WO2015080402A1 - Method for producing lactide using multi-tube falling film reactor and agitated thin film reactor - Google Patents

Method for producing lactide using multi-tube falling film reactor and agitated thin film reactor Download PDF

Info

Publication number
WO2015080402A1
WO2015080402A1 PCT/KR2014/010799 KR2014010799W WO2015080402A1 WO 2015080402 A1 WO2015080402 A1 WO 2015080402A1 KR 2014010799 W KR2014010799 W KR 2014010799W WO 2015080402 A1 WO2015080402 A1 WO 2015080402A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactic acid
tube
lactide
reactor
bundle
Prior art date
Application number
PCT/KR2014/010799
Other languages
French (fr)
Korean (ko)
Inventor
전종열
장종산
한요한
박병수
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2015080402A1 publication Critical patent/WO2015080402A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/121,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/785Preparation processes characterised by the apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/81Preparation processes using solvents

Definitions

  • the present invention relates to a method for producing lactide from lactic acid using a multi-tube falling film reactor and a thin film reactor, and more particularly, to prepare a lactic acid oligomer from lactic acid, and to sequentially produce a multi-tube falling film reactor and a stirred thin film reactor. It relates to a method for continuously producing lactide by depolymerization using
  • Lactide a cyclized compound of lactic acid dimer, is used as a raw material for producing polylactide, a biodegradable polymer. Due to its molecular structure, the method of directly cyclizing water by taking water out of two lactic acid molecules is the simplest method. However, in general, lactic acid is prepolymerized into an oligomer having a weight average molecular weight of 1,000-3,000, followed by a metal catalyst. Lactide is prepared by depolymerization again under the following. In more detail about the above-described depolymerization reaction, when the lactic acid oligomer is heated to a temperature of 200 ° C. or higher in the presence of a catalyst, the molecular chain ends of the oligomer proceed with cyclization and chain cutting by back-biting. The lactide is obtained by a reactor in which lactide is produced and separated.
  • the first polymerization step is a kind of esterification reaction in which the carboxyl group of the lactic acid molecule reacts with alcohol groups of other lactic acid molecules to give water and increase molecular weight. Therefore, the use of acid catalysts such as sulfuric acid as in the general esterification reaction promotes the reaction. At high temperatures, the acid catalyzes the reaction without an external catalyst, and the reaction reaches equilibrium unless the by-product water is removed. .
  • a falling film evaporator or a stirred thin film evaporator capable of rapidly evaporating water may be used as a reactor for lactic acid small polymerization.
  • Membrane evaporators in which liquid flows down in the form of a thin film of less than 1 mm in thickness, are extremely fast in mass transfer and heat transfer.
  • the depolymerization reaction of the second reaction step lactic acid oligomer
  • lactic acid oligomer can also be carried out particularly advantageously in the reactor of the falling film evaporator type. This is because not only can the lactide generated by the reaction be separated quickly to prevent the reverse reaction, but also it can supply the enormous heat of reaction necessary for cutting the chain of the oligomer at a high speed.
  • the conventional stirring thin film evaporator has a limitation in manufacturing a large-diameter device due to the eccentricity of the rotor blade is not used for bulk chemical production.
  • the conventional falling film evaporator in which the spray nozzle is generally used has a problem in spraying a high viscosity material such as lactic acid oligomer of the present invention with a nozzle at a high temperature.
  • the falling film evaporator requires the liquid to flow down the inner wall surface (or outer wall surface) of the 100% vertical pipe to a uniform thickness in the circumferential direction and flow down to increase the efficiency of the device.
  • Spraying high-viscosity liquids with nozzles in a tube falling film evaporator to distribute them evenly in individual tubes is difficult, even with high energy. Even if sprayed, a significant amount of droplets will fall downward through the space inside the tube rather than the inner wall of the vertical tube, reducing the evaporation efficiency.
  • the prior art uses a circulation pump to circulate the liquid below the evaporator upwards.
  • Korean Patent Application No. 10-2012-0090098 discloses the production of lactide, which performs a depolymerization step as well as a depolymerization step of lactic acid and a depolymerization step in a multi-drop falling-film reactor. It describes a method, in which a single liquid dispersing device is installed at the top of each vertical tube of the bundle tube membrane reactor to allow liquid to flow only on the wall so that no reactant falls into the space inside the vertical tube. A falling film reactor is used in which the reactants flow evenly around the inner wall of the vertical tube.
  • the bundle downfall reactor including the liquid dispersing device described above can produce lactide from lactic acid in high yield, high efficiency and continuously, but after the depolymerization reaction is carried out continuously, the carbonaceous material in the lower portion of the reactor bundle It was found that it was calm. Since the deposition of such carbonaceous materials interferes with the heat transfer required for depolymerization and the movement of the falling film, the yield of lactide is decreased, and a new method for solving such problems is needed.
  • Patent Document 1 USP 5,274,073
  • Patent Document 2 USP 6,229,046
  • Patent Document 3 USP 6,875,839
  • Patent Document 4 USP 8,053,584
  • the inventors have carried out the condensation step of lactic acid and / or the cyclic depolymerization step using a multi-tube descending membrane reactor equipped with a liquid dispersing device that allows liquid to flow only on the wall on top of each individual vertical tube.
  • a liquid dispersing device that allows liquid to flow only on the wall on top of each individual vertical tube.
  • the number of individual pieces of the multi-tube falling film device at low pressure of the liquid reactant having high viscosity Lactide can be produced in high yield, high efficiency and continuously by applying a multi-tube descending film device distributed evenly to the straight pipe and flowing down to only 100% vertical pipe inner wall surface and down to circumferentially even thickness.
  • FIG. 1 is a schematic diagram of a multiple-tube drop membrane reactor of the present invention
  • Figure 2 is a perspective view showing the combination and arrangement of the support plate, liquid dispersion plate, gas-liquid dispersion tube and gas hole of the present invention
  • BB ′ A cross-sectional view of the bundle tube falling membrane reactor viewed in the direction of the arrow.
  • step 1 is a method for producing lactide comprising the step of evaporation and concentration of lactic acid aqueous solution (step 1), the lactic acid small polymerization step (step 2) and the lactic acid oligomer depolymerization step (step 3), step It is to provide a method for producing lactide, characterized in that 1 and / or step 2 is carried out in a bundle downfall reactor, and step 3 is carried out in a bundle downfall reactor and stirred thin film reactor.
  • the preparation method comprises the following steps (1) to (3):
  • lactic acid aqueous solution was concentrated by evaporation at a pressure of 50-700 torr and a temperature of 80-120 ° C;
  • the obtained lactic acid oligomer is depolymerized at a pressure of 5-100 torr and a temperature of 200-270 ° C.
  • the depolymerization step may comprise the following steps 3 and 4:
  • the obtained lactic acid oligomer is fed into a bundle tube falling-film reactor to depolymerize firstly until the yield of lactide is approximately 70-90%, preferably 75-85%,
  • the method further comprises the step of purifying the mixture which is discharged in the vapor phase in the depolymerization step and comprises a lactide, water, lactic acid and an oligomer thereof, which is the following step 5, step 6 and / or step 7 may include:
  • the lactide manufacturing process of producing lactide through evaporative concentration of lactic acid solution small polymerization and depolymerization of lactic acid, the evaporative concentration of step 1, the small polymerization of step 2 and the depolymerization of step 3 all have a mass transfer rate and a heat transfer rate. It is a physical and chemical process that requires the use of large falling film devices.
  • step 1 when the water is evaporated by applying heat to the aqueous solution of lactic acid having a concentration of 20-90%, the viscosity of the lactic acid is gradually increased, so that the rate of water evaporation and the latent heat of evaporation energy are gradually reduced. As a result, it takes a long time to remove more than 99% of the water and concentrate it to a high concentration, so that a membrane reactor such as a falling-film evaporator can be used.
  • a film-type reaction such as a falling-film evaporator It is preferable to use a device.
  • the inventors of the present invention provide a method for efficiently producing lactide using the bundle drop film device of FIG. 1 applicable to evaporative concentration of the lactic acid aqueous solution of step 1, small polymerization of lactic acid of step 2, and / or depolymerization of step 3. Was completed.
  • the multi-tube falling film reactor that can be used in the present invention is a reactor as shown in Figure 1, the name of the invention "manufacturing method for lactide using a multitude falling film reactor ⁇ "
  • the reactor described in Korean Patent Application No. 10-2012-0090098 (filed August 17, 2012) filed as an example may be exemplified, which application is incorporated herein by reference.
  • the bundle tube 1 illustrates a bundle tube falling membrane reactor that can be used in the present invention with reference to the bundle tube falling membrane reactor, the bundle tube 1 consisting of one or more vertical tubes and a jacket comprising the same ( 2), the upper bundle pipe flange 4a in which the upper end of the bundle pipe is inserted and welded, the lower bundle pipe flange 4b in which the lower end of the bundle pipe is inserted and welded, and the upper bundle pipe flange described above ( 4a) an upper blocking flange 6a positioned above and having a pupil 8 and a liquid inlet 7a, and a lower blocking flange 6b installed below the lower bundle tube flange 4b and having a liquid outlet 7b. ), And further, further comprises the following components:
  • a gas-liquid dispersion flange 5 provided between the above-mentioned upper bundle tube flange 4a and the upper shut-off flange 6a;
  • a support plate 10 which is installed to cover the upper end inlet of the above-described falling film forming tube 11 and in which the hole 14 is drilled so that the supplied liquid can flow into the falling film forming tube 11;
  • lactide may be prepared according to the following steps 1-7.
  • lactic acid is usually prepared in an aqueous solution of lactic acid content of 15-20% in a bioreactor. In some cases, lactic acid may be preconcentrated to lactic acid content of 50-70% and supplied to Step 1.
  • Step 1 is a step of evaporating the lactic acid aqueous solution.
  • the lactic acid aqueous solution of 15-70% of lactic acid is concentrated by evaporation to a lactic acid content of 95-99% at a temperature of 100-120 ° C. and a pressure of 50-200 torr. , Preferably in a falling-film reactor.
  • Step 2 is a step of small polymerization of the oligomer from the evaporated lactic acid, in a falling film reactor at a temperature of 180-210 ° C., preferably 190-205 ° C. and a pressure of 200-760 torr, preferably 500-700 torr. Can be done.
  • the resulting oligomers produced in the prepolymerization stage may generally have a weight average molecular weight of 1000-3000, specifically 1000-2000.
  • Step 3 is a step of first depolymerization of the small polymerized lactic acid oligomer, supplying the lactic acid oligomer to the bundle tube falling membrane reactor to perform the first depolymerization until the lactide yield is about 70-90%.
  • the first depolymerization is generally carried out in the presence of a metal oxide catalyst, such as SnO, at a temperature of 220-270 ° C., preferably 230-250 ° C. and a pressure of 5-50 torr, preferably 5-30 torr. do.
  • the yield of lactide can be adjusted by adjusting the oligomer dose and / or reaction temperature.
  • the lactide is discharged in the form of a vapor phase mixture is sent to the distillation column and purified as necessary, the unreacted oligomer is discharged to the bottom of the bundle tube Collected at the bottom of the reactor, and back to the membrane reactor of step 4.
  • Step 4 is a second step of depolymerization of the unreacted oligomer, the thin film reactor, preferably at a temperature of 230-270 °C, preferably 240-260 °C and a temperature of 5-50 torr, preferably 5-30 torr It is carried out in a stirred thin film reactor.
  • the stirring blade has a vertical tilt angle of 80-90 degrees for smooth spreading and flowing down of high viscosity unreacted oligomers, and has an optimum thin film thickness of 1 mm or less and 1-20 minutes, preferably 1
  • the process can be carried out with an oligomer residence time of -10 minutes.
  • the lactide is discharged in the form of a vapor phase mixture is sent to the distillation column and purified as needed, unreacted oligomers, carbonaceous residues, etc. Collected to the bottom of the evaporator may be discharged out of the reactor.
  • the above-mentioned carbonaceous residue includes a carbon deposit produced by repeating the polymerization reaction while hydrogen and oxygen atoms in the oligomer are disconnected.
  • Step 5 is a first purification step of lactide, and the vapor phase mixture discharged in steps 3 and 4 is distilled in a first distillation column at a temperature of 100-150 ° C. and a pressure of 5-30 torr, such as water, lactic acid, and the like.
  • the mixture can be separated off to the top and a mixture such as lactide and oligomer can be recovered at the bottom.
  • Step 6 is a secondary purification step of lactide, in which the bottom product separated in step 5 is distilled, for example, in a second distillation column at a temperature of 100-160 ° C. and a pressure of 5-30 torr, so that the lactide is formed on the tower. It collect
  • Step 7 is a third purification step of the lactide, and the lactide mixture separated in step 6 is distilled, for example, in a third distillation column at a temperature of 100-160 ° C. and a pressure of 5-30 torr, and meso-lactide The column can be recovered and L- or D-lactide can be recovered at the bottom.
  • distillation temperature and pressure for the purification are not critical and can be selected from conditions known in the art. Such distillation temperatures and pressures may be appropriately selected by those skilled in the art in view of other process environments or device conditions.
  • steps 1 to 3 can be described in more detail below, with reference to the carried out in the bundle tube reinforcement membrane and / or stirred thin-film reactor.
  • the lactic acid aqueous solution is supplied to the falling film evaporator via a liquid inlet 7a attached to the upper blocking flange 6a.
  • the feed flow can be adjusted by the pump as needed.
  • the lactic acid aqueous solution entering the liquid inlet 7a flows into the hole 14 of the support plate through the cavity 8 between the upper shut-off flange 6a and the gas-liquid dispersion flange 5.
  • the pupil 8 between the upper shut-off flange 6a and the gas-liquid dispersion flange 5 is a result of lathe machining of the lower face of the shut-off flange, and if the height is 2 mm or less, a high pressure is applied, whereas if it is 6 mm or more, it is detained. Since the amount of lactic acid aqueous solution is increased, it is preferable to process the bottom surface of the blocking flange so that the height of the pupil is 2-6 mm.
  • the liquid dispersing device is composed of a liquid dispersion plate 9 for controlling the direction of the flow so that the lactic acid aqueous solution flows to the inner wall surface of the falling film forming pipe 11 and the support plate 10 for supporting it.
  • the liquid dispersion plate 9 is fixed to the support plate 10 by a fixing mechanism such as a bolt and is smaller than the inner diameter of the falling film generating tube 11 so as to be inserted into the falling film generating tube, and the supporting plate 10 is The diameter is larger than the inner diameter of the falling film generating pipe 11 is installed so as to cover the falling film generating pipe, the upper surface of the falling film generating pipe (11) to the depth forming a plane with the top surface of the gas-liquid dispersion flange (5) The structure is inserted. Since the liquid dispersing device comprising the support plate 10 and the liquid dispersing plate 9 fixed thereto is installed in a detachable manner in the falling film device, the liquid dispersing plate can be replaced as necessary.
  • holes 14 having a diameter of 2-5 mm are drilled in the support plate 10 vertically.
  • four holes 14 are preferable as shown in FIG. 2.
  • the lactic acid aqueous solution flowing through the hole 14 and reaching the upper surface of the liquid dispersion plate 10 flows horizontally to change the direction of movement downward at the circumferential end portion of the liquid dispersion plate, thereby to lower the film forming tube 11. Ride down the inner wall of the house.
  • the falling-film forming tube 11 is a short-length bundle tube arranged on the gas-liquid dispersion flange 5 in the same axis, the same diameter, the same number, and the same arrangement as the vertical tube 1 forming the bundle tube.
  • a gas hole 12 through which water vapor or an external carrier gas can pass is drilled on the wall at a position lower than the liquid dispersion plate.
  • the number of gas holes 12 drilled in the falling film generating tube is not particularly limited. However, more gas holes and larger diameters greatly affect the behavior of the liquid drop film, so the number of gas holes is less than 10 and the diameter is preferably 2-5 mm.
  • the falling film generating pipe 11 and the vertical pipe 1 are arranged so that the central axis is aligned so that the lactic acid aqueous solution flowing down the inner wall of the falling film generating pipe flows down to the wall surface of the vertical pipe without any obstacle.
  • the lactic acid solution flowing down the inner wall surface of the falling film enters the vertical bundle tube heated to 80-120 ° C.
  • water vapor evaporates as water evaporates.
  • the generated water vapor may be discharged to the lower portion of the bundle pipe, or may be discharged to the gas entrance 13a through the gas hole 12.
  • the method of discharging the former to the bottom of the bundle tube is cocurrent operation because lactic acid and water vapor flow in the same direction in the vertical tube, and the method of discharging water through the latter gas entrance 13b is the opposite direction of the vapor and lactic acid. As it flows, it becomes reverse flow operation.
  • the lactic acid aqueous solution evaporation apparatus of the present invention is capable of both cocurrent flow and countercurrent operation.
  • the vertical bundle tube 1 has its upper and lower portions fixed by welding to the bundle tube flanges 4a and 4b, and a jacket 2 is installed outside thereof so that the heat medium oil is provided in the space between the bundle tube and the jacket. By circulating, it is possible to heat the vertical bundle tube to a uniform temperature.
  • the upper part of the falling film evaporator composed of the upper shut-off flange 6a, the gas-liquid dispersion flange 5, and the upper bundle tube flange 4a can be precisely processed by a machine tool so that the liquid dispersion plate 9, the support plate 10,
  • the falling film generating pipe (11) and the vertical pipe (1) can be produced to match the central axis.
  • the diameter of the liquid dispersion plate 9 inserted into the falling film generating tube 11 is an important variable for determining the distribution efficiency of the lactic acid aqueous solution to the individual vertical tubes. If the diameter of the liquid dispersion plate is too small and the gap between the inner wall of the falling film forming tube 11 and the side of the liquid dispersion plate is large, the pressure drop is small and the lactic acid aqueous solution flows only to a specific vertical tube without being evenly distributed among the multiple bundle tubes. May occur. On the contrary, the diameter of the liquid dispersion plate is similar to the inner diameter of the falling-film forming tube, so if the tolerance or gap is too small, the pressure drop increases, so that the effect of evenly distributing the lactic acid solution to the individual vertical tubes may be increased.
  • the liquid dispersion plate can be attached and detached, and the pressure drop of the liquid dispersion plate can be arbitrarily adjusted by adjusting its diameter.
  • the optimum spacing between the falling film forming tube and the liquid dispersion plate is 0.05-2 mm, more preferably 0.1-1 mm, for evaporative concentration of the lactic acid aqueous solution.
  • the vertical tube may be advantageous in terms of evaporation rate at higher temperature, but at a high temperature of 120 ° C. or higher, water and lactic acid form an azeotropic point, resulting in a large amount of lactic acid loss.
  • the temperature is lower than 120 ° C., more preferably 50-700. It is recommended to operate at 80-120 °C temperature under reduced pressure condition.
  • the water content of the lactic acid aqueous solution may be any concentration between 20-90%.
  • the circulating operation of circulating the lactic acid aqueous solution under the less concentrated evaporator to the vertical bundle tube using a pump may be used, but considering the physical properties and evaporation rate of the lactic acid to be used for the small polymerization reaction, the number and drop of the bundle tube will be reduced. It may be more desirable to carry out in a single pass operation by simultaneously controlling the residence time of the membrane.
  • the lactic acid solution concentrated to 1% or less of the water content in the falling film evaporator is transferred to the small polymerization reactor to proceed with the small polymerization reaction of Step 2.
  • the small polymerization reactor may use a multi-tube drop membrane device of a different type and / or length of the drop membrane evaporator and the vertical tube as the reactor.
  • the temperature of the prepolymerization reaction of step 2 is 170-210 ° C., and the optimum temperature is 190-205 ° C. At temperatures below 180 ° C., the reaction rate is too slow, while at temperatures above 210 ° C., depolymerization may occur and result in the loss of the desired molecular weight oligomer.
  • the small polymerization reaction of step 2 may be carried out at once by raising the temperature of the falling film reactor to 190-205 ° C., but the lactic acid having a concentration of 99% or more concentrated in the falling film evaporator is directly 190-205 ° C. at 80-120 ° C.
  • the reaction is performed by heating, the conversion of lactic acid is not high due to the azeotropic evaporation of lactic acid, so it is better to perform the reaction temperature in two stages.
  • the rapid progress of the prepolymerization decreases the conversion rate because unreacted lactic acid is evaporated and lost together with the byproduct water.
  • Preferred stepwise small polymerization temperatures are (2-1) step 150-170 ° C. and step 2 190-205 ° C. That is, lactic acid of 80-120 ° C. or more concentrated in the falling film evaporator of step 1 was raised to 150-170 ° C. as a first step of 2 and reacted first in a falling film reactor having the above structure, ( As a step 2-2, the second reaction in another bundle tube falling-film reactor heated to 190-205 ° C. can produce a lactic acid oligomer having a desired molecular weight at a high conversion rate.
  • metal compounds such as metal oxides, metal chlorides and metal organic compounds are generally used.
  • these catalysts When these catalysts are added to a high temperature liquid lactic acid oligomer, they react with the oligomer or lactic acid. Because of the conversion to metal lactate, the catalytic activity of the depolymerization reaction is similar to any compound used. This is because at high temperatures all take the form of liquid metal lactate. If the depolymerization catalyst is liquid at these reaction temperature conditions, there are several advantages over the solid particle phase. Since the catalyst is uniformly dispersed in the reactant in the size of molecular units, the efficiency of the catalyst is increased, and it is easy to transfer the reactant and the product to the pump. The only pump that can supply quantitative reactants at high temperature above 150 °C is gear pump. If the catalyst is solid rather than liquid, the gear pump cannot be used due to abrasion and damage.
  • the metal compound catalyst of the depolymerization reaction of step 3 hardly reacts with the oligomer or more of the trimer even at a high temperature of 200 ° C. It is well converted to metal lactate in the conditions present to some extent. Therefore, when the small polymerization reaction of step 2 of the present invention is divided into steps (2-1) and (2-2) as described above, the depolymerization catalyst is added to step (2-1) in which lactic acid and water still exist. As a result, the metal powder or particulate catalyst can be converted into a liquid metal lactate catalyst.
  • Suitable pressure ranges are 500-760 torr for the small polymerization of step (2-1) and 300-760 torr for the small polymerization of step (2-2).
  • the pressure is 500 torr or less, the rate of evaporation of the monomer lactic acid is increased and the lactic acid conversion rate is lowered.
  • the optimum weight average molecular weight of the lactic acid oligomer prepared under the above temperature and pressure conditions is between 1000-3000.
  • the molecular weight of the oligomer exceeds 3000, the amount of carbon produced in the depolymerization step of step 3 increases, so that the yield of lactide decreases. Falls.
  • the residence time of the falling film in the single pass operation that is, the reaction time can be controlled by the number and length of the vertical tubes and the supply speed of the reactants.
  • the oligomer obtained in the small polymerization reactor of step 2 may be transferred to a falling film depolymerization reactor by a pump to perform step 3.
  • Step 3 is a first depolymerization of the small polymerized lactic acid oligomer, wherein the lactic acid oligomer is fed to the bundle tube falling-film reactor, until a substantial portion of the lactic acid oligomer is converted to lactide, for example the conversion rate of the oligomer and / or Or the first depolymerization is carried out until the yield of lactide reaches at least about 60%, in particular at least 70%, preferably 75-85%.
  • the first depolymerization is generally carried out at a temperature of 200-270 ° C., especially 220-270 ° C., preferably 230-260 ° C. and 5-100 torr, specifically 5-50 torr, preferably 5-30 torr. At a pressure of, it is carried out in the presence of a metal oxide catalyst such as tin oxide, such as any SnO.
  • the yield of lactide can be adjusted by adjusting the oligomer dose and / or reaction temperature.
  • the lactide is discharged in the form of a vapor phase mixture is sent to the distillation column and purified as necessary, the unreacted oligomer is discharged to the bottom of the bundle tube Collected at the bottom of the reactor, and back to the membrane reactor of step 4.
  • Depolymerization of the lactic acid oligomer is a typical reaction requiring a single pass operation with a short residence time. If the residence time of the reactants is long, the amount of carbon produced is increased by thermal polymerization because carbon particles are deposited on the reactor wall if circulated through the reactor.
  • step 3 since the viscosity of the lactic acid oligomer having a molecular weight of 1000-3000 has a range of 10-100 cP at 200 ° C, the interval between the inner wall of the falling film forming tube and the liquid dispersion plate is appropriately 0.1-1.5 mm. .
  • the lactide can be prepared.
  • Step 4 is a second step of depolymerization of the unreacted oligomer, the thin film reactor, preferably at a temperature of 230-270 °C, preferably 240-260 °C and a temperature of 5-50 torr, preferably 5-30 torr It is carried out in a stirred thin film reactor.
  • the stirring blade has a vertical tilt angle of 80-90 degrees for smooth spreading and flowing down of high viscosity unreacted oligomers, and has an optimum thin film thickness of 1 mm or less and 1-20 minutes, preferably 1
  • the process can be carried out with an oligomer residence time of -10 minutes.
  • the lactide is discharged in the form of a vapor phase mixture is sent to the distillation column and purified as needed, unreacted oligomers, carbonaceous residues, etc. Collected to the bottom of the evaporator may be discharged out of the reactor.
  • the above-mentioned carbonaceous residue includes a carbon deposit produced by repeating the polymerization reaction while hydrogen and oxygen atoms in the oligomer are disconnected.
  • the thin film reactor used in step 4 may be a thin film reactor or evaporator of the type which can be used for film or thin film formation, for example a disk thin film reactor, a stirred thin film reactor. And the like can be mentioned.
  • an agitated thin film reactor capable of dropping a high viscosity material to form a film may be mentioned, and the above-described agitator blade may be disposed to be inclined with respect to the horizontal, for example, 45 degrees or more, specifically 45 It may have an inclination angle of -90 degrees, especially 60 degrees or more, preferably 80 to 90 degrees.
  • the method of transferring the mixture containing the unreacted oligomer from the bundle tube falling-film reactor of step 3 to the stirred thin film reactor of step 4 is not particularly limited, and pump transfer and the like can be mentioned.
  • a 20% aqueous L-lactic acid solution was supplied to a 4-bundle falling film evaporator containing 4 tubes of 300 cm in length and 2 cm in diameter at a flow rate of 25 ml / min. The water was evaporated and concentrated to 98%, followed by 300 cm in length.
  • the lactic acid was polymerized by transferring the 18-bundle tube falling-film small polymerization reactor in which 18 tubes having an inner diameter of 2 cm were embedded.
  • the 4-bundle falling film evaporator was operated at a temperature of 120 ° C., a pressure of 50 torr, and an 18-bundling falling film reactor at a temperature of 205 ° C. and a pressure of 600 torr, respectively.
  • the 4-bundle evaporator and the 18-bundle reactor were equipped with a circulation pump to transfer the liquid dropped to the lower portion to the upper portion where the dispersion plate was installed at a rate of 200 ml / min for circulation.
  • the residence time of lactic acid in the 4-bundle evaporator is 40 minutes.
  • the residence time of the oligomer in the 18-bundle small polymerization reactor is 60 minutes.
  • the weight average molecular weight of the prepared lactic acid oligomer was 1,350, and the mass balance was 99% when the mass balance was calculated after the reaction was completed.
  • tin octoate catalyst 1 wt% was added to the lactic acid oligomer having a molecular weight of 1350 prepared in Example 1, and stirred well, followed by 18-bundle containing 18 tubes of 300 cm in length and 2 cm in inner diameter at 15 ml / min flow rate.
  • L-lactide was prepared by depolymerizing the lactic acid oligomer while feeding into a falling-film depolymerization reactor. The temperature of the 18-bundle depolymerization reactor was maintained at 250 ° C. and the pressure at 10 torr.
  • the mixture vapor consisting of lactide, water, lactic acid and oligomers discharged to the top of the depolymerization reactor was converted to a liquid using a cooler, and the tin-based catalyst and oligomer residues dropped to the bottom of the reactor were stored in a tank connected to the bottom of the reactor. After 5 hours depolymerization, the yield of lactide including meso- and L-lactide was 93%.
  • the lactic acid oligomer having a molecular weight of 1350 prepared in Example 1 was subjected to a depolymerization reaction for 80 hours in the same manner as in Example 2.
  • the yield of lactide gradually decreased with time as 20 hours 93%, 40 hours 92%, 60 hours 90%, 80 hours 88%.
  • carbonaceous material was deposited at the bottom of the depolymerization reactor bundle tube after the reaction. Since the deposition of such carbonaceous materials impeded the heat transfer and the movement of the falling film required for depolymerization, the yield of lactide seemed to drop gradually.
  • tin octoate catalyst 1 wt% was added to the lactic acid oligomer having a molecular weight of 1350 prepared in Example 1, and stirred well, followed by 18-bundle falling-film depolymerization containing 18 tubes having a length of 300 cm and an inner diameter of 2 cm at a flow rate of 25 ml / min.
  • one-step depolymerization reaction was carried out, and the depolymerized oligomer and catalyst mixture withdrawn from the bottom of the reactor were transferred to a stirred thin film reactor having an area of 1.0 m 2 , and the two-step depolymerization reaction was performed for a total of 80 hours.
  • the temperature of the 18-bundle falling membrane reactor was maintained at 250 ° C., the pressure was 10 torr, and the temperature of the stirred thin film depolymerization reactor was 250 ° C., and the pressure was 10 torr.
  • the stirring blade of the two-stage thin-film depolymerization reactor was installed with a vertical angle of about 88 degrees so that the lactic acid oligomer was forced to the bottom.
  • the yield of lactide in the 1st stage 18-bundle drop membrane reactor remained constant up to 80 hours, and the overall yield of lactide including the 2nd stage thin film reactor was also maintained. It was constant at 96%. After the reaction for 80 hours, the inner wall surface of the bundle tube of the 18-bundle drop membrane reactor was clean without depositing carbon material.
  • Cholactide prepared in Example 4 was purified to high purity by performing three-step distillation in a packed column type distillation apparatus under the distillation conditions of Table 1 below.
  • Zolactide was supplied to the first stage distillation column at a flow rate of 20 ml / min, and continuously distilled for 8 hours to obtain L-lactide having a purity of 99.9% at the bottom of the three stage distillation apparatus.
  • the present invention can be used industrially in the manufacturing industry of lactide and the industry using lactide.

Abstract

The present invention relates to a method for producing lactide comprising an evaporation concentration step (first step) for a lactic acid solution, a lactic acid oligomerization step (second step) and a lactic acid oligomer depolymerization step (third step), wherein the second step is performed in a multi-tube falling film reactor and the third step is sequentially performed in the multi-tube falling film reactor and an agitated thin film reactor. According to the present invention, a multi-tube falling film device in which a liquid-phase reactant with a high viscosity is equally distributed to individual vertical pipes of the multi-tube falling film device even at a low pressure, and 100% of the liquid-phase reactant flows only along inner walls of the vertical pipes in a uniform thickness in a circumferential direction, is applied to the all of the above-mentioned unit steps, thereby continuously producing lactide with high yield rate and high efficiency. Furthermore, the depolymerization step is performed sequentially in the multi-tube falling film reactor and the agitated thin film reactor, thereby rarely having a deposition of carbon material even after extended operation periods, thus an operation pause period for device cleansing can be extended so as to provide excellent process efficiency and economic benefits.

Description

다발관 강하막 반응기 및 교반박막 반응기를 이용한 락타이드 제조 방법Lactide Manufacturing Method Using Bundled Falling Reactor and Agitated Thin Film Reactor
본 발명은 다발관 강하막 반응기 및 박막 반응기를 이용하여 젖산으로부터 락타이드를 제조하는 방법에 관한 것으로, 더욱 상세하게는 젖산으로부터 젖산 소중합체를 제조하고 이를 다발관 강하막 반응기 및 교반박막 반응기를 순차적으로 이용하여 해중합함으로써 락타이드를 연속적으로 제조하는 방법에 관한 것이다.The present invention relates to a method for producing lactide from lactic acid using a multi-tube falling film reactor and a thin film reactor, and more particularly, to prepare a lactic acid oligomer from lactic acid, and to sequentially produce a multi-tube falling film reactor and a stirred thin film reactor. It relates to a method for continuously producing lactide by depolymerization using
젖산 이량체의 고리화 화합물인 락타이드는 생분해성 고분자인 폴리락타이드의 제조 원료로 사용되는 물질이다. 분자 구조상, 두 개의 젖산 분자에서 물을 빼내며 직접 고리화하는 방법이 가장 간단한 제조방법이지만, 일반적으로는, 젖산을 중량평균 분자량 1,000-3,000의 소중합체(oligomer)로 예비중합한 다음, 금속 촉매하에서 이를 다시 해중합하여 락타이드를 제조하고 있다. 전술한 해중합 반응에 대해 더 상세히 밝히면, 젖산 소중합체를 촉매의 존재하에 200℃ 이상의 온도로 가열하면, 상기 소중합체의 분자사슬 말단이 뒤물기(back-biting)에 의한 고리화 및 사슬절단을 진행하여 락타이드가 생성 분리되는 반응기구에 의해서 락타이드가 얻어진다. Lactide, a cyclized compound of lactic acid dimer, is used as a raw material for producing polylactide, a biodegradable polymer. Due to its molecular structure, the method of directly cyclizing water by taking water out of two lactic acid molecules is the simplest method. However, in general, lactic acid is prepolymerized into an oligomer having a weight average molecular weight of 1,000-3,000, followed by a metal catalyst. Lactide is prepared by depolymerization again under the following. In more detail about the above-described depolymerization reaction, when the lactic acid oligomer is heated to a temperature of 200 ° C. or higher in the presence of a catalyst, the molecular chain ends of the oligomer proceed with cyclization and chain cutting by back-biting. The lactide is obtained by a reactor in which lactide is produced and separated.
첫번째 반응단계인 젖산의 소중합반응은 젖산 분자의 카르복실기가 다른 젖산분자의 알콜기와 반응하여 물을 내 놓으며 분자량이 커지는 에스테르화 반응의 일종이다. 따라서 일반 에스테르화 반응처럼 황산 등 산촉매를 사용하면 반응이 촉진되고, 고온에서는 산 자신이 촉매작용을 하여 외부촉매 없이도 반응이 일어나며, 부산물인 물을 제거해 주지 않으면 반응이 평형에 도달하므로 전환율이 크지 않다. The first polymerization step, lactic acid polymerization, is a kind of esterification reaction in which the carboxyl group of the lactic acid molecule reacts with alcohol groups of other lactic acid molecules to give water and increase molecular weight. Therefore, the use of acid catalysts such as sulfuric acid as in the general esterification reaction promotes the reaction. At high temperatures, the acid catalyzes the reaction without an external catalyst, and the reaction reaches equilibrium unless the by-product water is removed. .
저분자 에스테르화 반응과 다른 점은, 중합도가 커지면 반응계의 점도가 계속 증가해 물 제거가 쉽지 않기 때문에 물 제거속도가 반응속도를 지배한다는 점이다. 그렇기에 물을 빠른 속도로 증발시킬 수 있는 강하막 증발기 또는 교반 박막 증발기가 젖산 소중합반응의 반응기로 이용할 수 있다. 액체가 두께 1mm 이하의 얇은 막의 형태로 흘러내리는 막 증발기는 물질전달과 열전달속도가 대단히 빠른 장치이다. The difference from the low-molecular esterification reaction is that the rate of water removal dominates the reaction rate because the viscosity of the reaction system continues to increase as the degree of polymerization increases. Therefore, a falling film evaporator or a stirred thin film evaporator capable of rapidly evaporating water may be used as a reactor for lactic acid small polymerization. Membrane evaporators, in which liquid flows down in the form of a thin film of less than 1 mm in thickness, are extremely fast in mass transfer and heat transfer.
두번째 반응단계인 젖산 소중합체의 해중합 반응도 강하막 증발기 유형의 반응장치에서 특히 유리하게 수행될 수 있다. 역반응을 방지하기 위해 반응에 의해 생성된 락타이드를 신속하게 분리할 수 있을 뿐만 아니라, 소중합체의 사슬절단에 필요한 막대한 반응열을 빠른 속도로 공급해 줄 수 있기 때문이다. The depolymerization reaction of the second reaction step, lactic acid oligomer, can also be carried out particularly advantageously in the reactor of the falling film evaporator type. This is because not only can the lactide generated by the reaction be separated quickly to prevent the reverse reaction, but also it can supply the enormous heat of reaction necessary for cutting the chain of the oligomer at a high speed.
그런데 종래 교반박막 증발기는 회전날개의 편심으로 인해 대구경의 장치제작에 한계가 있어 벌크 화학제품 생산에는 이용되지 않는다. 그리고, 분무노즐이 일반적으로 사용되는 종래 강하막 증발기는 본 발명의 젖산 소중합체처럼 점도가 큰 고분자 물질을 고온에서 노즐로 분무하기에 문제가 있다. However, the conventional stirring thin film evaporator has a limitation in manufacturing a large-diameter device due to the eccentricity of the rotor blade is not used for bulk chemical production. In addition, the conventional falling film evaporator in which the spray nozzle is generally used has a problem in spraying a high viscosity material such as lactic acid oligomer of the present invention with a nozzle at a high temperature.
USP 5,274,073호, USP 6,229,046호 및 이의 관련특허들, USP 6,875,839호, 및 USP 8,053,584호들은 젖산 수용액의 증발농축단계, 농축된 젖산으로부터 소중합체의 제조단계 및/또는 소중합체로부터 락타이드를 수득하는 고리형성 해중합(cyclizing depolymerization) 단계에서 여러 가지 유형의 증발기 및/또는 반응기의 사용을 개시하고 있으나, 강하막 증발기 유형의 반응기는 젖산의 농축단계 및/또는 고리형성 해중합단계에서만 이용되고 있다. USP 5,274,073, USP 6,229,046 and their related patents, USP 6,875,839, and USP 8,053,584, evaporative concentration of aqueous lactic acid solution, preparation of oligomer from concentrated lactic acid and / or ring to obtain lactide from oligomer Although the use of various types of evaporators and / or reactors in the cyclizing depolymerization stage is disclosed, reactors of the falling film evaporator type are used only in the concentration of lactic acid and / or in the cyclic depolymerization stage.
일반적으로, 강하막 증발기는 액체가 100% 수직관의 내벽면(또는 외벽면)을 타고 원주방향 균일한 두께로 퍼져서 밑으로 흘러 내려야 장치의 효율이 높아지게 되는데, 다수의 수직관이 설치되어 있는 다발관 강하막 증발기에서 고점도의 액체를 노즐로 분무하여 개별 관에 고르게 분산시키기란 큰 에너지를 가하더라도 쉽지 않다. 설령 분무가 된다 하더라도 상당한 양의 액적은 수직관의 내벽면이 아닌 관 내부의 공간을 통해 하부로 떨어져 증발 효율이 감소된다. 공간으로 떨어진 액적의 재처리를 위해서 종래 기술에서는 순환펌프를 사용해 증발기 하부 액체를 상부로 순환시킨다. In general, the falling film evaporator requires the liquid to flow down the inner wall surface (or outer wall surface) of the 100% vertical pipe to a uniform thickness in the circumferential direction and flow down to increase the efficiency of the device. Spraying high-viscosity liquids with nozzles in a tube falling film evaporator to distribute them evenly in individual tubes is difficult, even with high energy. Even if sprayed, a significant amount of droplets will fall downward through the space inside the tube rather than the inner wall of the vertical tube, reducing the evaporation efficiency. In order to reprocess droplets falling into the space, the prior art uses a circulation pump to circulate the liquid below the evaporator upwards.
분무 노즐로 액체를 분산하는 강하막 증발기에서는 이른바 순환운전 방식으로 액체를 농축하는 것이다. 하지만 증발관을 한번 통과시킨 후 생성물로 빼내기를 원하는, 1회 통과 운전을 (one-pass operation) 요하는 증발공정과 화학반응공정은 상당히 많이 있다. 예컨대, 열 안정성이 낮은 물질의 증발농축 및 화학반응 등이다. 상기, 젖산 소중합체의 해중합반응도 순환운전보다는 1회 통과운전이 요구되는 반응이다. 젖산 소중합체를 고온으로 가열하면, 락타이드로의 고리화 및 사슬절단에 의해 분자량이 작아지는 해중합반응과, 이와 반대로 산소 및 수소 원자가 빠져 나간 코크 성질의 물질들이 계속 반응을 하여 카본을 생성하는 중합반응이 경쟁적으로 일어나는데, 만약 이들을 순환시키면 강하막 장치의 금속관에 카본이 침적된다. 따라서 종래 노즐분무식 강하막 장치는 젖산 소중합체의 해중합 반응에 이용하기에 적합하지 않다. In a falling film evaporator in which liquid is dispersed by a spray nozzle, the liquid is concentrated in a so-called circulation operation method. However, there are quite a few evaporation and chemical reactions that require a one-pass operation, which requires one pass through the evaporator and then withdraws into the product. For example, evaporative concentration and chemical reaction of materials with low thermal stability. The depolymerization reaction of the lactic acid oligomer is also a reaction requiring one pass operation rather than a cyclic operation. When the lactic acid oligomer is heated to a high temperature, depolymerization reaction in which molecular weight decreases due to cyclization and chain cleavage to lactide, and on the contrary, polymerization reaction in which coke-like substances in which oxygen and hydrogen atoms are released continue to react to generate carbon. This occurs competitively, if circulating them, carbon will deposit in the metal tube of the falling film apparatus. Therefore, the conventional nozzle spray falling film apparatus is not suitable for use in the depolymerization reaction of lactic acid oligomer.
한편, 한국특허출원 10-2012-0090098호(2012년 8월 17일 출원, 미공개)는 젖산의 농축단계 및/또는 고리형성 해중합단계 뿐만 아니라 해중합 단계를 다발관 강하막 반응기에서 수행하는 락타이드 제조방법을 기술하고 있는데, 상기 다발관 강하막 반응기의 개별 수직관 상부에는 액체가 벽면으로만 흐를 수 있도록 해주는 액체 분산장치를 하나씩 독립적으로 설치되어 있어, 수직관 내부의 공간으로 낙하하는 반응물이 없도록 하고 반응물이 수직관 내벽면 상에서 원주방향 골고루 흘러내리게 한 강하막 반응기를 사용하고 있다. Meanwhile, Korean Patent Application No. 10-2012-0090098 (filed Aug. 17, 2012, unpublished) discloses the production of lactide, which performs a depolymerization step as well as a depolymerization step of lactic acid and a depolymerization step in a multi-drop falling-film reactor. It describes a method, in which a single liquid dispersing device is installed at the top of each vertical tube of the bundle tube membrane reactor to allow liquid to flow only on the wall so that no reactant falls into the space inside the vertical tube. A falling film reactor is used in which the reactants flow evenly around the inner wall of the vertical tube.
상술한 액체 분산장치를 포함하는 다발관 강하막 반응기를 사용하면 젖산으로부터 락타이드를 고수율, 고효율 및 연속적으로 제조할 수 있지만, 해중합 반응을 연속적으로 수행하고 나면 반응기 다발관의 하부에 카본성 물질이 침착되어 있음이 발견되었다. 이러한 카본성 물질의 증착은 해중합에 필요한 열전달과 강하막의 운동을 방해하기 때문에 락타이드의 수율을 저하시키는데, 이러한 문제점을 해결할 수 있는 새로운 방법이 필요하다.Using the bundle downfall reactor including the liquid dispersing device described above can produce lactide from lactic acid in high yield, high efficiency and continuously, but after the depolymerization reaction is carried out continuously, the carbonaceous material in the lower portion of the reactor bundle It was found that it was calm. Since the deposition of such carbonaceous materials interferes with the heat transfer required for depolymerization and the movement of the falling film, the yield of lactide is decreased, and a new method for solving such problems is needed.
[선행기술문헌] [ Prior Art Document ]
[특허문헌] [ Patent Literature ]
(특허문헌 1) USP 5,274,073 (Patent Document 1) USP 5,274,073
(특허문헌 2) USP 6,229,046 (Patent Document 2) USP 6,229,046
(특허문헌 3) USP 6,875,839 (Patent Document 3) USP 6,875,839
(특허문헌 4) USP 8,053,584 (Patent Document 4) USP 8,053,584
본 발명의 목적은 젖산 수용액의 증발농축, 소중합 및 해중합으로 이루어진 락타이드 제조 방법에 있어 단위공정 전체에 액체가 100% 벽면으로 흐르는 새로운 형태의 다발관 강하막 반응기를 적용하여 젖산의 고전환율 및 락타이드의 고수율을 달성하면서, 아울러, 이러한 연속적 해중합을 장시간 수행할 때 발생할 수 있는 카본성 물질의 침착을 방지할 수 있는 방법을 제공하고자 한다.It is an object of the present invention to apply a new multi-layer drop-down membrane reactor in which a liquid flows to 100% of the entire surface of a unit process in a lactide manufacturing method consisting of evaporative concentration, small polymerization and depolymerization of an aqueous solution of lactic acid, and thus high conversion rate of lactic acid and While achieving a high yield of lactide, it is also an object of the present invention to provide a method for preventing the deposition of carbonaceous materials that may occur when performing such continuous depolymerization for a long time.
본 발명자들은 개별 수직관 상부에 액체가 벽면으로만 흐를 수 있도록 해주는 액체 분산장치를 하나씩 독립적으로 설치되어 있는 다발관 강하막 반응기를 사용하여 젖산의 농축단계 및/또는 고리형성 해중합단계를 수행하고 전술한 다발관 강하막 반응기 및 교반박막 반응기를 사용하여 해중합 단계를 수행함으로써, 젖산으로부터 락타이드를 고수율, 고효율 및 연속적으로 제조할 수 있을 뿐만 아니라, 해중합 반응을 장시간 동안 연속적으로 수행하여도 다발관의 하부에 카본성 물질의 침착을 방지할 수 있음을 발견하고 본 발명을 완성하였다.The inventors have carried out the condensation step of lactic acid and / or the cyclic depolymerization step using a multi-tube descending membrane reactor equipped with a liquid dispersing device that allows liquid to flow only on the wall on top of each individual vertical tube. By carrying out the depolymerization step using a single tube falling-film reactor and a stirred thin film reactor, not only can the lactide be produced from lactic acid in high yield, high efficiency and continuously, but also if the depolymerization reaction is performed continuously for a long time The present invention was found to be able to prevent the deposition of carbonaceous material at the bottom of the present invention.
본 발명에 따르면, 젖산 수용액의 증발농축, 젖산의 소중합 및 젖산 소중합체의 해중합 단계를 거쳐 락타이드를 제조하는 공정에 있어서, 점도가 큰 액상 반응물이 낮은 압력에서도 다발관 강하막 장치의 개별 수직관에 균등하게 분배되고, 100% 수직관 내벽면으로만, 그리고 원주방향 고른 두께로 흘러 내리는 다발관 강하막 장치를 상기 단위공정 전체에 적용함으로써, 락타이드를 고수율, 고효율 및 연속적으로 제조할 수 있을 뿐만 아니라, 해중합 공정을 다발관 강하막 반응기 및 박막 반응기에서 순차적으로 수행함으로써, 장기간 운전에도 카본성 물질의 침착이 거의 없으며, 따라서 장치세정을 위해 운전중지 기간이 길어져 공정효율 및 경제성이 우수하다.According to the present invention, in the process for producing lactide through evaporation concentration of lactic acid aqueous solution, small polymerization of lactic acid and depolymerization of lactic acid oligomer, the number of individual pieces of the multi-tube falling film device at low pressure of the liquid reactant having high viscosity Lactide can be produced in high yield, high efficiency and continuously by applying a multi-tube descending film device distributed evenly to the straight pipe and flowing down to only 100% vertical pipe inner wall surface and down to circumferentially even thickness. In addition, since the depolymerization process is performed sequentially in a multi-tube falling film reactor and a thin film reactor, there is almost no deposition of carbonaceous material even during long-term operation, thus prolonging the operation stop period for cleaning the device, thereby providing excellent process efficiency and economic efficiency. Do.
도 1은 본 발명의 다발관 강하막 반응기의 개략도, 1 is a schematic diagram of a multiple-tube drop membrane reactor of the present invention,
도 2는 본 발명의 지지판, 액체분산판, 기액분산관 및 기체홀의 결합 및 배치형태를 보여주는 투시도, Figure 2 is a perspective view showing the combination and arrangement of the support plate, liquid dispersion plate, gas-liquid dispersion tube and gas hole of the present invention,
도 3는 A-A′ 방향으로 바라본 다발관 강하막 반응기의 단면도, 3 is AA ′ Cross-sectional view of the bundle tube falling membrane reactor,
도 4은 B-B′ 방향으로 바라본 다발관 강하막 반응기의 단면도이다.4 is BB ′ A cross-sectional view of the bundle tube falling membrane reactor viewed in the direction of the arrow.
본 발명의 첫 번째 목적은 젖산 수용액의 증발농축단계(단계 1), 젖산의 소중합단계(단계 2) 및 젖산 소중합체의 해중합단계(단계 3)를 포함하는 락타이드의 제조 방법에 있어서, 단계 1 및/또는 단계 2를 다발관 강하막 반응기에서 수행하고, 단계 3을 다발관 강하막 반응기 및 교반박막 반응기에서 수행하는 것을 특징으로 하는 락타이드의 제조방법을 제공하는 것이다.In the first object of the present invention is a method for producing lactide comprising the step of evaporation and concentration of lactic acid aqueous solution (step 1), the lactic acid small polymerization step (step 2) and the lactic acid oligomer depolymerization step (step 3), step It is to provide a method for producing lactide, characterized in that 1 and / or step 2 is carried out in a bundle downfall reactor, and step 3 is carried out in a bundle downfall reactor and stirred thin film reactor.
본 발명의 하나의 구현예에 따르면, 상기 제조방법은 하기 단계 (1)~(3)을 포함한다:According to one embodiment of the invention, the preparation method comprises the following steps (1) to (3):
(1) 젖산 수용액을 50~700 torr의 압력 및 80~120℃의 온도에서 증발농축시키고; (1) lactic acid aqueous solution was concentrated by evaporation at a pressure of 50-700 torr and a temperature of 80-120 ° C;
(2) 물함량 1% 이하로 농축된 젖산을 190~205℃의 온도에서 소중합체로 중합시키고; 및 (2) lactic acid concentrated to 1% or less of water content was polymerized into oligomer at a temperature of 190 to 205 ° C; And
(3) 상기 수득된 젖산 소중합체를 5~100 torr의 압력 및 200~270℃의 온도에서 해중합시킴. (3) The obtained lactic acid oligomer is depolymerized at a pressure of 5-100 torr and a temperature of 200-270 ° C.
본 발명의 바람직한 구현예에 따르면, 상기 해중합 단계는 하기 단계 3 및 단계 4를 포함할 수 있다:According to a preferred embodiment of the invention, the depolymerization step may comprise the following steps 3 and 4:
(3-1) 상기 수득된 젖산 소중합체를 다발관 강하막 반응기에 공급하여 락타이드의 수율이 대략 70~90%, 바람직하게는 75~85%가 될 때까지 1차로 해중합시키고, (3-1) The obtained lactic acid oligomer is fed into a bundle tube falling-film reactor to depolymerize firstly until the yield of lactide is approximately 70-90%, preferably 75-85%,
(4) 상기 1차 해중합에서 결과된 미반응 올리고머를 교반박막 반응기에 공급하여 2차로 해중합시킴.(4) supplying the unreacted oligomer obtained in the first depolymerization to the stirred thin film reactor to depolymerize secondly.
본 발명의 바람직한 구현예에 따르면, 상기 제조방법은 상기 해중합 단계에서 증기상으로 배출되며 락타이드, 물, 젖산 및 이의 올리고머를 포함하는 혼합물을 정제하는 단계를 더욱 포함하는데, 이는 하기 단계 5, 단계 6 및/또는 단계 7을 포함할 수 있다: According to a preferred embodiment of the present invention, the method further comprises the step of purifying the mixture which is discharged in the vapor phase in the depolymerization step and comprises a lactide, water, lactic acid and an oligomer thereof, which is the following step 5, step 6 and / or step 7 may include:
(5) 물, 젖산 및 이의 올리고머를 포함하는 혼합물로부터 물 및 젖산을 제거하여 락타이드 및 올리고머를 포함하는 혼합물을 수득하는 1차 정제단계, (5) a first purification step of removing water and lactic acid from a mixture comprising water, lactic acid and oligomers thereof to obtain a mixture comprising lactide and oligomers,
(6) 락타이드 및 올리고머를 포함하는 혼합물로부터 올리고머를 제거하고 락타이드를 수득하는 2차 정제단계, 및 (6) a second purification step of removing oligomers from the mixture comprising lactide and oligomer and obtaining lactide, and
(7) 락타이드로부터 meso-락타이드, D- 및/또는 L-락타이드를 분리 정제하는 3차 정제단계.  (7) a third purification step of separating and purifying meso-lactide, D- and / or L-lactide from lactide.
이하에 본 발명을 더욱 상세히 설명한다. The present invention is explained in more detail below.
젖산 수용액의 증발농축, 젖산의 소중합 및 해중합 반응을 거쳐 락타이드를 제조하는 락타이드 제조공정에서 단계 1의 증발농축, 단계 2의 소중합 및 단계 3의 해중합반응은 모두 물질전달과 열전달 속도가 큰 강하막 장치의 사용이 필요한 물리 및 화학반응 공정이다. In the lactide manufacturing process of producing lactide through evaporative concentration of lactic acid solution, small polymerization and depolymerization of lactic acid, the evaporative concentration of step 1, the small polymerization of step 2 and the depolymerization of step 3 all have a mass transfer rate and a heat transfer rate. It is a physical and chemical process that requires the use of large falling film devices.
상기 단계 1에서, 농도 20-90%의 젖산 수용액에 열을 가해 물을 증발시키면 젖산의 점도가 점차 증가해 물의 증발속도와 증발잠열 에너지의 공급속도가 점차 감소된다. 이로 인해 물을 99% 이상 제거해 고농도로 농축하려면 오랜 시간이 소요되므로, 강하막형 증발장치와 같이 막형 반응장치를 사용할 수 있다. 또, 상기 단계 2의 젖산의 소중합 반응과 단계 3의 해중합 반응에서도 반응 부산물로 나오는 물 및 생성물인 락타이드의 신속한 회수를 위해 빠른 물질전달 및 열전달이 요구되므로, 강하막형 증발장치와 같은 막형 반응장치를 사용하는 것이 바람직하다. In step 1, when the water is evaporated by applying heat to the aqueous solution of lactic acid having a concentration of 20-90%, the viscosity of the lactic acid is gradually increased, so that the rate of water evaporation and the latent heat of evaporation energy are gradually reduced. As a result, it takes a long time to remove more than 99% of the water and concentrate it to a high concentration, so that a membrane reactor such as a falling-film evaporator can be used. In addition, in the small polymerization reaction of lactic acid of step 2 and the depolymerization reaction of step 3, since rapid mass transfer and heat transfer are required for rapid recovery of lactide, which is water and a product, which is a reaction by-product, a film-type reaction such as a falling-film evaporator It is preferable to use a device.
당 발명자들은 상기 단계 1의 젖산 수용액의 증발농축, 단계 2의 젖산의 소중합 및/또는 단계 3의 해중합 반응에 적용 가능한 도 1의 다발관 강하막 장치를 사용하여 락타이드를 효율 높게 제조하는 방법을 완성하였다. The inventors of the present invention provide a method for efficiently producing lactide using the bundle drop film device of FIG. 1 applicable to evaporative concentration of the lactic acid aqueous solution of step 1, small polymerization of lactic acid of step 2, and / or depolymerization of step 3. Was completed.
본 발명에서 사용될 수 있는 다발관 강하막 반응기는 도 1에 나타낸 것과 같은 반응기로서, 발명의 명칭을 "다발관 강하막 반응기를 이용한 락타이드 제조방법 (manufacturing method for lactide using a multitude falling film reactor}"로 하여 출원된 한국특허출원 10-2012-0090098 (출원일 2012년 8월 17일)에 기술되어 있는 반응기를 예로서 예시할 수 있으며, 상기 출원은 본 발명에 참고로 혼입되어 있다. The multi-tube falling film reactor that can be used in the present invention is a reactor as shown in Figure 1, the name of the invention "manufacturing method for lactide using a multitude falling film reactor}" The reactor described in Korean Patent Application No. 10-2012-0090098 (filed August 17, 2012) filed as an example may be exemplified, which application is incorporated herein by reference.
도 1은 본 발명에서 사용될 수 있는 다발관 강하막 반응기를 참고로 예시하는 것으로, 이 다발관 강하막 반응기는, 하나 또는 그 이상의 수직관으로 된 다발관(1) 및 이를 내부에 포함하는 자켓(2), 전술한 다발관의 상부 말단이 삽입용접되어 있는 상부 다발관 플랜지(4a), 전술한 다발관의 하부 말단이 삽입용접되어 있는 하부 다발관 플랜지(4b), 전술한 상부 다발관 플랜지(4a) 위쪽에 위치하고 동공(8) 및 액체투입구(7a)를 갖는 상부 차단플랜지(6a), 및 전술한 하부 다발관 플랜지(4b) 아래쪽에 설치되고 액체배출구(7b)를 갖는 하부 차단플랜지(6b)를 포함하며, 더 나아가, 하기 구성요소를 더욱 포함하는 것을 특징으로 한다: 1 illustrates a bundle tube falling membrane reactor that can be used in the present invention with reference to the bundle tube falling membrane reactor, the bundle tube 1 consisting of one or more vertical tubes and a jacket comprising the same ( 2), the upper bundle pipe flange 4a in which the upper end of the bundle pipe is inserted and welded, the lower bundle pipe flange 4b in which the lower end of the bundle pipe is inserted and welded, and the upper bundle pipe flange described above ( 4a) an upper blocking flange 6a positioned above and having a pupil 8 and a liquid inlet 7a, and a lower blocking flange 6b installed below the lower bundle tube flange 4b and having a liquid outlet 7b. ), And further, further comprises the following components:
- 전술한 상부 다발관 플랜지(4a) 및 상부 차단플랜지(6a) 사이에 설치되어 있는 기액분산 플랜지(5); A gas-liquid dispersion flange 5 provided between the above-mentioned upper bundle tube flange 4a and the upper shut-off flange 6a;
- 전술한 기액분산 플랜지(5)에 삽입되어 용접과 같은 방식으로 결합되어 있으며 관벽에 기체홀(12)을 갖고 있는, 다발관(1)과 동일한 축, 직경, 개수 및 배열을 갖는 강하막생성관(11); -Falling film formation having the same axis, diameter, number and arrangement as the bundle tube 1, which is inserted into the gas-liquid dispersion flange 5 and joined in the same manner as welding and has a gas hole 12 in the tube wall. Tube 11;
- 전술한 강하막생성관(11)의 상부 말단 입구를 덮도록 설치되어 있고, 공급된 액체가 강하막생성관(11) 내로 흘러들어갈 수 있도록 홀(14)이 뚫려 있는 지지판(10); A support plate 10 which is installed to cover the upper end inlet of the above-described falling film forming tube 11 and in which the hole 14 is drilled so that the supplied liquid can flow into the falling film forming tube 11;
- 전술한 지지판(10)의 하단에 고정되어 전술한 강하막생성관(11)의 내부에 삽입되도록 되어있고, 강하막생성관(11)의 내벽과는 원주방향으로 일정 간격을 갖는 액체분산판(9).It is fixed to the lower end of the above-described support plate 10 is to be inserted into the inside of the above-described falling film generating tube 11, the liquid dispersion plate having a predetermined interval in the circumferential direction with the inner wall of the falling film generating tube (11) (9).
본 발명의 하나의 구현예에 따르면, 락타이드는 하기 단계 1~7에 따라 제조할 수 있다. According to one embodiment of the invention, lactide may be prepared according to the following steps 1-7.
먼저, 젖산은 보통 생물반응기에서 젖산 함량 15-20%의 수용액 상태로 제조되며, 경우에 따라서는 젖산 함량 50-70%로 예비농축하여 단계 1에 공급할 수도 있다. First, lactic acid is usually prepared in an aqueous solution of lactic acid content of 15-20% in a bioreactor. In some cases, lactic acid may be preconcentrated to lactic acid content of 50-70% and supplied to Step 1.
단계 1은 젖산 수용액을 증발농축시키는 단계로서, 젖산 함량 15-70%의 젖산 수용액을 100-120℃의 온도 및 압력 50-200 torr에서 젖산 함량 95-99%까지 증발에 의해 농축시키며, 박막 증발기, 바람직하게는 강하막 반응기에서 수행할 수 있다. Step 1 is a step of evaporating the lactic acid aqueous solution. The lactic acid aqueous solution of 15-70% of lactic acid is concentrated by evaporation to a lactic acid content of 95-99% at a temperature of 100-120 ° C. and a pressure of 50-200 torr. , Preferably in a falling-film reactor.
단계 2는 증발농축된 젖산으로부터 올리고머를 소중합하는 단계로서, 180-210℃, 바람직하게는 190-205℃의 온도 및 압력 200-760 torr, 바람직하게는 500-700 torr의 압력에서 강하막 반응기에서 수행할 수 있다. 소중합 단계에서 생성된 생성된 올리고머는 일반적으로 1000-3000, 구체적으로는 1000-2000의 중량평균 분자량을 가질 수 있다. Step 2 is a step of small polymerization of the oligomer from the evaporated lactic acid, in a falling film reactor at a temperature of 180-210 ° C., preferably 190-205 ° C. and a pressure of 200-760 torr, preferably 500-700 torr. Can be done. The resulting oligomers produced in the prepolymerization stage may generally have a weight average molecular weight of 1000-3000, specifically 1000-2000.
단계 3은 소중합된 젖산 올리고머를 1차 해중합시키는 단계로서, 젖산 올리고머를 다발관 강하막 반응기에 공급하여 락타이드 수율이 70-90% 정도가 될 때까지 1차 해중합을 수행한다. 1차 해중합반응은 일반적으로 220-270℃, 바람직하게는 230-250℃의 온도 및 5-50 torr, 바람직하게는 5-30 torr의 압력에서, 임의의 SnO 등의 금속산화물 촉매의 존재하에 수행된다. 락타이드의 수율은 올리고머 투입량 및/또는 반응온도 등을 조절함으로써 조절될 수 있다. Step 3 is a step of first depolymerization of the small polymerized lactic acid oligomer, supplying the lactic acid oligomer to the bundle tube falling membrane reactor to perform the first depolymerization until the lactide yield is about 70-90%. The first depolymerization is generally carried out in the presence of a metal oxide catalyst, such as SnO, at a temperature of 220-270 ° C., preferably 230-250 ° C. and a pressure of 5-50 torr, preferably 5-30 torr. do. The yield of lactide can be adjusted by adjusting the oligomer dose and / or reaction temperature.
상기 단계 3에서 수득되는 물, 젖산, 올리고머 및 락타이드 등의 생성물은, 락타이드는 증기상 혼합물의 형태로 배출되어 증류탑으로 이송되고 필요에 따라 정제되며, 미반응 올리고머 등은 다발관 하단으로 배출되어 반응기 하부에 수집되고, 다시 단계 4의 박막 반응기로 이송된다. Products such as water, lactic acid, oligomer and lactide obtained in step 3, the lactide is discharged in the form of a vapor phase mixture is sent to the distillation column and purified as necessary, the unreacted oligomer is discharged to the bottom of the bundle tube Collected at the bottom of the reactor, and back to the membrane reactor of step 4.
단계 4는 미반응 올리고머를 2차로 해중합시키는 단계로서, 230-270℃, 바람직하게는 240-260℃의 온도 및 5-50 torr, 바람직하게는 5-30 torr의 온도에서 박막반응기, 바람직하게는 교반박막 반응기에서 수행된다. 전술한 교반박막 반응기에서 교반용 블레이드는 고점도 미반응 올리고머 등의 원활한 퍼짐 및 흘러내림을 위해 80-90도의 수직 경사각도를 가지며, 1 mm 이하의 최적 박막 두께 및 1-20분, 바람직하게는 1-10분의 올리고머 체류시간으로 공정을 수행할 수 있다. Step 4 is a second step of depolymerization of the unreacted oligomer, the thin film reactor, preferably at a temperature of 230-270 ℃, preferably 240-260 ℃ and a temperature of 5-50 torr, preferably 5-30 torr It is carried out in a stirred thin film reactor. In the aforementioned stirring thin film reactor, the stirring blade has a vertical tilt angle of 80-90 degrees for smooth spreading and flowing down of high viscosity unreacted oligomers, and has an optimum thin film thickness of 1 mm or less and 1-20 minutes, preferably 1 The process can be carried out with an oligomer residence time of -10 minutes.
상기 단계 4에서 수득되는 물, 젖산, 올리고머 및 락타이드 등의 생성물은, 락타이드는 증기상 혼합물의 형태로 배출되어 증류탑으로 이송되고 필요에 따라 정제되며, 미반응 올리고머, 카본성 잔사 등은 박막 증발기의 하부로 수집되어 반응기 외부로 배출될 수 있다. 전술한 카본성 잔사는 올리고머에 존재하는 수소와 산소 원자가 끊겨 나가면서 중합반응을 반복한 결과 생성된 탄소침착물을 포함한다.Products such as water, lactic acid, oligomers and lactide obtained in step 4, the lactide is discharged in the form of a vapor phase mixture is sent to the distillation column and purified as needed, unreacted oligomers, carbonaceous residues, etc. Collected to the bottom of the evaporator may be discharged out of the reactor. The above-mentioned carbonaceous residue includes a carbon deposit produced by repeating the polymerization reaction while hydrogen and oxygen atoms in the oligomer are disconnected.
단계 5는 락타이드의 1차 정제단계로서, 상기 단계 3 및 4에서 배출된 증기상 혼합물을 100-150℃의 온도 및 5-30 torr의 압력으로 1차 증류탑에서 증류하여, 물, 젖산 등의 혼합물을 탑상으로 분리제거하고 락타이드 및 올리고머 등의 혼합물을 탑저에서 회수할 수 있다. Step 5 is a first purification step of lactide, and the vapor phase mixture discharged in steps 3 and 4 is distilled in a first distillation column at a temperature of 100-150 ° C. and a pressure of 5-30 torr, such as water, lactic acid, and the like. The mixture can be separated off to the top and a mixture such as lactide and oligomer can be recovered at the bottom.
단계 6은 락타이드의 2차 정제단계로서, 상기 단계 5에서 분리된 탑저 생산물을 100-160℃의 온도 및 5-30 torr의 압력으로 예를 들면 2차 증류탑에서 증류하여, 락타이드를 탑상에서 회수하고, 올리고머 등의 혼합물을 탑저에서 회수할 수 있다.Step 6 is a secondary purification step of lactide, in which the bottom product separated in step 5 is distilled, for example, in a second distillation column at a temperature of 100-160 ° C. and a pressure of 5-30 torr, so that the lactide is formed on the tower. It collect | recovers and mixtures, such as an oligomer, can be collect | recovered in a tower bottom.
단계 7은 락타이드의 3차 정제단계로서, 상기 단계 6에서 분리된 락타이드 혼합물을 100-160℃의 온도 및 5-30 torr의 압력으로 예를 들면 3차 증류탑에서 증류하여, meso-락타이드 탑상에서 회수하고 L- 또는 D-락타이드를 탑저에서 회수할 수 있다. Step 7 is a third purification step of the lactide, and the lactide mixture separated in step 6 is distilled, for example, in a third distillation column at a temperature of 100-160 ° C. and a pressure of 5-30 torr, and meso-lactide The column can be recovered and L- or D-lactide can be recovered at the bottom.
상기 정제를 위한 증류 온도 및 압력은 임계적이지 않으며 당업계에 공지되어 있는 조건으로부터 선택될 수 있다. 이러한 증류 온도 및 압력은 다른 공정 환경이나 장치 상태를 감안하여 당업계 기술자들에 의해 적절하게 선택될 수 있다. The distillation temperature and pressure for the purification are not critical and can be selected from conditions known in the art. Such distillation temperatures and pressures may be appropriately selected by those skilled in the art in view of other process environments or device conditions.
이하에, 본 발명에 따른 락타이드의 제조과정, 구체적으로는 단계 1~3은, 다발관 강화막 및/또는 교반형 박막 반응기에서 수행하는 것을 참조로, 하기에 더욱 상세히 설명될 수 있다. Hereinafter, the manufacturing process of lactide according to the present invention, specifically steps 1 to 3, can be described in more detail below, with reference to the carried out in the bundle tube reinforcement membrane and / or stirred thin-film reactor.
단계 1의 증발농축 단계에서, 젖산 수용액은 상부 차단플랜지(6a)에 부착된 액체 투입구(7a)를 거쳐 강하막 증발기로 공급된다. 필요에 따라 펌프로 공급 유량을 조절할 수 있다. 액체 투입구(7a)로 들어온 젖산 수용액은 상부 차단플랜지(6a)와 기액분산 플랜지(5) 사이의 동공(8)을 거쳐 지지판의 홀(14)로 흘러들어간다. 상부 차단플랜지(6a)와 기액분산 플랜지(5) 사이의 동공(8)은 차단플랜지 하부 면을 선반 가공을 한 결과 만들어진 것으로, 그 높이가 2mm 이하이면 압력이 많이 걸리고, 반면에 6mm 이상이면 억류되는 젖산 수용액의 양이 많아지므로 동공의 높이는 2-6 mm가 되도록 차단플랜지 밑면을 가공하는 것이 바람직하다. In the evaporation concentration step of step 1, the lactic acid aqueous solution is supplied to the falling film evaporator via a liquid inlet 7a attached to the upper blocking flange 6a. The feed flow can be adjusted by the pump as needed. The lactic acid aqueous solution entering the liquid inlet 7a flows into the hole 14 of the support plate through the cavity 8 between the upper shut-off flange 6a and the gas-liquid dispersion flange 5. The pupil 8 between the upper shut-off flange 6a and the gas-liquid dispersion flange 5 is a result of lathe machining of the lower face of the shut-off flange, and if the height is 2 mm or less, a high pressure is applied, whereas if it is 6 mm or more, it is detained. Since the amount of lactic acid aqueous solution is increased, it is preferable to process the bottom surface of the blocking flange so that the height of the pupil is 2-6 mm.
상기 액체 분산장치는 젖산 수용액이 강하막생성관(11)의 내벽면으로 흐르도록 흐름의 방향을 제어하는 액체분산판(9)과 이를 지지하는 지지판(10)으로 구성되어 있다. 액체분산판(9)은 지지판(10)에 볼트와 같은 고정기구로 고정되어 있으며 강하막 생성관(11)의 내경보다 직경이 작아 강하막 생성관의 내부에 삽입 설치되며, 지지판(10)은 강하막 생성관(11)의 내경보다 직경이 커서 강하막 생성관을 덮도록 설치되며, 이때 그 상단면이 기액분산 플랜지(5)의 상단면과 평면을 이루는 깊이로 기액분산 플랜지(5)에 삽입되어 있는 구조이다. 지지판(10)과 거기에 고정된 액체분산판(9)으로 된 액체 분산장치는 강하막 장치에서 착탈이 가능한 방식으로 설치되므로, 필요에 따라 액체분산판의 교체가 가능하다. The liquid dispersing device is composed of a liquid dispersion plate 9 for controlling the direction of the flow so that the lactic acid aqueous solution flows to the inner wall surface of the falling film forming pipe 11 and the support plate 10 for supporting it. The liquid dispersion plate 9 is fixed to the support plate 10 by a fixing mechanism such as a bolt and is smaller than the inner diameter of the falling film generating tube 11 so as to be inserted into the falling film generating tube, and the supporting plate 10 is The diameter is larger than the inner diameter of the falling film generating pipe 11 is installed so as to cover the falling film generating pipe, the upper surface of the falling film generating pipe (11) to the depth forming a plane with the top surface of the gas-liquid dispersion flange (5) The structure is inserted. Since the liquid dispersing device comprising the support plate 10 and the liquid dispersing plate 9 fixed thereto is installed in a detachable manner in the falling film device, the liquid dispersing plate can be replaced as necessary.
지지판(10)에는 직경 2-5mm 크기의 구멍 또는 홈, 즉 홀(14)이 수직으로 하나 또는 그 이상 뚫려 있다. 젖산 수용액이 강하막 생성관 내로 잘 흘러 들어가려면 상기 홀(14)은 도 2에서처럼 4개 정도가 바람직하다. 상기 홀(14)을 통해 흘러들어가 액체분산판(10)의 상부면에 도달한 젖산 수용액은 수평으로 흘러서 액체분산판의 원주 말단 부위에서 이동 방향을 아래쪽으로 전환하여, 강하막생성관(11)의 내벽면을 타고 밑으로 흘러내린다. One or more holes or grooves, that is, holes 14, having a diameter of 2-5 mm are drilled in the support plate 10 vertically. In order for the lactic acid aqueous solution to flow well into the falling film generating tube, four holes 14 are preferable as shown in FIG. 2. The lactic acid aqueous solution flowing through the hole 14 and reaching the upper surface of the liquid dispersion plate 10 flows horizontally to change the direction of movement downward at the circumferential end portion of the liquid dispersion plate, thereby to lower the film forming tube 11. Ride down the inner wall of the house.
강하막생성관(11)은 다발관을 형성하는 수직관(1)과 동일 축, 동일 직경, 동일 개수 및 동일 배열로 기액분산 플랜지(5)에 배치시킨, 길이가 짧은 다발관으로서, 증발된 수증기 또는 외부의 운반가스가 통과할 수 있는 기체홀(12)이 상기 액체분산판 보다 아래쪽 위치에서 벽면에 뚫려 있다. 강하막 생성관에 뚫리는 기체홀(12)의 개수는 특별한 제약이 없다. 그러나 기체 홀이 많을수록, 그리고 직경이 클수록 액체 강하막의 거동에 크게 영향을 미치므로 기체 홀의 개수는 10개 이내, 그리고 직경은 2-5mm가 바람직하다. The falling-film forming tube 11 is a short-length bundle tube arranged on the gas-liquid dispersion flange 5 in the same axis, the same diameter, the same number, and the same arrangement as the vertical tube 1 forming the bundle tube. A gas hole 12 through which water vapor or an external carrier gas can pass is drilled on the wall at a position lower than the liquid dispersion plate. The number of gas holes 12 drilled in the falling film generating tube is not particularly limited. However, more gas holes and larger diameters greatly affect the behavior of the liquid drop film, so the number of gas holes is less than 10 and the diameter is preferably 2-5 mm.
강하막 생성관(11)과 수직관(1)은 중심축이 일치되게 배열되어 있어서 강하막 생성관의 내벽면을 타고 흘러내린 젖산 수용액은 별다른 장애 없이 그대로 수직관의 벽면으로 흘러 내려간다. 강하막 생성관 내벽면으로 흘러내린 젖산 수용액이 80-120℃로 가열된 수직 다발관 속으로 들어가면 물이 증발하면서 수증기가 발생된다. 이때 생성된 수증기를 다발관의 하부로 배출시키거나, 또는 기체홀(12)을 거쳐 기체 출입구(13a)로 배출시킬 수 있다. 전자의 다발관 하부로 배출시키는 방법은 수직관 내에서 젖산과 수증기가 같은 방향으로 흐르므로 병류운전이 되고, 후자의 기체 출입구(13b)를 통해 수증기를 배출하는 방법은 수증기와 젖산이 반대방향으로 흐르므로 역류운전이 된다. 본 발명의 젖산 수용액 증발장치는 이와 같이 병류와 역류 운전 모두 가능하다. The falling film generating pipe 11 and the vertical pipe 1 are arranged so that the central axis is aligned so that the lactic acid aqueous solution flowing down the inner wall of the falling film generating pipe flows down to the wall surface of the vertical pipe without any obstacle. When the lactic acid solution flowing down the inner wall surface of the falling film enters the vertical bundle tube heated to 80-120 ° C., water vapor evaporates as water evaporates. At this time, the generated water vapor may be discharged to the lower portion of the bundle pipe, or may be discharged to the gas entrance 13a through the gas hole 12. The method of discharging the former to the bottom of the bundle tube is cocurrent operation because lactic acid and water vapor flow in the same direction in the vertical tube, and the method of discharging water through the latter gas entrance 13b is the opposite direction of the vapor and lactic acid. As it flows, it becomes reverse flow operation. The lactic acid aqueous solution evaporation apparatus of the present invention is capable of both cocurrent flow and countercurrent operation.
상기 수직 다발관(1)은 그 상부 및 하부가 다발관 플랜지(4a, 4b)에 용접 방식으로 고정되어 있으며, 그 외부에 자켓(2)이 설치되어 있어 다발관과 자켓 사이의 공간에는 열매체오일을 순환시키면 수직 다발관을 균일한 온도로 가열하는 것이 가능하다. The vertical bundle tube 1 has its upper and lower portions fixed by welding to the bundle tube flanges 4a and 4b, and a jacket 2 is installed outside thereof so that the heat medium oil is provided in the space between the bundle tube and the jacket. By circulating, it is possible to heat the vertical bundle tube to a uniform temperature.
도 3에는 상기 수직관이 4개 설치된 것으로 묘사되어 있으나 수직관의 개수는 특별한 제약 없이 젖산 수용액의 공급량에 따라 하나에서부터 수천개까지 임으로 설치 가능하다. 이것은 본 발명의 다발관 강하막 장치가 비교적 구조가 단순하고 다발관과 기체 및 액체 분산장치가 분리되어 있어 각각 정밀한 가공이 가능하기 때문이다. In Figure 3 is described that the four vertical pipes are installed, but the number of vertical pipes can be installed from one to several thousand depending on the supply amount of the lactic acid aqueous solution without particular limitation. This is because the bundle pipe falling film device of the present invention is relatively simple in structure and the bundle pipe and the gas and liquid dispersing device are separated, thereby enabling precise processing, respectively.
특히 상부 차단플랜지(6a), 기액분산 플랜지(5) 및 상부 다발관 플랜지(4a)로 구성된 강하막 증발기의 상단 부위는 공작기계로 정밀가공이 가능해 액체분산판(9), 지지판(10), 강하막생성관(11) 및 수직관(1)을 중심축이 일치되게 제작할 수 있다. 이러한 구조에 의해서 젖산 수용액이 100% 수직관의 내벽면으로, 그리고 수직관의 원주방향 균일하게 흐르게 되어 장치가 보유한 최대한의 효율로 물이 증발하게 된다. In particular, the upper part of the falling film evaporator composed of the upper shut-off flange 6a, the gas-liquid dispersion flange 5, and the upper bundle tube flange 4a can be precisely processed by a machine tool so that the liquid dispersion plate 9, the support plate 10, The falling film generating pipe (11) and the vertical pipe (1) can be produced to match the central axis. By this structure, the lactic acid aqueous solution flows uniformly in the inner wall of the 100% vertical tube and in the circumferential direction of the vertical tube, so that the water evaporates with the maximum efficiency retained by the apparatus.
상기 강하막생성관(11)에 삽입된 액체분산판(9)의 직경은 젖산 수용액의 개별 수직관으로의 분배효율을 결정하는 중요한 변수이다. 액체분산판의 직경이 너무 작아 강하막생성관(11) 내벽과 액체분산판 측면 사이의 간격이 크면 압력강하가 작아 젖산 수용액이 여러 다발관에 고르게 분배되지 않고 특정 수직관으로만 치우쳐 흐르는 일이 발생할 수 있다. 반대로 액체분산판의 직경이 강하막생성관의 내경과 비슷해 공차 또는 간격이 너무 작으면 압력강하가 커지게 되고, 따라서 젖산 수용액이 개별 수직관에 고르게 분배되는 효과는 커질 수 있지만 젖산 수용액의 공급을 위해 토출압이 매우 큰 펌프를 사용해야 한다는 문제가 발생한다. 본 발명의 강하막 증발기에서는 액체분산판의 착탈이 가능해 그 직경을 조절함으로써 액체 분산판의 압력강하를 임의로 조절할 수 있다. The diameter of the liquid dispersion plate 9 inserted into the falling film generating tube 11 is an important variable for determining the distribution efficiency of the lactic acid aqueous solution to the individual vertical tubes. If the diameter of the liquid dispersion plate is too small and the gap between the inner wall of the falling film forming tube 11 and the side of the liquid dispersion plate is large, the pressure drop is small and the lactic acid aqueous solution flows only to a specific vertical tube without being evenly distributed among the multiple bundle tubes. May occur. On the contrary, the diameter of the liquid dispersion plate is similar to the inner diameter of the falling-film forming tube, so if the tolerance or gap is too small, the pressure drop increases, so that the effect of evenly distributing the lactic acid solution to the individual vertical tubes may be increased. In order to solve this problem, a pump having a large discharge pressure must be used. In the falling film evaporator of the present invention, the liquid dispersion plate can be attached and detached, and the pressure drop of the liquid dispersion plate can be arbitrarily adjusted by adjusting its diameter.
강하막생성관과 액체분산판 사이의 최적 간격은 젖산 수용액의 증발농축용으로는 0.05-2mm, 더 바람직하게는 0.1-1mm 이다. The optimum spacing between the falling film forming tube and the liquid dispersion plate is 0.05-2 mm, more preferably 0.1-1 mm, for evaporative concentration of the lactic acid aqueous solution.
상기 수직관은 온도가 높을수록 증발속도 관점에서 유리할 수 있지만, 120 ℃ 이상의 고온에서는 물과 젖산이 공비점을 형성하여 젖산의 손실량이 커지기 때문에, 120℃ 이하의 온도, 더 바람직하게는 50-700 torr 감압 조건에서 80-120℃ 온도 범위에서 운전을 하는 것이 좋다. 젖산 수용액의 물 함량은 20-90% 사이 어떠한 농도라도 관계없다. 물을 증발시키는데 있어, 농축이 덜된 증발기 하부의 젖산수용액을 펌프를 사용해 수직 다발관으로 순환시키는 순환운전도 무방하지만, 소중합 반응에 사용될 젖산의 물성과 증발속도를 고려한다면 다발관의 개수와 강하막의 체류시간을 동시에 조절함으로써 1회 통과 운전으로 수행하는 것이 더욱 바람직할 수 있다. The vertical tube may be advantageous in terms of evaporation rate at higher temperature, but at a high temperature of 120 ° C. or higher, water and lactic acid form an azeotropic point, resulting in a large amount of lactic acid loss. Thus, the temperature is lower than 120 ° C., more preferably 50-700. It is recommended to operate at 80-120 ℃ temperature under reduced pressure condition. The water content of the lactic acid aqueous solution may be any concentration between 20-90%. In evaporating water, the circulating operation of circulating the lactic acid aqueous solution under the less concentrated evaporator to the vertical bundle tube using a pump may be used, but considering the physical properties and evaporation rate of the lactic acid to be used for the small polymerization reaction, the number and drop of the bundle tube will be reduced. It may be more desirable to carry out in a single pass operation by simultaneously controlling the residence time of the membrane.
강하막 증발기에서 물 함량 1% 이하로 농축시킨 젖산용액은 소중합 반응장치로 이송해 상기 단계 2의 소중합 반응을 진행한다. 소중합 반응기는 상기 강하막 증발기와 수직관의 개수 및/또는 길이가 다른 유형의 다발관 강하막 장치를 반응기로 사용할수 있다. The lactic acid solution concentrated to 1% or less of the water content in the falling film evaporator is transferred to the small polymerization reactor to proceed with the small polymerization reaction of Step 2. The small polymerization reactor may use a multi-tube drop membrane device of a different type and / or length of the drop membrane evaporator and the vertical tube as the reactor.
단계 2의 소중합 반응의 온도는 170-210℃, 최적 온도는 190-205℃이다. 180℃ 이하의 온도에서는 반응속도가 너무 느리고, 반면 210℃ 이상의 온도에서는 해중합 반응이 일어나 원하는 분자량의 소중합체를 얻지 못하게 될 수도 있다. The temperature of the prepolymerization reaction of step 2 is 170-210 ° C., and the optimum temperature is 190-205 ° C. At temperatures below 180 ° C., the reaction rate is too slow, while at temperatures above 210 ° C., depolymerization may occur and result in the loss of the desired molecular weight oligomer.
상기 단계 2의 소중합 반응은 강하막 반응기의 온도를 190-205℃로 올려 한번에 진행하는 것도 가능하지만, 상기 강하막 증발기에서 농축된 농도 99% 이상의 젖산을 80-120℃에서 곧바로 190-205℃로 가열해 반응을 시키면 젖산의 공비 증발로 인해 젖산의 전환율이 높지 않기 때문에 반응온도를 2단계로 나누어 수행하는 것이 더 좋다. 소중합 반응을 급격하게 진행시키면 미반응 젖산이 부산물인 물과 함께 증발되어 유실되므로 전환율이 떨어진다. The small polymerization reaction of step 2 may be carried out at once by raising the temperature of the falling film reactor to 190-205 ° C., but the lactic acid having a concentration of 99% or more concentrated in the falling film evaporator is directly 190-205 ° C. at 80-120 ° C. When the reaction is performed by heating, the conversion of lactic acid is not high due to the azeotropic evaporation of lactic acid, so it is better to perform the reaction temperature in two stages. The rapid progress of the prepolymerization decreases the conversion rate because unreacted lactic acid is evaporated and lost together with the byproduct water.
바람직한 단계별 소중합 반응의 온도는 (2-1) 단계 150-170℃ 및 2의 2 단계 190-205℃이다. 즉, 상기 단계 1의 강하막 증발기에서 농축된 함량 99% 이상의 80-120℃의 젖산을 2의 1단계로서 150-170℃로 올려 상기 구조의 강하막 반응기에서 1차적으로 반응을 시킨 후, (2-2) 단계로서 190-205℃로 가열된 또 다른 다발관 강하막 반응기에서 2차로 반응을 시키면 원하는 분자량을 갖는 젖산 소중합체를 높은 전환율로 제조할 수 있다. Preferred stepwise small polymerization temperatures are (2-1) step 150-170 ° C. and step 2 190-205 ° C. That is, lactic acid of 80-120 ° C. or more concentrated in the falling film evaporator of step 1 was raised to 150-170 ° C. as a first step of 2 and reacted first in a falling film reactor having the above structure, ( As a step 2-2, the second reaction in another bundle tube falling-film reactor heated to 190-205 ° C. can produce a lactic acid oligomer having a desired molecular weight at a high conversion rate.
여기서, 상기 (2-1) 단계의 젖산 소중합반응에서 상기 단계 3의 해중합반응의 촉매를 미리 넣고 소중합 반응을 진행하면 최종 생성물인 락타이드를 더욱 효율적으로 제조할 수 있게 된다. Here, when the catalyst of the depolymerization reaction of step 3 in advance in the lactic acid small polymerization reaction of step (2-1) and the small polymerization reaction proceeds, lactide as a final product can be more efficiently produced.
젖산 소중합체의 해중합반응의 촉매로는 일반적으로 금속 산화물, 금속 염화물, 금속 유기화합물 등의 금속 화합물이 사용되는데, 고온의 액체 상태의 젖산 소중합체에 이들 촉매를 넣으면 소중합체, 또는 젖산과 반응을 하여 금속 락테이트로 전환되므로 어떠한 화합물을 사용하더라도 해중합반응의 촉매 활성도는 서로 비슷하다. 고온에서는 모두가 액상 금속락테이트 형태를 취하기 때문이다. 해중합 촉매가 이렇게 반응온도 조건에서 액상이면 고체 입자상에 비해 몇 가지 장점이 있다. 촉매가 반응물에 분자 단위의 크기로 균일하게 분산되므로 촉매의 효율이 높아지고, 또 반응물 및 생성물을 펌프로 이송하기가 용이하다. 150℃ 이상의 고온에서 정량적으로 반응물을 공급 할수 있는 펌프는 기어펌프가 유일한데, 촉매가 액상이 아닌 고상이면 마모 및 손상 문제로 기어펌프를 사용할 수 없게 된다. As catalysts for the depolymerization of lactic acid oligomers, metal compounds such as metal oxides, metal chlorides and metal organic compounds are generally used. When these catalysts are added to a high temperature liquid lactic acid oligomer, they react with the oligomer or lactic acid. Because of the conversion to metal lactate, the catalytic activity of the depolymerization reaction is similar to any compound used. This is because at high temperatures all take the form of liquid metal lactate. If the depolymerization catalyst is liquid at these reaction temperature conditions, there are several advantages over the solid particle phase. Since the catalyst is uniformly dispersed in the reactant in the size of molecular units, the efficiency of the catalyst is increased, and it is easy to transfer the reactant and the product to the pump. The only pump that can supply quantitative reactants at high temperature above 150 ℃ is gear pump. If the catalyst is solid rather than liquid, the gear pump cannot be used due to abrasion and damage.
본 발명자들이 조사한 바에 의하면, 단계 3의 해중합반응의 금속화합물 촉매는 200℃의 고온에서도 삼량체 이상의 소중합체와는 거의 반응을 하지 않으며, 단량체인 젖산과 물, 특히 젖산의 해리도가 증가하는 물이 어느 정도 존재하는 조건에서 금속락테이트로 잘 전환된다. 따라서 본 발명의 단계 2의 소중합반응을 상기와 같이 단계 (2-1) 및 (2-2)로 나누어 진행을 하면 젖산과 물이 아직 존재하는 단계 (2-1)에 해중합반응 촉매를 넣음으로써 금속 분말 또는 입자상의 촉매를 액상의 금속락테이트 촉매로 전환시킬 수 있게 된다. According to the inventors, the metal compound catalyst of the depolymerization reaction of step 3 hardly reacts with the oligomer or more of the trimer even at a high temperature of 200 ° C. It is well converted to metal lactate in the conditions present to some extent. Therefore, when the small polymerization reaction of step 2 of the present invention is divided into steps (2-1) and (2-2) as described above, the depolymerization catalyst is added to step (2-1) in which lactic acid and water still exist. As a result, the metal powder or particulate catalyst can be converted into a liquid metal lactate catalyst.
상기 단계 (2-1) 및 (2-2)의 소중합반응은 대기압 이하의 감압조건에서 반응을 하면 부산물인 물의 증발속도가 커지므로 더 효과적으로 소중합체를 제조할 수 있다. 적절한 압력 범위는 단계 (2-1)의 소중합반응이 500-760 torr, 단계 (2-2)의 소중합 반응이 300-760 torr이다. 단계 (2-1)의 소중합반응에서 압력이 500 torr 이하이면 단량체인 젖산의 증발속도가 커져 젖산 전환율이 낮아진다. In the small polymerization reaction of the steps (2-1) and (2-2), when the reaction is carried out under reduced pressure at atmospheric pressure or lower, the evaporation rate of the byproduct water increases, so that the oligomer can be produced more effectively. Suitable pressure ranges are 500-760 torr for the small polymerization of step (2-1) and 300-760 torr for the small polymerization of step (2-2). In the small polymerization reaction of step (2-1), if the pressure is 500 torr or less, the rate of evaporation of the monomer lactic acid is increased and the lactic acid conversion rate is lowered.
상기 온도 및 압력조건에서 제조되는 젖산 소중합체의 최적 중량평균 분자량은 1000-3000 사이이다. 소중합체의 분자량이 3000을 넘으면 상기 단계 3의 해중합반응 단계에서 카본 생성량이 많아져 락타이드 수율이 떨어지고, 반대로 1000 이하이면 소중합체 분자사슬의 뒤물기 및 사슬절단에 의해 얻어지는 락타이드의 생성 수율이 떨어진다. 분자량 1000-3000 사이의 소중합체는 분자량분포가 넓은 것 보다는 좁은 분포도를 갖는 것이 단계 3의 해중합반응에 더 유리하다. 그러므로 상기 단계 (2-1) 및 (2-2)의 소중합반응은 분자량 분포도가 커지는 순환운전보다는 1회 통과 운전으로 소중합체를 제조하는 것이 바람직할 수 있다. 1회 통과 운전시 강하막의 수직관내 체류시간, 즉 반응시간은 수직관의 개수와 길이 및 반응물의 공급속도로 조절할 수 있다. The optimum weight average molecular weight of the lactic acid oligomer prepared under the above temperature and pressure conditions is between 1000-3000. When the molecular weight of the oligomer exceeds 3000, the amount of carbon produced in the depolymerization step of step 3 increases, so that the yield of lactide decreases. Falls. It is more advantageous for the depolymerization reaction of step 3 that oligomers having a molecular weight of 1000-3000 have a narrow distribution rather than a wide molecular weight distribution. Therefore, it may be preferable to prepare the oligomer in the one-pass operation rather than the cyclic operation in which the molecular weight distribution becomes large in the small polymerization reaction of the steps (2-1) and (2-2). The residence time of the falling film in the single pass operation, that is, the reaction time can be controlled by the number and length of the vertical tubes and the supply speed of the reactants.
단계 2의 소중합 반응기에서 얻어진 소중합체는 펌프로 강하막 해중합 반응기로 이송해 상기 단계 3을 수행할 수 있다. The oligomer obtained in the small polymerization reactor of step 2 may be transferred to a falling film depolymerization reactor by a pump to perform step 3.
단계 3은 소중합된 젖산 올리고머를 1차 해중합시키는 단계로서, 젖산 올리고머를 다발관 강하막 반응기에 공급하여, 젖산 올리고머의 상당 부분이 락타이드로 전환될 때까지, 예를 들면 올리고머의 전환율 및/또는 락타이드의 수율이 대략 60% 이상, 특별하게는 70% 이상, 바람직하게는 75~85%에 도달할 때까지 1차 해중합을 수행한다. 1차 해중합반응은 일반적으로 200-270℃, 특별하게는 220-270℃, 바람직하게는 230-260℃의 온도 및 5-100 torr, 구체적으로는 5-50 torr, 바람직하게는 5-30 torr의 압력에서, 임의의 SnO와 같은 주석산화물 등의 금속산화물 촉매의 존재 하에 수행된다. 락타이드의 수율은 올리고머 투입량 및/또는 반응온도 등을 조절함으로써 조절될 수 있다. Step 3 is a first depolymerization of the small polymerized lactic acid oligomer, wherein the lactic acid oligomer is fed to the bundle tube falling-film reactor, until a substantial portion of the lactic acid oligomer is converted to lactide, for example the conversion rate of the oligomer and / or Or the first depolymerization is carried out until the yield of lactide reaches at least about 60%, in particular at least 70%, preferably 75-85%. The first depolymerization is generally carried out at a temperature of 200-270 ° C., especially 220-270 ° C., preferably 230-260 ° C. and 5-100 torr, specifically 5-50 torr, preferably 5-30 torr. At a pressure of, it is carried out in the presence of a metal oxide catalyst such as tin oxide, such as any SnO. The yield of lactide can be adjusted by adjusting the oligomer dose and / or reaction temperature.
상기 단계 3에서 수득되는 물, 젖산, 올리고머 및 락타이드 등의 생성물은, 락타이드는 증기상 혼합물의 형태로 배출되어 증류탑으로 이송되고 필요에 따라 정제되며, 미반응 올리고머 등은 다발관 하단으로 배출되어 반응기 하부에 수집되고, 다시 단계 4의 박막 반응기로 이송된다. Products such as water, lactic acid, oligomer and lactide obtained in step 3, the lactide is discharged in the form of a vapor phase mixture is sent to the distillation column and purified as necessary, the unreacted oligomer is discharged to the bottom of the bundle tube Collected at the bottom of the reactor, and back to the membrane reactor of step 4.
젖산 소중합체의 해중합반응은 짧은 체류시간의 1회 통과 운전이 필요한 대표적인 반응이다. 반응물의 체류시간이 길면 열중합(thermal polymerization)에 의해 카본 생성량이 증가하는데, 이를 만약 반응기에 순환시키면 카본입자가 반응기 벽면에 침착되기 때문이다. Depolymerization of the lactic acid oligomer is a typical reaction requiring a single pass operation with a short residence time. If the residence time of the reactants is long, the amount of carbon produced is increased by thermal polymerization because carbon particles are deposited on the reactor wall if circulated through the reactor.
단계 3에 있어서, 분자량 1000-3000인 젖산 소중합체의 점도는 200℃에서 10-100 cP 범위를 갖고 있기 때문에, 상기 강하막생성관 내벽과 액체분산판 사이의 간격은 0.1-1.5mm가 적절하다. 상기 액체 분산장치에 젖산 소중합체를 펌프로 연속적으로 공급하며 1회 통과 운전으로 소중합체를 해중합시키면 점도가 큰 반응물을 높은 압력을 가하지 않더라도 100% 수직관의 내벽면에 고르게 분산시킬 수 있어 높은 효율로 락타이드를 제조할 수 있게 된다. In step 3, since the viscosity of the lactic acid oligomer having a molecular weight of 1000-3000 has a range of 10-100 cP at 200 ° C, the interval between the inner wall of the falling film forming tube and the liquid dispersion plate is appropriately 0.1-1.5 mm. . By continuously supplying lactic acid oligomer to the liquid dispersing device as a pump and depolymerizing the oligomer in one pass operation, it is possible to disperse the high viscosity evenly on the inner wall surface of the 100% vertical tube even without applying high pressure. The lactide can be prepared.
단계 4는 미반응 올리고머를 2차로 해중합시키는 단계로서, 230-270℃, 바람직하게는 240-260℃의 온도 및 5-50 torr, 바람직하게는 5-30 torr의 온도에서 박막반응기, 바람직하게는 교반박막 반응기에서 수행된다. Step 4 is a second step of depolymerization of the unreacted oligomer, the thin film reactor, preferably at a temperature of 230-270 ℃, preferably 240-260 ℃ and a temperature of 5-50 torr, preferably 5-30 torr It is carried out in a stirred thin film reactor.
전술한 교반박막 반응기에서 교반용 블레이드는 고점도 미반응 올리고머 등의 원활한 퍼짐 및 흘러내림을 위해 80-90도의 수직 경사각도를 가지며, 1 mm 이하의 최적 박막 두께 및 1-20분, 바람직하게는 1-10분의 올리고머 체류시간으로 공정을 수행할 수 있다. In the aforementioned stirring thin film reactor, the stirring blade has a vertical tilt angle of 80-90 degrees for smooth spreading and flowing down of high viscosity unreacted oligomers, and has an optimum thin film thickness of 1 mm or less and 1-20 minutes, preferably 1 The process can be carried out with an oligomer residence time of -10 minutes.
상기 단계 4에서 수득되는 물, 젖산, 올리고머 및 락타이드 등의 생성물은, 락타이드는 증기상 혼합물의 형태로 배출되어 증류탑으로 이송되고 필요에 따라 정제되며, 미반응 올리고머, 카본성 잔사 등은 박막 증발기의 하부로 수집되어 반응기 외부로 배출될 수 있다. 전술한 카본성 잔사는 올리고머에 존재하는 수소와 산소 원자가 끊겨 나가면서 중합반응을 반복한 결과 생성된 탄소침착물을 포함한다.Products such as water, lactic acid, oligomers and lactide obtained in step 4, the lactide is discharged in the form of a vapor phase mixture is sent to the distillation column and purified as needed, unreacted oligomers, carbonaceous residues, etc. Collected to the bottom of the evaporator may be discharged out of the reactor. The above-mentioned carbonaceous residue includes a carbon deposit produced by repeating the polymerization reaction while hydrogen and oxygen atoms in the oligomer are disconnected.
본 발명의 하나의 구현예에 있어서, 단계 4에서 사용되는 박막 반응기로는 필름 또는 박막 형성에 사용될 수 있는 유형의 박막 반응기 또는 증발기를 사용할 수 있는데, 예를 들면 디스크형 박막 반응기, 교반형 박막 반응기 등을 언급할 수 있다. 구체적으로는, 고점도 물질을 적하하여 필름을 형성할 수 있는 교반형 박막 반응기를 언급할 수 있으며, 전술한 교반기 블레이드는 수평에 대하여 경사지게 배치하는 것이 좋은데, 예를 들면 45도 이상, 구체적으로는 45-90도, 특별하게는 60도 이상, 바람직하게는 80~90도의 경사각도를 가질 수 있다. In one embodiment of the present invention, the thin film reactor used in step 4 may be a thin film reactor or evaporator of the type which can be used for film or thin film formation, for example a disk thin film reactor, a stirred thin film reactor. And the like can be mentioned. Specifically, an agitated thin film reactor capable of dropping a high viscosity material to form a film may be mentioned, and the above-described agitator blade may be disposed to be inclined with respect to the horizontal, for example, 45 degrees or more, specifically 45 It may have an inclination angle of -90 degrees, especially 60 degrees or more, preferably 80 to 90 degrees.
미반응 올리고머를 함유하는 혼합물을 단계 3의 다발관 강하막 반응기로부터 단계 4의 교반박막 반응기로 이송하는 방법으로는 특별히 제한되지 않으며, 펌프 이송 등을 언급할 수 있다. The method of transferring the mixture containing the unreacted oligomer from the bundle tube falling-film reactor of step 3 to the stirred thin film reactor of step 4 is not particularly limited, and pump transfer and the like can be mentioned.
이하, 실시예에 의해 본 발명을 더욱 구체적으로 설명한다. 그러나, 본 발명의 권리범위가 실시예에 한정되는 것만은 아니다Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited to the embodiment.
실시예 1 : 젖산농축(단계 1) 및 소중합 (단계 2)Example 1 Lactic Acid Concentration (Step 1) and Small Polymerization (Step 2)
농도 20%의 L-젖산 수용액을 25 ml/min 유속으로 길이 300cm, 내경 2cm의 관이 4개 내장된 4-다발관 강하막 증발기로 공급하며 물을 증발시켜 98%로 농축한 다음, 길이 300cm, 내경 2cm의 관이 18개 내장된 18-다발관 강하막 소중합반응기로 이송해 젖산을 소중합하여 올리고머를 제조했다. A 20% aqueous L-lactic acid solution was supplied to a 4-bundle falling film evaporator containing 4 tubes of 300 cm in length and 2 cm in diameter at a flow rate of 25 ml / min. The water was evaporated and concentrated to 98%, followed by 300 cm in length. In order to prepare an oligomer, the lactic acid was polymerized by transferring the 18-bundle tube falling-film small polymerization reactor in which 18 tubes having an inner diameter of 2 cm were embedded.
4-다발관 강하막 증발기는 온도 120℃, 압력 50 torr, 18-다발관 강하막 반응기는 온도 205℃, 압력 600 torr에서 각각 운전되었다. 4-다발관 증발기와 18-다발관 반응기에는 순환펌프를 부착해 하부로 떨어진 액체를 분산판이 설치된 상부로 200 ml/min 속도로 다시 이송해 순환을 시키며 운전을 했다. The 4-bundle falling film evaporator was operated at a temperature of 120 ° C., a pressure of 50 torr, and an 18-bundling falling film reactor at a temperature of 205 ° C. and a pressure of 600 torr, respectively. The 4-bundle evaporator and the 18-bundle reactor were equipped with a circulation pump to transfer the liquid dropped to the lower portion to the upper portion where the dispersion plate was installed at a rate of 200 ml / min for circulation.
4-다발관 증발기에서 젖산의 체류시간이 40분이고. 18-다발관 소중합반응기에서 올리고머의 체류시간은 60분이다. 18-다발관 반응기에서 유출된 생성물을 분석한 결과 제조된 젖산 올리고머의 중량평균 분자량은 1,350이었으며, 반응이 종료된 후 물질수지를 계산한 결과 젖산 전환율은 99%이었다. The residence time of lactic acid in the 4-bundle evaporator is 40 minutes. The residence time of the oligomer in the 18-bundle small polymerization reactor is 60 minutes. As a result of analyzing the product flowing out from the 18-bundle reactor, the weight average molecular weight of the prepared lactic acid oligomer was 1,350, and the mass balance was 99% when the mass balance was calculated after the reaction was completed.
비교예 2 : 다발관 강하막 반응기에서 해중합 (단계 3)을 한 단계로 수행 Comparative Example 2: Depolymerization (Step 3) in a Single Tube Falling Film Reactor
실시예 1에서 제조된 분자량 1350의 젖산 올리고머에 틴옥토에이트 (tin octoate) 촉매를 1 중량퍼센트 넣어 잘 교반한 다음 15 ml/min 유속으로 길이 300cm, 내경 2cm의 관이 18개 내장된 18-다발관 강하막 해중합 반응기로 공급하며 젖산 올리고머를 해중합하여 L-락타이드를 제조했다. 18-다발관 해중합 반응기의 온도는 250℃, 압력은 10 torr로 유지되었다. 해중합 반응기 상부로 배출되는 락타이드, 물, 젖산 및 올리고머로 이루어진 혼합물 증기는 냉각기를 사용해 액체로 전환시켰고, 반응기 하부로 떨어진 틴계열 촉매와 올리고머 잔사는 반응기 하부에 연결된 탱크에 저장했다. 5 시간 해중합 반응 후 분석결과, meso- 및 L-락타이드를 포함한 락타이드의 수율은 93%이었다. 1 wt% of tin octoate catalyst was added to the lactic acid oligomer having a molecular weight of 1350 prepared in Example 1, and stirred well, followed by 18-bundle containing 18 tubes of 300 cm in length and 2 cm in inner diameter at 15 ml / min flow rate. L-lactide was prepared by depolymerizing the lactic acid oligomer while feeding into a falling-film depolymerization reactor. The temperature of the 18-bundle depolymerization reactor was maintained at 250 ° C. and the pressure at 10 torr. The mixture vapor consisting of lactide, water, lactic acid and oligomers discharged to the top of the depolymerization reactor was converted to a liquid using a cooler, and the tin-based catalyst and oligomer residues dropped to the bottom of the reactor were stored in a tank connected to the bottom of the reactor. After 5 hours depolymerization, the yield of lactide including meso- and L-lactide was 93%.
비교예 3 : 다발관 강하막 반응기에서 해중합 (단계 3)을 한 단계로 수행Comparative Example 3 Depolymerization (Step 3) in a Single Tube Falling Film Reactor
실시예 1에서 제조된 분자량 1350의 젖산 올리고머를 실시예 2와 동일한 방법으로 80시간 해중합 반응을 실시했다. 락타이드의 수율을 시간에 따라 측정한 결과 20시간 93%, 40시간 92%, 60시간 90%, 80시간 88%로 시간이 경과함에 따라 락타이드 수율이 점차 감소했다. 반응 후 해중합 반응기 다발관의 하부에 카본성 물질이 증착되어 있음이 발견되었다. 이러한 카본성 물질의 증착이 해중합에 필요한 열전달과 강하막의 운동을 방해하기 때문에 락타이드의 수율이 점차 떨어지는 것으로 보였다. The lactic acid oligomer having a molecular weight of 1350 prepared in Example 1 was subjected to a depolymerization reaction for 80 hours in the same manner as in Example 2. As a result of measuring the yield of lactide over time, the yield of lactide gradually decreased with time as 20 hours 93%, 40 hours 92%, 60 hours 90%, 80 hours 88%. It was found that carbonaceous material was deposited at the bottom of the depolymerization reactor bundle tube after the reaction. Since the deposition of such carbonaceous materials impeded the heat transfer and the movement of the falling film required for depolymerization, the yield of lactide seemed to drop gradually.
실시예 4 : 1차 해중합 (단계 3) 및 2차 해중합 (단계 4)Example 4 First Depolymerization (Step 3) and Second Depolymerization (Step 4)
실시예 1에서 제조된 분자량 1350의 젖산 올리고머에 틴옥토에이트 촉매를 1 중량퍼센트 넣고 잘 교반한 다음 25 ml/min 유속으로 길이 300cm, 내경 2cm의 관이 18개 내장된 18-다발관 강하막 해중합 반응기로 공급하여 1단계 해중합 반응을 실시한 다음, 반응기 하부에서 배출되는 해중합이 덜된 올리고머와 촉매 혼합물을 면적 1.0 m2의 교반박막 반응기로 이송해 2단계 해중합 반응을 총 80시간 진행했다. 1 wt% of tin octoate catalyst was added to the lactic acid oligomer having a molecular weight of 1350 prepared in Example 1, and stirred well, followed by 18-bundle falling-film depolymerization containing 18 tubes having a length of 300 cm and an inner diameter of 2 cm at a flow rate of 25 ml / min. After supplying to the reactor, one-step depolymerization reaction was carried out, and the depolymerized oligomer and catalyst mixture withdrawn from the bottom of the reactor were transferred to a stirred thin film reactor having an area of 1.0 m 2 , and the two-step depolymerization reaction was performed for a total of 80 hours.
18-다발관 강하막 반응기의 온도는 250℃, 압력은 10 torr, 교반박막 해중합반응기의 온도 역시 250℃, 압력 10 torr로 유지되었다. 2 단계 박막 해중합반응기의 교반용 블레이드는 젖산 올리고머가 밑으로 강제 이송되도록 수직각도가 88도 정도 되게 설치되었다. The temperature of the 18-bundle falling membrane reactor was maintained at 250 ° C., the pressure was 10 torr, and the temperature of the stirred thin film depolymerization reactor was 250 ° C., and the pressure was 10 torr. The stirring blade of the two-stage thin-film depolymerization reactor was installed with a vertical angle of about 88 degrees so that the lactic acid oligomer was forced to the bottom.
시간에 따라 락타이드 수율을 측정한 결과, 80시간에 이르기까지 1단계 18-다발관 강하막 반응기의 락타이드 수율은 변함없이 84.5%가 유지되었고, 2단계 박막반응기까지 포함한 락타이드의 전체 수율 또한 96%로 일정하였다. 80시간 반응 후 18-다발관 강하막 반응기의 다발관 내벽면은 카본 물질이 증착됨이 없이 깨끗한 상태였다. As a result of measuring the yield of lactide with time, the yield of lactide in the 1st stage 18-bundle drop membrane reactor remained constant up to 80 hours, and the overall yield of lactide including the 2nd stage thin film reactor was also maintained. It was constant at 96%. After the reaction for 80 hours, the inner wall surface of the bundle tube of the 18-bundle drop membrane reactor was clean without depositing carbon material.
실시예 5Example 5
실시예 4에서 제조된 조락타이드를 하기 표 1의 증류조건에서 충전탑 형의 증류장치에서 3단계 증류를 실시해 고순도로 정제했다. Cholactide prepared in Example 4 was purified to high purity by performing three-step distillation in a packed column type distillation apparatus under the distillation conditions of Table 1 below.
표 1
Figure PCTKR2014010799-appb-T000001
Table 1
Figure PCTKR2014010799-appb-T000001
조락타이드를 20 ml/min 유속으로 1단계 증류탑에 공급하며 8시간 연속 증류를 실시한 결과 3단계 증류장치의 탑저에서 순도 99.9%의 L-락타이드가 얻어졌다.Zolactide was supplied to the first stage distillation column at a flow rate of 20 ml / min, and continuously distilled for 8 hours to obtain L-lactide having a purity of 99.9% at the bottom of the three stage distillation apparatus.
본 발명은 락타이드의 제조 산업 및 락타이드를 이용하는 산업에 공업적으로 사용될 수 있다.The present invention can be used industrially in the manufacturing industry of lactide and the industry using lactide.
[부호의 설명] [ Description of the Code ]
1: 수직관 또는 다발관 2: 자켓 1: vertical tube or bundle 2: jacket
4a: 상부 다발관 플랜지 4b: 하부 다발관 플랜지4a: upper bundle tube flange 4b: lower bundle tube flange
5: 기액분산 플랜지 5: gas-liquid dispersion flange
6a: 상부 차단플랜지 6b: 하부 차단플랜지6a: upper shutoff flange 6b: lower shutoff flange
7a: 액체투입구 7b: 액체배출구7a: liquid inlet 7b: liquid outlet
8: 동공 9: 액체분산판8: pupil 9: liquid dispersion plate
10: 지지판 11: 강하막 생성관10: support plate 11: falling film generating tube
12: 기체홀 13a, 13b: 기체출입구12: gas hole 13a, 13b: gas entrance
14: 홀 16: O-링14: Hole 16: O-ring

Claims (12)

  1. 젖산 수용액의 증발농축단계(단계 1), 젖산의 소중합단계(단계 2) 및 젖산 소중합체의 해중합단계(단계 3)를 포함하는 락타이드의 제조 방법으로서, 상기 단계 2는 다발관 강하막 반응기에서 수행되고 단계 3은 다발관 강하막 반응기 및 교반박막 반응기에서 순차적으로 수행되는 것을 특징으로 하는 락타이드의 제조방법.      A method for producing lactide comprising an evaporative concentration step of lactic acid aqueous solution (step 1), a small polymerization step of lactic acid (step 2), and a depolymerization step of lactic acid oligomer (step 3), wherein step 2 is a multi-drop falling-film reactor Step 3 is carried out in the manufacturing method of the lactide, characterized in that carried out sequentially in the bundle-down film reactor and stirred thin film reactor.
  2. 제 1 항에 있어서, 상기 제조 방법은 하기 단계 (1)~(3)을 포함하는 것을 특징으로 하는 락타이드의 제조방법: The method of claim 1, wherein the manufacturing method comprises the following steps (1) to (3):
    (1) 젖산 수용액을 50~700 torr의 압력 및 80~120℃의 온도에서 증발농축시키는 단계 1; (1) step 1 by evaporating the lactic acid aqueous solution at a pressure of 50 ~ 700 torr and a temperature of 80 ~ 120 ℃;
    (2) 물함량 1% 이하로 농축된 젖산을 190~210℃의 온도에서 소중합체로 중합시키는 단계 2; (2) polymerizing lactic acid concentrated to 1% or less in water to oligomer at a temperature of 190 to 210 ° C;
    (3) 상기 수득된 젖산 소중합체를 5~100 torr의 압력 및 200~270℃의 온도에서 해중합시키는 단계 3.(3) depolymerization of the obtained lactic acid oligomer at a pressure of 5 ~ 100 torr and a temperature of 200 ~ 270 ℃ 3.
  3. 제 1 항에 있어서, 상기 해중합 단계는 하기 단계 3 및 단계 4를 포함하는 것을 특징으로 하는 락타이드의 제조방법: The method of claim 1, wherein the depolymerization step comprises the following steps 3 and 4.
    (3) 상기 단계 2에서 수득된 젖산 소중합체를 다발관 강하막 반응기에 공급하여 락타이드의 수율이 70~90%가 될 때까지 1차로 해중합시키고, (3) feeding the lactic acid oligomer obtained in step 2 to the bundle tube falling-film reactor to depolymerize first until the yield of lactide is 70-90%,
    (4) 상기 1차 해중합에서 결과된 미반응 올리고머를 박막 반응기에 공급하여 2차로 해중합시킴.(4) supplying the unreacted oligomer obtained in the first depolymerization to the thin film reactor to depolymerize secondarily.
  4. 제 1 항에 있어서, 상기 제조방법은 상기 해중합 단계에서 증기상으로 배출되며 락타이드, 물, 젖산 및 이의 올리고머를 포함하는 혼합물을 정제하는 단계를 더욱 포함하는 것을 특징으로 하는 락타이드의 제조방법:      The method of claim 1, wherein the manufacturing method further comprises the step of purifying the mixture discharged in the vapor phase in the depolymerization step and containing a mixture of lactide, water, lactic acid and oligomers thereof.
  5. 제 1 항에 있어서, 상기 정제 방법은 하기 단계 (5), 단계 (6) 또는 단계 (7)중의 하나 이상을 포함하는 것을 특징으로 하는 락타이드의 제조방법: The method of claim 1, wherein the purification method comprises one or more of the following steps (5), (6) or (7):
    (5) 물, 젖산 및 이의 올리고머를 포함하는 혼합물로부터 물 및 젖산을 제거하여 락타이드 및 올리고머를 포함하는 혼합물을 수득하는 1차 정제단계, (5) a first purification step of removing water and lactic acid from a mixture comprising water, lactic acid and oligomers thereof to obtain a mixture comprising lactide and oligomers,
    (6) 락타이드 및 올리고머를 포함하는 혼합물로부터 올리고머를 제거하고 락타이드를 수득하는 2차 정제단계, 및 (6) a second purification step of removing oligomers from the mixture comprising lactide and oligomer and obtaining lactide, and
    (7) 락타이드로부터 meso-락타이드, D- 및/또는 L-락타이드를 분리 정제하는 3차 정제단계. (7) a third purification step of separating and purifying meso-lactide, D- and / or L-lactide from lactide.
  6. 제 1 항에 있어서, 상기 소중합 단계 2는 500~760 torr의 압력 및 150~170℃의 온도에서 1차로 소중합시키는 단계 2-1 및 300~760 torr의 압력 및 190-210℃의 온도에서 2차로 소중합시키는 단계 2-2로 나누어 진행하고, 전술한 단계 2-1 및 2-2는 각각 별개의 다발관 강하막 반응기에서 연속하여 순차적으로 진행되는 것을 특징으로 하는 락타이드의 제조방법.      The method of claim 1, wherein the small polymerization step 2 is the first small polymerization at a pressure of 500 ~ 760 torr and a temperature of 150 ~ 170 ℃ 2-1 and at a pressure of 300 ~ 760 torr and a temperature of 190-210 ℃ The process of dividing into 2-2 of the second small polymerization, and the above-described steps 2-1 and 2-2 is a method for producing lactide, characterized in that proceeded sequentially in a separate bundle tube falling membrane reactor, respectively.
  7. 제 6 항에 있어서, 상기 단계 2-1에서 해중합 반응 촉매를 첨가하는 것을 특징으로 하는 락타이드의 제조방법.      7. The method of claim 6, wherein the depolymerization catalyst is added in step 2-1.
  8. 제 1 내지 4 항중 어느 한 항에 있어서, 상기 다발관 강하막 반응기의 개별 수직관 상부에 액체가 벽면으로만 흐를 수 있도록 해주는 액체 분산장치를 하나씩 독립적으로 설치함으로써, 수직관 내부의 공간으로 낙하하는 반응물이 없도록 하고 반응물이 수직관 내벽면 상에서 원주방향 골고루 흘러내리게 한 강하막 반응기를 사용하여 상기 단계들을 수행하는 락타이드의 제조방법.      The method according to any one of claims 1 to 4, wherein the liquid dispersing device which allows liquid to flow only on the wall is installed on top of each vertical tube of the bundle tube falling membrane reactor, so as to drop into the space inside the vertical tube. A method for producing lactide, wherein the steps are performed using a falling-film reactor in which there is no reactant and the reactant evenly flows down circumferentially on the inner wall of the vertical tube.
  9. 제 8 항에 있어서, 상기 다발관 강하막 반응기는 하나 또는 그 이상의 수직관으로 된 다발관(1), 다발관 외부의 자켓(2), 전술한 다발관의 상부 말단이 삽입용접되어 있는 상부 다발관 플랜지(4a), 전술한 다발관의 하부 말단이 삽입용접되어 있는 하부 다발관 플랜지(4b), 전술한 상부 다발관 플랜지(4a) 위쪽에 위치하고 동공(8) 및 액체투입구(7a)를 갖는 상부 차단플랜지(6a), 전술한 하부 다발관 플랜지(4b) 아래쪽에 설치되고 액체배출구(7b)를 갖는 하부 차단플랜지(6b)를 포함하며, 하기 구성요소를 더욱 포함하는 것을 특징으로 하는 락타이드의 제조방법: 9. The bundle bundle according to claim 8, wherein the bundle drop membrane reactor includes a bundle tube (1) consisting of one or more vertical tubes, a jacket (2) outside the bundle tube, and an upper end in which the upper end of the bundle tube is inserted and welded. A tube flange 4a, a lower bundle tube flange 4b in which the lower end of the bundle tube described above is inserted and welded, and positioned above the upper bundle tube flange 4a described above, having a pupil 8 and a liquid inlet 7a. Lactide comprising an upper blocking flange 6a, a lower blocking flange 6b installed below the lower bundle tube flange 4b and having a liquid outlet 7b, and further comprising the following components: Manufacturing Method:
    - 전술한 상부 다발관 플랜지(4a) 및 상부 차단플랜지(6a) 사이에 설치되어 있는 기액분산 플랜지(5); A gas-liquid dispersion flange 5 provided between the above-mentioned upper bundle tube flange 4a and the upper shut-off flange 6a;
    - 전술한 기액분산 플랜지(5)에 삽입 용접돠어 있으며 관벽에 기채홀(12)을 갖고 있는, 다발관(1)과 동일한 축, 직경, 개수 및 배열을 갖는 강하막 생성관(11); A falling film generating tube 11 having the same axis, diameter, number and arrangement as the bundle tube 1, which is inserted and welded to the gas-liquid dispersion flange 5 described above and which has a gas hole 12 in the tube wall;
    - 전술한 강하막생성관(11)의 상부 말단 입구를 덮도록 설치되어 있고, 공급된 액체가 강하막생성관(11) 내로 흘러들어갈 수 있도록 홀(14)이 뚫려 있는 지지판(10); 및A support plate 10 which is installed to cover the upper end inlet of the above-described falling film forming tube 11 and in which the hole 14 is drilled so that the supplied liquid can flow into the falling film forming tube 11; And
    - 전술한 지지판(10)의 하단에 고정되어 전술한 강하막생성관(11)의 내부에 삽입되도록 되어있고, 강하막생성관(11)의 내벽과는 원주방향으로 일정 간격을 갖는 액체분산판(9).It is fixed to the lower end of the above-described support plate 10 is to be inserted into the inside of the above-described falling film generating tube 11, the liquid dispersion plate having a predetermined interval in the circumferential direction with the inner wall of the falling film generating tube (11) (9).
  10. 제 9 항에 있어서, 전술한 지지판(10)의 측면과 강하막생성관(11)의 내벽과 의 간격이 0.05~2 mm인 것을 특징으로 하는 락타이드의 제조방법.      10. The method of claim 9, wherein the distance between the side surface of the support plate (10) and the inner wall of the drop film forming tube (11) is 0.05 to 2 mm.
  11. 제 1 항에 있어서, 전술한 교반박막 반응기는 고점도 물질을 적하하여 필름을 형성할 수 있는 회전 블레이드를 갖는 교반형 박막 반응기인 것을 특징으로 하는 락타이드의 제조방법.      The method of claim 1, wherein the agitated thin film reactor is a stirred thin film reactor having a rotating blade capable of dropping a high viscosity material to form a film.
  12. 제 11 항에 있어서, 회전 블레이드는 45도 이상의 수직 경사각을 갖는 것을 특징으로 하는 락타이드의 제조방법.12. The method of claim 11, wherein the rotating blade has a vertical tilt angle of at least 45 degrees.
PCT/KR2014/010799 2013-11-26 2014-11-11 Method for producing lactide using multi-tube falling film reactor and agitated thin film reactor WO2015080402A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130144513A KR101486213B1 (en) 2013-11-26 2013-11-26 Manufacturing method for lactide using a tube bundle falling film reactor and an agitated thin film reactor
KR10-2013-0144513 2013-11-26

Publications (1)

Publication Number Publication Date
WO2015080402A1 true WO2015080402A1 (en) 2015-06-04

Family

ID=52592569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010799 WO2015080402A1 (en) 2013-11-26 2014-11-11 Method for producing lactide using multi-tube falling film reactor and agitated thin film reactor

Country Status (2)

Country Link
KR (1) KR101486213B1 (en)
WO (1) WO2015080402A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112851628A (en) * 2019-11-26 2021-05-28 南京华基塔业有限公司 Reaction system and method for preparing lactide from lactic acid
GB2591038A (en) * 2020-01-16 2021-07-14 Univ Nanjing Synthesis method and device for rapidly producing lactide at high yield
CN114160064A (en) * 2021-01-29 2022-03-11 安徽丰原生物技术股份有限公司 Device and method for industrially preparing L-lactide
CN115872970A (en) * 2022-12-08 2023-03-31 青岛普力机电工程有限公司 Method for continuously producing lactide with high purity from lactic acid raw material
WO2023071865A1 (en) * 2021-10-31 2023-05-04 中国石油化工股份有限公司 Method and system for continuously preparing lactide by step control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101780779B1 (en) 2015-09-24 2017-09-21 롯데케미칼 주식회사 Preparation method for lactide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316070A (en) * 1996-05-27 1997-12-09 Kobe Steel Ltd Reactor for synthesizing lactide
JPH10130256A (en) * 1996-10-25 1998-05-19 Shimadzu Corp Production of lactide
US6326458B1 (en) * 1992-01-24 2001-12-04 Cargill, Inc. Continuous process for the manufacture of lactide and lactide polymers
JP2005255751A (en) * 2004-03-10 2005-09-22 Hitachi Ltd Lactide synthesis method and lactide synthesis apparatus
JP2009298935A (en) * 2008-06-13 2009-12-24 Hitachi Plant Technologies Ltd Synthesis method and device of lactide and polylactic acid
KR20120121589A (en) * 2011-04-27 2012-11-06 한국화학연구원 Method for preparing lactide from alkyl lactate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326458B1 (en) * 1992-01-24 2001-12-04 Cargill, Inc. Continuous process for the manufacture of lactide and lactide polymers
JPH09316070A (en) * 1996-05-27 1997-12-09 Kobe Steel Ltd Reactor for synthesizing lactide
JPH10130256A (en) * 1996-10-25 1998-05-19 Shimadzu Corp Production of lactide
JP2005255751A (en) * 2004-03-10 2005-09-22 Hitachi Ltd Lactide synthesis method and lactide synthesis apparatus
JP2009298935A (en) * 2008-06-13 2009-12-24 Hitachi Plant Technologies Ltd Synthesis method and device of lactide and polylactic acid
KR20120121589A (en) * 2011-04-27 2012-11-06 한국화학연구원 Method for preparing lactide from alkyl lactate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112851628A (en) * 2019-11-26 2021-05-28 南京华基塔业有限公司 Reaction system and method for preparing lactide from lactic acid
GB2591038A (en) * 2020-01-16 2021-07-14 Univ Nanjing Synthesis method and device for rapidly producing lactide at high yield
GB2591038B (en) * 2020-01-16 2022-09-07 Univ Nanjing Synthesis method and device for rapidly producing lactide at high yield
CN114160064A (en) * 2021-01-29 2022-03-11 安徽丰原生物技术股份有限公司 Device and method for industrially preparing L-lactide
CN114160064B (en) * 2021-01-29 2024-01-26 安徽丰原生物技术股份有限公司 Device and method for industrially preparing L-lactide
WO2023071865A1 (en) * 2021-10-31 2023-05-04 中国石油化工股份有限公司 Method and system for continuously preparing lactide by step control
CN115872970A (en) * 2022-12-08 2023-03-31 青岛普力机电工程有限公司 Method for continuously producing lactide with high purity from lactic acid raw material

Also Published As

Publication number Publication date
KR101486213B1 (en) 2015-01-26

Similar Documents

Publication Publication Date Title
WO2015080402A1 (en) Method for producing lactide using multi-tube falling film reactor and agitated thin film reactor
EP0755956B1 (en) Method for producing polylactic acid
US3321510A (en) Process for the recovery of dimethyl terephthalate from polyethylene terephthalate
CA2698286C (en) Condensation and washing device, polymerisation device and also method for cleaning process vapours during the production of polylactide
US5357034A (en) Lactide polymerization
CN110498787B (en) Lactide purification system and purification method
JPH0817881B2 (en) Method for producing and purifying thermolabile compounds
JP2004123745A (en) Method for quenching gaseous reaction mixture in gaseous phase phosgenation of diamine
JP3255413B2 (en) Thin film depolymerization for dimeric cyclic ester formation
EP2406246B1 (en) Methods for producing lactide with recycle of meso-lactide
CN103502235A (en) A method for preparing a polyhydroxy-carboxylic acid
KR100218656B1 (en) Reactor and process for thermal clearage of carbonic acid esters
CN112812094A (en) Method for purifying L-lactide
CN111484537A (en) Method for preparing Rudesiwei key intermediate by using microchannel reaction device
WO2019083188A1 (en) Method for preparing trimethylolpropane
EP2172506B1 (en) Equipment and method for producing polyhydroxycarboxylic acid
CN112958030A (en) System and method for efficiently synthesizing glycolide
CN1043039C (en) Process for concentrating urea solutions under vacuum
CN112679465A (en) Method for preparing lactide by coupling reaction rectification
KR101376485B1 (en) Manufacturing method for lactide using a multitude falling film reactor
CN116272665A (en) Process system for continuously and efficiently producing polymer grade lactide
US20210009499A1 (en) Method for producing unsaturated carboxylic ester
KR101337202B1 (en) A multitube falling-film reactor and a preparation method for polylactic acid by using the reactor
CN102675154A (en) Separation and purification device and method for preparing methylene diphenyl diisocyanate (MDI) complex product by utilizing pyrolysis of carbamate
CA3209179A1 (en) Method and device for the production of lactide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865542

Country of ref document: EP

Kind code of ref document: A1