WO2014162470A1 - Medical device - Google Patents

Medical device Download PDF

Info

Publication number
WO2014162470A1
WO2014162470A1 PCT/JP2013/059969 JP2013059969W WO2014162470A1 WO 2014162470 A1 WO2014162470 A1 WO 2014162470A1 JP 2013059969 W JP2013059969 W JP 2013059969W WO 2014162470 A1 WO2014162470 A1 WO 2014162470A1
Authority
WO
WIPO (PCT)
Prior art keywords
puncture
target position
main body
unit
guide light
Prior art date
Application number
PCT/JP2013/059969
Other languages
French (fr)
Japanese (ja)
Inventor
康之 本間
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to PCT/JP2013/059969 priority Critical patent/WO2014162470A1/en
Publication of WO2014162470A1 publication Critical patent/WO2014162470A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3468Trocars; Puncturing needles for implanting or removing devices, e.g. prostheses, implants, seeds, wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • A61B17/7065Devices with changeable shape, e.g. collapsible or having retractable arms to aid implantation; Tools therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7097Stabilisers comprising fluid filler in an implant, e.g. balloon; devices for inserting or filling such implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
    • A61B90/13Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints guided by light, e.g. laser pointers

Definitions

  • the present invention relates to a medical instrument having a curved puncture portion.
  • a treatment instrument capable of puncturing a living body, such as a guide needle for introducing various introduction media and members into a living body, a suture needle, a surgical knife, and a knife
  • a treatment instrument having an outer shape curved to a predetermined curvature (For example, refer to Patent Documents 1 and 2).
  • a puncture route from a predetermined puncture position on the surface of the living body toward a puncture target position set in the living body is determined prior to the puncturing operation.
  • the treatment tool is moved to the puncture target position in the living body along the puncture route.
  • the puncture operation is performed by the operator performing an operation of pushing the needle tip from the proximal side toward the distal end side while grasping a grasping portion provided with the needle. It is advanced.
  • the outer shape of the needle is formed in a linear shape, the direction in which the gripping unit is pushed in and the direction in which the needle moves forward are the same or parallel to each other, so the operator can sense the position and moving direction of the needle tip. Can be recognized. Therefore, it is not so difficult to move the needle tip along the puncture route, and the needle tip can be guided relatively easily to the puncture target position in the living body.
  • the puncture path is curved according to the outer shape of the treatment tool.
  • the puncture operation is advanced by the operator pushing the gripping part or the like on the hand side as in the case of using the straight treatment tool.
  • the present invention has been invented to solve the above-described problems, and enables a puncture operation using a medical instrument having a curved puncture portion to be performed easily and quickly, thereby achieving a minimally invasive procedure.
  • An object is to provide a medical device that can be realized.
  • the present invention can be achieved by any of the following means (1) to (6).
  • a curved puncture part capable of puncturing a living body, a grippable main body part provided with the puncture part, and an irradiation target position provided on the main body part and set at an arbitrary position on the surface of the living body
  • a light emitting unit that emits visible guide light
  • a detection unit that detects an inclination state of the main body with respect to the surface of the living body into which the puncture unit is inserted
  • a control unit that performs operation control of the light emitting unit
  • the emission angle of the guide light is changed so that the irradiation of the guide light to the irradiation target position is maintained.
  • the puncture unit has an arcuate outer shape in which a movement locus drawn when the distal end of the puncture unit moves makes a circle, and the control unit includes the radius of the circle, the irradiation
  • An arithmetic processing unit that calculates a displacement of the emission angle of the guide light before and after the operation of the main body based on a distance from a target position to the center of the circle and a detection result of the detection unit;
  • the medical instrument according to (1) wherein the emission angle of the guide light is changed according to the displacement of the emission angle calculated by the processing unit.
  • the main body includes an input receiving unit that receives input of first data related to a radius of the circle and second data related to a distance from the puncture target position to the irradiation target position, and the arithmetic processing unit includes: The medical instrument according to (2), wherein a distance from the irradiation target position to the center of the circle is calculated based on the first data and the second data.
  • the puncture unit is configured by a curved needle whose tip is a needle tip, the puncture target position is a predetermined part between adjacent spinous processes, and the irradiation target position is the puncture target.
  • the light is emitted from the light emitting portion.
  • the position where the guide light is irradiated it is possible to appropriately determine whether or not the distal end portion of the puncture portion is moving along the puncture route. If it is confirmed that the tip of the puncture part is displaced from the puncture path during the puncture operation, the moving direction of the tip of the puncture part can be easily corrected based on the irradiation position of the guide light. It becomes possible. For this reason, it is possible to easily and quickly perform a puncturing operation using a medical instrument having a curved puncturing unit, and a minimally invasive procedure can be realized.
  • the invention described in (2) above it is possible to easily and quickly perform a procedure using a medical instrument having a puncture portion curved in an arc shape. Moreover, since the emission direction of the guide light can be controlled with high accuracy in accordance with the displacement of the emission angle calculated by the calculation processing unit provided in the control unit, the puncture portion is displaced from the puncture route during the puncture operation. Can be suitably prevented.
  • the emission direction of the guide light is controlled.
  • the necessary numerical value can be calculated by the arithmetic processing unit. For this reason, even when a medical instrument is diverted between procedures with different puncture target positions, or when the main body is diverted between procedures using puncture sections with different lengths and curvatures, a predetermined amount is required before starting the procedure. It is possible to set the operation of the light emitting unit by a simple operation of simply inputting data.
  • the guide light emitted from the auxiliary emitting portion is configured to be irradiated to the distal end portion of the puncture portion, the distal end portion of the puncture portion during the procedure Can be easily confirmed, and the puncturing operation can be performed more easily and quickly.
  • a medical instrument that can easily and quickly guide the tip of a curved needle to an arbitrary puncture target position set between adjacent spinous processes in a living body. can do.
  • ⁇ First Embodiment> 1 to 7 are diagrams for explaining the configuration of the medical device according to the present embodiment.
  • 8 and 9 are diagrams for explaining a living body that is a target of a procedure using a medical instrument.
  • FIG. 10 to FIG. 18 are diagrams for explaining examples of use and operation of the medical instrument.
  • the medical device 10 can be summarized as a curved puncture unit 20 that can puncture a living body 120, a graspable main body unit 30 provided with the puncture unit 20, and a main body unit. 30 and a light emitting unit 40 for emitting visible guide light toward an irradiation target position F set at an arbitrary position on the biological surface 130, and a main body for the biological surface 130 into which the puncture unit 20 is inserted It has the detection part 50 which detects the inclination state of the part 30, and the control part 60 which performs operation
  • the control unit 60 operates the main body 30 so that the distal end portion 21 of the puncture unit 20 moves along the puncture route passing through the puncture target position P in the living body.
  • the emission angle of the guide light is changed so that the irradiation of the guide light to the irradiation target position F is maintained.
  • This embodiment exemplifies a form in which the present invention is applied as a medical instrument used for introducing an implant between adjacent spinous processes in a living body.
  • FIG. 8 FIG. 9, FIG. 18, a spinous process of a living body in which the implant 80 is placed and a disease to be treated will be briefly described.
  • FIG. 8 is a diagram schematically showing a perspective view of the lumbar vertebra from the back side of the living body
  • FIG. 9 is a view of the living body in a direction orthogonal to the arrangement direction of spinous processes (the extending direction of the spine) as a part of the lumbar vertebra
  • FIG. 18 is a diagram schematically showing a peripheral portion of the spinous process of FIG. 8.
  • the X axis shown in each figure indicates the direction orthogonal to the arrangement direction of the spinous processes
  • the Y axis shows the arrangement direction of the spinous processes
  • the Z axis shows the thickness direction of the living body.
  • a plurality of lumbar vertebrae 126 are arranged on the back 121 of the living body 120 along the extending direction of the spine (see FIG. 18).
  • the lumbar vertebra 126 has a configuration in which an anterior half vertebral body 125 and a latter half vertebral disc 127 are connected via a pedicle 128 (see FIGS. 8 and 9).
  • various processes such as a spinous process 123, a rib (lateral) process, an upper joint process, and a lower joint process are formed.
  • the lumbar vertebra 126 is normally lightly bent toward the front side of the living body 120.
  • the adjacent lumbar vertebra 126 is connected via an intervertebral disc (intervertebral disc) 129, and a certain lumbar vertebra and the lumbar vertebra adjacent to the lumbar vertebra are present between the intervertebral disc 129 and the upper and lower joint processes. Therefore, it is prevented from being displaced by the facet joint or the like (see FIG. 18).
  • intervertebral disc intervertebral disc
  • lumbar sequestration in which the vertebral body 125 and the lamina 127 are separated at the pedicle 128 portion, Deformation of the intervertebral joints and degeneration of the intervertebral disc 129 may make it difficult to fix the lumbar vertebra 126 located on the upper side, and may cause lumbar degenerative slippage that causes a shift.
  • FIG. 8 illustrates the orientation of the medical device 10 with respect to the back 121 of the living body 120 before the puncturing operation.
  • the puncture unit 20 included in the medical device 10 can be configured by a curved needle whose outer shape is curved with a predetermined curvature.
  • the medical instrument 20 is formed such that the diameter gradually decreases from the base end side attached to the main body portion 30 toward the distal end side, and the distal end portion 21 is formed in a thin and sharp shape.
  • the tip 21 constitutes the needle tip of the curved needle.
  • the puncture portion will be described as a curved needle 20 and the tip portion of the puncture portion will be described as a needle tip 21.
  • the curved needle 20 is configured to be detachable from the main body 30 by a mechanical connection form by screwing or fitting. For this reason, when performing a procedure, it is possible to select and use the curved needle 20 having an arc length and a curvature corresponding to a puncture target position P and a puncture route that are set in advance before performing the procedure. It has become.
  • the material constituting the curved needle 20 is not particularly limited as long as it is a material that can be punctured into a living body.
  • SUS polyetheretherketone
  • PC polycarbonate
  • PCU polycarbonate urethane
  • SRP reinforced polyphenylene
  • various treatment members can be used in combination according to the contents of the procedure.
  • a guide member 70 as shown in FIG. 2 can be used.
  • the guide member 70 is formed on the body 71 curved with the same curvature as the curved needle 20 of the medical device 10, the opening 73 a formed on the distal end side of the body 71, and the proximal end side of the body 71. It has an opening 73b, a connection part 75 provided on the proximal end side of the body part 71 and connectable / detachable to the main body part 30 of the medical instrument 10, and a lumen 77 formed inside the body part 71. It can be constituted as follows.
  • the curved needle 20 can be inserted into the lumen 77 of the guide member 70.
  • the length of the guide member 70 is formed shorter than the length of the curved needle 20. For this reason, in a state where the curved needle 20 is inserted into the lumen 77, the needle tip 21 of the curved needle 20 is exposed from the opening 73a on the distal end side of the guide member 70 by a predetermined length.
  • the guide member 70 and the main body 30 of the medical device 10 can be assembled via the connection portion 75 provided on the guide member 70. .
  • the connecting portion 75 of the guide member 70 is configured to be mechanically connected to the connecting portion 37 provided on the main body portion 30 of the medical instrument 10 by fitting, for example.
  • the configuration is not particularly limited as long as the configuration is separable.
  • the same material as that of the curved needle 20 of the medical instrument 10 described above can be used.
  • Guide member 70 is used to introduce implant 80 between adjacent spinous processes 123.
  • an operation of puncturing the curved needle 20 is performed in a state where the medical instrument 10 and the guide member 70 are assembled. Then, after the needle tip 21 of the curved needle 20 reaches a predetermined position between the adjacent spinous processes 123, the curved needle 20 is removed from the guide member 70 as shown in FIG. By performing this operation, the inside of the lumen 77 of the guide member 70 is emptied, and therefore, between the adjacent spinous processes 123 located near the opening 73a on the distal end side of the guide member 70 via the lumen 77.
  • the implant 80 can be introduced into a predetermined site.
  • the main body 30 of the medical instrument 10 is configured as a housing that can accommodate predetermined components such as a control unit 60 and a detection unit 50 therein.
  • a curved needle 20 is attached to the distal end side of the main body 30.
  • a power switch 39 for switching the supply state of the drive current to the control unit 60 to ON / OFF can be disposed on the base end side of the main body unit 30.
  • a groove or the like that functions as a slip stopper when the main body 30 is gripped can be provided on the lower surface side of the main body 30.
  • the outer shape and outer dimensions of the main body 30 are not limited to the illustrated configurations, and it is sufficient that the user using the medical instrument 10 can hold the hand 30 with his / her hands (left hand, right hand, or both hands). It can be changed according to the specifications.
  • a metal material generally used for a hard cover of an electronic device, a hard plastic material, or the like can be used as a material constituting the main body 30.
  • the control unit 60 included in the medical instrument 10 stores a calculation processing unit that performs predetermined calculation processing, a ROM that stores various programs related to calculation, calculation results calculated by the calculation processing unit, and the like. It can be configured to include a possible RAM, an EEPROM capable of storing data relating to the curvature of the bending needle 20, the length of the arc, and the like, and a control circuit that controls the overall operation of the control unit 60 in an integrated manner. Each component which comprises the control part 60 is mutually connected via predetermined
  • the detection part 50 with which the medical instrument 10 is provided is comprised by the well-known gyro sensor, if the inclination state of the main-body part 30 can be detected, the kind will not be specifically limited, For example, a magnetic sensor etc. A known angle detection sensor can also be used.
  • the position where the detection unit 50 is installed in the main body unit 30 is not particularly limited.
  • the detection unit 50 can be accommodated and arranged in the main body unit 30 in the same manner as the control unit 60.
  • the light emitting unit 40 included in the medical instrument 10 is configured by a known light emitting LED that can emit visible light used as visible guide light, but can emit visible light that can function as guide light. If so, the type is not particularly limited.
  • the light emitting unit 40 is provided with a direction control mechanism that allows the guide light to be emitted in an arbitrary direction.
  • this direction control mechanism for example, a mechanism including an optical lens system configured to be rotatable around a plurality of axes can be used.
  • the change of the guide light emission direction is performed by the control unit 60 controlling the operation of the direction control mechanism.
  • the guide light for example, light having a wavelength in a range of 360 nm to 830 nm, which is a general visible light wavelength, can be selected, and more preferably, red light having a wavelength of 400 nm to 760 nm is used.
  • the guide light can be easily visually recognized, so that the guide function by the guide light can be improved.
  • the guide light is indicated by a two-dot chain line L1.
  • the light emitting unit 40 is arranged so that a part thereof is exposed on the outer surface of the main body 30, and the other part is accommodated in the main body 30.
  • the exposed portion of the light emitting unit 40 functions as an emitting end that guides guide light to the outside of the main body 30.
  • the emission end of the light emission unit 40 moves along the movement locus R formed by the needle tip 21 of the curved needle 20.
  • the arrangement of the light emitting portion 40 is designed (see FIG. 10).
  • the main body unit 30 is provided with an input receiving unit 31 that receives input of various data necessary for controlling the operation of the light emitting unit 40 by the control unit 60.
  • the input receiving unit 31 can be arranged inside the main body unit 30. Further, for example, the input receiving unit 31 can be covered with an openable / closable slide-type lid 33 provided in the main body unit 30.
  • the positions where the input receiving unit 31 and the lid 33 are provided are not limited to the illustrated positions, and can be provided at arbitrary positions according to product specifications.
  • cover 33 can also be abbreviate
  • the input receiving unit 31 is configured by a known liquid crystal display, but the type thereof is not particularly limited as long as the user can check the input content.
  • a dial input type or a voice input type can be used for the input receiving unit 31.
  • the input receiving unit 31 can be added with a known capacitive touch panel function or the like.
  • Each data input via the input receiving unit 31 is transmitted to the control unit 60.
  • This transmission can be performed by, for example, a known lead wire or electric wire used for data transmission, and can also be performed by wireless communication as will be described in an embodiment described later.
  • the main body 30 When the main body 30 is operated in order to puncture the living body with the curved needle 20, data regarding the tilted state of the main body 30 is updated.
  • the updated data is sequentially transmitted from the detection unit 50 to the arithmetic processing unit of the control unit 60.
  • the arithmetic processing unit included in the control unit 60 calculates a numerical value necessary for operation control using each data. Then, the control circuit controls the operation of the light emitting unit 40 based on the data.
  • the transmission of data and the like between the detection unit 50 and the control unit 60 can be performed in the same manner as the transmission method between the input reception unit 31 and the control unit 60.
  • the puncture target position P can be arbitrarily set according to the content of the procedure using the medical instrument 10, but in this embodiment, as shown in FIGS.
  • a puncture target position P is set between the spinous processes 123 to be performed.
  • a distance from living body surface 130 to puncture target position P (hereinafter also referred to as “distance D1”) is measured.
  • measurement can be performed based on an image acquired using a known medical apparatus such as an X-ray fluoroscopic apparatus, MRI, or an ultrasonic diagnostic imaging apparatus.
  • the distance D1 may be measured by photographing a measuring instrument with a scale indicating the length together with a living body and reading the scale.
  • the living body surface 130 in this embodiment means the outer surface of the living body's epidermis.
  • the irradiation target position F of the guide light is, for example, a virtual perpendicular V extending from the puncture target position P toward the living body surface 130, and the living body surface 130. Can be set at the intersection.
  • the puncture operation is performed in a state where the guide light is irradiated immediately above the puncture target position P, and the puncture target position P can be easily visually grasped. Therefore, it becomes easy to perform the procedure smoothly.
  • the curved needle 20 has an arcuate outer shape in which the movement locus drawn by the needle tip 21 of the curved needle 20 forms a circle R.
  • the curved needle 20 is selected so that the radius r of the circle R that is the movement locus is at least the distance D1. Is done.
  • the movement locus drawn by the needle tip 21 when the curved needle 20 is used is naturally determined by the length of the arc of the curved needle 20 and the curvature of the curved needle 20.
  • a circle which is a movement locus of the needle tip 21 of the curved needle 20 is indicated by a symbol R.
  • the puncture route passing through the puncture target position P is set so as to overlap with a part of the circle R that is the movement locus. That is, when the needle tip 21 of the curved needle 20 moves along the circle R, the needle tip 21 moves along the puncture route passing through the puncture target position P.
  • the puncture route is indicated by an arrow W.
  • the data input operation is performed via an input receiving unit 31 provided in the main body unit 30.
  • FIG. 6 shows a display example of the input receiving unit 31 when data is input.
  • the user performs an input operation via the displayed numerical keys and the like, and performs a needle radius (first data regarding the radius of the circle R) and a distance D1 (a first distance regarding the distance from the puncture target position P to the irradiation target position F). 2 data).
  • the radius of the needle is the radius r of the circle R drawn by the needle tip 21 (not shown in FIG. 6).
  • the radius of the needle can be displayed.
  • the numerical value is attached to the curved needle 20 in advance so that the user can easily check the numerical value during the data input operation.
  • the numerical value can be added in advance to a case for storing the curved needle 20 or the like.
  • This setting can be performed by the following procedure.
  • the main body 30 is positioned so that the guide light is irradiated from the vertical direction with respect to the irradiation target position F.
  • the curved needle 20 is disposed so that the needle tip 21 of the curved needle 20 overlaps a part of a circle R that is a movement locus. This positioning operation is performed by referring to the known radius of the curved needle 20 so that the proximal end side of the curved needle 20 is located at a position away from the puncture target position P by a distance corresponding to the diameter thereof. This is done by adjusting the orientation and position.
  • the medical instrument 10 After arranging the medical instrument 10 as described above, guide light is emitted from the light emitting unit 40.
  • the position on the living body surface 130 where the guide light is irradiated becomes the irradiation target position F.
  • the irradiation target position F is set at a position where the virtual perpendicular V extended from the puncture target position P intersects the living body surface 130.
  • the irradiation target position F and the puncture target position P can be set, for example, on the midline M of the living body (FIG. 8). reference).
  • the puncturing operation is performed by operating the main body 30 so that the movement locus drawn by the needle tip 21 of the curved needle 20 becomes a circle R as shown in FIG.
  • the needle tip 21 of the curved needle 20 can be moved along the puncture path passing through the puncture target position P.
  • the inclined state of the main body 30 with respect to the biological surface 130 changes.
  • the amount of change in the tilt state is represented by the tilt angle ⁇ formed by the virtual perpendicular V and the tilt of the main body 30.
  • the control unit 60 controls the operation of the light emitting unit 40 to change the emitting direction of the guide light when the tilt state of the main body unit 30 changes (see FIG. 7).
  • the angle for changing the guide light emission angle is calculated by an arithmetic processing unit included in the control unit 60.
  • the arithmetic processing unit includes a radius r of the circle R drawn by the movement locus of the needle tip 21, a distance D2 from the irradiation target position F to the center O of the circle R (hereinafter also referred to as “distance D2”), and the detection unit 50. Based on the detection result, the displacement of the emission angle of the guide light before and after the operation of the main body 30 is calculated. Note that the detection result of the detection unit 50 means the inclination angle ⁇ of the main body 30 after the operation.
  • the displacement of the emission angle is a length corresponding to the line segment a (distance D2) from the irradiation target position F to the center O of the circle R and the radius of the circle R drawn by the movement locus of the needle tip 21.
  • the cosine function can be applied to the virtual triangle T formed by the line segment b and the line segment c (distance D3) from the light emitting unit 40 to the irradiation target position F.
  • the internal angle formed by the line segment b and the line segment c is denoted by ⁇
  • the internal angle formed by the line segment a and the line segment c is denoted by ⁇
  • the internal angle formed by the line segment a and the line segment b is denoted by ⁇ .
  • the object to be calculated is an internal angle ⁇ that is a displacement of the emission angle of the guide light when the main body 30 is at the inclination angle ⁇ .
  • the length of each line segment is indicated by symbols a, b, and c representing the line segment, respectively.
  • the values of the length D2 of the line segment a and the length r of the line segment b are numerical values given as a precondition for the calculation.
  • the length D3 of the line segment c is a numerical value that changes according to the amount of operation of the main body 30. For this reason, the line segment c is removed from Equation 2 above, and the following Equation 3 expressed by a trigonometric function related to the interior angle ⁇ is obtained.
  • Equation 3 is represented by the following Equation 4 represented by an inverse trigonometric function with respect to the interior angle ⁇ .
  • the radius r of the circle R that is the movement locus is 60 mm
  • the distance D1 from the puncture target position P to the living body surface 130 is 40 mm
  • the inclination angle ⁇ of the main body 30 is 30 °.
  • the distance D2 of the line segment a is 20 mm which is a value obtained by subtracting the distance D1 from the radius r. Since the inner angle ⁇ is the amount of change in the inclination angle ⁇ from the virtual perpendicular, it is 150 °, which is a value obtained by subtracting the inclination angle ⁇ from 180 °.
  • the interior angle ⁇ is determined to be 7.37 °. Therefore, when the main body 30 is inclined by 30 ° from the initial state, the control unit 60 controls the operation of the light emitting unit 40 so that the emission angle of the guide light emitted from the light emitting unit 40 is changed by 7.37 °. Is done.
  • the above calculation is performed by an arithmetic processing unit included in the control unit 60. Therefore, when performing a procedure using the medical instrument 10, a change in the tilted state of the main body 30 can be performed simply by inputting the value of the radius r and the value of the distance D1 into the input receiving unit 31 provided in the main body 30. Accordingly, the displacement ⁇ of the emission angle is automatically calculated, and the emission angle of the guide light is automatically corrected based on the result.
  • an auxiliary light emitting unit that emits visible guide light (hereinafter referred to as “auxiliary guide light”) toward the needle tip 21 of the curved needle 20 on the main body 30 of the medical instrument 10. 45 can be provided.
  • the operation of the auxiliary light emitting unit 45 is controlled by the control unit 60 (see FIG. 7).
  • the control unit 60 performs operation control so that the auxiliary guide light emitted from the auxiliary light emitting unit 45 is applied to the needle tip 21 of the curved needle 20 (FIG. 10 to FIG. 10).
  • FIG. 15) In each figure, auxiliary guide light is indicated by a two-dot chain line L2.
  • Control of the emission direction of the auxiliary guide light is executed based on a program stored in advance in a ROM provided in the control unit 60.
  • a program stored in advance in a ROM provided in the control unit 60 since the emission direction of the auxiliary guide light is maintained in a constant direction regardless of the operation of the main body 30, the process of correcting the emission angle as in the light emission unit 40 is not necessary. For this reason, it is not necessary to provide the auxiliary light emitting unit 45 with the direction control mechanism provided in the light emitting unit 40.
  • the auxiliary light emitting unit 45 is configured by a known light emitting LED that can emit visible light used as visible guide light, as with the light emitting unit 40, for example, but visible light that can function as guide light.
  • the type is not particularly limited as long as it is possible to irradiate light.
  • the auxiliary guide light for example, light having a wavelength in the range of 360 nm to 830 nm, more preferably in the range of 400 nm to 760 nm can be selected, and the auxiliary guide light is continuously irradiated in the form of a beam. It is the same as the light emitting unit 40 in that it can be configured to be irradiated intermittently with an arbitrary time difference.
  • the position where the auxiliary light emitting portion 45 is installed is not particularly limited as long as it is a position where guide light from the main body portion 30 to the needle tip 21 of the curved needle 20 is possible.
  • the position where the auxiliary light emitting portion 45 is installed is not particularly limited as long as it is a position where guide light from the main body portion 30 to the needle tip 21 of the curved needle 20 is possible.
  • It can be installed on the lower side of the main body 30 than the emitting part 40.
  • a main body portion 30 of the medical instrument 10 can be provided with a shape confirmation portion 35 on which a graphic representing the outer shape of the curved needle 20 is written.
  • the shape confirmation unit 35 is used for confirming a standard of how much the curved needle 20 is inserted into the living body and in which direction the needle tip 21 is directed when performing the puncturing operation. Yes (see FIG. 12).
  • the position where the shape confirmation unit 35 is installed is not particularly limited as long as it is a position that can be viewed by the user during the puncturing operation.
  • the shape confirmation unit 35 may be installed on the side surface of the main body 30 as shown in FIG. it can. When installed at such a position, it is possible to easily view even when the medical instrument 10 is held.
  • the puncture part is constituted by the curved needle 20
  • the pattern written on the shape confirmation part 35 is also a curved needle.
  • the shape confirmation part 35 can be comprised with the member which can be affixed etc. with respect to the main-body part 30, for example.
  • a liquid crystal display or the like can be used for the shape confirmation unit 35 so that various shapes can be displayed.
  • the power switch 39 provided in the medical instrument 10 is turned on.
  • predetermined data such as first data related to the radius of the curved needle 20 and second data related to the distance from the puncture target position P to the irradiation target position F via the input receiving unit 31 included in the main body 30. Enter the data.
  • the curved needle 20 and the guide member 70 are connected to each other so that both members are assembled.
  • the user grasps the main body 30 and confirms that the guide light is irradiated to the irradiation target position F. Also, it is confirmed that the auxiliary guide light is applied to the needle tip 21 of the curved needle 20. In the procedure, the guide light is emitted toward the irradiation target position F, but it is not necessary to actually irradiate the living body surface 130 directly. For example, when a patient to be treated wears clothes or the like, the guide function of puncture by guide light is not impaired even if the clothes or the like are irradiated.
  • the main body 30 is operated so that the needle tip 21 moves on a circle R that overlaps the puncture path passing through the puncture target position P.
  • the medical instrument 10 is operated to insert the needle tip 21 of the curved needle 20 into the living body.
  • the state where the auxiliary guide light is irradiated so as to reach the inside of the living body is illustrated, but this is illustrated for easy understanding of the irradiation position of the auxiliary guide light. There is no need for the auxiliary guide light to reach the inside of the living body.
  • the control unit 60 controls the operation of the light emitting unit 40 in accordance with the change in the tilt state of the main body unit 30 to correct the emission angle of the guide light. By this correction, irradiation of the guide light to the irradiation target position F is maintained. Therefore, the user using the medical instrument 10 confirms that the needle tip 21 of the curved needle 20 has moved in an appropriate direction by confirming that the guide light is irradiated to the irradiation target position F. can do.
  • the curved needle 20 is moved in the direction opposite to the puncture direction during the puncture operation, or when the curved needle 20 is removed from the living body after the puncture operation is completed, the irradiation position of the guide light is confirmed.
  • the curved needle 20 can be easily and smoothly moved through the punctured path.
  • the inclination and position of the main body 30 are adjusted so that the guide light is irradiated to the irradiation target position F while visually confirming the irradiation position of the guide light.
  • the needle tip 21 of the curved needle 20 can be directed in an appropriate direction. While the procedure is being performed, positional displacement may occur in a direction perpendicular to the paper surface, but the puncture operation is performed with the user looking down from the upper side of the medical instrument 10 as a whole. Therefore, the positional deviation in the direction orthogonal to the paper surface can be easily corrected visually.
  • the main body 30 is operated so that the needle tip 21 moves toward the puncture target position P while confirming the irradiation position of the guide light.
  • the needle tip 21 can be easily and quickly guided to the puncture target position P by performing the puncture operation while confirming the position where the guide light is irradiated. While performing the puncturing operation, it is possible to perform the puncturing operation more easily and quickly by visually recognizing the irradiation position of the auxiliary guide light or visually recognizing the shape confirmation unit 35.
  • the guide member 70 and the medical instrument 10 are separated and the medical instrument 10 is removed from the living body.
  • the implant 80 is introduced into the living body through the lumen 77 of the guide member 70.
  • the type and configuration of the implant 80 are not particularly limited.
  • a flexible balloon (container) that can be expanded and deformed by introducing a filler therein can be used.
  • an implant 80 for example, an implant configured so that both end portions 81a and 81b project and deform in the arrangement direction of the spinous processes 123 after expansion and the outer shape thereof becomes an H shape or a dumbbell shape is used. be able to.
  • By using such an implant 80 it is possible to place the spinous process 123 with both end portions 81a and 81b of the implant 80 interposed therebetween, and thus it is preferable to prevent the implant 80 from being displaced. (See FIG. 18).
  • the filler solid or fluid (gas, liquid, gel), bone cement that causes a hardening reaction after introduction, or the like can be used.
  • a known fluid supply device 90 such as a syringe pump capable of pumping fluid or the like can be used.
  • the implant 80 and the fluid supply device 90 can be connected in advance by a known tube member 91 or the like through which a fluid or fluid can flow.
  • the implant 80 and the tube member 91 can be detachably connected by fitting, screwing, excision, or the like.
  • the guide member 70 is removed, and the implant 80 is exposed from the guide member 70. Then, the fluid supply device 90 and the tube member 91 are connected by fitting or screwing, and a predetermined filler is introduced and expanded into the implant 80 via the tube member 91 by the fluid supply device 90. After expansion, the tube member 91 is separated from the implant 80 and removed from the living body.
  • the implant 80 can be provided with a seal member, a valve, or the like that prevents the filler from leaking from a position where the implant 80 and the tube member 91 are connected.
  • the implant 80 is placed in an expanded state between adjacent spinous processes 123.
  • the interval between the adjacent spinous processes 123 can be maintained at a predetermined size, and a therapeutic effect on the symptoms of lumbar spinal canal stenosis can be obtained.
  • the medical instrument 10 when the needle tip 21 of the curved needle 20 is moved along the predetermined puncture path to the puncture target position P set in the living body, By confirming the position where the guide light emitted from the emitting unit 40 is irradiated, it is possible to appropriately determine whether the needle tip 21 of the curved needle 20 is moving along the puncture route.
  • the movement direction of the needle tip 21 of the curved needle 20 is simply determined based on the irradiation position of the guide light. It becomes possible to correct. For this reason, the puncture operation using the medical instrument 10 including the curved needle 20 can be performed easily and quickly, and a minimally invasive procedure can be realized.
  • the curved needle 20 has an arcuate outer shape, and the arithmetic processing unit provided in the control unit 60 is configured to calculate the displacement of the guide light emission angle based on the outer shape of the curved needle 20. Therefore, a procedure using the medical instrument 10 including the curved needle 20 can be performed easily and quickly. In addition to this, since the emission direction of the guide light can be controlled with high accuracy in accordance with the displacement of the emission angle calculated by the calculation processing unit provided in the control unit 60, the curved needle 20 from the puncture route during the puncture operation. It is possible to suitably prevent the deviation from occurring.
  • an input receiving unit 31 that receives input of data for calculating the emission angle of the guide light is provided in the main body unit 30, and the arithmetic processing unit is configured to execute various calculations based on the input data. Therefore, when performing a procedure using the medical instrument 10, it is necessary to control the emission direction of the guide light by inputting various data to the input receiving unit 31 provided in the main body unit 30. Numerical values can be calculated. For this reason, even when the medical instrument 10 is diverted between procedures with different puncture target positions P, or when the main body 30 is diverted between procedures using the curved needle 20 having a different arc length or curvature, the procedure is not limited.
  • the operation setting of the light emitting unit 40 can be performed by a simple operation of inputting predetermined data before starting.
  • the auxiliary light emitting portion 45 for irradiating auxiliary emitted light to the needle tip 21 of the curved needle 20 is provided in the main body portion 30, the position of the needle tip 21 of the curved needle 20 can be easily set during the procedure. It can be confirmed, and the puncturing operation can be performed more easily and quickly.
  • the main body part 30 is provided with the shape confirmation part 35 showing the external shape of the curved needle 20
  • the amount of insertion of the curved needle 20 into the living body can be determined by observing the shape confirmation part 35 during the procedure.
  • the puncture portion is configured by a curved needle 20 whose tip portion forms the needle tip 21, the puncture target position P is set at a predetermined site between adjacent spinous processes, and the irradiation target position F is: Since the virtual perpendicular V extending from the puncture target position P toward the living body surface 130 and the living body surface 130 are set to intersect, any puncture target position P set between adjacent spinous processes in the living body is set.
  • the needle tip 21 of the curved needle 20 can be guided easily and quickly.
  • the medical instrument 10 according to the first embodiment is configured to be able to input various types of data via the input receiving unit 31 provided in the main body unit 30, for example, various data input operations are performed. It is also possible to carry out via an external input device provided separately from the main body 30.
  • the medical instrument according to the second embodiment is different from the medical instrument according to the first embodiment in that data input via an external input device is possible.
  • each structure except the control part 60 can be comprised similarly to the medical device which concerns on 1st Embodiment, description is abbreviate
  • FIG. 19 shows an overall configuration of the control unit 60 included in the medical instrument according to the second embodiment.
  • the external input device is configured by a PC or the like which is another device different from the medical instrument.
  • the first data related to the radius of the circle R input to the external input device and the second data related to the distance from the puncture target position P to the irradiation target position F are, for example, publicly known information such as a wireless LAN or Bluetooth (registered trademark).
  • the data is transmitted to a data receiving unit (corresponding to the input receiving unit 31) included in the control unit 60 by wireless communication means.
  • the control unit 60 After receiving the data, the control unit 60 causes the arithmetic processing unit to execute various calculations according to the same procedure as the medical instrument 10 according to the first embodiment.
  • the medical instrument according to the first and second embodiments described above employs a configuration that allows the curved needle 20 to be removed from the main body 30, and when using the medical instrument, the curvature according to the purpose of the procedure, A curved needle 20 having an arc length can be used.
  • a configuration in which the curved needle 20 is integrally attached to the main body 30 can be adopted.
  • the first data regarding the radius of the circle R is stored in advance in a ROM or the like provided in the control unit 60, thereby eliminating the need to input radius data as an initial setting when performing a procedure. .
  • the arithmetic processing unit calculates the displacement of the emission angle of the guide light based on the second data regarding the distance from the puncture target position P to the irradiation target position F, which is input as an initial condition, and the first data stored in advance. Further, irradiation / non-irradiation switching of the guide light and the auxiliary guide light may be performed by a switch or the like separately provided in the main body 30. Thereby, it becomes possible to prevent unnecessary irradiation while the medical instrument 10 is not used.
  • the medical instrument according to the present invention has been described through a plurality of embodiments and modified examples.
  • the present invention relates to a medical instrument having a curved puncture unit, and the puncture unit has a function of Guide light serving as a guide for guiding the movement is irradiated toward an arbitrary irradiation target position on the surface of the living body so that the movement path of the distal end portion can be moved along the puncture path passing through the puncture target position.
  • the puncture unit is moving along the puncture route, it can be changed as long as the irradiation of the guide light to the irradiation target position can be maintained by the operation control of the control unit.
  • the configuration of the entire medical instrument, the control method by the control unit, the calculation method by the arithmetic processing unit, and the like can be changed within a range in which the above-described object can be achieved.
  • a form in which a curved needle having a needle structure is used as a curved puncture part is shown.
  • the puncture part is formed in a curved shape with a predetermined curvature, and a living body Any device can be used as long as it can be inserted into at least a part.
  • a needle a scalpel, a reamer, a treatment tool used for sampling a tissue, excision of an affected part, and the like can be used as a puncture unit.
  • the puncture portion is constituted by a needle
  • the use of the needle is not limited, and for example, a suture needle, a biopsy needle, or the like can be used.
  • the treatment performed using a medical instrument is not limited to the procedure for introducing the implant between the spinous processes, and can be changed according to the use of the puncture part used.
  • the puncture target position, puncture route, guide light irradiation target position, and the like can be appropriately changed according to the configuration of the puncture unit, the content of treatment, and the like.

Abstract

This medical device (10) has a main body (30), an arcuate curved needle (20), a light emitting unit (40), a detection unit (50) and a control unit (60). The light emitting unit (40) is provided in the main body (30) and emits a visible guide light (L1). The detection unit (50) detects the inclination angle θ of the main body (30). The control unit (60) causes the light emitting unit (40) to change the emission angle α of the guide light (L1) depending on the detected inclination angle θ. A user determines as the irradiation target position (F) the intersection point between the body surface (130) and the perpendicular line (V) passing through the puncture target position (P) inside of the body. The user grasps the main body (30) and inserts the curved needle (20), piercing the body. At that time, by moving the main body (30) so as to maintain the state in which the guide light (L1) is irradiating the irradiation target position (F), the needle tip (21) can be simply and quickly guided to the puncture target position (P).

Description

医療器具Medical instruments
 本発明は、湾曲形状の穿刺部を備える医療器具に関する。 The present invention relates to a medical instrument having a curved puncture portion.
 各種の導入媒体や部材を生体内に導入するためのガイド針、縫合用の針、手術用のメス、ナイフといった生体に穿刺可能な医療器具として、所定の曲率に湾曲した外形を備える処置具を用いることがある(例えば、特許文献1、2を参照)。 As a medical instrument capable of puncturing a living body, such as a guide needle for introducing various introduction media and members into a living body, a suture needle, a surgical knife, and a knife, a treatment instrument having an outer shape curved to a predetermined curvature (For example, refer to Patent Documents 1 and 2).
 処置具を生体に穿刺する手技では、穿刺作業に先立って、生体表面の所定の刺入位置から生体内に設定される穿刺目標位置に向かう穿刺経路が決定される。次いで、この穿刺経路に沿わせて処置具が生体内の穿刺目標位置まで移動される。 In the procedure of puncturing a living body with a treatment tool, a puncture route from a predetermined puncture position on the surface of the living body toward a puncture target position set in the living body is determined prior to the puncturing operation. Next, the treatment tool is moved to the puncture target position in the living body along the puncture route.
 上記のような処置具を使用して行われる手技においては、手技者が、針が設けられる把持部等を把持しながら針先を手元側から先端側へ向け押し込む操作を行うことで穿刺作業が進められる。針の外形が直線形状に形成されている場合には、把持部が押し込まれる方向と針が前進する方向とが一致し、または平行となるため、手技者は針先の位置や移動方向を感覚的に認識することができる。したがって、針先を穿刺経路に沿って移動させることがそれ程難しくはなく、針先を生体内の穿刺目標位置まで比較的簡単に案内することができる。 In the procedure performed using the treatment tool as described above, the puncture operation is performed by the operator performing an operation of pushing the needle tip from the proximal side toward the distal end side while grasping a grasping portion provided with the needle. It is advanced. When the outer shape of the needle is formed in a linear shape, the direction in which the gripping unit is pushed in and the direction in which the needle moves forward are the same or parallel to each other, so the operator can sense the position and moving direction of the needle tip. Can be recognized. Therefore, it is not so difficult to move the needle tip along the puncture route, and the needle tip can be guided relatively easily to the puncture target position in the living body.
 一方、湾曲した外形を備える処置具を使用する場合、穿刺経路は処置具の外形に応じて湾曲したものとなる。そして湾曲した処置具を使用する手技においても直線形状の処置具を使用する場合と同様に、手技者が把持部等を手元側で押し込むことにより穿刺作業が進められる。 On the other hand, when using a treatment instrument having a curved outer shape, the puncture path is curved according to the outer shape of the treatment tool. In the procedure using the curved treatment tool, the puncture operation is advanced by the operator pushing the gripping part or the like on the hand side as in the case of using the straight treatment tool.
特表2008-529737号公報Special table 2008-529737 特開2007-275175号公報JP 2007-275175 A
 しかしながら、湾曲された処置具を使用する手技では直線形状に形成された処置具を使用する手技とは異なり、把持部が押し込まれる方向と処置具の先端部が移動する方向とが一致せず、平行にもならない。このため、従来の湾曲した処置具を使用する手技において穿刺経路に沿わせて処置具を正確に移動させるためには、手技中にX線診断装置等の画像診断装置を使用して処置具の先端部の向きや位置を逐一確認しなければならなかった。その結果、手技に手間が掛かることで手技に要する時間が長くなり、低侵襲な手技を実現することができないという問題があった。 However, in the procedure using the curved treatment tool, unlike the procedure using the treatment tool formed in a linear shape, the direction in which the grip portion is pushed in does not match the direction in which the distal end portion of the treatment tool moves, It will not be parallel. For this reason, in order to accurately move the treatment tool along the puncture path in a conventional technique using a curved treatment tool, an image diagnostic apparatus such as an X-ray diagnostic apparatus is used during the procedure. It was necessary to check the direction and position of the tip. As a result, there is a problem that the time required for the procedure becomes long due to the time and effort required for the procedure, and a minimally invasive procedure cannot be realized.
 そこで、本発明は、上記課題を解決するために発明されたものであり、湾曲した穿刺部を備える医療器具を使用した穿刺作業を簡単かつ迅速に行うことを可能にし、もって低侵襲な手技を実現し得る医療器具を提供することを目的とする。 Therefore, the present invention has been invented to solve the above-described problems, and enables a puncture operation using a medical instrument having a curved puncture portion to be performed easily and quickly, thereby achieving a minimally invasive procedure. An object is to provide a medical device that can be realized.
 本願発明は、下記(1)~(6)のいずれかの手段によって達成され得る。 The present invention can be achieved by any of the following means (1) to (6).
 (1)生体に穿刺可能な湾曲形状の穿刺部と、前記穿刺部が設けられる把持可能な本体部と、前記本体部に設けられ、生体表面の任意の位置に設定される照射目標位置へ向けて可視性のガイド光を出射する光出射部と、前記穿刺部が刺入される前記生体表面に対する前記本体部の傾斜状態を検出する検出部と、前記光出射部の動作制御を行う制御部と、を有する医療器具であって、前記制御部は、生体内の穿刺目標位置を通る穿刺経路に沿わせて前記穿刺部の先端部が移動するように前記本体部が操作されたときに、前記検出部の検出結果に基づいて前記光出射部の動作を制御することにより、前記照射目標位置への前記ガイド光の照射が維持されるように前記ガイド光の出射角度を変更させることを特徴とする医療器具。 (1) A curved puncture part capable of puncturing a living body, a grippable main body part provided with the puncture part, and an irradiation target position provided on the main body part and set at an arbitrary position on the surface of the living body A light emitting unit that emits visible guide light, a detection unit that detects an inclination state of the main body with respect to the surface of the living body into which the puncture unit is inserted, and a control unit that performs operation control of the light emitting unit And when the main body is operated such that the tip of the puncture unit moves along a puncture path passing through the puncture target position in the living body, By controlling the operation of the light emitting unit based on the detection result of the detecting unit, the emission angle of the guide light is changed so that the irradiation of the guide light to the irradiation target position is maintained. Medical equipment.
 (2)前記穿刺部は、当該穿刺部の先端部が移動した際に描かれる移動軌跡が円をなす円弧状の外形形状を有しており、前記制御部は、前記円の半径、前記照射目標位置から前記円の中心までの距離、および前記検出部の検出結果に基づいて前記本体部の操作前後における前記ガイド光の出射角度の変位を算出する演算処理部を有しており、当該演算処理部により算出される前記出射角度の変位に応じて前記ガイド光の出射角度を変更させることを特徴とする上記(1)に記載の医療器具。 (2) The puncture unit has an arcuate outer shape in which a movement locus drawn when the distal end of the puncture unit moves makes a circle, and the control unit includes the radius of the circle, the irradiation An arithmetic processing unit that calculates a displacement of the emission angle of the guide light before and after the operation of the main body based on a distance from a target position to the center of the circle and a detection result of the detection unit; The medical instrument according to (1), wherein the emission angle of the guide light is changed according to the displacement of the emission angle calculated by the processing unit.
 (3)前記本体部は、前記円の半径に関する第1データおよび前記穿刺目標位置から前記照射目標位置までの距離に関する第2データの入力を受け付ける入力受付部を有し、前記演算処理部は、前記第1データおよび前記第2データに基づいて前記照射目標位置から前記円の中心までの距離を算出することを特徴とする上記(2)に記載の医療器具。 (3) The main body includes an input receiving unit that receives input of first data related to a radius of the circle and second data related to a distance from the puncture target position to the irradiation target position, and the arithmetic processing unit includes: The medical instrument according to (2), wherein a distance from the irradiation target position to the center of the circle is calculated based on the first data and the second data.
 (4)前記本体部に設けられ、前記穿刺部の先端部へ向けて可視性のガイド光を出射する補助光出射部を有することを特徴とする上記(1)~(3)のいずれか1つに記載の医療器具。 (4) Any one of the above (1) to (3), characterized in that it has an auxiliary light emitting part that is provided in the main body part and emits visible guide light toward the tip of the puncture part. Medical device described in one.
 (5)前記本体部は、前記穿刺部の外形形状を表す図形が記された形状確認部を有することを特徴とする上記(1)~(4)のいずれか1つに記載の医療器具。 (5) The medical device according to any one of (1) to (4) above, wherein the main body has a shape confirmation part on which a graphic representing the outer shape of the puncture part is written.
 (6)前記穿刺部は、前記先端部が針先をなす湾曲針によって構成されており、前記穿刺目標位置は、隣接する棘突起間の所定の部位であり、前記照射目標位置は、前記穿刺目標位置から生体表面側へ延長される仮想垂線と生体表面とが交差する位置である、上記(1)~(5)のいずれか1つに記載の医療器具。 (6) The puncture unit is configured by a curved needle whose tip is a needle tip, the puncture target position is a predetermined part between adjacent spinous processes, and the irradiation target position is the puncture target The medical instrument according to any one of (1) to (5) above, wherein the virtual perpendicular extending from the target position to the biological surface side intersects the biological surface.
 上記(1)に記載の発明によれば、湾曲した穿刺部の先端部を生体内に設定された穿刺目標位置まで所定の穿刺経路に沿わせて移動させる際に、光出射部から出射されたガイド光が照射される位置を確認することにより穿刺部の先端部が穿刺経路に沿って移動しているか否かを適切に判断することができる。穿刺作業時に穿刺部の先端部が穿刺経路からずれて移動していることが確認された場合には、ガイド光の照射位置に基づいて穿刺部の先端部の移動方向を簡単に修正することが可能となる。このため、湾曲した穿刺部を備える医療器具を使用した穿刺作業を簡単かつ迅速に行うことができ、低侵襲な手技を実現することができる。 According to the invention described in (1) above, when the distal end portion of the curved puncture portion is moved along the predetermined puncture path to the puncture target position set in the living body, the light is emitted from the light emitting portion. By confirming the position where the guide light is irradiated, it is possible to appropriately determine whether or not the distal end portion of the puncture portion is moving along the puncture route. If it is confirmed that the tip of the puncture part is displaced from the puncture path during the puncture operation, the moving direction of the tip of the puncture part can be easily corrected based on the irradiation position of the guide light. It becomes possible. For this reason, it is possible to easily and quickly perform a puncturing operation using a medical instrument having a curved puncturing unit, and a minimally invasive procedure can be realized.
 上記(2)に記載の発明によれば、円弧状に湾曲した穿刺部を備える医療器具を使用した手技を簡単かつ迅速に行うことが可能となる。また、制御部が備える演算処理部により算出された出射角度の変位に応じてガイド光の出射方向を高精度に制御することができるため、穿刺作業時に穿刺経路からの穿刺部のずれが生じることを好適に防止することができる。 According to the invention described in (2) above, it is possible to easily and quickly perform a procedure using a medical instrument having a puncture portion curved in an arc shape. Moreover, since the emission direction of the guide light can be controlled with high accuracy in accordance with the displacement of the emission angle calculated by the calculation processing unit provided in the control unit, the puncture portion is displaced from the puncture route during the puncture operation. Can be suitably prevented.
 上記(3)に記載の発明によれば、医療器具を使用した手技を行うにあたり、本体部に備えられた入力受付部に各種のデータを入力することによって、ガイド光の出射方向を制御するための必要な数値を演算処理部により算出させることができる。このため、穿刺目標位置が異なる手技間において医療器具を転用する場合や、長さや曲率の異なる穿刺部を使用する手技間において本体部を転用する場合などにおいても、手技を開始する前に所定のデータを入力するだけの簡単な作業により光出射部の動作設定を行うことができる。 According to the invention described in (3) above, when performing a procedure using a medical instrument, by inputting various data to the input receiving unit provided in the main body unit, the emission direction of the guide light is controlled. The necessary numerical value can be calculated by the arithmetic processing unit. For this reason, even when a medical instrument is diverted between procedures with different puncture target positions, or when the main body is diverted between procedures using puncture sections with different lengths and curvatures, a predetermined amount is required before starting the procedure. It is possible to set the operation of the light emitting unit by a simple operation of simply inputting data.
 上記(4)に記載の発明によれば、補助出射部から出射されたガイド光が穿刺部の先端部に対して照射されように構成されているため、手技の最中に穿刺部の先端部の位置を簡単に確認することができ、より一層簡単かつ迅速に穿刺作業を行うことが可能となる。 According to the invention described in (4) above, since the guide light emitted from the auxiliary emitting portion is configured to be irradiated to the distal end portion of the puncture portion, the distal end portion of the puncture portion during the procedure Can be easily confirmed, and the puncturing operation can be performed more easily and quickly.
 上記(5)に記載の発明によれば、手技の最中に形状確認部を目視することにより、生体内への穿刺部の刺入量及び穿刺部の向いている方向を把握することが可能となる。よって、医療器具による穿刺作業をより一層簡単かつ安全に行うことができる。 According to the invention described in (5) above, it is possible to grasp the amount of insertion of the puncture unit into the living body and the direction in which the puncture unit faces by visually observing the shape confirmation unit during the procedure. It becomes. Therefore, the puncturing operation with the medical instrument can be performed more easily and safely.
 上記(6)に記載の発明によれば、生体内の隣接する棘突起間に設定された任意の穿刺目標位置へ湾曲針の針先を簡単かつ迅速に案内することが可能な医療器具を提供することができる。 According to the invention described in (6) above, a medical instrument is provided that can easily and quickly guide the tip of a curved needle to an arbitrary puncture target position set between adjacent spinous processes in a living body. can do.
本発明の第1実施形態に係る医療器具を示す概観斜視図である。It is a general-view perspective view which shows the medical device which concerns on 1st Embodiment of this invention. 医療器具とともに用いられるガイド部材の側面図である。It is a side view of the guide member used with a medical instrument. 医療器具の側面図である。It is a side view of a medical device. 医療器具にガイド部材を組み付けた状態を示す側面図である。It is a side view which shows the state which assembled | attached the guide member to the medical device. 医療器具の平面図である。It is a top view of a medical device. 医療器具が備える入力受付部を拡大して示す図である。It is a figure which expands and shows the input reception part with which a medical instrument is provided. 医療器具が備える制御部の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the control part with which a medical instrument is provided. 医療器具を使用した手技の対象となる生体を例示する図である。It is a figure which illustrates the living body used as the object of the procedure using a medical instrument. 生体内に存在する腰椎を模式的に示す図である。It is a figure which shows typically the lumbar spine which exists in the living body. ガイド光の出射方向の制御手順を説明するための図であって、生体内に穿刺部が刺入された状態を模式的に示す図である。It is a figure for demonstrating the control procedure of the emission direction of guide light, Comprising: It is a figure which shows typically the state by which the puncture part was inserted in the biological body. 医療器具の作用を説明するための図であって、医療器具による生体への穿刺を開始する前の状態を模式的に示す図である。It is a figure for demonstrating the effect | action of a medical device, Comprising: It is a figure which shows typically the state before starting the puncture to the biological body by a medical device. 医療器具の作用を説明するための図であって、図11に示す状態から穿刺部を穿刺経路に沿って移動させた状態を模式的に示す図である。It is a figure for demonstrating the effect | action of a medical device, Comprising: It is a figure which shows typically the state which moved the puncture part along the puncture path | route from the state shown in FIG. 医療器具の作用を説明するための図であって、穿刺作業時に穿刺部の先端部が穿刺経路からずれた状態を模式的に示す図である。It is a figure for demonstrating the effect | action of a medical device, Comprising: It is a figure which shows typically the state which the front-end | tip part of the puncture part shifted | deviated from the puncture path | route at the time of a puncture operation. 医療器具の作用を説明するための図であって、図12に示す状態から穿刺部を穿刺経路に沿って移動させた状態を模式的に示す図である。It is a figure for demonstrating the effect | action of a medical device, Comprising: It is a figure which shows typically the state which moved the puncture part along the puncture path | route from the state shown in FIG. 医療器具の作用を説明するための図であって、図14に示す状態から穿刺部を穿刺経路に沿って移動させた状態を模式的に示す図である。It is a figure for demonstrating the effect | action of a medical instrument, Comprising: It is a figure which shows typically the state which moved the puncture part along the puncture path | route from the state shown in FIG. 隣接する棘突起間にインプラントを配置した状態を模式的に示す図である。It is a figure which shows typically the state which has arrange | positioned the implant between adjacent spinous processes. 隣接する棘突起間に配置したインプラントを拡張させた状態を模式的に示す図である。It is a figure which shows typically the state which expanded the implant arrange | positioned between adjacent spinous processes. 拡張されたインプラントが隣接する棘突起間に留置された様子を模式的に示す図である。It is a figure which shows typically a mode that the expanded implant was detained between adjacent spinous processes. 本発明の第2実施形態に係る医療器具が備える制御部の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the control part with which the medical device which concerns on 2nd Embodiment of this invention is provided.
 以下、各図面を参照し、実施形態を通じて本発明を説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the present invention will be described through embodiments with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 <第1実施形態>
 図1~図7は、本実施形態に係る医療器具の構成の説明に供する図である。図8、図9は、医療器具を使用した手技の対象となる生体の説明に供する図である。図10~図18は、医療器具の使用例および作用の説明に供する図である。
<First Embodiment>
1 to 7 are diagrams for explaining the configuration of the medical device according to the present embodiment. 8 and 9 are diagrams for explaining a living body that is a target of a procedure using a medical instrument. FIG. 10 to FIG. 18 are diagrams for explaining examples of use and operation of the medical instrument.
 図1を参照して、本実施形態に係る医療器具10は、概説すると、生体120に穿刺可能な湾曲形状の穿刺部20と、穿刺部20が設けられる把持可能な本体部30と、本体部30に設けられ、生体表面130の任意の位置に設定される照射目標位置Fへ向けて可視性のガイド光を出射する光出射部40と、穿刺部20が刺入される生体表面130に対する本体部30の傾斜状態を検出する検出部50と、光出射部40の動作制御を行う制御部60とを有している。そして、図10~図15に示されるように、制御部60は、生体内の穿刺目標位置Pを通る穿刺経路に沿わせて穿刺部20の先端部21が移動するように本体部30が操作されたときに、検出部50の検出結果に基づいて光出射部40の動作を制御することにより、照射目標位置Fへのガイド光の照射が維持されるようにガイド光の出射角度を変更させる。 With reference to FIG. 1, the medical device 10 according to the present embodiment can be summarized as a curved puncture unit 20 that can puncture a living body 120, a graspable main body unit 30 provided with the puncture unit 20, and a main body unit. 30 and a light emitting unit 40 for emitting visible guide light toward an irradiation target position F set at an arbitrary position on the biological surface 130, and a main body for the biological surface 130 into which the puncture unit 20 is inserted It has the detection part 50 which detects the inclination state of the part 30, and the control part 60 which performs operation | movement control of the light-projection part 40. Then, as shown in FIGS. 10 to 15, the control unit 60 operates the main body 30 so that the distal end portion 21 of the puncture unit 20 moves along the puncture route passing through the puncture target position P in the living body. When this is done, by controlling the operation of the light emitting unit 40 based on the detection result of the detecting unit 50, the emission angle of the guide light is changed so that the irradiation of the guide light to the irradiation target position F is maintained. .
 本施形態では、生体内の隣接する棘突起間にインプラントを導入するために用いられる医療器具として本発明を適用した形態を例示する。まず、図8、図9、図18を参照して、インプラント80が留置される生体の棘突起や治療対象となる疾患について簡単に説明する。 This embodiment exemplifies a form in which the present invention is applied as a medical instrument used for introducing an implant between adjacent spinous processes in a living body. First, with reference to FIG. 8, FIG. 9, FIG. 18, a spinous process of a living body in which the implant 80 is placed and a disease to be treated will be briefly described.
 図8は、生体の背中側から腰椎を透視した様子を模式的に示す図であり、図9は、腰椎の一部である棘突起の配列方向(背骨の延伸方向)と直交する方向における生体の断面(横断面)を模式的に示す図であり、図18は、図8の棘突起の周辺部分を拡大して示す図である。各図において示すX軸は、棘突起の配列方向と直交する方向を示し、Y軸は、棘突起の配列方向を示し、Z軸は、生体の厚み方向を示す。 FIG. 8 is a diagram schematically showing a perspective view of the lumbar vertebra from the back side of the living body, and FIG. 9 is a view of the living body in a direction orthogonal to the arrangement direction of spinous processes (the extending direction of the spine) as a part of the lumbar vertebra. FIG. 18 is a diagram schematically showing a peripheral portion of the spinous process of FIG. 8. The X axis shown in each figure indicates the direction orthogonal to the arrangement direction of the spinous processes, the Y axis shows the arrangement direction of the spinous processes, and the Z axis shows the thickness direction of the living body.
 生体120の背中121には、背骨の延伸方向に沿って複数の腰椎126が配列されている(図18参照)。この腰椎126は、前半分の椎体125と後半分の椎弓板127とが椎弓根128を介して連結された構成を有している(図8、図9参照)。椎弓板127には、棘突起123、肋骨(横)突起、上関節突起、下関節突起などの各種の突起が形成されている。腰椎126は、正常では軽く生体120の前方側に弯曲した形となる。また、隣接する腰椎126は椎間板(椎間円板)129を介して連結されており、ある腰椎と当該腰椎に隣接する腰椎とは、椎間板129や、上関節突起および下関節突起の間に存在する椎間関節等によってずれないようになっている(図18参照)。 A plurality of lumbar vertebrae 126 are arranged on the back 121 of the living body 120 along the extending direction of the spine (see FIG. 18). The lumbar vertebra 126 has a configuration in which an anterior half vertebral body 125 and a latter half vertebral disc 127 are connected via a pedicle 128 (see FIGS. 8 and 9). On the lamina 127, various processes such as a spinous process 123, a rib (lateral) process, an upper joint process, and a lower joint process are formed. The lumbar vertebra 126 is normally lightly bent toward the front side of the living body 120. The adjacent lumbar vertebra 126 is connected via an intervertebral disc (intervertebral disc) 129, and a certain lumbar vertebra and the lumbar vertebra adjacent to the lumbar vertebra are present between the intervertebral disc 129 and the upper and lower joint processes. Therefore, it is prevented from being displaced by the facet joint or the like (see FIG. 18).
 例えば、スポーツなどで繰り返し腰椎126に負荷がかかり疲労骨折等が生じたような場合には、椎弓根128の部分で椎体125と椎弓板127とが分離してしまう腰椎分離症や、椎間関節の変形や椎間板129の変性によって上側に位置する腰椎126が固定されにくくなり、ずれが生じる腰椎変性すべり症が引き起こされることがある。これら腰椎分離症、腰椎変性すべり症や、腰椎の周囲に配置される靱帯が加齢に伴い変性することにより脊柱管が狭窄し、腰部脊柱管狭窄症の症状である間欠性跛行が引き起こされることがある。このような腰部脊柱管狭窄症の治療方法として、隣接する棘突起123の間にスペーサとして機能し得るインプラント80を留置することにより脊柱管の狭窄を抑える治療方法が存在する(図18参照)。本実施形態では、このインプラント80を留置する留置手技に医療器具10が使用される。なお、図8には、穿刺作業前における生体120の背中121に対する医療器具10の向きを例示する。 For example, when a load is repeatedly applied to the lumbar vertebra 126 in sports or the like and a fatigue fracture or the like occurs, lumbar sequestration in which the vertebral body 125 and the lamina 127 are separated at the pedicle 128 portion, Deformation of the intervertebral joints and degeneration of the intervertebral disc 129 may make it difficult to fix the lumbar vertebra 126 located on the upper side, and may cause lumbar degenerative slippage that causes a shift. These lumbar spondylosis, lumbar spondylolisthesis, and ligaments placed around the lumbar vertebrae degenerate with age, causing the spinal canal to narrow and cause intermittent claudication that is a symptom of lumbar spinal canal stenosis There is. As a treatment method for such lumbar spinal canal stenosis, there is a treatment method for suppressing spinal canal stenosis by placing an implant 80 that can function as a spacer between adjacent spinous processes 123 (see FIG. 18). In the present embodiment, the medical instrument 10 is used for an indwelling procedure for placing the implant 80. FIG. 8 illustrates the orientation of the medical device 10 with respect to the back 121 of the living body 120 before the puncturing operation.
 次に、医療器具10の各構成について説明する。 Next, each configuration of the medical instrument 10 will be described.
 図1、図3、図4に示すように、医療器具10が備える穿刺部20は、外形が所定の曲率で湾曲した湾曲針によって構成することができる。医療器具20は、本体部30に取り付けられる基端側から先端側へ向けて径が徐々に細くなるように形成されており、先端部21が細く鋭利に尖った形状に形成される。先端部21により湾曲針の針先が構成される。以下の説明において、穿刺部を湾曲針20と記載し、穿刺部の先端部を針先21と記載して説明する。 As shown in FIGS. 1, 3, and 4, the puncture unit 20 included in the medical device 10 can be configured by a curved needle whose outer shape is curved with a predetermined curvature. The medical instrument 20 is formed such that the diameter gradually decreases from the base end side attached to the main body portion 30 toward the distal end side, and the distal end portion 21 is formed in a thin and sharp shape. The tip 21 constitutes the needle tip of the curved needle. In the following description, the puncture portion will be described as a curved needle 20 and the tip portion of the puncture portion will be described as a needle tip 21.
 湾曲針20は、ネジ留めや嵌め込みによる機械式の接続形態により本体部30に対して着脱可能に構成される。このため、手技を行う際には、手技を行う前に予め設定される穿刺目標位置Pや穿刺経路に応じた円弧の長さおよび曲率を有する湾曲針20を選択して使用することが可能となっている。 The curved needle 20 is configured to be detachable from the main body 30 by a mechanical connection form by screwing or fitting. For this reason, when performing a procedure, it is possible to select and use the curved needle 20 having an arc length and a curvature corresponding to a puncture target position P and a puncture route that are set in advance before performing the procedure. It has become.
 湾曲針20を構成する材料は、生体内に穿刺可能な材料であればよく、特に限定されないが、例えば、SUS、チタン、マグネシウム、クロム、コバルト、ニッケル、アルミニウム、金、銀、銅、鉄、などの金属材料や、ポリエーテルエーテルケトン(PEEK)、ポリカーボネート(PC)、ポリカーボネートウレタン(PCU)、強化ポリフェニレン(SRP)、炭素またはガラス繊維強化ポリマー、などの樹脂材料を挙げることができる。 The material constituting the curved needle 20 is not particularly limited as long as it is a material that can be punctured into a living body. For example, SUS, titanium, magnesium, chromium, cobalt, nickel, aluminum, gold, silver, copper, iron, And resin materials such as polyetheretherketone (PEEK), polycarbonate (PC), polycarbonate urethane (PCU), reinforced polyphenylene (SRP), carbon or glass fiber reinforced polymer.
 医療器具10を使用した各種の手技を行う場合には、その手技の内容に応じて種々の処置部材を併用することができる。医療器具10をインプラントの留置術に使用する場合には、例えば、図2に示されるようなガイド部材70を使用することができる。 When performing various procedures using the medical instrument 10, various treatment members can be used in combination according to the contents of the procedure. When the medical device 10 is used for implant placement, for example, a guide member 70 as shown in FIG. 2 can be used.
 ガイド部材70は、医療器具10の湾曲針20と同様の曲率で湾曲した胴部71と、胴部71の先端側に形成された開口部73aと、胴部71の基端側に形成された開口部73bと、胴部71の基端側に設けられ、医療器具10の本体部30に対して接続・分離可能な接続部75と、胴部71の内部に形成されたルーメン77とを有するように構成することができる。 The guide member 70 is formed on the body 71 curved with the same curvature as the curved needle 20 of the medical device 10, the opening 73 a formed on the distal end side of the body 71, and the proximal end side of the body 71. It has an opening 73b, a connection part 75 provided on the proximal end side of the body part 71 and connectable / detachable to the main body part 30 of the medical instrument 10, and a lumen 77 formed inside the body part 71. It can be constituted as follows.
 図4に示すように、ガイド部材70のルーメン77内には湾曲針20を挿入することができる。ガイド部材70の長さは、湾曲針20の長さよりも短く形成される。このため、湾曲針20がルーメン77内に挿入された状態では、ガイド部材70の先端側の開口部73aから湾曲針20の針先21が所定の長さだけ露出される。ルーメン77内に湾曲針20を挿入した状態とすることにより、ガイド部材70に設けられた接続部75を介してガイド部材70と医療器具10の本体部30とを組み付けることが可能となっている。 As shown in FIG. 4, the curved needle 20 can be inserted into the lumen 77 of the guide member 70. The length of the guide member 70 is formed shorter than the length of the curved needle 20. For this reason, in a state where the curved needle 20 is inserted into the lumen 77, the needle tip 21 of the curved needle 20 is exposed from the opening 73a on the distal end side of the guide member 70 by a predetermined length. By setting the curved needle 20 in the lumen 77, the guide member 70 and the main body 30 of the medical device 10 can be assembled via the connection portion 75 provided on the guide member 70. .
 ガイド部材70の接続部75は、例えば、医療器具10の本体部30に設けられた連結部37に嵌合により機械的に接続できるように構成されているが、本体部30に対して接続・分離可能に構成されていれば特にその構成は限定されない。 The connecting portion 75 of the guide member 70 is configured to be mechanically connected to the connecting portion 37 provided on the main body portion 30 of the medical instrument 10 by fitting, for example. The configuration is not particularly limited as long as the configuration is separable.
 ガイド部材70の胴部71を構成する材料としては、例えば、先に説明した医療器具10の湾曲針20と同様の材料を使用することができる。 As the material constituting the body 71 of the guide member 70, for example, the same material as that of the curved needle 20 of the medical instrument 10 described above can be used.
 ガイド部材70の機能を説明する。ガイド部材70は隣接する棘突起123の間にインプラント80を導入するために使用される。図15に示すように、生体内へインプラント80を導入する手技では、医療器具10とガイド部材70とを組み付けた状態で湾曲針20を穿刺する作業が行われる。そして、隣接する棘突起123の間の所定の位置まで湾曲針20の針先21が到達した後、図16に示すように、ガイド部材70から湾曲針20を抜去する。この操作を行うことにより、ガイド部材70のルーメン77内が空の状態となるため、このルーメン77を介してガイド部材70の先端側の開口部73a付近に位置する隣接した棘突起123の間の所定の部位へインプラント80を導入することが可能となる。 The function of the guide member 70 will be described. Guide member 70 is used to introduce implant 80 between adjacent spinous processes 123. As shown in FIG. 15, in the procedure of introducing the implant 80 into the living body, an operation of puncturing the curved needle 20 is performed in a state where the medical instrument 10 and the guide member 70 are assembled. Then, after the needle tip 21 of the curved needle 20 reaches a predetermined position between the adjacent spinous processes 123, the curved needle 20 is removed from the guide member 70 as shown in FIG. By performing this operation, the inside of the lumen 77 of the guide member 70 is emptied, and therefore, between the adjacent spinous processes 123 located near the opening 73a on the distal end side of the guide member 70 via the lumen 77. The implant 80 can be introduced into a predetermined site.
 図1に示すように、医療器具10の本体部30は、内部に制御部60や検出部50といった所定の構成部材が収容可能な筐体として構成される。本体部30の先端側には湾曲針20が取り付けられる。本体部30の基端側には、制御部60への駆動電流の供給状態をON/OFFに切り替えるための電源スイッチ39を配置することができる。本体部30の下面側には、本体部30を把持した際に滑り止めとして機能する溝等を設けることができる。なお、本体部30の外形形状や外形寸法は、図示された構成に限定されず、医療器具10を使用する使用者が手(左手、右手、または両手)により把持することができればよく、例えば製品仕様等に応じて変更することが可能である。 As shown in FIG. 1, the main body 30 of the medical instrument 10 is configured as a housing that can accommodate predetermined components such as a control unit 60 and a detection unit 50 therein. A curved needle 20 is attached to the distal end side of the main body 30. A power switch 39 for switching the supply state of the drive current to the control unit 60 to ON / OFF can be disposed on the base end side of the main body unit 30. A groove or the like that functions as a slip stopper when the main body 30 is gripped can be provided on the lower surface side of the main body 30. It should be noted that the outer shape and outer dimensions of the main body 30 are not limited to the illustrated configurations, and it is sufficient that the user using the medical instrument 10 can hold the hand 30 with his / her hands (left hand, right hand, or both hands). It can be changed according to the specifications.
 本体部30を構成する材料としては、電子機器類のハードカバーなどに一般的に用いられる金属材料や、硬質のプラスチック材料などを使用することができる。 As a material constituting the main body 30, a metal material generally used for a hard cover of an electronic device, a hard plastic material, or the like can be used.
 図7に示すように、医療器具10が備える制御部60は、所定の演算処理を行う演算処理部と、演算に関する各種プログラムを格納したROMと、演算処理部によって算出された演算結果等を記憶可能なRAMと、湾曲針20の曲率や円弧の長さ等に関するデータを格納可能なEEPROMと、制御部60全体の動作を統合的に制御する制御回路とを有するように構成することができる。制御部60を構成する各構成要素は、制御指令やデータ転送を行うための所定のBUSを介して相互に接続される。 As shown in FIG. 7, the control unit 60 included in the medical instrument 10 stores a calculation processing unit that performs predetermined calculation processing, a ROM that stores various programs related to calculation, calculation results calculated by the calculation processing unit, and the like. It can be configured to include a possible RAM, an EEPROM capable of storing data relating to the curvature of the bending needle 20, the length of the arc, and the like, and a control circuit that controls the overall operation of the control unit 60 in an integrated manner. Each component which comprises the control part 60 is mutually connected via predetermined | prescribed BUS for performing a control command and data transfer.
 医療器具10が備える検出部50は、公知のジャイロセンサによって構成しているが、本体部30の傾斜状態を検出することが可能であればその種類は特に限定されず、例えば、磁気センサ等の公知の角度検出センサを用いることもできる。検出部50を本体部30に設置する位置は、特に限定されないが、例えば、制御部60と同様に本体部30の内部に収容して配置することができる。 Although the detection part 50 with which the medical instrument 10 is provided is comprised by the well-known gyro sensor, if the inclination state of the main-body part 30 can be detected, the kind will not be specifically limited, For example, a magnetic sensor etc. A known angle detection sensor can also be used. The position where the detection unit 50 is installed in the main body unit 30 is not particularly limited. For example, the detection unit 50 can be accommodated and arranged in the main body unit 30 in the same manner as the control unit 60.
 医療器具10が備える光出射部40は、可視性のガイド光として利用される可視光を出射可能な公知の発光LEDによって構成しているが、ガイド光として機能し得る可視性の光を照射可能であればその種類は特に限定されない。また図示省略するが、光出射部40にはガイド光を任意の方向へ出射させることを可能にする方向制御機構が設けられる。この方向制御機構としては、例えば、複数の軸回りに回転可能に構成された光学レンズ系を備えるものを使用することができる。ガイド光の出射方向の変更は、制御部60が方向制御機構の動作を制御することにより行われる。 The light emitting unit 40 included in the medical instrument 10 is configured by a known light emitting LED that can emit visible light used as visible guide light, but can emit visible light that can function as guide light. If so, the type is not particularly limited. Although not shown, the light emitting unit 40 is provided with a direction control mechanism that allows the guide light to be emitted in an arbitrary direction. As this direction control mechanism, for example, a mechanism including an optical lens system configured to be rotatable around a plurality of axes can be used. The change of the guide light emission direction is performed by the control unit 60 controlling the operation of the direction control mechanism.
 ガイド光としては、例えば、一般的な可視光の波長である360nm~830nmの範囲における波長の光を選択することができるが、より好ましくは、400nm~760nmの赤色光である。ガイド光を赤色光とすると、ガイド光を容易に視認することが可能となるため、ガイド光によるガイド機能を向上させることが可能となる。また、ガイド光をビーム状に連続的に照射する形態を採用しているが、例えば、時間差を空けて間欠的にガイド光を照射する形態を採用することもできる。なお、各図において、ガイド光は二点鎖線L1で示す。 As the guide light, for example, light having a wavelength in a range of 360 nm to 830 nm, which is a general visible light wavelength, can be selected, and more preferably, red light having a wavelength of 400 nm to 760 nm is used. When the guide light is red light, the guide light can be easily visually recognized, so that the guide function by the guide light can be improved. Moreover, although the form which irradiates guide light continuously in the shape of a beam is employ | adopted, the form which irradiates guide light intermittently, leaving a time difference, for example can also be employ | adopted. In each figure, the guide light is indicated by a two-dot chain line L1.
 光出射部40は、例えば、図1に示すように、本体部30の外面にその一部が露出するように配置され、その他の部分が本体部30内に収容される。光出射部40において露出された部分は、本体部30の外部へガイド光を導光する出射端として機能する。なお、本実施形態においては、後述する出射角度の変位の算出を容易にするために、光出射部40の出射端が湾曲針20の針先21が形成する移動軌跡Rに沿って移動するように光出射部40の配置が設計されている(図10参照)。 For example, as shown in FIG. 1, the light emitting unit 40 is arranged so that a part thereof is exposed on the outer surface of the main body 30, and the other part is accommodated in the main body 30. The exposed portion of the light emitting unit 40 functions as an emitting end that guides guide light to the outside of the main body 30. In the present embodiment, in order to facilitate the calculation of the displacement of the emission angle, which will be described later, the emission end of the light emission unit 40 moves along the movement locus R formed by the needle tip 21 of the curved needle 20. In addition, the arrangement of the light emitting portion 40 is designed (see FIG. 10).
 図5、図6に示すように、本体部30には、制御部60による光出射部40の動作制御を行うのに必要となる各種のデータの入力を受け付ける入力受付部31が設けられる。 As shown in FIGS. 5 and 6, the main body unit 30 is provided with an input receiving unit 31 that receives input of various data necessary for controlling the operation of the light emitting unit 40 by the control unit 60.
 入力受付部31は、本体部30の内部に配置することができる。また、例えば、本体部30が備える開閉自在なスライド式の蓋33などにより、この入力受付部31を覆わせることができる。入力受付部31および蓋33を設ける位置は、図示された位置に限定されず、製品仕様に応じて任意の位置に設けることができる。また、入力受付部31を覆う部材としてスライド式の蓋33以外の構成のものを採用することが可能であるし、このような蓋33の設置を省略することもできる。 The input receiving unit 31 can be arranged inside the main body unit 30. Further, for example, the input receiving unit 31 can be covered with an openable / closable slide-type lid 33 provided in the main body unit 30. The positions where the input receiving unit 31 and the lid 33 are provided are not limited to the illustrated positions, and can be provided at arbitrary positions according to product specifications. Moreover, it is possible to employ | adopt the thing of structures other than the slide-type lid | cover 33 as a member which covers the input reception part 31, and installation of such a lid | cover 33 can also be abbreviate | omitted.
 図6に示すように、入力受付部31は、公知の液晶ディスプレイによって構成しているが、使用者が入力内容の確認を行うことが可能な構成であればその種類は特に限定されない。例えば、ダイヤル入力式、音声入力式に構成されたものを入力受付部31に使用することができる。また、入力受付部31には公知の静電容量式のタッチパネル機能等を付加することができる。 As shown in FIG. 6, the input receiving unit 31 is configured by a known liquid crystal display, but the type thereof is not particularly limited as long as the user can check the input content. For example, a dial input type or a voice input type can be used for the input receiving unit 31. The input receiving unit 31 can be added with a known capacitive touch panel function or the like.
 次に、図7を参照して、制御部60による全体的な制御の流れを説明する。 Next, an overall control flow by the control unit 60 will be described with reference to FIG.
 入力受付部31を介して入力された各データは、制御部60へ伝送される。この伝送は、例えば、データ伝送に使用される公知のリード線や電線などにより行うことができ、後述する実施形態において説明するように無線通信により行うこともできる。 Each data input via the input receiving unit 31 is transmitted to the control unit 60. This transmission can be performed by, for example, a known lead wire or electric wire used for data transmission, and can also be performed by wireless communication as will be described in an embodiment described later.
 湾曲針20を生体に穿刺するために本体部30が操作されると、本体部30の傾斜状態に関するデータが更新される。更新されたデータは、検出部50から制御部60の演算処理部へ逐次伝送される。制御部60が備える演算処理部は、各データを用いて動作制御に必要となる数値を算出する。そして、制御回路がそのデータに基づいて光出射部40の動作制御を行う。なお、検出部50と制御部60との間のデータ等の伝送は、入力受付部31と制御部60との間の伝送方式と同様の方式で行うことができる。 When the main body 30 is operated in order to puncture the living body with the curved needle 20, data regarding the tilted state of the main body 30 is updated. The updated data is sequentially transmitted from the detection unit 50 to the arithmetic processing unit of the control unit 60. The arithmetic processing unit included in the control unit 60 calculates a numerical value necessary for operation control using each data. Then, the control circuit controls the operation of the light emitting unit 40 based on the data. The transmission of data and the like between the detection unit 50 and the control unit 60 can be performed in the same manner as the transmission method between the input reception unit 31 and the control unit 60.
 次に、医療器具10を使用した手技を行う前の準備作業を説明する。 Next, preparation work before performing a procedure using the medical instrument 10 will be described.
 まず、湾曲針20の針先21を到達させる目標となる穿刺目標位置Pを設定する作業を行う。 First, an operation of setting a puncture target position P that is a target for reaching the needle tip 21 of the curved needle 20 is performed.
 穿刺目標位置Pは、医療器具10を使用した手技の内容に応じて任意に設定することができるが、本実施形態では、図8、図10に示すように、インプラント80の留置位置となる隣接する棘突起123の間に穿刺目標位置Pを設定している。 The puncture target position P can be arbitrarily set according to the content of the procedure using the medical instrument 10, but in this embodiment, as shown in FIGS. A puncture target position P is set between the spinous processes 123 to be performed.
 図10を参照して、穿刺目標位置Pを設定した後、生体表面130から穿刺目標位置Pまでの距離(以下、「距離D1」とも記載する)を計測する。計測方法は、例えば、X線透視装置、MRI、超音波画像診断装置等の公知の医療装置を使用して取得される画像に基づいて計測することができる。また、例えば、長さを示す目盛等が付された計測器を生体とともに撮影し、その目盛を読むことで距離D1を計測してもよい。なお、本実施形態における生体表面130とは、生体の表皮の外表面を意味する。 Referring to FIG. 10, after setting puncture target position P, a distance from living body surface 130 to puncture target position P (hereinafter also referred to as “distance D1”) is measured. As a measurement method, for example, measurement can be performed based on an image acquired using a known medical apparatus such as an X-ray fluoroscopic apparatus, MRI, or an ultrasonic diagnostic imaging apparatus. Further, for example, the distance D1 may be measured by photographing a measuring instrument with a scale indicating the length together with a living body and reading the scale. In addition, the living body surface 130 in this embodiment means the outer surface of the living body's epidermis.
 穿刺目標位置Pを隣接する棘突起123の間に設定する場合、ガイド光の照射目標位置Fは、例えば、穿刺目標位置Pから生体表面130側へ延長される仮想垂線Vと、生体表面130とが交差する位置に設定することができる。このように設定した場合、後述するように穿刺目標位置Pの直上にガイド光が照射された状態で穿刺作業を行うことになり、穿刺目標位置Pを視覚的に容易に把握することが可能となるため、手技を円滑に行い易くなる。 When the puncture target position P is set between the adjacent spinous processes 123, the irradiation target position F of the guide light is, for example, a virtual perpendicular V extending from the puncture target position P toward the living body surface 130, and the living body surface 130. Can be set at the intersection. When set in this way, as will be described later, the puncture operation is performed in a state where the guide light is irradiated immediately above the puncture target position P, and the puncture target position P can be easily visually grasped. Therefore, it becomes easy to perform the procedure smoothly.
 次に、手技に使用する湾曲針20を選択する。 Next, the curved needle 20 used for the procedure is selected.
 前述したように、湾曲針20は、当該湾曲針20の針先21が描く移動軌跡が円Rをなす円弧状の外形形状を有する。このため、湾曲針20の針先21が穿刺目標位置Pまで到達することを可能にするために、湾曲針20としては、移動軌跡である円Rの半径rが少なくとも距離D1となるものが選択される。そして、湾曲針20を使用した際に針先21が描く移動軌跡は、湾曲針20の円弧の長さ、湾曲針20の曲率によって自ずと決定される。なお、図中において湾曲針20の針先21の移動軌跡である円を記号Rで示す。 As described above, the curved needle 20 has an arcuate outer shape in which the movement locus drawn by the needle tip 21 of the curved needle 20 forms a circle R. For this reason, in order to enable the needle tip 21 of the curved needle 20 to reach the puncture target position P, the curved needle 20 is selected so that the radius r of the circle R that is the movement locus is at least the distance D1. Is done. The movement locus drawn by the needle tip 21 when the curved needle 20 is used is naturally determined by the length of the arc of the curved needle 20 and the curvature of the curved needle 20. In the drawing, a circle which is a movement locus of the needle tip 21 of the curved needle 20 is indicated by a symbol R.
 本実施形態における手技では、穿刺目標位置Pを通る穿刺経路は、移動軌跡である円Rの一部と重なるように設定される。すなわち、円Rに沿わせて湾曲針20の針先21が移動すれば、穿刺目標位置Pを通る穿刺経路に沿って針先21が移動することとなる。なお、図10において矢印Wで穿刺経路を示す。 In the procedure in the present embodiment, the puncture route passing through the puncture target position P is set so as to overlap with a part of the circle R that is the movement locus. That is, when the needle tip 21 of the curved needle 20 moves along the circle R, the needle tip 21 moves along the puncture route passing through the puncture target position P. In FIG. 10, the puncture route is indicated by an arrow W.
 次に、医療器具10の制御部60へ所定のデータを入力する作業を行う。 Next, an operation of inputting predetermined data to the control unit 60 of the medical instrument 10 is performed.
 データの入力作業は、本体部30に設けられた入力受付部31を介して行う。図6にはデータ入力が行われる際の入力受付部31の表示例を示す。使用者は、表示された数値キー等を介して入力作業をし、針の半径(円Rの半径に関する第1データ)と、距離D1(穿刺目標位置Pから照射目標位置Fまでの距離に関する第2データ)とを入力する。なお、針の半径とは、針先21が描く円Rの半径r(図6中において図示省略)のことであるが、使用者に対して入力すべき数値を理解し易くするために、例えば、入力受付部31においては針の半径と表示させることができる。 The data input operation is performed via an input receiving unit 31 provided in the main body unit 30. FIG. 6 shows a display example of the input receiving unit 31 when data is input. The user performs an input operation via the displayed numerical keys and the like, and performs a needle radius (first data regarding the radius of the circle R) and a distance D1 (a first distance regarding the distance from the puncture target position P to the irradiation target position F). 2 data). The radius of the needle is the radius r of the circle R drawn by the needle tip 21 (not shown in FIG. 6). In order to facilitate understanding of the numerical value to be input to the user, for example, In the input receiving unit 31, the radius of the needle can be displayed.
 入力すべき針の半径は、選択される湾曲針ごとにそれぞれ異なるため、データ入力作業時に使用者がその数値を簡単に確認することができるように、例えば、湾曲針20にその数値を予め付しておいたり、湾曲針20を保管するケース等にその数値を予め付しておいたりすることができる。 Since the radius of the needle to be input is different for each selected curved needle, for example, the numerical value is attached to the curved needle 20 in advance so that the user can easily check the numerical value during the data input operation. The numerical value can be added in advance to a case for storing the curved needle 20 or the like.
 次に、ガイド光の照射目標位置Fを設定する作業が行われる。この設定は、以下の手順で行うことができる。 Next, an operation for setting the irradiation target position F of the guide light is performed. This setting can be performed by the following procedure.
 図11に示すように、照射目標位置Fに対して垂直方向からガイド光が照射されるように本体部30を位置させる。湾曲針20は、当該湾曲針20の針先21が移動軌跡となる円Rの一部に重なるように配置する。この位置合わせ作業は、既知である湾曲針20の半径を参考にして、穿刺目標位置Pからその直径に相当する距離だけ離れた位置に湾曲針20の基端側が位置するように本体部30の向きや位置を調整して行われる。 As shown in FIG. 11, the main body 30 is positioned so that the guide light is irradiated from the vertical direction with respect to the irradiation target position F. The curved needle 20 is disposed so that the needle tip 21 of the curved needle 20 overlaps a part of a circle R that is a movement locus. This positioning operation is performed by referring to the known radius of the curved needle 20 so that the proximal end side of the curved needle 20 is located at a position away from the puncture target position P by a distance corresponding to the diameter thereof. This is done by adjusting the orientation and position.
 上記のように医療器具10を配置した後、光出射部40からガイド光を出射させる。生体表面130上においてガイド光が照射された位置が照射目標位置Fとなる。このようにして照射目標位置Fは、穿刺目標位置Pから延長された仮想垂線Vが生体表面130と交差する位置に設定される。なお、隣接する棘突起間へのインプラント留置術に医療器具10を使用する場合、この照射目標位置Fおよび穿刺目標位置Pは、例えば、生体の正中線M上に設定することができる(図8参照)。 After arranging the medical instrument 10 as described above, guide light is emitted from the light emitting unit 40. The position on the living body surface 130 where the guide light is irradiated becomes the irradiation target position F. Thus, the irradiation target position F is set at a position where the virtual perpendicular V extended from the puncture target position P intersects the living body surface 130. When the medical instrument 10 is used for implant placement between adjacent spinous processes, the irradiation target position F and the puncture target position P can be set, for example, on the midline M of the living body (FIG. 8). reference).
 そして、穿刺作業は、図10に示すように、湾曲針20の針先21が描く移動軌跡が円Rとなるように本体部30を操作して行われる。前述したように、本体部30をこのように操作することにより、穿刺目標位置Pを通る穿刺経路に沿わせて湾曲針20の針先21を移動させることができる。 Then, the puncturing operation is performed by operating the main body 30 so that the movement locus drawn by the needle tip 21 of the curved needle 20 becomes a circle R as shown in FIG. As described above, by operating the main body 30 in this manner, the needle tip 21 of the curved needle 20 can be moved along the puncture path passing through the puncture target position P.
 以上のように、穿刺作業を行う前には、穿刺目標位置Pの決定、湾曲針の選択、入力受付部へのデータの入力作業、照射目標位置Fの決定等の作業が行われる。 As described above, before performing the puncturing operation, operations such as determination of the puncture target position P, selection of the curved needle, data input to the input receiving unit, and determination of the irradiation target position F are performed.
 次に、制御部60による光出射部40の動作制御例を説明する。 Next, an example of operation control of the light emitting unit 40 by the control unit 60 will be described.
 図10を参照して、穿刺作業において本体部30が操作されると生体表面130に対する本体部30の傾斜状態が変化する。この傾斜状態の変化量は、仮想垂線Vと本体部30の傾きがなす傾斜角度θで表される。 Referring to FIG. 10, when the main body 30 is operated in the puncturing operation, the inclined state of the main body 30 with respect to the biological surface 130 changes. The amount of change in the tilt state is represented by the tilt angle θ formed by the virtual perpendicular V and the tilt of the main body 30.
 制御部60は、本体部30の傾斜状態が変化すると、光出射部40の動作を制御して、ガイド光の出射方向を変更させる(図7参照)。ガイド光の出射角度を変更させる角度は、制御部60が備える演算処理部によって算出される。演算処理部は、針先21の移動軌跡が描く円Rの半径r、照射目標位置Fから円Rの中心Oまでの距離D2(以下、「距離D2」とも記載する)、および検出部50の検出結果に基づいて本体部30の操作前後におけるガイド光の出射角度の変位を算出する。なお、検出部50の検出結果とは、操作後の本体部30の傾斜角度θを意味する。 The control unit 60 controls the operation of the light emitting unit 40 to change the emitting direction of the guide light when the tilt state of the main body unit 30 changes (see FIG. 7). The angle for changing the guide light emission angle is calculated by an arithmetic processing unit included in the control unit 60. The arithmetic processing unit includes a radius r of the circle R drawn by the movement locus of the needle tip 21, a distance D2 from the irradiation target position F to the center O of the circle R (hereinafter also referred to as “distance D2”), and the detection unit 50. Based on the detection result, the displacement of the emission angle of the guide light before and after the operation of the main body 30 is calculated. Note that the detection result of the detection unit 50 means the inclination angle θ of the main body 30 after the operation.
 出射角度の変位を算出する計算式の一例を説明する。 An example of a calculation formula for calculating the displacement of the emission angle will be described.
 図10を参照して、出射角度の変位は、照射目標位置Fから円Rの中心Oまでの線分a(距離D2)、針先21の移動軌跡が描く円Rの半径に相当する長さの線分b、光出射部40から照射目標位置Fまでの線分c(距離D3)がなす仮想三角形Tに余弦関数を適用して求めることができる。図中において、線分bと線分cとがなす内角をαで示し、線分aと線分cとがなす内角をβで示し、線分aと線分bとがなす内角をγで示す。算出する対象は、本体部30が傾斜角度θとなったときのガイド光の出射角度の変位となる内角αである。以下の数式中においては、理解を容易にするため、各線分の長さは、それぞれ線分を表す記号a、b、cで示す。 Referring to FIG. 10, the displacement of the emission angle is a length corresponding to the line segment a (distance D2) from the irradiation target position F to the center O of the circle R and the radius of the circle R drawn by the movement locus of the needle tip 21. The cosine function can be applied to the virtual triangle T formed by the line segment b and the line segment c (distance D3) from the light emitting unit 40 to the irradiation target position F. In the figure, the internal angle formed by the line segment b and the line segment c is denoted by α, the internal angle formed by the line segment a and the line segment c is denoted by β, and the internal angle formed by the line segment a and the line segment b is denoted by γ. Show. The object to be calculated is an internal angle α that is a displacement of the emission angle of the guide light when the main body 30 is at the inclination angle θ. In the following mathematical formulas, in order to facilitate understanding, the length of each line segment is indicated by symbols a, b, and c representing the line segment, respectively.
 まず、仮想三角形Tの余弦定理に関する下記数式1を基本式とする。 First, let the following formula 1 regarding the cosine theorem of the virtual triangle T be a basic formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 次に、余弦定理に基づいて上記数式1を内角αに関する三角関数の数式である下記数式2とする。 Next, based on the cosine theorem, the above formula 1 is changed to the following formula 2 which is a trigonometric function formula for the interior angle α.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 線分aの長さD2、線分bの長さrの値は計算の前提条件として与えられる数値である。一方、線分cの長さD3は、本体部30の操作量に応じて変化する数値である。このため、上記数式2中から線分cを除して、内角αに関する三角関数で表される下記数式3とする。 The values of the length D2 of the line segment a and the length r of the line segment b are numerical values given as a precondition for the calculation. On the other hand, the length D3 of the line segment c is a numerical value that changes according to the amount of operation of the main body 30. For this reason, the line segment c is removed from Equation 2 above, and the following Equation 3 expressed by a trigonometric function related to the interior angle α is obtained.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 そして、上記数式3を内角αに関する逆三角関数で表される下記数式4とする。 Then, the above Equation 3 is represented by the following Equation 4 represented by an inverse trigonometric function with respect to the interior angle α.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記数式4による計算例として、例えば、移動軌跡である円Rの半径r=60mm、穿刺目標位置Pから生体表面130までの距離D1=40mm、本体部30の傾斜角度θが30°となったときの内角αの値(出射角度の変位)を計算すると以下のように求まる。 As a calculation example by the above formula 4, for example, the radius r of the circle R that is the movement locus is 60 mm, the distance D1 from the puncture target position P to the living body surface 130 is 40 mm, and the inclination angle θ of the main body 30 is 30 °. When the value of the inner angle α (displacement of the outgoing angle) is calculated, it is obtained as follows.
 線分aの距離D2は、半径rから距離D1を引いた値である20mmとなる。そして、内角γは、仮想垂線からの傾斜角度θの変化量となるため、180°から傾斜角度θを引いた値である150°となる。上記数式4に、a(距離D2)、b(半径r)、内角γを代入して計算すると、内角αは、7.37°と求まる。したがって、本体部30が初期状態より30°傾いたときには、光出射部40から出射されるガイド光の出射角度が7.37°だけ変更されるように制御部60により光出射部40の動作制御が行われる。 The distance D2 of the line segment a is 20 mm which is a value obtained by subtracting the distance D1 from the radius r. Since the inner angle γ is the amount of change in the inclination angle θ from the virtual perpendicular, it is 150 °, which is a value obtained by subtracting the inclination angle θ from 180 °. When calculation is performed by substituting a (distance D2), b (radius r), and interior angle γ into Equation 4, the interior angle α is determined to be 7.37 °. Therefore, when the main body 30 is inclined by 30 ° from the initial state, the control unit 60 controls the operation of the light emitting unit 40 so that the emission angle of the guide light emitted from the light emitting unit 40 is changed by 7.37 °. Is done.
 上記の計算は制御部60が備える演算処理部によって行われる。したがって、医療器具10を使用した手技を行う際には、本体部30に設けられた入力受付部31に半径rの値、および距離D1の値を入力するだけで本体部30の傾斜状態の変化に伴う出射角度の変位αが自動的に算出され、またその結果に基づいて自動的にガイド光の出射角度が補正される。 The above calculation is performed by an arithmetic processing unit included in the control unit 60. Therefore, when performing a procedure using the medical instrument 10, a change in the tilted state of the main body 30 can be performed simply by inputting the value of the radius r and the value of the distance D1 into the input receiving unit 31 provided in the main body 30. Accordingly, the displacement α of the emission angle is automatically calculated, and the emission angle of the guide light is automatically corrected based on the result.
 次に、医療器具10に設けられる補助光出射部45と形状確認部35について説明する。 Next, the auxiliary light emitting unit 45 and the shape confirmation unit 35 provided in the medical instrument 10 will be described.
 図1に示すように、医療器具10の本体部30には湾曲針20の針先21へ向けて可視性のガイド光(以下、「補助ガイド光」と記載する)を出射する補助光出射部45を設けることができる。補助光出射部45の動作は、制御部60により制御される(図7参照)。制御部60は、医療器具10を使用した手技の最中、補助光出射部45から出射される補助ガイド光が湾曲針20の針先21に照射されるように動作制御を行う(図10~図15参照)。なお、各図において、補助ガイド光を二点鎖線L2で示す。 As shown in FIG. 1, an auxiliary light emitting unit that emits visible guide light (hereinafter referred to as “auxiliary guide light”) toward the needle tip 21 of the curved needle 20 on the main body 30 of the medical instrument 10. 45 can be provided. The operation of the auxiliary light emitting unit 45 is controlled by the control unit 60 (see FIG. 7). During the procedure using the medical instrument 10, the control unit 60 performs operation control so that the auxiliary guide light emitted from the auxiliary light emitting unit 45 is applied to the needle tip 21 of the curved needle 20 (FIG. 10 to FIG. 10). FIG. 15). In each figure, auxiliary guide light is indicated by a two-dot chain line L2.
 補助ガイド光の出射方向の制御は、制御部60が備えるROMに予め格納されたプログラムに基づいて実行される。ただし、補助ガイド光の出射方向は本体部30の操作に関わらず一定の方向に保たれるため、光出射部40のように出射角度を補正する処理等は不要である。このため、光出射部40が備える方向制御機構を補助光出射部45に備えさせる必要はない。 Control of the emission direction of the auxiliary guide light is executed based on a program stored in advance in a ROM provided in the control unit 60. However, since the emission direction of the auxiliary guide light is maintained in a constant direction regardless of the operation of the main body 30, the process of correcting the emission angle as in the light emission unit 40 is not necessary. For this reason, it is not necessary to provide the auxiliary light emitting unit 45 with the direction control mechanism provided in the light emitting unit 40.
 補助光出射部45は、例えば、光出射部40と同様に、可視性のガイド光として利用される可視光を出射可能な公知の発光LEDによって構成しているが、ガイド光として機能し得る可視性の光を照射可能であればその種類は特に限定されない。また、補助ガイド光として、例えば、360nm~830nmの範囲、より好ましくは400nm~760nmの範囲における波長の光を選択することができる点、補助ガイド光をビーム状に連続的に照射するように構成したり、任意の時間差を空けて間欠的に照射するように構成したりすることができる点は光出射部40と同様である。 The auxiliary light emitting unit 45 is configured by a known light emitting LED that can emit visible light used as visible guide light, as with the light emitting unit 40, for example, but visible light that can function as guide light. The type is not particularly limited as long as it is possible to irradiate light. Further, as the auxiliary guide light, for example, light having a wavelength in the range of 360 nm to 830 nm, more preferably in the range of 400 nm to 760 nm can be selected, and the auxiliary guide light is continuously irradiated in the form of a beam. It is the same as the light emitting unit 40 in that it can be configured to be irradiated intermittently with an arbitrary time difference.
 補助光出射部45を設置する位置は、本体部30から湾曲針20の針先21へのガイド光が可能な位置であれば特に限定されないが、例えば、図3、図4に示すように光出射部40よりも本体部30の下側に設置することができる。 The position where the auxiliary light emitting portion 45 is installed is not particularly limited as long as it is a position where guide light from the main body portion 30 to the needle tip 21 of the curved needle 20 is possible. For example, as shown in FIGS. It can be installed on the lower side of the main body 30 than the emitting part 40.
 図1に示すように、医療器具10の本体部30には湾曲針20の外形形状を表す図形が記された形状確認部35を設けることができる。この形状確認部35は、穿刺作業を行う際に、湾曲針20が生体内にどの程度刺入されているか、針先21がどの方向を向いているのかという目安を確認するために用いることができる(図12参照)。形状確認部35を設置する位置は、穿刺作業の最中に使用者が目視可能な位置であれば特に限定されないが、例えば、図1に示すように、本体部30の側面に設置することができる。このような位置に設置すると、医療器具10を把持した状態でも容易に目視することが可能となる。 As shown in FIG. 1, a main body portion 30 of the medical instrument 10 can be provided with a shape confirmation portion 35 on which a graphic representing the outer shape of the curved needle 20 is written. The shape confirmation unit 35 is used for confirming a standard of how much the curved needle 20 is inserted into the living body and in which direction the needle tip 21 is directed when performing the puncturing operation. Yes (see FIG. 12). The position where the shape confirmation unit 35 is installed is not particularly limited as long as it is a position that can be viewed by the user during the puncturing operation. For example, the shape confirmation unit 35 may be installed on the side surface of the main body 30 as shown in FIG. it can. When installed at such a position, it is possible to easily view even when the medical instrument 10 is held.
 医療器具10においては、穿刺部を湾曲針20によって構成しているため、形状確認部35に記された図柄も同様に湾曲した針となっているが、穿刺部として他の部材を使用する場合、その都度、形状確認部35に付された図柄を変更することが可能である。また、図柄を変更可能とするために、例えば、本体部30に対して貼り付け等が可能な部材によって形状確認部35を構成することができる。また、例えば、形状確認部35に液晶ディスプレイ等を使用し、各種の形状を表示可能に構成することもできる。 In the medical instrument 10, since the puncture part is constituted by the curved needle 20, the pattern written on the shape confirmation part 35 is also a curved needle. However, when other members are used as the puncture part Each time, it is possible to change the symbol attached to the shape confirmation unit 35. Moreover, in order to be able to change a design, the shape confirmation part 35 can be comprised with the member which can be affixed etc. with respect to the main-body part 30, for example. Further, for example, a liquid crystal display or the like can be used for the shape confirmation unit 35 so that various shapes can be displayed.
 次に、図5、図6および図11~図18を参照して、医療器具10の使用例およびその作用を説明する。 Next, referring to FIGS. 5, 6 and 11 to 18, an example of use of the medical instrument 10 and its operation will be described.
 まず、図5に示すように、医療器具10に設けられた電源スイッチ39をONの状態にする。そして、図6に示すように、本体部30が備える入力受付部31を介して湾曲針20の半径に関する第1データおよび穿刺目標位置Pから照射目標位置Fまでの距離に関する第2データ等の所定のデータを入力する。また、湾曲針20とガイド部材70とを接続して両部材を組み付けた状態とする。 First, as shown in FIG. 5, the power switch 39 provided in the medical instrument 10 is turned on. Then, as shown in FIG. 6, predetermined data such as first data related to the radius of the curved needle 20 and second data related to the distance from the puncture target position P to the irradiation target position F via the input receiving unit 31 included in the main body 30. Enter the data. Further, the curved needle 20 and the guide member 70 are connected to each other so that both members are assembled.
 図11に示すように、使用者が本体部30を把持し、ガイド光が照射目標位置Fに対して照射されることを確認する。また、補助ガイド光が湾曲針20の針先21に対して照射されることも確認する。なお、手技中においてガイド光は、照射目標位置Fに向けて出射されるが、実際に生体表面130に直接照射される必要はない。例えば、治療対象である患者が衣服等を着用している場合には、その衣服等の上に対して照射されてもガイド光による穿刺のガイド機能が損なわれることはない。 As shown in FIG. 11, the user grasps the main body 30 and confirms that the guide light is irradiated to the irradiation target position F. Also, it is confirmed that the auxiliary guide light is applied to the needle tip 21 of the curved needle 20. In the procedure, the guide light is emitted toward the irradiation target position F, but it is not necessary to actually irradiate the living body surface 130 directly. For example, when a patient to be treated wears clothes or the like, the guide function of puncture by guide light is not impaired even if the clothes or the like are irradiated.
 次に、図12に示すように、針先21が穿刺目標位置Pを通る穿刺経路と重なる円R上を移動するように本体部30を操作する。このようにして、医療器具10を操作して、湾曲針20の針先21を生体内に刺入させる。なお、図中において、補助ガイド光が生体内部に到達するように照射されている様子を図示しているが、これは補助ガイド光の照射位置をわかり易く示すために図示したものであり、実際に生体内部にまで補助ガイド光が到達する必要はない。 Next, as shown in FIG. 12, the main body 30 is operated so that the needle tip 21 moves on a circle R that overlaps the puncture path passing through the puncture target position P. In this way, the medical instrument 10 is operated to insert the needle tip 21 of the curved needle 20 into the living body. In the figure, the state where the auxiliary guide light is irradiated so as to reach the inside of the living body is illustrated, but this is illustrated for easy understanding of the irradiation position of the auxiliary guide light. There is no need for the auxiliary guide light to reach the inside of the living body.
 制御部60は、本体部30の傾斜状態の変化に応じて光出射部40の動作を制御し、ガイド光の出射角度を補正する。この補正により、照射目標位置Fへのガイド光の照射が維持される。したがって、医療器具10を使用する使用者は、ガイド光が照射目標位置Fに照射されていることを確認することにより、湾曲針20の針先21が適切な方向へ移動していることを確認することができる。なお、穿刺作業の最中に湾曲針20を穿刺方向と逆方向に移動させる場合や穿刺作業を終えた後に湾曲針20を生体から抜去する場合にも、ガイド光の照射位置を確認することにより、穿刺された経路を通して湾曲針20を簡単かつ円滑に移動させることができる。 The control unit 60 controls the operation of the light emitting unit 40 in accordance with the change in the tilt state of the main body unit 30 to correct the emission angle of the guide light. By this correction, irradiation of the guide light to the irradiation target position F is maintained. Therefore, the user using the medical instrument 10 confirms that the needle tip 21 of the curved needle 20 has moved in an appropriate direction by confirming that the guide light is irradiated to the irradiation target position F. can do. When the curved needle 20 is moved in the direction opposite to the puncture direction during the puncture operation, or when the curved needle 20 is removed from the living body after the puncture operation is completed, the irradiation position of the guide light is confirmed. The curved needle 20 can be easily and smoothly moved through the punctured path.
 ここで、例えば、図13に示すように、湾曲針20の針先21が円Rからずれて移動するように本体部30が操作されると、照射目標位置Fへのガイド光の照射が維持されない。このため、使用者はガイド光の照射位置を目視により確認するだけで、手技の最中に湾曲針20が穿刺経路からずれて移動していることを把握することができる。 Here, for example, as shown in FIG. 13, when the main body 30 is operated so that the needle tip 21 of the curved needle 20 moves out of the circle R, the irradiation of the guide light to the irradiation target position F is maintained. Not. For this reason, the user can grasp | ascertain that the curved needle 20 has shifted | deviated from the puncture path | route during the procedure only by confirming the irradiation position of guide light visually.
 このようなずれが生じた場合には、ガイド光の照射位置を目視で確認しながら、ガイド光が照射目標位置Fへ照射されるように本体部30の傾きや位置を調整する。この操作によって適切な方向に湾曲針20の針先21を向けることができる。なお、手技を行っている最中には、紙面と直交する方向においても位置ずれが生じ得るが、穿刺作業は、使用者が医療器具10全体を医療器具10の上方側から見下ろした状態で行われるため、紙面と直交する方向における位置ずれは目視により簡単に修正することができる。 When such a deviation occurs, the inclination and position of the main body 30 are adjusted so that the guide light is irradiated to the irradiation target position F while visually confirming the irradiation position of the guide light. By this operation, the needle tip 21 of the curved needle 20 can be directed in an appropriate direction. While the procedure is being performed, positional displacement may occur in a direction perpendicular to the paper surface, but the puncture operation is performed with the user looking down from the upper side of the medical instrument 10 as a whole. Therefore, the positional deviation in the direction orthogonal to the paper surface can be easily corrected visually.
 図14に示すように、ガイド光の照射位置を確認しながら針先21が穿刺目標位置Pへ向けて移動するように本体部30を操作する。 As shown in FIG. 14, the main body 30 is operated so that the needle tip 21 moves toward the puncture target position P while confirming the irradiation position of the guide light.
 図15に示すように、少なくとも湾曲針20の針先21が穿刺目標位置Pまで到達した後、穿刺作業を終える。 As shown in FIG. 15, after at least the needle tip 21 of the curved needle 20 reaches the puncture target position P, the puncture operation is finished.
 以上のように、ガイド光が照射される位置を確認しながら穿刺作業を行うことにより、穿刺目標位置Pへ簡単かつ迅速に針先21を案内することができる。穿刺作業を行っている間、補助ガイド光の照射位置を視認したり、形状確認部35を視認したりすることにより、より一層簡単かつ迅速に穿刺作業を行うことが可能となる。 As described above, the needle tip 21 can be easily and quickly guided to the puncture target position P by performing the puncture operation while confirming the position where the guide light is irradiated. While performing the puncturing operation, it is possible to perform the puncturing operation more easily and quickly by visually recognizing the irradiation position of the auxiliary guide light or visually recognizing the shape confirmation unit 35.
 穿刺作業に引き続き、穿刺目標位置Pの周辺に棘突起間用スペーサとして機能するインプラント80を留置する手順を説明する。なお、以下の手順は医療器具10を使用した後の処置内容となるため、簡略化して説明する。 Subsequent to the puncture operation, a procedure for placing the implant 80 functioning as an interspinous process spacer around the puncture target position P will be described. In addition, since the following procedure becomes the treatment content after using the medical instrument 10, it demonstrates simply.
 図16に示すように、穿刺作業を終えた後、ガイド部材70と医療器具10とを分離させて医療器具10を生体から抜去する。次いで、ガイド部材70のルーメン77を介して生体内へインプラント80を導入する。 As shown in FIG. 16, after the puncturing operation is completed, the guide member 70 and the medical instrument 10 are separated and the medical instrument 10 is removed from the living body. Next, the implant 80 is introduced into the living body through the lumen 77 of the guide member 70.
 インプラント80の種類や構成は特に限定されないが、例えば、内部に充填材が導入されることにより拡張変形される可撓性のバルーン(容器)を使用することができる。また、このインプラント80としては、例えば、拡張後に両端部81a、81bが棘突起123の配列方向に突出変形して、その外形形状がH型やダンベル型となるように構成されたものを使用することができる。このようなインプラント80を用いることにより、インプラント80の両端部81a、81bにより棘突起123を挟み込んだ状態で留置することが可能となるため、インプラント80に位置ずれが生じることを好適に防止することができる(図18参照)。 The type and configuration of the implant 80 are not particularly limited. For example, a flexible balloon (container) that can be expanded and deformed by introducing a filler therein can be used. Further, as the implant 80, for example, an implant configured so that both end portions 81a and 81b project and deform in the arrangement direction of the spinous processes 123 after expansion and the outer shape thereof becomes an H shape or a dumbbell shape is used. be able to. By using such an implant 80, it is possible to place the spinous process 123 with both end portions 81a and 81b of the implant 80 interposed therebetween, and thus it is preferable to prevent the implant 80 from being displaced. (See FIG. 18).
 充填材としては、固体や流体(気体、液体、ゲル)、導入後に硬化反応を生じる骨セメント等を使用することができる。インプラント80への充填材の導入には、流体等を圧送可能なシリンジポンプ等の公知の流体供給装置90を使用することができる。インプラント80と流体供給装置90とは流体や流動体が流通可能な公知のチューブ部材91等により予め連結しておくことができる。インプラント80とチューブ部材91とは、嵌合やネジ込み、切除等によって分離可能に連結することができる。 As the filler, solid or fluid (gas, liquid, gel), bone cement that causes a hardening reaction after introduction, or the like can be used. For introducing the filler into the implant 80, a known fluid supply device 90 such as a syringe pump capable of pumping fluid or the like can be used. The implant 80 and the fluid supply device 90 can be connected in advance by a known tube member 91 or the like through which a fluid or fluid can flow. The implant 80 and the tube member 91 can be detachably connected by fitting, screwing, excision, or the like.
 図17に示すように、ガイド部材70を抜去して、ガイド部材70からインプラント80を露出させる。そして、流体供給装置90とチューブ部材91とを嵌合やネジ込みにより接続し、流体供給装置90によりチューブ部材91を介してインプラント80内へ所定の充填材を導入して拡張させる。拡張後、チューブ部材91をインプラント80から分離させて生体内から抜去する。なお、インプラント80には、インプラント80とチューブ部材91とが連結される位置から充填材が漏洩することを防止するシール部材や弁等を設けることができる。 As shown in FIG. 17, the guide member 70 is removed, and the implant 80 is exposed from the guide member 70. Then, the fluid supply device 90 and the tube member 91 are connected by fitting or screwing, and a predetermined filler is introduced and expanded into the implant 80 via the tube member 91 by the fluid supply device 90. After expansion, the tube member 91 is separated from the implant 80 and removed from the living body. The implant 80 can be provided with a seal member, a valve, or the like that prevents the filler from leaking from a position where the implant 80 and the tube member 91 are connected.
 図18に示すように、インプラント80は、隣接する棘突起123間に拡張した状態で留置される。インプラント80を留置することにより、隣接する棘突起123の間の間隔を所定の寸法に保持することができ、腰部脊柱管狭窄症の症状に対する治療効果を得ることが可能となる。 As shown in FIG. 18, the implant 80 is placed in an expanded state between adjacent spinous processes 123. By placing the implant 80, the interval between the adjacent spinous processes 123 can be maintained at a predetermined size, and a therapeutic effect on the symptoms of lumbar spinal canal stenosis can be obtained.
 以上のように、本実施形態に係る医療器具10によれば、湾曲針20の針先21を生体内に設定された穿刺目標位置Pまで所定の穿刺経路に沿わせて移動させる際に、光出射部40から出射されたガイド光が照射される位置を確認することにより湾曲針20の針先21が穿刺経路に沿って移動しているか否かを適切に判断することができる。穿刺作業時に湾曲針20の針先21が穿刺経路からずれて移動していることが確認された場合には、ガイド光の照射位置に基づいて湾曲針20の針先21の移動方向を簡単に修正することが可能となる。このため、湾曲針20を備える医療器具10を使用した穿刺作業を簡単かつ迅速に行うことができ、低侵襲な手技を実現することができる。 As described above, according to the medical instrument 10 according to the present embodiment, when the needle tip 21 of the curved needle 20 is moved along the predetermined puncture path to the puncture target position P set in the living body, By confirming the position where the guide light emitted from the emitting unit 40 is irradiated, it is possible to appropriately determine whether the needle tip 21 of the curved needle 20 is moving along the puncture route. When it is confirmed that the needle tip 21 of the curved needle 20 is shifted from the puncture path during the puncturing operation, the movement direction of the needle tip 21 of the curved needle 20 is simply determined based on the irradiation position of the guide light. It becomes possible to correct. For this reason, the puncture operation using the medical instrument 10 including the curved needle 20 can be performed easily and quickly, and a minimally invasive procedure can be realized.
 また、湾曲針20が円弧状の外形形状を有しており、制御部60が備える演算処理部が湾曲針20の外形形状に基づいてガイド光の出射角度の変位を算出するように構成されているため、湾曲針20を備える医療器具10を使用した手技を簡単かつ迅速に行うことが可能となる。これに加えて、制御部60が備える演算処理部により算出された出射角度の変位に応じてガイド光の出射方向を高精度に制御することができるため、穿刺作業時に穿刺経路からの湾曲針20のずれが生じることを好適に防止することができる。 Further, the curved needle 20 has an arcuate outer shape, and the arithmetic processing unit provided in the control unit 60 is configured to calculate the displacement of the guide light emission angle based on the outer shape of the curved needle 20. Therefore, a procedure using the medical instrument 10 including the curved needle 20 can be performed easily and quickly. In addition to this, since the emission direction of the guide light can be controlled with high accuracy in accordance with the displacement of the emission angle calculated by the calculation processing unit provided in the control unit 60, the curved needle 20 from the puncture route during the puncture operation. It is possible to suitably prevent the deviation from occurring.
 また、ガイド光の出射角度を算出するためのデータの入力を受け付ける入力受付部31が本体部30に設けられており、入力されたデータに基づいて各種の計算を実行するように演算処理部が構成されているため、医療器具10を使用した手技を行うにあたり、本体部30に備えられた入力受付部31に各種のデータを入力することによって、ガイド光の出射方向を制御するための必要な数値を算出させることができる。このため、穿刺目標位置Pが異なる手技間において医療器具10を転用する場合や、円弧の長さや曲率の異なる湾曲針20を使用する手技間において本体部30を転用する場合などにおいても、手技を開始する前に所定のデータを入力するだけの簡単な作業により光出射部40の動作設定を行うことができる。 In addition, an input receiving unit 31 that receives input of data for calculating the emission angle of the guide light is provided in the main body unit 30, and the arithmetic processing unit is configured to execute various calculations based on the input data. Therefore, when performing a procedure using the medical instrument 10, it is necessary to control the emission direction of the guide light by inputting various data to the input receiving unit 31 provided in the main body unit 30. Numerical values can be calculated. For this reason, even when the medical instrument 10 is diverted between procedures with different puncture target positions P, or when the main body 30 is diverted between procedures using the curved needle 20 having a different arc length or curvature, the procedure is not limited. The operation setting of the light emitting unit 40 can be performed by a simple operation of inputting predetermined data before starting.
 また、湾曲針20の針先21に対して補助出射光を照射する補助光出射部45を本体部30に設けているため、手技の最中に湾曲針20の針先21の位置を簡単に確認することができ、より一層簡単かつ迅速に穿刺作業を行うことが可能となる。 Further, since the auxiliary light emitting portion 45 for irradiating auxiliary emitted light to the needle tip 21 of the curved needle 20 is provided in the main body portion 30, the position of the needle tip 21 of the curved needle 20 can be easily set during the procedure. It can be confirmed, and the puncturing operation can be performed more easily and quickly.
 また、湾曲針20の外形形状を表す形状確認部35を本体部30に設けているため、手技の最中に形状確認部35を目視することにより、生体内への湾曲針20の刺入量及び穿刺部の向いている方向を把握することが可能となる。よって、湾曲針20による穿刺作業をより一層簡単かつ安全に行うことができる。 Moreover, since the main body part 30 is provided with the shape confirmation part 35 showing the external shape of the curved needle 20, the amount of insertion of the curved needle 20 into the living body can be determined by observing the shape confirmation part 35 during the procedure. In addition, it is possible to grasp the direction in which the puncture unit is facing. Therefore, the puncturing operation with the curved needle 20 can be performed more easily and safely.
 また、穿刺部は、先端部が針先21をなす湾曲針20によって構成されており、穿刺目標位置Pは、隣接する棘突起間の所定の部位に設定されており、照射目標位置Fは、穿刺目標位置Pから生体表面130側へ延長される仮想垂線Vと生体表面130とが交差する位置に設定されているため、生体内の隣接する棘突起間に設定された任意の穿刺目標位置Pへ湾曲針20の針先21を簡単かつ迅速に案内することができる。 Further, the puncture portion is configured by a curved needle 20 whose tip portion forms the needle tip 21, the puncture target position P is set at a predetermined site between adjacent spinous processes, and the irradiation target position F is: Since the virtual perpendicular V extending from the puncture target position P toward the living body surface 130 and the living body surface 130 are set to intersect, any puncture target position P set between adjacent spinous processes in the living body is set. The needle tip 21 of the curved needle 20 can be guided easily and quickly.
 <第2実施形態>
 次に本発明の第2実施形態に係る医療器具について説明する。上述した第1実施形態において説明した部材と同一の部材には同一の符号を付してその説明を省略する。
Second Embodiment
Next, a medical instrument according to a second embodiment of the present invention will be described. The same members as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 第1実施形態に係る医療器具10は、本体部30に設けられた入力受付部31を介して各種のデータを入力することが可能に構成されていたが、例えば、各種のデータの入力作業は、本体部30とは別に設けられた外部入力装置を介して行うことも可能である。第2実施形態に係る医療器具は、外部入力装置を介したデータ入力が可能に構成されている点で第1実施形態に係る医療器具と相違する。なお、制御部60以外の各構成は、第1実施形態に係る医療器具と同様に構成することが可能であるため、制御部60以外の構成については説明を省略する。 Although the medical instrument 10 according to the first embodiment is configured to be able to input various types of data via the input receiving unit 31 provided in the main body unit 30, for example, various data input operations are performed. It is also possible to carry out via an external input device provided separately from the main body 30. The medical instrument according to the second embodiment is different from the medical instrument according to the first embodiment in that data input via an external input device is possible. In addition, since each structure except the control part 60 can be comprised similarly to the medical device which concerns on 1st Embodiment, description is abbreviate | omitted about structures other than the control part 60. FIG.
 図19には、第2実施形態に係る医療器具が備える制御部60の全体構成が示される。外部入力装置は、医療器具とは異なる他の装置であるPC等によって構成される。そして、外部入力装置に入力された円Rの半径に関する第1データと穿刺目標位置Pから照射目標位置Fまでの距離に関する第2データは、例えば、無線LANやBluetooth(登録商標)等の公知の無線通信手段により、制御部60が備えるデータ受信部(入力受付部31に相当する)へ送信される。制御部60はデータを受信した後、第1実施形態に係る医療器具10と同様の手順により、演算処理部に各種の計算を実行させる。 FIG. 19 shows an overall configuration of the control unit 60 included in the medical instrument according to the second embodiment. The external input device is configured by a PC or the like which is another device different from the medical instrument. The first data related to the radius of the circle R input to the external input device and the second data related to the distance from the puncture target position P to the irradiation target position F are, for example, publicly known information such as a wireless LAN or Bluetooth (registered trademark). The data is transmitted to a data receiving unit (corresponding to the input receiving unit 31) included in the control unit 60 by wireless communication means. After receiving the data, the control unit 60 causes the arithmetic processing unit to execute various calculations according to the same procedure as the medical instrument 10 according to the first embodiment.
 本実施形態に係る医療器具を使用する場合においても、光出射部40から出射されたガイド光の出射方向を制御することで穿刺作業を簡単かつ迅速に行うことが可能となる点は、第1実施形態に係る医療器具10と同様である。これに加えて、外部入力装置を使用したデータ入力が可能となるため、利便性がより一層向上された医療器具を提供することが可能となる。 Even when the medical instrument according to the present embodiment is used, it is possible to perform the puncturing operation easily and quickly by controlling the emission direction of the guide light emitted from the light emitting unit 40. This is the same as the medical device 10 according to the embodiment. In addition, since data input using an external input device is possible, it is possible to provide a medical instrument with further improved convenience.
 <改変例>
 前述した第1、第2実施形態に係る医療器具では、本体部30から湾曲針20を取り外すことが可能な構成を採用し、医療器具を使用する際には、手技の目的に応じた曲率や円弧の長さを備える湾曲針20を使用することが可能となっている。例えば、医療器具の改変例として、本体部30に湾曲針20を一体的に取り付けた構成を採用することも可能である。このように構成する場合、制御部60が備えるROM等に円Rの半径に関する第1データを予め保存させておくことにより、手技を行う際の初期設定として半径データを入力する作業が不要となる。演算処理部は、初期条件として入力される穿刺目標位置Pから照射目標位置Fまでの距離に関する第2データと、予め保存された第1データとによってガイド光の出射角度の変位を算出する。また、ガイド光及び補助ガイド光の照射/非照射の切り替えを本体部30に別途設けたスイッチ等により行ってもよい。これにより、医療器具10を使用していない間の不要な照射を防ぐことが可能となる。
<Modification example>
The medical instrument according to the first and second embodiments described above employs a configuration that allows the curved needle 20 to be removed from the main body 30, and when using the medical instrument, the curvature according to the purpose of the procedure, A curved needle 20 having an arc length can be used. For example, as a modification of the medical instrument, a configuration in which the curved needle 20 is integrally attached to the main body 30 can be adopted. In the case of such a configuration, the first data regarding the radius of the circle R is stored in advance in a ROM or the like provided in the control unit 60, thereby eliminating the need to input radius data as an initial setting when performing a procedure. . The arithmetic processing unit calculates the displacement of the emission angle of the guide light based on the second data regarding the distance from the puncture target position P to the irradiation target position F, which is input as an initial condition, and the first data stored in advance. Further, irradiation / non-irradiation switching of the guide light and the auxiliary guide light may be performed by a switch or the like separately provided in the main body 30. Thereby, it becomes possible to prevent unnecessary irradiation while the medical instrument 10 is not used.
 以上のように、複数の実施形態および改変例を通じて本発明に係る医療器具を説明したが、本発明は、湾曲した穿刺部を備える医療器具において、生体に医療器具を穿刺する際に穿刺部の先端部の移動経路が穿刺目標位置を通る穿刺経路に沿って移動させることができるように、その移動を案内する目安となるガイド光が生体表面の任意の照射目標位置へ向けて照射され、さらに穿刺部が穿刺経路に沿って移動している間は照射目標位置へのガイド光の照射が制御部の動作制御により維持され得るように構成されている限りにおいて変更することが可能である。例えば、医療器具全体の構成や、制御部による制御方法、演算処理部における計算方法等は、上記目的が達成され得る範囲において変更することが可能である。 As described above, the medical instrument according to the present invention has been described through a plurality of embodiments and modified examples. However, the present invention relates to a medical instrument having a curved puncture unit, and the puncture unit has a function of Guide light serving as a guide for guiding the movement is irradiated toward an arbitrary irradiation target position on the surface of the living body so that the movement path of the distal end portion can be moved along the puncture path passing through the puncture target position. While the puncture unit is moving along the puncture route, it can be changed as long as the irradiation of the guide light to the irradiation target position can be maintained by the operation control of the control unit. For example, the configuration of the entire medical instrument, the control method by the control unit, the calculation method by the arithmetic processing unit, and the like can be changed within a range in which the above-described object can be achieved.
 また、実施形態の説明においては、湾曲した穿刺部として針の構造を備える湾曲針を使用した形態を示したが、穿刺部は外形形状が所定の曲率で湾曲した形状に形成され、かつ生体の少なくとも一部へ刺入可能なものであればよく、例えば、針以外にも、メス、リーマ―、組織の採取や患部の切除などに用いられる処置具等を穿刺部として用いることができる。穿刺部を針によって構成する場合においても、その針の用途は限定されず、例えば、縫合針や生検針などを使用することができる。 Further, in the description of the embodiment, a form in which a curved needle having a needle structure is used as a curved puncture part is shown. However, the puncture part is formed in a curved shape with a predetermined curvature, and a living body Any device can be used as long as it can be inserted into at least a part. For example, in addition to a needle, a scalpel, a reamer, a treatment tool used for sampling a tissue, excision of an affected part, and the like can be used as a puncture unit. Even in the case where the puncture portion is constituted by a needle, the use of the needle is not limited, and for example, a suture needle, a biopsy needle, or the like can be used.
 また、医療器具を使用して行われる処置も棘突起間へのインプラントの導入を目的とする手技に限定されず、使用される穿刺部の用途等に応じて変更することが可能である。これと同様に、穿刺目標位置や穿刺経路、ガイド光の照射目標位置等は、穿刺部の構成および処置の内容などに応じて適宜変更することが可能である。 Also, the treatment performed using a medical instrument is not limited to the procedure for introducing the implant between the spinous processes, and can be changed according to the use of the puncture part used. Similarly, the puncture target position, puncture route, guide light irradiation target position, and the like can be appropriately changed according to the configuration of the puncture unit, the content of treatment, and the like.
10 医療器具、
20 湾曲針(穿刺部)、
21 針先(先端部)、
30 本体部、
31 入力受付部、
35 形状確認部、
40 光出射部、
45 補助光出射部、
50 検出部、
60 制御部、
80 インプラント、
120 生体、
123 棘突起、
130 生体表面、
F 照射目標位置、
P 穿刺目標位置、
V 仮想垂線、
L1 ガイド光、
L2 補助ガイド光。
10 medical devices,
20 curved needle (puncture),
21 Needle tip (tip),
30 body part,
31 Input reception part,
35 Shape confirmation part,
40 light emitting part,
45 Auxiliary light emitting part,
50 detector,
60 control unit,
80 implants,
120 living body,
123 Spinous processes,
130 biological surface,
F irradiation target position,
P Puncture target position,
V Virtual perpendicular,
L1 guide light,
L2 Auxiliary guide light.

Claims (6)

  1.  生体に穿刺可能な湾曲形状の穿刺部と、
     前記穿刺部が設けられる把持可能な本体部と、
     前記本体部に設けられ、生体表面の任意の位置に設定される照射目標位置へ向けて可視性のガイド光を出射する光出射部と、
     前記穿刺部が刺入される前記生体表面に対する前記本体部の傾斜状態を検出する検出部と、
     前記光出射部の動作制御を行う制御部と、を有する医療器具であって、
     前記制御部は、生体内の穿刺目標位置を通る穿刺経路に沿わせて前記穿刺部の先端部が移動するように前記本体部が操作されたときに、前記検出部の検出結果に基づいて前記光出射部の動作を制御することにより、前記照射目標位置への前記ガイド光の照射が維持されるように前記ガイド光の出射角度を変更させることを特徴とする医療器具。
    A curved puncture part capable of puncturing a living body;
    A graspable main body provided with the puncture portion;
    A light emitting part that is provided in the main body part and emits visible guide light toward an irradiation target position set at an arbitrary position on the surface of the living body;
    A detection unit for detecting an inclination state of the main body with respect to the surface of the living body into which the puncture unit is inserted;
    A medical device having a control unit for controlling the operation of the light emitting unit,
    When the main body is operated so that the tip of the puncture unit moves along a puncture path that passes through the puncture target position in the living body, the control unit is configured based on the detection result of the detection unit. By controlling the operation of the light emitting section, the medical instrument is configured to change the emission angle of the guide light so that the irradiation of the guide light to the irradiation target position is maintained.
  2.  前記穿刺部は、当該穿刺部の先端部が移動した際に描かれる移動軌跡が円をなす円弧状の外形形状を有しており、
     前記制御部は、
     前記円の半径、前記照射目標位置から前記円の中心までの距離、および前記検出部の検出結果に基づいて前記本体部の操作前後における前記ガイド光の出射角度の変位を算出する演算処理部を有しており、当該演算処理部により算出される前記出射角度の変位に応じて前記ガイド光の出射角度を変更させることを特徴とする請求項1に記載の医療器具。
    The puncture part has an arcuate outer shape in which a movement locus drawn when the tip of the puncture part moves makes a circle,
    The controller is
    An arithmetic processing unit that calculates a displacement of the emission angle of the guide light before and after the operation of the main body based on the radius of the circle, the distance from the irradiation target position to the center of the circle, and the detection result of the detection unit; The medical instrument according to claim 1, further comprising: changing the emission angle of the guide light according to the displacement of the emission angle calculated by the arithmetic processing unit.
  3.  前記本体部は、前記円の半径に関する第1データおよび前記穿刺目標位置から前記照射目標位置までの距離に関する第2データの入力を受け付ける入力受付部を有し、
     前記演算処理部は、前記第1データと前記第2データに基づいて前記照射目標位置から前記円の中心までの距離を算出することを特徴とする請求項2に記載の医療器具。
    The main body includes an input receiving unit that receives input of first data related to a radius of the circle and second data related to a distance from the puncture target position to the irradiation target position,
    The medical instrument according to claim 2, wherein the arithmetic processing unit calculates a distance from the irradiation target position to the center of the circle based on the first data and the second data.
  4.  前記本体部に設けられ、前記穿刺部の先端部へ向けて可視性のガイド光を出射する補助光出射部を有することを特徴とする請求項1~3のいずれか1項に記載の医療器具。 The medical instrument according to any one of claims 1 to 3, further comprising: an auxiliary light emitting portion that is provided in the main body portion and emits visible guide light toward a distal end portion of the puncture portion. .
  5.  前記本体部は、前記穿刺部の外形形状を表す図形が記された形状確認部を有することを特徴とする請求項1~4のいずれか1項に記載の医療器具。 The medical device according to any one of claims 1 to 4, wherein the main body portion includes a shape confirmation portion on which a graphic representing the outer shape of the puncture portion is written.
  6.  前記穿刺部は、前記先端部が針先をなす湾曲針によって構成されており、
     前記穿刺目標位置は、隣接する棘突起間の所定の部位であり、
     前記照射目標位置は、前記穿刺目標位置から生体表面側へ延長される仮想垂線と生体表面とが交差する位置である、請求項1~5のいずれか1項に記載の医療器具。
    The puncture portion is constituted by a curved needle whose tip portion forms a needle tip,
    The puncture target position is a predetermined site between adjacent spinous processes,
    The medical instrument according to any one of claims 1 to 5, wherein the irradiation target position is a position where a virtual perpendicular extending from the puncture target position toward the living body surface and a living body surface intersect.
PCT/JP2013/059969 2013-04-01 2013-04-01 Medical device WO2014162470A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059969 WO2014162470A1 (en) 2013-04-01 2013-04-01 Medical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059969 WO2014162470A1 (en) 2013-04-01 2013-04-01 Medical device

Publications (1)

Publication Number Publication Date
WO2014162470A1 true WO2014162470A1 (en) 2014-10-09

Family

ID=51657803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059969 WO2014162470A1 (en) 2013-04-01 2013-04-01 Medical device

Country Status (1)

Country Link
WO (1) WO2014162470A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060195102A1 (en) * 2005-02-17 2006-08-31 Malandain Hugues F Apparatus and method for treatment of spinal conditions
US20080221586A1 (en) * 2007-02-09 2008-09-11 Alphatec Spine, Inc. Curviliner spinal access method and device
US20100106056A1 (en) * 2008-10-23 2010-04-29 Norris Perry R Methods for medical device alignment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060195102A1 (en) * 2005-02-17 2006-08-31 Malandain Hugues F Apparatus and method for treatment of spinal conditions
US20080221586A1 (en) * 2007-02-09 2008-09-11 Alphatec Spine, Inc. Curviliner spinal access method and device
US20100106056A1 (en) * 2008-10-23 2010-04-29 Norris Perry R Methods for medical device alignment

Similar Documents

Publication Publication Date Title
JP6949172B2 (en) Surgical spinal correction
JP6894441B2 (en) Systems and methods to facilitate spinal surgery
EP1986563B1 (en) System and apparatus for measuring distal forces on a working instrument
JP4231540B1 (en) Drilling instrument guide device and drilling device
JP7195737B2 (en) System and method for mapping the structure of the nasal cavity
JP6511517B2 (en) Trajectory guidance device and system for surgical instruments
US9123155B2 (en) Apparatus and method for using augmented reality vision system in surgical procedures
US8758383B2 (en) Depth controlled Jamshidi needle
KR101160440B1 (en) Boring Instrument Guiding Device for pedicle screw
JP4810698B1 (en) Pedicle insertion instrument guide device
WO2017125594A1 (en) Needle guides
WO2013098758A1 (en) Nested cannulas with guided tools
EP2742882A1 (en) Puncturing tool
JP2022524606A (en) Surgical robot end effector
US20220047338A1 (en) Sensor carrier
WO2014162470A1 (en) Medical device
US20220313368A1 (en) Position detection based on tissue discrimination
JP7391967B2 (en) Combining sinus surgery with a seeker instrument with navigation and illumination modalities
KR102438722B1 (en) Surgical Guide Module
CN112805043A (en) Hollow tube surgical instrument with single axis sensor
ES2739286T3 (en) Assistive device for positioning a medical instrument with respect to an internal organ of a patient
RU2770666C1 (en) Navigation system for intraoperative orientation during installation of screw systems for transpedicular fixation in target vertebrae
WO2014045331A1 (en) Puncturing tool and puncturing-tool assembly
WO2015001661A1 (en) Medical assistance tool, medical tool, and method of measuring distance
JP2011056070A (en) Operation navigation system, and magnetic sensor installation device used therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP