constant pressure is applied to the hydrogel polymer, and the original gel strength and morphology of the hydrogel polymer by this pressure ), And the surface area becomes wider. In this case, the physical properties of the polymer after performing the coarse grinding step may vary according to the diameter of the hole. For example, the smaller the diameter of the hole, the greater the pressure applied to the hydrous gel-like polymer and the higher the surface area, the faster the absorption rate. There is a problem that the possibility of damage of the gel polymer is increased, so that the water-retaining ability is lowered and the residual monomers are increased. Therefore, it is not easy to find an optimized coarse grinding condition for obtaining a superabsorbent polymer having high water retention capacity and fast absorption rate and having harmonized physical properties.
이에 대해 본 발명의 발명자들의 연구 결과에 기초하여, 조분쇄 전의 상기 함수겔상 중합체의 겔 강도 (단위: Pa)와, 조분쇄 단계에서 상기 함수겔상 중합체를 조분쇄하기 위한 출구 또는 다공판 등에 형성된 홀 (hole)의 직경 (단위: mm)은 하기 식 1을 만족하는 범위일 때 최종 고흡수성 수지가 최적화된 물성을 나타낼 수 있음을 확인하였다.  On the other hand, based on the results of the inventors of the present invention, the gel strength (unit: Pa) of the hydrous gel polymer before coarse grinding, and the hole formed in the outlet or the porous plate for coarsely grinding the hydrogel polymer in the coarse grinding step The diameter of the hole (unit: mm) was confirmed that the final superabsorbent polymer can exhibit the optimized physical properties when in the range satisfying the following formula (1).
[식 1]  [Equation 1]
1 140*x + 730 < y < 600*x + 8400  1 140 * x + 730 <y <600 * x + 8400
상기 식 1에서, X는 홀의 직경 (단위: mm)이고, y는 조분쇄 전의 함수겔상 중합체의 겔 강도 (단위: Pa)이다.  In Equation 1, X is the diameter of the hole (unit: mm), and y is the gel strength (unit: Pa) of the hydrous gel polymer before coarse grinding.
또한, 본 발명의 일 실시예에 따르면, 상기 식 1을 만족하는 범위 내에서, 상기 홀의 직경은 약 6.5 내지 약 10 mm의 범위일 수 있다. 상기 홀의 직경이 6.5 mm 보다 더 작으면, 분쇄 과정에서 입자 간에 서로 웅집되거나, 잔류 모노머 발생이 많아질 수 있고, 직경이 10 mm를 초과하여 너무 큰 경우 후속하는 건조 과정에서 표면이 불규칙하게 수축되어 최종 수지의 품질이 고르지 못하게 되는 문제점이 있다. 따라서, 상술한 범위의 겔 강도를 갖는 함수겔상 중합체를 상기 범위의 직경으로 조분쇄한 후 건조 및 분쇄 단계를 수행할 때, 잔류 모노머의 발생이 적으면서 표면에 적당한 요철을 갖게 되어 최종 고흡수성 수지의 흡수 속도를 높일 수 있다.  In addition, according to an embodiment of the present invention, within the range satisfying Equation 1, the diameter of the hole may be in the range of about 6.5 to about 10 mm. When the diameter of the hole is smaller than 6.5 mm, the particles may be concaved with each other during the grinding process, or the residual monomers may be increased, and when the diameter is too large, exceeding 10 mm, the surface may be irregularly contracted during the subsequent drying process. There is a problem that the quality of the final resin is uneven. Therefore, when coarsely pulverizing the hydrous gel polymer having the gel strength in the above-described range to the diameter in the above-mentioned range, and performing the drying and pulverizing step, the resulting superabsorbent polymer has moderate unevenness on the surface with little generation of residual monomers. Can increase the absorption rate.
다음에, 상기와 같이 조분쇄된 함수겔상 중합체에 대해 건조를 수행한다. 이때 상기 건조 단계의 건조 온도는 약 150 내지 약 250°C일 수 있다. 건조 온도가 150°C 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 은도가 250 °C를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 약 150 내지 약 200°C의 온도에서, 더욱 바람직하게는 약 160 내지 약 180°C의 온도에서 진행될 수 있다. Next, drying is performed on the coarsely pulverized hydrogel polymer as described above. At this time, the drying temperature of the drying step may be about 150 to about 250 ° C. dry If the temperature is less than 150 ° C, the drying time may be too long and the physical properties of the final superabsorbent polymer may be lowered. If the drying silver exceeds 250 ° C, only the surface of the polymer is dried too much, resulting in subsequent grinding Fine powder may generate | occur | produce in a process and there exists a possibility that the physical property of the superabsorbent polymer formed finally may fall. Thus preferably the drying may proceed at a temperature of about 150 to about 200 ° C, more preferably at a temperature of about 160 to about 180 ° C.
한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 약 20 내지 약 90분 동안 진행될 수 있으나, 이에 한정되지는 않는다.  Meanwhile, in the case of a drying time, the process may be performed for about 20 to about 90 minutes in consideration of process efficiency and the like, but is not limited thereto.
상기 건조 단계의 건조 방법은 함수겔상 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 흥의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 약 0.1 내지 약 10 중량0 /。일 수 있다. The drying method of the drying step may be selected and used without limitation in the configuration as long as it is commonly used as a drying process of the hydrous gel polymer. Specifically, the drying step may be performed by a method of hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation. The water content of the polymer after such a drying step may be about 0.1 to about 10 weight 0 /.
다음에, 이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체를 분쇄하는 단계를 수행한다.  Next, the step of pulverizing the dried polymer obtained through this drying step is carried out.
분쇄 단계 후 얻어지는 중합체 분말은 입경이 약 150 내지 약 850 일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀 (pin mill), 해머 밀 (hammer mill), 스크류 밀 (screw mill), 롤 밀 (roll mill), 디스크 밀 (disc mill) 또는 조그 밀 (jog mill) 등을 사용할 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다.  The polymer powder obtained after the grinding step may have a particle diameter of about 150 to about 850. The grinder used to grind to such a particle size is specifically a pin mill, hammer mill, screw mill, roll mill, disc mill or jog. Although a jog mill or the like may be used, the present invention is not limited to the above-described example.
그리고, 이와 같은.분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있다. 바람직하게는 입경이 약 150 내지 약 850 인 중합체를 분급하여, 이와 같은 입경을 가진 중합체 분말에 대해서만 표면 가교 반응 단계를 거쳐 제품화할 수 있다. And, like this. In order to manage the physical properties of the superabsorbent polymer powder to be finalized after the grinding step, a separate process of classifying the polymer powder obtained after grinding according to the particle size may be performed. Preferably, the polymer having a particle size of about 150 to about 850 may be classified and commercialized only through the surface crosslinking reaction step for the polymer powder having such a particle size.
다음에, 분쇄된 중합체와 표면 가교제를 흔합하여 표면 가교 반응을 수행한다.  Next, the surface crosslinking reaction is performed by mixing the ground polymer with the surface crosslinking agent.
표면 가교는 입자 내부의 가교결합 밀도와 관련하여 고흡수성 고분자 입자 표면 근처의 가교결합 밀도를 증가시키는 단계이다. 일반적으로, 표면 가교 제는 고흡수성 수지 입자의 표면에 도포된다. 따라서, 이 반응은 고흡수성 수지 입자의 표면 상에서 일어나며, 이는 입자 내부에는 실질적으로 영향을 미치지 않으면서 입자의 표면 상에서의 가교 결합성은 개선시킨다. 따라서 표면 가교 결합된 고흡수성 수지 입자는 내부에서보다 표면 부근에서 더 높은 가교 결합도를 갖는다. Surface crosslinking is the step of increasing the crosslink density near the surface of the superabsorbent polymer particles with respect to the crosslink density inside the particles. Generally, the surface crosslinking agent is applied to the surface of the super absorbent polymer particles. Therefore, this reaction is a super absorbent polymer Occurs on the surface of the particles, which improves the crosslinkability on the surface of the particles without substantially affecting the interior of the particles. The surface crosslinked superabsorbent resin particles thus have a higher degree of crosslinking in the vicinity of the surface than in the interior.
이때 상기 표면 가교제로는 상기 중합체가 갖는 관능기와 반응 가능한 화합물이라면 그 구성의 한정이 없다.  In this case, the surface crosslinking agent is not limited as long as it is a compound capable of reacting with the functional group of the polymer.
바람직하게는 생성되는 고흡수성 수지의 특성을 향상시키기 위해, 상기 표면 가교제로 다가 알콜 화합물; 에폭시 화합물; 폴리아민 화합물; 할로에폭시 화합물; 할로에폭시 화합물의 축합 산물; 옥사졸린 화합물류; 모노-, 디— 또는 폴리옥사졸리디논 화합물; 환상 우레아 화합물; 다가 금속염; 및 알킬렌 카보네이트 화합물로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다. 구체적으로, 다가 알콜 화합물의 예로는 모노-, 디-, 트리-, 테트라- 또는 폴리에틸렌 글리콜, 모노프로필렌 글리콜, 1,3-프로판디올, 디프로필렌 글리콜, 2,3,4-트리메틸 -1 ,3-펜탄디올, 폴리프로필렌 글리콜, 글리세를, 폴리글리세를 , 2-부텐- 1 ,4-디을, 1 ,4-부탄디을, 1 ,3-부탄디을, 1,5-펜탄디을, ' 1,6-핵산디올, 및 1,2- 사이클로핵산디메탄올로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다. 또한, 에폭시 화합물로는 에틸렌 글리콜 디글리시딜 에테르 및 글리시돌 등을 사용할 수 있으며, 폴리아민 화합물류로는 에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라아민, 테트라에틸렌펜타민, 펜타에틸렌핵사민, 폴리에틸렌이민 및 폴리아미드폴리아민로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다. 그리고 할로에폭시 화합물로는 에피클로로히드린, 에피브로모히드린 및 α- 메틸에피클로로히드린을 사용할 수 있다. 한편, 모노-, 디- 또는 폴리옥사졸리디논 화합물로는 예를 들어 2-옥사졸리디논 등을 사용할 수 있다. Preferably, in order to improve the properties of the resulting super absorbent polymer, the surface crosslinking agent may be a polyhydric alcohol compound; Epoxy compounds; Polyamine compounds; Haloepoxy compound; Condensation products of haloepoxy compounds; Oxazoline compounds; Mono-, di- or polyoxazolidinone compounds; Cyclic urea compounds; Polyvalent metal salts; and one or more selected from the group consisting of alkylene carbonate compounds can be used. Specifically, examples of the polyhydric alcohol compound include mono-, di-, tri-, tetra- or polyethylene glycol, monopropylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4-trimethyl-1,3 -Pentanediol, polypropylene glycol, glycerol, polyglycerol, 2-butene-1,4-di, 1,4-butanedi, 1,3-butanedi, 1,5-pentanedi, ' 1,6 One or more kinds selected from the group consisting of -nucleic acid diol and 1,2-cyclonucleic acid dimethanol can be used. Ethylene glycol diglycidyl ether and glycidol may be used as the epoxy compound, and polyamine compounds may be ethylenediamine, diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, or pentaethylenenucleoamine. , 1 or more types selected from the group consisting of polyethyleneimine and polyamide polyamine can be used. As the haloepoxy compound, epichlorohydrin, epibromohydrin and α-methyl epichlorohydrin can be used. In addition, as a mono-, di-, or a polyoxazolidinone compound, 2-oxazolidinone etc. can be used, for example.
그리고, 알킬렌 카보네이트 화합물로는 에틸렌 카보네이트 등을 사용할 수 있다. 이들을 각각 단독으로 사용하거나 서로 조합하여 사용할 수도 있다. 한편, 표면 가교 공정의 효율을 높이기 위해, 이들 표면 가교제 중에서 1 종 이상의 다가 알코을 화합물을 포함하여 사용하는 것이 바람직하며, 더욱 바람직하게는 탄소수 2 내지 10의 다가 알코을 화합물류를 사용할 수 있다.  And as an alkylene carbonate compound, ethylene carbonate etc. can be used. These may be used alone or in combination with each other. On the other hand, in order to improve the efficiency of a surface crosslinking process, it is preferable to use one or more types of polyhydric alcohols among these surface crosslinking agents, and more preferably, C2-C10 polyhydric alcohol compounds can be used.
상기 표면 가교제를 중합체에 흔합하는 방법에 대해서는 그 구성의 한정은 없다. 표면 가교제와 중합체 분말을 반웅조에 넣고 흔합하거나, 중합체 분말에 표면 가교제를 분사하는 방법, 연속적으로 운전되는 믹서에 중합체와 표면 가교제를 연속적으로 공급하여 흔합하는 방법 등을 사용할 수 있다. There is no limitation in the structure about the method of mixing the said surface crosslinking agent with a polymer. Mix the surface crosslinker and the polymer powder in a semi-permanent mixture, or A method of injecting a surface crosslinking agent into the powder, a method of continuously supplying a polymer and a surface crosslinking agent to a mixer which is continuously operated, and the like can be used.
상기 표면 가교제 외에 추가로 물 및 알코을을 함께 흔합하여 상기 표면 가교 용액의 형태로 첨가할 수 있다. 물 및 알코올을 첨가하는 경우, 표면 가교제가 중합체에 골고루 분산될 수 있는 이점이 있다. 이때, 추가되는 물 및 알코을의 함량은 특별히 한정되는 것은 아니나, 표면 가교제의 고른 분산을 유도하고 중합체 분말의 뭉침 현상을 방지함과 동시에 가교제의 표면 침투 깊이를 최적화하기 위한 목적으로 중합체 100 중량부에 대해, 약 2 내지 약 20 중량부의 비율로 첨가되는 것이 바람직하다.  In addition to the surface crosslinking agent, water and alcohol may be further mixed together and added in the form of the surface crosslinking solution. When water and alcohol are added, there is an advantage that the surface crosslinker can be evenly dispersed in the polymer. At this time, the content of water and alcohol to be added is not particularly limited, but 100 parts by weight of the polymer for the purpose of inducing even dispersion of the surface crosslinking agent, preventing aggregation of the polymer powder and optimizing the surface penetration depth of the crosslinking agent. For example, it is preferably added at a ratio of about 2 to about 20 parts by weight.
상기 표면 가교제가 첨가된 중합체 입자에 대해 약 150 내지 약 220 °C , 바람직하게는 약 165 내지 약 210 °C의 온도에서 약 15 내지 약 80 분, 바람직하게는 약 20 내지 약 70 분 동안 가열시킴으로써 표면 가교 결합 반웅이 이루어질 수 있다. 가교 반응 은도가 150 °C 미만일 경우 표면 가교 반웅이 충분히 일어나지 않을 수 있고 220 °C를 초과할 경우 과도하게 표면 가교 반응이 진행될 수 있다. 또한 가교 반응 시간이 15 분 미만으로 지나치게 짧은 경우, 충분한 가교 반웅을 할 수 없고, 가교 반응 시간이 80 분을 초과하는 경우, 과도한 표면 가교 반응에 따라 입자 표면의 가교 밀도가 지나치게 높아져 물성 저하가 발생할 수 있다. By heating the surface cross-linking agent to the polymer particles added to about 150 to about 220 ° C, preferably from about 165 to about 210 ° C for about 15 to about 80 minutes, preferably about 20 to about 70 minutes Surface crosslinking reactions can be made. If the crosslinking reaction silver is less than 150 ° C surface crosslinking reaction may not occur sufficiently, if the crosslinking reaction exceeds 220 ° C may be excessively surface crosslinking reaction. In addition, when the crosslinking reaction time is too short (less than 15 minutes), sufficient crosslinking reaction cannot be performed, and when the crosslinking reaction time exceeds 80 minutes, the crosslinking density of the particle surface is excessively high due to the excessive surface crosslinking reaction, resulting in deterioration of physical properties. Can be.
표면 가교 반웅을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 은도는 열매체의 수단, 승온 속도 및 승은 목표 은도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한-가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다.  The temperature raising means for surface crosslinking reaction is not specifically limited. It can be heated by supplying a heat medium or by directly supplying a heat source. At this time, the type of heat medium that can be used may be a heated fluid such as steam, hot air, hot oil, etc., but the present invention is not limited thereto. The target silver may be selected appropriately. On the other hand, the heat source directly supplied may be a method of heating through electricity-heating, gas, but the present invention is not limited to the above examples.
상기 표면 가교 용액에 포함되는 표면 가교제의 총 함량은 구체적으로 추가되는 표면 가교제의 종류나 반웅 조건에 따라 적절히 선택될 수 있지만, 상기 분쇄된 중합체 100 중량부에 대해, 약 0.01 내지 약 10 증량부, 바람직하게는 약 0.01 내지 약 5 중량부를 사용할 수 있다. 표면 가교제의 함량이 지나치게 적으면, 표면 가교 반응이 거의 일어나지 않으며, 표면 가교제의 함량이 너무 많은 경우, 과도한 표면 가교 반응의 진행으로 인해 흡수능력 및 물성의 저하 현상이 발생할 수 있다. The total content of the surface crosslinking agent included in the surface crosslinking solution may be appropriately selected according to the kind or reaction conditions of the additional surface crosslinking agent, but, based on 100 parts by weight of the pulverized polymer, about 0.01 to about 10 parts by weight, Preferably from about 0.01 to about 5 parts by weight can be used. When the content of the surface crosslinking agent is too small, the surface crosslinking reaction hardly occurs, and when the content of the surface crosslinking agent is too large, Due to the excessive surface crosslinking reaction, deterioration of absorption capacity and physical properties may occur.
상기와 같은 본 발명의 제조 방법에 따라 수득된 고흡수성 수지는 향상된 보수능, 용액 투과도 및 흡수 속도를 가지며, 상기 물성들이 조화된 특성을 나타낸다. 따라서, 보수능의 저하없이 높은 투과도 및 흡수 속도를 나타내는 고흡수성 수지를 수득할 수 있다.  The superabsorbent polymer obtained according to the production method of the present invention as described above has improved water retention, solution permeability and absorption rate, and exhibits harmonized properties of the above properties. Therefore, it is possible to obtain a super absorbent polymer that exhibits high permeability and absorption rate without deteriorating water holding capacity.
본 발명은 상술한 바와 같이 고흡수성 수지의 원심분리 보수능 (CRC), 가압 흡수능 (AUL), 용액 투과도 (SFC), 및 흡수 속도 (FSR)를 모두 동시에 최적화하는 복합적인 물성 결합으로 시너지 효과를 제공하여 상기 물성들이 조화된 특성을 나타낸다. 따라서, 보수능의 저하없이 높은 투과도 및 흡수 속도를 나타내는 고흡수성 수지를 수득할 수 있으며, 본 발명의 고흡수성 수지를 이용하여 위생 용품 제조시의 우수한 물성과 편안한 착용감을 유도할 수 있다.  As described above, the present invention provides a synergistic effect by combining a complex physical property that simultaneously optimizes the centrifugal water retention capacity (CRC), the pressure absorption capacity (AUL), the solution permeability (SFC), and the absorption rate (FSR). By providing the harmonized properties. Therefore, it is possible to obtain a super absorbent polymer exhibiting high permeability and absorption rate without deterioration in water retention capacity, and by using the superabsorbent polymer of the present invention, it is possible to induce excellent physical properties and comfortable fit in the manufacture of hygiene products.
이때, 원심분리 보수능 (CRC: Centrifuge Retention Capacity)은 ED ANA 법 WSP 241.2에 따라 측정한 수치이고, 가압 흡수능 (AUL: Absorbency Under Load)은 EDANA 법 WSP 242.2에 따라 측정한 수치이다.  At this time, the Centrifuge Retention Capacity (CRC) is a value measured according to the ED ANA method WSP 241.2, and the Absorbency Under Load (AUL) is a value measured according to the EDANA method WSP 242.2.
또한, 용액 투과도 (SFC: Saline Flow Conductivity)는 미국특허 5,669,894호에 기재된 방법에 따라 측정되는 것일 수 있다. 흡수 속도 또는 자유 팽윤 속도 (FSR: Free Swell Rate)는 국제공개특허 WO 2009/016055호에 따라 측정한 수치일 수 있다. 본 발명의 고흡수성 수지에서 상기 생리식염수에 대한 원심분리 보수능 (CRC)은 하기 계산식 1에 따라 계산되는 것이 될 수 있다.  In addition, the solution permeability (SFC: Saline Flow Conductivity) may be measured according to the method described in US Pat. No. 5,669,894. Absorption rate or free swell rate (FSR) may be a value measured according to WO 2009/016055. In the superabsorbent polymer of the present invention, the centrifugal water retention capacity (CRC) for the physiological saline may be calculated according to the following Equation 1.
[계산식 1]  [Calculation 1]
CRC(g/g) = {[W2(g) - Wt(g)]/Wo(g)} - 1 CRC (g / g) = { [W 2 (g) - W t (g)] / Wo (g)} - 1
상기 계산식 1에서,  In the above formula 1,
W0(g)는 고흡수성 수지의 무게 (g)이고, W (g)는 고흡수성 수지를 사용하지 않고, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게이고, W2(g)는 상은에 0.9 질량 %의 생리식염수에 고흡수성 수지를 30분 동안 침수한 후에, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 고흡수성 수지를 -포함하여 측정한 장치 무게이다. 특히, 상기 고흡수성 수지의 무게 W0(g)는 300 내지 600 마이크로미터 (μιη)로 분급된 고흡수성 수지의 무게로 측정될 수 있다. 상기 고흡수성 수지의 생리식염수에 대한 원심분리 보수능 (CRC)은 약 25g/g 이상으로, 바람직하게는 약 26 g/g 이상, 좀더 바람직하게는 약 27 g/g 이상이 될 수 있으며, 예를 들어 약 25 내지 약 34 g/g, 또는 약 25 내지 약 32 g/g, 또는 약 26 내지 약 30 g/g이 될 수 있다. 상기 생리 식염수에 대한 원심분리 보수능 (CRC)이 25 g/g 미만이 되면, 위생 용품 등의 최종 제품의 보수능이 저하되어 최종 제품의 물성을 나쁘게 하는 문제가 발생할 수 있다. W 0 (g) is the weight of the super absorbent polymer (g), W (g) is the weight of the device measured after dehydration at 250G for 3 minutes using a centrifuge without using the super absorbent polymer, W 2 ( g) is the weight of the device measured after submerging the superabsorbent polymer in 0.9 mass% of physiological saline for 30 minutes, followed by dehydration at 250 G for 3 minutes using a centrifuge. In particular, the weight W 0 (g) of the superabsorbent polymer may be measured by the weight of the superabsorbent polymer classified as 300 to 600 micrometers (μιη). The centrifugal water retention capacity (CRC) of physiological saline of the superabsorbent polymer is about 25 g / g or more, preferably about 26 g / g or more, more preferably about 27 g / g or more, for example about 25 to about 34 g / g, or about 25 to about 32 g / g, or from about 26 to about 30 g / g. When the centrifugal water retention capacity (CRC) for the physiological saline is less than 25 g / g, the water repellency of the final product, such as sanitary products is lowered may cause a problem of poor physical properties of the final product.
또한, 본 발명의 고흡수성 수지에서 생리식염수에 대한 0.9 psi의 가압 흡수능 (AUL)은 하기 계산식 2로 계산되는 것일 수 있다.  In addition, in the superabsorbent polymer of the present invention, a pressurized absorption capacity (AUL) of 0.9 psi with respect to physiological saline may be calculated by the following Equation 2.
[계산식 2]  [Calculation 2]
AUL (g/g) = [W4(g) - W3(g)]/ W0(g) AUL (g / g) = [ W 4 (g) - W 3 (g)] / W 0 (g)
상기 계산식 2에서,  In the formula 2,
W0(g)는 고흡수성 수지의 무게 (g)이고, W3(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수' 있는 장치 무게의 총합이고, W4(g)는 하중 (0.9 psi) 하에 1시간 동안 상기 고흡수성 수지에 수분을 공급한 후의 수분이 흡수된 고흡수성 수지의 무게 .및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다. W 0 (g) is the weight (g) of the superabsorbent polymer, W 3 (g) is the weight and the sum of the high to give a load to the water-absorbent resin, the device in the weight of the superabsorbent resin, W 4 (g ) Is the sum of the weight of the superabsorbent polymer absorbed by water after supplying the superabsorbent polymer for 1 hour under a load (0.9 psi) and the weight of the device capable of applying a load to the superabsorbent polymer.
본 발명의 일례로, 0.9 psi의 가압 흡수능 (AUL)은 300 내지 600 마이크로미터 Cam) 분급된 고흡수성 수지 0.16 g을 가압 흡수능 (AUL) 측정 키트에 넣고 0.9 psi의 분동 (weight)을 올린 상태에서 0.9% 소금물 하에서 1 시간 가압 팽윤시킨 후에 측정할 수 있다. 이때, 1 시간 경과후 셀의 무게를 재어 가압 하에서의 흡수능 (AUL)을 측정할 수 있다. 이 경우, 상기 고흡수성 무게 W0(g)는 300 내지 600 마이크로미터 On)로 분급된 고흡수성 수지의 무게로 측정될 수 있다. 상기 고흡수성 수지의 0.9 psi의 가압 흡수능 (AUL)은 약 20 g/g 이상으로, 바람직하게는 약 22 g/g 이상, 좀더 바람직하게는 약 23 g/g 이상이 될 수 있으며, 예를 들어 약 20 내지 약 32 g/g, 또는 약 22 내지 약 30 g/g, 또는 약 23 내지 약 28 g/g이 될 수 있다. 가압 흡수능은 높을수록 좋으나 가압 흡수능은 보수능과 상반되는 물성으로 가압 흡수능을 너무 높이는 경우에는 보수능의 저하가 발생할 수 있다. 가압 흡수능과 보수능을 동시에 향상시키는 것이 증요한 기술 요소이다. 본 발명에서 상기 계산식 1 내지 2에 기재된 W0(g)는 각각의 물성값에 적용한 고흡수성 수지의 무게 (g)에 해당하는 것으로, 각각 동일하거나 상이할 수 있다. 본 발명의 고흡수성 수지에서 상기 용액 투과도 (SFC)는 미국특허 제 5,669,894호에 따라 측정 및 계산되는 것이 될 수 있다. As an example of the present invention, 0.9 psi of pressure absorbency (AUL) is 300 to 600 micrometers Cam) 0.16 g of classified superabsorbent polymer in a pressure absorption capacity (AUL) measurement kit with a weight of 0.9 psi It can be measured after pressure swelling for 1 hour under 0.9% brine. At this time, after 1 hour, the cell can be weighed to measure the absorbency (AUL) under pressure. In this case, the superabsorbent weight W 0 (g) may be measured by the weight of the super absorbent polymer classified as 300 to 600 micrometers On). The pressure absorbing capacity (AUL) of 0.9 psi of the superabsorbent polymer may be about 20 g / g or more, preferably about 22 g / g or more, and more preferably about 23 g / g or more, for example About 20 to about 32 g / g, or about 22 to about 30 g / g, or about 23 to about 28 g / g. The higher the pressure absorbing capacity is better, but the pressure absorbing capacity may be lowered when the pressure absorbing capacity is too high due to the physical properties opposite to the water holding capacity. Improving the pressure absorption capacity and water retention capacity at the same time is an important technical factor. In the present invention, W 0 (g) described in Formulas 1 to 2 corresponds to the weight (g) of the superabsorbent polymer applied to each property value, and may be the same or different. The solution permeability (SFC) in the superabsorbent polymer of the present invention can be measured and calculated according to US Pat. No. 5,669,894.
상기 고흡수성 수지의 용액 투과도 (SFC)는 약 70*l(T7cm3*sec/g 이상으로, 바람직하게는 약 80 *10"7cm3*sec/g 이상, 좀더 바람직하게는 약 90*10_7cm3*sec/g 이상이 될 수 있으며, 예를 들어 약 70*10-7 내지 약 150*10"7cm3*sec/g, 또는 약 80*10"7 내지 약 140*KT7cni3*sec/g, 또는 약 90*l(r7 내지 약 i30*UT7cm3*sec/g 이 될 수 있다. 용액 투과도 (SFC)는 고흡수성 수지에 흡수되는 액체의 유동성을 평가하는 수치로, 용액 투과도 (SFC)가 70*10"7cm3*sec/g 미만이 되면, 가압 흡수능이 저하되어 최종 제품의 물성을 나쁘게 하는 문제가 발생할 수 있다. The solution permeability (SFC) of the super absorbent polymer is about 70 * l (T 7 cm 3 * sec / g or more, preferably about 80 * 10 " 7 cm 3 * sec / g or more, more preferably about 90 * 10 _7 cm 3 * sec / g or more, for example about 70 * 10 -7 to about 150 * 10 "7 cm 3 * sec / g, or about 80 * 10 " 7 to about 140 * KT 7 cni 3 * sec / g, or about 90 * l (r 7 to about i30 * UT 7 cm 3 * sec / g.) Solution Permeability (SFC) is an evaluation of the flowability of liquids absorbed in superabsorbent resins. If the solution permeability (SFC) is less than 70 * 10 "7 cm 3 * sec / g, the pressure absorption capacity is lowered, which may cause a problem of poor physical properties of the final product.
본 발명의 고흡수성 수지에서 상기 흡수 속도 (FSR)는 국제공개특허 WO In the superabsorbent polymer of the present invention, the absorption rate (FSR) is disclosed in WO WO.
2009/016055호에 따라 측정 및 계산되는 것이 될 수 있다. May be measured and calculated according to 2009/016055.
상기 고흡수성 수지의 생리식염수의 흡수 속도 (FSR)는 약 0.25 g/g/s 이상으로, 바람직하게는 약 0.27 g/g/s 이상, 좀더 바람직하게는 약 0.30 g/g/s 이상이 될 수 있으며, 예를 들어 약 0.25 내지 약 0.5 g/g/s, 또는 약 0.27 내지 약 0.5 g g/s, 또는 약 0.27 내지 약 0.45 g/g s이 될 수 있다. 흡수 속도 (FSR)는 고흡수성 수지의 자유 팽윤 속도를 평가하는 수치로, 흡수 속도 (FSR)가 0.25 g/g/s 미만이 되면, 최종 제품의 흡수 속도가 저하되어 최종 제품의 물성을 나쁘게 하는 문제가 발생할 수 있다.  The absorption rate (FSR) of physiological saline of the superabsorbent polymer may be about 0.25 g / g / s or more, preferably about 0.27 g / g / s or more, and more preferably about 0.30 g / g / s or more. And, for example, about 0.25 to about 0.5 g / g / s, or about 0.27 to about 0.5 gg / s, or about 0.27 to about 0.45 g / gs. Absorption rate (FSR) is a value for evaluating the free swelling rate of superabsorbent polymers. When the absorption rate (FSR) is less than 0.25 g / g / s, the absorption rate of the final product is lowered, resulting in poor physical properties of the final product. Problems may arise.
상술한 바와 같이 본 발명의 제조 방법에 따라 수득된 고흡수성 수지는 보수능 및 가압 흡수능이 일정 수준 이상으로 되면서도, 가압 하에서 빠른 흡수 속도 및 용액 투과도를 나타내며, 상기 물성들이 조화된 특성을 나타낸다. 일반적으로 고흡수성 수지에서 용액 투과도가 높은 경우는 보수능과 가압 흡수능이 낮아지는 경향이 있다. 즉, 가교도가 높고 고흡수성 수지의 강도가 높은 경우에는 보수능이 높으나, 용액 투과도 및 흡수 속도가 낮아지며, 반대로 용액 투과도 및 흡수 속도가 높은 경우는 상대적으로 낮은 보수능을 나타내어 보수능 및 용액 투과도를 동시에 높이는 데에는 어려움이 있다.  As described above, the superabsorbent polymer obtained according to the production method of the present invention exhibits fast absorption rate and solution permeability under pressure while maintaining water retention capacity and pressurized absorption capacity above a certain level, and exhibits harmonized properties of the above properties. In general, when the solution permeability is high in the superabsorbent polymer, the water holding capacity and the pressure absorbing capacity tend to be low. In other words, when the crosslinking degree is high and the strength of the superabsorbent polymer is high, the water holding ability is high, but the solution permeability and the absorption rate are low. On the contrary, when the solution permeability and the absorption rate are high, the water holding ability and solution permeability are relatively low. At the same time there is a difficulty in raising.
그러나 본 발명의 제조 방법에 따라 수득된 고흡수성 수지는 향상된 흡수 속도 및 용액 투과도를 가지면서도 보수능 또는 가압 흡수능의 저하가 없어 물성이 향상된 고흡수성 수지를 제공할 수 있다.  However, the superabsorbent polymer obtained according to the manufacturing method of the present invention can provide a superabsorbent polymer having improved physical properties without deterioration in water-retaining capacity or pressure-absorbing capacity while having an improved absorption rate and solution permeability.
이에 따라, 보수능과 투과 속도의 상반된 물성이 균형을 이루어 박형 또는 초박형의 위생용품의 충전재용으로 매우 적합하게 사용될 수 있다. 이하, 본 발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. Accordingly, the opposite properties of the water holding capacity and the transmission rate are balanced, so It can be suitably used for the filling of ultra-thin hygiene products. Hereinafter, the present invention will be described in more detail in the following examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.
<실시예 > <Example>
실시예 1  Example 1
25 °C로 미리 냉각된 열매체가 순환되는 쟈켓으로 둘러 싸여진 2 L용량의 유리 반응기에 아크릴산 450 g에 아크릴산에 희석된 0.5 중량0 /0 IRGACURE 819 개시제 8 g을 흔합하고, 아크릴산에 희석된 5 중량% 폴리에틸렌글리콜 디아크릴레이트 (PEGDA, 분자량 598 g/mol, Cure Dose 200 mJ/cm2) 50 g을 흔합한 용액을 주입하고, 아크릴산에 희석된 5 중량0 /。 1,6-핵산디올 디아크릴레이트 (1,6- hexandiol diacrylate, 분자량 226 g mol, mol, Cure Dose 320 mJ/cm2) 10 g을 주입하고, 32 중량0 /0 가성소다 용액 660 g을 서서히 적가하여 흔합하였다. 25 ° in a glass reactor of C pre-wrapped around a cooling jacket which heat medium is circulated 2 L capacity in the dilute acid in the acrylic acid 450 g 0.5 wt. 0/0 IRGACURE 819 traces were combined initiator 8 g, 5 wt diluted acid % polyethylene glycol diacrylate 5 parts by weight 0 / implanted a common combined solution (PEGDA, molecular weight 598 g / mol, Cure Dose 200 mJ / cm 2) 50 g , diluted to acrylic acid. the nucleic acid 1,6-diol diacrylate rate was heunhap by injecting (1,6- hexandiol diacrylate, molecular weight 226 g mol, mol, Cure Dose 320 mJ / cm 2) 10 g , and slowly added dropwise to 32 parts by weight 0/0 sodium hydroxide solution 660 g.
두 용액의 흔합 시 중화열에 의해 흔합액의 은도가 80 °C 이상으로 상승하는 것을 확인 후, 온도가 40 °C로 냉각되기를 기다렸다가 반응온도가 40 °C에 이르렀을 때 물에 희석된 2% 과황산나트륨 용액 50 g을 주입하였다. After confirmed that the two solutions The silver rise above 80 ° C in the heunhap when common hapaek by junghwayeol, and a 2% diluted in water when the temperature reaches the 40 ° C as to be waited that the reaction temperature 40 ° C Cooling 50 g of sodium sulfate solution was injected.
상기 용액을 광조사 장치가 상부에 장착되고 내부가 80 t로 예열된 정방형 중합기 내에 설치된 Vat 형태의 트레이 (tray, 가로 15cm x 세로 15cm)에 붓고 광조사를 행하여 광개시하였다ᅳ 광조사 후 약 25초 후 표면부터 겔이 발생하며 50초 정도가 되면 발포와 동시에 중합반웅이 일어나는 것을 확인 후, 그 후 3분을 추가로 반응 시킨 뒤 중합된 시트를 꺼내어 중합된 함수겔의 겔 강도를 측정하였다.  The solution was poured into a Vat-shaped tray (15 cm x 15 cm) mounted in a square polymerizer with a light irradiating device mounted on the top and preheated to 80 t, and irradiated with light to start light. After 25 seconds, the gel was generated from the surface, and after 50 seconds, it was confirmed that the polymerization reaction occurred at the same time as the foaming. After 3 minutes, the polymerized sheet was taken out and the gel strength of the polymerized hydrogel was measured. .
증합된 시트를 3cm X 3cm의 크기로 자른 뒤 다공판의 구멍의 지름이 8mm의 크기를 가지는 미트 쵸.퍼 (Meat chopper)를 이용하여 다지기 공정 (chopping)을 실시하여 가루 (crumb)를 제조하였다.  The cemented sheet was cut into 3 cm x 3 cm and then chopped using a meat chopper having a hole diameter of 8 mm to prepare a powder. .
상기 가루 (crumb)를 상하로 풍량 전이가 가능한 오븐에서 건조하였다. 180°C의 핫 에어 (hot air)를 20분은 하방에서 상방으로, 20분은 상방에서 하방으로 흐르게 하여 균일하게 건조하였으며, 건조 후 건조체의 함수량은 2% 이하가 되게 하였다. 건조 후, 분쇄기로 분쇄한 다음 분급하여 150 내지 850 IM 크기를 선별하여 베이스 수지를 준비하였다. The powder was dried in an oven capable of transferring air volume up and down. The hot air at 180 ° C. was heated uniformly from 20 minutes to below and 20 minutes from above to below to dry uniformly, and after drying, the moisture content of the dried body was 2% or less. After drying, the resultant was pulverized with a grinder and classified to select a 150 to 850 IM size to prepare a base resin.
이후, 100 g의 베이스 수지에 물 5 g, 에틸렌 카보네이트 (ethylene carbonate) 2 g, 황산 알루미늄 (A12S04) 0.5 g을 흔합한 뒤, 190 °C에서 50분 동안 표면가교 반웅 시키고, 분쇄 후 시브 (sieve)를 이용하여 입경 크기가 150 내지 850 의 표면처리된 고흡수성 수지를 얻었다. 실시예 2 Thereafter, 5 g of water, 2 g of ethylene carbonate (ethylene carbonate), 0.5 g of aluminum sulfate (A1 2 S0 4 ) were mixed with 100 g of base resin, and then surface crosslinked at 190 ° C. for 50 minutes, followed by grinding. Using a sieve to obtain a surface-treated superabsorbent polymer having a particle size of 150 to 850. Example 2
상기 실시예 1에서, '아크릴산에 회석된 5 중량 % 폴리에틸렌글리콜 디아크릴레이트의 사용량을 50 g 대신 55 g으로 하고, 아크릴산에 희석된 5 증량% 1 ,6-헥산디을 디아크릴레이트의 사용량을 10 g 대신 1 1 g으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 실시예 3 The amount of the increase of 5% 1, 6-hexanediol diacrylate dieul diluted usage in the first embodiment, "the 5% by weight of polyethylene glycol diacrylate dilution in the acid, and acrylic acid with 50 g instead of 55 g 10 Superabsorbent polymer was prepared in the same manner as in Example 1, except that 1 g was used instead of g. Example 3
상기 실시예 1에서, 아크릴산에 회석된 5 증량0 /0 풀리에틸렌글리콜 디아크릴레이트의 사용량을 50 g 대신 46 g으로 하고, 아크릴산에 회석된 5 중량0 /0 1,6-핵산디올 디아크릴레이트의 사용량을 10 g 대신 9 g으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. . 실시예 4 In Example 1, the amount of the acrylic acid in the dilution increment of 5 0/0 pulley glycol diacrylate with 50 g instead of 46 g, and the dilution to the weight of acrylic acid 5 0/0 1,6 nucleic diacrylate A super absorbent polymer was prepared in the same manner as in Example 1, except that 9 g was used instead of 10 g. . Example 4
상기 실시예 1에서, 다공판의 구멍의 지름이 8mm의 크기를 가지는 미트 쵸퍼 대신 다공판의 구멍의 지름이 6.5mm의 크기를 가지는 미트 쵸퍼를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 실시예 5  In Example 1, the same method as in Example 1 was used except that a meat chopper having a diameter of 6.5 mm was used instead of a meat chopper having a diameter of 8 mm. An absorbent resin was prepared. Example 5
상기 실시예 1에서, 다공판의 구멍의 지름이 8mm의 크기를 가지는 미트 초퍼 대신 다공판의 구멍의 지름이 10mm의 크기를 가지는 미트 쵸퍼를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 비교예 1 상기 실시예 1에서, 아크릴산에 희석된 5 중량% 폴리에틸렌글리콜 디아크릴레이트의 사용량을 50 g 대신 62 g으로 하고, 아크릴산에 회석된 5 중량0 /0 1,6-핵산디올 디아크릴레이트의 사용량을 10 g 대신 21 g으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 비교예 2 In Example 1, the superabsorbency is the same as in Example 1 except that a meat chopper having a diameter of 10 mm is used instead of a meat chopper having a diameter of 8 mm. Resin was prepared. Comparative Example 1 In Example 1, the amount of 5% by weight of polyethylene glycol diacrylate as the usage rate of 62 g instead of 50 g, and the acrylic acid 5 parts by dilution 0/0 1,6 nucleic diacrylate diluted acid A super absorbent polymer was prepared in the same manner as in Example 1, except that 21 g was used instead of 10 g. Comparative Example 2
상기 실시예 1에서, 아크릴산에 희석된 5 중량% 폴리에틸렌글리콜 디아크릴레이트의 사용량올 50 g 대신 31 g으로 하고, 아크릴산에 희석된 5 중량% 1,6-핵산디올 디아크릴레이트를 사용하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. . 비교예 3  In Example 1, the amount of 5% by weight of polyethylene glycol diacrylate diluted in acrylic acid is 31 g instead of 50 g, and 5% by weight of 1,6-nucleic acid diol diacrylate diluted in acrylic acid is not used. Super absorbent polymer was prepared in the same manner as in Example 1. . Comparative Example 3
상기 실시예 1에서, 아크릴산에 회석된 5 중량 % 폴리에틸렌글리콜 디아크릴레이트의 사용량을 50 g 대신 62 g으로 하고, 아크릴산에 희석된 5 중량% 1 ,6-핵산디올 디아크릴레이트의 사용량을 10 g 대신 21 g으로 하며, 다공판의 구멍의 지름이 8mm의 크기를 가지는 미트 쵸퍼 대신 다공판의 구멍의 지름이 16mm의 크기를 가지는 미트 효퍼를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 비교예 4  In Example 1, the amount of 5% by weight polyethylene glycol diacrylate diluted in acrylic acid is 62 g instead of 50 g, and the amount of 5% by weight 1,6-nucleodiol diacrylate diluted in acrylic acid is 10 g. Instead, it is 21 g, and the superabsorbency is the same as in Example 1 except that a meat hopper having a hole diameter of 16 mm is used instead of a meat chopper having a hole diameter of 8 mm. Resin was prepared. Comparative Example 4
상기 실시예 1에서, 아크릴산에 희석된 5 중량 % 폴리에틸렌글리콜 디아크릴레이트의 사용량을 50 g 대신 31 g으로 하고, 아크릴산에 희석된 5 중량0 /。 1,6-핵산디을 디아크릴레이트를 사용하지 않으며, 다공판의 구멍의 지름이 8mm의 크기를 가지는 미트 쵸퍼 대신 다공판의 구멍의 지름이 16mm의 크기를 가지는 미트 쵸퍼를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 비교예 5 In Example 1, the amount of 5% by weight of polyethylene glycol diacrylate diluted in acrylic acid is 31 g instead of 50 g, and 5% by weight 0 /. 1,6-nucleic acid diacrylate diluted in acrylic acid is not used. The superabsorbent polymer was prepared in the same manner as in Example 1, except that the meat chopper having a diameter of 16 mm was used instead of the meat chopper having a diameter of 8 mm. . Comparative Example 5
상기 실시예 1에서, 다공판의 구멍의 지름이 8mm의 크기를 가지는 미트 쵸퍼 대신 다공판의 구멍의 지름이 16mm의 크기를 가지는 미트 쵸퍼를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 상기 실시예 1 내지 5 및 비교예 1 내지 5에서, 주요 공정 조건을 하기 표 2에 나타내었다. In Example 1, a meat chopper having a diameter of 16 mm is used instead of a meat chopper having a diameter of 8 mm. Superabsorbent polymer was prepared in the same manner as in Example 1, except that. In Examples 1 to 5 and Comparative Examples 1 to 5, main process conditions are shown in Table 2 below.
【표 2】  Table 2
Figure imgf000023_0001
Figure imgf000023_0001
* 상기 표 1에서, PEGDA는 폴리에틸렌글리콜 디아크릴레이트 (polyethyleneglycol diacrylate)이고, HDDA는 1,6-헥산디을 디아크릴레이트 (1,6-hexanediol diacrylate)이다. In Table 1, PEGDA is polyethyleneglycol diacrylate, and HDDA is 1,6-hexanediol diacrylate (1,6-hexanediol diacrylate).
* 각 내부 가교제의 농도는, 단량체 조성물에 포함되는 아크릴산의 총 중량에 대한 농도 (ppm)로 하였다.  * The density | concentration of each internal crosslinking agent was made into the density | concentration (ppm) with respect to the total weight of acrylic acid contained in a monomer composition.
<실험예 > Experimental Example
실시예 1 내지 5 및 비교예 1 내지 5에 따라 제조된 고흡수성 수지에 대하여 다음과 같은 방법으로 물성 평가를 수행하였으며, 측정된 물성값은 하기 표 3에 나타내었다.  Evaluation of physical properties of the superabsorbent polymers prepared according to Examples 1 to 5 and Comparative Examples 1 to 5 was carried out in the following manner, and the measured physical properties are shown in Table 3 below.
(1) 겔 강도 (Gel Strength)  (1) Gel Strength
실시예 1 내지 5 및 비교예 1 내지 5의 고흡수성 수지의 제조 방법에서 수득된 함수겔상 중합체에 대하여, 다음과 같은 방법에 따라 겔 강도 (Gel Strength)를 측정하였다. In the production method of the super absorbent polymers of Examples 1 to 5 and Comparative Examples 1 to 5 About the obtained hydrogel polymer, the gel strength was measured by the following method.
먼저, 중합후 얻어진 함수겔상 중합체 시료 30 g을 칭량하였다. 칭량된 시료를 0.9% NaCl 용액 300 g에 1시간 동안 충분히 팽윤시켰다. 상기 함수겔을 5mm 5mm x 5mm 크기로 자른 후 테스트가 준비될 때까지 밀폐된 용기에 유지시켰다.  First, 30 g of the hydrogel polymer samples obtained after polymerization were weighed. The weighed sample was sufficiently swollen in 300 g of 0.9% NaCl solution for 1 hour. The hydrogel was cut to a size of 5 mm 5 mm x 5 mm and kept in a closed container until the test was ready.
상기 함수겔을 레오미터 (Rheometer)와 평행판 사이에 놓기 전에 테스팅 (Testing)하는 동안에 입자들 사이의 잔존하는 물이 없도록 여과지 (Filter Paper)로 빨아 들였다.  The hydrogel was sucked into a filter paper so that no water remained between the particles during testing before placing between the rheometer and the parallel plate.
상기 팽윤된 함수겔을 2 g을 가지고 레오미터 (Rheometer)로 측정 실행하였다. 이때, 레오미터의 시험조건은, Plate Gap Size 2 mm; Strain amplitude 1 %; Oscilation frequency 10 radian/sec; ambient tempeature 22 °C; plate 25mm, TA Instruments- AR Series으로 측정하였다. 측정값은 5분간 측정한 뒤에 평균값을 취하였다. (2) 보수능 (CRC: Centrifuge Retention Capacity)  The swollen hydrous gel was measured with a rheometer with 2 g. At this time, the test conditions of the rheometer, Plate Gap Size 2 mm; Strain amplitude 1%; Oscilation frequency 10 radian / sec; ambient tempeature 22 ° C; plate 25mm, measured by TA Instruments-AR Series. The measured value was taken for 5 minutes and then averaged. (2) Centrifuge Retention Capacity (CRC)
유럽부직포산업협회 (European Disposables and Nonwovens Association, ED ANA) 규격 EDANA WSP 241.2에 따라 실시예 1 내지 5 및 비교예 1 내지 5의 고흡수성 수지에 대하여, 무하중하 흡수배율에 의한 보수능을 측정하였다.  According to the European Disposables and Nonwovens Association (ED ANA) standard EDANA WSP 241.2, the water-absorbing capacity by the unloaded absorption ratio of the superabsorbent polymers of Examples 1 to 5 and Comparative Examples 1 to 5 was measured.
즉, 얻어진 고흡수성 수지 W0(g, 약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉 (seal)한 후에, 상온에 0.9 질량 %의 생리식염수에 침수했다. 30분 후에 봉투를 원심 분리기를 이용하고 250G로 3분간 물기를 뺀 후에 봉투의 질량 W2(g)을 측정했다. 또, 고흡수성 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W,(g)을 측정했다. That is, the resultant super-absorbent resin W 0 (g, about 0.2g) after the sealing (seal) placed uniformly on the envelope of the nonwoven fabric was immersed in saline solution of 0.9% by weight at room temperature. After 30 minutes, the envelope was centrifuged and drained at 250 G for 3 minutes, and then the mass W 2 (g) of the envelope was measured. Moreover, the mass W and (g) at that time were measured after carrying out the same operation without using the super absorbent polymer.
이렇게 얻어진 각 질량을 이용하여 다음의 계산식 1에 따라 CRC (g/g)를 산출하여 보수능을 확인하였다.  Using each mass thus obtained, CRC (g / g) was calculated according to the following equation 1 to confirm the water holding capacity.
[계산식 1]  [Calculation 1]
CRC(g/g) = {[W2(g) - W,(g)]/W0(g)} - 1 CRC (g / g) = {[W 2 (g)-W, (g)] / W 0 (g)}-1
상기 계산식 1에서,  In Formula 1,
W0(g)는 고흡수성 수지의 무게 (g)이고, W 0 (g) is the weight of superabsorbent polymer (g),
W^g)는 고흡수성 수지를 사용하지 않고, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게이고, -W ^ g) does not use superabsorbent polymer, but 250G using a centrifuge. Device weight measured after dehydration for 3 minutes,
W2(g)는 상온에 0.9 질량%의 생리식염수에 고흡수성 수지를 30분 동안 침수한 후에, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 고흡수성 수지를 포함하여 측정한 장치 무게이다. W 2 (g) is a device weight including the superabsorbent polymer after submerging the superabsorbent polymer in 0.9 mass% physiological saline at room temperature for 30 minutes, followed by dehydration at 250 G for 3 minutes using a centrifuge.
(3) 가압 흡수능 (AUL: Absorbency under Load) (3) Absorbency under Load (AUL)
실시예 1 내지 5 및 비교예 1 내지 5의 고흡수성 수지에 대하여, 유럽부직포산업협회 (European Disposables and Nonwovens Association, ED ANA) 규격 EDANA WSP 242.2에 따라, 0.9 psi의 가압 흡수능 (AUL: Absorbency under Load)을 측정하였다.  For the superabsorbent resins of Examples 1 to 5 and Comparative Examples 1 to 5, Absorbency under Load (AUL) of 0.9 psi, according to European Disposables and Nonwovens Association (ED ANA) standard EDANA WSP 242.2 ) Was measured.
먼저, 내경 25 mm의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 상온, 습도 50%의 조건하에서 철망상에 실시예 1 내지 5 및 비교예 1 내지 5의 고흡수성 수지 W0(g, 0.16 g)을 균일하게 살포하고 그 위에 5.1 kPa(0.9 psi)의 하중을 균일하게 더 부여할 수 있는 피스론 (piston)은 외경이 25 mm보다 약간 작고 원통의 내벽과 름이 없고, 상하의 움직임이 방해 받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을 측정하였다. First, a stainless steel 400 mesh wire was mounted on the bottom of a plastic cylinder having an inner diameter of 25 mm. The superabsorbent polymers W 0 (g, 0.16 g) of Examples 1 to 5 and Comparative Examples 1 to 5 were evenly sprayed on the wire mesh under conditions of a room temperature and a humidity of 50%, and a load of 5.1 kPa (0.9 psi) was applied thereon. The even more uniform piston has a smaller outer diameter than 25 mm, no cylindrical inner wall, and no up and down movement. At this time, the weight W 3 (g) of the apparatus was measured.
직경 150 mm의 페트로 접시의 내측에 직경 90 mm로 두께 5 mm의 유리 필터를 두고, 0.90 중량 % 염화 나트륨으로 구성된 생리식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 그 위에 직경 90 mm의 여과지 1장을 실었다. 여과지 위에 상기 측정장치를 싣고, 액을 하중 하에서 1 시간 동안 흡수하였다. 1 시간 후 측정 장치를 들어올리고, 그 중량 W4(g)을 측정하였다. A glass filter of 90 mm diameter and a thickness of 5 mm was placed inside a petri dish having a diameter of 150 mm, and a physiological saline composed of 0.90 wt% sodium chloride was made at the same level as the upper surface of the glass filter. One sheet of filter paper 90 mm in diameter was loaded thereon. The measuring device was placed on the filter paper and the liquid was absorbed for 1 hour under load. After 1 hour, the measuring device was lifted up and the weight W 4 (g) was measured.
이렇게 얻어진 각 질량을 이용하여 다음의 계산식 2에 따라 AUL(g/g)를 산출하여 가압 흡수능을 확인하였다.  Using each mass thus obtained, AUL (g / g) was calculated according to the following equation 2 to confirm the pressure absorbing ability.
" [계산식 2]  "[Equation 2]
AUL(g/g) = [W4(g) - W3(g)]/ W0(g) AUL (g / g) = [W 4 (g)-W 3 (g)] / W 0 (g)
상기 계산식 2에서,  In the formula 2,
W0(g)는 고흡수성 수지의 무게 (g)이고, W 0 (g) is the weight of superabsorbent polymer (g),
W3(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고, W 3 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device capable of applying a load to the superabsorbent polymer,
W4(g)는 하중 (0.9 psi) 하에 1시간 동안 상기 고흡수성 수지에 수분을 공급한 후의 수분이 흡수된 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다. W 4 (g) moisturizes the superabsorbent polymer for 1 hour under load (0.9 psi). It is the sum total of the weight of the superabsorbent polymer absorbed by the water after supply and the weight of the device capable of applying a load to the superabsorbent polymer.
(4) 흡수 속도 (FSR: Free Swell Rate) (4) Free Swell Rate (FSR)
실시예 1 내지 5 및 비교예 1 내지 5의 고흡수성 수지에 대하여, 국제공개특허 WO 2009/016055호에 기재된 방법에 따라 흡수 속도 (FSR)를 측정하였다.  For the super absorbent polymers of Examples 1 to 5 and Comparative Examples 1 to 5, the absorption rate (FSR) was measured according to the method described in WO 2009/016055.
(5) 용액 투과도 (SFC: Saline Flow Conductivity) (5) Saline Flow Conductivity (SFC)
실시예 1 내지 5 및 비교예 1 내지 5의 고흡수성 수지에 대하여, 미국특허 5,669,894호에 기재된 방법에 따라 용액 투과도 (SFC)를 측정하였다.  For the superabsorbent polymers of Examples 1 to 5 and Comparative Examples 1 to 5, solution permeability (SFC) was measured according to the method described in US Pat. No. 5,669,894.
【표 3】 Table 3
Figure imgf000026_0001
상기 표 2에 나타낸 바와 같이, 본 발명에 따른 실시예 1 내지 5의 고흡수성 수지는 비교예 1 내지 5에 비하여 보수능 (CRC), 가압 흡수능 (AUP), 용액 투과도 (SFC) 및 흡수 속도 (FSR)가 동시에 우수한 정도로 시너지 효과를 발휘하는, 조화된 물성의 우수한 고흡수성 수지를 제공할 수 있다.
Figure imgf000026_0001
As shown in Table 2, the super absorbent polymers of Examples 1 to 5 according to the present invention have a water-retaining capacity (CRC), pressure-absorbing capacity (AUP), solution permeability (SFC) and absorption rate ( It is possible to provide an excellent superabsorbent polymer having a harmonized physical property that exhibits a synergistic effect to a high degree at the same time.

Claims

【특허청구범위】 【Patent Claims】
【청구항 1】 【Claim 1】
수용성 에틸렌계 불포화 단량체, 내부 가교제 및 중합 개시제를 포함하는 단량체 조성물에 열중합 또는 광중합을 진행하여 겔 강도 (Gel Strength)가 10,000 내지 13,000Pa인 함수겔상 중합체를 형성하는 단계; Forming a hydrous gel polymer having a gel strength of 10,000 to 13,000 Pa by performing thermal or photo polymerization on a monomer composition containing a water-soluble ethylenically unsaturated monomer, an internal crosslinking agent, and a polymerization initiator;
상기 함수겔상 중합체를 조분쇄하는 단계; Crudely pulverizing the water-containing gel polymer;
상기 조분쇄된 함수겔상 중합체를 건조하는'단계; A step of drying the coarsely ground hydrogel polymer;
상기 건조된 증합체를 분쇄하는 단계; 및 pulverizing the dried polymer; and
상기 분쇄된 중합체와 표면 가교제를 흔합하여 표면 가교 반응을 수행하는 단계를 포함하는, 고흡수성 수지의 제조 방법. A method for producing a superabsorbent polymer, comprising the step of performing a surface crosslinking reaction by mixing the pulverized polymer with a surface crosslinking agent.
【청구항 2】 【Claim 2】
제 1 항에 있어서, According to claim 1,
상기 함수겔상 중합체를 조분쇄하는 단계는, 상기 함수겔상 증합체를 홀 (hole)이 형성되어 있는 출구로 밀어내는 방식으로 수행하는, 고흡수성 수지의 제조 방법. The step of coarsely pulverizing the water-containing gel polymer is performed by pushing the water-containing gel polymer through an outlet where a hole is formed.
【청구항 3] [Claim 3]
제 2항에 있어서, According to clause 2,
상기 홀의 직경과 상기 함수겔상 중합체의 겔 강도는 하기 식 1을 만족하는, 고흡수성 수지의 제조 방법: The hole diameter and the gel strength of the hydrogel polymer satisfy the following equation 1:
[식 1] [Equation 1]
1140*x + 730 < y < 600*x + 8400 1140*x + 730 < y < 600*x + 8400
상기 식 1에서, In equation 1 above,
X는 홀의 직경 (단위: mm)이고, y는 조분쇄 전의 함수겔상 중합체의 겔 강도 (단위 : Pa)이다. X is the diameter of the hole (unit: mm), and y is the gel strength of the hydrogel polymer before coarse grinding (unit: Pa).
【청구항 4】 【Claim 4】
제 1항에 있어서, According to clause 1,
상기 내부 가교제는 상기 수용성 에틸렌계 불포화 단량체의 경화량 (cure dose)의 대비 80% 내지 200%의 경화량을 갖는 화합물인, 고흡수성 수지의 제조 방법. The internal crosslinking agent has a cure amount of the water-soluble ethylenically unsaturated monomer. A method of producing a superabsorbent polymer, which is a compound having a curing amount of 80% to 200% compared to dose.
【청구항 5】 【Claim 5】
게 1항에 있어서, In clause 1,
상기 내부 가교제는 160 내지 400 mJ/cni2의 경화량을 갖는 화합물인, 고흡수성 수지의 제조 방법. The internal crosslinking agent is a compound having a curing amount of 160 to 400 mJ/cni 2 , a method of producing a superabsorbent polymer.
【청구항 6】 【Claim 6】
제 1항에 있어서, According to clause 1,
상기 내부 가교제는 폴리에틸렌글리콜 디아크릴레이트 (polyethyleneglycol diacrylate), 핵산디올 디아크릴레이트 (hexanediol diacrylate), 및 에특시레이티드 트리메틸을프로판 트리아크릴레이트 (ethoxylated TMPTA(trimethylolpropane triacrylate))로 이루어진 군에서 선택되는 2종 이상인, 고흡수성 수지의 제조 방법. The internal crosslinking agent is 2 selected from the group consisting of polyethyleneglycol diacrylate, hexanediol diacrylate, and ethoxylated trimethylolpropane triacrylate (TMPTA). Method for producing more than one species of superabsorbent polymer.
【청구항 7】 【Claim 7】
제 1항에 있어서, According to clause 1,
상기 내부 가교제는 상기 단량체 조성물에 포함된 상기 수용성 에틸렌계 불포화 단량체의 전체 중량에 대하여 4,000 내지 7,500ppm으로 포함되는, 고흡수성 수지의 제조 방법. The internal crosslinking agent is included in an amount of 4,000 to 7,500 ppm based on the total weight of the water-soluble ethylenically unsaturated monomer contained in the monomer composition.
【청구항 8】 【Claim 8】
제 1항에 있어서, According to clause 1,
상기 분쇄된 중합체에 표면 가교 반웅을 수행하는 단계 전에, 입경이 150 내지 850μπι인 중합체로 분급하는 단계를 추가로 포함하는 것을 특징으로 하는 고흡수성 수지의 제조 방법. A method for producing a superabsorbent polymer, characterized in that it further comprises the step of classifying polymers having a particle size of 150 to 850 μπι before performing a surface cross-linking reaction on the pulverized polymer.
【청구항 9】 【Claim 9】
제 1항에 있어서, According to clause 1,
상기 고흡수성 수지의 원심분리 보수능 (CRC)은 25 g g 이상이고, 가압 흡수능 (AUL)은 20 g/g 이상이고, 흡수 속도 (FSR)는 0.25 g/g/s 이상이며, 용액 투과도 (SFC)는 70*10-7 cm3*sec/g 이상인, 고흡수성 수지의 제조 방법. The centrifugal retention capacity (CRC) of the superabsorbent polymer is 25 gg or more, and A superabsorbent polymer with an absorption capacity (AUL) of 20 g/g or more, an absorption rate (FSR) of 0.2 5 g/g/s or more, and a solution permeability (SFC) of 70* 10-7 cm 3 *sec/g or more. Manufacturing method.
PCT/KR2014/011933 2013-12-10 2014-12-05 Method for preparing super-absorbent resin WO2015088200A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016534212A JP6321805B2 (en) 2013-12-10 2014-12-05 Method for producing superabsorbent resin
EP14870573.4A EP3067370B2 (en) 2013-12-10 2014-12-05 Method for preparing super-absorbent resin
US15/103,552 US9701796B2 (en) 2013-12-10 2014-12-05 Preparation method of superabsorbent polymer
CN201480067388.5A CN105814088B (en) 2013-12-10 2014-12-05 The preparation method of super absorbent polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130153325 2013-12-10
KR10-2013-0153325 2013-12-10
KR10-2014-0172998 2014-12-04
KR1020140172998A KR101700907B1 (en) 2013-12-10 2014-12-04 Method for preparing super absorbent polymer

Publications (1)

Publication Number Publication Date
WO2015088200A1 true WO2015088200A1 (en) 2015-06-18

Family

ID=53371443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011933 WO2015088200A1 (en) 2013-12-10 2014-12-05 Method for preparing super-absorbent resin

Country Status (1)

Country Link
WO (1) WO2015088200A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180244867A1 (en) * 2015-12-23 2018-08-30 Lg Chem, Ltd. Preparation method of super absorbent polymer
EP3336134A4 (en) * 2016-03-31 2018-12-26 LG Chem, Ltd. Superabsorbent resin and method for producing same
US10335768B2 (en) 2016-03-23 2019-07-02 Lg Chem, Ltd. Super absorbent polymer

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161408A (en) 1980-05-19 1981-12-11 Kao Corp Production of water-absorbing resin
JPS57158209A (en) 1981-03-25 1982-09-30 Kao Corp Production of bead-form highly water-absorbing polymer
JPS57198714A (en) 1981-05-29 1982-12-06 Sumitomo Chem Co Ltd Production of hydrogel
US4734478A (en) 1984-07-02 1988-03-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Water absorbing agent
US5140076A (en) 1990-04-02 1992-08-18 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method of treating the surface of an absorbent resin
US5669894A (en) 1994-03-29 1997-09-23 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
KR19990051876A (en) * 1997-12-20 1999-07-05 차동천 Superabsorbent resin
KR20030068198A (en) * 2000-12-29 2003-08-19 바스프 악티엔게젤샤프트 Hydrogels Coated with Steric or Electrostatic Spacers
WO2009016055A2 (en) 2007-07-27 2009-02-05 Basf Se Water-absorbing polymeric particles and method for the production thereof
KR20100014556A (en) * 2007-03-23 2010-02-10 에보닉 스톡하우젠, 인코포레이티드 High permeability superabsorbent polymer compositions
KR20110134333A (en) * 2010-06-08 2011-12-14 주식회사 엘지화학 Process for preparing water absorbent resin with high performance
KR20130096152A (en) * 2010-05-07 2013-08-29 에보닉 스톡하우젠, 엘엘씨 Particulate superabsorbent polymer having a capacity increase

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161408A (en) 1980-05-19 1981-12-11 Kao Corp Production of water-absorbing resin
JPS57158209A (en) 1981-03-25 1982-09-30 Kao Corp Production of bead-form highly water-absorbing polymer
JPS57198714A (en) 1981-05-29 1982-12-06 Sumitomo Chem Co Ltd Production of hydrogel
US4734478A (en) 1984-07-02 1988-03-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Water absorbing agent
US5140076A (en) 1990-04-02 1992-08-18 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method of treating the surface of an absorbent resin
US5669894A (en) 1994-03-29 1997-09-23 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
KR19990051876A (en) * 1997-12-20 1999-07-05 차동천 Superabsorbent resin
KR20030068198A (en) * 2000-12-29 2003-08-19 바스프 악티엔게젤샤프트 Hydrogels Coated with Steric or Electrostatic Spacers
KR20100014556A (en) * 2007-03-23 2010-02-10 에보닉 스톡하우젠, 인코포레이티드 High permeability superabsorbent polymer compositions
WO2009016055A2 (en) 2007-07-27 2009-02-05 Basf Se Water-absorbing polymeric particles and method for the production thereof
KR20130096152A (en) * 2010-05-07 2013-08-29 에보닉 스톡하우젠, 엘엘씨 Particulate superabsorbent polymer having a capacity increase
KR20110134333A (en) * 2010-06-08 2011-12-14 주식회사 엘지화학 Process for preparing water absorbent resin with high performance

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ODIAN: "Principle of Polymerization", 1981, WILEY, pages: 203
REINHOLD SCHWALM: "UV Coatings: Basics, Recent Developments and New Application", 2007, ELSEVIER, pages: 115
See also references of EP3067370A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180244867A1 (en) * 2015-12-23 2018-08-30 Lg Chem, Ltd. Preparation method of super absorbent polymer
US11198768B2 (en) * 2016-03-11 2021-12-14 Lg Chem, Ltd. Preparation method of super absorbent polymer
US10335768B2 (en) 2016-03-23 2019-07-02 Lg Chem, Ltd. Super absorbent polymer
EP3336134A4 (en) * 2016-03-31 2018-12-26 LG Chem, Ltd. Superabsorbent resin and method for producing same

Similar Documents

Publication Publication Date Title
JP6321805B2 (en) Method for producing superabsorbent resin
JP6592461B2 (en) Super absorbent resin
KR102075737B1 (en) Preparation method for super absorbent polymer, and super absorbent polymer
JP6182206B2 (en) Superabsorbent resin and method for producing the same
JP6443998B2 (en) Super absorbent polymer
KR102011926B1 (en) Super absorbent polymer and preparation method thereof
KR20190047607A (en) Preparation method of super absorbent polymer
KR102069312B1 (en) Preparation method of super absorbent polymer, and super absorbent polymer
KR102162500B1 (en) Super absorbent polymer and preparation method thereof
CN108350188B (en) Superabsorbent polymer and method of making the same
JP6277282B2 (en) Method for producing superabsorbent resin
KR102157785B1 (en) Super absorbent polymer and preparation method thereof
JP2016533423A (en) Superabsorbent resin and method for producing the same
JP7039105B2 (en) Highly absorbent resin and its manufacturing method
KR102086052B1 (en) Super absorbent polymer and preparation method thereof
WO2015088200A1 (en) Method for preparing super-absorbent resin
WO2015190879A1 (en) Super absorbent resin
JP2021517927A (en) Highly water-absorbent resin and its manufacturing method
KR20200036606A (en) Preparation method of super absorbent polymer and super absorbent polymer therefrom
KR102577709B1 (en) Preparation method of super absorbent polymer
KR20210037455A (en) Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
JP2024505659A (en) Manufacturing method of super absorbent resin
KR20200059023A (en) Preparation method of super absorbent polymer, and super absorbent polymer prepared therefrom
WO2015016643A1 (en) Super absorbent polymer
KR20210038252A (en) Preparation method for super absorbent polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534212

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014870573

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014870573

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15103552

Country of ref document: US