WO2015005497A1 - 三次元形状造形物の製造方法およびその製造装置 - Google Patents

三次元形状造形物の製造方法およびその製造装置 Download PDF

Info

Publication number
WO2015005497A1
WO2015005497A1 PCT/JP2014/068847 JP2014068847W WO2015005497A1 WO 2015005497 A1 WO2015005497 A1 WO 2015005497A1 JP 2014068847 W JP2014068847 W JP 2014068847W WO 2015005497 A1 WO2015005497 A1 WO 2015005497A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
suction nozzle
cutting device
layer
tooling
Prior art date
Application number
PCT/JP2014/068847
Other languages
English (en)
French (fr)
Inventor
阿部 諭
武南 正孝
武 松本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US14/439,494 priority Critical patent/US9586285B2/en
Priority to KR1020167001816A priority patent/KR20160019558A/ko
Priority to EP14822306.8A priority patent/EP2910323B1/en
Priority to KR1020157009267A priority patent/KR20150043564A/ko
Priority to KR1020177008411A priority patent/KR102126243B1/ko
Priority to CN201480002867.9A priority patent/CN104768681B/zh
Publication of WO2015005497A1 publication Critical patent/WO2015005497A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/02Moulding by agglomerating
    • B29C67/04Sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/162Machining, working after consolidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0093Working by laser beam, e.g. welding, cutting or boring combined with mechanical machining or metal-working covered by other subclasses than B23K
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/16Removal of by-products, e.g. particles or vapours produced during treatment of a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/772Articles characterised by their shape and not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for manufacturing a three-dimensional shaped object and an apparatus for manufacturing the same. More specifically, the present invention manufactures a three-dimensional shaped object in which a plurality of solidified layers are laminated and integrated by repeatedly performing formation of a solidified layer by irradiating a predetermined portion of the powder layer with a light beam. The present invention relates to a method and an apparatus therefor.
  • a method of manufacturing a three-dimensional shaped object by irradiating a powder material with a light beam is known.
  • the following steps (i) and (ii) are repeated to produce a three-dimensional shaped object (see Patent Document 1 or Patent Document 2).
  • (I) A step of forming a solidified layer by irradiating a predetermined portion of the powder layer with a light beam to sinter or melt and solidify the powder at the predetermined portion.
  • the obtained three-dimensional shaped object can be used as a mold.
  • an organic powder material such as resin powder or plastic powder
  • the obtained three-dimensional shaped object can be used as a model. According to such a manufacturing technique, it is possible to manufacture a complicated three-dimensional shaped object in a short time.
  • metal powder is used as a powder material and the obtained three-dimensional shaped object is used as a mold.
  • a powder layer 22 having a predetermined thickness t1 is formed on a modeling plate 21 (see FIG. 1A), and then a light beam is irradiated on a predetermined portion of the powder layer 22 to form a model.
  • a solidified layer 24 is formed on the plate 21 (see FIG. 1B).
  • a new powder layer 22 is laid on the formed solidified layer 24 and irradiated again with a light beam to form a new solidified layer.
  • the solidified layer is repeatedly formed in this way, a three-dimensional shaped object in which a plurality of solidified layers 24 are laminated and integrated can be obtained. Since the solidified layer corresponding to the lowermost layer can be formed in a state of being adhered to the modeling plate surface, the three-dimensional modeled object and the modeling plate are integrated with each other and can be used as a mold as they are.
  • the three-dimensional shaped object obtained by irradiation with a light beam has a relatively rough surface, and generally has a surface roughness of about several hundred ⁇ m Rz. This is because the powder adheres to the surface of the solidified layer.
  • the light beam energy is converted into heat, so that the irradiated powder is once melted and then fused in the cooling process.
  • the surrounding powder adheres to the solidified layer surface. Since such adhering powder brings about “surface roughness” to the three-dimensional shaped object, it is necessary to cut the surface of the three-dimensional shaped object. That is, it is necessary to subject the entire surface of the obtained three-dimensional shaped object to cutting.
  • the inventors of the present application have found a phenomenon in which a tool breakage trouble may occur more frequently when powder exists around a modeled object (see FIG. 14A). Although not limited by a specific theory, it is considered that one of the factors is that the load applied to the cutting tool increases due to the biting of the powder between the surface of the modeled object and the cutting tool.
  • an object of the present invention is to provide a powder sintering lamination method capable of reducing inconveniences such as “tool breakage trouble”.
  • a powder layer formation and a solidification layer formation are repeated in the steps (i) and (ii), and a tertiary having the following characteristics (a) to (c):
  • a method for producing an original shaped article is provided.
  • the surface of the solidified layer and / or the three-dimensional shaped object is subjected to surface cutting treatment with a cutting device at least once.
  • the powder around the solidified layer and / or the three-dimensional shaped object is removed by suction with a suction nozzle.
  • the relative positional relationship between “the tip level A of the suction nozzle” and “the tip level B of the cutting device” is changed.
  • the cutting device is reconfigured so that the cutting device tip level B is above the suction nozzle tip level A, thereby creating a “suction nozzle tip level A” and a “cutting device tip level”.
  • the relative positional relationship with “Level B” is changed.
  • the cutting device includes a headstock, a tooling, and a cutting tool
  • only the dummy tooling may be attached to the headstock instead of the tooling and the cutting tool.
  • suction removal of the suction nozzle is performed in such a “state in which only the dummy tooling is attached to the headstock”.
  • the dummy tooling may be, for example, the same type of tooling as the tooling.
  • the tooling and cutting tool may be removed from the main shaft, and suction removal of the suction nozzle may be performed in such a “state where the tooling and cutting tool is removed from the main shaft”.
  • the suction nozzle is driven so that the “suction nozzle tip level A” is lower than the “cutting device tip level B”, and the “suction nozzle tip level A” and the “cutting nozzle tip level A” are cut.
  • the relative positional relationship with the tip level “B” of the device is changed.
  • the distance between the “powder layer formed most recently” and “the tip level A of the suction nozzle” is 5 mm or less during suction removal.
  • the suction nozzle and the cutting device are provided adjacent to each other, and suction removal of the suction nozzle is performed in such a state adjacent to each other.
  • the manufacturing apparatus includes a powder layer forming unit, a light beam irradiation unit, a modeling table, a suction nozzle, and a cutting device.
  • the powder layer forming means is a means for forming a powder layer.
  • the light beam irradiation means is a means for irradiating the powder layer with a light beam so that a solidified layer is formed.
  • the modeling table is a table on which a powder layer and / or a solidified layer is to be formed.
  • the suction nozzle is a device for sucking and removing at least part of the powder in the powder layer.
  • the cutting device is a machine for performing a surface cutting process on a solidified layer and a three-dimensional shaped object formed from the solidified layer.
  • the manufacturing apparatus of the present invention is configured such that the relative positional relationship between “the tip level A of the suction nozzle” and “the tip level B of the cutting device” can be changed.
  • the cutting device includes a headstock, a tooling, and a cutting tool, and further includes a dummy tooling that can be replaced with the tooling.
  • the suction nozzle and the cutting device are arranged adjacent to each other so that the axis of the suction nozzle and the axis of the cutting device are substantially parallel to each other.
  • the powder around the solidified layer and / or the three-dimensional shaped object is sucked and removed prior to the surface cutting process, the “because of the powder biting between the surface of the object and the cutting tool” "Tool breakage trouble” can be reduced.
  • the powder biting between the surface of the modeled object and the cutting tool is reduced, the load exerted on the modeled object surface during the cutting process can be reduced, and the surface smoothness of the modeled object can be improved.
  • suction removal of the powder can be locally applied to the powder layer by the suction nozzle, it can be performed efficiently and has little influence on the manufacturing time of the three-dimensional shaped object.
  • suction removal of the suction nozzle is not hindered by the cutting device, so that more efficient suction removal is possible.
  • the suction nozzle is horizontally moved and operated in the suction removal process (for example, when the suction nozzle is horizontally moved so as to circulate along the cross-sectional contour of the modeled object), the cutting device and the modeled object Collisions can be avoided.
  • FIG. 2A is a perspective view schematically showing an apparatus for carrying out the powder sintering lamination method
  • FIG. 2A an optical modeling combined processing machine equipped with a cutting mechanism
  • FIG. 2B an apparatus not equipped with a cutting mechanism.
  • the perspective view which showed typically the aspect by which the powder sintering lamination method is performed The perspective view which showed typically the structure of the apparatus (stereolithic complex processing machine) which implements a powder sintering lamination method with surface cutting processing
  • Flow chart of operation of stereolithography combined processing machine Schematic diagram showing the process by optical modeling complex machine over time
  • powder layer refers to, for example, “metal powder layer made of metal powder” or “resin powder layer made of resin powder”.
  • the “predetermined portion of the powder layer” substantially means a region of the three-dimensional shaped article to be manufactured. Therefore, by irradiating the powder existing at the predetermined location with a light beam, the powder is sintered or melted and solidified to form a three-dimensional shaped object.
  • the “solidified layer” substantially means “sintered layer” when the powder layer is a metal powder layer, and substantially means “cured layer” when the powder layer is a resin powder layer. Meaning.
  • upward substantially means the direction in which the solidified layer is laminated at the time of manufacturing the modeled object
  • downward means the direction opposite to the “upward” (that is, (Vertical direction) means substantially.
  • the powder sintering lamination method as a premise of the production method of the present invention will be described.
  • the powder sintering lamination method will be described on the premise that the material powder is supplied from the material powder tank and the powder material is formed by leveling the material powder using a squeezing blade.
  • a description will be given by taking as an example a mode of composite processing in which cutting of a molded article is also performed (that is, assuming the mode shown in FIG. 2A instead of FIG. 2B) And).
  • 1, 3 and 4 show the function and configuration of an optical modeling composite processing machine capable of performing the powder sintering lamination method and cutting.
  • the optical modeling composite processing machine 1 mainly includes a powder layer forming unit 2, a modeling table 20, a modeling plate 21, a light beam irradiation unit 3, and a cutting unit 4.
  • the powder layer forming means 2 is for forming a powder layer by spreading a powder such as a metal powder and a resin powder with a predetermined thickness.
  • the modeling table 20 is a table that can be moved up and down in a modeling tank 29 whose outer periphery is surrounded by a wall 27.
  • the modeling plate 21 is a plate that is arranged on the modeling table 20 and serves as a foundation of a modeled object.
  • the light beam irradiation means 3 is a means for irradiating the light beam L to an arbitrary position.
  • the cutting means 4 is a machining means for cutting the surface (particularly the side surface) of the modeled object.
  • the powder layer forming means 2 includes “a powder table 25 that moves up and down in a material powder tank 28 whose outer periphery is surrounded by a wall 26” and “to form a powder layer 22 on a modeling plate”.
  • the squeezing blade 23 “.
  • the light beam irradiation means 3 includes a “light beam oscillator 30 that emits a light beam L” and a “galvanomirror 31 that scans (scans) the light beam L onto the powder layer 22 (scanning). Optical system) ”.
  • the light beam irradiating means 3 is a beam shape correcting means for correcting the shape of the light beam spot (for example, means having a pair of cylindrical lenses and a rotation driving mechanism for rotating the lenses around the axis of the light beam). Or an f ⁇ lens may be provided.
  • the cutting means 4 mainly includes “a milling head 40 that cuts the periphery of the modeled object” and “an XY drive mechanism 41 (41a, 41b) that moves the milling head 40 to a cutting position” (FIGS. 3 and 4). reference).
  • FIG. 5 shows a general operation flow of the stereolithography combined processing machine
  • FIG. 6 schematically shows a process of the stereolithography composite processing machine.
  • the operation of the optical modeling composite processing machine includes a powder layer forming step (S1) for forming the powder layer 22, a solidified layer forming step (S2) for forming the solidified layer 24 by irradiating the powder layer 22 with the light beam L, This is mainly composed of a surface cutting step (S3) for cutting the surface of the modeled object.
  • the powder layer forming step (S1) the modeling table 20 is first lowered by ⁇ t1 (S11). Next, after raising the powder table 25 by ⁇ t1, the squeezing blade 23 is moved in the horizontal direction indicated by the arrow a as shown in FIG.
  • the powder arranged on the powder table 25 is transferred onto the modeling plate 21 (S12), and the powder layer 22 is formed to be equal to the predetermined thickness ⁇ t1 (S13).
  • the powder in the powder layer include “iron powder having an average particle size of about 5 ⁇ m to 100 ⁇ m” and “powder of nylon, polypropylene, ABS, etc. having an average particle size of about 30 ⁇ m to 100 ⁇ m”.
  • the process proceeds to a solidified layer forming step (S2), where a light beam L is emitted from the light beam oscillator 30 (S21), and the light beam L is scanned to an arbitrary position on the powder layer 22 by the galvanometer mirror 31 (S22). .
  • the powder is melted and solidified to form a solidified layer 24 integrated with the modeling plate 21 (S23).
  • the light beam L include a carbon dioxide laser (about 500 W), an Nd: YAG laser (about 500 W), a fiber laser (about 500 W), and ultraviolet light.
  • the light beam L is not limited to being transmitted in the air, but may be transmitted by an optical fiber or the like.
  • the powder layer forming step (S1) and the solidified layer forming step (S2) are repeated until the thickness of the solidified layer 24 reaches a predetermined thickness obtained from the tool length of the milling head 40, and the solidified layer 24 is laminated (FIG. 1). (See (b)).
  • stacked will be integrated with the solidified layer which comprises the already formed lower layer in the case of sintering or melt-solidification.
  • the process proceeds to the surface cutting step (S3).
  • the cutting step is started by driving the milling head 40 (S31).
  • the tool (ball end mill) of the milling head 40 has a diameter of 1 mm and an effective blade length of 3 mm, a cutting process with a depth of 3 mm can be performed. Therefore, if ⁇ t1 is 0.05 mm, 60 solidified layers are formed. At that time, the milling head 40 is driven.
  • the milling head 40 is moved in the directions of the arrow X and the arrow Y by the XY drive mechanism 41 (41a, 41b), and a surface cutting process is performed on the modeled object composed of the laminated solidified layer 24 (S32). And when manufacture of a three-dimensional shape molded article has not ended yet, it will return to a powder layer formation step (S1). Thereafter, the three-dimensional shaped object is manufactured by repeating S1 to S3 and continuing the lamination of the solidified layer 24 (see FIG. 6).
  • the irradiation path of the light beam L in the solidified layer forming step (S2) and the cutting path in the surface cutting step (S3) are created in advance from three-dimensional CAD data.
  • a machining path is determined by applying contour line machining.
  • contour shape data of each cross section obtained by slicing STL data generated from a three-dimensional CAD model at an equal pitch for example, 0.05 mm pitch when ⁇ t1 is 0.05 mm
  • the present invention is characterized by the aspect during the surface cutting treatment among the above-described powder sintering lamination methods.
  • the production method of the present invention includes at least one step of subjecting the surface (particularly the side surface) to a surface cutting treatment with a cutting device after the solidified layer and / or the three-dimensional shaped object is obtained.
  • a surface cutting treatment with a cutting device after the solidified layer and / or the three-dimensional shaped object is obtained.
  • the solidified layer and / or the powder around the three-dimensional shaped object is removed with a suction nozzle, and the suction nozzle and the cutting device are relative to each other during the suction removal. The positional relationship is changed (see FIG. 7).
  • the relative positional relationship between “the tip level A of the suction nozzle” and “the tip level B of the cutting device” is changed prior to the suction removal process. That is, prior to sucking and removing the powder, the vertical level (height level) between the “suction port portion of the suction nozzle” and the “cutting part of the cutting device” is relatively changed.
  • the term “suction nozzle” as used in the present invention means a device that can suck in powder in a powder layer. Because of the “nozzle”, it is preferable that the portion used for sucking in the powder has a cylindrical shape (particularly, a thin cylindrical shape). ).
  • the suction nozzle 60 can be composed of at least a thin tube portion 62 and a suction device 64 connected to the thin tube portion.
  • the inner diameter of the thin tube portion of the suction nozzle is preferably 0.5 to 18 mm, more preferably 1.5 mm to 15 mm, and still more preferably 1.8 mm to 10 mm.
  • the thin tube part 62 of the suction nozzle has a form in which the tip side is more narrowed as shown in FIG.
  • the inner diameter of the narrowed portion is preferably 0.5 mm to 5 mm, more preferably 0.5 mm to 3 mm.
  • the thin tube portion 62 of the suction nozzle is preferably connected to a suction device 64 via a connecting hose 66.
  • the suction device 64 may be a cyclone dust collector, for example, and the connection hose 66 may be a flexible hose, for example.
  • the “cutting device” referred to in the present invention substantially means a machine capable of performing surface cutting treatment on the solidified layer and the surface (particularly the side surface portion) of the three-dimensional shaped object obtained therefrom.
  • the cutting device is a general-purpose numerical control (NC) machine tool or the like.
  • NC numerical control
  • MC machining center
  • the cutting device 70 includes, for example, at least a “headstock 72”, “a tooling 74 attached to the headstock”, and “a cutting tool 76 attached to the tooling”.
  • the tooling 74 of the cutting device is provided between the headstock 72 and the cutting tool 76 and is used for holding and fixing the cutting tool 76 (from this point of view, the tooling in the present invention is also referred to as “tool holder”). Is possible).
  • the cutting tool 76 of the cutting device may be an end mill, for example, a two-blade ball end mill, a square end mill, a radius end mill, or the like made of cemented carbide.
  • the “tip level B” of the cutting device substantially means the lower end portion level in the machine part that contributes to cutting directly and indirectly. More specifically, it means a lower end portion level in a “cutting side part” corresponding to a part provided with a headstock, a tooling, a cutting tool and the like in the cutting device.
  • the suction nozzle and the cutting device are preferably provided adjacent to each other.
  • the suction nozzle 60 and the cutting device 70 are preferably adjacent to each other so that the shaft 60a of the suction nozzle 60 and the shaft 70a of the cutting device 70 are substantially parallel to each other.
  • “Axis of the suction nozzle” means, for example, the longitudinal axis of the thin tube portion of the suction nozzle
  • “Axis of the cutting device” means, for example, the longitudinal axis of the cutting tool, the longitudinal direction of the tooling or dummy tooling Means the central axis of the axis or main axis.
  • the separation distance G or G ′ (see FIG. 9) between the shaft 60a of the suction nozzle 60 and the shaft 70a of the cutting device 70 is preferably 10 mm to 40 mm, more preferably It means that it is 15 mm to 30 mm.
  • the suction nozzle is operated, for example, in the horizontal direction. That is, the suction nozzle is moved without substantially changing the height level of the suction nozzle (the vertical position level along the stacking direction of the solidified layer). In other words, the suction nozzle is moved above the “most recently formed powder layer and / or solidified layer”, but without changing the vertical separation distance from the powder layer and / or solidified layer. Move.
  • the suction nozzle and the cutting device are provided adjacent to each other as described above, the suction nozzle is used for suction removal in an installation state adjacent to the cutting device in the horizontal direction.
  • the relative positional relationship between the “suction nozzle tip level A” and the “cutting device tip level B” is changed prior to the suction removal. You can do this by changing More specifically, the shape of the cutting device is changed so that “the tip level B of the cutting device” is higher than “the tip level A of the suction nozzle”, thereby “the tip level A of the suction nozzle”.
  • the relative positional relationship with “the tip level B of the cutting device” may be changed.
  • the “cutting device tip level B” is 0 (not including 0) mm to 15 mm above, preferably 2 mm to 10 mm above “suction nozzle tip level A”.
  • the relative positional relationship may be changed.
  • changing the shape of the cutting device means changing the outer contour of the cutting device as a whole prior to suction removal. For example, it means changing the outer contour of the cutting device as a whole by actively changing the components of the cutting device.
  • the aspect of changing the form of the cutting device may be achieved by partially removing the components of the cutting device.
  • the cutting device includes the headstock 72, the tooling 74, and the cutting tool 76, as shown in FIGS. 10A and 10B, “the tooling 74 and the cutting tool 76 are removed from the headstock 72. It is good also as “state”.
  • suction removal by the suction nozzle may be performed in the “state in which the tooling 74 and the cutting tool 76 are removed from the headstock 72”.
  • the tooling 74 and the cutting tool 76 are removed from the headstock 72 of the cutting machine, and the removed state is maintained and the suction removal is continuously performed.
  • the overall level of the cutting device is above the tip level A of the suction nozzle. That is, since the level of the exposed lower surface of the headstock 72 is located higher than the tip level A of the suction nozzle, “suction removal of the suction nozzle” can be efficiently performed without being obstructed by the cutting device.
  • the suction nozzle and the cutting device are provided adjacent to each other, the suction nozzle is used for suction removal in a state adjacent to the headstock of the cutting device.
  • the “mode for changing the form of the cutting device” is “a state in which only the dummy tooling 74 ′ is attached to the headstock 72” instead of the tooling 74 and the cutting tool 76. May be achieved. That is, the suction removal by the suction nozzle may be performed in the “state in which only the dummy tooling 74 ′ is attached to the headstock 72”. This means that at the time of suction removal, the dummy tooling is not provided with an end mill or the like (a cutting device in which nothing is provided below the end surface of the tooling).
  • “Dummy tooling” in the present invention means not a tooling for holding a cutting tool but a tooling for changing the relative positional relationship between a suction nozzle and a cutting device. That is, the tooling exclusively contributing to the change in the relative positional relationship between the suction nozzle and the cutting device corresponds to the dummy tooling in the present invention.
  • the tooling 74 and the cutting tool 76 are removed from the headstock 72 of the cutting machine prior to the suction removal operation, and then the dummy tooling 74 ′ is attached to the headstock 72. After the dummy tooling 74 ′ is provided on the headstock 72, suction removal is subsequently performed in that state.
  • the entire level of the cutting device is higher than the tip level A of the suction nozzle. That is, since the level of the lower surface of the dummy tooling 74 ′ is located above the tip level A of the suction nozzle, “suction removal of the suction nozzle” can be performed efficiently without being obstructed by the cutting device.
  • the suction nozzle and the cutting device are provided adjacent to each other, the suction nozzle is used for suction removal in a state adjacent to the dummy tooling of the cutting device.
  • a cutting tool having at least a predetermined distance P (gap between “tooling at the time of cutting” and “most recently formed solidified layer”) is used (for example, the tool number and the cutting tool length are Constant).
  • the surface cutting process can be suitably performed with respect to the side surface of the solidified layer.
  • the suction nozzle is provided so that its tip level is at least above the “most recently formed powder layer” (that is, above the “most recently formed solidified layer”).
  • the gap H between the lower end portion of the dummy tooling attached to the main shaft and the “most recently formed solidified layer” is “the tip of the suction nozzle” and “the most recently formed powder”. It is required to be larger than the gap I with the layer.
  • the dummy tooling has a size (axial dimension) that contributes to such a configuration.
  • the type of the dummy tooling 74 ′ is not particularly limited as long as the lower level of the dummy tooling 74 ′ is higher than the tip level A of the suction nozzle when attached to the main shaft.
  • the axial dimension of the dummy tooling 74 ′ is preferably not longer than necessary, and may be the same axial dimension as, for example, the tooling 74 (that is, the tooling used for the surface cutting process).
  • the dummy tooling 74 ′ may be the same type as the tooling 74 ′. That is, the dummy tooling 74 'may be of the same type as the tooling used during the surface cutting process. For example, the tooling used during the surface cutting process may be used as it is as the dummy tooling 74 '.
  • the relative positional relationship between the “suction nozzle tip level” and the “cutting device tip level” may be changed by positively operating the suction nozzle (FIG. 12). reference). More specifically, the suction nozzle is driven so that “the tip level A of the suction nozzle” is lower than the “tip level B of the cutting device”, whereby “the tip level A of the suction nozzle” and “ You may change relative positional relationship with the front-end
  • the “suction nozzle tip level A” is 0 (not including 0) mm to 15 mm below, preferably 2 mm to 10 mm below the “cutting device tip level B”.
  • the relative positional relationship may be changed.
  • the suction nozzle can be moved up and down, and the suction nozzle is lowered before the suction removal. As shown in FIG. 12, prior to the suction removal operation, the suction nozzle is lowered until the “suction nozzle tip level” becomes lower than the “cutting device tip level”. The suction nozzle is used for suction removal in a state where the lowering level is maintained. Thus, even if the suction nozzle is positively operated, the “suction removal of the suction nozzle” can be performed more efficiently without being obstructed by the cutting device.
  • the suction port of the suction nozzle is brought close to the surface of the powder layer in the present invention.
  • the separation distance between “the tip level A of the suction nozzle” and “the powder layer formed closest” is particularly suitable for suction removal.
  • the separation distance (separation distance along the stacking direction) between “the tip level A of the suction nozzle” and “the powder layer formed most recently” is within 5 mm, that is, 0 (not including 0) ) To 5 mm is preferable.
  • the separation distance is within 1 mm, that is, 0 (not including 0) to 1 mm, and more preferably about 0.4 mm to 1.0 mm. This is because, as demonstrated in FIG. 13, if the suction nozzle is moved in a state where the tip level A of the suction nozzle is closer to the “most recently formed powder layer”, the powder around the solidified layer can be efficiently removed. It is. The “uppermost formed powder layer” and the “most recently formed solidified layer” are substantially flush with each other before suction removal. Therefore, the separation distance between “the tip level A of the suction nozzle” and “the powder layer formed closest” is “the tip level A of the suction nozzle” and “the solidified layer formed closest”. It is synonymous with the separation distance between.
  • the suction nozzle is provided at a position offset by a predetermined amount from the longitudinal axis (for example, main axis) of the cutting device.
  • the movement path of the suction nozzle during the suction process may be a path that takes into account the offset amount between the main shaft of the cutting device and the suction nozzle. That is, the suction path of the suction nozzle may be a path shifted by “the offset amount between the main shaft of the cutting device and the suction nozzle” from the movement path of the cutting tool.
  • the powder biting between the surface of the shaped object and the cutting tool is performed.
  • the resulting tool breakage trouble can be reduced.
  • the average period until tool breakage can be increased by about 80 to 400% (this is just an example, but the “tool breakage average interval” under a certain condition is increased from about 30 to 50 hours to about 140 to 150 hours. Can increase up to).
  • the powder biting between the surface of the modeled object and the cutting tool is reduced, the load exerted on the surface of the modeled object during the cutting process can be reduced, and the surface smoothness of the modeled object can be improved.
  • the surface roughness Rz of the portion subjected to surface cutting can be preferably 6 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 4 ⁇ m or less.
  • the “surface roughness Rz” means “the height from the highest line to the highest peak” and “the lowest valley bottom” in the roughness curve (in the present invention, “cross-sectional profile of the solidified layer surface”). It means the roughness scale obtained by adding together the “depth to”.
  • the suction nozzle is operated to move horizontally, for example, and the suction conditions (for example, the suction amount and the moving speed of the nozzle) are appropriately set according to the thickness (depth) of the powder layer at the suction location. You may change it. To illustrate this, when the thickness of the powder layer is larger (that is, when the powder layer at the portion to be removed by suction is deeper), the suction amount of the suction nozzle may be increased. When the thickness of the powder layer is larger (that is, when the powder layer to be sucked and removed is deeper), the scanning speed of the suction nozzle may be reduced.
  • the suction conditions for example, the suction amount and the moving speed of the nozzle
  • the suction conditions may be appropriately changed according to the shape of the modeled object that is close to the location to be sucked.
  • a place where the powder layer is "broad" in the surroundings ie, a place where a relatively large amount of powder is present
  • suction by the suction nozzle is performed at a place where the powder layer is "broad” in the surroundings.
  • the amount may be larger.
  • the suction amount of the suction nozzle is made smaller at locations where the powder layer is “narrow” in the vicinity, such as suction locations in the vicinity of the rib portion of the modeled object (that is, locations where there is relatively little powder around). You can do it.
  • the scanning speed of the suction nozzle may be further reduced at a location where the powder layer exists “broadly” around the suction location in the vicinity of the outer portion of the modeled object.
  • the scanning speed of the suction nozzle may be further increased at a location where the powder layer is “narrow” around the suction location in the vicinity of the rib portion of the modeled object.
  • the apparatus includes a powder layer forming unit 2, a light beam irradiation unit 3, a modeling table 20, and a suction nozzle 60.
  • the powder layer forming means 2 is a means for forming a powder layer
  • the light beam irradiation means 3 is formed on the powder layer so that a solidified layer is formed. It is a means for irradiating a light beam.
  • the modeling table 20 is a base on which a powder layer and / or a solidified layer is formed.
  • the suction nozzle 60 is for sucking powder in the powder layer.
  • the manufacturing apparatus of the present invention is configured to change the relative positional relationship between the tip level A of the suction nozzle and the tip level B of the cutting device.
  • “configured so that the relative positional relationship can be changed” means that the configuration of the cutting device can be positively changed prior to suction removal of the powder, or suction.
  • the nozzle can be moved up and down.
  • the cutting device has a headstock, a tooling, and a cutting tool
  • “the suction nozzle can be raised and lowered” means that the suction nozzle can be moved up and down by using, for example, a drive mechanism.
  • the tip level B of the cutting device is thereby higher than the tip level A of the suction nozzle.
  • the shape of the cutting device can be changed.
  • the suction nozzle can be moved up and down as described above, the suction nozzle can be driven so that the tip level A of the suction nozzle is lower than the tip level B of the cutting device. .
  • the suction nozzle and the cutting device are provided adjacent to each other.
  • the suction nozzle 60 and the cutting device 70 are provided adjacent to each other so that the shaft 60a of the suction nozzle 60 and the tool shaft 70a of the cutting device 70 are substantially parallel to each other.
  • the suction nozzle and the cutting device are preferably provided so that the longitudinal axis of the thin tube portion 62 of the suction nozzle and the longitudinal axis of the cutting tool of the cutting device are substantially parallel.
  • substantially parallel does not have to be completely “parallel”, but may be slightly deviated therefrom (for example, an embodiment in which the angle ⁇ shown in FIG. 9 is about 0 ° to 10 °). Means good.
  • the “mode for changing the configuration of the cutting device” and the “mode for positively operating the suction nozzle” have been described separately.
  • the two modes are implemented in parallel. Also good.
  • the “mode for changing the configuration of the cutting device” may be implemented, and the “mode for positively operating the suction nozzle” may also be implemented.
  • the powder sucked and removed by the suction nozzle may be used again for the production of a shaped article. That is, the sucked and removed powder may be recycled. For example, the sucked and removed powder may be automatically sieved and returned to the material powder tank.
  • the suction removal by the suction nozzle may be performed at the time of forming the solidified layer and / or the surface cutting process.
  • the powder may be removed by suction during solidified layer formation or surface cutting treatment.
  • the amount of inert gas injected into the chamber may be increased during suction removal by the suction nozzle. This is because an atmospheric gas (for example, a gas containing nitrogen gas) is sucked into the suction nozzle during suction removal, and the oxygen concentration in the chamber can be increased. That is, by increasing the inert gas injection amount, the inert gas atmosphere can be suitably maintained during suction removal.
  • the resulting three-dimensional shaped article is a plastic injection mold, a press mold, a die-cast mold, It can be used as a mold such as a casting mold or a forging mold.
  • the powder layer is an organic resin powder layer and the solidified layer is a cured layer
  • the obtained three-dimensional shaped article can be used as a resin molded product.

Abstract

 "工具折損トラブル"などの不都合を減じることができる粉末焼結積層法を提供すること。本発明の製造方法は、(i)粉末層の所定箇所に光ビームを照射して前記所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および、(ii)得られた固化層の上に新たな粉末層を形成し、該新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程によって粉末層形成および固化層形成を繰り返して行う三次元形状造形物の製造方法であって、固化層および/または三次元形状造形物が得られた後において固化層および/または三次元形状造形物の表面に切削デバイスで表面切削処理を施す工程を少なくとも1回含み、表面切削処理に先立っては、固化層および/または三次元形状造形物の周囲の粉末を吸引ノズルによって吸引除去し、また、吸引除去に際しては、吸引ノズルの先端レベルAが切削デバイスの先端レベルBよりも低い位置になるように先端レベルAと該先端レベルBとの相対的な位置関係を変更し、また、吸引ノズルおよび切削デバイスが相互に隣接して設けられた状態で吸引ノズルを吸引除去に用いることを特徴とする、三次元形状造形物の製造方法である。

Description

三次元形状造形物の製造方法およびその製造装置
 本発明は、三次元形状造形物の製造方法およびその製造装置に関する。より詳細には、本発明は、粉末層の所定箇所に光ビームを照射して固化層を形成することを繰り返し実施することによって複数の固化層が積層一体化した三次元形状造形物を製造する方法およびそのための装置に関する。
 従来より、粉末材料に光ビームを照射して三次元形状造形物を製造する方法(一般的には「粉末焼結積層法」と称される)が知られている。かかる方法では、以下の工程(i)および(ii)を繰り返して三次元形状造形物を製造している(特許文献1または特許文献2参照)。
 (i)粉末層の所定箇所に光ビームを照射することよって、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程。
 (ii)得られた固化層の上に新たな粉末層を敷いて同様に光ビームを照射して更に固化層を形成する工程。
 粉末材料として金属粉末やセラミック粉末などの無機質の粉末材料を用いた場合では、得られた三次元形状造形物を金型として用いることができる。一方、樹脂粉末やプラスチック粉末などの有機質の粉末材料を用いた場合では、得られた三次元形状造形物をモデルとして用いることができる。このような製造技術に従えば、複雑な三次元形状造形物を短時間で製造することが可能である。
 粉末材料として金属粉末を用い、得られる三次元形状造形物を金型として用いる場合を例にとる。図1に示すように、まず、所定の厚みt1の粉末層22を造形プレート21上に形成した後(図1(a)参照)、光ビームを粉末層22の所定箇所に照射して、造形プレート21上において固化層24を形成する(図1(b)参照)。そして、形成された固化層24の上に新たな粉末層22を敷いて再度光ビームを照射して新たな固化層を形成する。このように繰り返し固化層を形成すると、複数の固化層24が積層一体化した三次元形状造形物を得ることができる。最下層に相当する固化層は造形プレート面に接着した状態で形成され得るので、三次元形状造形物と造形プレートとは相互に一体化した状態となり、そのまま金型として用いることができる。
 光ビームの照射で得られる三次元形状造形物は、その表面が比較的粗く、一般的に数100μmRz程度の表面粗さを有している。これは、固化層表面に粉末が付着するからである。固化層形成時では、光ビーム・エネルギーが熱に変換されるので照射粉末がいったん溶融してから冷却過程で粉末同士が融着する。この際、光ビームが照射されるポイントの周辺の粉末領域の温度も上昇し得るため、当該周辺の粉末が固化層表面に付着してしまう。かかる付着粉末は三次元形状造形物に“表面粗”さをもたらすことになるので、三次元形状造形物の表面を切削加工する必要がある。即ち、得られる三次元形状造形物の表面を全体的に切削加工に付す必要がある。
特表平1−502890号公報 特開2000−73108号公報
 粉末焼結積層法の切削加工処理において、本願発明者らは、造形物周囲に粉末が存在すると、工具折損トラブルがより多く発生し得るといった現象を見出した(図14(a)参照)。特定の理論に拘束されるわけではないが、造形物表面と切削工具との間に粉末が噛み込むことで切削工具に掛かる負荷が増加することが要因の1つとして考えられる。
 また、造形物周囲に粉末が存在すると、造形物表面に不必要な負荷がもたらされ、造形物の表面平滑性が損なわれ得るといった現象も見出した(図14(b)参照)。これも、造形物表面と切削工具との間の粉末の噛込みが原因の1つとして考えられる。
 本発明は、かかる事情に鑑みて為されたものである。即ち、本発明の課題は、“工具折損トラブル”などの不都合を減じることができる粉末焼結積層法を提供することである。
 上記課題を解決するために、本発明では、(i)および(ii)の工程で粉末層形成および固化層形成を繰り返して行い、以下の如くの(a)~(c)の特徴を有する三次元形状造形物の製造方法が提供される。
 (i)粉末層の所定箇所に光ビームを照射して当該所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程。
 (ii)得られた固化層の上に新たな粉末層を形成し、その新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程。
 (a)固化層および/または三次元形状造形物が得られた後において固化層および/または三次元形状造形物の表面に切削デバイスで表面切削処理を施す工程を少なくとも1回含む。
 (b)表面切削処理に先立っては、固化層および/または三次元形状造形物の周囲の粉末を吸引ノズルで吸引除去する。
 (c)吸引除去に際しては「吸引ノズルの先端レベルA」と「切削デバイスの先端レベルB」との相対的な位置関係を変更する。
 ある好適な態様では、切削デバイスの先端レベルBが吸引ノズルの先端レベルAよりも上方となるように切削デバイスの形態を変え、それによって、「吸引ノズルの先端レベルA」と「切削デバイスの先端レベルB」との相対的な位置関係を変更する。例えば、切削デバイスが、主軸台、ツーリングおよび切削工具を有して成る場合、ツーリングおよび切削工具の代わりにダミー・ツーリングのみを主軸台に取り付けた状態としてよい。そして、かかる「ダミー・ツーリングのみを主軸台に取り付けた状態」でもって吸引ノズルの吸引除去を実施する。ダミー・ツーリングは例えばツーリングと同一種のツーリングであってよい。別法として、ツーリングおよび切削工具を主軸から取り外した状態とし、かかる「ツーリングおよび切削工具を主軸から取り外した状態」でもって吸引ノズルの吸引除去を実施してもよい。
 別のある好適な態様では、「吸引ノズルの先端レベルA」が「切削デバイスの先端レベルB」よりも下方レベルとなるように吸引ノズルを駆動させ、「吸引ノズルの先端レベルA」と「切削デバイスの先端レベルB」との相対的な位置関係を変更する。
 別のある好適な態様では、吸引除去時において「最直近にて形成された粉末層」と「吸引ノズルの先端レベルA」との間の離隔距離は5mm以内とする。
 別のある好適な態様では、吸引ノズルと切削デバイスとが相互に隣接して設けられた状態となっており、このように相互に隣接した状態で吸引ノズルの吸引除去を実施する。
 本発明では、上記製造方法を実施するための三次元形状造形物の製造装置も提供される。かかる本発明の製造装置は、粉末層形成手段、光ビーム照射手段、造形テーブル、吸引ノズル、ならびに、切削デバイスを有して成る。粉末層形成手段は、粉末層を形成するための手段である。光ビーム照射手段は、固化層が形成されるように粉末層に光ビームを照射するための手段である。造形テーブルは、その上に粉末層および/または固化層が形成されることになるテーブルである。吸引ノズルは、粉末層の少なくとも一部の粉末を吸引除去するための器具である。そして、切削デバイスは、固化層および当該固化層から形成される三次元形状造形物に対して表面切削処理を施すための機械である。特に本発明の製造装置では「吸引ノズルの先端レベルA」と「切削デバイスの先端レベルB」との相対的な位置関係を変更できるように構成されている。
 本発明の製造装置のある好適な態様では、切削デバイスが、主軸台、ツーリングおよび切削工具を有して成り、かかるツーリングと取り替えることができるダミー・ツーリングを別途備えている。
 別のある好適な態様では、吸引ノズルの軸と切削デバイスの軸とが略平行となるように吸引ノズルおよび切削デバイスが相互に隣接して配置されている。
 本発明に従えば、固化層および/または三次元形状造形物の周囲の粉末が表面切削処理に先立って吸引除去されるので、“造形物表面と切削工具との間の粉末噛込みに起因した工具折損トラブル”を減じることができる。また、造形物表面と切削工具との間の粉末噛込みが減じられるので、切削処理に際して造形物表面に及ぼされる負荷を減少させることができ、造形物の表面平滑性を向上させることができる。
 粉末の吸引除去は吸引ノズルによって粉末層に局所的に施すことができるので、効率的に行うことができ、三次元形状造形物の製造時間への影響は少ない。特に本発明では“吸引ノズルの吸引除去”が切削デバイスによって阻害されないので、その点でより効率的な吸引除去が可能となる。具体的には、吸引除去処理において吸引ノズルを水平移動させて操作する際(例えば、吸引ノズルを造形物の断面輪郭に沿って周回するように水平移動させる場合)、切削デバイスと造形物との衝突を回避できる。
粉末焼結積層法を説明するための断面図 粉末焼結積層法を実施するための装置を模式的に示した斜視図(図2(a):切削機構を備えた光造形複合加工機、図2(b):切削機構を備えていない装置) 粉末焼結積層法が行われる態様を模式的に示した斜視図 粉末焼結積層法を表面切削処理と併せて実施する装置(光造形複合加工機)の構成を模式的に示した斜視図 光造形複合加工機の動作のフローチャート 光造形複合加工機によるプロセスを経時的に示した模式図 本発明の概念(本発明の製造方法の概念/本発明の製造装置の構成概念)を模式的に表した図 本発明における“吸引ノズル”を説明するための図 吸引ノズルおよび切削デバイスの配置態様を示す模式図 “切削デバイスの形態を変える態様”を説明するための模式図 “ダミー・ツーリングを用いる態様”に関連した模式図 “吸引ノズルに対して積極的に操作を施す態様”を説明するための模式図 本発明に関連する実証実験を説明するための図・グラフ 本願発明者らが見出した現象を説明するための図・写真図
 以下では、図面を参照して本発明をより詳細に説明する。図面における各種要素の形態・寸法などは、あくまでも例示であって、実際の形態・寸法を反映するものではないことに留意されたい。
 本明細書において「粉末層」とは、例えば「金属粉末から成る金属粉末層」または「樹脂粉末から成る樹脂粉末層」を指している。また「粉末層の所定箇所」とは、製造される三次元形状造形物の領域を実質的に意味している。従って、かかる所定箇所に存在する粉末に対して光ビームを照射することによって、その粉末が焼結又は溶融固化して三次元形状造形物を構成することになる。更に「固化層」とは、粉末層が金属粉末層である場合には「焼結層」を実質的に意味しており、粉末層が樹脂粉末層である場合には「硬化層」を実質的に意味している。
 本明細書において「上方」とは造形物の製造時にて固化層が積層される方向を実質的に意味している一方、「下方」とは、当該“上方”と真逆の方向(即ち、鉛直方向)を実質的に意味している。
[粉末焼結積層法]
 まず、本発明の製造方法の前提となる粉末焼結積層法について説明する。説明の便宜上、材料粉末タンクから材料粉末を供給し、スキージング・ブレードを用いて材料粉末を均して粉末層を形成する態様を前提として粉末焼結積層法を説明する。また、粉末焼結積層法に際しては造形物の切削加工をも併せて行う複合加工の態様を例に挙げて説明する(つまり、図2(b)ではなく図2(a)に表す態様を前提とする)。図1、3および4には、粉末焼結積層法と切削加工とを実施できる光造形複合加工機の機能および構成が示されている。光造形複合加工機1は、粉末層形成手段2と、造形テーブル20と、造形プレート21と、光ビーム照射手段3と、切削手段4とを主として備えている。粉末層形成手段2は、金属粉末および樹脂粉末などの粉末を所定の厚みで敷くことによって粉末層を形成するためのものである。造形テーブル20は、外周が壁27で囲まれた造形タンク29内において上下に昇降できるテーブルである。造形プレート21は、造形テーブル20上に配され造形物の土台となるプレートである。光ビーム照射手段3は、光ビームLを任意の位置に照射するための手段である。切削手段4は、造形物表面(特に側面)を削るための機械加工手段である。
 粉末層形成手段2は、図1に示すように、「外周が壁26で囲まれた材料粉末タンク28内において上下に昇降する粉末テーブル25」と「造形プレート上に粉末層22を形成するためのスキージング・ブレード23」とを主として有して成る。光ビーム照射手段3は、図3および図4に示すように、「光ビームLを発する光ビーム発振器30」と「光ビームLを粉末層22の上にスキャニング(走査)するガルバノミラー31(スキャン光学系)」とを主として有して成る。光ビーム照射手段3には、光ビームスポットの形状を補正するビーム形状補正手段(例えば一対のシリンドリカルレンズと、かかるレンズを光ビームの軸線回りに回転させる回転駆動機構とを有して成る手段)やfθレンズなどが具備されていてよい。切削手段4は「造形物の周囲を削るミーリングヘッド40」と「ミーリングヘッド40を切削箇所へと移動させるXY駆動機構41(41a,41b)」とを主として有して成る(図3および図4参照)。
 光造形複合加工機1の動作を図1、図5および図6を参照して詳述する。図5は、光造形複合加工機の一般的な動作フローを示しており、図6は、光造形複合加工機のプロセスを模式的に示している。
 光造形複合加工機の動作は、粉末層22を形成する粉末層形成ステップ(S1)と、粉末層22に光ビームLを照射して固化層24を形成する固化層形成ステップ(S2)と、造形物の表面を切削する表面切削ステップ(S3)とから主に構成されている。粉末層形成ステップ(S1)では、最初に造形テーブル20をΔt1下げる(S11)。次いで、粉末テーブル25をΔt1上げた後、図1(a)に示すように、スキージング・ブレード23を、矢印aの水平方向に移動させる。これにより、粉末テーブル25に配されていた粉末を造形プレート21上へと移送させつつ(S12)、所定厚みΔt1に均して粉末層22を形成する(S13)。粉末層の粉末としては、例えば「平均粒径5μm~100μm程度の鉄粉」および「平均粒径30μm~100μm程度のナイロン、ポリプロピレン、ABS等の粉末」を挙げることができる。次に、固化層形成ステップ(S2)に移行し、光ビーム発振器30から光ビームLを発し(S21)、光ビームLをガルバノミラー31によって粉末層22上の任意の位置にスキャニングする(S22)。これにより、粉末を溶融させ、固化させて造形プレート21と一体化した固化層24を形成する(S23)。光ビームLとしては、例えば炭酸ガスレーザ(500W程度)、Nd:YAGレーザ(500W程度)、ファイバレーザ(500W程度)および紫外線などを挙げることができる。光ビームLは、空気中を伝達させることに限定されず、光ファイバーなどで伝送させてもよい。
 固化層24の厚みがミーリングヘッド40の工具長さ等から求めた所定厚みになるまで粉末層形成ステップ(S1)と固化層形成ステップ(S2)とを繰り返し、固化層24を積層する(図1(b)参照)。尚、新たに積層される固化層は、焼結又は溶融固化に際して、既に形成された下層を成す固化層と一体化することになる。
 積層した固化層24の厚みが所定の厚みになると、表面切削ステップ(S3)へと移行する。図1および図6に示すような態様ではミーリングヘッド40を駆動させることによって切削ステップの実施を開始している(S31)。例えば、ミーリングヘッド40の工具(ボールエンドミル)が直径1mm、有効刃長さ3mmである場合、深さ3mmの切削加工ができるので、Δt1が0.05mmであれば、60層の固化層を形成した時点でミーリングヘッド40を駆動させる。XY駆動機構41(41a,41b)によってミーリングヘッド40を矢印X及び矢印Y方向に移動させ、積層した固化層24から成る造形物に対して表面切削処理を施す(S32)。そして、三次元形状造形物の製造が依然終了していない場合では、粉末層形成ステップ(S1)へ戻ることになる。以後、S1乃至S3を繰り返して更なる固化層24の積層を継続することによって、三次元形状造形物の製造を行う(図6参照)。
 固化層形成ステップ(S2)における光ビームLの照射経路と、表面切削ステップ(S3)における切削加工経路とは、予め三次元CADデータから作成しておく。この時、等高線加工を適用して加工経路を決定する。例えば、固化層形成ステップ(S2)では、三次元CADモデルから生成したSTLデータを等ピッチ(例えばΔt1を0.05mmとした場合では0.05mmピッチ)でスライスした各断面の輪郭形状データを用いる。
[本発明の製造方法]
 本発明は、上述した粉末焼結積層法のなかでも、表面切削処理時の態様に特徴を有している。
 本発明の製造方法は、固化層および/または三次元形状造形物が得られた後においてそれらの表面(特に側面)に切削デバイスでもって表面切削処理を施す工程を少なくとも1回含んでいる。本発明では、かかる表面切削処理に先立って固化層および/または三次元形状造形物の周囲の粉末を吸引ノズルで除去することを実施し、かかる吸引除去に際して吸引ノズルと切削デバイスとの相対的な位置関係を変更する(図7参照)。
 より具体的には、本発明では「吸引ノズルの先端レベルA」と「切削デバイスの先端レベルB」との相対的な位置関係を吸引除去処理に先立って変更する。つまり、粉末の吸引除去に先立って「吸引ノズルの吸引口部」と「切削デバイスの切削側部品」との垂直方向レベル(高さレベル)を相対的に変更する。
 本発明にいう「吸引ノズル」とは、広義には、粉末層の粉末を吸い込むことができるデバイスのことを意味している。“ノズル”ゆえ、粉末の吸込みに供する部分が筒形態(特に細筒形態)を有していることが好ましい(かかる観点から、本発明における吸引ノズルは“筒状吸引デバイス”と称すこともできる)。例えば図7に示されるように、吸引ノズル60は、細筒部62と、その細筒部に接続された吸引器具64とから少なくとも構成され得る。
 吸引ノズルの細筒部は、その内径が好ましくは0.5~18mm、より好ましくは1.5mm~15mm、更に好ましくは1.8mm~10mmとなっている。また、吸引ノズルの細筒部62は、図8に示されるように、先端側がより狭窄した形態を有していることが好ましい。かかる場合、狭窄部分の内径は、好ましくは0.5mm~5mm、より好ましくは0.5mm~3mmとなっている。このように細筒部の先端が狭窄した形態になっていると、吸引時の流速(吸引口部の粉末流速)が速くなるので吸引効率が向上し得る。
 図8に示されるように、吸引ノズルの細筒部62は、連結ホース66を介して吸引器具64に接続されていることが好ましい。吸引器具64は例えばサイクロン集塵機であってよく、連結ホース66は例えばフレキシブルホースであってよい。
 本発明にいう「切削デバイス」とは、固化層及びそれから得られる三次元形状造形物の表面(特に側面部分)に対して表面切削処理を施すことができる機械のことを実質的に意味している。例えば、切削デバイスは、汎用の数値制御(NC:Numerical Control)工作機械またはそれに準ずるものである。特に、切削工具(エンドミル)を自動交換可能なマシニングセンタ(MC)であることが好ましい。
 図7に示されるように、かかる切削デバイス70は、例えば「主軸台72」、「主軸台に取り付けられたツーリング74」および「ツーリングに取り付けられた切削工具76」を少なくとも有して成る。切削デバイスのツーリング74は、主軸台72と切削工具76との間に設けられるものであり、切削工具76の保持固定に供する(かかる観点から、本発明におけるツーリングは“工具保持具”とも称すことができる)。切削デバイスの切削工具76は、エンドミル、例えば超硬素材の二枚刃ボールエンドミル、スクエアエンドミル、ラジアスエンドミルなどであってよい。
 尚、切削デバイスの「先端レベルB」とは、直接的および間接的に切削に資することになる機械部品における下端部レベルのことを実質的に意味している。より具体的には、切削デバイスのうち主軸台、ツーリングおよび切削工具などが備えられた部分に相当する“切削側部品”における下端部レベルのことを意味している。
 本発明において、吸引ノズルと切削デバイスとは相互に隣接して設けられていることが好ましい。具体的には、図9に示すように、吸引ノズル60の軸60aと切削デバイス70の軸70aとが略平行となるように吸引ノズル60および切削デバイス70が相互に隣接していることが好ましい。「吸引ノズルの軸」とは、例えば吸引ノズルの細筒部の長手方向軸を意味する一方、「切削デバイスの軸」とは、例えば切削工具の長手方向軸、ツーリングもしくはダミー・ツーリングの長手方向軸または主軸の中央軸を意味している。尚、「相互に隣接している」とは、例えば吸引ノズル60の軸60aと切削デバイス70の軸70aとの離隔距離GまたはG’(図9参照)が好ましくは10mm~40mm、更に好ましくは15mm~30mmとなっていることを意味している。
 表面切削処理に先立って行われる吸引除去に際しては、吸引ノズルを例えば水平方向に動かすように操作する。つまり、吸引ノズルの高さレベル(固化層の積層方向に沿った垂直方向の位置レベル)を実質的に変えることなく吸引ノズルを移動させる。換言すれば、「最直近にて形成された粉末層および/または固化層」の上方において吸引ノズルを移動させるが、当該粉末層および/または固化層に対する垂直方向の離隔距離を変えずに吸引ノズルを移動させる。上述の如く吸引ノズルと切削デバイスとが相互に隣接して設けられている場合では、水平方向にて切削デバイスと隣接した設置状態で吸引ノズルが吸引除去に用いられることになる。
 本発明の製造方法では、吸引除去に先立って「吸引ノズルの先端レベルA」と「切削デバイスの先端レベルB」との相対的な位置関係を変更するが、かかる変更は、例えば切削デバイスの形態を変えることによって行ってよい。より具体的には、「切削デバイスの先端レベルB」が「吸引ノズルの先端レベルA」よりも上方となるように「切削デバイスの形態を変え、それによって、「吸引ノズルの先端レベルA」と「切削デバイスの先端レベルB」との相対的な位置関係を変更してよい。あくまでも例示にすぎないが、「切削デバイスの先端レベルB」が「吸引ノズルの先端レベルA」よりも0(0を含まず)mm~15mm上方、好ましくは2mm~10mm上方となるようにそれらの相対的な位置関係を変更してよい。
 本発明にいう「切削デバイスの形態を変える」とは、吸引除去に先立って切削デバイスの外輪郭が全体として変わるように変化させることを意味している。例えば、切削デバイスの構成要素を積極的に変えることによって、切削デバイスの外輪郭を全体として変えることを意味している。
 “切削デバイスの形態を変える態様”は、切削デバイスの構成要素を部分的に取り外した状態とすることによって達成してよい。例えば切削デバイスが、主軸台72、ツーリング74および切削工具76を有して成る場合、図10(a)および(b)に示すように、「ツーリング74および切削工具76を主軸台72から取り外した状態」としてもよい。換言すれば、「ツーリング74および切削工具76を主軸台72から取り外した状態」でもって、吸引ノズルによる吸引除去を実施してよい。かかる場合、吸引除去処理の前に、切削機械の主軸台72からツーリング74および切削工具76を取り外し、その取り外した状態を維持して吸引除去を引き続いて実施する。ツーリング74および切削工具76を取り外すと、切削デバイスの全体レベルが吸引ノズルの先端レベルAよりも上方となる。つまり、露出した主軸台72の下面のレベルが吸引ノズルの先端レベルAよりも上方に位置するので、切削デバイスによって阻害されずに“吸引ノズルの吸引除去”を効率的に実施できることになる。尚、吸引ノズルと切削デバイスとが相互に隣接して設けられている場合、切削デバイスの主軸台と隣接した状態で吸引ノズルが吸引除去に用いられることになる。
 “切削デバイスの形態を変える態様”は、図10(a)および(c)に示すように、ツーリング74および切削工具76の代わりに「ダミー・ツーリング74’のみを主軸台72に取り付けた状態」によって達成してもよい。つまり、「ダミー・ツーリング74’のみを主軸台72に取り付けた状態」でもって、吸引ノズルによる吸引除去を実施してよい。これは、吸引除去時にはダミー・ツーリングにエンドミルなどが設けられていない状態となっている(ツーリングの端面から下方側に何も設けられていない切削デバイスとなっている)ことを意味している。
 本発明における「ダミー・ツーリング」とは、切削工具を保持するためのツーリングではなく、吸引ノズルと切削デバイスとの相対的な位置関係を変更するためのツーリングを意味している。つまり、吸引ノズルと切削デバイスとの相対的な位置関係の変更に専ら資するツーリングが本発明におけるダミー・ツーリングに相当する。
 ダミー・ツーリングの態様では、吸引除去操作に先立って、切削機械の主軸台72からツーリング74および切削工具76を取り外した後、ダミー・ツーリング74’を主軸台72に取り付ける。ダミー・ツーリング74’を主軸台72に設けた後、その状態で吸引除去を引き続いて実施する。ダミー・ツーリング74’のみを主軸台に取り付けた状態とすることによって、切削デバイスの全体レベルが吸引ノズルの先端レベルAよりも上方となる。つまり、ダミー・ツーリング74’の下面のレベルが吸引ノズルの先端レベルAより上方に位置するので、切削デバイスによって阻害されずに“吸引ノズルの吸引除去”を効率的に実施できる。尚、吸引ノズルと切削デバイスとが相互に隣接して設けられている場合、切削デバイスのダミー・ツーリングと隣接した状態で吸引ノズルが吸引除去に用いられることになる。
 図11を参照して詳述する。表面切削処理時には所定距離P(“切削時のツーリング”と“最直近形成の固化層”とのギャップ)以上の長さを少なくとも有する切削工具を用いる(例えば、ツール番号や切削工具長さなどは一定とする)。これにより、固化層の側面に対して好適に表面切削処理を施すことができる。吸引ノズルは、その先端レベルが少なくとも“最直近形成の粉末層”よりも上方となるように設ける(即ち、“最直近形成の固化層”よりも上方となるように設ける)。一方、ダミー・ツーリングが用いられる場合、主軸に取り付けられたダミー・ツーリングについて、その下端部と“最直近形成の固化層”とのギャップHが“吸引ノズルの先端”と“最直近形成の粉末層”とのギャップIよりも大きくなることが求められる。換言すれば、そのような形態に資することになるサイズ(軸方向寸法)をダミー・ツーリングは有している。
 ダミー・ツーリング74’は、主軸に取り付けられると、その下部レベルが吸引ノズルの先端レベルAよりも上方となるようなものであれば、その種類に特に制限はない。この点、ダミー・ツーリング74’の軸方向寸法は、必用以上に長くないものが好ましく、例えばツーリング74(即ち、表面切削処理に用いられるツーリング)と同じ軸方向寸法であってよい。
 あくまでも例示にすぎないが、ダミー・ツーリング74’は、ツーリング74’と同一種であってよい。つまり、ダミー・ツーリング74’が、表面切削処理時に用いられるツーリングと同じ種類のものであってよい。例えば、ダミー・ツーリング74’として、表面切削処理時に用いるツーリングをそのまま利用してもよい。
 本発明の製造方法では、吸引ノズルに対して積極的に操作を施して「吸引ノズルの先端レベル」と「切削デバイスの先端レベル」との相対的な位置関係を変更してもよい(図12参照)。より具体的には、「吸引ノズルの先端レベルA」が「切削デバイスの先端レベルB」よりも下方レベルとなるように吸引ノズルを駆動させ、それによって、「吸引ノズルの先端レベルA」と「切削デバイスの先端レベルB」との相対的な位置関係を変更してもよい。あくまでも例示にすぎないが、「吸引ノズルの先端レベルA」が「切削デバイスの先端レベルB」よりも0(0を含まず)mm~15mm下方、好ましくは2mm~10mm下方となるようにそれらの相対的な位置関係を変更してよい。
 かかる場合、吸引ノズルは昇降可能となっており、吸引除去に先立っては吸引ノズルを降下させる。図12に示すように、吸引除去操作に先立って「吸引ノズルの先端レベル」が「切削デバイスの先端レベル」よりも下方レベルとなるまで吸引ノズルを降下させる。吸引ノズルは、その降下レベルが維持された状態で吸引除去に用いられる。このように吸引ノズルに対して積極的に操作を施すことによっても、切削デバイスによって阻害されず“吸引ノズルの吸引除去”をより効率的に実施できる。
 “切削デバイスの形態を変える態様”であれ、“吸引ノズルに対して積極的に操作を施す態様”であれ、本発明では、吸引ノズルの吸引口を粉末層の表面に近づけて好適に吸引除去を実施できる。特に、吸引除去時においては「吸引ノズルの先端レベルA」と「最直近にて形成された粉末層」との間の離隔距離を吸引除去に特に好適なものとすることが好ましい。例えば、「吸引ノズルの先端レベルA」と「最直近にて形成された粉末層」との間の離隔距離(積層方向に沿った離隔距離)は、5mm以内、即ち、0(0を含まず)~5mmとすることが好ましい。より好ましくは、かかる離隔距離は1mm以内、即ち、0(0を含まず)~1mmとすること、更に好ましくは0.4mm~1.0mm程度とする。これは、図13で実証されている如く、吸引ノズルの先端レベルAを「最直近形成の粉末層」により近づけた状態で吸引ノズルを移動させると、固化層周囲の粉末を効率良く除去できるからである。尚、「最直近にて形成された粉末層」と「最直近にて形成された固化層」とは、吸引除去前において、それらの上面が略面一となっている。よって、「吸引ノズルの先端レベルA」と「最直近にて形成された粉末層」との間の離隔距離は、「吸引ノズルの先端レベルA」と「最直近にて形成された固化層」との間の離隔距離と同義である。
 吸引ノズルと切削デバイスとが相互に隣接して設けられている場合では、切削デバイスの長手方向軸(例えば主軸)から所定量オフセットした位置に吸引ノズルが設けられていることになる。かかる場合、吸引処理時における吸引ノズルの移動経路は、切削デバイスの主軸と吸引ノズルとの間のオフセット量を考慮した経路となってよい。つまり、吸引ノズルの吸引経路が、切削工具の移動経路から「切削デバイスの主軸と吸引ノズルとの間のオフセット量」だけシフトした経路となるものであってよい。これにより、表面切削処理を施す固化層側面の周囲の粉末だけ局所的に除去することができる。
 本発明に従えば、表面切削処理に先立って固化層および/または三次元形状造形物の周囲の粉末が吸引ノズルで吸引除去されるので、造形物表面と切削工具との間の粉末噛込みに起因した工具折損トラブルを減じることができる。例えば工具折れまでの平均期間を80~400%程度増加させることができる(あくまでも例示にすぎないが、ある条件下における「工具折れ平均間隔」が30~50時間程度から約140~150時間程度にまで増加し得る)。また、造形物表面と切削工具との間の粉末噛込みが減じられるので、切削処理に際して造形物表面に及ぼされる負荷を減少させることができ、造形物の表面平滑性が向上し得る。例えば表面切削加工が施された箇所の表面粗さRzを、好ましくは6μm以下、より好ましくは5μm以下、更に好ましくは4μm以下とすることができる。ここで「表面粗さRz」とは、粗さ曲線(本発明でいうと「固化層表面の断面形状プロファイル」)において平均線から“最も高い山頂部までの高さ”と“最も低い谷底部までの深さ”とを足し合わせることによって得られる粗さ尺度を意味している。
 本発明の製造方法では、吸引ノズルを例えば水平移動させるように操作するが、吸引する箇所の粉末層厚み(深さ)に応じて吸引条件(例えば、吸引量やノズルの移動速度など)を適宜変えてもよい。これにつき例示すると、粉末層厚みがより大きい場合(即ち、吸引除去すべき箇所の粉末層がより深い場合)、吸引ノズルの吸引量をより大きくしてよい。粉末層厚みがより大きい場合(即ち、吸引除去すべき箇所の粉末層がより深い場合)では、吸引ノズルの走査速度を減じてもよい。
 また、吸引する箇所に近接する造形物の形状に応じて吸引条件(例えば、吸引量やノズルの移動速度など)を適宜変えてもよい。これにつき例示すると、造形物の外郭部の近傍における吸引箇所のように周囲に粉末層が“広範に”存在する箇所(即ち、周囲に粉末が比較的多く存在する箇所)では、吸引ノズルの吸引量をより大きくしてよい。一方、造形物のリブ部の近傍における吸引箇所のように周囲に粉末層が“狭く”存在する箇所(即ち、周囲に粉末が比較的少なく存在する箇所)では、吸引ノズルの吸引量をより小さくしてよい。同様にして、造形物の外郭部の近傍における吸引箇所のように周囲に粉末層が“広範に”存在する箇所では、吸引ノズルの走査速度をより減じてよい。一方、造形物のリブ部の近傍における吸引箇所のように周囲に粉末層が“狭く”存在する箇所では、吸引ノズルの走査速度をより増加させてよい。
[本発明の製造装置]
 次に、本発明の製造方法の実施に好適な装置について説明する。かかる装置は、図1、図2、図4、図5および図7に示すように、粉末層形成手段2、光ビーム照射手段3、造形テーブル20、吸引ノズル60を有して成る。上述の[粉末焼結積層法]で説明した如く、粉末層形成手段2は、粉末層を形成するための手段であり、光ビーム照射手段3は、固化層が形成されるように粉末層に光ビームを照射するための手段である。また、造形テーブル20は、粉末層および/または固化層が形成される土台となるものである。吸引ノズル60は、粉末層の粉末を吸引するためのものである。かかる装置の動作も含めて、「粉末層形成手段2」、「造形テーブル20」、「光ビーム照射手段3」、「吸引ノズル60」等については、上述の[粉末焼結積層法]および[本発明の製造方法]で説明しているので、重複を避けるために説明を省略する。
 特に、本発明の製造装置は、吸引ノズルの先端レベルAと切削デバイスの先端レベルBとの相対的な位置関係を変更できるように構成されている。ここでいう「相対的な位置関係を変更できるように構成されている」とは、粉末の吸引除去に先立って積極的に切削デバイスの形態を変えることができるようになっているか、あるいは、吸引ノズルが昇降可能となっていることを実質的に意味している。「積極的に切削デバイスの形態を変えることができるようになっている」とは、例えば、切削デバイスが、主軸台、ツーリングおよび切削工具を有して成る場合、かかるツーリングと取替え可能なダミー・ツーリングを備えているものとなっている。つまり、切削工具を保持するためのツーリングではなく、吸引ノズルと切削デバイスとの相対的な位置関係を変更するためのツーリングを別途備えている。また、「吸引ノズルが昇降可能となっている」とは、例えば駆動機構を利用することによって吸引ノズルを昇降移動できるようになっている。
 より具体的には、上記の如く積極的に切削デバイスの形態を変えることができるようになっている場合、それによって、切削デバイスの先端レベルBが吸引ノズルの先端レベルAよりも上方となるように切削デバイスの形態を変えることができる。同様にして、上記の如く吸引ノズルが昇降可能となっている場合、それによって、吸引ノズルの先端レベルAが切削デバイスの先端レベルBよりも下方レベルとなるように吸引ノズルを駆動させることができる。
 本発明の製造装置においては、吸引ノズルと切削デバイスとが相互に隣接して設けられていることが好ましい。具体的には、図9に示すように、吸引ノズル60の軸60aと切削デバイス70の工具軸70aとが略平行となるように吸引ノズル60および切削デバイス70が相互に隣接して設けられていることが好ましい。より具体的には、吸引ノズルの細筒部62の長手方向軸と、切削デバイスの切削工具の長手方向軸とが略平行となるように吸引ノズルおよび切削デバイスが設けられることが好ましい。ここでいう「略平行」とは、完全に“平行”でなくてもよく、それから僅かにずれた態様(例えば図9に示す角度αが0°~10°程度となる態様)であってもよいことを意味している。
 以上、本発明の実施形態について説明してきたが、本発明の適用範囲のうちの典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。例えば、以下の変更態様・追加態様が考えられる。
上述においては、“切削デバイスの形態を変える態様”と“吸引ノズルに対して積極的に操作を施す態様”とを別々に説明したが、本発明では当該2つの態様を並列的に実施してもよい。即ち、“切削デバイスの形態を変える態様”を実施すると共に、“吸引ノズルに対して積極的に操作を施す態様”をも実施してもよい。
本発明においては、吸引ノズルで吸引除去した粉末は造形物の製造に再度利用してもよい。即ち、吸引除去した粉末をリサイクルしてよく、例えば、吸引除去した粉末を自動ふるいにかけて、材料粉末タンクへと戻してもよい。本発明においては、吸引ノズルによる吸引除去は固化層形成時および/または表面切削処理時にも実施してよい。つまり、固化層形成中や表面切削処理中においても粉末を吸引除去を行ってもよい。かかる変更態様では、固化層形成時に発生するヒュームを除去できたり、表面切削処理時に発生する浮遊粉末や切り屑(切り粉)などを付加的に又は代替的に吸引除去できたりする。
本発明においては、吸引ノズルによる吸引除去時にチャンバー内の不活性ガス注入量を増やしてよい。なぜなら、吸引除去時には雰囲気ガス(例えば窒素ガスを含むガス)が吸引ノズルに吸い込こまれて、チャンバー内の酸素濃度が上昇し得るからである。つまり、不活性ガス注入量を増やすことによって、吸引除去時にて不活性ガス雰囲気を好適に維持することができる。
 本発明の三次元形状造形物の製造方法を実施することによって、種々の物品を製造することができる。例えば、『粉末層が無機質の金属粉末層であって、固化層が焼結層となる場合』では、得られる三次元形状造形物をプラスチック射出成形用金型、プレス金型、ダイカスト金型、鋳造金型、鍛造金型などの金型として用いることができる。また、『粉末層が有機質の樹脂粉末層であって、固化層が硬化層となる場合』では、得られる三次元形状造形物を樹脂成形品として用いることができる。
関連出願の相互参照
 本出願は、日本国特許出願第2013−144281号(出願日:2013年7月10日、発明の名称:「三次元形状造形物の製造方法およびその製造装置」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるものとする。
1  光造形複合加工機
2  粉末層形成手段
3  光ビーム照射手段
4  切削手段
19 粉末/粉末層(例えば金属粉末/金属粉末層または樹脂粉末/樹脂粉末層)
20 造形テーブル(支持テーブル)
21 造形プレート
22 粉末層(例えば金属粉末層または樹脂粉末層)
23 スキージング用ブレード
24 固化層(例えば焼結層または硬化層)またはそれから得られる三次元形状造形物
25 粉末テーブル
26 粉末材料タンクの壁部分
27 造形タンクの壁部分
28 粉末材料タンク
29 造形タンク
30 光ビーム発振器
31 ガルバノミラー
32 反射ミラー
33 集光レンズ
40 ミーリングヘッド
41 XY駆動機構
41a X軸駆動部
41b Y軸駆動部
42 ツールマガジン
50 チャンバー
52 光透過窓
60 吸引ノズル
62 吸引ノズルの細筒部
64 吸引器具
66 連結ホース
70 切削デバイス
72 主軸台
74 ツーリング
76 切削工具
100 本発明の製造装置の概念図
L 光ビーム

Claims (9)

  1.  (i)粉末層の所定箇所に光ビームを照射して該所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
     (ii)得られた固化層の上に新たな粉末層を形成し、該新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
    によって粉末層形成および固化層形成を繰り返して行う三次元形状造形物の製造方法であって、
     前記固化層および/または前記三次元形状造形物が得られた後において該固化層および/または該三次元形状造形物の表面に切削デバイスで表面切削処理を施す工程を少なくとも1回含み、
     前記表面切削処理に先立っては、前記固化層および/または前記三次元形状造形物の周囲の粉末を吸引ノズルによって吸引除去し、また
     前記吸引除去に際しては、前記吸引ノズルの前記先端レベルAが前記切削デバイスの前記先端レベルBよりも低い位置になるように該先端レベルAと該先端レベルBとの相対的な位置関係を変更し、また
     前記吸引ノズルおよひ前記切削デバイスが相互に隣接して設けられた状態で該吸引ノズルを前記吸引除去に用いることを特徴とする、三次元形状造形物の製造方法。
  2.  前記切削デバイスの形態を変えることによって前記先端レベルAと前記先端レベルBとの前記相対的な位置関係を変更することを特徴とする、請求項1に記載の三次元形状造形物の製造方法。
  3.  前記切削デバイスが、主軸台、ツーリングおよび切削工具を有して成り、
     前記ツーリングおよび前記切削工具の代わりにダミー・ツーリングのみを前記主軸台に取り付けた状態とし、該状態で前記吸引除去を実施することを特徴とする、請求項2に記載の三次元形状造形物の製造方法。
  4.  前記ダミー・ツーリングが前記ツーリングと同一種のツーリングであることを特徴とする、請求項3に記載の三次元形状造形物の製造方法。
  5.  前記切削デバイスが、主軸台、ツーリングおよび切削工具を有して成り、
     前記ツーリングおよび前記切削工具を前記主軸から取り外した状態とし、該状態で前記吸引除去を実施することを特徴とする、請求項2に記載の三次元形状造形物の製造方法。
  6.  前記吸引ノズルの前記先端レベルAが前記切削デバイスの前記先端レベルBよりも下方レベルとなるように前記吸引ノズルを駆動させることによって、前記先端レベルAと前記先端レベルBとの前記相対的な位置関係を変更することを特徴とする、請求項1に記載の三次元形状造形物の製造方法。
  7.  前記吸引除去では、最直近にて形成された紛末層と前記吸引ノズルの前記先端レベルAとの間の離隔距離を5mm以内とすることを特徴とする、請求項1~6のいずれかに記載の三次元形状造形物の製造方法。
  8.  三次元形状造形物の製造装置であって、
     粉末層を形成するための粉末層形成手段、
     固化層が形成されるように前記粉末層に光ビームを照射するための光ビーム照射手段、
     前記粉末層および/または前記固化層が形成されることになる造形テーブル、
     前記粉末層の少なくとも一部の粉末を吸引除去するための吸引ノズル、ならびに
     前記固化層および該固化層から形成される前記三次元形状造形物に表面切削処理を施すための切削デバイス
    を有して成り、
     前記吸引ノズルの前記先端レベルAが前記切削デバイスの前記先端レベルBよりも低い位置になるように該先端レベルAと該先端レベルBとの相対的な位置関係を変更できる構成を有しており、また
     前記吸引ノズルの軸と前記切削デバイスの軸とが略平行となるように該吸引ノズルおよび該切削デバイスが相互に隣接して配置されていることを特徴とする、三次元形状造形物の製造装置。
  9.  前記切削デバイスが、主軸台、ツーリングおよび切削工具を有して成り、該ツーリングと取り替えることができるダミー・ツーリングを別途備えていることを特徴とする、請求項8に記載の三次元形状造形物の製造装置。
PCT/JP2014/068847 2013-07-10 2014-07-09 三次元形状造形物の製造方法およびその製造装置 WO2015005497A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/439,494 US9586285B2 (en) 2013-07-10 2014-07-09 Method and apparatus for manufacturing three-dimensional shaped object
KR1020167001816A KR20160019558A (ko) 2013-07-10 2014-07-09 3차원 형상 조형물의 제조 방법 및 그 제조 장치
EP14822306.8A EP2910323B1 (en) 2013-07-10 2014-07-09 Production method and production device for three-dimensionally shaped molded object
KR1020157009267A KR20150043564A (ko) 2013-07-10 2014-07-09 3차원 형상 조형물의 제조 방법 및 그 제조 장치
KR1020177008411A KR102126243B1 (ko) 2013-07-10 2014-07-09 3차원 형상 조형물의 제조 방법 및 그 제조 장치
CN201480002867.9A CN104768681B (zh) 2013-07-10 2014-07-09 三维形状造型物的制造方法及其制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013144281A JP5612735B1 (ja) 2013-07-10 2013-07-10 三次元形状造形物の製造方法およびその製造装置
JP2013-144281 2013-07-10

Publications (1)

Publication Number Publication Date
WO2015005497A1 true WO2015005497A1 (ja) 2015-01-15

Family

ID=52280169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068847 WO2015005497A1 (ja) 2013-07-10 2014-07-09 三次元形状造形物の製造方法およびその製造装置

Country Status (7)

Country Link
US (1) US9586285B2 (ja)
EP (1) EP2910323B1 (ja)
JP (1) JP5612735B1 (ja)
KR (3) KR20150043564A (ja)
CN (1) CN104768681B (ja)
TW (1) TWI542424B (ja)
WO (1) WO2015005497A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6199511B1 (ja) * 2016-08-17 2017-09-20 ヤマザキマザック株式会社 複合加工装置及び複合加工方法
JP6393873B1 (ja) * 2017-09-05 2018-09-26 株式会社松浦機械製作所 三次元造形装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013011676A1 (de) * 2013-07-11 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur generativen Bauteilfertigung
WO2015112723A1 (en) * 2014-01-24 2015-07-30 United Technologies Corporation Conditioning one or more additive manufactured objects
DE102014206697A1 (de) * 2014-04-07 2015-10-08 Homag Holzbearbeitungssysteme Gmbh Vorrichtung sowie Verfahren zum Erstellen von Volumenkörpern
US9993951B2 (en) * 2014-05-20 2018-06-12 Crayola, Llc Melting and molding device
CN106573412B (zh) 2014-07-30 2019-11-05 松下知识产权经营株式会社 三维形状造型物的制造方法及三维形状造型物
US10016852B2 (en) 2014-11-13 2018-07-10 The Boeing Company Apparatuses and methods for additive manufacturing
DE102014224176A1 (de) * 2014-11-26 2016-06-02 Weeke Bohrsysteme Gmbh Vorrichtung zur Ausbildung von Volumenkörpern
JP5840312B1 (ja) 2015-02-16 2016-01-06 株式会社松浦機械製作所 三次元造形方法
JP6033368B1 (ja) 2015-06-15 2016-11-30 Dmg森精機株式会社 加工機械
US11478983B2 (en) 2015-06-19 2022-10-25 General Electric Company Additive manufacturing apparatus and method for large components
US10449606B2 (en) * 2015-06-19 2019-10-22 General Electric Company Additive manufacturing apparatus and method for large components
CN104959603A (zh) * 2015-07-15 2015-10-07 广东奥基德信机电有限公司 一种适用于金属粉末熔化增材制造的系统
US10183330B2 (en) * 2015-12-10 2019-01-22 Vel03D, Inc. Skillful three-dimensional printing
WO2017177454A1 (zh) * 2016-04-15 2017-10-19 深圳万为智能制造科技有限公司 加减法3d打印工艺及3d打印系统
EP3463893B1 (en) * 2016-05-30 2021-09-15 Landa Labs (2012) Ltd. Apparatus for printing on conical objects
JP6854465B2 (ja) * 2016-05-30 2021-04-07 パナソニックIpマネジメント株式会社 三次元形状造形物の製造方法
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10987865B2 (en) 2016-07-13 2021-04-27 Virginia Tech Intellectual Properties, Inc. 3D printing systems and methods thereof
EP3281725A1 (en) * 2016-08-09 2018-02-14 Siemens Aktiengesellschaft Method of additive manufacturing and computer readable medium
CN106513672A (zh) * 2016-12-05 2017-03-22 珠海天威飞马打印耗材有限公司 金属三维打印装置及其打印方法
US10926329B2 (en) * 2017-05-31 2021-02-23 General Electric Company Methods and apparatuses to grow compression chambers in powder based additive manufacturing to relieve powder loading on grown part
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
JP7263838B2 (ja) * 2019-02-27 2023-04-25 セイコーエプソン株式会社 三次元造形物の造形方法
FR3096295B1 (fr) * 2019-05-20 2021-05-14 Ivy Group Holding Système et procédé pour le traitement de surface sélectif et localisé de pièces, notamment par dépôt de matière
US11312076B2 (en) 2019-09-23 2022-04-26 The Boeing Company Apparatuses for additively manufacturing an object from a powder material
US11345082B2 (en) 2019-09-23 2022-05-31 The Boeing Company Methods for additively manufacturing an object from a powder material
KR102436824B1 (ko) * 2021-02-04 2022-08-26 한국원자력연구원 레이저 클래딩 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01502890A (ja) 1986-10-17 1989-10-05 ボード、オブ、リージェンツ、ザ、ユニバーシティー、オブ、テキサス、システム 選択的焼結によって部品を製造する方法
JPH052890A (ja) 1991-06-26 1993-01-08 Nec Corp 半導体メモリ装置
JP2000073108A (ja) 1998-08-26 2000-03-07 Matsushita Electric Works Ltd 金属粉末焼結部品の表面仕上げ方法
JP2002115004A (ja) * 2000-10-05 2002-04-19 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP2008106319A (ja) * 2006-10-26 2008-05-08 Matsuura Machinery Corp 金属光造形複合加工装置の粉末回収装置
JP2008291317A (ja) * 2007-05-24 2008-12-04 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法
JP2008291315A (ja) * 2007-05-24 2008-12-04 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法
JP2010280173A (ja) * 2009-06-05 2010-12-16 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8120988U1 (de) 1981-07-17 1982-01-28 Baublys, Saulius, Dipl.-Ing., 7148 Remseck Vorrichtung zum Kennzeichnen von Werkstücken, Schildern od.dgl.
JPH1044248A (ja) 1996-07-29 1998-02-17 Roland D G Kk 三次元造形方法
JP2768355B2 (ja) 1996-08-02 1998-06-25 三菱電機株式会社 積層造形方法
JP2001087977A (ja) 1999-09-22 2001-04-03 Toshiba Corp 加工方法及び工作機械システム
DE10065960C5 (de) * 2000-06-07 2005-10-06 (bu:st) GmbH Beratungsunternehmen für Systeme und Technologien Verfahren zur Herstellung eines Werkstückes mit exakter Geometrie
TW506868B (en) 2000-10-05 2002-10-21 Matsushita Electric Works Ltd Method of and apparatus for making a three-dimensional object
JP2004082556A (ja) 2002-08-27 2004-03-18 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP3687677B1 (ja) 2004-10-26 2005-08-24 松下電工株式会社 光造形方法と光造形システム並びに光造形用プログラム
CN101511509B (zh) 2006-08-28 2012-06-13 松下电器产业株式会社 金属光造型用金属粉末及使用该金属粉末的金属光造型法
CN102015258B (zh) 2008-04-21 2013-03-27 松下电器产业株式会社 层叠造形装置
EP2492084B1 (en) * 2009-10-21 2015-05-13 Panasonic Corporation Process for producing three-dimensionally shaped object and device for producing same
JP5584019B2 (ja) 2010-06-09 2014-09-03 パナソニック株式会社 三次元形状造形物の製造方法およびそれから得られる三次元形状造形物
CN102029389B (zh) 2010-11-25 2012-05-23 西安交通大学 基于负压的激光烧结快速成型制造多孔组织的装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01502890A (ja) 1986-10-17 1989-10-05 ボード、オブ、リージェンツ、ザ、ユニバーシティー、オブ、テキサス、システム 選択的焼結によって部品を製造する方法
JPH052890A (ja) 1991-06-26 1993-01-08 Nec Corp 半導体メモリ装置
JP2000073108A (ja) 1998-08-26 2000-03-07 Matsushita Electric Works Ltd 金属粉末焼結部品の表面仕上げ方法
JP2002115004A (ja) * 2000-10-05 2002-04-19 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP2008106319A (ja) * 2006-10-26 2008-05-08 Matsuura Machinery Corp 金属光造形複合加工装置の粉末回収装置
JP2008291317A (ja) * 2007-05-24 2008-12-04 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法
JP2008291315A (ja) * 2007-05-24 2008-12-04 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法
JP2010280173A (ja) * 2009-06-05 2010-12-16 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2910323A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6199511B1 (ja) * 2016-08-17 2017-09-20 ヤマザキマザック株式会社 複合加工装置及び複合加工方法
WO2018033973A1 (ja) * 2016-08-17 2018-02-22 ヤマザキマザック株式会社 複合加工装置及び複合加工方法
US11014159B2 (en) 2016-08-17 2021-05-25 Yamazaki Mazak Corporation Composite machining machine and composite machining method
JP6393873B1 (ja) * 2017-09-05 2018-09-26 株式会社松浦機械製作所 三次元造形装置
JP2019044240A (ja) * 2017-09-05 2019-03-22 株式会社松浦機械製作所 三次元造形装置
US10525530B2 (en) 2017-09-05 2020-01-07 Matsuura Machinery Corp. Three-dimensional shaping apparatus

Also Published As

Publication number Publication date
US9586285B2 (en) 2017-03-07
EP2910323A4 (en) 2016-01-13
TW201532711A (zh) 2015-09-01
EP2910323B1 (en) 2017-04-19
KR102126243B1 (ko) 2020-06-24
CN104768681B (zh) 2016-05-25
EP2910323A1 (en) 2015-08-26
US20150290741A1 (en) 2015-10-15
CN104768681A (zh) 2015-07-08
JP5612735B1 (ja) 2014-10-22
TWI542424B (zh) 2016-07-21
JP2015017295A (ja) 2015-01-29
KR20170038112A (ko) 2017-04-05
KR20150043564A (ko) 2015-04-22
KR20160019558A (ko) 2016-02-19

Similar Documents

Publication Publication Date Title
WO2015005497A1 (ja) 三次元形状造形物の製造方法およびその製造装置
WO2015005496A1 (ja) 三次元形状造形物の製造方法
JP6372725B2 (ja) 三次元形状造形物の製造方法
KR101648442B1 (ko) 3차원 형상 조형물의 제조 방법
JP5877471B2 (ja) 三次元形状造形物の製造方法
KR101666102B1 (ko) 3차원 형상 조형물의 제조 방법
JP5119123B2 (ja) 三次元形状造形物の製造方法
JP2010047813A (ja) 三次元形状造形物の製造方法、その製造装置および三次元形状造形物
CN107848212B (zh) 三维形状造型物的制造方法
JPWO2010150805A1 (ja) 三次元形状造形物の製造方法およびそれから得られる三次元形状造形物
WO2017208504A1 (ja) 三次元形状造形物の製造方法
JP5588925B2 (ja) 三次元形状造形物の製造方法
JP6731642B2 (ja) 三次元形状造形物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157009267

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014822306

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14439494

Country of ref document: US

Ref document number: 2014822306

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE