WO2014196707A1 - Device for manufacturing polymer latex resin powder and method for manufacturing polymer latex resin powder using same - Google Patents

Device for manufacturing polymer latex resin powder and method for manufacturing polymer latex resin powder using same Download PDF

Info

Publication number
WO2014196707A1
WO2014196707A1 PCT/KR2013/012119 KR2013012119W WO2014196707A1 WO 2014196707 A1 WO2014196707 A1 WO 2014196707A1 KR 2013012119 W KR2013012119 W KR 2013012119W WO 2014196707 A1 WO2014196707 A1 WO 2014196707A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin powder
polymer resin
polymer
latex
producing
Prior art date
Application number
PCT/KR2013/012119
Other languages
French (fr)
Korean (ko)
Inventor
김창술
주민철
이형섭
정회인
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130159970A external-priority patent/KR101594652B1/en
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to US14/367,557 priority Critical patent/US9504972B2/en
Priority to CN201380003868.0A priority patent/CN104540854B/en
Priority to JP2015521562A priority patent/JP5905994B2/en
Publication of WO2014196707A1 publication Critical patent/WO2014196707A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/20Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00768Baffles attached to the reactor wall vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00779Baffles attached to the stirring means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/182Details relating to the spatial orientation of the reactor horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading

Definitions

  • the present invention relates to a device for producing a polymer latex resin powder and a method for producing a polymer latex resin powder using the same, and more particularly, a device for producing a polymer latex resin powder comprising a latex tank, agglomeration tank, a aging tank, a dehydrator and a dryer.
  • the polymer material formed by emulsion polymerization is preferably processed into powder for reducing the volume, various applications and ease of handling. In order to obtain the polymer material formed by emulsion polymerization in powder, it is required to aggregate, dehydrate and dry the latex formed by emulsion polymerization.
  • Agglomeration of the emulsion polymerized polymer latex may be performed by breaking the stability of the latex particles stabilized by the emulsifier applied during the emulsion polymerization by a chemical method using various flocculants or by a mechanical method using a mechanical force by applying a strong shearing force. .
  • the chemical method breaks the stability by using a different flocculant depending on the type of emulsifier used to secure the stability of the latex, and in the case of breaking the stability using the mechanical method, the repulsive force between the emulsifiers is applied by applying a strong shear force to the latex. Overcome and let the latex particles and particles stick together.
  • Rapid coagulation has been proposed as a method for preparing polymer latex into powder.
  • an excessive amount of flocculant aqueous solution such as an inorganic salt and an acid is added to break the stability of the emulsifier, thereby rapidly agglomerating the polymer in the latex.
  • the agglomeration of the polymer particles of latex is called coagulation, and the agglomeration of the polymer particles is called a slurry, and since they are physically weakly bound, they are easily crushed by an external shear force by an agitator. break-up phenomenon. Therefore, the first aggregated slurry is subjected to an aging process, which is a process of increasing the binding force by mutual penetration between chains by raising the temperature. The slurry thus produced is finally dehydrated and dried to obtain a powder form.
  • the latex stability is broken very quickly, so that the process of gluing the polymer latex particles occurs very quickly and disorderly. Due to such disordered aggregation, the apparent specific gravity is lowered, and the particle size distribution of the final particles is very wide.
  • the apparatus comprises a latex storage tank (1), agglomeration tank (2), aging tank (3), a dehydrator (4) and a dryer (5).
  • the polymer latex stored in the latex storage tank (1) is introduced into the coagulation tank (2) through the polymer latex inlet line (11), and then the flocculant aqueous solution through the coagulant inlet line (12), and the water supply line (13) Water to adjust the solid content concentration is added to the polymer latex in the flocculation tank (2).
  • the added solution of the flocculant serves to break the electrostatic stabilization by the emulsifier to agglomerate the polymer particles in the latex, and through this agglomeration process to obtain a polymer slurry.
  • the agglomerated polymer slurry is transferred to the aging tank (3) and subjected to the process of aging by maintaining for 40 to 90 minutes under high temperature.
  • the finally obtained slurry is dehydrated in the dehydrator (4) and then dried in the dryer (5), the final polymer powder is discharged through the polymer powder discharge line (15).
  • the flocculant added in the dehydrator 4 is discharged through the flocculant discharge line (14).
  • the apparatus as described above is difficult to stir the slurry having a high viscosity, and also has a problem in that the efficiency of processing into a powder is inferior because the slurry is not smooth, the slurry having a high solid content in order to increase the dehydration and / or drying efficiency It is difficult to use, and therefore has a limitation that it can be operated only for slurries having a low solids content, and thus there is a problem that a lot of time, effort and energy are consumed in subsequent dehydration and drying.
  • a slow coagulation process has been proposed to improve the powder characteristics of the final particles produced by controlling the coagulation rate through split dosing of coagulant. Since aggregation occurs in the secondary well region in which the energy barrier is present, the aggregation rate is slow and there is a possibility of rearrangement of the particles, so that spherical particles can be produced by regular filling.
  • the overall amount of flocculant used is similar to that of rapid flocculation, and is merely a method of flocculation by performing split injection.
  • the flowability of the polymer latex slurry produced after aggregation is influenced by the solid content, the particle size distribution of the slurry, and the inclusion water content of the slurry, and is particularly affected by the solid content.
  • the solids content of the slurry is more than a certain degree, the flowability of the slurry rapidly deteriorates and becomes a lump, thus making operation impossible. Therefore, in order to facilitate the flow of the slurry, an additional amount of water must be added during the flocculation process. The addition of excess water raises the energy costs incurred when the slurry is raised to the flocculation and maturation temperatures, and also generates excess wastewater during the dehydration process, thereby raising the post-treatment cost. In addition, the efficiency is lowered by not using steam directly, condensing in water as a medium to transfer energy to the slurry.
  • Another method of recovering the powder from the emulsion-polymerized latex is to recover the powder of the polymer latex by means of a gas-phase spray system.
  • This method is a method in which a polymer latex is agglomerated and recovered into a spherical powder by spraying a polymer latex having a high solid content on the side through which an excessive flocculant flows using an atomizer.
  • rapid flocculation is achieved at the moment of contact with the flocculant, thereby enabling spherical powder recovery that can be obtained in a high apparent specific gravity and a slow flocculation process.
  • it is necessary to use an excessive flocculant to prevent unreacted so that it is not possible to prevent the generation of excess wastewater, the clogging of the atomizer frequently occurs, it can be said to be disadvantageous in terms of process stability.
  • shear coagulation which produces a slurry by applying shear force with strong mechanical force to agglomerate particles of latex. It applies a shear stress due to high speed rotation of 4,000 rpm or more without using a flocculant to prepare a polymer latex slurry.
  • a residual emulsifier remains in the recovered powder, which has a disadvantage of adversely affecting thermal stability and color during processing.
  • the apparatus for producing a polymer latex resin powder capable of producing a polymer latex resin powder having excellent color and powder characteristics by reducing the water content of the slurry to increase the drying efficiency and reducing the amount of flocculant used, and the polymer latex resin powder using the same Development of the manufacturing method is still required.
  • An object of the present invention is to introduce a non-continuous screw into the reactor to perform agglomeration and maturation to increase the mixing efficiency of steam, latex and flocculant, to lower the water content of the slurry to increase the drying efficiency, reducing the amount of flocculant used It is to provide an apparatus for producing a polymer latex resin powder capable of producing a polymer latex resin powder excellent in color and powder properties, and a method for producing a polymer latex resin powder using the same.
  • the present invention is a device for producing a polymer resin powder
  • a reactor for agglomeration of polymer latex the reactor is a reaction tube of the hollow tube through which the latex passes, and the reaction from the inner wall of the reaction tube
  • At least one barrel pin protruding inwardly of the tube, a rotating shaft extending along the central axis in the longitudinal direction of the reaction tube, and at least one agitator protruding from the outer surface of the rotating shaft toward the inner wall of the reaction tube
  • the at least one stirrer provides a polymer resin powder manufacturing apparatus comprising a discontinuous screw.
  • the apparatus for producing the polymer resin powder may include, for example, a dehydrator, a dryer, or both.
  • the stirrer may be 1 to 20, for example.
  • the discontinuous screw may include, for example, one or more openings.
  • the total area of the opening may be, for example, within the range of 0.05 to 1 relative to the total area of the rotary blade.
  • the discontinuous screw may have an inclination angle ⁇ of the rotary blade from an axis perpendicular to the rotation axis within a range of 0.1 to 10 °.
  • the reaction tube of the reactor may include, for example, one or more barrel pins extending from the outside of the reaction tube into the reaction tube.
  • the reactor may include, for example, a polymer latex input line, a flocculant input line, and a steam input line.
  • the reactor may be, for example, an integrated reactor for agglomeration and ripening of the polymer latex.
  • the present invention provides a method for producing a polymer resin powder, characterized in that for using the polymer resin powder production apparatus.
  • the polymer resin powder may have a water content of 25% or less.
  • the method for preparing the polymer resin powder may be, for example, 0.5 to 30 minutes of the polymer slurry in the aggregation and aging step.
  • the polymer resin may be, for example, a vinyl cyan compound-conjugated diene compound-aromatic vinyl compound graft copolymer.
  • the present invention also provides a polymer resin powder produced by the above method.
  • the present invention by introducing a non-continuous screw which prevents the flow of uncondensed steam and latex fluid in the reactor to perform agglomeration and maturation to induce turbulent flow of the latex to increase the mixing efficiency of the latex and flocculant, and
  • the water content is improved by simplifying post-processing such as dehydration and drying, increasing energy saving effects, and improving the color of the polymer powder obtained by reducing the amount of flocculant required for the flocculation process.
  • the powder characteristics (coarse particle removal and apparent specific gravity increase due to the increase in the number of impact of the slurry )
  • the logistics costs such as energy savings, packaging costs, transportation costs.
  • FIG. 1 is a block diagram schematically showing a process for producing a polymer latex resin powder according to the prior art.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of a reactor for preparing a polymer latex resin powder according to an embodiment of the present invention and performing agglomeration and aging.
  • FIG. 3 is a front view according to one embodiment of a discontinuous screw introduced into the reactor of FIG.
  • FIG. 4 is a side view according to one embodiment of the discontinuous screw of FIG. 3.
  • FIG. 5 is a front view of other embodiments of a discontinuous screw introduced into the reactor of FIG.
  • the inventors of the present invention while studying a method for efficiently preparing polymer latex resin powder from emulsion polymerization latex, unlike the conventional process of individually flocculating and aging process, discontinuous screw in the reactor (100) made of both coagulation and aging
  • discontinuous screw in the reactor (100) made of both coagulation and aging
  • the present invention for achieving the above object, as shown in Figure 2, in the apparatus for producing a polymer latex resin powder comprising a latex tank, a reactor for coagulation and maturation of latex, a dehydrator and a dryer, A hollow reaction tube 160 through which latex passes, at least one barrel pin protruding inward from the inner wall of the reaction tube 160, and a center in the longitudinal direction of the reaction tube A polymer latex comprising a rotating shaft extending along an axis and at least one stirrer protruding from the outer surface of the rotating shaft toward the inner wall of the reaction tube, wherein the at least one stirrer is a discontinuous screw 210.
  • An apparatus for producing a resin powder is provided.
  • the present invention induces turbulent flow of latex by replacing at least one or more of the plurality of agitators 150 in the reactor for coagulation and maturation as described above with a discontinuous screw 210, thereby causing latex and flocculant
  • a discontinuous screw 210 to increase the mixing efficiency of the slurry, to reduce the water content of the slurry, to simplify the post-processing and energy saving effect such as dehydration and drying, and to reduce the color of the polymer powder obtained by reducing the amount of flocculant required for the flocculation process. It is characterized by providing quality improvement effect.
  • the cross section of the reaction tube 160 may be any polygon or circle, preferably may be circular.
  • the stirrer may be, for example, a continuous rotary blade or a continuous screw.
  • the reactor 100 is designed to perform agglomeration and aging together, and the hollow reaction tube 160 through which latex passes and protrudes inwardly of the reaction tube 160 from an inner wall of the reaction tube 160.
  • At least one or more barrel pins 140, a rotating shaft 170 extending along the longitudinal central axis of the reaction tube 160, and from the outer surface of the rotating shaft 170 toward the inner wall of the reaction tube 160 It comprises at least one stirrer 150 protruding, the reaction tube 160 is connected to the latex input line 110, the flocculant input line 120 and the steam input line 130 is connected to the reaction tube ( 160) to supply latex and flocculant and steam.
  • the discontinuous screw 210 may be provided with 1 to 20, preferably 4 to 16, most preferably 8 to 12 in the reactor 100, When in the above range, there is an effect of increasing the mixing efficiency of steam, latex, and flocculant by hindering the flow of fluid (non-condensed steam and latex) and inducing turbulent flow of latex, but the present invention is not limited thereto. It will be understood by those skilled in the art that the discontinuous screw 210 may be arranged in an appropriate number depending on the length L of the reactor 100. In addition, the discontinuous screw 210 may be a biaxial screw, and the discontinuous screw 210 used in the present invention is illustrated in more detail in FIGS. 3 and 4.
  • the discontinuous screw 210 used in the present invention is a rotary blade 212 protruding radially from the outer surface of the screw shaft 211 around the central screw shaft 211. At least a portion of the) is characterized in that it comprises at least one or more openings 214 are formed discontinuously.
  • the opening 214 is a direction in which latex is conveyed by rotation in the direction of rotation of the discontinuous screw 210 (in the direction of rotation in FIG. 2, counterclockwise around the screw shaft 211). (Conveying direction in Fig. 2), that is, a portion of the rotary blade 212 is not formed with respect to the direction extending along the longitudinal axis of the screw shaft 211.
  • the openings 214 may be at least one, for example one (FIG. 5A), three (FIG. 5B) or four (FIG. 5C), as shown in FIG. 5, as shown in FIG. 3.
  • the number may be two, but the present invention is not limited thereto, and a larger number of openings 214 may be formed. That is, the openings 214 may be 1 to 6, preferably 1 to 5, and most preferably 2 to 4, to hinder the flow of fluid (non-condensed steam and latex) within this range Induces turbulent flow of latex to increase the mixing efficiency of steam, latex, and flocculant is excellent.
  • the openings 214 may be formed evenly (2, 4, 6, 8) rather than oddly (1, 3, 5, 7), and are formed evenly, compared to the odd number. In this case, less noise or vibration is generated.
  • reference numeral 213 indicates a side surface corresponding to the blade tip of the rotary blade 212.
  • the area ratio of the opening 214 in the discontinuous screw 210 is 0.05 to 1, preferably 0.1 to 0.4, most Preferably it can be within the range of 0.2 to 0.3, within this range while maintaining the proper moving speed of the latex, while interfering with the flow of fluid (non-condensed steam and latex) and induce a turbulent flow of the latex, steam and latex, The effect of increasing the mixing efficiency of the flocculant is excellent.
  • the area of the rotary blade may mean the area of one surface 212 of the rotary blade, the area of the opening may mean the area of one surface 214 of the opening.
  • the opening may mean an empty space in which some sections of the rotary blade are omitted.
  • the degree of inclination is too small, it will not be transported and will accumulate. Therefore, it is important to design by selecting an appropriate inclination, and this degree of inclination, i.e., the inclination angle ⁇ , is within the range of 0.1 to 10 degrees, preferably 0.2 to 4 degrees, and most preferably 0.4 to 2 degrees.
  • a barrel pin 140 extending from the outside of the reaction tube 160 to the inside is fixed, and the agitator 150 and / or the discontinuous inside the reaction tube 160.
  • the screw 210 is rotatably fixed.
  • the reaction tube 160 of the reactor 100 includes one or more barrel pins 140 extending from the outside of the reaction tube 160 into the reaction tube 160. Accordingly, the reaction tube 160 rotates between the stirrer 150 and / or the discontinuous screw 210 between the barrel pins 140 fixed to the reaction tube 160. 2) As the latex is introduced into the conveying direction of FIG. 2 as a result, the latex is in contact with the rotary blades of the stirrer 150 and / or the discontinuous screw 210 and receives mechanical force therefrom.
  • the barrel pins 140 are subjected to a strong mechanical force, that is, a shear force, and the latex stabilized by the emulsifier added during the emulsion polymerization is stabilized by a mechanical method is broken, thereby agglomerated accordingly And, it is aged in the second half of the reaction tube (160).
  • a strong mechanical force that is, a shear force
  • the barrel pin 140 may have any shape such as a circle, a triangle, an inclination, an ellipse, a diamond, a rectangle, and the like, and is not particularly limited.
  • the stirrer 150 anything such as a paddle, a screw, a biaxial screw, a pin, etc. Can be used
  • the reactor 100 comprising the discontinuous screw 210 is machined into a latex obtained by emulsion polymerization under the action of the barrel pin 140 and the internal stirrer 150 and / or the discontinuous screw 210. It is possible to control the viscosity of the polymer slurry by applying a force, and to make a slurry of high viscosity to control the moisture content using a mechanical force.
  • the reactor 100 includes a polymer latex input line 110, a flocculant input line 120, and a steam input line 130, and agglomeration reaction is performed at a portion close to a position where the polymer latex, flocculant, and steam are introduced. Occurs, and a aging reaction occurs in the second half of the reactor so that coagulation and aging can be performed simultaneously in substantially the same reactor.
  • the present invention provides a method for producing a polymer latex resin powder using the apparatus for producing a polymer latex resin powder as described above.
  • the polymer latex used in the present invention is an emulsion polymerized polymer latex having a solid content of 10 to 90% by weight, and may be a vinyl cyan compound-conjugated diene compound-aromatic vinyl compound graft copolymer.
  • the graft copolymer is prepared by polymerizing a monomer mixture of an aromatic vinyl compound and a vinyl cyan compound on a conjugated diene-based compound.
  • the conjugated diene compound is butadiene rubber, ethylene-propylene-diene monomer rubber (EPDM), ethylene propylene rubber (EPR), halobutyl rubber, butyl rubber, styrene-isoprene-styrene (SIS) and styrene-butadiene rubber (SBR It may be selected from the group consisting of), specifically butadiene-based rubber is used.
  • the vinyl cyan compound may be acrylonitrile, methacrylonitrile, ethacrylonitrile or derivatives thereof, specifically acrylonitrile is used.
  • the aromatic vinyl compound may be styrene, alpha methyl styrene, alpha ethyl styrene, paramethyl styrene, vinyl toluene or a derivative thereof. Specifically, styrene is used.
  • the flocculant may be an inorganic salt such as a water-soluble inorganic acid or sulfate, such as sulfuric acid, phosphoric acid, hydrochloric acid.
  • the flocculant is added to the theoretical value required for aggregation, and in the present invention, 0.5 to 5 parts by weight, specifically 0.5 to 3.0 parts by weight, most specifically 0.5 to 2.0 parts by weight, based on 100 parts by weight of the polymer latex. . That is, in the present invention, only a very small amount of flocculant can effectively flocculate the polymer latex. Thus, the effect of improving the color and increasing the thermal stability can be obtained by reducing the content of the flocculant.
  • the polymer resin powder may have, for example, a water content within 25%, or 10% to 20%.
  • the residence time of the polymer slurry in the reactor in the aggregation and aging step may be 0.5 minutes to 30 minutes, for example 0.5 minutes to 10 minutes, or 0.5 minutes to 5 minutes.
  • the residence time was not secured due to the low steam condensation efficiency, but after the introduction of the discontinuous screw, the residence time can be secured.
  • the aggregation and aging temperature may be 60 to 100 °C or 65 to 85 °C, within this range the coagulation and ripening effect is large.
  • the residence time of the polymer slurry in the flocculation and aging process may be reacted to exceed 30 minutes, but in this case, the size of the device is not economical.
  • the solids content of the polymer latex slurry of the present invention prepared by the above process depends on the solids content of the polymer latex, but is generally 25 to 60% by weight. If the solid content is less than 25% by weight, there may be a problem in that the flowability of the slurry is too high to secure the residence time of the slurry, and in the case of more than 60% by weight, the slurry has a poor transport force and the slurry may There may be a problem that the operation is impossible to prevent.
  • the polymer slurry in which the agglomeration and aging proceeds is taken out of the reactor and transferred to the slurry storage tank.
  • the flocculated and aged slurry is recovered in powder through a conventional dehydration and drying process.
  • 1.0 part by weight of diluted sulfuric acid (H 2 SO 4 ) was used based on 100 parts by weight of the total polymer.
  • H 2 SO 4 diluted sulfuric acid
  • the liquid water was added to the solids content of the slurry and mixed with sulfuric acid to adjust the solids content of the polymer latex slurry to 30% by weight.
  • the residence time of the reactor was 1.5 minutes on average, and the aggregation and aging temperatures were 75 ° C.
  • the ripening section begins as soon as the agglomeration is complete and continues until the slurry is discharged out.
  • the aggregated slurry is drawn out through the stirrer and moved to the slurry storage tank.
  • the aggregated and aged slurry was recovered to polymer resin powder through a dehydration and drying process.
  • a polymer resin powder was prepared in the same manner as in Example 1, except that the solid content of the polymer latex slurry in Example 1 was 35% by weight.
  • a polymer resin powder was prepared in the same manner as in Example 1, except that the solid content of the polymer latex slurry was 44 wt% in Example 1.
  • a polymer resin powder was prepared in the same manner as in Example 1 except that the amount of the flocculant used in Example 1 was 0.7 parts by weight based on 100 parts by weight of the polymer.
  • a polymer resin powder was prepared in the same manner as in Example 1 except that the amount of the flocculant used in Example 1 was 0.6 parts by weight based on 100 parts by weight of the polymer.
  • the reactor having a configuration which does not include the non-continuous screw reactor, 12kg / hr flow rate introduced into the, and as a flocculating agent is a sulfuric acid (H 2 SO 4) was diluted as shown in Figure 2. Total 1.0 weight part was used with respect to 100 weight part of polymer contents. While directly steaming, the liquid water was added to the solids content of the slurry and mixed with sulfuric acid to adjust the solids content of the polymer latex slurry to 30% by weight.
  • the residence time of the reactor was 1.5 minutes on average, and the aggregation and aging temperatures were 75 ° C.
  • the ripening section begins as soon as the agglomeration is complete and continues until the slurry is discharged out.
  • the aggregated slurry is drawn out through the stirrer and moved to the slurry storage tank.
  • the aggregated and aged slurry was recovered to polymer resin powder through a dehydration and drying process.
  • a polymer resin powder was prepared in the same manner as in Comparative Example 1 except that the solid content of the polymer latex slurry was 35 wt% in Comparative Example 1.
  • a polymer resin powder was prepared in the same manner as in Comparative Example 1 except that the solid content of the polymer latex slurry was 44 wt% in Comparative Example 1.
  • a polymer resin powder was prepared in the same manner as in Comparative Example 1 except that the amount of the flocculant used in Comparative Example 1 was 0.7 parts by weight based on 100 parts by weight of the polymer.
  • a polymer resin powder was prepared in the same manner as in Comparative Example 1 except that the amount of the flocculant used in Comparative Example 1 was 0.6 parts by weight based on 100 parts by weight of the polymer.
  • the water content, apparent specific gravity, particle size distribution, and whiteness of the polymer latex resin powders prepared in Examples 1 to 5 and Comparative Examples 1 to 5 were measured by the following method, and the results are shown in Table 1 below.
  • Moisture Content The water content was measured until the water sample evaporated at 150 ° C. and the sample weight was no longer changed (less than 0.5% by weight of residual water) using a moisture meter (METTLER / TOLEDO HR83-P). .
  • Particle size distribution The particle size was measured using a standard network, and the content of large particles (cos, coarse) was measured to 1400 ⁇ m or more.
  • b value was measured using a colorimeter (Color Quest II, Hunter Lab Co.).
  • the b value may have a positive value and a negative value with respect to 0, which means that the value is yellow when the value is larger than 0, and the color is blue when the value is smaller than 0.
  • Example 1 Solid content (% by weight) Coagulant (parts by weight) Moisture content (% by weight) Apparent specific gravity (g / ml) Course content (%) Color (b)
  • Example 1 30 1.0 18.32 0.38 8.9 1.78
  • Example 2 35 1.0 17.93 0.42 9.2 1.64
  • Example 3 44 1.0 16.33 0.44 9.9 1.61
  • Example 4 30 0.7 19.22 0.37 6.3 1.42
  • Example 5 30 0.6 22.21 0.35 5.4 1.51 Comparative Example 1 30 1.0 26.10 0.32 16.3 2.35 Comparative Example 2 35 1.0 24.85 0.34 17.2 2.24 Comparative Example 3 44 1.0 21.23 0.37 18.4 2.13 Comparative Example 4 30 0.7 34.91 0.30 15.6 2.05 Comparative Example 5 30 0.6 40.33 0.28 12.77 3.11
  • the polymer latex resin powder prepared using the production apparatus according to the present invention has improved water content and color (b value) compared to the comparative example, the apparent specific gravity is increased and the average particle diameter is about 1400 ⁇ m Coarse content of the larger particles (coarse) was significantly reduced, and the amount of flocculant used was reduced, thereby confirming that the color was improved.
  • Tonality b was measured using water content, apparent specific gravity, course content, and colorimeter (Color Quest II, Hunter Lab Co.) through different experiments (total area of (212)), and the results are shown in Table 2 below.
  • the inclination angle ⁇ of the rotary blade from the axis perpendicular to the screw axis was 3.6 °.
  • the area ratio occupied by the opening is within the range of 0.05 to 1, preferably 0.1 to 0.4, most preferably 0.2 to 0.3. It was confirmed that the effect of increasing the mixing efficiency of steam, latex, and flocculant by interfering the flow of the fluid (non-condensed steam and latex) and inducing turbulent flow of the latex while maintaining the proper moving speed of the latex at.
  • the inclination angle ⁇ of the rotary blade from the axis perpendicular to the screw axis of the discontinuous screw is 0.1 to 10 °, preferably 0.2 to 4 °, most preferably Excellent effect of increasing the mixing efficiency of steam, latex and flocculant by interfering the flow of fluids (non-condensed steam and latex) and inducing turbulent flow of latex while maintaining the proper moving speed of latex within 0.4 to 2 ° It could be confirmed that it appears.

Abstract

The present invention relates to a device for manufacturing polymer latex resin powder and a method for manufacturing polymer latex resin powder using the same, wherein introduction of a non-continuous type screw into a reactor, which performs coagulation and aging, of the device for manufacturing polymer latex resin powder increases the efficiency of mixing steam, latex, and coagulant, lowers the water content ratio of slurry, improves the drying efficiency, and reduces the amount of coagulant used, thereby manufacturing polymer latex resin powder having excellent color and powder characteristics.

Description

고분자 라텍스 수지 분체의 제조장치 및 이를 이용한 고분자 라텍스 수지 분체의 제조방법Apparatus for manufacturing polymer latex resin powder and method for preparing polymer latex resin powder
본 발명은 고분자 라텍스 수지 분체의 제조장치 및 이를 이용한 고분자 라텍스 수지 분체의 제조방법에 관한 것으로서, 더욱 상세하게는 라텍스 탱크, 응집조, 숙성조, 탈수기 및 건조기를 포함하는 고분자 라텍스 수지 분체의 제조장치에 있어서, 응집과 숙성을 수행하는 반응기에 비연속식 스크류를 도입하는 것에 의하여 스팀, 라텍스 및 응집제의 혼합 효율을 높이는 것에 의하여, 슬러리의 함수율을 낮추어 건조효율을 높일 수 있고, 응집제의 사용량을 감소시켜 색상 및 분체 특성이 우수한 고분자 라텍스 수지 분체를 제조할 수 있는 고분자 라텍스 수지 분체의 제조장치 및 이를 이용한 고분자 라텍스 수지 분체의 제조방법에 관한 것이다.The present invention relates to a device for producing a polymer latex resin powder and a method for producing a polymer latex resin powder using the same, and more particularly, a device for producing a polymer latex resin powder comprising a latex tank, agglomeration tank, a aging tank, a dehydrator and a dryer. In the process of agglomeration and maturation of the steam, latex and flocculant by introducing a discontinuous screw By increasing the mixing efficiency, it is possible to increase the drying efficiency by lowering the water content of the slurry, and to reduce the amount of flocculant used to produce a polymer latex resin powder having excellent color and powder characteristics, and an apparatus for producing the polymer latex resin powder using the same A method for producing a polymer latex resin powder.
유화중합에 의해 형성되는 고분자 물질은 부피의 감소, 다양한 활용성 및 취급의 용이화를 위하여 분체로 가공되는 것이 바람직하다. 유화중합에 의해 형성되는 고분자 물질을 분체로 수득하기 위해서는, 유화중합에 의해 형성된 라텍스를 응집, 탈수 및 건조시키는 것이 요구된다.The polymer material formed by emulsion polymerization is preferably processed into powder for reducing the volume, various applications and ease of handling. In order to obtain the polymer material formed by emulsion polymerization in powder, it is required to aggregate, dehydrate and dry the latex formed by emulsion polymerization.
유화중합 고분자 라텍스의 응집은 유화중합 동안에 가해진 유화제에 의해 안정화된 라텍스 입자들을 다양한 응집제를 이용하는 화학적인 방법 혹은 강한 전단력을 가하여 기계적인 힘을 이용하는 기계적인 방법으로 그 안정성을 깨뜨리는 것에 의하여 수행될 수 있다. 상기 화학적인 방법은 라텍스의 안정성을 확보하기 위해 사용한 유화제의 종류에 따라 다른 응집제를 사용하여 안정성을 깨뜨리며, 상기 기계적인 방법을 이용하여 안정성을 깨뜨리는 경우에는 라텍스에 강한 전단력을 가하여 유화제 간의 반발력을 이겨내고 라텍스 입자와 입자가 뭉치도록 한다.Agglomeration of the emulsion polymerized polymer latex may be performed by breaking the stability of the latex particles stabilized by the emulsifier applied during the emulsion polymerization by a chemical method using various flocculants or by a mechanical method using a mechanical force by applying a strong shearing force. . The chemical method breaks the stability by using a different flocculant depending on the type of emulsifier used to secure the stability of the latex, and in the case of breaking the stability using the mechanical method, the repulsive force between the emulsifiers is applied by applying a strong shear force to the latex. Overcome and let the latex particles and particles stick together.
고분자 라텍스를 분체로 제조하기 위한 방법으로서 래피드 응집(rapid coagulation)이 제안되었다. 이 방법은 무기염(inorganic salt) 및 산(acid) 등의 응집제 수용액을 과량 투입하여 유화제의 안정성을 깨뜨림으로써 라텍스 내의 고분자를 빠르게 뭉치게 한다. 이렇게 라텍스의 고분자 입자들이 뭉치는 것을 응집(coagulation)이라 하고, 고분자 입자들이 뭉친 것을 슬러리(slurry)라고 하며, 이들은 물리적으로 약하게 결합되어 있는 상태이므로 교반기 등에 의한 외부의 전단력(shear)에 의해 쉽게 파쇄(break-up)되는 현상을 보인다. 따라서 1차적으로 응집된 슬러리는 승온시켜 사슬 간 상호 침투에 의해 결합력이 강화되도록 하는 과정인 숙성(aging) 과정을 거치게 된다. 이렇게 생성된 슬러리는 탈수 및 건조 과정을 거쳐 최종적으로 분체상으로 얻어지게 된다.Rapid coagulation has been proposed as a method for preparing polymer latex into powder. In this method, an excessive amount of flocculant aqueous solution such as an inorganic salt and an acid is added to break the stability of the emulsifier, thereby rapidly agglomerating the polymer in the latex. The agglomeration of the polymer particles of latex is called coagulation, and the agglomeration of the polymer particles is called a slurry, and since they are physically weakly bound, they are easily crushed by an external shear force by an agitator. break-up phenomenon. Therefore, the first aggregated slurry is subjected to an aging process, which is a process of increasing the binding force by mutual penetration between chains by raising the temperature. The slurry thus produced is finally dehydrated and dried to obtain a powder form.
상기와 같이 과량의 응집제를 사용하여 응집시키는 래피드 응집의 경우, 라텍스의 안정성을 매우 빠르게 깨뜨리므로 고분자 라텍스 입자들이 엉켜 붙는 과정이 매우 빠르고 무질서하게 일어난다. 이러한 무질서한 응집으로 인해 겉보기 비중이 낮아지고, 최종 입자의 입도 분포가 매우 넓어지게 되는 문제가 있다.As described above, in the case of rapid agglomeration using an excessive coagulant, the latex stability is broken very quickly, so that the process of gluing the polymer latex particles occurs very quickly and disorderly. Due to such disordered aggregation, the apparent specific gravity is lowered, and the particle size distribution of the final particles is very wide.
도 1은 종래기술에 따른 고분자 라텍스 수지 분체의 제조장치를 모식적으로 도시한 도면이다. 상기 장치는 라텍스 저장탱크(1), 응집조(2), 숙성조(3), 탈수기(4) 및 건조기(5)를 포함하는 구성으로 이루어져 있다.1 is a view schematically showing an apparatus for producing a polymer latex resin powder according to the prior art. The apparatus comprises a latex storage tank (1), agglomeration tank (2), aging tank (3), a dehydrator (4) and a dryer (5).
먼저, 라텍스 저장탱크(1)에 저장된 고분자 라텍스를 고분자 라텍스 투입 라인(11)을 통하여 응집조(2)에 투입한 다음, 응집제 투입라인(12)을 통하여 응집제 수용액을, 그리고 물 공급라인(13)을 통하여 고형분 농도를 조절하기 위한 물을 상기 응집조(2) 내의 상기 고분자 라텍스에 첨가한다. 상기 첨가된 응집제 수용액은 유화제에 의한 정전기적 안정화를 깨뜨리는 기능을 하여 라텍스 내의 고분자 입자들을 뭉치게 만들고, 이러한 응집 과정을 거쳐 고분자 슬러리를 얻게 된다. 상기 응집된 고분자 슬러리는 숙성조(3)로 이송되어 높은 온도 하에서 40 내지 90분 동안 체류시켜 숙성시키는 과정을 거친다. 최종적으로 얻어진 슬러리는 탈수기(4)에서 탈수과정을 거쳐 건조기(5)에서 건조된 후, 최종 고분자 분체가 고분자 분체 배출라인(15)을 통하여 배출되게 된다. 상기 탈수기(4)에서 첨가된 응집제는 응집제 배출라인(14)를 거쳐 배출되게 된다.First, the polymer latex stored in the latex storage tank (1) is introduced into the coagulation tank (2) through the polymer latex inlet line (11), and then the flocculant aqueous solution through the coagulant inlet line (12), and the water supply line (13) Water to adjust the solid content concentration is added to the polymer latex in the flocculation tank (2). The added solution of the flocculant serves to break the electrostatic stabilization by the emulsifier to agglomerate the polymer particles in the latex, and through this agglomeration process to obtain a polymer slurry. The agglomerated polymer slurry is transferred to the aging tank (3) and subjected to the process of aging by maintaining for 40 to 90 minutes under high temperature. The finally obtained slurry is dehydrated in the dehydrator (4) and then dried in the dryer (5), the final polymer powder is discharged through the polymer powder discharge line (15). The flocculant added in the dehydrator 4 is discharged through the flocculant discharge line (14).
그러나 상기한 바와 같은 장치는 점도가 높은 슬러리를 교반시키기 어려울 뿐만 아니라 이송도 원활하지 않아 분체로 가공하는 효율이 떨어지는 문제점이 있기 때문에, 탈수 및/또는 건조 효율을 높이기 위하여 높은 고형분 함량을 가지는 슬러리를 사용하기 어려우며, 따라서 낮은 고형분 함량을 가지는 슬러리에 대해서만 운전이 가능하다는 제한점이 있으며, 그에 따라 후속하는 탈수 및 건조에서 많은 시간과 노력 및 에너지가 소모되는 문제가 있다.However, the apparatus as described above is difficult to stir the slurry having a high viscosity, and also has a problem in that the efficiency of processing into a powder is inferior because the slurry is not smooth, the slurry having a high solid content in order to increase the dehydration and / or drying efficiency It is difficult to use, and therefore has a limitation that it can be operated only for slurries having a low solids content, and thus there is a problem that a lot of time, effort and energy are consumed in subsequent dehydration and drying.
상기와 같은 문제점을 개선하기 위해서 다단 연속 응집 및 숙성 공정이 제안되었다. 이 공정은 낮은 고형분 함량을 가지는 고분자 슬러리를 효과적으로 숙성할 수 있다는 장점이 있다. 하지만 높은 고형분 함량을 가지는 슬러리에는 적용할 수 없으며, 여러 단계를 거쳐야 하기 때문에 공정의 효율성 측면에서도 다소 떨어지는 문제가 있다.In order to improve the above problems, a multistage continuous flocculation and aging process has been proposed. This process has the advantage of effectively aging the polymer slurry having a low solids content. However, it is not applicable to the slurry having a high solids content, and there is a problem in that the process efficiency is somewhat reduced because it has to go through several steps.
또한 응집제의 분할 투입을 통하여 응집 속도를 조절함으로써 생성되는 최종 입자의 분체 특성을 개선시키는 완속 응집(slow coagulation) 공정이 제안되었다. 이는 에너지 장벽이 존재하는 2차 웰 영역에서 응집이 일어나므로 응집속도가 느리고, 입자의 재배열이 이루어질 여지가 있어, 규칙적인 충진에 의한 구형 입자의 제조가 가능하다. 하지만 전체적인 응집제의 사용량은 래피드 응집과 비슷하며, 단지 분할 투입을 실시하여 응집시키는 방법일 뿐이다. 따라서 과량의 응집제에 의한 폐수 발생을 막을 수 없으며, 1차 응집조의 경우, 래피드 응집 대비 소량의 응집제를 투입하므로 슬러리의 점도가 상승하여 흐름성 확보를 위하여 래피드 응집 대비 물을 더 첨가해야 하는 단점을 가지고 있으며, 래피드 응집에 비해 높은 함수율을 갖는 단점도 있다.In addition, a slow coagulation process has been proposed to improve the powder characteristics of the final particles produced by controlling the coagulation rate through split dosing of coagulant. Since aggregation occurs in the secondary well region in which the energy barrier is present, the aggregation rate is slow and there is a possibility of rearrangement of the particles, so that spherical particles can be produced by regular filling. However, the overall amount of flocculant used is similar to that of rapid flocculation, and is merely a method of flocculation by performing split injection. Therefore, it is not possible to prevent the generation of wastewater due to excessive flocculant, and in the case of the primary flocculation tank, a small amount of flocculant is added to the rapid flocculation, so that the viscosity of the slurry rises, so that water must be added to the rapid flocculation to ensure flowability. It also has the disadvantage of having a high water content compared to rapid aggregation.
위의 두 가지 방법 모두 응집 후, 만들어지는 고분자 라텍스 슬러리의 흐름성은 고형분 함량, 슬러리의 입도 분포 및 슬러리의 내포수 함량 등에 영향을 받는데, 특히 고형분 함량에 많은 영향을 받는다. 슬러리의 고형분 함량이 어느 정도 이상이 되면 슬러리의 흐름성이 급격히 악화되어 한 덩어리가 되므로, 운전이 불가능하게 된다. 따라서 슬러리의 흐름성을 원활하게 하기 위해 응집 과정 시 추가적으로 과량의 물을 첨가해야 한다. 과량의 물의 첨가는 슬러리를 응집 온도 및 숙성 온도로 승온시킬 때 발생하는 에너지 비용을 상승시키며, 탈수 과정에도 과량의 폐수를 발생시켜 후처리 비용을 상승시킨다. 또한 직접 스팀을 이용하지 못하고, 매질인 물에 응축시켜 슬러리에 에너지를 전달함으로써 그 효율이 떨어진다.After both methods, the flowability of the polymer latex slurry produced after aggregation is influenced by the solid content, the particle size distribution of the slurry, and the inclusion water content of the slurry, and is particularly affected by the solid content. When the solids content of the slurry is more than a certain degree, the flowability of the slurry rapidly deteriorates and becomes a lump, thus making operation impossible. Therefore, in order to facilitate the flow of the slurry, an additional amount of water must be added during the flocculation process. The addition of excess water raises the energy costs incurred when the slurry is raised to the flocculation and maturation temperatures, and also generates excess wastewater during the dehydration process, thereby raising the post-treatment cost. In addition, the efficiency is lowered by not using steam directly, condensing in water as a medium to transfer energy to the slurry.
유화중합 라텍스로부터 분체를 회수하는 또 다른 방법으로는 가스상 분무 시스템(gas-phase spray system)에 의하여 고분자 라텍스의 분체를 회수하는 방법이다. 이 방법은 높은 고형분 함량의 고분자 라텍스를 분무기(atomizer)를 이용하여 과량의 응집제가 흐르는 면에 분사하는 것에 의하여 고분자 라텍스를 응집시켜 구형의 분체로 회수하는 방법이다. 이 경우, 고분자 라텍스는 높은 고형분을 유지하면서 응집제와 접촉하므로 응집제와의 접촉 순간에 빠른 응집이 이루어지게 되어 높은 겉보기 비중과 완속 응집 공정에서 얻어질 수 있는 구형의 분체 회수가 가능하다. 하지만 미반응을 막기 위해 과량의 응집제를 사용해야 하므로 과량의 폐수 발생을 막을 수 없고, 분무기의 막힘 현상이 자주 발생하여, 공정 안정성 측면에서도 불리하다고 할 수 있다.Another method of recovering the powder from the emulsion-polymerized latex is to recover the powder of the polymer latex by means of a gas-phase spray system. This method is a method in which a polymer latex is agglomerated and recovered into a spherical powder by spraying a polymer latex having a high solid content on the side through which an excessive flocculant flows using an atomizer. In this case, since the polymer latex is in contact with the flocculant while maintaining a high solid content, rapid flocculation is achieved at the moment of contact with the flocculant, thereby enabling spherical powder recovery that can be obtained in a high apparent specific gravity and a slow flocculation process. However, it is necessary to use an excessive flocculant to prevent unreacted, so that it is not possible to prevent the generation of excess wastewater, the clogging of the atomizer frequently occurs, it can be said to be disadvantageous in terms of process stability.
또한 유기 용매 존재 하에서 분체의 입자 크기를 조절하고, 겉보기 비중을 개선시킨 연구들도 있으나, 이러한 경우 과량의 유기 용매를 사용해야만 상기와 같은 분체 특성을 확보할 수 있다는 단점을 가지고 있다.In addition, there are studies that control the particle size of the powder and improve the apparent specific gravity in the presence of an organic solvent, but in this case, it is disadvantageous that such powder characteristics can be secured only by using an excess of an organic solvent.
또 다른 방법으로는 강한 기계적인 힘으로 전단력을 가하여 라텍스의 입자들이 뭉치게 하여 슬러리를 제조하는 전단 응집(shear coagulation)이 있다. 이는 응집제를 사용하지 않고 4,000rpm 이상의 고속 회전에 의한 전단력(shear stress)을 가하여 고분자 라텍스 슬러리를 제조한다. 하지만 유화제가 사용되어 안정성을 확보한 유화중합 고분자 라텍스의 경우, 회수한 분체 내에 잔류 유화제가 남아 가공 시, 열안정성 및 색상에 악영향을 미치게 되는 단점을 가지고 있다.Another method is shear coagulation, which produces a slurry by applying shear force with strong mechanical force to agglomerate particles of latex. It applies a shear stress due to high speed rotation of 4,000 rpm or more without using a flocculant to prepare a polymer latex slurry. However, in the case of emulsion polymerized polymer latex in which stability is secured by using an emulsifier, a residual emulsifier remains in the recovered powder, which has a disadvantage of adversely affecting thermal stability and color during processing.
따라서, 슬러리의 함수율을 낮추어 건조효율을 높일 수 있고, 응집제의 사용량을 감소시켜 색상 및 분체 특성이 우수한 고분자 라텍스 수지 분체를 제조할 수 있는 고분자 라텍스 수지 분체의 제조장치 및 이를 이용한 고분자 라텍스 수지 분체의 제조방법에 대한 개발이 여전히 요구되고 있는 실정이다.Accordingly, the apparatus for producing a polymer latex resin powder capable of producing a polymer latex resin powder having excellent color and powder characteristics by reducing the water content of the slurry to increase the drying efficiency and reducing the amount of flocculant used, and the polymer latex resin powder using the same Development of the manufacturing method is still required.
본 발명의 목적은 응집과 숙성을 수행하는 반응기에 비연속식 스크류를 도입하여 스팀, 라텍스 및 응집제의 혼합 효율을 높이는 것에 의하여, 슬러리의 함수율을 낮추어 건조효율을 높일 수 있고, 응집제의 사용량을 감소시켜 색상 및 분체 특성이 우수한 고분자 라텍스 수지 분체를 제조할 수 있는 고분자 라텍스 수지 분체의 제조장치 및 이를 이용한 고분자 라텍스 수지 분체의 제조방법을 제공하기 위한 것이다.An object of the present invention is to introduce a non-continuous screw into the reactor to perform agglomeration and maturation to increase the mixing efficiency of steam, latex and flocculant, to lower the water content of the slurry to increase the drying efficiency, reducing the amount of flocculant used It is to provide an apparatus for producing a polymer latex resin powder capable of producing a polymer latex resin powder excellent in color and powder properties, and a method for producing a polymer latex resin powder using the same.
본 발명의 상기 목적은 하기 설명되는 본 발명에 의하여 모두 달성 될 수 있다.The above object of the present invention can be achieved by the present invention described below.
상기 목적을 달성하기 위하여, 본 발명은 고분자 라텍스의 응집을 위한 반응기를 포함하는 고분자 수지 분체의 제조장치에 있어서, 상기 반응기가 라텍스가 통과하는 중공의 반응관과, 상기 반응관의 내벽으로부터 상기 반응관의 내측방향으로 돌출되는 적어도 1개 이상의 배럴핀과, 상기 반응관의 길이방향의 중심축을 따라 연장되는 회전축과, 상기 회전축의 외면으로부터 상기 반응관의 내벽 쪽으로 돌출되는 적어도 하나 이상의 교반기를 포함하되, 상기 적어도 하나 이상의 교반기가 비연속식 스크류를 포함하는 것을 특징으로 하는 고분자 수지 분체의 제조장치를 제공한다.In order to achieve the above object, the present invention is a device for producing a polymer resin powder comprising a reactor for agglomeration of polymer latex, the reactor is a reaction tube of the hollow tube through which the latex passes, and the reaction from the inner wall of the reaction tube At least one barrel pin protruding inwardly of the tube, a rotating shaft extending along the central axis in the longitudinal direction of the reaction tube, and at least one agitator protruding from the outer surface of the rotating shaft toward the inner wall of the reaction tube; In addition, the at least one stirrer provides a polymer resin powder manufacturing apparatus comprising a discontinuous screw.
상기 고분자 수지 분체의 제조장치는 일례로 탈수기, 건조기 또는 이들 모두를 포함할 수 있다.The apparatus for producing the polymer resin powder may include, for example, a dehydrator, a dryer, or both.
상기 교반기는 일례로 1 내지 20개일 수 있다. The stirrer may be 1 to 20, for example.
상기 비연속식 스크류는 일례로 하나 이상의 개구부를 포함할 수 있다.The discontinuous screw may include, for example, one or more openings.
상기 개구부의 총 면적은 일례로 회전날개의 총 면적 대비 0.05 내지 1의 범위 이내일 수 있다.The total area of the opening may be, for example, within the range of 0.05 to 1 relative to the total area of the rotary blade.
상기 비연속식 스크류는 일례로 상기 회전축에 대한 수직방향의 축으로부터의 회전날개의 경사각(α)이 0.1 내지 10°의 범위 이내일 수 있다.For example, the discontinuous screw may have an inclination angle α of the rotary blade from an axis perpendicular to the rotation axis within a range of 0.1 to 10 °.
상기 반응기의 반응관은 일례로 반응관 외부로부터 반응관 내부로 연장되는 1종 이상의 배럴핀을 포함할 수 있다.The reaction tube of the reactor may include, for example, one or more barrel pins extending from the outside of the reaction tube into the reaction tube.
상기 반응기는 일례로 고분자 라텍스 투입라인, 응집제 투입라인 및 스팀 투입라인을 포함할 수 있다. The reactor may include, for example, a polymer latex input line, a flocculant input line, and a steam input line.
상기 반응기는 일례로 고분자 라텍스의 응집과 숙성을 위한 일체형 반응기일 수 있다.The reactor may be, for example, an integrated reactor for agglomeration and ripening of the polymer latex.
또한, 본 발명은 상기 고분자 수지 분체의 제조장치를 이용하는 것을 특징으로 하는 고분자 수지 분체의 제조방법을 제공한다.In addition, the present invention provides a method for producing a polymer resin powder, characterized in that for using the polymer resin powder production apparatus.
상기 고분자 수지 분체는 일례로 함수율이 25% 이내일 수 있다.For example, the polymer resin powder may have a water content of 25% or less.
상기 고분자 수지 분체의 제조방법은 일례로 응집과 숙성단계에서 고분자 슬러리가 체류하는 시간이 0.5분 내지 30분일 수 있다.The method for preparing the polymer resin powder may be, for example, 0.5 to 30 minutes of the polymer slurry in the aggregation and aging step.
상기 고분자 수지는 일례로 비닐시안 화합물-공액디엔계 화합물-방향족 비닐화합물 그라프트 공중합체일 수 있다.The polymer resin may be, for example, a vinyl cyan compound-conjugated diene compound-aromatic vinyl compound graft copolymer.
또한, 본 발명은 상기 방법으로 제조된 고분자 수지 분체를 제공한다.The present invention also provides a polymer resin powder produced by the above method.
본 발명에 따르면, 응집과 숙성을 수행하는 반응기 내에 미응축 스팀 및 라텍스 유체의 흐름을 방해하는 비연속식 스크류를 도입하여 라텍스의 난류 유동을 유도함으로써 라텍스와 응집제의 혼합효율을 증대시키고, 슬러리의 함수율을 감소시켜 탈수 및 건조 등과 같은 후공정의 단순화 및 에너지 절감 효과를 높이고, 응집 과정에 소요되는 응집제의 양을 감량시키는 것에 의하여 수득되는 고분자 분체의 색상을 개선시켜 품질 개선 효과가 제공된다.According to the present invention, by introducing a non-continuous screw which prevents the flow of uncondensed steam and latex fluid in the reactor to perform agglomeration and maturation to induce turbulent flow of the latex to increase the mixing efficiency of the latex and flocculant, and The water content is improved by simplifying post-processing such as dehydration and drying, increasing energy saving effects, and improving the color of the polymer powder obtained by reducing the amount of flocculant required for the flocculation process.
또한, 미응축 스팀의 응축 효율을 증대시켜 스팀 부피 감소 및 압력 감소에 따른 장치 내 슬러리의 체류 시간을 확보하고, 슬러리의 충돌 수 증대로 인하여 분체 특성(코스입자(coarse particle) 제거 및 겉보기 비중 증가)을 우수하게 하여 후공정의 공정안정성 증대 및 에너지 절감 효과, 포장비, 운송비 등의 물류비용을 감소 시키는 효과를 제공한다.In addition, by increasing the condensation efficiency of the non-condensed steam to ensure the residence time of the slurry in the device due to the reduction of steam volume and pressure, the powder characteristics (coarse particle removal and apparent specific gravity increase due to the increase in the number of impact of the slurry ) To increase the process stability of the post-process and to reduce the logistics costs such as energy savings, packaging costs, transportation costs.
도 1은 종래기술에 따른 고분자 라텍스 수지 분체의 제조 공정을 모식적으로 도시한 구성도이다.1 is a block diagram schematically showing a process for producing a polymer latex resin powder according to the prior art.
도 2는 본 발명의 일 실시예에 따른 고분자 라텍스 수지 분체의 제조장치를 구성하며, 응집과 숙성을 수행하는 반응기의 구성을 모식적으로 도시한 단면도이다.FIG. 2 is a cross-sectional view schematically showing the configuration of a reactor for preparing a polymer latex resin powder according to an embodiment of the present invention and performing agglomeration and aging.
도 3은 도 2의 반응기에 도입되는 비연속식 스크류의 하나의 구체예에 따른 정면도이다.3 is a front view according to one embodiment of a discontinuous screw introduced into the reactor of FIG.
도 4는 도 3의 비연속식 스크류의 하나의 구체예에 따른 측면도이다.4 is a side view according to one embodiment of the discontinuous screw of FIG. 3.
도 5는 도 2의 반응기에 도입되는 비연속식 스크류의 다른 구체예들의 정면도이다.5 is a front view of other embodiments of a discontinuous screw introduced into the reactor of FIG.
〔부호의 설명〕[Explanation of code]
100: 반응기 110, 11: 고분자 라텍스 투입라인100: reactor 110, 11: polymer latex input line
120, 12: 응집제 투입라인 130: 스팀 투입라인120, 12: flocculant input line 130: steam input line
140: 배럴핀 150: 교반기140: barrel pin 150: stirrer
210: 비연속식 스크류210: discontinuous screw
1: 라텍스 저장탱크 2: 응집조1: latex storage tank 2: flocculation tank
3: 숙성조 4: 탈수기3: aging tank 4: dehydrator
5: 건조기 13: 물 공급라인5: dryer 13: water supply line
14: 응집제 배출 15: 최종 고분자 분체14: discharge of flocculant 15: final polymer powder
본 발명자들은 유화중합 라텍스로부터 고분자 라텍스 수지 분체를 효율적으로 제조하는 방법을 연구하던 중, 개별적으로 응집 및 숙성 과정을 거치는 기존의 공정과 달리 응집과 숙성이 함께 이루어지는 반응기(100)에 비연속식 스크류를 도입함으로써 스팀, 라텍스 및 응집제의 혼합 효율을 높이는 것에 의하여, 슬러리의 함수율을 낮추어 건조효율을 높일 수 있고, 응집제의 사용량을 감소시켜 색상 및 분체 특성이 우수한 고분자 라텍스 수지 분체를 제조할 수 있음을 확인하였다.The inventors of the present invention, while studying a method for efficiently preparing polymer latex resin powder from emulsion polymerization latex, unlike the conventional process of individually flocculating and aging process, discontinuous screw in the reactor (100) made of both coagulation and aging By increasing the mixing efficiency of the steam, latex and flocculant, it is possible to increase the drying efficiency by lowering the water content of the slurry, and to reduce the amount of the flocculant to prepare a polymer latex resin powder having excellent color and powder characteristics. Confirmed.
상기와 같은 목적을 달성하기 위한 본 발명은, 도 2에 나타낸 바와 같이, 라텍스 탱크, 라텍스의 응집과 숙성을 위한 반응기, 탈수기 및 건조기를 포함하는 고분자 라텍스 수지 분체의 제조장치에 있어서, 상기 반응기는 라텍스가 통과하는 중공의 반응관(160)과, 상기 반응관(160)의 내벽으로부터 상기 반응관(160)의 내측방향으로 돌출되는 적어도 1개 이상의 배럴핀과, 상기 반응관의 길이방향의 중심축을 따라 연장되는 회전축과, 상기 회전축의 외면으로부터 상기 반응관의 내벽 쪽으로 돌출되는 적어도 하나 이상의 교반기를 포함하여 이루어지되, 상기 적어도 하나 이상의 교반기가 비연속식 스크류(210)인 것을 특징으로 하는 고분자 라텍스 수지 분체의 제조장치를 제공한다. 즉, 본 발명은 상기한 바의 응집과 숙성을 위한 반응기 내의 다수의 교반기(150)들 중의 적어도 하나 이상을 비연속식 스크류(210)로 대체하는 것에 의하여 라텍스의 난류 유동을 유도함으로써 라텍스와 응집제의 혼합효율을 증대시키고, 슬러리의 함수율을 감소시켜 탈수 및 건조 등과 같은 후공정의 단순화 및 에너지 절감 효과를 높이고, 응집 과정에 소요되는 응집제의 양을 감량시키는 것에 의하여 수득되는 고분자 분체의 색상을 개선시켜 품질 개선 효과를 제공한다는 점에 특징이 있는 것이다. 상기 반응관(160)의 단면은 임의의 다각형 또는 원형이 될 수 있으며, 바람직하게는 원형이 될 수 있다.The present invention for achieving the above object, as shown in Figure 2, in the apparatus for producing a polymer latex resin powder comprising a latex tank, a reactor for coagulation and maturation of latex, a dehydrator and a dryer, A hollow reaction tube 160 through which latex passes, at least one barrel pin protruding inward from the inner wall of the reaction tube 160, and a center in the longitudinal direction of the reaction tube A polymer latex comprising a rotating shaft extending along an axis and at least one stirrer protruding from the outer surface of the rotating shaft toward the inner wall of the reaction tube, wherein the at least one stirrer is a discontinuous screw 210. An apparatus for producing a resin powder is provided. That is, the present invention induces turbulent flow of latex by replacing at least one or more of the plurality of agitators 150 in the reactor for coagulation and maturation as described above with a discontinuous screw 210, thereby causing latex and flocculant To increase the mixing efficiency of the slurry, to reduce the water content of the slurry, to simplify the post-processing and energy saving effect such as dehydration and drying, and to reduce the color of the polymer powder obtained by reducing the amount of flocculant required for the flocculation process. It is characterized by providing quality improvement effect. The cross section of the reaction tube 160 may be any polygon or circle, preferably may be circular.
상기 교반기는 일례로 연속식 회전날개 또는 연속식 스크류일 수 있다.The stirrer may be, for example, a continuous rotary blade or a continuous screw.
상기 반응기(100)는 응집과 숙성을 함께 수행하도록 고안된 것으로서, 라텍스가 통과하는 중공의 반응관(160)과, 상기 반응관(160)의 내벽으로부터 상기 반응관(160)의 내측방향으로 돌출되는 적어도 1개 이상의 배럴핀(140)들과, 상기 반응관(160)의 길이방향의 중심축을 따라 연장되는 회전축(170)과, 상기 회전축(170)의 외면으로부터 상기 반응관(160)의 내벽 쪽으로 돌출되는 적어도 하나 이상의 교반기(150)를 포함하여 이루어지며, 상기 반응관(160)에는 라텍스 투입라인(110)과, 응집제 투입라인(120) 및 스팀 투입라인(130)들이 연결되어 상기 반응관(160) 내로 라텍스와 응집제 및 스팀을 공급하도록 구성된다.The reactor 100 is designed to perform agglomeration and aging together, and the hollow reaction tube 160 through which latex passes and protrudes inwardly of the reaction tube 160 from an inner wall of the reaction tube 160. At least one or more barrel pins 140, a rotating shaft 170 extending along the longitudinal central axis of the reaction tube 160, and from the outer surface of the rotating shaft 170 toward the inner wall of the reaction tube 160 It comprises at least one stirrer 150 protruding, the reaction tube 160 is connected to the latex input line 110, the flocculant input line 120 and the steam input line 130 is connected to the reaction tube ( 160) to supply latex and flocculant and steam.
본 발명의 하나의 구체예에 있어서 상기 비연속식 스크류(210)는 상기 반응기(100) 내에 1 내지 20개, 바람직하게는 4 내지 16개, 가장 바람직하게는 8 내지 12개가 구비될 수 있으며, 상기 범위일 때, 유체(미응축 스팀 및 라텍스)의 흐름을 방해하고 라텍스의 난류 유동을 유도하여 스팀과 라텍스, 응집제의 혼합 효율을 증대시키는 효과가 있으나, 본 발명이 이에 제한되는 것은 아니며, 상기 비연속식 스크류(210)는 상기 반응기(100)의 길이(L)에 따라 적절한 수로 배치될 수 있음은 당해 기술분야에 속하는 자에게는 이해될 수 있는 것이다. 또한, 상기 비연속식 스크류(210)는 이축 스크류일 수 있으며, 본 발명에서 사용되는 비연속식 스크류(210)을 도 3 및 도 4에 보다 상세하게 도시하였다.In one embodiment of the present invention, the discontinuous screw 210 may be provided with 1 to 20, preferably 4 to 16, most preferably 8 to 12 in the reactor 100, When in the above range, there is an effect of increasing the mixing efficiency of steam, latex, and flocculant by hindering the flow of fluid (non-condensed steam and latex) and inducing turbulent flow of latex, but the present invention is not limited thereto. It will be understood by those skilled in the art that the discontinuous screw 210 may be arranged in an appropriate number depending on the length L of the reactor 100. In addition, the discontinuous screw 210 may be a biaxial screw, and the discontinuous screw 210 used in the present invention is illustrated in more detail in FIGS. 3 and 4.
도 3에 나타낸 바와 같이, 본 발명에서 사용되는 상기 비연속식 스크류(210)는 중심의 스크류축(211)을 중심으로 상기 스크류축(211)의 외면으로부터 돌출되어 방사상으로 연장되는 회전날개(212)의 적어도 일부가 불연속화되어 형성되는 적어도 하나 이상의 개구부(214)를 포함하여 이루어짐을 특징으로 한다. 상기 개구부(214)는 상기 비연속식 스크류(210)의 회전방향(도 2에서의 회전방향으로, 상기 스크류축(211)을 중심으로 반시계방향)으로의 회전에 의하여 이송되는 라텍스의 진행방향(도 2에서의 이송방향), 즉 상기 스크류축(211)의 길이방향의 축을 따라 연장되는 방향에 대하여 상기 회전날개(212)의 일부가 형성되지 않는 구조로 이루어진다. 상기 개구부(214)는 적어도 하나 이상, 예를 들면 도 5에 나타낸 바와 같이, 1개(도 5a), 3개(도 5b) 또는 4개(도 5c)가 될 수 있으며, 도 3에 나타낸 바와 같이 2개가 될 수 있으나, 본 발명은 이에 제한되지 않고, 더 많은 수의 개구부(214)들이 형성될 수도 있다. 즉, 상기 개구부(214)는 1 내지 6개, 바람직하게는 1 내지 5개, 가장 바람직하게는 2 내지 4개가 될 수 있으며, 이 범위 이내에서 유체(미응축 스팀 및 라텍스)의 흐름을 방해하고 라텍스의 난류 유동을 유도하여 스팀과 라텍스, 응집제의 혼합 효율을 증대시키는 효과가 우수하게 나타난다. 상기 개구부(214)는 홀수(1, 3, 5, 7개)로 형성되기 보다는 짝수(2, 4, 6, 8개)로 형성되는 것이 바람직하며, 홀수로 형성되는 경우에 비해 짝수로 형성되는 경우에 소음이나 진동 등이 덜 발생하는 장점이 있다. 도 4에서 참조번호 213은 상기 회전날개(212)의 날개 끝부분에 해당하는 측면을 나타내고 있다.As shown in FIG. 3, the discontinuous screw 210 used in the present invention is a rotary blade 212 protruding radially from the outer surface of the screw shaft 211 around the central screw shaft 211. At least a portion of the) is characterized in that it comprises at least one or more openings 214 are formed discontinuously. The opening 214 is a direction in which latex is conveyed by rotation in the direction of rotation of the discontinuous screw 210 (in the direction of rotation in FIG. 2, counterclockwise around the screw shaft 211). (Conveying direction in Fig. 2), that is, a portion of the rotary blade 212 is not formed with respect to the direction extending along the longitudinal axis of the screw shaft 211. The openings 214 may be at least one, for example one (FIG. 5A), three (FIG. 5B) or four (FIG. 5C), as shown in FIG. 5, as shown in FIG. 3. The number may be two, but the present invention is not limited thereto, and a larger number of openings 214 may be formed. That is, the openings 214 may be 1 to 6, preferably 1 to 5, and most preferably 2 to 4, to hinder the flow of fluid (non-condensed steam and latex) within this range Induces turbulent flow of latex to increase the mixing efficiency of steam, latex, and flocculant is excellent. The openings 214 may be formed evenly (2, 4, 6, 8) rather than oddly (1, 3, 5, 7), and are formed evenly, compared to the odd number. In this case, less noise or vibration is generated. In FIG. 4, reference numeral 213 indicates a side surface corresponding to the blade tip of the rotary blade 212.
상기 비연속식 스크류(210)에서 상기 개구부(214)가 차지하는 면적비(즉, 상기 개구부(214)의 총면적/상기 회전날개(212)의 총면적)는 0.05 내지 1, 바람직하게는 0.1 내지 0.4, 가장 바람직하게는 0.2 내지 0.3의 범위 이내가 될 수 있으며, 이 범위 이내에서 라텍스의 이동속도를 적절히 유지하면서도 유체(미응축 스팀 및 라텍스)의 흐름을 방해하고 라텍스의 난류 유동을 유도하여 스팀과 라텍스, 응집제의 혼합 효율을 증대시키는 효과가 우수하게 나타난다.The area ratio of the opening 214 in the discontinuous screw 210 (ie, the total area of the opening 214 / the total area of the rotary blade 212) is 0.05 to 1, preferably 0.1 to 0.4, most Preferably it can be within the range of 0.2 to 0.3, within this range while maintaining the proper moving speed of the latex, while interfering with the flow of fluid (non-condensed steam and latex) and induce a turbulent flow of the latex, steam and latex, The effect of increasing the mixing efficiency of the flocculant is excellent.
상기 회전날개의 면적은 회전날개 한쪽 표면(212)의 면적을 의미할 수 있고, 상기 개구부의 면적은 개구부의 한쪽 표면(214)의 면적을 의미할 수 있다.The area of the rotary blade may mean the area of one surface 212 of the rotary blade, the area of the opening may mean the area of one surface 214 of the opening.
상기 개구부는 회전날개의 일부 구간이 생략된 빈 공간을 의미할 수 있다.The opening may mean an empty space in which some sections of the rotary blade are omitted.
상기 비연속식 스크류(210)에서 상기 스크류축에 대하여 수직방향의 축으로부터의 회전날개의 경사각(α)이 적을수록, 즉 스크류축에 대하여 스크류가 수직일수록, 이송방향에 반대하는 백압(Back pressure)이 커지며, 이로 인하여 난류 유동을 유도하여 스팀과 라텍스, 응집제의 혼합효율을 증대시키고, 체류시간을 확보하는 효과가 발생한다. 반면, 기울어진 정도가 너무 작을 경우 이송이 안되고 적체되는 현상이 발생된다. 따라서 적절한 기울기를 선택하여 설계하는 것이 중요하며, 이 기울어진 정도, 즉 경사각(α)은 0.1 내지 10°, 바람직하게는 0.2 내지 4°, 가장 바람직하게는 0.4 내지 2°의 범위 이내이다.In the discontinuous screw 210, the smaller the inclination angle α of the rotary blade from the axis perpendicular to the screw axis, that is, the perpendicular to the screw axis, the back pressure opposite to the conveying direction. ) Increases, which induces turbulent flow to increase the mixing efficiency of steam, latex, and flocculant, and secures residence time. On the other hand, if the degree of inclination is too small, it will not be transported and will accumulate. Therefore, it is important to design by selecting an appropriate inclination, and this degree of inclination, i.e., the inclination angle α, is within the range of 0.1 to 10 degrees, preferably 0.2 to 4 degrees, and most preferably 0.4 to 2 degrees.
본 발명에 따른 상기 반응기(100)에는 반응관(160) 외부에서 내부까지 연장되는 배럴핀(140)이 고정되어 있고, 상기 반응관(160)의 내부에는 교반기(150) 및/또는 상기 비연속식 스크류(210)가 회전가능하게 고정된다. 구체적으로는 상기 반응기(100)의 반응관(160)은 반응관(160) 외부로부터 반응관(160) 내부로 연장되는 1종 이상의 배럴핀(140)을 포함한다. 따라서, 상기 반응관(160)에는 반응관(160)에 고정된 상기 배럴핀(140)들 사이에서 상기 교반기(150) 및/또는 상기 비연속식 스크류(210)들이 회전하면서 상기 반응관(160) 내로 유입되는 라텍스를 도 2의 이송방향으로 이송시키면서 결과적으로 상기 라텍스는 상기 교반기(150) 및/또는 상기 비연속식 스크류(210)의 회전날개들과 접촉하여 그로부터 기계적인 힘을 받아 이송하면서 상기 배럴핀(140)들에 부딪쳐서 강한 기계적인 힘, 즉 전단력을 받게 되며, 유화중합 시에 첨가된 유화제에 의해 안정화된 라텍스들이 기계적인 방법에 의하여 안정화된 상태가 깨어지고, 그에 따라 응집되게 되며, 상기 반응관(160)의 후반에서 숙성되게 된다.In the reactor 100 according to the present invention, a barrel pin 140 extending from the outside of the reaction tube 160 to the inside is fixed, and the agitator 150 and / or the discontinuous inside the reaction tube 160. The screw 210 is rotatably fixed. Specifically, the reaction tube 160 of the reactor 100 includes one or more barrel pins 140 extending from the outside of the reaction tube 160 into the reaction tube 160. Accordingly, the reaction tube 160 rotates between the stirrer 150 and / or the discontinuous screw 210 between the barrel pins 140 fixed to the reaction tube 160. 2) As the latex is introduced into the conveying direction of FIG. 2 as a result, the latex is in contact with the rotary blades of the stirrer 150 and / or the discontinuous screw 210 and receives mechanical force therefrom. The barrel pins 140 are subjected to a strong mechanical force, that is, a shear force, and the latex stabilized by the emulsifier added during the emulsion polymerization is stabilized by a mechanical method is broken, thereby agglomerated accordingly And, it is aged in the second half of the reaction tube (160).
상기 배럴핀(140)의 형태는 원형, 삼각형, 경사형, 타원형, 마름모형, 사각형 등 어떠한 것도 가능하며, 특별히 한정되지 않으며, 교반기(150)의 경우 패들, 스크류, 이축 스크류, 핀 등 어떠한 것도 사용 가능하다.The barrel pin 140 may have any shape such as a circle, a triangle, an inclination, an ellipse, a diamond, a rectangle, and the like, and is not particularly limited. In the case of the stirrer 150, anything such as a paddle, a screw, a biaxial screw, a pin, etc. Can be used
상기 비연속식 스크류(210)를 포함하는 상기 반응기(100)는 배럴핀(140)과 내부 교반기(150) 및/또는 비연속식 스크류(210)의 작용으로 유화중합에 의해 수득되는 라텍스에 기계적인 힘을 가하는 것에 의하여 고분자 슬러리의 점도를 조절할 수 있으며, 높은 점도의 슬러리를 만들어 기계적인 힘을 이용하여 함수율을 조절할 수 있다.The reactor 100 comprising the discontinuous screw 210 is machined into a latex obtained by emulsion polymerization under the action of the barrel pin 140 and the internal stirrer 150 and / or the discontinuous screw 210. It is possible to control the viscosity of the polymer slurry by applying a force, and to make a slurry of high viscosity to control the moisture content using a mechanical force.
상기 반응기(100)는 고분자 라텍스 투입라인(110), 응집제 투입라인(120) 및 스팀 투입라인(130)을 포함하여 이루어지며, 고분자 라텍스, 응집제 및 스팀이 투입되는 위치에 가까운 부분에서 응집 반응이 일어나고, 상기 반응기의 후반부에서 숙성 반응이 일어나게 되어 실질적으로 동일한 반응기 내에서 응집과 숙성이 동시에 수행될 수 있다.The reactor 100 includes a polymer latex input line 110, a flocculant input line 120, and a steam input line 130, and agglomeration reaction is performed at a portion close to a position where the polymer latex, flocculant, and steam are introduced. Occurs, and a aging reaction occurs in the second half of the reactor so that coagulation and aging can be performed simultaneously in substantially the same reactor.
본 발명은 상기와 같은 고분자 라텍스 수지 분체의 제조장치를 이용하여 고분자 라텍스 수지 분체를 제조하는 방법을 제공한다.The present invention provides a method for producing a polymer latex resin powder using the apparatus for producing a polymer latex resin powder as described above.
본 발명에 사용되는 고분자 라텍스는 고형분 함량이 10 내지 90중량%인 유화중합시킨 고분자 라텍스로서, 비닐시안 화합물-공액디엔계 화합물-방향족 비닐화합물 그라프트 공중합체일 수 있다. 상기 그라프트 공중합체는 공액디엔계 화합물에 방향족 비닐 화합물과 비닐시안 화합물의 단량체 혼합물을 중합시켜 제조한다.The polymer latex used in the present invention is an emulsion polymerized polymer latex having a solid content of 10 to 90% by weight, and may be a vinyl cyan compound-conjugated diene compound-aromatic vinyl compound graft copolymer. The graft copolymer is prepared by polymerizing a monomer mixture of an aromatic vinyl compound and a vinyl cyan compound on a conjugated diene-based compound.
상기 공액디엔계 화합물은 부타디엔계 고무, 에틸렌-프로필렌-디엔 단량체 고무(EPDM), 에틸렌 프로필렌 고무(EPR), 할로부틸 고무, 부틸고무, 스티렌-이소프렌-스티렌(SIS) 및 스티렌-부타디엔 고무(SBR)로 이루어진 군으로부터 1종 선택될 수 있으며, 구체적으로는 부타디엔계 고무를 사용한다.The conjugated diene compound is butadiene rubber, ethylene-propylene-diene monomer rubber (EPDM), ethylene propylene rubber (EPR), halobutyl rubber, butyl rubber, styrene-isoprene-styrene (SIS) and styrene-butadiene rubber (SBR It may be selected from the group consisting of), specifically butadiene-based rubber is used.
상기 비닐시안 화합물은 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴 또는 이들의 유도체일 수 있으며, 구체적으로는 아크릴로니트릴을 사용한다.The vinyl cyan compound may be acrylonitrile, methacrylonitrile, ethacrylonitrile or derivatives thereof, specifically acrylonitrile is used.
상기 방향족 비닐 화합물은 스티렌, 알파메틸스티렌, 알파에틸스티렌, 파라메틸스티렌, 비닐톨루엔 또는 이들의 유도체일 수 있으며, 구체적으로는 스티렌을 사용한다.The aromatic vinyl compound may be styrene, alpha methyl styrene, alpha ethyl styrene, paramethyl styrene, vinyl toluene or a derivative thereof. Specifically, styrene is used.
상기 응집제는 황산, 인산, 염산 등의 수용성 무기산 또는 황산염 등의 무기염을 사용할 수 있다. 일반적으로 응집제는 응집에 필요한 이론치 이상 투입하며, 본 발명에서는 상기 고분자 라텍스 100중량부에 대하여 0.5 내지 5중량부, 구체적으로는 0.5 내지 3.0중량부, 가장 구체적으로는 0.5 내지 2.0중량부로 사용될 수 있다. 즉, 본 발명에서는 아주 미량의 응집제 만으로도 효과적으로 고분자 라텍스를 응집시킬 수 있다. 그리하여 응집제의 함량을 감소시킴으로써 색상을 개선시키고 열안정성을 증가시키는 효과를 얻을 수 있다.The flocculant may be an inorganic salt such as a water-soluble inorganic acid or sulfate, such as sulfuric acid, phosphoric acid, hydrochloric acid. Generally, the flocculant is added to the theoretical value required for aggregation, and in the present invention, 0.5 to 5 parts by weight, specifically 0.5 to 3.0 parts by weight, most specifically 0.5 to 2.0 parts by weight, based on 100 parts by weight of the polymer latex. . That is, in the present invention, only a very small amount of flocculant can effectively flocculate the polymer latex. Thus, the effect of improving the color and increasing the thermal stability can be obtained by reducing the content of the flocculant.
상기 고분자 수지 분체는 함수율이 일례로 25% 이내, 혹은 10% 내지 20%일 수 있다.The polymer resin powder may have, for example, a water content within 25%, or 10% to 20%.
상기 응집과 숙성단계에서 고분자 슬러리가 반응기 내에서 체류하는 시간은 0.5분 내지 30분, 일례로 0.5분 내지 10분, 혹은 0.5분 내지 5분일 수 있다. 기존 장치에서는 스팀의 응축효율이 낮아서 체류시간이 확보되지 않았으나 비연속식 스크류를 도입 후 체류시간을 확보할 수 있다.The residence time of the polymer slurry in the reactor in the aggregation and aging step may be 0.5 minutes to 30 minutes, for example 0.5 minutes to 10 minutes, or 0.5 minutes to 5 minutes. In the existing device, the residence time was not secured due to the low steam condensation efficiency, but after the introduction of the discontinuous screw, the residence time can be secured.
상기 응집 및 숙성 온도는 60 내지 100 ℃ 또는 65 내지 85 ℃일 수 있고, 이 범위 내에서 응집 및 숙성 효과가 크다.The aggregation and aging temperature may be 60 to 100 ℃ or 65 to 85 ℃, within this range the coagulation and ripening effect is large.
이는 응집과 숙성 공정을 별도로 진행하는 종래 장치를 사용하는 경우에는 30분에서 1시간 정도의 긴 체류시간이 필요한 것과는 달리, 본 발명에서는 비연속식 스크류를 도입함으로써 스팀의 응축 효율을 증대시켜 압력차 감소에 따라 아주 짧은 체류시간 만으로도 우수한 분체 특성을 가지는 슬러리를 제조할 수 있다. 상기 체류시간 중에서 응집 구간은 실질적으로 수초 내지 1분 이내에 완료되며, 상기 시간 동안 응집이 끝나자마자 숙성이 진행되어 상기 고분자 슬러리가 밖으로 배출되기 전까지 계속 진행된다.This is different from the conventional apparatuses in which the flocculation and maturation processes are performed separately. However, a long residence time of about 30 minutes to 1 hour is required, but in the present invention, by introducing a discontinuous screw, the pressure difference is increased by increasing the condensation efficiency of steam. As a result, slurries with excellent powder properties can be prepared with very short residence times. The aggregation section of the residence time is substantially completed within a few seconds to 1 minute, and as soon as the aggregation is completed during the time, the aging proceeds until the polymer slurry is discharged out.
본 발명에서는 상기 응집과 숙성 공정에서 고분자 슬러리의 체류시간을 30분을 초과하도록 반응시킬 수도 있으나, 이러한 경우 장치 사이즈가 커져 경제적이지 못하다.In the present invention, the residence time of the polymer slurry in the flocculation and aging process may be reacted to exceed 30 minutes, but in this case, the size of the device is not economical.
상기와 같은 과정으로 제조된 본 발명의 고분자 라텍스 슬러리의 고형분 함량은 상기 고분자 라텍스의 고형분 함량에 따라 달라지나, 일반적으로 25 내지 60중량%이다. 고형분 함량이 25중량% 미만인 경우에는 슬러리의 흐름성이 너무 높아 슬러리의 체류시간을 확보하지 못하게 되는 문제점이 있을 수 있고, 60중량%를 초과하는 경우에는 슬러리의 이송력이 떨어져 슬러리가 장치 내부를 막아 운전이 불가능하게 되는 문제점이 있을 수 있다.The solids content of the polymer latex slurry of the present invention prepared by the above process depends on the solids content of the polymer latex, but is generally 25 to 60% by weight. If the solid content is less than 25% by weight, there may be a problem in that the flowability of the slurry is too high to secure the residence time of the slurry, and in the case of more than 60% by weight, the slurry has a poor transport force and the slurry may There may be a problem that the operation is impossible to prevent.
상기 응집과 숙성이 진행된 고분자 슬러리는 반응기 밖으로 빠져 나오게 되고, 슬러리 저장탱크로 이송되게 된다. 상기 응집 및 숙성된 슬러리는 종래 탈수 및 건조 공정을 거쳐 분체로 회수된다.The polymer slurry in which the agglomeration and aging proceeds is taken out of the reactor and transferred to the slurry storage tank. The flocculated and aged slurry is recovered in powder through a conventional dehydration and drying process.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely for exemplifying the present invention, and various changes and modifications within the scope and spirit of the present invention are apparent to those skilled in the art. Naturally, changes and modifications belong to the appended claims.
[실시예]EXAMPLE
실시예 1Example 1
비닐시안 화합물-공액디엔계 화합물-방향족 비닐 화합물로 이루어진 그라프트 공중합체 라텍스는 아크릴로니트릴(AN)-부타디엔(BD)-스티렌(SM) 공중합체 라텍스로서 AN/BD/SM=13/60/27이고, 고형분 함량은 44%이었다.Graft copolymer latex consisting of vinyl cyan compound-conjugated diene compound-aromatic vinyl compound is acrylonitrile (AN) -butadiene (BD) -styrene (SM) copolymer latex as AN / BD / SM = 13/60 / 27, and the solid content was 44%.
상기 라텍스를, 도 2에 나타낸 바와 같은 반응기에 8개의 비연속식 스크류(A2/A1=0.33, α=3.60°)를 포함하는 구성을 갖는 반응기에, 12㎏/hr의 유량으로 투입하고, 응집제로는 희석된 황산(H2SO4)을 전체 고분자 함량 100중량부에 대하여 1.0중량부를 사용하였다. 직접 스팀을 가하면서, 추가적으로 액체 상태의 물을 슬러리의 고형분 함량에 맞추어 황산과 혼합하여 투입하여, 상기 고분자 라텍스 슬러리의 고형분 함량을 30중량%로 맞추었다.The latex was introduced into a reactor having a configuration including eight discontinuous screws (A2 / A1 = 0.33, α = 3.60 °) in a reactor as shown in FIG. 2 at a flow rate of 12 kg / hr and a flocculant. For the furnace, 1.0 part by weight of diluted sulfuric acid (H 2 SO 4 ) was used based on 100 parts by weight of the total polymer. While directly steaming, the liquid water was added to the solids content of the slurry and mixed with sulfuric acid to adjust the solids content of the polymer latex slurry to 30% by weight.
반응기의 체류시간은 평균 1.5분, 응집 및 숙성 온도는 75℃로 하였다. 숙성 구간은 응집이 끝나자 마자 시작되어 슬러리가 밖으로 배출되기 전까지 계속 진행된다. 상기 응집된 슬러리는 교반기를 통하여 밖으로 빠져 나오게 되고, 슬러리 저장탱크로 이동하게 된다. 상기 응집 및 숙성된 슬러리는 탈수 및 건조 공정을 거쳐 고분자 수지 분체로 회수하였다.The residence time of the reactor was 1.5 minutes on average, and the aggregation and aging temperatures were 75 ° C. The ripening section begins as soon as the agglomeration is complete and continues until the slurry is discharged out. The aggregated slurry is drawn out through the stirrer and moved to the slurry storage tank. The aggregated and aged slurry was recovered to polymer resin powder through a dehydration and drying process.
실시예 2Example 2
상기 실시예 1에서 고분자 라텍스 슬러리의 고형분 함량을 35중량%로 하는 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 고분자 수지 분체를 제조하였다.A polymer resin powder was prepared in the same manner as in Example 1, except that the solid content of the polymer latex slurry in Example 1 was 35% by weight.
실시예 3Example 3
상기 실시예 1에서 고분자 라텍스 슬러리의 고형분 함량을 44중량%로 하는 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 고분자 수지 분체를 제조하였다.A polymer resin powder was prepared in the same manner as in Example 1, except that the solid content of the polymer latex slurry was 44 wt% in Example 1.
실시예 4Example 4
상기 실시예 1에서 응집제의 투입량을 고분자 100중량부에 대하여 0.7중량부로 사용하는 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 고분자 수지 분체를 제조하였다.A polymer resin powder was prepared in the same manner as in Example 1 except that the amount of the flocculant used in Example 1 was 0.7 parts by weight based on 100 parts by weight of the polymer.
실시예 5Example 5
상기 실시예 1에서 응집제의 투입량을 고분자 100중량부에 대하여 0.6중량부로 사용하는 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 고분자 수지 분체를 제조하였다.A polymer resin powder was prepared in the same manner as in Example 1 except that the amount of the flocculant used in Example 1 was 0.6 parts by weight based on 100 parts by weight of the polymer.
비교예 1Comparative Example 1
비닐시안 화합물-공액디엔계 화합물-방향족 비닐 화합물로 이루어진 그라프트 공중합체 라텍스는 아크릴로니트릴(AN)-부타디엔(BD)-스티렌(SM) 공중합체 라텍스로서 AN/BD/SM=13/60/27이고, 고형분 함량은 44%이었다.Graft copolymer latex consisting of vinyl cyan compound-conjugated diene compound-aromatic vinyl compound is acrylonitrile (AN) -butadiene (BD) -styrene (SM) copolymer latex as AN / BD / SM = 13/60 / 27, and the solid content was 44%.
상기 라텍스를, 도 2에 나타낸 바와 같은 반응기에 비연속식 스크류를 포함하지 않는 구성을 갖는 반응기에, 12㎏/hr의 유량으로 투입하고, 응집제로는 희석된 황산(H2SO4)을 전체 고분자 함량 100중량부에 대하여 1.0중량부를 사용하였다. 직접 스팀을 가하면서, 추가적으로 액체 상태의 물을 슬러리의 고형분 함량에 맞추어 황산과 혼합하여 투입하여 상기 고분자 라텍스 슬러리의 고형분 함량을 30중량%로 맞추었다.To the latex, the reactor having a configuration which does not include the non-continuous screw reactor, 12㎏ / hr flow rate introduced into the, and as a flocculating agent is a sulfuric acid (H 2 SO 4) was diluted as shown in Figure 2. Total 1.0 weight part was used with respect to 100 weight part of polymer contents. While directly steaming, the liquid water was added to the solids content of the slurry and mixed with sulfuric acid to adjust the solids content of the polymer latex slurry to 30% by weight.
반응기의 체류시간은 평균 1.5분, 응집 및 숙성 온도는 75℃로 하였다. 숙성 구간은 응집이 끝나자 마자 시작되어 슬러리가 밖으로 배출되기 전까지 계속 진행된다. 상기 응집된 슬러리는 교반기를 통하여 밖으로 빠져 나오게 되고, 슬러리 저장탱크로 이동하게 된다. 상기 응집 및 숙성된 슬러리는 탈수 및 건조 공정을 거쳐 고분자 수지 분체로 회수하였다.The residence time of the reactor was 1.5 minutes on average, and the aggregation and aging temperatures were 75 ° C. The ripening section begins as soon as the agglomeration is complete and continues until the slurry is discharged out. The aggregated slurry is drawn out through the stirrer and moved to the slurry storage tank. The aggregated and aged slurry was recovered to polymer resin powder through a dehydration and drying process.
비교예 2Comparative Example 2
상기 비교예 1에서 고분자 라텍스 슬러리의 고형분 함량을 35중량%로 하는 것을 제외하고는 상기 비교예 1과 동일하게 실시하여 고분자 수지 분체를 제조하였다.A polymer resin powder was prepared in the same manner as in Comparative Example 1 except that the solid content of the polymer latex slurry was 35 wt% in Comparative Example 1.
비교예 3Comparative Example 3
상기 비교예 1에서 고분자 라텍스 슬러리의 고형분 함량을 44중량%로 하는 것을 제외하고는 상기 비교예 1과 동일하게 실시하여 고분자 수지 분체를 제조하였다.A polymer resin powder was prepared in the same manner as in Comparative Example 1 except that the solid content of the polymer latex slurry was 44 wt% in Comparative Example 1.
비교예 4Comparative Example 4
상기 비교예 1에서 응집제의 투입량을 고분자 함량 100중량부에 대하여 0.7중량부로 사용하는 것을 제외하고는 상기 비교예 1과 동일하게 실시하여 고분자 수지 분체를 제조하였다.A polymer resin powder was prepared in the same manner as in Comparative Example 1 except that the amount of the flocculant used in Comparative Example 1 was 0.7 parts by weight based on 100 parts by weight of the polymer.
비교예 5Comparative Example 5
상기 비교예 1에서 응집제의 투입량을 고분자 함량 100중량부에 대하여 0.6중량부로 사용하는 것을 제외하고는 상기 비교예 1과 동일하게 실시하여 고분자 수지 분체를 제조하였다.A polymer resin powder was prepared in the same manner as in Comparative Example 1 except that the amount of the flocculant used in Comparative Example 1 was 0.6 parts by weight based on 100 parts by weight of the polymer.
[시험예][Test Example]
상기 실시예 1 내지 5 및 비교예 1 내지 5에서 제조된 고분자 라텍스 수지 분체의 함수율, 겉보기 비중 및 입도 분포 그리고 백색도를 하기의 방법으로 측정하고, 그 결과를 표 1에 나타내었다.The water content, apparent specific gravity, particle size distribution, and whiteness of the polymer latex resin powders prepared in Examples 1 to 5 and Comparative Examples 1 to 5 were measured by the following method, and the results are shown in Table 1 below.
* 함수율: 수분 측정기(METTLER/TOLEDO HR83-P)를 사용하여 150℃에서 물이 모두 증발하여 샘플의 무게가 더 이상 변화가 없을 때(잔류 수분함량 0.5 중량% 이하)까지의 무게변화를 측정하였다.* Moisture Content: The water content was measured until the water sample evaporated at 150 ° C. and the sample weight was no longer changed (less than 0.5% by weight of residual water) using a moisture meter (METTLER / TOLEDO HR83-P). .
* 겉보기 비중: ASTM D1985에 의거하여 측정하였다.* Apparent specific gravity: measured according to ASTM D1985.
* 입도 분포: 표준 망체를 사용하여 입경을 측정하고, 1400㎛ 이상으로 큰 입자(코스, coarse)의 함량을 측정하였다.* Particle size distribution: The particle size was measured using a standard network, and the content of large particles (cos, coarse) was measured to 1400 µm or more.
* 분말의 백색도: 색도계(Color Quest II, Hunter Lab Co.)를 이용하여 b값을 측정하였다. b값은 0을 기준으로 양수와 음수를 가질 수 있는데, 0보다 커질수록 노란 색을 띠는 것을 의미하고, 0보다 작아질수록 푸른 색을 띠는 것을 의미한다.* Whiteness of powder: b value was measured using a colorimeter (Color Quest II, Hunter Lab Co.). The b value may have a positive value and a negative value with respect to 0, which means that the value is yellow when the value is larger than 0, and the color is blue when the value is smaller than 0.
표 1
고형분(중량%) 응집제(중량부) 함수율(중량%) 겉보기비중(g/㎖) 코스함량(%) 색상(b)
실시예 1 30 1.0 18.32 0.38 8.9 1.78
실시예 2 35 1.0 17.93 0.42 9.2 1.64
실시예 3 44 1.0 16.33 0.44 9.9 1.61
실시예 4 30 0.7 19.22 0.37 6.3 1.42
실시예 5 30 0.6 22.21 0.35 5.4 1.51
비교예 1 30 1.0 26.10 0.32 16.3 2.35
비교예 2 35 1.0 24.85 0.34 17.2 2.24
비교예 3 44 1.0 21.23 0.37 18.4 2.13
비교예 4 30 0.7 34.91 0.30 15.6 2.05
비교예 5 30 0.6 40.33 0.28 12.77 3.11
Table 1
Solid content (% by weight) Coagulant (parts by weight) Moisture content (% by weight) Apparent specific gravity (g / ml) Course content (%) Color (b)
Example 1 30 1.0 18.32 0.38 8.9 1.78
Example 2 35 1.0 17.93 0.42 9.2 1.64
Example 3 44 1.0 16.33 0.44 9.9 1.61
Example 4 30 0.7 19.22 0.37 6.3 1.42
Example 5 30 0.6 22.21 0.35 5.4 1.51
Comparative Example 1 30 1.0 26.10 0.32 16.3 2.35
Comparative Example 2 35 1.0 24.85 0.34 17.2 2.24
Comparative Example 3 44 1.0 21.23 0.37 18.4 2.13
Comparative Example 4 30 0.7 34.91 0.30 15.6 2.05
Comparative Example 5 30 0.6 40.33 0.28 12.77 3.11
상기 표 1에 나타낸 바와 같이, 본 발명에 의한 제조장치를 이용하여 제조된 고분자 라텍스 수지 분체는 비교예에 비하여 함수율 및 색상(b값)이 개선되었으며, 겉보기 비중은 증가하였으며 평균입경이 약 1400㎛ 이상의 큰 입자를 의미하는 코스(coarse)의 함량이 크게 줄어들었으며, 응집제의 사용량이 줄어드는 것이 가능하게 되어 이에 따라 색상이 개선되었음을 확인할 수 있었다.As shown in Table 1, the polymer latex resin powder prepared using the production apparatus according to the present invention has improved water content and color (b value) compared to the comparative example, the apparent specific gravity is increased and the average particle diameter is about 1400㎛ Coarse content of the larger particles (coarse) was significantly reduced, and the amount of flocculant used was reduced, thereby confirming that the color was improved.
실시예 6Example 6
본 발명에 따라 도입되는 비연속식 스크류의 구성에서의 특징을 살펴보기 위하여 도 2에 나타낸 비연속식 스크류의 상기 개구부(214)가 차지하는 면적비(즉, 상기 개구부(214)의 총면적/상기 회전날개(212)의 총면적)를 달리하는 실험을 통하여 함수율, 겉보기비중, 코스함량 및 색도계(Color Quest II, Hunter Lab Co.)를 이용하여 색조 b를 측정하고, 그 결과를 하기 표 2에 나타내었다. 여기에서 상기 스크류축에 대하여 수직방향의 축으로부터의 회전날개의 경사각 (α)은 3.6°로 하였다.Area ratio occupied by the opening 214 of the discontinuous screw shown in FIG. 2 (i.e., the total area of the opening 214 / the rotor blade in order to examine the characteristics in the configuration of the discontinuous screw introduced according to the present invention). Tonality b was measured using water content, apparent specific gravity, course content, and colorimeter (Color Quest II, Hunter Lab Co.) through different experiments (total area of (212)), and the results are shown in Table 2 below. Here, the inclination angle α of the rotary blade from the axis perpendicular to the screw axis was 3.6 °.
표 2
 A2/A1 함수율 겉보기비중 코스함량 색상(b)
(중량%) (g/ml) (%)
1 19.63 0.37 12.51 1.85
0.5 18.98 0.37 10.1 1.82
0.33 18.32 0.38 8.9 1.78
0.2 17.56 0.4 6.5 1.71
0.09 18.55 0.38 7.2 1.82
TABLE 2
A2 / A1 Water content Apparent weight Course content Color (b)
(weight%) (g / ml) (%)
One 19.63 0.37 12.51 1.85
0.5 18.98 0.37 10.1 1.82
0.33 18.32 0.38 8.9 1.78
0.2 17.56 0.4 6.5 1.71
0.09 18.55 0.38 7.2 1.82
상기 표 2에서 볼 수 있는 바와 같이, 개구부가 차지하는 면적비(즉, 상기 개구부의 총면적/상기 회전날개의 총면적)는 0.05 내지 1, 바람직하게는 0.1 내지 0.4, 가장 바람직하게는 0.2 내지 0.3의 범위 이내에서 라텍스의 이동속도를 적절히 유지하면서도 유체(미응축 스팀 및 라텍스)의 흐름을 방해하고 라텍스의 난류 유동을 유도하여 스팀과 라텍스, 응집제의 혼합 효율을 증대시키는 효과가 우수하게 나타남을 확인할 수 있었다.As can be seen in Table 2, the area ratio occupied by the opening (ie, the total area of the opening / the total area of the rotary blades) is within the range of 0.05 to 1, preferably 0.1 to 0.4, most preferably 0.2 to 0.3. It was confirmed that the effect of increasing the mixing efficiency of steam, latex, and flocculant by interfering the flow of the fluid (non-condensed steam and latex) and inducing turbulent flow of the latex while maintaining the proper moving speed of the latex at.
실시예 7Example 7
본 발명에 따라 도입되는 비연속식 스크류의 구성에서의 특징을 살펴보기 위하여 도 2에 나타낸 비연속식 스크류의 스크류축에 대하여 수직방향의 축으로부터의 회전날개의 경사각(α)을 달리하는 실험을 통하여 함수율, 겉보기비중, 코스함량 및 색도계(Color Quest II, Hunter Lab Co.)를 이용하여 색조 b를 측정하고, 그 결과를 하기 표 3에 나타내었다. 여기에서 비연속식 스크류의 상기 개구부(214)가 차지하는 면적비는 0.33으로 하였다.In order to examine the characteristics of the configuration of the discontinuous screw introduced according to the present invention, an experiment in which the inclination angle α of the rotary blades from the axis in the vertical direction with respect to the screw axis of the discontinuous screw shown in FIG. Tone b was measured using a water content, apparent specific gravity, course content, and colorimeter (Color Quest II, Hunter Lab Co.), and the results are shown in Table 3 below. The area ratio occupied by the opening portion 214 of the discontinuous screw was 0.33.
표 3
α 함수율 겉보기비중 코스함량 색상(b)
(중량%) (g/㎖) (%)
7.2 20.78 0.36 13.44 2.01
3.6 18.32 0.38 8.9 1.78
2 16.12 0.44 5.3 1.21
0.15 17.73 0.38 6.6 1.81
TABLE 3
α Water content Apparent weight Course content Color (b)
(weight%) (g / ml) (%)
7.2 20.78 0.36 13.44 2.01
3.6 18.32 0.38 8.9 1.78
2 16.12 0.44 5.3 1.21
0.15 17.73 0.38 6.6 1.81
상기 표 3에서 볼 수 있는 바와 같이, 비연속식 스크류의 스크류축에 대하여 수직방향의 축으로부터의 회전날개의 경사각(α)이 0.1 내지 10°, 바람직하게는 0.2 내지 4°, 가장 바람직하게는 0.4 내지 2°의 범위 이내에서 라텍스의 이동속도를 적절히 유지하면서도 유체(미응축 스팀 및 라텍스)의 흐름을 방해하고 라텍스의 난류 유동을 유도하여 스팀과 라텍스, 응집제의 혼합 효율을 증대시키는 효과가 우수하게 나타남을 확인할 수 있었다. 특히, 상기 경사각(α)이 적을수록, 즉 스크류축에 대하여 스크류가 수직일수록, 이송방향에 반대하는 백압(Back pressure)이 커지며, 이로 인하여 난류 유동을 유도하여 스팀과 라텍스, 응집제의 혼합효율을 증대시키고, 체류시간을 확보하는 효과가 발생함을 확인할 수 있었다. 따라서 적절한 기울기를 선택하여 설계하는 것이 중요하다.As can be seen in Table 3, the inclination angle α of the rotary blade from the axis perpendicular to the screw axis of the discontinuous screw is 0.1 to 10 °, preferably 0.2 to 4 °, most preferably Excellent effect of increasing the mixing efficiency of steam, latex and flocculant by interfering the flow of fluids (non-condensed steam and latex) and inducing turbulent flow of latex while maintaining the proper moving speed of latex within 0.4 to 2 ° It could be confirmed that it appears. In particular, as the inclination angle α is smaller, that is, the screw is perpendicular to the screw axis, the back pressure opposite to the conveying direction is increased, thereby inducing turbulent flow to increase the mixing efficiency of steam, latex, and flocculant. It was confirmed that the effect of increasing and securing the residence time occurred. Therefore, it is important to select and design the proper slope.

Claims (14)

  1. 고분자 라텍스의 응집을 위한 반응기를 포함하는 고분자 수지 분체의 제조장치에 있어서, 상기 반응기가 라텍스가 통과하는 중공의 반응관과, 상기 반응관의 내벽으로부터 상기 반응관의 내측방향으로 돌출되는 적어도 1개 이상의 배럴핀과, 상기 반응관의 길이방향의 중심축을 따라 연장되는 회전축과, 상기 회전축의 외면으로부터 상기 반응관의 내벽 쪽으로 돌출되는 적어도 하나 이상의 교반기를 포함하되, 상기 적어도 하나 이상의 교반기가 비연속식 스크류를 포함하는 것을 특징으로 하는 고분자 수지 분체의 제조장치.An apparatus for producing polymer resin powder comprising a reactor for agglomeration of polymer latex, the reactor comprising: a hollow reaction tube through which the latex passes, and at least one protruding inwardly from the inner wall of the reaction tube; And at least one barrel pin, a rotating shaft extending along a central axis in the longitudinal direction of the reaction tube, and at least one agitator protruding from an outer surface of the rotating shaft toward an inner wall of the reaction tube, wherein the at least one agitator is discontinuous. Apparatus for producing a polymer resin powder comprising a screw.
  2. 제 1항에 있어서,The method of claim 1,
    상기 고분자 수지 분체의 제조장치는 탈수기, 건조기 또는 이들 모두를 포함하는 것을 특징으로 하는 고분자 라텍스 수지 분체의 제조장치.The apparatus for producing a polymer resin powder is a device for producing a polymer latex resin powder, characterized in that it comprises a dehydrator, a dryer or both.
  3. 제 1항에 있어서,The method of claim 1,
    상기 교반기가 1 내지 20개 포함되는 것을 특징으로 하는 고분자 수지 분체의 제조장치.Apparatus for producing a polymer resin powder, characterized in that it comprises 1 to 20 agitators.
  4. 제 1항에 있어서,The method of claim 1,
    상기 비연속식 스크류는 하나 이상의 개구부를 포함하는 것을 특징으로 하는 고분자 수지 분체의 제조장치.The discontinuous screw is an apparatus for producing a polymer resin powder, characterized in that it comprises one or more openings.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 개구부의 총 면적은 회전날개의 총 면적 대비 0.05 내지 1의 범위 이내인 것을 특징으로 하는 고분자 수지 분체의 제조장치.The total area of the opening is an apparatus for producing a polymer resin powder, characterized in that within the range of 0.05 to 1 relative to the total area of the rotary blade.
  6. 제 1항에 있어서,The method of claim 1,
    상기 비연속식 스크류는 상기 회전축에 대한 수직방향의 축으로부터의 회전날개의 경사각(α)이 0.1 내지 10°의 범위 이내인 것을 특징으로 하는 고분자 수지 분체의 제조장치.The discontinuous screw is a device for producing a polymer resin powder, characterized in that the inclination angle (α) of the rotary blade from the axis in the vertical direction with respect to the rotation axis is within the range of 0.1 to 10 °.
  7. 제 1항에 있어서,The method of claim 1,
    상기 반응기의 반응관이 반응관 외부로부터 반응관 내부로 연장되는 1종 이상의 배럴핀을 포함하는 것을 특징으로 하는 고분자 수지 분체의 제조장치.Apparatus for producing a polymer resin powder, characterized in that the reaction tube of the reactor comprises at least one barrel pin extending from the outside of the reaction tube into the reaction tube.
  8. 제 1항에 있어서,The method of claim 1,
    상기 반응기가 고분자 라텍스 투입라인, 응집제 투입라인 및 스팀 투입라인을 포함하는 것을 특징으로 하는 고분자 수지 분체의 제조장치.Apparatus for producing a polymer resin powder, characterized in that the reactor comprises a polymer latex input line, flocculant input line and steam input line.
  9. 제 1항에 있어서,The method of claim 1,
    상기 반응기는 고분자 라텍스의 응집과 숙성을 위한 일체형 반응기인 것을 특징으로 하는 고분자 수지 분체의 제조장치. The reactor is a polymer resin powder manufacturing apparatus, characterized in that the integrated reactor for the aggregation and aging of the polymer latex.
  10. 제 1항 내지 제 9항 중의 어느 한 항의 고분자 수지 분체의 제조장치를 이용하는 것을 특징으로 하는 고분자 수지 분체의 제조방법.The manufacturing method of the polymer resin powder using the manufacturing apparatus of the polymer resin powder in any one of Claims 1-9.
  11. 제 10항에 있어서,The method of claim 10,
    상기 고분자 수지 분체는 함수율이 25% 이내인 것을 특징으로 하는 고분자 수지 분체의 제조방법.The polymer resin powder is a method for producing a polymer resin powder, characterized in that the water content is within 25%.
  12. 제 10항에 있어서,The method of claim 10,
    상기 고분자 수지 분체의 제조방법은 응집과 숙성단계에서 고분자 슬러리가 체류하는 시간이 0.5분 내지 30분인 것을 특징으로 하는 고분자 수지 분체의 제조방법.The manufacturing method of the polymer resin powder is a polymer resin powder production method, characterized in that the residence time of the polymer slurry in the aggregation and aging step is 0.5 minutes to 30 minutes.
  13. 제 10항에 있어서,The method of claim 10,
    상기 고분자 수지가 비닐시안 화합물-공액디엔계 화합물-방향족 비닐화합물 그라프트 공중합체인 것을 특징으로 하는 고분자 수지 분체의 제조방법.The polymer resin is a vinyl cyan compound-conjugated diene compound-aromatic vinyl compound graft copolymer, characterized in that the polymer resin powder production method.
  14. 제 10항에 따른 방법으로 제조된 고분자 수지 분체.Polymer resin powder prepared by the method according to claim 10.
PCT/KR2013/012119 2013-06-03 2013-12-24 Device for manufacturing polymer latex resin powder and method for manufacturing polymer latex resin powder using same WO2014196707A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/367,557 US9504972B2 (en) 2013-06-03 2013-12-24 Apparatus for preparing polymer latex resin powder and method of preparing polymer latex resin powder using the same
CN201380003868.0A CN104540854B (en) 2013-06-03 2013-12-24 For the device for preparing polymer latex resin pulverulent body and the method for preparing polymer latex resin pulverulent body using the device
JP2015521562A JP5905994B2 (en) 2013-06-03 2013-12-24 Polymer latex resin powder production apparatus and polymer latex resin powder production method using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0063364 2013-06-03
KR20130063364 2013-06-03
KR10-2013-0159970 2013-12-20
KR1020130159970A KR101594652B1 (en) 2013-06-03 2013-12-20 Apparatus for preparing polymer latex resin powder and manufacturing method of polymer latex resin powder using the same

Publications (1)

Publication Number Publication Date
WO2014196707A1 true WO2014196707A1 (en) 2014-12-11

Family

ID=52008318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012119 WO2014196707A1 (en) 2013-06-03 2013-12-24 Device for manufacturing polymer latex resin powder and method for manufacturing polymer latex resin powder using same

Country Status (1)

Country Link
WO (1) WO2014196707A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4890929A (en) * 1987-04-21 1990-01-02 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Method and apparatus for manufacturing coagulated grains from polymer latex
KR20030023389A (en) * 2001-09-13 2003-03-19 주식회사 엘지화학 Method for preparing of high macromolecule latex resin powder
KR20090084332A (en) * 2008-02-01 2009-08-05 주식회사 엘지화학 Device of preparing polymer slurry with high solid contents and method of preparing using the same
KR20110015074A (en) * 2009-08-07 2011-02-15 주식회사 엘지화학 Apparatus for preparing of polymer latex and method for preparing of polymer latex using thereof
WO2011138438A1 (en) * 2010-05-07 2011-11-10 Otc Gmbh Emulsification device for continuously producing emulsions and/or dispersions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4890929A (en) * 1987-04-21 1990-01-02 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Method and apparatus for manufacturing coagulated grains from polymer latex
KR20030023389A (en) * 2001-09-13 2003-03-19 주식회사 엘지화학 Method for preparing of high macromolecule latex resin powder
KR20090084332A (en) * 2008-02-01 2009-08-05 주식회사 엘지화학 Device of preparing polymer slurry with high solid contents and method of preparing using the same
KR20110015074A (en) * 2009-08-07 2011-02-15 주식회사 엘지화학 Apparatus for preparing of polymer latex and method for preparing of polymer latex using thereof
WO2011138438A1 (en) * 2010-05-07 2011-11-10 Otc Gmbh Emulsification device for continuously producing emulsions and/or dispersions

Similar Documents

Publication Publication Date Title
WO2011016625A2 (en) Polymer-latex-resin-powder producing device, and a method for producing a polymer latex resin powder employing the same
WO2016036095A1 (en) Method for preparing resin powder and integral coagulating device therefor
US8791177B2 (en) Elastomer composite with silica-containing filler and methods to produce same
CN108026315A (en) The method for the elastomeric compound that manufacture is strengthened with silica and the product for including it
US20090088496A1 (en) Method for producing rubber-filler composite
CN108026316B (en) Method of making an elastomer composite reinforced with silica and articles comprising the same
CN105459284A (en) Liquid phase continuous mixing process of high dispersion carbon nanotube masterbatch and rubber product thereof
CN101861355A (en) Rubber composition and pneumatic radial tire for high load employing the same
CN103113597A (en) Continuous manufacturing method of rubber masterbatch and rubber masterbatch prepared by same
WO2015018278A1 (en) Continuous manufacturing process for rubber masterbatch and rubber masterbatch prepared therefrom
CN103419291B (en) Rubber masterbatch prepared by the method for continuously producing of rubber masterbatch and the method
KR101157299B1 (en) Device of preparing polymer slurry with high solid contents and method of preparing using the same
WO2014196707A1 (en) Device for manufacturing polymer latex resin powder and method for manufacturing polymer latex resin powder using same
CN104072789A (en) Wet process mixing method
CN103419292A (en) Continuous preparation method of rubber masterbatch and rubber masterbatch prepared thereby
US10428187B2 (en) Method for producing mixture
KR101594652B1 (en) Apparatus for preparing polymer latex resin powder and manufacturing method of polymer latex resin powder using the same
KR101637063B1 (en) Resin powders and method for preparing them
CN112277179A (en) Wet mixing method for styrene-butadiene latex and natural latex by using raw rubber
KR101638219B1 (en) Coagulation method of emulsion polymerized latex by direct steam input and coagulation apparatus
WO2021033953A1 (en) Method of preparing vinyl cyano compound-conjugated diene compound-aromatic vinyl compound graft copolymer and thermoplastic resin composition comprising same graft copolymer
KR101554825B1 (en) Apparatus for preparing of polymer latex resin powder and method for preparing of polymer latex resin powder using thereof
WO2019093712A1 (en) Apparatus and method for preparing polymer latex resin powder
CN110343304A (en) Using the method for scrap rubber preparation rubber latex and by the rubber latex of this method preparation
WO2019123870A1 (en) Masterbatch production method, rubber composition production method, and tire production method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14367557

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015521562

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886287

Country of ref document: EP

Kind code of ref document: A1