WO2014169575A1 - 液面检测方法、装置和免疫分析仪 - Google Patents

液面检测方法、装置和免疫分析仪 Download PDF

Info

Publication number
WO2014169575A1
WO2014169575A1 PCT/CN2013/084039 CN2013084039W WO2014169575A1 WO 2014169575 A1 WO2014169575 A1 WO 2014169575A1 CN 2013084039 W CN2013084039 W CN 2013084039W WO 2014169575 A1 WO2014169575 A1 WO 2014169575A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
signal
needle
liquid level
adding needle
Prior art date
Application number
PCT/CN2013/084039
Other languages
English (en)
French (fr)
Inventor
马杰
翁彦雯
陈跃平
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Publication of WO2014169575A1 publication Critical patent/WO2014169575A1/zh
Priority to US14/885,869 priority Critical patent/US9702749B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L13/00Cleaning or rinsing apparatus
    • B01L13/02Cleaning or rinsing apparatus for receptacle or instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/265Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/266Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5302Apparatus specially adapted for immunological test procedures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1004Cleaning sample transfer devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing

Definitions

  • the present application relates to the field of medical devices, and in particular to a liquid level detecting method, device and immune analyzer.
  • the immunoassay analyzer is highly automated, and its liquid level detection device plays the role of automatically detecting the sample and adding the sample to the test position in the analyzer.
  • the liquid level detecting device is mainly composed of a signal analysis circuit, a sample needle and a liquid path structure, and the liquid path structure is connected to the sample needle.
  • the sample needle contacts the sample liquid surface, the liquid level signal is recognized by the signal analysis circuit and the sample is sucked and discharged. action.
  • the sample needle needs to be cleaned to reduce the contamination of the next sample.
  • the commonly used sample needle cleaning method is to soak the sample needle in the cleaning liquid for cleaning.
  • the common liquid level detecting method in the automatic immunoassay analyzer is mainly the capacitive liquid level detecting technology: the sample needle is connected as a variable capacitor in the signal analysis circuit, and the sample needle has different capacitances according to different liquid levels of the sample, and the signal analysis circuit The capacitance change of the sample needle is monitored. When the sample needle contacts the liquid surface, its capacitance changes. The signal analysis circuit can accurately determine the liquid level signal by detecting the phase change on the capacitor (sample needle), thereby judging whether Contact the liquid surface.
  • the current liquid level detection method is simple, reliable, and has high detection sensitivity, in the actual use process, when the sample needle is cleaned by the cleaning liquid, since the ion concentration of the cleaning liquid is high, electricity is generated between the cleaning liquid and the sample needle. Chemical reaction, after multiple cleanings, the sample needle is corroded by the cleaning solution and is prone to rust, resulting in frequent replacement of the sample needle.
  • electrochemical corrosion needs to have two conditions at the same time: 1. A medium with a high ion concentration (such as a cleaning agent); 2. A metal material with a high purity.
  • the cleaning agent is replaced with a liquid having a low ion concentration, for example, the sampling needle is washed with deionized water, thus removing the conductive. medium.
  • a sampling needle with a high purity metal is used.
  • the above two solutions are also adopted in solving the problem of rusting of the sample needle, that is, replacing the cleaning liquid or replacing the metal material of the needle.
  • both of these solutions have their own inadequacies, such as replacing the cleaning solution with deionized water.
  • the sample needle may not be cleaned and the residual contamination is large, thus affecting the analyzer. Overall performance.
  • the material of the sample needle is changed from a general metal to a special metal with a high purity, such as titanium metal. Although it does not rust and can eliminate the problem of rust, the metal is very expensive and requires high processing, thereby increasing The manufacturing cost of the sample needle.
  • the present application provides a method of detecting a liquid level using a liquid adding needle for communicating with a liquid path structure for transporting a liquid, the liquid adding needle being configured to be in contact with The self-electrical characteristic changes when the liquid level changes, the method includes: applying a driving signal to the liquid adding needle through the signal driving circuit, the effective voltage of the driving signal is less than or equal to the liquid path potential; and the signal driving circuit detects the electric power of the liquid adding needle Characteristics, and output a liquid level detection signal that changes with the electrical characteristics of the liquid needle; whether the liquid needle contacts the liquid surface according to the liquid level detection signal.
  • the present application provides another method of detecting a liquid level using a liquid adding needle configured to change a self electrical characteristic when it contacts a liquid surface, the method comprising: passing The signal driving circuit applies a driving signal on the liquid adding needle, the effective voltage of the driving signal is a negative voltage; the signal driving circuit detects the electrical characteristic of the liquid adding needle, and outputs a liquid level detecting signal that changes according to the electrical characteristics of the liquid adding needle; The liquid level detection signal determines whether the liquid addition needle contacts the liquid surface.
  • the present application provides a liquid level detecting apparatus including a liquid adding needle and a signal driving circuit.
  • the liquid adding needle is configured to change its own electrical characteristics when it contacts the liquid surface, one end of the liquid adding needle is used to communicate a liquid path structure for transporting the liquid;
  • the signal driving circuit includes a coupling for the first potential a first power input end and a second power input end for coupling to a second potential, the signal driving circuit is connected to the liquid adding needle, outputting the driving signal to the liquid adding needle, and detecting the electrical characteristics of the liquid adding needle And outputting a liquid level detecting signal that changes according to the electrical characteristics of the liquid adding needle, wherein the first potential and the second potential are configured such that an effective voltage of the driving signal is less than or equal to a potential of the liquid path.
  • another liquid level detecting apparatus comprising a first power source for supplying a first potential, a second power source for supplying a second potential, a liquid adding needle, and a signal driving circuit.
  • the liquid adding needle is configured to change its electrical characteristics when it contacts the liquid surface; the first power input end of the signal driving circuit is coupled to the first power source, and the second power input end is coupled to the second power source, first The first potential of the power output and the second potential of the second power output are configured such that the effective voltage of the driving signal is a negative value, and the signal driving circuit is further connected with the liquid adding needle to output the driving signal to the liquid filling needle And detecting the electrical characteristics of the dosing needle, and outputting the liquid level detection signal that changes with the electrical characteristics of the dosing needle.
  • the application provides an immunoassay analyzer comprising the above liquid level detecting device.
  • the effective voltage of the liquid needle driving signal is less than or equal to the liquid path potential, or the effective voltage of the driving signal applied to the liquid adding needle through the signal driving circuit is negative.
  • the voltage, at this time in the electrolytic cell formed between the liquid adding needle and the cleaning liquid, the liquid adding needle serves as a cathode, so it is not easily corroded and rusted.
  • FIG. 1 is a schematic structural view of a liquid level detecting device in the prior art
  • Figure 2 is a waveform diagram of a driving signal applied to a sample needle in the liquid level detecting device of Figure 1;
  • FIG. 3 is a schematic structural view of a liquid level detecting device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural view of a sample needle in the liquid level detecting device of FIG. 3;
  • Figure 5 is a waveform diagram of a driving signal applied to a sample needle in the liquid level detecting device of Figure 3;
  • FIG. 6 is a schematic diagram of a signal driving circuit under a control signal in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a signal driving circuit under another control signal in the embodiment of the present application.
  • FIG. 8 is a signal waveform diagram of a capacitor C1 of a signal driving circuit under different control signals according to an embodiment of the present application.
  • this application does not start from the two essential conditions of electrochemical corrosion, but adopts a different idea from the prior art to solve the problem of liquefying needle rust.
  • the inventors of the present application realized that during the working process, the effective voltage of the driving signal on the liquid feeding needle is a positive voltage, and when the needle contacts the cleaning liquid with a high ion concentration for a long time, the needle is lost by electrolysis. Electrons cause the needle to corrode. Therefore, the idea of the present application is to set the effective voltage of the drive signal above the dosing pin to a negative voltage.
  • the immunoanalyzer mainly includes a reaction disk mechanism, a sample loading mechanism, a reagent loading mechanism, a sample loading mechanism, a reagent adding mechanism, a cleaning mechanism, a liquid path structure, and a main control system.
  • the master control system is used to manage tests, calculate and/or analyze test results and provide human-computer interaction interfaces, including a central control unit.
  • the reaction tray mechanism includes a reaction tray for carrying a cuvette, and the sample loading mechanism is for providing a sample to be tested, including a sample tray or a sample delivery rack.
  • the loading mechanism includes a moving mechanism and a liquid adding needle, and the liquid adding needle is usually fixed on the moving mechanism, and the moving mechanism drives the liquid adding needle to suck the sampling sample from the sample container on the sample tray or the sample conveying rack according to the management of the main control system, and adds Note the inside of the reaction cup.
  • the reagent loading mechanism is used to provide a reagent for the reaction, typically including a reagent disk.
  • the reagent adding mechanism includes a moving mechanism and a reagent needle.
  • the reagent needle is usually fixed on the moving mechanism.
  • the moving mechanism drives the reagent needle to take the reagent from the reagent container on the reagent tray according to the management of the main control system, and the reagent is filled into the reaction cup. .
  • the cleaning mechanism is used to clean the dosing needle and the reagent needle to reduce the contamination of the subsequent suction and discharge liquid.
  • the liquid path structure is connected with the liquid adding needle and the reagent needle, and is used for discharging the cleaning liquid after the liquid adding needle and the reagent needle cleaning, or discharging the waste liquid sucked by the liquid adding needle and/or the reagent needle, for example, unnecessary samples, reagents, Reaction solution or cleaning solution.
  • the immunoanalyzer further includes a liquid level detecting device, and the liquid level detecting device includes a liquid adding needle and a signal driving circuit, and the liquid adding needle It is configured to change its own capacitance when it contacts the liquid surface.
  • the signal driving circuit is used to provide a driving signal for the filling needle, and detect the capacitance change of the filling needle, and output the liquid level detecting signal that changes with the change of the filling needle capacitance.
  • the liquid level detection signal can be an analog electrical signal whose amplitude varies with the capacitance of the liquid needle, and is transmitted to the central control unit of the analyzer after A/D (A/D) conversion.
  • the liquid level detection signal can be a level signal. For example, when the liquid needle capacitance value is within the set range, the signal driving circuit outputs a low level, and when the liquid needle capacitance value exceeds the set range, the signal driving circuit outputs High level, the level signal is output to the central control unit.
  • the central control unit receives the liquid level detection signal to determine whether the liquid addition needle contacts the liquid level.
  • the dosing needle can be a sample needle and/or a reagent needle.
  • liquid level detecting device In the following, the structure of the liquid level detecting device and its working principle will be described by taking the liquid needle as a sample needle as an example.
  • FIG. 1 is a schematic structural diagram of a liquid level detecting device, including a sample needle 1, a signal driving circuit 2, a signal filtering processing circuit 3, an AD collecting circuit 4, and a central control unit 5.
  • the sample needle 1 affects the output signal of the signal driving circuit 2 in real time as a part of the signal driving circuit 2. Since the sample needle 1 is a metal material, it has an equivalent capacitance value. When the sample needle 1 contacts the liquid, the equivalent capacitance of the sample needle 1 changes, and the circuit can convert the capacitance change amount into a voltage change amount and output. As a result, when the sample needle 1 contacts the liquid level of the sample solution, the output signal of the signal driving circuit 2 changes.
  • the output signal of the signal driving circuit 2 is processed by the signal filtering processing circuit 3, collected by the AD collecting circuit 4, subjected to A/D (Analog/Digital) conversion, and transmitted to the central control unit 5.
  • the driving signal of the sample needle 1 is provided by the first power input terminal 6 and the second power input terminal 7 on the signal driving circuit 2.
  • the first power input terminal 6 inputs a positive voltage +V
  • the second power input terminal 7 inputs Ground voltage GND.
  • FIG. 2 is a waveform diagram of the driving signal of the sample needle 1 in FIG. 1 .
  • the first power input terminal 6 and the second power input terminal 7 respectively input a positive voltage +V and a ground voltage GND, and are configured by the signal driving circuit 2 to be applied to the sample needle 1, at which time the driving signal on the sample needle 1 is valid.
  • the voltage is a positive voltage.
  • the fundamental reason for the rust of the sample needle caused by the capacitive liquid level detection technology is that when the sample needle is exposed to the cleaning liquid with a high ion concentration for a long time, since the effective voltage of the driving signal above the sample needle is a positive voltage, the sample needle and In the electrolytic cell composed of the cleaning liquid, the sample needle loses electrons as an anode electrolysis, causing the sample needle to be corroded and rusted.
  • the embodiment of the present application provides an immunoanalyzer that makes an electrolytic cell composed of a sample needle and a cleaning liquid by changing the potential of the entire liquid path or changing the effective voltage of the driving signal of the sample needle to a negative voltage.
  • the sample needle is protected as a cathode to prevent it from being corroded by the cleaning liquid.
  • the present embodiment provides a liquid level detecting device including a sample needle 10, a signal driving circuit 20, a liquid path 30, a filter processing circuit 40, an AD collecting circuit 50, and a central control unit 60.
  • the signal driving circuit 20 is connected to the sample needle 10.
  • the signal driving circuit 20 includes a first power input terminal 202, a second power input terminal 203, and a signal output terminal 201.
  • the first power input terminal 202 and the second power input terminal 203 are used respectively.
  • the first potential and the second potential are input, the first potential is a high level, and the second potential is a low level.
  • the signal drive circuit 20 arranges the first potential and the second potential, and applies it as a drive signal to the sample needle 10.
  • the liquid path 30 is in communication with the sample needle 10 for transporting the cleaning liquid for cleaning the sample needle 10 and the sample solution for sucking/discharging the sample needle 10, wherein the effective voltage of the driving signal is less than or equal to the potential in the liquid path 30.
  • the sample needle 10 extends into the sample solution to sense the liquid level change of the sample solution, and the signal driving circuit 20 outputs an output signal indicating the liquid level change through the signal output terminal 201 according to the liquid level change of the sample solution sensed by the sample needle 10.
  • the effective voltage of the driving signal is less than or equal to the potential in the liquid path 30, in the electrolytic cell formed between the sample needle 10 and the cleaning liquid, the sample needle 10 is protected as a cathode to prevent it from being corroded and rusted by the cleaning liquid.
  • the liquid path 30 is basically at the ground potential level, so that only the driving signal with the negative effective voltage is required to ensure the effective driving signal.
  • the voltage is less than or equal to the potential in the liquid path 30.
  • the first power input 202 inputs a positive voltage +V
  • the second power input 203 inputs a negative voltage -V, the positive voltage +V and the negative voltage -V being configured by the drive circuit 20 to be applied to the sample
  • the effective voltage of the drive signal of the pin 10 is negative.
  • the sample needle 10 generally detects the liquid level change by affecting the charging and discharging time of the circuit, so although the effective voltage of the driving signal becomes a negative voltage, there is still a potential difference in the circuit, which can realize charging and discharging. The process, so the signal drive circuit 20 can still detect the change in the capacitance of the sample needle 10.
  • the effective voltage applied to the sample needle 10 through the signal driving circuit 20 is a negative driving signal.
  • Waveform it should be understood by those skilled in the art that when the signal driving circuit 20 is driven by different types of chips, the driving signal applied to the sample needle 10 may be a sawtooth wave, a sine wave, a square wave or other forms of waveform, wherein only It is ensured that the effective voltage of the driving signal is a negative voltage, so that in the electrolytic cell formed between the sample needle 10 and the cleaning liquid, the sample needle 10 is protected as a cathode to prevent corrosion and rust by the cleaning liquid.
  • the sample needle 10 includes an inner needle wall 101 and an outer needle wall 102, the inner needle wall 101 is coupled to the signal drive circuit 20 and the fluid path 30, and the outer needle wall 102 is coupled to the signal drive circuit 20. on.
  • the inner needle wall 101, the outer needle wall 102 and the cleaning liquid constitute In the electrolytic cell, the inner needle wall 101 serves as a cathode, and the outer needle wall 102 serves as an anode.
  • the inner needle wall 101 as a cathode can be protected from corrosion and rust by the cleaning liquid due to the outer needle as the anode.
  • the wall 102 is rarely in contact with a liquid such as a cleaning liquid during the operation of the immunoanalyzer, so that although it functions as an anode, it is not easily corroded and rusted.
  • the signal output terminal 201 of the signal driving circuit 20 is connected to the filter processing circuit 40, and the filter processing circuit 40 filters the liquid level detection signal outputted by the signal driving circuit 20 to filter out the interference signal therein.
  • the AD acquisition circuit 50 is connected to the filter processing circuit 40 and the central control unit 60, respectively, and the AD acquisition circuit 50 obtains the liquid level detection signal filtered by the filter processing circuit 40, and performs A/D (Analog/Digital) conversion on the same.
  • a digital signal of the level detection signal is obtained and sent to the central control unit 60.
  • the central control unit 60 analyzes the obtained digital signal to determine whether or not the liquid level is detected.
  • the signal driving circuit is a multivibrator that oscillates by RC charging and discharging, and generates a driving signal for driving the sample needle.
  • the drive circuit is mainly used to describe the structure of the function. Please refer to FIG. 6 and FIG. 7.
  • FIG. 7 is a schematic diagram of a signal driving circuit including a first controllable switch Q1, a second controllable switch Q2, a third controllable switch Q3, and a fourth controllable A bridge circuit composed of a switch Q4, a current source for supplying a driving current, and a first capacitor C1.
  • the first controllable switch Q1 and the second controllable switch Q2 constitute a first bridge arm
  • the third controllable switch Q3 and the fourth controllable switch Q4 form a second bridge arm
  • the first set of diagonal points are used as an input end
  • the second set of diagonal points is taken as the output.
  • a node between the first controllable switch Q1 in the first bridge arm and the third controllable switch Q3 in the second bridge arm is used as a high potential input end
  • a power input end of the current source is used as the first power input end.
  • a first potential such as a positive voltage +V
  • the second potential such as a negative voltage -V.
  • An intermediate node of the first bridge arm and the second bridge arm serves as an output end, and a first capacitor C1 is connected between the intermediate node of the first bridge arm and the second bridge arm, and an inner pin wall of the sample needle is connected to the first capacitor At either end of C1, during operation, the sample pin is equivalent to a second capacitor C2 in parallel with the first capacitor C1.
  • the control terminals of the first controllable switch Q1, the second controllable switch Q2, the third controllable switch Q3 and the fourth controllable switch Q4 respectively input a control signal and are between the on and off states under the control of the control signal Switching, the control signal includes a first control signal U1 and a second control signal U2.
  • the first control signal U1 is input to the control ends of the first controllable switch Q1 and the second controllable switch Q2, and the second control signal U2 is input to the control ends of the third controllable switch Q3 and the fourth controllable switch Q4, first
  • the control signal U1 and the second control signal U2 may be a high level "H” or a low level “L” signal for controlling the first controllable switch Q1, the second controllable switch Q2, the third controllable switch Q3, and
  • the fourth controllable switch Q4 is turned on or off.
  • the first control signal U1 is at a high level “H”, and when the second control signal U2 is at a low level “L”, the first controllable switch Q1 and the fourth controllable switch Q4 are closed, and the second The controllable switch Q2 and the third controllable switch Q3 are disconnected, and the current flows from point A to point B. At this time, the voltage of point A gradually rises, and point B is the negative potential -V, and the corresponding waveform is as shown in the first stage of FIG. .
  • the equivalent capacitance C2 of the sample needle is taken as part of the circuit capacitance, and the signals at both ends are identical to points A and B. Therefore, according to the internal structure of the signal driving circuit, the first power input terminal and the second power input terminal are input. The voltage value can be adjusted to adjust the effective voltage of the sample needle drive signal.
  • the effective value of the driving signal output from the chip to the sample needle can be adjusted by configuring the input power of the chip.
  • the signal driving circuit in the embodiment of the present application can adopt a conventional signal driving circuit, and the negative driving voltage is applied to the sample needle by changing the configuration so that the driving voltage thereof is a negative voltage.
  • the first potential and the second potential are configured such that the effective voltage of the driving signal is less than or equal to the potential of the liquid path, and the following configuration method may be adopted: changing the first potential and The input value of the second potential; or change part of the circuit structure in the driving circuit, for example, by changing the resistance value of the resistor in the driving circuit or the capacitance of the capacitor to obtain the effective voltage of different driving signals; or directly changing the chip in the driving circuit
  • the parameters are obtained to obtain the effective voltage of the drive signal that meets the conditions.
  • the present embodiment also provides another liquid level detecting device including a first power source for supplying a first potential, a second power source for supplying a second potential, a liquid adding needle, and a signal driving circuit.
  • the dosing pin is configured to change its own capacitance when it contacts the liquid surface
  • the first power input of the signal drive circuit is coupled to the first power source
  • the second power input is coupled to the second power source
  • the first power output is first
  • the potential and the second potential of the second power output are configured such that the effective voltage of the driving signal is a negative value
  • the signal driving circuit is further connected with the liquid adding needle, the driving signal is applied to the liquid adding needle, and the capacitance of the liquid adding needle is detected.
  • the liquid level detection signal that changes with the capacitance of the dosing pin is output.
  • the liquid level detecting device provided in this embodiment discards the conventional power source input using the positive voltage and the ground signal as the first power input end and the second power input end, and uses the positive and negative voltages as their power input, so that the signal is driven.
  • the effective voltage of the driving signal applied to the sample needle by the circuit is a negative voltage, so that in the electrolytic cell formed between the sample needle and the cleaning liquid, the sample needle is protected as a cathode to prevent it from being corroded by the cleaning liquid.
  • the original detection sensitivity and performance of the liquid level detecting device can be ensured, and the material of the sample needle and the processing technology thereof are not required, and the cost can be effectively controlled.
  • the liquid level can be detected by changing the capacitance of the liquid adding needle, and the liquid level can be detected by changing other electrical characteristics of the liquid adding needle, for example, A change in resistance or inductance or a combination thereof to detect the liquid level.
  • a liquid-filled needle that is compatible with the liquid level detection method should also be used.
  • the liquid level detecting device detects a change in the electrical characteristics of the liquid adding needle, and outputs a liquid level detecting signal that changes in accordance with the electrical characteristics of the liquid adding needle.
  • the liquid level detecting device can also be applied to other instruments that require the use of a liquid adding needle for detecting the liquid level, such as a biochemical analyzer.

Abstract

公开了一种液面检测方法、装置和免疫分析仪。通过改变信号驱动电路(20)的电源输入,使得信号驱动电路(20)施加到加液针(10)上的驱动信号的有效电压为负电压,从而在加液针(10)与清洗液之间构成的电解池中,加液针(10)作为阴极被保护,避免其被清洗液腐蚀生锈。并且能够保证液面检测装置原有的检测灵敏度和性能,对加液针(10)的材料及其加工工艺要求不高,可有效地控制成本。

Description

液面检测方法、装置和免疫分析仪 技术领域
本申请涉及医疗器械领域,具体涉及一种液面检测方法、装置和免疫分析仪。
背景技术
免疫分析仪自动化程度高,其液面检测装置在分析仪中起到自动检测样本并将样本添加到测试位的作用。液面检测装置主要由信号分析电路,样本针和液路结构三部分构成,液路结构连接到样本针上,当样本针接触样本液面后通过信号分析电路识别液面信号并完成样本的吸排动作。样本针每完成一次吸排动作,需要对样本针进行清洗,以减少对下一次样本的污染。目前常用的样本针清洗方法是将样本针浸泡在清洗液中进行清洗。
目前全自动免疫分析仪中常见的液面检测方法主要是电容液面检测技术:样本针作为可变电容器连接在信号分析电路中,样本针根据样本液面的不同具有不同的电容,信号分析电路对样本针的电容变化情况进行监测,当样本针接触液面时其电容发生变化,信号分析电路通过检测电容(样本针)上面的相位变化,就可以准确判断出液面信号,从而判断出是否接触液面。
目前的液面检测方法虽然简单、可靠、检测灵敏度高,但是在实际使用过程中,当采用清洗液清洗样本针时,由于清洗液的离子浓度较高,清洗液和样本针之间产生了电化学反应,多次清洗后,样本针被清洗液腐蚀,容易生锈,导致需要频繁更换样本针。
发生这种电化学腐蚀的原因是不纯金属或合金跟电解质溶液接触时,比较活泼的金属失去电子被氧化、发生原电池反应而引起腐蚀。按照原电池模型的原理,发生电化学腐蚀需要同时具备两个条件:1、离子浓度很高的介质(例如清洗剂);2、纯度一般的金属材料。
根据上述分析,要解决样本针生锈的问题,理论上可以从两方面着手,第一方面,将清洗剂换成离子浓度低的液体,例如采用去离子水清洗采样针,这样就去除了导电介质。第二方面,采用金属纯度很高的采样针。而现实中,对于采用电容液面检测技术来检测液面的情况,在解决样本针生锈的问题时也都采用上述两种方案,即更换清洗液或更换针的金属材料。但这两种方案又都各有不足的方面,例如将清洗液换成去离子水,由于去离子水的去污力低,导致样本针可能清洗不干净,残留污染较大,从而影响分析仪的整机性能。而将样本针的材料由一般金属换成纯度很高的特殊金属,例如钛金属,虽然不会生锈,能消除生锈的问题,但这种金属非常昂贵而且对加工要求很高,从而增加了样本针的制造成本。
另外也有不采用电容液面检测技术来检测液面的,例如使用射频检测的方法进行液面检测方法,但这种技术存在结构复杂、容易受干扰等缺点。
发明内容
根据本申请的第一方面,本申请提供一种采用加液针检测液面的方法,所述加液针用于与输送液体的液路结构连通,所述加液针被配置为当其接触液面时自身电特性发生变化,所述方法包括:通过信号驱动电路在加液针上施加驱动信号,所述驱动信号的有效电压小于或等于液路电位;信号驱动电路检测加液针的电特性,并输出随加液针电特性变化的液面检测信号;根据液面检测信号判断加液针是否接触液面。
根据本申请的第二方面,本申请提供另一种采用加液针检测液面的方法,所述加液针被配置为当其接触液面时自身电特性发生变化,所述方法包括:通过信号驱动电路在加液针上施加驱动信号,所述驱动信号的有效电压为负电压;信号驱动电路检测加液针的电特性,并输出随加液针电特性变化的液面检测信号;根据液面检测信号判断加液针是否接触液面。
根据本申请的第三方面,本申请提供一种液面检测装置,包括加液针和信号驱动电路。所述加液针被配置为当其接触液面时自身电特性发生变化,所述加液针的一端用于连通输送液体的液路结构;所述信号驱动电路包括用于耦合到第一电位的第一电源输入端和用于耦合到第二电位的第二电源输入端,所述信号驱动电路与加液针连接,将驱动信号输出到加液针上,并检测加液针的电特性,输出随加液针电特性变化的液面检测信号,所述第一电位和第二电位经配置使得所述驱动信号的有效电压小于或等于液路的电位。
根据本申请的第四方面,本申请提供另一种液面检测装置,包括用于提供第一电位的第一电源、用于提供第二电位的第二电源、加液针和信号驱动电路。所述加液针被配置为当其接触液面时自身电特性发生变化;所述信号驱动电路的第一电源输入端耦合到第一电源,第二电源输入端耦合到第二电源,第一电源输出的第一电位和第二电源输出的第二电位经配置使得所述驱动信号的有效电压为负值,所述信号驱动电路还与加液针连接,将驱动信号输出到加液针上,并检测加液针的电特性,输出随加液针电特性变化的液面检测信号。
本申请提供了一种免疫分析仪,包括上述液面检测装置。
本申请提供的液面检测方法、装置和免疫分析仪中,加液针驱动信号的有效电压小于或等于液路电位,或者通过信号驱动电路施加在加液针上的驱动信号的有效电压为负电压,此时加液针与清洗液之间构成的电解池中,加液针作为阴极,故不容易被腐蚀生锈。
附图说明
下面结合附图和具体实施方式作进一步详细的说明。
图1为现有技术中液面检测装置的结构示意图;
图2为图1液面检测装置中施加给样本针的驱动信号波形图;
图3为本申请一种实施例中液面检测装置的结构示意图;
图4为图3液面检测装置中样本针的结构示意图;
图5为图3液面检测装置中施加给样本针的驱动信号波形图;
图6为本申请实施例中信号驱动电路在一种控制信号下的示意图;
图7为本申请实施例中信号驱动电路在另一种控制信号下的示意图;
图8为本申请实施例信号驱动电路在不同控制信号下电容C1的信号波型图。
具体实施方式
本申请在采用电容液面检测技术的前提下,并未从电化学腐蚀的两个必备条件出发,而是采用一种不同于已有技术的思路来解决加液针生锈的问题。
在实践中,本申请发明人认识到,在工作过程中,加液针上面的驱动信号的有效电压为正电压,当针长时间接触离子浓度很高的清洗液时,针就会被电解失去电子导致针被腐蚀。因此本申请的构思是将加液针上面的驱动信号的有效电压设为负电压。
根据本申请发明构思的免疫分析仪主要包括反应盘机构、样本装载机构、试剂装载机构、加样机构、加试剂机构、清洗机构、液路结构以及主控系统。主控系统用于对测试进行管理、计算和/或分析测试结果和提供人机交互界面等,包括中央控制单元。反应盘机构包括用于承载反应杯的反应盘,样本装载机构用于提供被测试样本,包括样本盘或样本传送架。加样机构包括移动机构和加液针,加液针通常固定在移动机构上,移动机构按照主控系统的管理带动加液针从样本盘或样本传送架上的样本容器中吸取样本,并加注到反应杯内。试剂装载机构用于提供反应用试剂,通常包括试剂盘。加试剂机构包括移动机构和试剂针,试剂针通常固定在移动机构上,移动机构按照主控系统的管理带动试剂针从试剂盘上的试剂容器中吸取试剂,并将试剂加注到反应杯内。清洗机构用于对加液针和试剂针进行清洗,以减少对后续吸排液体的污染。液路结构与加液针和试剂针连通,用于排出加液针和试剂针清洗后的清洗液,或排出加液针和/或试剂针吸取的废液,例如不需要的样本、试剂、反应液或清洗液。
在工作过程中,需要对样本容器、试剂容器或反应杯内的液面进行检测,因此,免疫分析仪还包括液面检测装置,液面检测装置包括加液针和信号驱动电路,加液针被配置为当其接触液面时自身电容发生变化,信号驱动电路用于为加液针提供驱动信号,并检测加液针的电容变化,输出随加液针电容变化而变化的液面检测信号。液面检测信号可以是一个幅值随加液针电容变化的模拟电信号,经A/D(模/数)转换后传输给分析仪的中央控制单元。液面检测信号可以是一个电平信号,例如当加液针电容值在设定范围之内时,信号驱动电路输出低电平,当加液针电容值超过设定范围后,信号驱动电路输出高电平,该电平信号输出到中央控制单元。中央控制单元接收液面检测信号,判断加液针是否接触液面。在具体实施例中加液针可以是样本针和/或试剂针。
下面以加液针是样本针为例说明液面检测装置的结构及其工作原理。
请参考图1,为液面检测装置的结构示意图,包括样本针1、信号驱动电路2、信号滤波处理电路3、AD采集电路4和中央控制单元5。
其中,样本针1作为信号驱动电路2的一部分实时影响着信号驱动电路2的输出信号。由于样本针1为金属材料,其有一个等效电容值,当样本针1接触液体时,样本针1的等效电容会变化,此时电路能够将电容变化量转化为电压变化量,并输出结果,故当样本针1接触样本溶液液面的时候,信号驱动电路2输出信号发生变化。
信号驱动电路2的输出信号经信号滤波处理电路3处理后,由AD采集电路4采集后进行A/D(模/数)转换,并传送给中央控制单元5。样本针1的驱动信号由信号驱动电路2上的第一电源输入端6和第二电源输入端7提供,一般的,第一电源输入端6输入正电压+V,第二电源输入端7输入地电压GND。
请参考图2,为图1中样本针1的驱动信号波形图。第一电源输入端6和第二电源输入端7分别输入正电压+V和地电压GND,并通过信号驱动电路2配置后施加到样本针1上,此时样本针1上的驱动信号的有效电压为正电压。本申请指出,电容液面检测技术导致样本针生锈的根本原因是:样本针长时间接触离子浓度很高的清洗液时,由于样本针上面的驱动信号的有效电压为正电压,样本针与清洗液构成的电解池中,样本针作为阳极电解失去电子,导致样本针被腐蚀生锈。
因此,本申请实施例提供了一种免疫分析仪,该免疫分析仪通过提高液路整体的电位或者将样本针的驱动信号的有效电压更改为负电压,使得样本针与清洗液构成的电解池中,样本针作为阴极而被保护,避免其被清洗液腐蚀生锈。
请参考图3和图4,本实施例提供了一种液面检测装置,包括样本针10、信号驱动电路20、液路30、滤波处理电路40、AD采集电路50和中央控制单元60。
信号驱动电路20与样本针10连接,信号驱动电路20包括第一电源输入端202、第二电源输入端203和信号输出端201,第一电源输入端202和第二电源输入端203分别用于输入第一电位和第二电位,第一电位为高电平,相对的,第二电位为低电平。信号驱动电路20将第一电位和第二电位配置后,作为驱动信号施加到样本针10上。液路30与样本针10相连通,用于传输清洗样本针10的清洗液和样本针10吸\排的样本溶液,其中,该驱动信号的有效电压小于或等于液路30中的电位。样本针10伸入样本溶液中感应样本溶液的液面变化,信号驱动电路20根据样本针10感应到的样本溶液的液面变化通过信号输出端201输出表示液面变化的输出信号。当驱动信号的有效电压小于或等于液路30中的电位时,在样本针10与清洗液之间构成的电解池中,样本针10作为阴极被保护,避免其被清洗液腐蚀生锈。
一般的,由于液路30都是连接到免疫分析仪整机的水箱中,因此液路30基本上处于地电位水平,所以只需要输入有效电压为负的驱动信号,就可以保证驱动信号的有效电压小于或等于液路30中的电位。在一具体实例中,第一电源输入端202输入正电压+V,第二电源输入端203输入负电压-V,该正电压+V和负电压-V经驱动电路20配置后使得施加到样本针10的驱动信号的有效电压为负。根据电容的检测原理可知,样本针10一般是通过影响电路的充放电时间来检测液面变化的,所以虽然驱动信号的有效电压变为负电压,但是电路中仍然存在一个电势差,可以实现充放电过程,所以信号驱动电路20仍然可以检测到样本针10电容的变化。
请参考图5,为第一电源输入端202输入正电压+V,第二电源输入端203输入负电压-V时,通过信号驱动电路20施加到样本针10上的有效电压为负的驱动信号的波形图。本领域技术人员应当理解,当信号驱动电路20采用不同型号的芯片进行驱动时,施加到样本针10上的驱动信号可以是锯齿波、正弦波、方波或其它形式的波形,其中,只需要保证该驱动信号的有效电压为负电压,即可使得在样本针10与清洗液之间构成的电解池中,样本针10作为阴极被保护,避免其被清洗液腐蚀生锈。
在一具体实例中,样本针10包括内层针壁101和外层针壁102,内层针壁101连接到信号驱动电路20和液路30上,外层针壁102连接到信号驱动电路20上。本领域技术人员应当理解,当第一电源输入端202和第二电源输入端203为样本针10提供有效电压为负的驱动信号时,内层针壁101、外层针壁102和清洗液构成的电解池中,内层针壁101作为阴极,外层针壁102作为阳极,此时作为阴极的内层针壁101可以被保护,避免被清洗液腐蚀生锈,由于作为阳极的外层针壁102在免疫分析仪的工作过程中很少与清洗液等液体接触,故其虽然作为阳极,但也不容易被腐蚀生锈。
本实施例中,信号驱动电路20的信号输出端201连接到滤波处理电路40,滤波处理电路40对信号驱动电路20输出的液面检测信号进行滤波处理,滤除其中的干扰信号。AD采集电路50分别连接在滤波处理电路40和中央控制单元60上,AD采集电路50获取到滤波处理电路40滤波处理后的液面检测信号,对其进行A/D(模/数)转换,得到液面检测信号的数字信号,并将该数字信号发送给中央控制单元60。中央控制单元60对获得的数字信号进行分析处理,判断是否检测到液面。
在一种实施例中,信号驱动电路是一种通过RC充放电来使其振荡的多谐振荡器,产生用于驱动样本针的驱动信号,为了使实施例便于理解,本实施例只对信号驱动电路主要用于实现功能的结构进行描述。请参考图6和图7,图中所示为信号驱动电路的原理图,信号驱动电路包括由第一可控开关Q1、第二可控开关Q2、第三可控开关Q3和第四可控开关Q4构成的桥式电路、提供驱动电流的电流源和第一电容C1。第一可控开关Q1和第二可控开关Q2构成第一桥臂,第三可控开关Q3和第四可控开关Q4构成第二桥臂,将第一组对角线点作为输入端,将第二组对角线点作为输出端。例如将第一桥臂中的第一可控开关Q1和第二桥臂中的第三可控开关Q3之间的节点作为高电位输入端,电流源的电源输入端作为第一电源输入端,耦合到第一电位,例如正电压+V,将第一桥臂中的第二可控开关Q2和第二桥臂中的第四可控开关Q4之间的节点作为低电位输入端,耦合到第二电位,例如负电压-V。第一桥臂和第二桥臂的中间节点作为输出端,在第一桥臂和第二桥臂的中间节点之间连接有第一电容C1,样本针的内层针壁连接到第一电容C1的任一端,在工作过程中,样本针等效为与第一电容C1并联的第二电容C2。第一可控开关Q1、第二可控开关Q2、第三可控开关Q3和第四可控开关Q4的控制端分别接入控制信号,并在控制信号的控制下在开启和关闭状态之间切换,控制信号包括第一控制信号U1和第二控制信号U2。第一控制信号U1输入到第一可控开关Q1和第二可控开关Q2的控制端,第二控制信号U2输入到第三可控开关Q3和第四可控开关Q4的控制端,第一控制信号U1和第二控制信号U2可以为高电平“H”或低电平“L”信号,用于控制第一可控开关Q1、第二可控开关Q2、第三可控开关Q3和第四可控开关Q4的开启或关闭。
请参考图6,第一控制信号U1为高电平“H”,第二控制信号U2为低电平“L”时,第一可控开关Q1和第四可控开关Q4闭合,且第二可控开关Q2和第三可控开关Q3断开,电流由A点流向B点,此时A点电压逐渐升高,B点为负电位-V,对应波形如图8中第一阶段所示。
请参考图7,当A点电压升高到一定值时,第一控制信号U1和第二控制信号U2发生变化,第一控制信号U1变为低电平“L”,第二控制信号U2变为高电平“H”,使得第二可控开关Q2和第三可控开关Q3闭合,且第一可控开关Q1和第四可控开关Q4断开,电流方向变为由B点流向A点,此时B点电压逐渐升高,A点变为负电位-V,对应波形如图8中第二阶段所示。样本针的等效电容C2作为电路电容的一部分,其两端的信号与A点和B点是一致的,因此根据信号驱动电路的内部结构,通过调节第一电源输入端和第二电源输入端输入的电压值大小就可以调整样本针驱动信号的有效电压。
另外,当信号驱动电路为一具体的芯片时,可以通过配置芯片的输入电源来调节芯片输出给样本针的驱动信号的有效值。本申请实施例中的信号驱动电路可以采用常规的信号驱动电路,通过更改配置使其输出的驱动电压为负电压,将该负电压施加到样本针上。
所以,本申请实施例提供的液面检测装置中,对第一电位和第二电位进行配置使得驱动信号的有效电压小于或等于液路的电位,具体可以采用下面配置方法:更改第一电位和第二电位的输入值;或更改驱动电路中的部分电路结构,例如通过更改驱动电路中电阻的阻值大小或电容的电容大小以获得不同的驱动信号的有效电压;或直接更改驱动电路中芯片的参数,以获得符合条件的驱动信号的有效电压。
本实施例还提供了另一种液面检测装置,包括用于提供第一电位的第一电源、用于提供第二电位的第二电源、加液针和信号驱动电路。加液针被配置为当其接触液面时自身电容发生变化,信号驱动电路的第一电源输入端耦合到第一电源,第二电源输入端耦合到第二电源,第一电源输出的第一电位和第二电源输出的第二电位经配置使得驱动信号的有效电压为负值,信号驱动电路还与加液针连接,将驱动信号施加到加液针上,并检测加液针的电容,输出随加液针电容变化的液面检测信号。
本实施例提供的液面检测装置,摒弃了传统的采用正电压和地信号作为第一电源输入端和第二电源输入端的电源输入,而是采用正、负电压作为其电源输入,使得信号驱动电路施加到样本针上的驱动信号的有效电压为负电压,从而在样本针与清洗液之间构成的电解池中,样本针作为阴极被保护,避免其被清洗液腐蚀生锈。并且能够保证液面检测装置原有的检测灵敏度和性能,对样本针的材料及其加工工艺要求不高,可有效的控制成本。
对于液面检测方法,本领域技术人员应当理解,除了上述实施例以通过加液针的电容变化来检测液面外,还可以通过加液针的其它电特性发生变化来检测液面,例如利用电阻或电感或其组合的变化来检测液面。相应的,也应当采用与液面检测方法相适配的加液针。液面检测装置检测加液针的电特性变化,并输出随加液针电特性变化的液面检测信号。
根据本申请公开的内容,液面检测装置也可以应用在其他需要采用加液针进行检测液面的仪器中,例如生化分析仪。
以上内容是结合具体的实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换。

Claims (10)

  1. 一种采用加液针检测液面的方法,所述加液针用于与输送液体的液路结构连通,所述加液针被配置为当其接触液面时自身电特性发生变化,其特征在于,所述方法包括:
    通过信号驱动电路在加液针上施加驱动信号,所述驱动信号的有效电压小于或等于液路电位;
    信号驱动电路检测加液针的电特性,并输出随加液针电特性变化的液面检测信号;
    根据液面检测信号判断加液针是否接触液面。
  2. 一种采用加液针检测液面的方法,所述加液针被配置为当其接触液面时自身电特性发生变化,其特征在于,所述方法包括:
    通过信号驱动电路在加液针上施加驱动信号,所述驱动信号的有效电压为负电压;
    信号驱动电路检测加液针的电特性,并输出随加液针电特性变化的液面检测信号;
    根据液面检测信号判断加液针是否接触液面。
  3. 一种液面检测装置, 其特征在于,包括:
    加液针,所述加液针被配置为当其接触液面时自身电特性发生变化,所述加液针的一端用于连通输送液体的液路结构;
    信号驱动电路,所述信号驱动电路包括用于耦合到第一电位的第一电源输入端和用于耦合到第二电位的第二电源输入端,所述信号驱动电路与加液针连接,将驱动信号输出到加液针,并检测加液针的电特性,输出随加液针电特性变化的液面检测信号,所述第一电位和第二电位经配置使得所述驱动信号的有效电压小于或等于液路的电位。
  4. 如权利要求3所述的液面检测装置,其特征在于,所述第一电源输入端为高电平输入端,所述第二电源输入端为低电平输入端。
  5. 如权利要求4所述的液面检测装置,其特征在于,所述第一电源输入端输入正电压,所述第二电源输入端输入负电压。
  6. 一种液面检测装置, 其特征在于,包括:
    第一电源,用于提供第一电位;
    第二电源,用于提供第二电位;
    加液针,所述加液针被配置为当其接触液面时自身电特性发生变化;
    信号驱动电路,所述信号驱动电路的第一电源输入端耦合到第一电源,第二电源输入端耦合到第二电源,第一电源输出的第一电位和第二电源输出的第二电位经配置使得所述驱动信号的有效电压为负值,所述信号驱动电路还与加液针连接,将驱动信号施加到加液针上,并检测加液针的电特性,输出随加液针电特性变化的液面检测信号。
  7. 如权利要求3或6所述的液面检测装置,其特征在于,还包括:
    滤波处理电路,其输入端连接到信号驱动电路的信号输出端,所述滤波处理电路接收信号驱动电路输出的液面检测信号,对其进行滤波处理,并输出滤波后的液面检测信号;
    AD采集电路,其输入端与所述滤波处理电路的输出端相连,所述AD采集电路采集经过滤波处理电路滤波后的液面检测信号,并对其进行模/数转换,得到液面检测信号的数字信号;
    中央控制单元,其输入端与所述AD采集电路连接,中央控制单元获取所述液面检测信号的数字信号,对所述液面检测信号的数字信号进行分析处理,判断是否检测到液面。
  8. 如权利要求3-7中任一项所述的液面检测装置,其特征在于,所述加液针包括内层针壁和外层针壁,外层针壁环套在内层针壁的外面,和内层针壁形成电容结构,所述内层针壁的一端与液路结构连通,所述内层针壁还电连接到信号驱动电路的驱动信号输出端,外层针壁接地。
  9. 一种免疫分析仪,其特征在于,包括权利要求3至8中任一项所述的液面检测装置。
  10. 如权利要求9所述的免疫分析仪,其特征在于,加液针为用于吸排样本的样本针或用于吸排试剂的试剂针。
PCT/CN2013/084039 2013-04-16 2013-09-24 液面检测方法、装置和免疫分析仪 WO2014169575A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/885,869 US9702749B2 (en) 2013-04-16 2015-10-16 Liquid surface detection method and device, and immunoassay analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310130821.2A CN104111102B (zh) 2013-04-16 2013-04-16 液面检测方法、装置和免疫分析仪
CN201310130821.2 2013-04-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/885,869 Continuation-In-Part US9702749B2 (en) 2013-04-16 2015-10-16 Liquid surface detection method and device, and immunoassay analyzer

Publications (1)

Publication Number Publication Date
WO2014169575A1 true WO2014169575A1 (zh) 2014-10-23

Family

ID=51707986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084039 WO2014169575A1 (zh) 2013-04-16 2013-09-24 液面检测方法、装置和免疫分析仪

Country Status (3)

Country Link
US (1) US9702749B2 (zh)
CN (1) CN104111102B (zh)
WO (1) WO2014169575A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3088904A1 (de) * 2015-04-27 2016-11-02 Siemens Healthcare Diagnostics Products GmbH Verfahren zur überprüfung der funktionsfähigkeit einer waschstation für pipettiernadeln
CN107709958B (zh) * 2015-07-14 2020-04-14 深圳迈瑞生物医疗电子股份有限公司 采样机构及其空吸检测方法、样本分析仪
EP3564681B1 (en) * 2016-12-27 2021-09-01 Hitachi High-Tech Corporation Nozzle cleaner and automated analyzer using same
CN110146141B (zh) * 2019-04-26 2020-06-05 浙江大学 改进套筒型加样针的液面探测装置和方法
CN110361553B (zh) * 2019-07-22 2023-05-23 迈克医疗电子有限公司 一种全自动样本分析仪及其洗针方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2588334Y (zh) * 2002-12-27 2003-11-26 深圳迈瑞生物医疗电子股份有限公司 用于生化分析的液面检测装置
EP1422502A1 (de) * 2002-11-19 2004-05-26 Biomechanik Und Biomedizintechnik Dr. Manfred Wieser Verfahren und Vorrichtung zur Detektion einer Flüssigkeitsoberfläche
CN201237520Y (zh) * 2008-06-20 2009-05-13 长春迪瑞实业有限公司 一种液面探测器
CN101556180A (zh) * 2008-04-10 2009-10-14 上海鸿臻电子技术有限公司 一种用于加样系统的液面检测装置
CN201476844U (zh) * 2009-08-10 2010-05-19 苏州捷美电子有限公司 一种电容式液面探测装置
CN201540140U (zh) * 2009-10-19 2010-08-04 深圳市凯特生物医疗电子科技有限公司 液面自动检测装置
CN101858770A (zh) * 2009-04-09 2010-10-13 深圳迈瑞生物医疗电子股份有限公司 液面检测装置及加样系统
CN101004424B (zh) * 2006-01-20 2011-04-27 深圳迈瑞生物医疗电子股份有限公司 生化分析仪样本针堵塞检测装置及方法
CN201828301U (zh) * 2010-08-31 2011-05-11 彭为生 一种液面检测针及液面检测装置
CN201983833U (zh) * 2011-04-01 2011-09-21 梅州康立高科技有限公司 一种电解质分析仪的液面检测装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063395B2 (ja) * 1988-08-26 1994-01-12 株式会社日立製作所 液面検出機能を有する分析装置
JPH03115929A (ja) * 1989-09-29 1991-05-16 Fuji Photo Film Co Ltd 液面検出装置
DE4203638A1 (de) * 1992-02-08 1993-08-12 Boehringer Mannheim Gmbh Fluessigkeitstransfereinrichtung fuer ein analysegeraet
JP3873039B2 (ja) * 2003-05-14 2007-01-24 株式会社日立ハイテクノロジーズ 自動分析装置
CN102944286B (zh) * 2012-11-14 2015-06-10 北京信息科技大学 液位检测电路及检测方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422502A1 (de) * 2002-11-19 2004-05-26 Biomechanik Und Biomedizintechnik Dr. Manfred Wieser Verfahren und Vorrichtung zur Detektion einer Flüssigkeitsoberfläche
CN2588334Y (zh) * 2002-12-27 2003-11-26 深圳迈瑞生物医疗电子股份有限公司 用于生化分析的液面检测装置
CN101004424B (zh) * 2006-01-20 2011-04-27 深圳迈瑞生物医疗电子股份有限公司 生化分析仪样本针堵塞检测装置及方法
CN101556180A (zh) * 2008-04-10 2009-10-14 上海鸿臻电子技术有限公司 一种用于加样系统的液面检测装置
CN201237520Y (zh) * 2008-06-20 2009-05-13 长春迪瑞实业有限公司 一种液面探测器
CN101858770A (zh) * 2009-04-09 2010-10-13 深圳迈瑞生物医疗电子股份有限公司 液面检测装置及加样系统
CN201476844U (zh) * 2009-08-10 2010-05-19 苏州捷美电子有限公司 一种电容式液面探测装置
CN201540140U (zh) * 2009-10-19 2010-08-04 深圳市凯特生物医疗电子科技有限公司 液面自动检测装置
CN201828301U (zh) * 2010-08-31 2011-05-11 彭为生 一种液面检测针及液面检测装置
CN201983833U (zh) * 2011-04-01 2011-09-21 梅州康立高科技有限公司 一种电解质分析仪的液面检测装置

Also Published As

Publication number Publication date
US20160061644A1 (en) 2016-03-03
US9702749B2 (en) 2017-07-11
CN104111102A (zh) 2014-10-22
CN104111102B (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
WO2014169575A1 (zh) 液面检测方法、装置和免疫分析仪
CN108896623B (zh) 一种用于测量气体相对湿度的数字频率式湿度传感器
CN109720235A (zh) 基于全桥绝缘检测电路的绝缘检测系统及电动汽车
CN206074685U (zh) 模拟量检测电路
CN101614690A (zh) 一种多通道电化学分析仪
CN108759977A (zh) 一种浸水检测装置
CN2927005Y (zh) 液面探测电路装置
CN209961858U (zh) 电容式触摸按键寿命自动化闭环测试系统
CN108981849B (zh) 一种用于医疗仪器的液面检测系统及方法
CN107462612A (zh) 血球容积比的全血量测方法及其全血量测电路
CN202133637U (zh) 应用于电解水装置的检测电路
CN201548669U (zh) 蓄电池故障预警仪
CN207366676U (zh) 一种单相电能质量检测仪
CN220305421U (zh) 射频高压监测装置以及量子教学机
CN101738529A (zh) 高压电源输出采样装置及等离子体装置
JPH09127132A (ja) 液面検出装置
CN210347526U (zh) 一种库仑cod升级装置
CN217846491U (zh) 一种铝电解容器的检测电路
CN100437106C (zh) 一种可应用于毛细管电泳的电化学电流测量装置
CN209102879U (zh) 一种检测锂离子短路设备灵敏度和检出限的装置
CN211877857U (zh) 基于ffe的多通道分时并行非接触在线电导测量装置
CN210071059U (zh) 一种单壁进样针液面检测电路及具有该电路的分析仪
CN217820155U (zh) 三电极电化学传感器、电化学检测装置及设备
CN108802513A (zh) 一种汽车组合仪表抗负向电压干扰试验装置
CN208420789U (zh) 一种化学式气体传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/03/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13882501

Country of ref document: EP

Kind code of ref document: A1