WO2015016591A1 - Sample focusing device - Google Patents

Sample focusing device Download PDF

Info

Publication number
WO2015016591A1
WO2015016591A1 PCT/KR2014/006953 KR2014006953W WO2015016591A1 WO 2015016591 A1 WO2015016591 A1 WO 2015016591A1 KR 2014006953 W KR2014006953 W KR 2014006953W WO 2015016591 A1 WO2015016591 A1 WO 2015016591A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
sample
channel
storage unit
positive electrode
Prior art date
Application number
PCT/KR2014/006953
Other languages
French (fr)
Korean (ko)
Inventor
정석
윤정효
조영규
이은두
임채승
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2015016591A1 publication Critical patent/WO2015016591A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1404Fluid conditioning in flow cytometers, e.g. flow cells; Supply; Control of flow
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/24Extraction; Separation; Purification by electrochemical means
    • C07K1/26Electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1404Fluid conditioning in flow cytometers, e.g. flow cells; Supply; Control of flow
    • G01N2015/1422Electrical focussing

Definitions

  • the present invention relates to a sample focusing apparatus, and more particularly to an apparatus for focusing a sample in a fluid through electrical control.
  • a microfluidic system may be used for analysis of the sample.
  • the behavior of chemical and biological samples is controlled by the flow of liquids. Therefore, focusing of these flows is very important in flow cytometry, cell sorting, cell patterning, and micro flow switches.
  • Korean Patent Laid-Open No. 10-2004-0030988 includes a sample reservoir for an analytical fluid sample having an inlet port and an outlet port; A fluid sample receiving zone in fluid communication with the reservoir through the inlet port; Disclosed is an apparatus for fluid analysis comprising; excess fluid sample detection zone in fluid communication with the reservoir through the outlet port.
  • a storage unit for storing a solution containing a sample;
  • a channel connected with the reservoir to form a movement path of the solution, wherein at least a portion of an inner wall of the channel is patterned with an ion selective material;
  • a positive electrode applying a voltage to the storage unit;
  • a ground electrode positioned in a predetermined region of the channel;
  • a control unit connected to the positive electrode and the ground electrode to control the positive electrode and the ground electrode.
  • a first storage unit for storing a solution containing a sample
  • a second storage unit for storing the solution
  • a first channel connected to the first storage unit and the second storage unit, in which a movement path of the solution is formed, at least a portion of an inner wall of the first channel is patterned with an ion selective material
  • a positive electrode applying a voltage to the first storage part
  • a ground electrode connected to the second storage part and positioned in a predetermined area of the second storage part
  • a control unit connected to the positive electrode and the ground electrode to control the positive electrode and the ground electrode.
  • a first storage unit for storing a solution containing a sample
  • a second storage unit for storing the solution
  • a first channel connected to the first storage unit and the second storage unit, in which at least a portion of an inner wall of the channel is patterned, wherein a first channel having a movement path of the solution is formed
  • a positive electrode applying a voltage to the first storage part
  • a ground electrode connected to the second storage part and positioned in a predetermined area of the second storage part; And the positive electrode and the ground electrode connected to the positive electrode and the ground electrode
  • a second channel connected to the second storage part and having a movement path of the solution
  • a flow rate control unit connected to one side of the second channel to control the flow rate of the solution.
  • Sample focusing apparatus can easily focus the sample in the fluid through the electrical control, it is possible to conveniently perform the inspection of the sample.
  • Sample focusing apparatus performs the focusing of the sample through a simple electrical control, it is possible to reduce the manufacturing cost.
  • FIG. 1 is a view showing a sample focusing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining the principle of focusing a sample according to an embodiment of the present invention.
  • 3 to 5 are diagrams illustrating a sample focusing apparatus according to another embodiment of the present invention.
  • sample focusing device 100, 300, 400, 500: sample focusing device
  • sample focusing refers to concentrating a sample in a predetermined area in order to facilitate detection of the sample. Through sample focusing, the dispersed sample is collected into a specific area.
  • FIG. 1 is a view showing a sample focusing apparatus according to an embodiment of the present invention.
  • the sample focusing apparatus 100 may include a storage 110, a channel 120, a positive electrode 130, a ground electrode 140, and a controller 150.
  • the storage unit 110 may store a fluid (eg, a solution) including a sample.
  • the sample may comprise charged particles.
  • the charged particles may include viruses, ions, proteins, antibodies, cells, and the like.
  • the liquid sample may include a cell culture solution, blood, saliva, nasal swab solution, cerebrospinal fluid, urine sample, such as a sample extracted from the human body or a sample after the sample, nanoparticle containing solution, antigen-containing solution and the like.
  • the storage unit 110 may be manufactured in the form of a cylinder having a diameter of 4 to 10 mm and a height of about 10 to 50 mm in order to be applied to the microfluidic system.
  • the channel 120 may be connected to the storage unit 110 to form a movement path of the solution. That is, the solution may be moved in the left direction through the channel 120.
  • an ion selective material is patterned on at least a portion of the inner wall of the channel 120.
  • the patterning of the ion selective material may include that the ion selective material is coated on at least a portion of the inner wall of the channel 120.
  • a focusing region may be formed in a particular vicinity of the channel 120 where the ion selective material is patterned.
  • the focusing area means an area where samples are concentrated.
  • the channel 120 may be manufactured to have a width of 500 to 1000 um and a height of 50 to 150 um for application to a microfluidic system.
  • the positive electrode 130 may apply a voltage of + V to the storage 110.
  • the positive electrode 130 may be in contact with the solution stored in the storage 110.
  • the positive electrode 130 may be immersed in the solution through a hole formed in the lower side of the storage unit 110.
  • the ground electrode 140 may be positioned in a predetermined region of the channel 120 to ground a current flowing through the solution.
  • the controller 150 may control the application of the voltage and the ground by controlling the positive electrode 130 and the ground electrode 140.
  • the controller 150 may be connected to one side of the channel 120 to control the flow rate of the solution.
  • One side of the channel 120 may include an opposite side where the storage unit 110 is located in the channel 120.
  • the flow rate control may be a syringe pump, a ferristatic pump or the like. That is, mechanical energy may be applied to the sample through flow control to move the sample in a left direction.
  • FIG. 2 is a view for explaining the principle of focusing a sample according to an embodiment of the present invention.
  • the ion selective material may be made of a porous material having polarity.
  • the ion selective material is a negatively charged material, and may include nafion, chalcogenide glass, and vinyl chloride resin.
  • the solution may include charged specimens, cations, anions, and the like.
  • the ion selective material may bind with cations rather than sample particles due to the high electrical conductivity.
  • the solution containing the charged specimen may be laminar in the channel 120 and a velocity profile as shown is formed.
  • the inertia effect between particles may be different.
  • a focusing supporter region in which no ions are present is formed from the wall edge of the channel 120 having a slow flow rate, and as a result, a charged specimen in a sample liquid is centered in the channel 120. It is focused.
  • the focusing supporter region may be referred to as a region where a kind of wall is formed so that the charged specimen does not pass to form a focusing region.
  • the control unit 150 applies a voltage through the positive electrode 130 in the state that the ion selective material is attached to the inner wall of the channel 120, the cation contained in the solution flowing through the channel 120 ) Is combined with the ion selective material.
  • the ion selective material preferentially binds with the cation rather than the charged specimen due to the high electrical conductivity, the charged specimen hardly bonds with the ion selective material. Accordingly, the wall edge of the channel 120 in which the ion-selective material and the cation are combined forms a wall, and the sample liquid including the charged specimen is focused and moved to the center portion of the channel 120.
  • the inspector analyzes the sample by observing only the area where the sample is focused, the inspector can conveniently inspect the sample.
  • bubbles may be generated by electrolysis while electricity is applied to the solution containing the sample through voltage application of the positive electrode 130.
  • the flow of current changes due to the change in the concentration of constituents in the solution, thereby changing the amount of bubbles generated by electrolysis.
  • Bubbles generated in a closed system can block the tube or affect the flow rate of the liquid behaving in the channel 120, resulting in an unsteady flow of solution and negatively affecting the focusing supporter formation. need.
  • closed system herein is meant an environment in which the reservoir in which the solution is stored is blocked from contact with air.
  • an open environment in which one side of the reservoir in which the solution is stored is in contact with air is called an open system.
  • the controller 150 may control the flow rate of the solution according to the amount of bubbles generated in the solution. For example, the controller 150 increases the flow rate when the amount of bubbles increases (that is, speeds up the flow rate) and decreases the flow rate when the amount of bubbles decreases (ie, decreases the flow rate). Therefore, the controller 150 may actively cancel the effect of the flow rate change in the channel 120 according to the bubble generation.
  • FIG. 3 is a view showing a sample focusing apparatus according to another embodiment of the present invention.
  • the sample focusing apparatus 300 may include a first storage unit 310, a second storage unit 320, a first channel 330, a positive electrode 340, a ground electrode 350, and a controller 360. , And a second channel 370.
  • a fluid including a sample may be stored in the first storage part 310 and the second storage part 320.
  • the size of the sample, the first storage unit 310 and the second storage unit 320 may be equally applicable to the description shown in FIG. 1, and thus detailed description thereof will be omitted.
  • the first channel 330 may be connected to the first storage unit 310 and the second storage unit 320 to form a movement path of the solution. That is, the solution may be moved in the left direction through the first channel 330.
  • an ion selective material is patterned on at least a portion of an inner wall of the first channel 330.
  • a focusing region may be formed in a particular vicinity of the first channel 330 in which the ion selective material is patterned. Patterning of the ion-selective material and the principle of sample focusing using the same may be omitted since the description of FIG. 2 may be applied in the same manner.
  • the first channel 330 may be manufactured to have a width of 500 to 1000 um and a height of 50 to 150 um to be applied to the microfluidic system.
  • the positive electrode 340 may apply a voltage of + V to the first storage unit 310.
  • the positive electrode 340 may be in contact with the solution stored in the first storage part 310.
  • the positive electrode 340 may be immersed in the solution through a hole formed in the lower surface of the first storage 310.
  • the ground electrode 350 may be positioned in a predetermined region of the second storage unit 320 to ground a current flowing through the solution.
  • the ground electrode 350 may be in contact with the solution stored in the second storage part 320.
  • the ground electrode 350 may be immersed in the solution through a hole formed in the lower surface of the second storage unit 320.
  • the controller 360 may control the application of the voltage and the ground by controlling the positive electrode 340 and the ground electrode 350.
  • the control unit 360 may be connected to one side of the second channel 370 connected to one side of the second storage unit 320 to control the flow rate of the solution.
  • One side of the second channel 370 may include an opposite side of where the second storage unit 320 is located in the second channel 370.
  • the flow rate control may be a syringe pump, a ferristatic pump or the like. That is, mechanical energy may be applied to the sample through flow control to move the sample in a left direction.
  • bubbles may be generated by electrolysis while electricity is applied to the solution containing the sample through voltage application of the positive electrode 340.
  • the flow of current changes due to the change in the concentration of constituents in the solution, thereby changing the amount of bubbles generated by electrolysis.
  • Bubbles generated in a closed system may block the tube or affect the flow rate of the liquid behaving in the first and second channels 330 and 370, thus making the flow of the solution in a steady state abnormal and negative for focusing supporter formation. As it affects, air bubbles need to be removed.
  • the controller 360 may control the flow rate of the solution according to the amount of bubbles generated in the solution. For example, the controller 360 may increase the flow rate when the amount of bubbles increases (that is, speed up the flow rate), and decrease the flow rate when the amount of bubbles decreases (ie, decrease the flow rate). Accordingly, the controller 360 may actively cancel the effect of changing the flow rate in the first channel 330 and the second channel 370 according to the bubble generation.
  • FIG. 4 is a diagram illustrating a sample focusing apparatus according to another embodiment of the present invention.
  • the sample focusing apparatus 400 includes a first storage unit 410, a second storage unit 420, a first channel 430, a positive electrode 440, a ground electrode 450, and an electrical control unit 460. ), A second channel 470, and a flow controller 480.
  • a fluid including a sample may be stored in the first storage part 410 and the second storage part 420.
  • the size of the sample, the first storage unit 410 and the second storage unit 420 may be equally applicable to the description shown in FIG. 1, and thus detailed description thereof will be omitted.
  • the first storage part 410 and the second storage part 420 may be opened to allow one side to contact air. That is, the sample focusing apparatus 400 may be implemented as an open system.
  • the first channel 430 may be connected to the first storage part 410 and the second storage part 420 to form a movement path of the solution. That is, the solution may be moved in the left direction through the first channel 430.
  • an ion selective material is patterned on at least a portion of an inner wall of the first channel 430.
  • a focusing region may be formed in a particular vicinity of the first channel 430 in which the ion selective material is patterned. Patterning of the ion-selective material and the principle of sample focusing using the same may be omitted since the description of FIG. 2 may be applied in the same manner.
  • the first channel 430 may be manufactured to have a width of 500 to 1000 um and a height of 50 to 150 um to be applied to the microfluidic system.
  • the positive electrode 440 may apply a voltage of + V to the first storage unit 410.
  • the positive electrode 440 may be in contact with the solution stored in the first storage part 310.
  • the positive electrode 440 may be immersed in the solution through a hole formed in the lower surface of the first storage unit 410.
  • the ground electrode 450 may be positioned in a predetermined region of the second storage unit 420 to ground a current flowing through the solution.
  • the ground electrode 450 may be in contact with the solution stored in the second storage unit 420.
  • the ground electrode 450 may be immersed in the solution through a hole formed in the lower surface of the second storage unit 420.
  • the electrical controller 460 may control the application of the voltage and the ground by controlling the positive electrode 440 and the ground electrode 450.
  • the second channel 470 may be connected to the second storage unit 420 to form a movement path of the solution.
  • the flow control unit 780 may be connected to one side of the second channel 470 to control the flow rate of the solution.
  • One side of the second channel 470 may include an opposite side of where the second storage unit 420 is located in the second channel 470.
  • the flow rate control may be a syringe pump, a ferristatic pump or the like. That is, mechanical energy may be applied to the sample through flow control to move the sample in a left direction.
  • bubbles may be generated by electrolysis while electricity is applied to the solution containing the sample through voltage application of the positive electrode 340.
  • the flow of current changes due to the change in the concentration of constituents in the solution, thereby changing the amount of bubbles generated by electrolysis.
  • the flow of the solution in the first channel 430 and the second channel 470 may be adjusted by the head difference.
  • the head difference may mean a difference between the height of the solution stored in the first storage unit 410 and the height of the solution stored in the second storage unit 420.
  • FIG. 5 is a diagram illustrating a sample focusing apparatus according to another embodiment of the present invention.
  • the sample focusing apparatus 500 includes a first storage unit 510, a second storage unit 520, a channel 530, a positive electrode 540, a ground electrode 550, and an electrical control unit 560. It may include.
  • the sample focusing apparatus 500 illustrated in FIG. 5 has a structure similar to that of the sample focusing apparatus 300 illustrated in FIG. 3. However, the sample focusing apparatus 500 implements a water head difference between the solution stored in the first storage unit 510 and the solution stored in the second storage unit 520, so that a separate flow rate control is performed without using a head pressure. Flow rate can be controlled. A description of the other components will be omitted since the description of the sample focusing apparatus 300 shown in FIG. 3 may be applied.
  • the sample focusing apparatus described above may be applied to in vitro diagnosis, laboratory sample inspection, or the like.
  • the sample focusing apparatus described above can easily focus the sample in the fluid through simple electrical control, so that the inspection of the sample can be conveniently performed.
  • the sample focusing apparatus performs focusing of the sample through simple electrical control, thereby reducing manufacturing costs.
  • sample focusing apparatus described above is not limited to the configuration and method of the embodiments described above, but the embodiments are configured by selectively combining all or some of the embodiments so that various modifications can be made. May be

Abstract

The present invention relates to a device for focusing a sample in a fluid through electrical control. A sample focusing device according to one embodiment of the present invention can comprise: a storage portion for storing a solution containing sample; a channel connected to the storage portion and in which a movement route of the solution is formed (an ion selective material is patterned in at least a part of the inner wall of the channel); a cathode for applying voltage to the storage portion; a ground electrode positioned at a predetermined region of the channel; and a control portion for controlling the cathode and the ground electrode, connected to the cathode and the ground electrode.

Description

시료 포커싱 장치Sample focusing device
본 발명은 시료 포커싱(focsuing) 장치에 관한 것으로, 보다 상세하게는 전기적 제어를 통해 유체 내의 시료를 포커싱하기 위한 장치에 관한 것이다.The present invention relates to a sample focusing apparatus, and more particularly to an apparatus for focusing a sample in a fluid through electrical control.
환경 모니터링, 식품 검사, 의료 진단 분야 등 다양한 응용 분야에서 시료를 분석하는 다양한 방법들이 개발되어 있으나, 기존의 검사방법은 많은 수작업과 다양한 장비들을 필요로 한다. 정해진 프로토콜(protocol)에 의한 검사를 수행하기 위하여, 숙련된 실험자가 수 회의 시약 주입, 혼합, 분리 및 이동, 반응, 원심분리 등의 다양한 단계를 수작업으로 진행해야 하며, 이러한 검사 방법은 검사결과의 오류를 유발하는 원인이 된다.Various methods of analyzing samples have been developed in various application fields such as environmental monitoring, food inspection, and medical diagnostics. However, existing inspection methods require a lot of manual work and various equipment. In order to perform the test according to a predetermined protocol, a skilled experimenter must manually perform various steps such as injecting, mixing, separating and moving reagents, reaction, and centrifugation several times. It causes the error.
특히, 시료의 분석을 위해 미세 유체 시스템이 사용되기도 한다. 미세유체 시스템 내에서 화학, 생체 시료는 액체의 유동에 의해 그 거동이 조절된다. 따라서 flow cytometry, cell sorting, cell patterning, micro flow switch 등에서는 이러한 유동의 포커싱이 매우 중요하다. In particular, a microfluidic system may be used for analysis of the sample. In microfluidic systems, the behavior of chemical and biological samples is controlled by the flow of liquids. Therefore, focusing of these flows is very important in flow cytometry, cell sorting, cell patterning, and micro flow switches.
대한민국 공개특허 제10-2004-0030988호는 유입 포트와 유출 포트를 구비하는 분석 대상 유체 시료용 시료 저장소와; 상기 유입 포트를 통해 상기 저장소와 유체 연통하는 유체 시료 수납 구역과; 상기 유출 포트를 통해 상기 저장소와 유체 연통하는 과잉 유체 시료 탐지 구역;을 포함하는 것을 특징으로 하는 유체 분석용 장치가 개시된다.Korean Patent Laid-Open No. 10-2004-0030988 includes a sample reservoir for an analytical fluid sample having an inlet port and an outlet port; A fluid sample receiving zone in fluid communication with the reservoir through the inlet port; Disclosed is an apparatus for fluid analysis comprising; excess fluid sample detection zone in fluid communication with the reservoir through the outlet port.
하지만 상기 대한민국 공개특허 제10-2004-0030988호는 시료를 포커싱하여 시료 검사를 편리하게 하는 기술에 대해서는 개시하고 있지 않다.However, the Republic of Korea Patent Publication No. 10-2004-0030988 does not disclose a technique for convenient sample inspection by focusing the sample.
따라서 시료를 효율적으로 포커싱하여 시료 검사의 편리성을 향상시킬 수 있는 기술에 대한 연구가 필요한 실정이다.Therefore, there is a need for research on a technique for efficiently focusing a sample to improve the convenience of sample inspection.
본 발명의 목적은 전기적 제어를 통해 유체 내의 시료를 효율적으로 포커싱하기 위한 장치를 제공하는 데 있다.It is an object of the present invention to provide an apparatus for efficiently focusing a sample in a fluid through electrical control.
상기 목적을 달성하기 위해 본 발명의 일실시예에 의하면, 시료가 포함된 용액을 저장하기 위한 저장부; 상기 저장부와 연결되어 상기 용액의 이동 경로가 형성된 채널- 상기 채널의 내벽의 적어도 일부에는 이온 선택성 물질이 패터닝됨-; 상기 저장부에 전압을 인가하는 양전극; 상기 채널의 소정 영역에 위치한 접지 전극; 및 상기 양전극 및 상기 접지 전극과 연결되어 상기 양전극 및 상기 접지 전극을 제어하는 제어부를 포함하는 시료 포커싱 장치가 제공된다.According to an embodiment of the present invention to achieve the above object, a storage unit for storing a solution containing a sample; A channel connected with the reservoir to form a movement path of the solution, wherein at least a portion of an inner wall of the channel is patterned with an ion selective material; A positive electrode applying a voltage to the storage unit; A ground electrode positioned in a predetermined region of the channel; And a control unit connected to the positive electrode and the ground electrode to control the positive electrode and the ground electrode.
상기 목적을 달성하기 위해 본 발명의 일실시예에 의하면, 시료가 포함된 용액을 저장하기 위한 제1저장부; 상기 용액을 저장하기 위한 제2저장부; 상기 제1저장부 및 상기 제2저장부와 연결되어, 상기 용액의 이동 경로가 형성된 제1채널- 상기 제1채널의 내벽의 적어도 일부에는 이온 선택성 물질이 패터닝됨-; 상기 제1저장부에 전압을 인가하는 양전극; 상기 제2저장부와 연결되어 상기 제2저장부의 소정 영역에 위치한 접지 전극; 및 상기 양전극 및 상기 접지 전극과 연결되어 상기 양전극 및 상기 접지 전극을 제어하는 제어부를 포함하는 시료 포커싱 장치가 제공된다.According to an embodiment of the present invention to achieve the above object, a first storage unit for storing a solution containing a sample; A second storage unit for storing the solution; A first channel connected to the first storage unit and the second storage unit, in which a movement path of the solution is formed, at least a portion of an inner wall of the first channel is patterned with an ion selective material; A positive electrode applying a voltage to the first storage part; A ground electrode connected to the second storage part and positioned in a predetermined area of the second storage part; And a control unit connected to the positive electrode and the ground electrode to control the positive electrode and the ground electrode.
상기 목적을 달성하기 위해 본 발명의 일실시예에 의하면, 시료가 포함된 용액을 저장하기 위한 제1저장부; 상기 용액을 저장하기 위한 제2저장부; 상기 제1저장부 및 상기 제2저장부와 연결되어, 상기 용액의 이동 경로가 형성된 제1채널- 상기 채널의 내벽의 적어도 일부에는 이온 선택성 물질이 패터닝됨-; 상기 제1저장부에 전압을 인가하는 양전극; 상기 제2저장부와 연결되어 상기 제2저장부의 소정 영역에 위치한 접지 전극; 및 상기 양전극 및 상기 접지 전극과 연결되어 상기 양전극 및 상기 접지 전극; 상기 제2저장부와 연결되어, 상기 용액의 이동 경로가 형성된 제2채널; 및 상기 제2채널의 일측에 연결되어 상기 용액의 유량을 제어하는 유량 제어부를 포함하는 시료 포커싱 장치가 제공된다.According to an embodiment of the present invention to achieve the above object, a first storage unit for storing a solution containing a sample; A second storage unit for storing the solution; A first channel connected to the first storage unit and the second storage unit, in which at least a portion of an inner wall of the channel is patterned, wherein a first channel having a movement path of the solution is formed; A positive electrode applying a voltage to the first storage part; A ground electrode connected to the second storage part and positioned in a predetermined area of the second storage part; And the positive electrode and the ground electrode connected to the positive electrode and the ground electrode; A second channel connected to the second storage part and having a movement path of the solution; And a flow rate control unit connected to one side of the second channel to control the flow rate of the solution.
본 발명의 일실시예에 의한 시료 포커싱 장치는 전기적 제어를 통해 유체 내의 시료를 간단하게 포커싱할 수 있으므로, 시료의 검사를 편리하게 수행할 수 있다.Sample focusing apparatus according to an embodiment of the present invention can easily focus the sample in the fluid through the electrical control, it is possible to conveniently perform the inspection of the sample.
본 발명의 일실시예에 의한 시료 포커싱 장치는 간단한 전기적 제어를 통해 시료의 포커싱을 수행하므로, 제조 단가를 절감할 수 있다.Sample focusing apparatus according to an embodiment of the present invention performs the focusing of the sample through a simple electrical control, it is possible to reduce the manufacturing cost.
도 1은 본 발명의 일실시예와 관련된 시료 포커싱 장치를 나타내는 도면이다.1 is a view showing a sample focusing apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일실시예와 관련된 시료의 포커싱 원리를 설명하기 위한 도면이다.2 is a view for explaining the principle of focusing a sample according to an embodiment of the present invention.
도 3 내지 도 5는 본 발명의 다른 일실시예와 관련된 시료 포커싱 장치를 나타내는 도면이다.3 to 5 are diagrams illustrating a sample focusing apparatus according to another embodiment of the present invention.
[부호의 설명][Description of the code]
100, 300, 400, 500: 시료 포커싱 장치100, 300, 400, 500: sample focusing device
110, 310, 320, 410, 420, 510, 520: 저장부110, 310, 320, 410, 420, 510, 520: storage
120, 330, 370, 430, 470, 530: 채널120, 330, 370, 430, 470, 530: Channel
130, 340, 440, 540: 양전극130, 340, 440, 540: positive electrode
140, 350, 450, 550: 접지 전극140, 350, 450, 550: ground electrode
150, 360: 제어부150, 360: control unit
460, 560: 전기 제어부460, 560: electrical control unit
480: 유량 제어부480: flow control
이하, 본 발명의 일실시예와 관련된 시료 포커싱 장치에 대해 도면을 참조하여 설명하도록 하겠다.Hereinafter, a sample focusing apparatus according to an embodiment of the present invention will be described with reference to the drawings.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.As used herein, the singular forms "a", "an" and "the" include plural forms unless the context clearly indicates otherwise. In this specification, terms such as “consisting of” or “comprising” should not be construed as necessarily including all of the various components or steps described in the specification, and some of the components or some steps It should be construed that it may not be included or may further include additional components or steps.
본 명세서에서 시료 포커싱(focusing)이란 시료의 탐지를 용이하게 하기 위해 시료를 일정 영역으로 집중시키는 것을 말한다. 시료 포커싱을 통해 분산된 시료가 특정 영역으로 모이게 된다.In the present specification, sample focusing refers to concentrating a sample in a predetermined area in order to facilitate detection of the sample. Through sample focusing, the dispersed sample is collected into a specific area.
도 1은 본 발명의 일실시예와 관련된 시료 포커싱 장치를 나타내는 도면이다.1 is a view showing a sample focusing apparatus according to an embodiment of the present invention.
도시된 바와 같이, 시료 포커싱 장치(100)는 저장부(110), 채널(120), 양전극(130), 접지 전극(140), 및 제어부(150)를 포함할 수 있다.As shown, the sample focusing apparatus 100 may include a storage 110, a channel 120, a positive electrode 130, a ground electrode 140, and a controller 150.
상기 저장부(110)에는 시료를 포함하는 유체(예: 용액)이 저장될 수 있다. 시료는 전하를 가진 입자를 포함할 수 있다. 상기 전하를 가진 입자는 바이러스, 이온, 단백질, 항체, 세포 등을 포함할 수 있다. 또한, 상기 액체 상태의 시료는 세포배양액, 혈액, 타액, 비강스왑액, 뇌척수액, 소변 등 인체에서 추출한 시료 혹은 그 시료를 후처리한 시료, 나노입자 포함액, 항원 포함액 등 포함할 수 있다. 상기 저장부(110)는 미세 유체 시스템에 적용하기 위해 지름이 4~10mm이고, 높이가 10~50mm 정도인 실린더 형태로 제조될 수 있다.The storage unit 110 may store a fluid (eg, a solution) including a sample. The sample may comprise charged particles. The charged particles may include viruses, ions, proteins, antibodies, cells, and the like. In addition, the liquid sample may include a cell culture solution, blood, saliva, nasal swab solution, cerebrospinal fluid, urine sample, such as a sample extracted from the human body or a sample after the sample, nanoparticle containing solution, antigen-containing solution and the like. The storage unit 110 may be manufactured in the form of a cylinder having a diameter of 4 to 10 mm and a height of about 10 to 50 mm in order to be applied to the microfluidic system.
상기 채널(120)은 상기 저장부(110)와 연결되어 상기 용액의 이동 경로를 형성할 수 있다. 즉, 상기 용액은 상기 채널(120)을 통해 좌측 방향으로 이동될 수 있다. 그리고 상기 채널(120)의 내벽의 적어도 일부 영역에는 이온 선택성 물질이 패터닝(patterning)되어 있다. 이온 선택성 물질이 패터닝(patterning)되어 있다는 것은 이온 선택성 물질이 채널(120) 내벽의 적어도 일부에 코팅되어 있다는 것을 포함할 수 있다. 상기 이온 선택성 물질이 패터닝되어 있는 채널(120)의 특정 부근에서는 포커싱 영역이 형성될 수 있다. 포커싱 영역이란 시료가 집중적으로 모이는 영역을 의미한다.The channel 120 may be connected to the storage unit 110 to form a movement path of the solution. That is, the solution may be moved in the left direction through the channel 120. In addition, an ion selective material is patterned on at least a portion of the inner wall of the channel 120. The patterning of the ion selective material may include that the ion selective material is coated on at least a portion of the inner wall of the channel 120. A focusing region may be formed in a particular vicinity of the channel 120 where the ion selective material is patterned. The focusing area means an area where samples are concentrated.
이온 선택성 물질의 패터닝 및 이를 이용한 시료 포커싱 원리는 후술하도록 하겠다.Patterning of the ion selective material and the principle of sample focusing using the same will be described later.
상기 채널(120)은 미세 유체 시스템에 적용하기 위해 너비가 500~1000um이고, 높이 50~150um 정도인 사이즈로 제조될 수 있다.The channel 120 may be manufactured to have a width of 500 to 1000 um and a height of 50 to 150 um for application to a microfluidic system.
상기 양전극(130)은 상기 저장부(110)에 +V의 전압을 인가할 수 있다. 이 경우, 상기 양전극(130)은 상기 저장부(110)에 저장된 용액과 접촉되어 있을 수 있다. 예를 들어, 상기 양전극(130)은 저장부(110)의 하측면에 형성된 구멍을 통해 상기 용액에 침지되어 있을 수 있다.The positive electrode 130 may apply a voltage of + V to the storage 110. In this case, the positive electrode 130 may be in contact with the solution stored in the storage 110. For example, the positive electrode 130 may be immersed in the solution through a hole formed in the lower side of the storage unit 110.
접지 전극(140)은 상기 채널(120)의 소정 영역에 위치하여 용액을 통해 흐르는 전류를 접지시킬 수 있다.The ground electrode 140 may be positioned in a predetermined region of the channel 120 to ground a current flowing through the solution.
제어부(150)는 상기 양전극(130) 및 상기 접지 전극(140)을 제어하여 전압의 인가 및 접지를 제어할 수 있다. 또한, 상기 제어부(150)는 상기 채널(120)의 일측에 연결되어 상기 용액의 유량을 제어할 수 있다. 상기 채널(120)의 일측은 채널(120)에서 저장부(110)가 위치한 곳의 반대측을 포함할 수 있다. 상기 유량 제어는 시린지 펌프, 페리스태틱 펌프 등을 이용할 수 있다. 즉, 유량 제어를 통해 상기 시료에 역학적 에너지가 인가되어 상기 시료가 좌측 방향으로 이동될 수 있다.The controller 150 may control the application of the voltage and the ground by controlling the positive electrode 130 and the ground electrode 140. In addition, the controller 150 may be connected to one side of the channel 120 to control the flow rate of the solution. One side of the channel 120 may include an opposite side where the storage unit 110 is located in the channel 120. The flow rate control may be a syringe pump, a ferristatic pump or the like. That is, mechanical energy may be applied to the sample through flow control to move the sample in a left direction.
도 2는 본 발명의 일실시예와 관련된 시료의 포커싱 원리를 설명하기 위한 도면이다.2 is a view for explaining the principle of focusing a sample according to an embodiment of the present invention.
이온 선택성 물질(ion selective material)은 극성을 가지는 다공성 물질로 이루어질 수 있다. 예를 들어, 이온 선택성 물질은 음전하를 띠는 물질로, nafion, 칼코겐유리(chalcogenide glass), 및 염화비닐 수지 등을 포함할 수 있다.The ion selective material may be made of a porous material having polarity. For example, the ion selective material is a negatively charged material, and may include nafion, chalcogenide glass, and vinyl chloride resin.
그리고 용액은 전하를 띠는 시료 입자(charged specimen), 양이온(cation), 음이온(anion) 등을 포함할 수 있다.The solution may include charged specimens, cations, anions, and the like.
상기 이온 선택성 물질은 높은 전기 전도도로 인하여 시료 입자 보다는 양이온과 결합할 수 있다.The ion selective material may bind with cations rather than sample particles due to the high electrical conductivity.
이 경우, 시료 입자(charged specimen)를 포함하는 용액은 채널(120) 내에서 층류를 이루고 도시된 바와 같은 속도 분포(velocity profile)가 형성될 수 있다. 이로 인해, 입자간 관성 효과(inertia effect)가 다르게 나타날 수 있다.In this case, the solution containing the charged specimen may be laminar in the channel 120 and a velocity profile as shown is formed. As a result, the inertia effect between particles may be different.
느린 유속을 가지는 채널(120)의 벽 가장자리부터 이온이 존재하지 않는 포커싱 서포터 영역(focusing supporter region)이 형성되고, 이 결과 용액(sample liquid) 속의 시료 입자(charged specimen)가 채널(120) 중심으로 포커싱 된다. 상기 포커싱 서포터 영역은 포커싱 영역을 형성하기 위해 상기 시료 입자(charged specimen)가 통과하지 못하도록 일종의 벽이 형성된 영역이라 할 수 있다. A focusing supporter region in which no ions are present is formed from the wall edge of the channel 120 having a slow flow rate, and as a result, a charged specimen in a sample liquid is centered in the channel 120. It is focused. The focusing supporter region may be referred to as a region where a kind of wall is formed so that the charged specimen does not pass to form a focusing region.
좀 더 구체적으로, 채널(120)의 내벽에는 이온 선택성 물질이 부착된 상태에서 제어부(150)가 양전극(130)을 통해 전압을 인가해 주면, 채널(120)을 흐르는 용액 내에 포함된 양이온(cation)이 상기 이온 선택성 물질과 결합한다. 이 경우, 상기 이온 선택성 물질은 높은 전기 전도도로 인하여 시료 입자(charged specimen) 보다는 양이온과 우선적으로 결합하기 때문에, 상기 시료 입자(charged specimen)는 상기 이온 선택성 물질과는 거의 결합을 하지 않는다. 따라서 이온 선택성 물질과 양이온이 결합된 채널(120)의 벽 가장자리는 일종의 벽이 형성되어 시료 입자(charged specimen)를 포함한 액체(sample liquid)는 채널(120) 중앙 부분으로 포커싱되어 이동된다.More specifically, when the control unit 150 applies a voltage through the positive electrode 130 in the state that the ion selective material is attached to the inner wall of the channel 120, the cation contained in the solution flowing through the channel 120 ) Is combined with the ion selective material. In this case, since the ion selective material preferentially binds with the cation rather than the charged specimen due to the high electrical conductivity, the charged specimen hardly bonds with the ion selective material. Accordingly, the wall edge of the channel 120 in which the ion-selective material and the cation are combined forms a wall, and the sample liquid including the charged specimen is focused and moved to the center portion of the channel 120.
따라서 검사자는 상기 시료가 포커싱 되는 영역만을 관찰하여 시료를 분석하면, 편리하게 시료를 검사할 수 있다.Therefore, if the inspector analyzes the sample by observing only the area where the sample is focused, the inspector can conveniently inspect the sample.
한편, 양전극(130)의 전압 인가를 통해 시료가 포함된 용액에 전기가 인가되면서 전기분해에 의한 기포가 발생할 수 있다. 시료가 포함된 용액이 포커싱됨에 따라 용액 안의 구성 물질 농도 변화로 인하여 전류의 흐름이 바뀌고, 이로 인하여 전기분해에 의한 기포 발생량이 변화한다.Meanwhile, bubbles may be generated by electrolysis while electricity is applied to the solution containing the sample through voltage application of the positive electrode 130. As the solution containing the sample is focused, the flow of current changes due to the change in the concentration of constituents in the solution, thereby changing the amount of bubbles generated by electrolysis.
닫힌 시스템에서 발생된 기포는 튜브를 막거나 채널(120) 속에 거동하는 액체의 유량에 영향을 주어 정상 상태의 용액의 흐름을 비정상상태로 만들어 포커싱 서포터 형성에 부정적 영향을 주기 때문에, 기포의 제거가 필요하다. 본 명세서에서 닫힌 시스템이라 함은 상기 용액이 저장된 저장부가 공기와 접촉할 수 없도록 막혀진 환경을 의미한다.Bubbles generated in a closed system can block the tube or affect the flow rate of the liquid behaving in the channel 120, resulting in an unsteady flow of solution and negatively affecting the focusing supporter formation. need. By closed system herein is meant an environment in which the reservoir in which the solution is stored is blocked from contact with air.
이와 반대로 상기 용액이 저장된 저장부의 일측면이 공기와 접촉할 수 있도록 개방된 환경을 열린 시스템이라 한다.In contrast, an open environment in which one side of the reservoir in which the solution is stored is in contact with air is called an open system.
상기 포커싱 장치(100)가 닫힌 시스템일 경우, 제어부(150)는 상기 용액에서 발생한 기포의 발생량에 따라 상기 용액의 유량을 제어할 수 있다. 예를 들어, 제어부(150)는 기포량이 많아지면 유량을 늘리고(즉, 유속을 빠르게 함), 기포량이 적어지면 유량을 줄일 수 있다(즉, 유속을 느리게 함). 따라서 제어부(150)는 기포 발생에 따른 채널(120) 속 유량 변화 효과를 능동적으로 상쇄할 수 있다.When the focusing apparatus 100 is a closed system, the controller 150 may control the flow rate of the solution according to the amount of bubbles generated in the solution. For example, the controller 150 increases the flow rate when the amount of bubbles increases (that is, speeds up the flow rate) and decreases the flow rate when the amount of bubbles decreases (ie, decreases the flow rate). Therefore, the controller 150 may actively cancel the effect of the flow rate change in the channel 120 according to the bubble generation.
도 3은 본 발명의 다른 일실시예와 관련된 시료 포커싱 장치를 나타내는 도면이다.3 is a view showing a sample focusing apparatus according to another embodiment of the present invention.
도시된 바와 같이, 시료 포커싱 장치(300)는 제1저장부(310), 제2저장부(320), 제1채널(330), 양전극(340), 접지 전극(350), 제어부(360), 및 제2채널(370)을 포함할 수 있다.As illustrated, the sample focusing apparatus 300 may include a first storage unit 310, a second storage unit 320, a first channel 330, a positive electrode 340, a ground electrode 350, and a controller 360. , And a second channel 370.
상기 제1저장부(310) 및 제2저장부(320)에는 시료를 포함하는 유체(예: 용액)이 저장될 수 있다. 상기 시료 및 상기 제1저장부(310) 및 제2저장부(320)의 사이즈는 도 1에 도시된 설명이 동일하게 적용될 수 있으므로, 여기서는 자세한 설명은 생략하기로 한다.A fluid (eg, a solution) including a sample may be stored in the first storage part 310 and the second storage part 320. The size of the sample, the first storage unit 310 and the second storage unit 320 may be equally applicable to the description shown in FIG. 1, and thus detailed description thereof will be omitted.
상기 제1채널(330)은 상기 제1저장부(310) 및 상기 제2저장부(320)와 연결되어 상기 용액의 이동 경로를 형성할 수 있다. 즉, 상기 용액은 상기 제1채널(330)을 통해 좌측 방향으로 이동될 수 있다. 그리고 상기 제1채널(330)의 내벽의 적어도 일부 영역에는 이온 선택성 물질이 패터닝(patterning)되어 있다.The first channel 330 may be connected to the first storage unit 310 and the second storage unit 320 to form a movement path of the solution. That is, the solution may be moved in the left direction through the first channel 330. In addition, an ion selective material is patterned on at least a portion of an inner wall of the first channel 330.
상기 이온 선택성 물질이 패터닝되어 있는 제1채널(330)의 특정 부근에서는 포커싱 영역이 형성될 수 있다. 이온 선택성 물질의 패터닝 및 이를 이용한 시료 포커싱 원리는 도 2의 설명이 동일하게 적용될 수 있으므로, 여기서는 생략하도록 하겠다.A focusing region may be formed in a particular vicinity of the first channel 330 in which the ion selective material is patterned. Patterning of the ion-selective material and the principle of sample focusing using the same may be omitted since the description of FIG. 2 may be applied in the same manner.
상기 제1채널(330)은 미세 유체 시스템에 적용하기 위해 너비가 500~1000um이고, 높이 50~150um 정도인 사이즈로 제조될 수 있다.The first channel 330 may be manufactured to have a width of 500 to 1000 um and a height of 50 to 150 um to be applied to the microfluidic system.
상기 양전극(340)은 상기 제1저장부(310)에 +V의 전압을 인가할 수 있다. 이 경우, 상기 양전극(340)은 상기 제1저장부(310)에 저장된 용액과 접촉되어 있을 수 있다. 예를 들어, 상기 양전극(340)은 제1저장부(310)의 하측면에 형성된 구멍을 통해 상기 용액에 침지되어 있을 수 있다.The positive electrode 340 may apply a voltage of + V to the first storage unit 310. In this case, the positive electrode 340 may be in contact with the solution stored in the first storage part 310. For example, the positive electrode 340 may be immersed in the solution through a hole formed in the lower surface of the first storage 310.
접지 전극(350)은 상기 제2저장부(320)의 소정 영역에 위치하여 용액을 통해 흐르는 전류를 접지시킬 수 있다. 이 경우, 상기 접지 전극(350)은 상기 제2저장부(320)에 저장된 용액과 접촉되어 있을 수 있다. 예를 들어, 상기 접지 전극(350)은 제2저장부(320)의 하측면에 형성된 구멍을 통해 상기 용액에 침지되어 있을 수 있다.The ground electrode 350 may be positioned in a predetermined region of the second storage unit 320 to ground a current flowing through the solution. In this case, the ground electrode 350 may be in contact with the solution stored in the second storage part 320. For example, the ground electrode 350 may be immersed in the solution through a hole formed in the lower surface of the second storage unit 320.
제어부(360)는 상기 양전극(340) 및 상기 접지 전극(350)을 제어하여 전압의 인가 및 접지를 제어할 수 있다. 또한, 상기 제어부(360)는 상기 제2저장부(320)의 일측과 연결된 제2채널(370)의 일측에 연결되어 상기 용액의 유량을 제어할 수 있다. 상기 제2채널(370)의 일측은 제2채널(370)에서 제2저장부(320)가 위치한 곳의 반대측을 포함할 수 있다. 상기 유량 제어는 시린지 펌프, 페리스태틱 펌프 등을 이용할 수 있다. 즉, 유량 제어를 통해 상기 시료에 역학적 에너지가 인가되어 상기 시료가 좌측 방향으로 이동될 수 있다.The controller 360 may control the application of the voltage and the ground by controlling the positive electrode 340 and the ground electrode 350. In addition, the control unit 360 may be connected to one side of the second channel 370 connected to one side of the second storage unit 320 to control the flow rate of the solution. One side of the second channel 370 may include an opposite side of where the second storage unit 320 is located in the second channel 370. The flow rate control may be a syringe pump, a ferristatic pump or the like. That is, mechanical energy may be applied to the sample through flow control to move the sample in a left direction.
한편, 양전극(340)의 전압 인가를 통해 시료가 포함된 용액에 전기가 인가되면서 전기분해에 의한 기포가 발생할 수 있다. 시료가 포함된 용액이 포커싱됨에 따라 용액 안의 구성 물질 농도 변화로 인하여 전류의 흐름이 바뀌고, 이로 인하여 전기분해에 의한 기포 발생량이 변화한다.Meanwhile, bubbles may be generated by electrolysis while electricity is applied to the solution containing the sample through voltage application of the positive electrode 340. As the solution containing the sample is focused, the flow of current changes due to the change in the concentration of constituents in the solution, thereby changing the amount of bubbles generated by electrolysis.
닫힌 시스템에서 발생된 기포는 튜브를 막거나 제1채널(330) 및 제2채널(370) 속에 거동하는 액체의 유량에 영향을 주어 정상 상태의 용액의 흐름을 비정상상태로 만들어 포커싱 서포터 형성에 부정적 영향을 주기 때문에, 기포의 제거가 필요하다. Bubbles generated in a closed system may block the tube or affect the flow rate of the liquid behaving in the first and second channels 330 and 370, thus making the flow of the solution in a steady state abnormal and negative for focusing supporter formation. As it affects, air bubbles need to be removed.
상기 포커싱 장치(300)가 닫힌 시스템일 경우, 제어부(360)는 상기 용액에서 발생한 기포의 발생량에 따라 상기 용액의 유량을 제어할 수 있다. 예를 들어, 제어부(360)는 기포량이 많아지면 유량을 늘리고(즉, 유속을 빠르게 함), 기포량이 적어지면 유량을 줄일 수 있다(즉, 유속을 느리게 함). 따라서 제어부(360)는 기포 발생에 따른 제1채널(330) 및 제2채널(370) 속 유량 변화 효과를 능동적으로 상쇄할 수 있다.When the focusing device 300 is a closed system, the controller 360 may control the flow rate of the solution according to the amount of bubbles generated in the solution. For example, the controller 360 may increase the flow rate when the amount of bubbles increases (that is, speed up the flow rate), and decrease the flow rate when the amount of bubbles decreases (ie, decrease the flow rate). Accordingly, the controller 360 may actively cancel the effect of changing the flow rate in the first channel 330 and the second channel 370 according to the bubble generation.
도 4는 본 발명의 다른 일실시예와 관련된 시료 포커싱 장치를 나타내는 도면이다.4 is a diagram illustrating a sample focusing apparatus according to another embodiment of the present invention.
도시된 바와 같이, 시료 포커싱 장치(400)는 제1저장부(410), 제2저장부(420), 제1채널(430), 양전극(440), 접지 전극(450), 전기 제어부(460), 제2채널(470), 및 유량 제어부(480)을 포함할 수 있다.As shown, the sample focusing apparatus 400 includes a first storage unit 410, a second storage unit 420, a first channel 430, a positive electrode 440, a ground electrode 450, and an electrical control unit 460. ), A second channel 470, and a flow controller 480.
상기 제1저장부(410) 및 제2저장부(420)에는 시료를 포함하는 유체(예: 용액)이 저장될 수 있다. 상기 시료 및 상기 제1저장부(410) 및 제2저장부(420)의 사이즈는 도 1에 도시된 설명이 동일하게 적용될 수 있으므로, 여기서는 자세한 설명은 생략하기로 한다. A fluid (eg, a solution) including a sample may be stored in the first storage part 410 and the second storage part 420. The size of the sample, the first storage unit 410 and the second storage unit 420 may be equally applicable to the description shown in FIG. 1, and thus detailed description thereof will be omitted.
상기 제1저장부(410) 및 제2저장부(420)는 일측면이 공기와 접촉할 수 있도록 개방될 수 있다. 즉, 시료 포커싱 장치(400)는 열린 시스템으로 구현될 수 있다.The first storage part 410 and the second storage part 420 may be opened to allow one side to contact air. That is, the sample focusing apparatus 400 may be implemented as an open system.
상기 제1채널(430)은 상기 제1저장부(410) 및 상기 제2저장부(420)와 연결되어 상기 용액의 이동 경로를 형성할 수 있다. 즉, 상기 용액은 상기 제1채널(430)을 통해 좌측 방향으로 이동될 수 있다. 그리고 상기 제1채널(430)의 내벽의 적어도 일부 영역에는 이온 선택성 물질이 패터닝(patterning)되어 있다.The first channel 430 may be connected to the first storage part 410 and the second storage part 420 to form a movement path of the solution. That is, the solution may be moved in the left direction through the first channel 430. In addition, an ion selective material is patterned on at least a portion of an inner wall of the first channel 430.
상기 이온 선택성 물질이 패터닝되어 있는 제1채널(430)의 특정 부근에서는 포커싱 영역이 형성될 수 있다. 이온 선택성 물질의 패터닝 및 이를 이용한 시료 포커싱 원리는 도 2의 설명이 동일하게 적용될 수 있으므로, 여기서는 생략하도록 하겠다.A focusing region may be formed in a particular vicinity of the first channel 430 in which the ion selective material is patterned. Patterning of the ion-selective material and the principle of sample focusing using the same may be omitted since the description of FIG. 2 may be applied in the same manner.
상기 제1채널(430)은 미세 유체 시스템에 적용하기 위해 너비가 500~1000um이고, 높이 50~150um 정도인 사이즈로 제조될 수 있다.The first channel 430 may be manufactured to have a width of 500 to 1000 um and a height of 50 to 150 um to be applied to the microfluidic system.
상기 양전극(440)은 상기 제1저장부(410)에 +V의 전압을 인가할 수 있다. 이 경우, 상기 양전극(440)은 상기 제1저장부(310)에 저장된 용액과 접촉되어 있을 수 있다. 예를 들어, 상기 양전극(440)은 제1저장부(410)의 하측면에 형성된 구멍을 통해 상기 용액에 침지되어 있을 수 있다.The positive electrode 440 may apply a voltage of + V to the first storage unit 410. In this case, the positive electrode 440 may be in contact with the solution stored in the first storage part 310. For example, the positive electrode 440 may be immersed in the solution through a hole formed in the lower surface of the first storage unit 410.
접지 전극(450)은 상기 제2저장부(420)의 소정 영역에 위치하여 용액을 통해 흐르는 전류를 접지시킬 수 있다. 이 경우, 상기 접지 전극(450)은 상기 제2저장부(420)에 저장된 용액과 접촉되어 있을 수 있다. 예를 들어, 상기 접지 전극(450)은 제2저장부(420)의 하측면에 형성된 구멍을 통해 상기 용액에 침지되어 있을 수 있다.The ground electrode 450 may be positioned in a predetermined region of the second storage unit 420 to ground a current flowing through the solution. In this case, the ground electrode 450 may be in contact with the solution stored in the second storage unit 420. For example, the ground electrode 450 may be immersed in the solution through a hole formed in the lower surface of the second storage unit 420.
전기 제어부(460)는 상기 양전극(440) 및 상기 접지 전극(450)을 제어하여 전압의 인가 및 접지를 제어할 수 있다. The electrical controller 460 may control the application of the voltage and the ground by controlling the positive electrode 440 and the ground electrode 450.
상기 제2채널(470)은 상기 제2저장부(420)와 연결되어 상기 용액의 이동 경로를 형성할 수 있다. The second channel 470 may be connected to the second storage unit 420 to form a movement path of the solution.
또한, 유량 제어부(780)는 제2채널(470)의 일측에 연결되어 상기 용액의 유량을 제어할 수 있다. 상기 제2채널(470)의 일측은 제2채널(470)에서 제2저장부(420)가 위치한 곳의 반대측을 포함할 수 있다. 상기 유량 제어는 시린지 펌프, 페리스태틱 펌프 등을 이용할 수 있다. 즉, 유량 제어를 통해 상기 시료에 역학적 에너지가 인가되어 상기 시료가 좌측 방향으로 이동될 수 있다.In addition, the flow control unit 780 may be connected to one side of the second channel 470 to control the flow rate of the solution. One side of the second channel 470 may include an opposite side of where the second storage unit 420 is located in the second channel 470. The flow rate control may be a syringe pump, a ferristatic pump or the like. That is, mechanical energy may be applied to the sample through flow control to move the sample in a left direction.
한편, 양전극(340)의 전압 인가를 통해 시료가 포함된 용액에 전기가 인가되면서 전기분해에 의한 기포가 발생할 수 있다. 시료가 포함된 용액이 포커싱됨에 따라 용액 안의 구성 물질 농도 변화로 인하여 전류의 흐름이 바뀌고, 이로 인하여 전기분해에 의한 기포 발생량이 변화한다.Meanwhile, bubbles may be generated by electrolysis while electricity is applied to the solution containing the sample through voltage application of the positive electrode 340. As the solution containing the sample is focused, the flow of current changes due to the change in the concentration of constituents in the solution, thereby changing the amount of bubbles generated by electrolysis.
열린 시스템의 경우, 제1저장부(410)와 제2저장부(420)의 일측면이 개방되어 있기 때문에, 포커싱 서포터 영역 형성 과정에서 만들어지는 기포를 제1저장부(410)와 제2저장부(420)를 통해 배출할 수 있다. 이 경우, 유량 제어와 전기 제어를 독립적으로 하면서 기포 발생에 따른 제1채널(430) 및 제2채널(470) 속 유량 변화 효과를 제거할 수 있다. 제1채널(430) 및 제2채널(470) 내의 용액의 유동은 수두차에 의해 조절될 수 있다. 상기 수두차는 제1저장부(410)에 저장된 용액의 높이와 제2저장부(420)에 저장된 용액의 높이 차이를 의미할 수 있다.In the case of an open system, since one side of the first storage unit 410 and the second storage unit 420 is open, bubbles generated during the focusing supporter region forming process are stored in the first storage unit 410 and the second storage unit. Discharge through the unit 420. In this case, the flow rate change effect in the first channel 430 and the second channel 470 according to bubble generation can be removed while the flow rate control and the electric control are independent. The flow of the solution in the first channel 430 and the second channel 470 may be adjusted by the head difference. The head difference may mean a difference between the height of the solution stored in the first storage unit 410 and the height of the solution stored in the second storage unit 420.
도 5는 본 발명의 다른 일실시예와 관련된 시료 포커싱 장치를 나타내는 도면이다.5 is a diagram illustrating a sample focusing apparatus according to another embodiment of the present invention.
도시된 바와 같이, 시료 포커싱 장치(500)는 제1저장부(510), 제2저장부(520), 채널(530), 양전극(540), 접지 전극(550), 및 전기 제어부(560)을 포함할 수 있다. 도 5에 도시된 시료 포커싱 장치(500)는 도 3에 도시된 시료 포커싱 장치(300)와 유사한 구조를 가진다. 다만, 시료 포커싱 장치(500)는 제1저장부(510)에 저장된 용액과 제2저장부(520)에 저장된 용액이 수두차가 생기게 구현하여 수두압을 이용하여 별도의 유량 제어 없이(즉, 펌프 없이) 유량을 제어할 수 있다. 다른 나머지 구성에 설명은 도 3에 도시된 시료 포커싱 장치(300)에 대한 설명이 적용될 수 있으므로, 여기서는 생략하도록 하겠다.As shown, the sample focusing apparatus 500 includes a first storage unit 510, a second storage unit 520, a channel 530, a positive electrode 540, a ground electrode 550, and an electrical control unit 560. It may include. The sample focusing apparatus 500 illustrated in FIG. 5 has a structure similar to that of the sample focusing apparatus 300 illustrated in FIG. 3. However, the sample focusing apparatus 500 implements a water head difference between the solution stored in the first storage unit 510 and the solution stored in the second storage unit 520, so that a separate flow rate control is performed without using a head pressure. Flow rate can be controlled. A description of the other components will be omitted since the description of the sample focusing apparatus 300 shown in FIG. 3 may be applied.
전술한 시료 포커싱 장치는 체외진단, 연구실 시료 검사 등에 적용될 수 있다. 또한, 전술한 시료 포커싱 장치는 간단한 전기적 제어를 통해 유체 내의 시료를 간단하게 포커싱할 수 있으므로, 시료의 검사를 편리하게 수행할 수 있다.The sample focusing apparatus described above may be applied to in vitro diagnosis, laboratory sample inspection, or the like. In addition, the sample focusing apparatus described above can easily focus the sample in the fluid through simple electrical control, so that the inspection of the sample can be conveniently performed.
본 발명의 일실시예에 의한 시료 포커싱 장치는 간단한 전기적 제어를 통해 시료의 포커싱을 수행하므로, 제조 단가가 절감될 수 있다.The sample focusing apparatus according to the embodiment of the present invention performs focusing of the sample through simple electrical control, thereby reducing manufacturing costs.
상기와 같이 설명된 시료 포커싱 장치는 상기 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.The sample focusing apparatus described above is not limited to the configuration and method of the embodiments described above, but the embodiments are configured by selectively combining all or some of the embodiments so that various modifications can be made. May be

Claims (13)

  1. 시료가 포함된 용액을 저장하기 위한 저장부;A storage unit for storing a solution containing a sample;
    상기 저장부와 연결되어 상기 용액의 이동 경로가 형성된 채널- 상기 채널의 내벽의 적어도 일부에는 이온 선택성 물질이 패터닝됨-;A channel connected with the reservoir to form a movement path of the solution, wherein at least a portion of an inner wall of the channel is patterned with an ion selective material;
    상기 저장부에 전압을 인가하는 양전극;A positive electrode applying a voltage to the storage unit;
    상기 채널의 소정 영역에 위치한 접지 전극; 및A ground electrode positioned in a predetermined region of the channel; And
    상기 양전극 및 상기 접지 전극과 연결되어 상기 양전극 및 상기 접지 전극을 제어하는 제어부를 포함하는 것을 특징으로 하는 시료 포커싱 장치.And a control unit connected to the positive electrode and the ground electrode to control the positive electrode and the ground electrode.
  2. 제 1 항에 있어서, 상기 제어부는The method of claim 1, wherein the control unit
    상기 채널의 일측에 연결되어 상기 용액의 유량을 제어하는 것을 특징으로 하는 시료 포커싱 장치.Sample focusing device is connected to one side of the channel to control the flow rate of the solution.
  3. 제 2 항에 있어서, 상기 이온 선택성 물질은The method of claim 2, wherein the ion selective material is
    극성이 있는 다공성 물질을 포함하는 것을 특징으로 하는 시료 포커싱 장치.A sample focusing device comprising a porous material having a polarity.
  4. 제 2 항에 있어서, 상기 제어부는The method of claim 2, wherein the control unit
    상기 용액에서 발생한 기포의 발생량에 따라 상기 용액의 유량을 제어하는 것을 특징으로 하는 시료 포커싱 장치.Sample focusing device characterized in that for controlling the flow rate of the solution in accordance with the amount of bubbles generated in the solution.
  5. 시료가 포함된 용액을 저장하기 위한 제1저장부;A first storage unit for storing a solution containing a sample;
    상기 용액을 저장하기 위한 제2저장부;A second storage unit for storing the solution;
    상기 제1저장부 및 상기 제2저장부와 연결되어, 상기 용액의 이동 경로가 형성된 제1채널- 상기 제1채널의 내벽의 적어도 일부에는 이온 선택성 물질이 패터닝됨-;A first channel connected to the first storage unit and the second storage unit, in which a movement path of the solution is formed, at least a portion of an inner wall of the first channel is patterned with an ion selective material;
    상기 제1저장부에 전압을 인가하는 양전극;A positive electrode applying a voltage to the first storage part;
    상기 제2저장부와 연결되어 상기 제2저장부의 소정 영역에 위치한 접지 전극; 및A ground electrode connected to the second storage part and positioned in a predetermined area of the second storage part; And
    상기 양전극 및 상기 접지 전극과 연결되어 상기 양전극 및 상기 접지 전극을 제어하는 제어부를 포함하는 것을 특징으로 하는 시료 포커싱 장치.And a control unit connected to the positive electrode and the ground electrode to control the positive electrode and the ground electrode.
  6. 제 5 항에 있어서, The method of claim 5,
    상기 시료 포커싱 장치는 상기 제2저장부와 연결되어, 상기 용액의 이동 경로가 형성된 제2채널을 더 포함하되,The sample focusing device may further include a second channel connected to the second storage part and having a movement path of the solution.
    상기 제어부는 상기 제2채널의 일측에 연결되어 상기 용액의 유량을 제어하는 것을 특징으로 하는 시료 포커싱 장치.The controller is connected to one side of the second channel sample focusing apparatus, characterized in that for controlling the flow rate of the solution.
  7. 제 6 항에 있어서, 상기 이온 선택성 물질은The method of claim 6, wherein the ion selective material is
    극성이 있는 다공성 물질을 포함하는 것을 특징으로 하는 시료 포커싱 장치.A sample focusing device comprising a porous material having a polarity.
  8. 제 7 항에 있어서, 상기 이온 선택성 물질은The method of claim 7, wherein the ion selective material
    nafion, 칼코겐유리(chalcogenide glass), 및 염화비닐 수지 중 적어도 하나를 포함하는 것을 특징으로 하는 시료 포커싱 장치.A sample focusing device comprising at least one of nafion, chalcogenide glass, and vinyl chloride resin.
  9. 제 6 항에 있어서, 상기 제어부는The method of claim 6, wherein the control unit
    상기 용액에서 발생한 기포의 발생량에 따라 상기 용액의 유량을 제어하는 것을 특징으로 하는 시료 포커싱 장치.Sample focusing device characterized in that for controlling the flow rate of the solution in accordance with the amount of bubbles generated in the solution.
  10. 시료가 포함된 용액을 저장하기 위한 제1저장부;A first storage unit for storing a solution containing a sample;
    상기 용액을 저장하기 위한 제2저장부;A second storage unit for storing the solution;
    상기 제1저장부 및 상기 제2저장부와 연결되어, 상기 용액의 이동 경로가 형성된 제1채널- 상기 채널의 내벽의 적어도 일부에는 이온 선택성 물질이 패터닝됨-;A first channel connected to the first storage unit and the second storage unit, in which at least a portion of an inner wall of the channel is patterned, wherein a first channel having a movement path of the solution is formed;
    상기 제1저장부에 전압을 인가하는 양전극;A positive electrode applying a voltage to the first storage part;
    상기 제2저장부와 연결되어 상기 제2저장부의 소정 영역에 위치한 접지 전극; 및A ground electrode connected to the second storage part and positioned in a predetermined area of the second storage part; And
    상기 양전극 및 상기 접지 전극과 연결되어 상기 양전극 및 상기 접지 전극;The positive electrode and the ground electrode connected to the positive electrode and the ground electrode;
    상기 제2저장부와 연결되어, 상기 용액의 이동 경로가 형성된 제2채널; 및A second channel connected to the second storage part and having a movement path of the solution; And
    상기 제2채널의 일측에 연결되어 상기 용액의 유량을 제어하는 유량 제어부를 포함하는 것을 특징으로 하는 시료 포커싱 장치.And a flow rate control unit connected to one side of the second channel to control the flow rate of the solution.
  11. 제 10 항에 있어서, 상기 이온 선택성 물질은The method of claim 10, wherein the ion selective material
    극성이 있는 다공성 물질을 포함하는 것을 특징으로 하는 시료 포커싱 장치.A sample focusing device comprising a porous material having a polarity.
  12. 제 11 항에 있어서, 상기 이온 선택성 물질은The method of claim 11, wherein the ion selective material is
    nafion, 칼코겐유리(chalcogenide glass), 및 염화비닐 수지 중 적어도 하나를 포함하는 것을 특징으로 하는 시료 포커싱 장치.A sample focusing device comprising at least one of nafion, chalcogenide glass, and vinyl chloride resin.
  13. 제 11 항에 있어서, 상기 제1저장부 및 상기 제2저장부는The method of claim 11, wherein the first storage unit and the second storage unit
    일측면이 공기와 접촉할 수 있도록 개방되어 있는 것을 특징으로 하는 시료 포커싱 장치.A sample focusing device, characterized in that one side is open to be in contact with air.
PCT/KR2014/006953 2013-08-01 2014-07-29 Sample focusing device WO2015016591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130091544A KR101492332B1 (en) 2013-08-01 2013-08-01 Specimen focusing apparatus
KR10-2013-0091544 2013-08-01

Publications (1)

Publication Number Publication Date
WO2015016591A1 true WO2015016591A1 (en) 2015-02-05

Family

ID=52432059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006953 WO2015016591A1 (en) 2013-08-01 2014-07-29 Sample focusing device

Country Status (2)

Country Link
KR (1) KR101492332B1 (en)
WO (1) WO2015016591A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120666A (en) * 1996-09-26 2000-09-19 Ut-Battelle, Llc Microfabricated device and method for multiplexed electrokinetic focusing of fluid streams and a transport cytometry method using same
KR20040012431A (en) * 2002-07-31 2004-02-11 주식회사 디지탈바이오테크놀러지 Method and apparatus for three-dimensionally focusing a fluid flow, method and apparatus for inspecting a fluid sample using the focusing method
US20060169588A1 (en) * 2005-02-02 2006-08-03 Jacobson Stephen C Microfluidic device and methods for focusing fluid streams using electroosmotically induced pressures
US20100139377A1 (en) * 2008-12-05 2010-06-10 The Penn State Reserch Foundation Particle focusing within a microfluidic device using surface acoustic waves
KR20110121884A (en) * 2010-05-03 2011-11-09 삼성전자주식회사 Surface acoustic wave sensor device including target biomolecule isolation component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120666A (en) * 1996-09-26 2000-09-19 Ut-Battelle, Llc Microfabricated device and method for multiplexed electrokinetic focusing of fluid streams and a transport cytometry method using same
KR20040012431A (en) * 2002-07-31 2004-02-11 주식회사 디지탈바이오테크놀러지 Method and apparatus for three-dimensionally focusing a fluid flow, method and apparatus for inspecting a fluid sample using the focusing method
US20060169588A1 (en) * 2005-02-02 2006-08-03 Jacobson Stephen C Microfluidic device and methods for focusing fluid streams using electroosmotically induced pressures
US20100139377A1 (en) * 2008-12-05 2010-06-10 The Penn State Reserch Foundation Particle focusing within a microfluidic device using surface acoustic waves
KR20110121884A (en) * 2010-05-03 2011-11-09 삼성전자주식회사 Surface acoustic wave sensor device including target biomolecule isolation component

Also Published As

Publication number Publication date
KR101492332B1 (en) 2015-02-13
KR20150016431A (en) 2015-02-12

Similar Documents

Publication Publication Date Title
US8679313B2 (en) Method and apparatus for concentrating molecules
DE60034347T2 (en) DEVICE AND METHOD FOR HIGH DENSITY ELECTROPHORESIS
US8771933B2 (en) Continuous-flow deformability-based cell separation
US20080070311A1 (en) Microfluidic flow cytometer and applications of same
Kemna et al. Label-free, high-throughput, electrical detection of cells in droplets
JP2003501639A (en) Microfluidic devices for transverse and isoelectric focusing
US8329115B2 (en) Nanofluidic preconcentration device in an open environment
Meighan et al. Bioanalytical separations using electric field gradient techniques
KR101511569B1 (en) Particle separation apparatus
WO2016108401A1 (en) Particle separation and concentration apparatus, and method for separating, concentrating and discharging particle using same
WO2017039080A1 (en) Sample concentration apparatus and method for extracting concentrated sample by using same
CN102253102A (en) Micro-fluidic composite chip with symmetric micro-channel structure and integrated non-contact conductivity detection
CN106622408A (en) Micro-fluidic chip based on MHD control
US20100193361A1 (en) Apparatus for concentrating dielectric microparticles
Nejad et al. Gravity-driven hydrodynamic particle separation in digital microfluidic systems
WO2014007557A1 (en) Real-time pcr device for detecting electrochemical signals, and real-time pcr method using same
WO2015016591A1 (en) Sample focusing device
WO2024043547A1 (en) Microfluidic concentration control system, and method for operating same
CN209451869U (en) A kind of micro fluidic device for realizing multiplicity detection based on electroosmotic flow
WO2016163844A1 (en) Cell separation chip and method for separating cells by using same
CN106680353A (en) Electrochromatography device
JP2003066005A (en) Method and device for electrophoresis of cell
WO2018182082A1 (en) Microfluidic chip-based isoelectric focusing based on contactless conductivity detection and requiring no pumps
US20040040849A1 (en) Analysis
CN105973787B (en) A kind of flowing counting pool being integrated with reagent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831811

Country of ref document: EP

Kind code of ref document: A1