WO2014083644A1 - Active-energy-ray-curable resin composition - Google Patents

Active-energy-ray-curable resin composition Download PDF

Info

Publication number
WO2014083644A1
WO2014083644A1 PCT/JP2012/080777 JP2012080777W WO2014083644A1 WO 2014083644 A1 WO2014083644 A1 WO 2014083644A1 JP 2012080777 W JP2012080777 W JP 2012080777W WO 2014083644 A1 WO2014083644 A1 WO 2014083644A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mass
meth
parts
film
Prior art date
Application number
PCT/JP2012/080777
Other languages
French (fr)
Japanese (ja)
Inventor
清水 基弘
耕平 中島
茂一 伊藤
仁美 猪俣
智志 塩田
Original Assignee
リケンテクノス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リケンテクノス株式会社 filed Critical リケンテクノス株式会社
Priority to PCT/JP2012/080777 priority Critical patent/WO2014083644A1/en
Priority to TW102142457A priority patent/TWI577733B/en
Publication of WO2014083644A1 publication Critical patent/WO2014083644A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/584Scratch resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2451/00Decorative or ornamental articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2471/00Floor coverings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2479/00Furniture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • B32B2509/10Refrigerators or refrigerating equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels

Definitions

  • the present invention relates to an active energy ray-curable resin composition, and more specifically, has a high curing rate, excellent scratch resistance, abrasion resistance, stain resistance, bending resistance, workability, transparency, and hardness.
  • the present invention relates to an active energy ray-curable resin composition that provides a high coating film.
  • base materials made of woody materials such as wood, plywood, laminated timber, particle board, hardboard, as building materials such as flooring and wall materials, or as cabinets for household appliances such as furniture, kitchen products, refrigerators, etc.
  • a decorative sheet made by pasting a decorative sheet on the surface or the surface of a base material made of a metal material such as iron or aluminum is used.
  • Such a decorative sheet is required to have a good balance of not only decorativeness but also scratch resistance, abrasion resistance, stain resistance, transparency and the like at a high level.
  • a paint containing an active energy ray-curable resin composition containing a polyfunctional acrylate such as dipentaerythritol hexaacrylate or pentaerythritol tetraacrylate and / or a polyfunctional urethane acrylate and a polyisocyanate is often used (for example, Patent Document 2)
  • a coating film made of the above-mentioned paint has a poor balance between bending resistance and scratch resistance and wear resistance, and if the bending resistance is improved, scratch resistance and abrasion resistance are not sufficient. .
  • the said coating material has a slow curing speed, Therefore When manufacturing the decorative sheet
  • the UV curability is poor, there is a method of increasing the UV illuminance, but there is a problem that the film is deformed by the radiant heat of the UV lamp.
  • a curable coating that gives a coating film with improved scratch resistance and abrasion resistance
  • a composition containing a polymer having a siloxane bond and an acrylic polyol resin for example, Patent Document 3
  • Patent Document 4 a composition containing a copolymer having a polymer chain moiety
  • these paints have a slow curing rate, and the resulting coating film has insufficient stain resistance.
  • the object of the present invention is an active energy ray curing that has a high curing rate, excellent scratch resistance, abrasion resistance, stain resistance, bending resistance, workability, transparency, and can obtain a coating film with high hardness. It is providing a functional resin composition.
  • the present inventors have found that a resin composition in which a polyether (meth) acrylate modified with ethanolamine and having a specific number of (meth) acryloyloxy groups is combined with a polyisocyanate can achieve the above object. Further, it has been found that when finer particles are added to the resin composition, the hardness of the coating film is further increased.
  • R1 and R2 are each a polyether (meth) acrylate residue having one or more (meth) acryloyloxy groups, and the number of (meth) acryloyloxy groups in R1 and (meth) acryloyloxy in R2 Ethanolamine-modified polyether (meth) acrylate having a total number of groups of 3 or more, (B) a polyisocyanate having two or more isocyanate groups in one molecule, and (C) a photopolymerization initiator, the number of hydroxyl groups (a) in component (A) and the number of isocyanate groups in component (B) ( An active energy ray-curable resin composition having a ratio (a / b) to b) in the range of 0.5 to 1.2.
  • the resin composition of the present invention has a high curing speed. Therefore, when a laminate is produced by applying this composition to a thermoplastic resin film as a base material and curing it, the speed of the production line can be increased. This leads to a reduction in manufacturing costs. Moreover, the coating film obtained from the composition of this invention is excellent in scratch resistance, abrasion resistance, stain resistance, bending resistance, workability, and transparency. In addition, when finer particles are added to the resin composition, the hardness of the coating film is further increased. Therefore, the laminated body having this coating film is used for surface protection and decoration of building materials such as floor materials and wall materials, home appliances such as refrigerators, exterior parts such as automobile door sashes, and interior parts such as instrument panels. Can be suitably used as a decorative sheet.
  • Ethanolamine-modified polyether (meth) acrylate Component (A) in the composition of the present invention is an ethanolamine-modified polyether (meth) acrylate having the following formula (1).
  • R1 and R2 are each a polyether (meth) acrylate residue having one or more (meth) acryloyloxy groups, and the number of (meth) acryloyloxy groups in R1 and (meth) acryloyloxy in R2 The total number of groups is 3 or more, preferably 3 to 9, and more preferably 4.
  • R1 and R2 may be the same or different from each other, but R1 and R2 are preferably the same.
  • Component (A) functions to capture oxygen radicals.
  • the radical polymerizable compound is susceptible to polymerization inhibition by oxygen radicals in the air, and particularly on the surface of the coating film, a curing reaction is caused by oxygen radicals. Become slow. If the irradiation time of the active energy rays is increased so that the surface is sufficiently cured, the speed of the production line is reduced, and the influence of oxygen radicals is relatively small inside the coating film. Becomes fragile, and therefore has poor bending resistance. Since the component (A) has the specific structure of the above formula (1), the composition of the present invention is not inhibited by oxygen radicals.
  • Component (A) has an ethanolamine residue, a hydrogen is generated by extracting hydrogen of a methylene group adjacent to the nitrogen atom in the ethanolamine residue, and an oxygen radical is bound and trapped there. It is done.
  • Component (A) can be produced, for example, by reacting a compound represented by the following formula (3) and a compound represented by the following formula (4) with ethanolamine at room temperature. This reaction is highly active at room temperature and does not require a catalyst. In order to prevent gelation, it is preferable to add a solvent or the like to lower the apparent concentration.
  • R1 and R2 are as defined above.
  • TPGDA tripropylene glycol diacrylate
  • OTA 480 trade name
  • dipentaerythritol hexaacrylate manufactured by Nippon Kayaku Co., Ltd. may be mentioned.
  • the OTA480 is a compound having the following formula (5).
  • component (A) is a compound having the following formula (2).
  • the resulting composition has good storage stability, and the resulting coating film has bending resistance, workability, transparency, and three-dimensional formability. The balance of scratch resistance, abrasion resistance and stain resistance is very good.
  • a separator is placed on a coating film in order to prevent the laminates from blocking each other when the laminate is wound around a roll.
  • the curing reaction is very fast, so there is an advantage that it is not necessary to use a separator.
  • the polyisocyanate component (B) is a compound having two or more isocyanate groups (—N ⁇ C ⁇ O) in one molecule. Specifically, methylene bis-4-cyclohexyl isocyanate, trimethylol propane adduct of tolylene diisocyanate, trimethylol propane adduct of hexamethylene diisocyanate, trimethylol propane adduct of isophorone diisocyanate, isocyanurate of tolylene diisocyanate, hexa Examples thereof include polyisocyanates such as isocyanurate of methylene diisocyanate, isocyanurate of isophorone diisocyanate and biuret of hexamethylene diisocyanate, and urethane crosslinking agents such as block type isocyanates of the above polyisocyanate. Further, at the time of crosslinking, a catalyst such as dibutyltin dilaurate and dibutyltin dieth
  • those having three or more isocyanate groups in one molecule are preferable from the viewpoint of the bending resistance and three-dimensional formability of the coating film and the storage stability of the paint, and particularly represented by the following formula (6).
  • These have a structural feature that isocyanate groups are present at positions away from each other at the end of the hexamethylene chain, and thus the resulting coating film is elastic and excellent in scratch resistance and abrasion resistance.
  • the resin composition of the present invention is cured by the reaction between the hydroxyl group in component (A) and the isocyanate group in component (B).
  • the resin composition of the present invention has a ratio (a / b) of the number of hydroxyl groups (a) in component (A) to the number of isocyanate groups (b) in component (B) (a / b) so that curing can occur sufficiently. It is in the range of 5 to 1.2, preferably 0.7 to 1.1. When the ratio is less than the lower limit, the resulting coating film is inferior in bending resistance and three-dimensional formability. When the ratio is larger than the above upper limit, the resulting coating film is poor in stain resistance against aqueous contaminants such as aqueous magic.
  • the resin composition of the present invention comprises a (meth) acrylate compound (A ′) other than the component (A). May further be included.
  • the properties of the coating film can be appropriately adjusted according to the use of the laminate.
  • the ratio ((a + a ′) / b) to the number (b) of is in the range of 0.5 to 1.2, preferably 0.7 to 1.1.
  • the resulting coating film When the ratio is less than the lower limit, the resulting coating film is inferior in bending resistance and three-dimensional formability. When the ratio is larger than the above upper limit, the resulting coating film is poor in stain resistance against aqueous contaminants such as aqueous magic.
  • the component (A ′) may or may not have a hydroxyl group. The compounding ratio of the component (A) and the component (A ′) can be appropriately determined according to the use of the laminate.
  • the component (A) When the sum of the amount of the component (A) and the amount of the component (A ′) is 100% by mass, the component (A) is usually 10 to 100% by mass and the component (A ′) is 90 to 0% by mass, The component (A) is preferably 50 to 100% by mass and the component (A ′) is preferably 50 to 0% by mass.
  • Examples of the (meth) acrylate compound (A ′) include polyurethane (meth) acrylate, polyester (meth) acrylate, polyacryl (meth) acrylate, epoxy (meth) acrylate, polyalkylene glycol poly (meth) acrylate and (Meth) acryloyloxy group-containing prepolymer or oligomer such as polyether (meth) acrylate; methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl ( (Meth) acrylate, lauryl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, phenyl (meth) Acrylate, phenyl cellosolve (meth
  • each hydroxyl group of component (A) and component (A ′) was acetylated with an acetylating reagent (acetic anhydride in pyridine), then excess acetylating reagent is hydrolyzed with water, and the resulting acetic acid is converted into Kyoto.
  • the above number was determined by titration with an ethanol solution of potassium hydroxide using a potentiometric automatic titrator AT-610, manufactured by Denki Kogyo Co., Ltd.
  • the number of isocyanate groups per unit amount of component (B) was determined based on JIS-K-7301: 1995. That is, by reacting the isocyanate group of component (B) with dinormal butylamine, and then titrating excess dinormal butylamine with an aqueous hydrochloric acid solution using an automatic potentiometric titrator AT-610 type manufactured by Kyoto Electronics Industry Co., Ltd. The above number was determined.
  • the photopolymerization initiator component (C) is a radical polymerization type photopolymerization initiator, and known ones can be used. For example, triazine compounds, acetophenone compounds, biimidazole compounds, benzoin compounds, benzophenone compounds, thioxanthone compounds, anthracene compounds, alkylphenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds And photopolymerization initiators such as oxime phenylacetate compounds, hydroxyketone compounds and aminobenzoate compounds. These can be used alone or in combination of two or more. Among these, benzophenone compounds are preferable because the reaction mechanism is a radical generation type by hydrogen abstraction.
  • the compounding quantity of a component (C) can be suitably selected with the kind of other component, and desired coating-film thickness, Generally, with respect to 100 mass parts of component (A), or a component (A ') When present, the amount is about 0.5 to 10 parts by mass with respect to 100 parts by mass in total of component (A) and component (A ′).
  • the coating thickness is 0.5 to When the thickness is 30 ⁇ m, the amount of the component (C) is 4 to 10 parts by mass with respect to 100 parts by mass of the component (A), and when the coating thickness is 30 to 500 ⁇ m, the component (A) 100 0.5 to 8 parts by mass with respect to parts by mass.
  • the reason why the amount of the component (C) is generally larger when the thickness of the coating film is thinner is that the thinner the film, the more easily the influence of curing inhibition by oxygen radicals occurs.
  • the resin composition of the present invention comprises fine particles having a particle size of 1 nm to 300 nm based on 100 parts by mass of component (A), or component (A) and component (A ′) when component (A ′) is present. It is preferably contained in an amount of 1 to 50 parts by mass with respect to 100 parts by mass in total of A ′).
  • Component (F) serves to increase the hardness of the coating film obtained from the resin composition of the present invention.
  • both inorganic fine particles and organic fine particles can be used.
  • the inorganic fine particles include silica (silicon dioxide); metal oxide fine particles such as aluminum oxide, zirconia, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide, antimony oxide, and cerium oxide; Metal fluoride fine particles such as magnesium fluoride and sodium fluoride; metal fine particles; metal sulfide fine particles; metal nitride fine particles; Examples of the organic fine particles include resin beads such as a styrene resin, an acrylic resin, a polycarbonate resin, an ethylene resin, and a cured resin of an amino compound and formaldehyde. These can be used alone or in combination of two or more.
  • the surface of the fine particles is treated with a silane coupling agent such as vinylsilane or aminosilane; a titanate coupling agent; Coupling agent; Organic compound having an ethylenically unsaturated bond group such as (meth) acryloyl group, vinyl group and allyl group and reactive functional group such as epoxy group; Surface treatment agent such as fatty acid and fatty acid metal salt You may use what was processed.
  • silica and aluminum oxide fine particles are preferable, and silica fine particles are more preferable in order to obtain a coating film with higher hardness.
  • Examples of commercially available silica fine particles include Snowtex (trade name) manufactured by Nissan Chemical Industries, Ltd., Quartron (trade name) manufactured by Fuso Chemical Industries, Ltd., and the like.
  • the particle diameter of the component (F) needs to be 300 nm or less in order to impart transparency of the resulting coating film. Moreover, when the particle diameter is coarse, the hardness of the obtained coating film tends to be insufficient. Preferably it is 200 nm or less, More preferably, it is 120 nm or less. On the other hand, there is no particular lower limit of the particle diameter, but normally available particles are at most about 1 nm even if they are fine.
  • the particle diameter of the fine particles is a cumulative particle diameter distribution curve of 50 measured using a laser diffraction / scattering particle size analyzer MT3200II (trade name) manufactured by Nikkiso Co., Ltd.
  • the particle diameter is mass%.
  • the compounding quantity of a component (F) is with respect to 100 mass parts of components (A), or when a component (A ') exists, with respect to a total of 100 mass parts of a component (A) and a component (A'). 1 to 50 parts by mass. If it is 1 part by mass or less, the effect of improving the hardness of the coating film cannot be obtained. If it is 50 parts by mass or more, the bending resistance is lowered. The amount is preferably 3 to 25 parts by mass.
  • composition of the present invention may contain a solvent as needed for dilution.
  • the solvent is compatible with components (A), (A ′), (B), (C) and (E), and components (A), (A ′), (B), (C), ( There is no particular limitation as long as it does not react with E) and (F) or catalyze the self-reaction of these components.
  • known compounds such as 1-methoxy-2-propanol, n-butyl acetate, toluene and methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, diacetone alcohol and the like can be used.
  • a solvent containing 40% by mass or more, more preferably 80% by mass or more of 1-methoxy-2-propanol is preferable, and the thermoplastic resin film (3) described below is coated with the above composition.
  • a resin film having low solvent resistance such as a stretched polyester resin film.
  • unstretched polyester-based resin films are widely used as base films for decorative films because they are excellent in three-dimensional formability and bending resistance and surface gloss, but are poor in solvent resistance. Therefore, when a composition containing a solvent is applied to an unstretched polyester resin film as a base film, the surface gloss of the resulting decorative film is lost, or in some cases the base film swells and a decorative film is obtained. There is a problem of disappearing. If the solvent contains 40% by mass or more of 1-methoxy-2-propanol, the above problem does not occur.
  • the amount of the solvent can be appropriately adjusted so as to have a suitable viscosity according to the coating apparatus and the thickness of the coating film.
  • the composition of the present invention is a UV-reactive fluorine-based surface modifier for preventing paint repellency and for preventing fingerprint resistance, stain resistance and blocking of the coating film.
  • Agent (E) may further be included.
  • the ultraviolet-reactive fluorine-based surface modifier (E) is preferably a compound having a fluorine-containing group, a hydrophilic group, a lipophilic group, and an ultraviolet-reactive group. Mega-Face RS-75 (trade name) is available.
  • the amount of component (E) is based on 100 parts by weight of component (A) or, if component (A ′) is present, based on a total of 100 parts by weight of component (A) and component (A ′),
  • the amount is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 2.0 parts by mass. If the amount is more than 5 parts by mass, the surface hardness may decrease.
  • the resin composition of the present invention is an antioxidant, a weather resistance stabilizer, a light resistance stabilizer, an ultraviolet absorber, a heat stabilizer, an antistatic agent, a surfactant, within a range not impairing the effects of the present invention.
  • One type or two or more types of additives such as a colorant, an infrared shielding agent, a leveling agent, a thixotropic agent, and a filler may be included.
  • the resin composition of the present invention can be obtained by mixing and stirring the above components (A), (B), (C) and preferably (F), and other optional components.
  • the resin composition thus obtained is active energy ray-curable, and this is applied to the surface of the thermoplastic resin film (3) as a base material and irradiated with active energy rays such as ultraviolet rays, visible rays, and electron beams.
  • active energy rays such as ultraviolet rays, visible rays, and electron beams.
  • a laminate having a coating film (1) excellent in scratch resistance, abrasion resistance, contamination resistance and bending resistance is obtained.
  • thermal lamination is performed after the coating composition (1) is formed by applying, drying and curing the above composition to a substrate having excellent solvent resistance, for example, a biaxially stretched polyethylene terephthalate film having a release treatment applied to the surface.
  • the resin composition of the present invention has a fast curing reaction, it is possible to increase the line speed when the composition is applied to a substrate to produce a laminate, and thus the manufacturing cost can be reduced. .
  • the thickness of the coating film (1) is preferably 0.5 ⁇ m or more. If it is thinner than this, scratch resistance may be insufficient. On the other hand, there is no upper limit on the thickness of the coating film. However, since an unnecessarily thick coating film only increases the cost, the thickness is 60 ⁇ m at most.
  • thermoplastic resin film (3) Any thermoplastic resin film can be used as the thermoplastic resin film (3) where the coating film (1) made of the resin composition is laminated to form a laminate.
  • thermoplastic resin film (3) polyvinyl chloride resin, non-crystalline, low crystalline or crystalline polyester, polypropylene, polyolefin such as polyethylene, acrylonitrile / butadiene / styrene copolymer resin (ABS resin), styrene / ethylene / butadiene / styrene copolymer Styrene resin such as hydrogenated styrene / ethylene / butadiene / styrene copolymer, unstretched film of thermoplastic resin such as polyamide, acrylic, polycarbonate, polyurethane, uniaxially stretched film and biaxially stretched film it can.
  • ABS resin acrylonitrile / butadiene / styrene copolymer resin
  • Styrene resin such as hydrogen
  • a non-stretched film of a polyvinyl chloride resin or an amorphous polyester resin or a stretched crystalline polyester film is used.
  • a thermoplastic resin film (3) itself has high surface glossiness, and it is preferable that it is transparent.
  • a non-stretched film of an amorphous polyester resin and a stretched polyester film are preferable.
  • Polyester resins such as polyethylene terephthalate, glycol copolymerized polyethylene terephthalate, acid copolymerized polyethylene terephthalate, and polyethylene naphthalate, or these resins
  • a biaxially stretched polyester film comprising any combination is particularly preferred.
  • non-stretched film of the non-crystalline polyester resin examples include SET329 FZ26401 ⁇ trade name, cyclohexanedimethanol copolymerized polyethylene terephthalate (PETG resin) film ⁇ manufactured by Riken Technos Co., Ltd. Mention of Lumirror (trade name) of Co., Ltd., Emblet S25 (trade name) of Unitika Co., Ltd., Melinex (705) # 75 (trade name) of Teijin Ltd. and A4300 (trade name) of Toyobo Co., Ltd. it can.
  • the thickness of the thermoplastic resin film (3) is usually 10 ⁇ m to 100 ⁇ m, preferably 15 to 50 ⁇ m. If it is thinner than the above lower limit, wrinkles may enter the laminated body. If it is thicker than the above upper limit, the laminated body will be bounced during lapping molding, and the processing speed of coating and laminating must be kept low. It may disappear.
  • Lamination of the coating film (1) composed of the above composition onto the thermoplastic resin film (3) is applied directly to the thermoplastic resin film (3) or via an anchor coat (2) layer described later.
  • a coating film (1) by applying, drying and curing the above composition to a substrate excellent in solvent resistance, for example, a biaxially stretched polyethylene terephthalate film having a release treatment applied to the surface by drying and curing ) Can be performed by bonding directly to the thermoplastic resin film (3) or via the anchor coat (2) layer by a method such as thermal lamination or dry lamination.
  • Anchor coat (2) The laminate may have an anchor coat (2) between the coating film (1) and the thermoplastic resin film (3). By providing the anchor coat (2), the adhesive strength between the coating film (1) and the thermoplastic resin film (3) can be increased.
  • an anchor coating agent for forming the anchor coat (2) As an anchor coating agent for forming the anchor coat (2), it is well soluble in known solvents such as 1-methoxy-2-propanol, n-butyl acetate, toluene, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, acetone and the like. As long as a sufficient anchor effect can be obtained, there is no particular limitation, and conventional ones such as polyester, acrylic, polyurethane, acrylic urethane, and polyester urethane can be used. Commercially available examples include Byron 24SS (trade name) manufactured by Toyobo Co., Ltd., AU2141NT manufactured by Tokushi Co., Ltd., and the like.
  • the anchor coat (2) is formed on one surface of the thermoplastic resin film (3) by applying an anchor coat agent by a conventional method.
  • the anchor coat (2) A coating film (1) comprising the above composition can be laminated on the substrate.
  • the thickness of the anchor coat (2) is usually about 0.1 to 5 ⁇ m, preferably 0.5 to 2 ⁇ m.
  • the method for applying the resin composition or the anchor coating agent to the thermoplastic resin film (3) is not particularly limited, and a known web application method can be used. Specific examples include roll coating, gravure coating, reverse coating, roll brushing, spray coating, air knife coating, and die coating.
  • thermoplastic resin film (5) In the laminate, the thermoplastic resin film (5) is further laminated via an adhesive layer (4) on the surface opposite to the surface on which the coating film (1) of the thermoplastic resin film (3) is laminated. (Refer to FIG. 1), and an adhesive layer (6) may be further provided thereon.
  • an adherend for example, a particle board
  • the irregularities are laminated when the laminate further has a thermoplastic resin film (5). It is preferable that it can be prevented from reaching the surface of the film, and therefore, vividness can be maintained.
  • the lamination of the thermoplastic resin film (5) is performed, for example, by applying an adhesive on the surface opposite to the surface on which the coating film (1) of the thermoplastic resin film (3) is laminated, and then applying the adhesive layer (4).
  • the thermoplastic resin film (5) can be formed thereon by using a metal roll-rubber roll heat laminating apparatus. At this time, the metal roll side is brought into contact with the coating film (1).
  • the surface temperature of the metal roll is preferably 120 ° C. or higher, more preferably 160 ° C. or higher.
  • the upper limit of the surface temperature is about 250 ° C. in consideration of the heat resistance of the thermoplastic resin film (3).
  • the thickness of the thermoplastic resin film (5) is not particularly limited, but is usually 20 to 1000 ⁇ m, preferably 100 to 500 ⁇ m. If it is too thin, when the laminate is affixed to the adherend, the irregularities on the surface of the adherend may reach the surface of the laminate, and may not provide sharpness. If it is too thick, Bonding workability to the adherend tends to be lowered.
  • thermoplastic resin film (5) those mentioned for the thermoplastic resin film (3) can be used.
  • the thermoplastic resin film (5) is preferably 60 to 130 ° C.
  • the thermoplastic resin film having such a glass transition temperature include films of acrylic resin, polyvinyl chloride resin, polyester resin, and acrylonitrile / butadiene / styrene copolymer resin.
  • the thermoplastic resin film (5) has the following resins ( ⁇ -1) and ( ⁇ -2): ( ⁇ -1) Amorphous polyethylene terephthalate in which the dicarboxylic acid component is terephthalic acid, and the glycol component is composed of 60 mol% or more and less than 90 mol% of ethylene glycol and 10 mol% or more and less than 40 mol% of 1,4-cyclohexanedimethanol.
  • the aromatic polyester resin composition further comprises a polybutylene terephthalate resin, a polytrimethylene terephthalate resin, a polytrimethylene terephthalate resin, a polybutylene terephthalate copolymer in which the dicarboxylic acid component is terephthalic acid and isophthalic acid, and the glycol component is tetramethylene glycol.
  • Other polyester resins such as resins may be included.
  • a further resin other than the above is added in an amount of 0.1 to 10 parts by mass. It may be included in the range.
  • the further resin examples include methacrylic acid ester-styrene / butadiene rubber graft copolymer, acrylonitrile-styrene / butadiene rubber graft copolymer, acrylonitrile-styrene / ethylene-propylene rubber graft copolymer, acrylonitrile-styrene / Mention may be made of elastomer resins such as acrylic ester graft copolymers, methacrylic ester / acrylic ester rubber graft copolymers, methacrylic ester-acrylonitrile / acrylic ester rubber graft copolymers and thermoplastic polyester elastomers.
  • elastomer resins such as acrylic ester graft copolymers, methacrylic ester / acrylic ester rubber graft copolymers, methacrylic ester-acrylonitrile / acrylic ester rubber graft copolymers and thermoplastic polyester elasto
  • the aromatic polyester resin composition further contains 0.1 to 5 mass of additives such as a lubricant, an antioxidant, a weather resistance stabilizer, a heat stabilizer, a release agent, an antistatic agent and a surfactant. It may be included in the range of parts.
  • additives such as a lubricant, an antioxidant, a weather resistance stabilizer, a heat stabilizer, a release agent, an antistatic agent and a surfactant. It may be included in the range of parts.
  • the lubricant include hydrocarbon waxes such as paraffin wax, polyethylene wax, and polypropylene wax, fatty acid waxes such as stearic acid, hydroxystearic acid, composite stearic acid, and oleic acid, stearamide, and oxystearic acid.
  • Aliphatic amide waxes such as amide, oleic acid amide, erucyl amide, ricinoleic acid amide, behenic acid amide, methylene bis stearic acid amide, ethylene bis stearic acid amide, aliphatic esters such as stearic acid n-butyl and montanic acid ester wax And waxes, aliphatic metal soap waxes, urea-formaldehyde waxes and the like.
  • a pigment and an inorganic filler can be further contained. There is no restriction
  • the inorganic filler include light calcium carbonate, heavy calcium carbonate, hydrous magnesium silicate, and talc.
  • the film comprising the aromatic polyester resin composition can be produced by any method, for example, can be formed using a calendar processing machine, or can be formed using an extruder and a T die. You can also Any calendar processing machine can be used, and examples thereof include an upright three roll, an upright four roll, an L four roll, an inverted L four roll, and a Z roll. Any extruder can be used, and examples thereof include a single-screw extruder, a same-direction rotating twin-screw extruder, and a different-direction rotating twin-screw extruder. Any T die can be used, and examples thereof include a manifold die, a fishtail die, and a coat hanger die.
  • thermoplastic resin film (3) is a biaxially stretched polyester film
  • thermoplastic resin film (5) is a film of the above aromatic polyester resin composition. is there.
  • the adhesive for forming the adhesive layer (4) and the adhesive layer (6) is not particularly limited as long as sufficient adhesive strength can be obtained.
  • Conventional adhesives such as vinyl, polyester, polyurethane, epoxy resin, chloroprene rubber and styrene butadiene rubber can be used.
  • the method in particular of providing an adhesive bond layer is not restrict
  • any diluent solvent such as 1-methoxy-2-propanol, nbutyl acetate, toluene, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, and acetone can be used as necessary.
  • Synthesis example 1 Daicel Cytec Co., Ltd. OTA480 (product name, glycerin propoxytriacrylate of formula (5) above) and 2-aminoethanol were charged into a glass beaker in an amount of 1 mol of the latter to 2 mol of the former, The reaction was carried out at a temperature of 23 ° C. for 72 hours to obtain an ethanolamine-modified polyether acrylate (A-1) having four acryloyloxy groups having the structure of the above formula (2). The number of hydroxyl groups per unit amount of component (A-1) was 1.09 mol / kg as measured by the method described above.
  • Synthesis example 2 In Synthesis Example 1, two samples were used in the same manner as in Synthesis Example 1 except that tripropylene glycol diacrylate (manufactured by Daicel-Cytec) was used instead of OTA480 (manufactured by Daicel-Cytec).
  • An ethanolamine-modified polyether acrylate (A-2) having an acryloyloxy group was synthesized.
  • the number of hydroxyl groups per unit amount of component (A-2) was 1.51 mol / kg.
  • Example 1 100 parts by mass of component (A-1) as component (A), Coronate HX (trade name, polyisocyanate of formula (6) above) (B-1) 25 manufactured by Nippon Polyurethane Industry Co., Ltd. as component (B) Anti-repellent agent (Kyoeisha Co., Ltd.) as other optional components of 10 parts by mass, 7 parts by mass of benzophenone (C-1) as component (C), and 200 parts by mass of 1-methoxy-2-propanol as component (D)
  • An active energy ray-curable resin composition was obtained by mixing and stirring together with 0.3 part by mass of manufactured Polyflow 75 (trade name).
  • Unitika's biaxially stretched polyester film “Unitika S” (trade name, thickness 50 ⁇ m) is used as the thermoplastic resin film (3), and an anchor coating agent (Toyobo Co., Ltd. Byron 24SS (trade name)) is used on one side.
  • An anchor coating agent (Toyobo Co., Ltd. Byron 24SS (trade name)) is used on one side.
  • the process of applying the resin composition obtained above on the anchor coat (2), drying, irradiating with ultraviolet rays, and winding the obtained laminate on a roll is a series of production lines, 50 m / min line Performed continuously at speed. The roll could be wound well without using a separator.
  • the resin composition was applied using a film Mayer bar type coating apparatus so that the coating thickness after drying was 11 ⁇ m.
  • the line speed in an Example and a comparative example is the fastest speed which can manufacture a laminated body stably in a production line.
  • the obtained laminates were subjected to the following tests (1) to (7). The results are shown in Table 1.
  • Example 2 As a component (B), Sumidur HT of Sumika Bayer Urethane Co., Ltd. (trade name, polyisocyanate of the above formula (7), number of isocyanate groups per unit amount: 3.10 mol / kg) (B-2) was used in the same manner as in Example 1 except that 42 was used in an amount of 42 parts by mass. The results are shown in Table 1.
  • Examples 3 to 6 and Comparative Examples 1 and 2 A laminate was produced in the same manner as in Example 1 except that the amount of component (B) in Example 1 was changed as shown in Table 1. The results are shown in Table 1.
  • Example 6 a laminate was produced in the same manner as in Example 6 except that the component (A-2) obtained in Synthesis Example 2 was used in place of the component (A-1). The line speed at this time was 50 m / min as in Example 6, but a separator was required for winding onto the roll. The results are shown in Table 1.
  • Example 4 In Example 1, instead of component (A-1), tripropylene glycol diacrylate (manufactured by Daicel Cytec Co., Ltd., number of hydroxyl groups per unit amount: 0 mol / kg) (A-3) was used.
  • (C) is an alkylphenone photopolymerization initiator (Darocur 1173 (trade name), 2-hydroxy-2-methyl-1-phenyl-propan-1-one) (C-2) from Ciba Japan Co., Ltd.
  • a laminate was produced in the same manner as in Example 1 except that it was used in an amount of 5 parts by mass. The line speed at this time was 30 m / min.
  • Example 5 dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., number of hydroxyl groups per unit amount: 0.63 mol / kg) (A-4) was used instead of component (A-1).
  • a laminate was manufactured in the same manner as in Example 1 except that the amount of the component (B) was changed so that the ratio (a / b) was 0.85.
  • the results are shown in Table 1.
  • the above (A-4) does not have a hydroxyl group in structure, but a hydroxyl group exists because it contains a component in which a part of the acryloyloxy group is hydrolyzed.
  • Example 6 In Example 1, instead of component (A-1), ditrimethylolpropane tetraacrylate (manufactured by Nippon Kayaku Co., Ltd., number of hydroxyl groups per unit amount: 0.35 mol / kg) (A-5) was used. In addition, a laminate was manufactured in the same manner as in Example 1 except that the amount of the component (B) was changed so that the ratio (a / b) was 0.85. The results are shown in Table 1.
  • Comparative Example 7 In Example 1, “self-healing paint No. 100” (trade name, polydimethylsiloxane graft acrylate-based paint) manufactured by NATCO Co., Ltd. was used as the resin composition, and the dry film thickness was 20 ⁇ m. A laminate was obtained in the same manner as in Example 1. The line speed at this time was 10 m / min, and a separator was required for winding onto a roll. The results are shown in Table 1. The film thickness in Comparative Example 7 was made thicker than the thickness in Example 1 (11 ⁇ m) because the results of scratch resistance-1 and 2 corresponding to the most important characteristics of the self-healing paint were This is for comparison with the example. The scratch resistance is better when the coating thickness is thicker.
  • Example 7 In Example 1, a laminate was produced in the same manner as in Example 1 except that the coating thickness was 2 ⁇ m. The line speed at this time was 40 m / min. The reason why the line speed is slower than that of Example 1 is that when the coating film is thin, the influence of oxygen radicals reaches the inside of the coating film, and as a result, the curing speed of the entire coating film becomes slow. The results are shown in Table 1.
  • Example 8 In Example 1, a laminate was produced in the same manner as in Example 1 except that the coating thickness was 50 ⁇ m. The line speed at this time was 50 m / min. The results are shown in Table 1.
  • Example 9 In Example 1, a laminate was produced in the same manner as in Example 1 except that methyl ethyl ketone was used as the component (D). The line speed at this time was 50 m / min. The results are shown in Table 1.
  • Pencil Hardness According to JIS K 5600-5-4, the hardness of the coating film surface was evaluated using a pencil ⁇ "Uni" (trade name) of Mitsubishi Pencil Co., Ltd. ⁇ under a 200 g load condition.
  • the composition of the present invention can produce a laminate having a coating film comprising the composition at a high line speed, and the coating film has scratch resistance and stain resistance. Excellent bending resistance and appearance.
  • the compositions of Comparative Examples 1 and 2 having a ratio (a / b) outside the scope of the present invention are inferior in any of scratch resistance, stain resistance and bending resistance of the resulting coating film.
  • the composition of Comparative Example 3 using a component (A) having a smaller number of (meth) acryloyloxy groups than the range of the present invention is inferior in scratch resistance and stain resistance of the resulting coating film.
  • compositions of Comparative Examples 4 to 6 using the component (A) having no ethanolamine residue had a slow curing speed and therefore a slow line speed. Further, the obtained coating film was inferior in any of scratch resistance, stain resistance, bending resistance and appearance.
  • Comparative Example 7 in which a polydimethylsiloxane graft acrylate paint, which is a self-healing paint, was used as the resin composition, the coating film was poor in stain resistance. Further, as is clear from the comparison between Example 7 and Example 8, the thicker coating film can increase the line speed, but in Comparative Example 7, the coating film thickness is higher than that of Example 1. Despite the increase in thickness, the cure rate was slow and therefore the line speed was slow.
  • Example 10 In Example 1, as the thermoplastic resin film (3), SET329 FZ26401 (trade name, cyclohexanedimethanol copolymerized polyethylene terephthalate (PETG resin) film manufactured by Riken Technos Co., Ltd., thickness 100 ⁇ m, conforming to JIS-7105-1981 on the surface. A laminate was produced in the same manner as in Example 1 except that the 60 ° gloss (90%) measured in this manner was used and no anchor coat agent was used. The line speed at this time was 50 m / min. The obtained laminates were subjected to the tests (1) to (7). Further, the 60 ° gloss of the surface of the coating film (1) was measured according to JIS-7105-1981. The results are shown in Table 2.
  • PETG resin cyclohexanedimethanol copolymerized polyethylene terephthalate
  • Example 10 a laminate was produced in the same manner as in Example 10 except that methyl ethyl ketone was used as component (D). However, the thermoplastic resin film (3) as a base material swelled, and the laminate was produced. Can not get.
  • thermoplastic resin film (3) as the substrate is an unstretched polyester film
  • methyl ethyl ketone is used as the solvent (D)
  • the substrate film swells to obtain a laminate.
  • D-2 a solvent containing 1% by mass of 1-methoxy-2-propanol
  • the base film does not swell and the gloss of the base film is not lowered.
  • a laminate was obtained (Examples 10 and 11).
  • Example 12 A biaxially stretched polyester film “E5101 (trade name)” (thickness 25 ⁇ m) of Toyobo Co., Ltd. is used as the thermoplastic resin film (3), and an anchor coating agent “Byron 24SS (trade name) of Toyobo Co., Ltd. is used on one side thereof.
  • An anchor coating agent “Byron 24SS (trade name) of Toyobo Co., Ltd. was used on one side thereof.
  • the line was run continuously at a line speed of 50 m / min.
  • the roll could be wound well without using a separator.
  • the resin composition was applied using a film Mayer bar type coating
  • thermoplastic resin film (3) of the laminate obtained above a polyester hot melt adhesive “AD-170-20 (trade name)” manufactured by Tokushi Co., Ltd. has a thickness of 2.5 ⁇ m after drying. Then, the thermoplastic resin film (5) obtained as described below is bonded using a mirror metal roll-rubber roll thermal laminator to obtain a laminate having the structure shown in FIG. It was. At this time, the metal roll side was in contact with the coating film (1), and the surface temperature of the metal roll was set to 190 ° C. For the laminate thus obtained, the above test (1 ) To (7) and the following tests (8) to (10) were conducted. Further, the 60 ° gloss of the surface of the coating film (1) was measured according to JIS-7105-1981. The results are shown in Table 3.
  • thermoplastic resin film (5) 44 parts by mass of PETG resin “Cadence GS1 (trade name)” of Eastman Chemical Company, Inc.
  • Crystalline polyethylene terephthalate resin “WK-801 (trade name)” (Dicarboxylic acid component: mixture of terephthalic acid 90 mol% or more and less than 99 mol% and isophthalic acid 1 mol% or more and less than 10 mol%; glycol component: ethylene glycol) 41 parts by mass, polybutylene terephthalate resin “Toraycon 1200M” manufactured by Toray Industries, Inc. (Trade name) ”15 parts by weight, Kaneka Co., Ltd.
  • thermoplastic resin film (5) was obtained by being cooled and solidified by being sandwiched between a mirror cooling roll made of rubber and a cooling roll made of rubber.
  • Example 13 As a component (B), Sumidur HT of Sumika Bayer Urethane Co., Ltd. (trade name, polyisocyanate of the above formula (7), number of isocyanate groups per unit amount: 3.10 mol / kg) (B-2) was used in the same manner as in Example 12 except that 42 was used in an amount of 42 parts by mass. The results are shown in Table 3.
  • Examples 14 to 17 and Comparative Examples 8 to 9 A laminate was produced in the same manner as in Example 12 except that the amount of component (B) in Example 12 was changed as shown in Table 3. The results are shown in Table 3.
  • Comparative Example 10 A laminate was produced in the same manner as in Example 17 except that the component (A-2) obtained in Synthesis Example 2 was used in place of the component (A-1). The line speed at this time was 50 m / min as in Example 17, but a separator was required for winding on the roll. The results are shown in Table 3.
  • Example 12 instead of component (A-1), tripropylene glycol diacrylate (manufactured by Daicel Cytec Co., Ltd., number of hydroxyl groups per unit amount: 0 mol / kg) (A-3) was used.
  • C is an alkylphenone photopolymerization initiator (Darocur 1173 (trade name), 2-hydroxy-2-methyl-1-phenyl-propan-1-one) (C-2) from Ciba Japan Co., Ltd.
  • a laminate was produced in the same manner as in Example 12 except that it was used in an amount of 5 parts by mass. The line speed at this time was 30 m / min.
  • Example 12 dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., number of hydroxyl groups per unit amount: 0.63 mol / kg) (A-4) was used instead of component (A-1). Further, a laminate was produced in the same manner as in Example 12 except that the amount of component (B) was changed so that the ratio (a / b) was 0.85. The results are shown in Table 3. The above (A-4) does not have a hydroxyl group in structure, but a hydroxyl group exists because it contains a component in which a part of the acryloyloxy group is hydrolyzed. The same applies to (A-5) in Comparative Example 13 below.
  • Example 12 instead of component (A-1), ditrimethylolpropane tetraacrylate (manufactured by Nippon Kayaku Co., Ltd., number of hydroxyl groups per unit amount: 0.35 mol / kg) (A-5) was used. Further, a laminate was produced in the same manner as in Example 12 except that the amount of component (B) was changed so that the ratio (a / b) was 0.85. The results are shown in Table 3.
  • Example 18 In Example 12, a laminate was produced in the same manner as in Example 12 except that the thickness of the coating film was 2 ⁇ m. The line speed at this time was 40 m / min. The reason why the line speed is slower than in Example 12 is that when the coating film is thin, the influence of oxygen radicals reaches the inside of the coating film, and as a result, the curing speed of the entire coating film becomes slow. The results are shown in Table 3.
  • Example 19 In Example 12, a laminate was produced in the same manner as in Example 12 except that the thickness of the coating film was 50 ⁇ m. The line speed at this time was 50 m / min. The results are shown in Table 3.
  • Example 20 In Example 12, a laminate was produced in the same manner as in Example 12 except that methyl ethyl ketone was used as the component (D). The line speed at this time was 50 m / min. The results are shown in Table 3.
  • Example 21 component (A ′) was added in addition to component (A).
  • component (A) 50 parts by mass of component (A-1) was used, and as component (A ′), 50 parts by mass of component (A-4) was used.
  • a laminate was produced in the same manner as in Example 12 except that the active energy ray-curable resin composition was obtained using the components (B) to (E) shown in Table 3. The results are shown in Table 3.
  • Example 22 A laminate was produced in the same manner as in Example 21 except that the amount of component (E) was 2.0 parts by mass. The results are shown in Table 3.
  • Test method Solvent rubbing test The laminate obtained above was cut into a size of 100 mm ⁇ 100 mm, and the surface of the coating film (1) was scrubbed using Kimwipe (trade name) sufficiently containing methyl ethyl ketone. The presence or absence of a change in gloss or sharpness of the portion after 10 reciprocating wipes was visually observed and evaluated according to the following criteria. ⁇ : No change in surface gloss or sharpness ⁇ : Change in surface gloss or sharpness
  • the laminate having the coating film (1) made of the active energy ray-curable resin composition of the present invention has high gloss and has scratch resistance, stain resistance, and bending resistance. Moreover, characteristics such as appearance are also good.
  • the laminate of Comparative Example 10 in which the number of (meth) acryloyloxy groups is less than the range of the present invention is inferior to scratch resistance, solvent rubbing test and glycerin test.
  • the curing rate of the resin composition was slow, and therefore the line speed was slow.
  • the obtained laminate was inferior to any of scratch resistance, stain resistance, bending resistance, appearance, solvent rubbing test, glycerin test, and scratch resistance test.
  • Example 23 In Example 12, as a thermoplastic resin film (3), SET329 FZ26401 (trade name, cyclohexanedimethanol copolymerized polyethylene terephthalate (PETG resin) film manufactured by Riken Technos Co., Ltd., thickness 100 ⁇ m, surface JIS-7105-1981 A laminate was manufactured and evaluated in the same manner as in Example 12 except that a 60 ° gloss (measured in accordance with 90%) and not subjected to anchor coating treatment was used. The results are shown in Table 4.
  • PETG resin cyclohexanedimethanol copolymerized polyethylene terephthalate
  • Reference example 2 A laminate was produced in the same manner as in Example 23 except that methyl ethyl ketone was used as the component (D). However, the thermoplastic resin film (3) swelled and a laminate could not be obtained.
  • thermoplastic resin film (3) is an unstretched polyester film
  • methyl ethyl ketone is used as the solvent (D)
  • the thermoplastic resin film (3) swells to obtain a laminate.
  • D methyl ethyl ketone
  • the thermoplastic resin film (3) does not swell and the thermoplastic resin film (3 It was possible to obtain a laminate without reducing the gloss of *
  • Example 25 70 parts by weight of component (A-1) as component (A) 30 parts by mass of dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., number of hydroxyl groups per unit amount: 0.63 mol / kg) (A-4) as component (A ′) Coronate HX (trade name, polyisocyanate of the above formula (6)) (B-1) 22 parts by mass as a component (B) manufactured by Nippon Polyurethane Industry Co., Ltd. 5 parts by mass of benzophenone (C-1) as component (C) Ciba Japan Co., Ltd.
  • Darocur 1173 (trade name, alkylphenone photopolymerization initiator, 2-hydroxy-2-methyl-1-phenyl-propan-1-one) (C-2) 2 parts by mass, 8 parts by mass of high-purity colloidal silica (F-1) having an average particle diameter of 80 nm as component (F) and 200 parts by mass of 1-methoxy-2-propanol (D-1) as component (D) were stirred.
  • F-1 high-purity colloidal silica
  • D-1 1-methoxy-2-propanol
  • the number of isocyanate groups per unit amount of component (B-1) was 5.12 mol / kg as measured by the method described above.
  • thermoplastic resin film (3) A biaxially stretched polyester film “Embret S25” (trade name, thickness 25 ⁇ m) manufactured by Unitika Ltd. is used as the thermoplastic resin film (3), and an anchor coating agent (byron 24SS (trade name) manufactured by Toyobo Co., Ltd.) is used on one side thereof. ) was applied to a dry film thickness of 1 ⁇ m to obtain a thermoplastic resin film (3) having an anchor coat (2) on one side.
  • the process of applying the resin composition obtained above on the anchor coat (2), drying, irradiating with ultraviolet rays, and winding the obtained laminate on a roll is a series of production lines, 50 m / min line Performed continuously at speed. The roll could be wound well without using a separator.
  • the resin composition was applied using a film Mayer bar type coating apparatus so that the coating thickness after drying was 11 ⁇ m.
  • the line speed in an Example and a comparative example is the fastest speed which can manufacture a laminated body stably in a production line.
  • the obtained laminates were subjected to the above tests (1) to (7) and the following test (11). The results are shown in Table 5.
  • Example 26 As a component (B), Sumidur HT of Sumika Bayer Urethane Co., Ltd. (trade name, polyisocyanate of the above formula (7), number of isocyanate groups per unit amount: 3.10 mol / kg) (B-2) was used in the same manner as in Example 25 except that 36 was used in an amount of 36 parts by mass. The results are shown in Table 5.
  • Examples 27-30 and Comparative Examples 14-15 A laminate was produced in the same manner as in Example 25 except that the amount of component (B) in Example 25 was changed as shown in Table 5. The results are shown in Table 5.
  • Example 31 In Example 25, 100 parts by mass of the component (A-1) as the component (A), 25 parts by mass of the component (B-1) as the component (B), and 7 parts by mass of the component (C-1) as the component (C). A laminate was produced in the same manner as in Example 25 except that it was used. The results are shown in Table 6.
  • Example 31 except that 100 parts by mass of the component (A-2) obtained in Synthesis Example 2 was used instead of the component (A-1), and 35 parts by mass of the component (B-1) was used as the component (B).
  • a laminate was manufactured in the same manner as in Example 31.
  • the line speed at this time was 50 m / min as in Example 31, but a separator was required for winding on the roll. The results are shown in Table 6.
  • Example 31 instead of component (A-1), tripropylene glycol diacrylate (manufactured by Daicel-Cytec, number of hydroxyl groups per unit amount: 0 mol / kg) (A-3) was used.
  • C is an alkylphenone photopolymerization initiator (Darocur 1173 (trade name), 2-hydroxy-2-methyl-1-phenyl-propan-1-one) (C-2) from Ciba Japan Co., Ltd.
  • a laminate was produced in the same manner as in Example 31 except that it was used in an amount of 5 parts by mass. The line speed at this time was 30 m / min.
  • Example 31 instead of component (A-1), dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., number of hydroxyl groups per unit amount: 0.63 mol / kg) (A-4) was used. In addition, a laminate was manufactured in the same manner as in Example 31 except that the amount of the component (B) was changed so that the ratio (a / b) was 0.85. The results are shown in Table 6. The above (A-4) does not have a hydroxyl group in structure, but a hydroxyl group exists because it contains a component in which a part of the acryloyloxy group is hydrolyzed. The same applies to (A-5) in Comparative Example 19 below.
  • Example 31 instead of component (A-1), ditrimethylolpropane tetraacrylate (manufactured by Nippon Kayaku Co., Ltd., number of hydroxyl groups per unit amount: 0.35 mol / kg) (A-5) was used. In addition, a laminate was manufactured in the same manner as in Example 31 except that the amount of the component (B) was changed so that the ratio (a / b) was 0.85. The results are shown in Table 6.
  • Example 32 In Example 31, a laminate was produced in the same manner as in Example 31 except that the thickness of the coating film was 2 ⁇ m. The line speed at this time was 40 m / min. The reason why the line speed is slower than in Example 31 is that when the coating film is thin, the influence of oxygen radicals reaches the inside of the coating film, and as a result, the curing speed of the entire coating film becomes slow. The results are shown in Table 6.
  • Example 33 In Example 31, a laminate was produced in the same manner as in Example 31 except that the coating thickness was 50 ⁇ m. The line speed at this time was 50 m / min. The results are shown in Table 6.
  • Example 34 A laminate was produced in the same manner as in Example 31 except that methyl ethyl ketone (D-2) was used as the component (D) in Example 31. The results are shown in Table 6.
  • Example 38 A laminate was produced in the same manner as in Example 36 except that high-purity colloidal silica (F-2) having an average particle diameter of 20 nm was used as the component (F). The results are shown in Table 7.
  • Example 39 A laminate was produced in the same manner as in Example 36, except that high-purity colloidal silica (F-3) having an average particle diameter of 150 nm was used as the component (F). The results are shown in Table 7.
  • Example 40 A laminate was produced in the same manner as in Example 36 except that high-purity colloidal silica (F-4) having an average particle diameter of 250 nm was used as the component (F). The results are shown in Table 7.
  • Reference Example 5 A laminate was produced in the same manner as in Example 36 except that high-purity colloidal silica (F-5) having an average particle diameter of 400 nm was used as the component (F). The results are shown in Table 7.
  • Example 41 a laminate was produced in the same manner except that the amounts of component (A) and component (B) were changed to the amounts shown in Table 8.
  • the line speed at this time was 50 m / min. The results are shown in Table 8.
  • Example 43 A laminate was produced in the same manner as in Example 42 except that 0.5 part by mass of MegaFac RS-75 (trade name) (E-1) manufactured by DIC Corporation was used as the component (E). The line speed at this time was 50 m / min. The results are shown in Table 8.
  • Example 44 A laminate was produced in the same manner as in Example 43, except that the amount of component (E-1) was changed to 2.0 parts by mass. The line speed at this time was 50 m / min. The results are shown in Table 8.
  • Test method (11) Haze According to JIS K 7105, the coating film (1) side of the laminate was measured as the incident surface.
  • the composition of the present invention can produce a laminate having a coating film comprising the composition at a high line speed, and the coating film has scratch resistance, Excellent contamination, bending resistance, appearance and transparency.
  • the compositions of Comparative Examples 14 and 15 whose ratio (a / b) is outside the scope of the present invention are inferior in any of the scratch resistance, stain resistance and bending resistance of the resulting coating film.
  • the composition of Comparative Example 16 using a component (A) having a smaller number of (meth) acryloyloxy groups than the range of the present invention is inferior in scratch resistance and stain resistance of the resulting coating film.
  • compositions of Comparative Examples 17 to 19 using only those having no ethanolamine residue as the component (A) had a slow curing speed and therefore a slow line speed. Further, the obtained coating film was inferior in any of scratch resistance, stain resistance, bending resistance and appearance.
  • the pencil hardness is insufficient.
  • Reference Example 4 in which the amount of component (F) is greater than the preferred range of the present invention is inferior in bending resistance.
  • Reference Example 5 in which the particle diameter of the component (F) is larger than the preferred range of the present invention is inferior in transparency (haze).
  • Example 45 In Example 31, as the thermoplastic resin film (3), SET329 FZ26401 (trade name, cyclohexanedimethanol copolymerized polyethylene terephthalate (PETG resin) film manufactured by Riken Technos Co., Ltd., thickness 100 ⁇ m, conforming to JIS-7105-1981 on the surface. And a laminate was produced in the same manner as in Example 31 except that the 60 ° gloss (90%) was used and no anchor coat agent was used. The line speed at this time was 50 m / min. The obtained laminates were subjected to the tests (1) to (7). Further, the 60 ° gloss of the surface of the coating film (1) was measured according to JIS-7105-1981. The results are shown in Table 9.
  • PETG resin cyclohexanedimethanol copolymerized polyethylene terephthalate
  • D-1 1-methoxy-2-propanol
  • D-2 methyl ethyl ketone
  • 50 mass ratio
  • Example 45 a laminate was produced in the same manner as in Example 45 except that methyl ethyl ketone (D-2) was used as the component (D).
  • the thermoplastic resin film (3) as a base material was produced. It swelled and a laminate could not be obtained.
  • thermoplastic resin film (3) as the base material is an unstretched amorphous polyester film
  • methyl ethyl ketone is used as the solvent (D)
  • the base film swells and is laminated. A body could not be obtained (Reference Example 6).
  • a solvent containing 1% by mass of 1-methoxy-2-propanol (D-2) is used as the solvent (D)
  • the base film does not swell and the gloss of the base film is not lowered.
  • a laminate was obtained (Examples 45 and 46).
  • Coating film 2 Anchor coat 3: Thermoplastic resin film 4: Adhesive layer 5: Thermoplastic resin film

Abstract

A composition according to the present invention comprises (A) a specific ethanolamine-modified polyether (meth)acrylate, (B) a polyisocyanate having at least two isocyanate groups per molecule and (C) a photopolymerization initiator, wherein the ratio of the number (a) of hydroxy groups in the component (A) to the number (b) of isocyanate groups in the component (B) (i.e., (a/b)) falls within the range from 0.5 to 1.2.

Description

活性エネルギー線硬化性樹脂組成物Active energy ray-curable resin composition
 本発明は、活性エネルギー線硬化性樹脂組成物に関し、さらに詳しくは、硬化速度が速く、耐傷付き性、耐摩耗性、耐汚染性、耐折り曲げ性、加工性、透明性に優れ、また硬度が高い塗膜をもたらす活性エネルギー線硬化性樹脂組成物に関する。 The present invention relates to an active energy ray-curable resin composition, and more specifically, has a high curing rate, excellent scratch resistance, abrasion resistance, stain resistance, bending resistance, workability, transparency, and hardness. The present invention relates to an active energy ray-curable resin composition that provides a high coating film.
 従来から、床材や壁面材などの建築部材として、あるいは家具や台所製品、冷蔵庫等の家電製品のキャビネットとして、木材、合板、集成材、パーチクルボード、ハードボードなどの木質系材料からなる基材の表面に、あるいは鉄、アルミニウムなどの金属系材料からなる基材の表面に化粧シートを貼合して加飾化粧されたものが使用されている。また、近年、自動車のドアサッシュ等の外装部やインスツルメントパネル等の内装部に、ハードコート塗料を直接塗工することに代えて、化粧シートを貼付することが提案されている(例えば特許文献1)。このような化粧シートは、装飾性はもちろんのこと、耐傷付性、耐摩耗性、耐汚染性、透明性などを高いレベルでバランスよく有することが要求される。 Conventionally, base materials made of woody materials such as wood, plywood, laminated timber, particle board, hardboard, as building materials such as flooring and wall materials, or as cabinets for household appliances such as furniture, kitchen products, refrigerators, etc. A decorative sheet made by pasting a decorative sheet on the surface or the surface of a base material made of a metal material such as iron or aluminum is used. In recent years, it has been proposed to apply a decorative sheet instead of directly applying a hard coat paint to an exterior part such as a door sash of an automobile or an interior part such as an instrument panel (for example, a patent) Reference 1). Such a decorative sheet is required to have a good balance of not only decorativeness but also scratch resistance, abrasion resistance, stain resistance, transparency and the like at a high level.
 化粧シートに上記のような特性を付与するために、基材となる熱可塑性樹脂フィルムの表面に硬化性樹脂組成物を含む塗料からなる塗膜を形成することが広く行われている。 In order to impart the above properties to a decorative sheet, it is widely performed to form a coating film made of a paint containing a curable resin composition on the surface of a thermoplastic resin film serving as a base material.
 上記塗料として、ジペンタエリスリトールヘキサアクリレートやペンタエリスリトールテトラアクリレート等の多官能アクリレート及び/又は多官能ウレタンアクリレートとポリイソシアネートとを含む活性エネルギー線硬化性樹脂組成物を含む塗料が多用されているが(例えば特許文献2)、上記塗料からなる塗膜は、耐折り曲げ性と耐傷付性や耐摩耗性とのバランスが悪く、耐折り曲げ性を良好にすると、耐傷付性や耐摩耗性が十分ではない。また、上記塗料は硬化速度が遅く、したがって、基材表面に塗料が塗布された化粧シートをライン生産によって製造するとき、ライン速度を低く抑える必要がある。UV硬化性が悪い場合には、UV照度をアップする方法があるが、UVランプの放射熱でフィルムが変形する不具合がある。 As the paint, a paint containing an active energy ray-curable resin composition containing a polyfunctional acrylate such as dipentaerythritol hexaacrylate or pentaerythritol tetraacrylate and / or a polyfunctional urethane acrylate and a polyisocyanate is often used ( For example, Patent Document 2), a coating film made of the above-mentioned paint has a poor balance between bending resistance and scratch resistance and wear resistance, and if the bending resistance is improved, scratch resistance and abrasion resistance are not sufficient. . Moreover, the said coating material has a slow curing speed, Therefore When manufacturing the decorative sheet | seat with which the coating material was apply | coated to the base-material surface by line production, it is necessary to suppress a line speed low. When the UV curability is poor, there is a method of increasing the UV illuminance, but there is a problem that the film is deformed by the radiant heat of the UV lamp.
 耐傷付性や耐摩耗性が改善された塗膜を与える硬化性塗料として、シロキサン結合を有する高分子とアクリルポリオール樹脂とを含む組成物(例えば特許文献3)や、ポリジメチルシロキサン部分とビニルモノマーの重合体鎖部分を有する共重合体を含む組成物(例えば特許文献4)などの提案がなされている。しかし、これらの塗料は硬化速度が遅く、また、得られる塗膜は耐汚染性が十分でない。 As a curable coating that gives a coating film with improved scratch resistance and abrasion resistance, a composition containing a polymer having a siloxane bond and an acrylic polyol resin (for example, Patent Document 3), a polydimethylsiloxane portion and a vinyl monomer There has been proposed a composition containing a copolymer having a polymer chain moiety (for example, Patent Document 4). However, these paints have a slow curing rate, and the resulting coating film has insufficient stain resistance.
特開2003-118061号公報Japanese Patent Laid-Open No. 2003-118061 特開平11-216812号公報JP-A-11-216812 特開平11-268195号公報Japanese Patent Laid-Open No. 11-268195 特許第3999411号公報Japanese Patent No. 3999411
 本発明の目的は、硬化速度が速く、耐傷付き性、耐摩耗性、耐汚染性、耐折り曲げ性、加工性、透明性に優れ、また硬度が高い塗膜を得ることができる活性エネルギー線硬化性樹脂組成物を提供することである。 The object of the present invention is an active energy ray curing that has a high curing rate, excellent scratch resistance, abrasion resistance, stain resistance, bending resistance, workability, transparency, and can obtain a coating film with high hardness. It is providing a functional resin composition.
 本発明者らは、エタノールアミンで変性されかつ特定数の(メタ)アクリロイルオキシ基を有するポリエーテル(メタ)アクリレートをポリイソシアネートと組み合わせた樹脂組成物が、上記目的を達成できることを見出した。また、該樹脂組成物にさらに微細な粒子を配合すると、塗膜の硬度が一層高まることを見出した。 The present inventors have found that a resin composition in which a polyether (meth) acrylate modified with ethanolamine and having a specific number of (meth) acryloyloxy groups is combined with a polyisocyanate can achieve the above object. Further, it has been found that when finer particles are added to the resin composition, the hardness of the coating film is further increased.
すなわち、本発明は、
(A)下記式(1):
That is, the present invention
(A) The following formula (1):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(ここで、R1およびR2は各々、1以上の(メタ)アクリロイルオキシ基を有するポリエーテル(メタ)アクリレート残基であり、R1における(メタ)アクリロイルオキシ基の数とR2における(メタ)アクリロイルオキシ基の数の合計が3以上である)を有するエタノールアミン変性ポリエーテル(メタ)アクリレート、
(B)1分子中に2以上のイソシアネート基を有するポリイソシアネート、および
(C)光重合開始剤
を含み、成分(A)の水酸基の個数(a)と成分(B)のイソシアネート基の個数(b)との比(a/b)が0.5~1.2の範囲にあることを特徴とする活性エネルギー線硬化性樹脂組成物である。
(Where R1 and R2 are each a polyether (meth) acrylate residue having one or more (meth) acryloyloxy groups, and the number of (meth) acryloyloxy groups in R1 and (meth) acryloyloxy in R2 Ethanolamine-modified polyether (meth) acrylate having a total number of groups of 3 or more,
(B) a polyisocyanate having two or more isocyanate groups in one molecule, and (C) a photopolymerization initiator, the number of hydroxyl groups (a) in component (A) and the number of isocyanate groups in component (B) ( An active energy ray-curable resin composition having a ratio (a / b) to b) in the range of 0.5 to 1.2.
 本発明の樹脂組成物は、硬化速度が速く、したがって、この組成物を基材としての熱可塑性樹脂フィルムに塗布し、硬化させて積層体を製造するとき、製造ラインの速度を高めることができ、これは、製造コストの低下をもたらす。また、本発明の組成物から得られる塗膜は、耐傷付き性、耐摩耗性、耐汚染性、耐折り曲げ性、加工性、透明性に優れる。また、該樹脂組成物にさらに微細な粒子を配合すると、塗膜の硬度が一層高まる。したがって、この塗膜を有する積層体は、床材や壁面材などの建築部材や冷蔵庫等の家電製品、自動車のドアサッシュ等の外装部、インスツルメントパネル等の内装部などの表面保護や装飾のための化粧シートとして好適に使用することができる。 The resin composition of the present invention has a high curing speed. Therefore, when a laminate is produced by applying this composition to a thermoplastic resin film as a base material and curing it, the speed of the production line can be increased. This leads to a reduction in manufacturing costs. Moreover, the coating film obtained from the composition of this invention is excellent in scratch resistance, abrasion resistance, stain resistance, bending resistance, workability, and transparency. In addition, when finer particles are added to the resin composition, the hardness of the coating film is further increased. Therefore, the laminated body having this coating film is used for surface protection and decoration of building materials such as floor materials and wall materials, home appliances such as refrigerators, exterior parts such as automobile door sashes, and interior parts such as instrument panels. Can be suitably used as a decorative sheet.
本発明の積層体の一例を示す模式図である。It is a schematic diagram which shows an example of the laminated body of this invention.
(A)エタノールアミン変性ポリエーテル(メタ)アクリレート
本発明の組成物における成分(A)は、下記式(1)を有するエタノールアミン変性ポリエーテル(メタ)アクリレートである。
(A) Ethanolamine-modified polyether (meth) acrylate Component (A) in the composition of the present invention is an ethanolamine-modified polyether (meth) acrylate having the following formula (1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式中、R1およびR2は各々、1以上の(メタ)アクリロイルオキシ基を有するポリエーテル(メタ)アクリレート残基であり、R1における(メタ)アクリロイルオキシ基の数とR2における(メタ)アクリロイルオキシ基の数の合計が3以上、好ましくは3~9であり、より好ましくは4である。上記式(1)において、R1における(メタ)アクリロイルオキシ基の数とR2における(メタ)アクリロイルオキシ基の数の合計が2以下であると、塗膜の耐傷付性、耐摩耗性および耐汚染性に劣る。R1とR2は互いに同じでも異なっていてもよいが、R1とR2が同じであるのが好ましい。 In the above formula, R1 and R2 are each a polyether (meth) acrylate residue having one or more (meth) acryloyloxy groups, and the number of (meth) acryloyloxy groups in R1 and (meth) acryloyloxy in R2 The total number of groups is 3 or more, preferably 3 to 9, and more preferably 4. In the above formula (1), when the sum of the number of (meth) acryloyloxy groups in R1 and the number of (meth) acryloyloxy groups in R2 is 2 or less, the scratch resistance, abrasion resistance and contamination resistance of the coating film Inferior to sex. R1 and R2 may be the same or different from each other, but R1 and R2 are preferably the same.
 成分(A)は、酸素ラジカルを捕捉する働きをする。一般に、(メタ)アクリロイルオキシ官能基含有化合物はラジカル重合により硬化するところ、ラジカル重合性化合物は、空気中の酸素ラジカルにより重合阻害を受け易く、特に塗膜の表面では、酸素ラジカルにより硬化反応が遅くなる。表面が十分に硬化するように活性エネルギー線の照射時間を長くすると、製造ラインの速度が低下するとともに、塗膜内部では酸素ラジカルの影響が比較的少ないために、硬化反応が進み過ぎて塗膜が脆いものになり、したがって、耐折り曲げ性に劣るものになる。本発明の組成物は、成分(A)が上記式(1)の特定の構造を有するので、酸素ラジカルによる阻害を受けず、したがって、硬化反応速度が速く、かつ耐傷付き性、耐摩耗性、耐汚染性、耐折り曲げ性、加工性、透明性に優れた塗膜を得ることができる。成分(A)は、エタノールアミン残基を有し、エタノールアミン残基における窒素原子の隣のメチレン基の水素が引き抜かれてラジカルが発生し、そこに酸素ラジカルが結合して捕捉されると考えられる。 Component (A) functions to capture oxygen radicals. In general, when a (meth) acryloyloxy functional group-containing compound is cured by radical polymerization, the radical polymerizable compound is susceptible to polymerization inhibition by oxygen radicals in the air, and particularly on the surface of the coating film, a curing reaction is caused by oxygen radicals. Become slow. If the irradiation time of the active energy rays is increased so that the surface is sufficiently cured, the speed of the production line is reduced, and the influence of oxygen radicals is relatively small inside the coating film. Becomes fragile, and therefore has poor bending resistance. Since the component (A) has the specific structure of the above formula (1), the composition of the present invention is not inhibited by oxygen radicals. Therefore, the curing reaction rate is high, and scratch resistance, abrasion resistance, A coating film excellent in stain resistance, bending resistance, workability, and transparency can be obtained. Component (A) has an ethanolamine residue, a hydrogen is generated by extracting hydrogen of a methylene group adjacent to the nitrogen atom in the ethanolamine residue, and an oxygen radical is bound and trapped there. It is done.
 成分(A)は、例えば、下記式(3)で示される化合物および下記式(4)で示される化合物をエタノールアミンとともに室温で反応させることにより製造することができる。この反応は常温で高活性であり、触媒を必要としない。またゲル化を防止するために、溶剤等を加えて見かけの濃度を低くすることが好ましい。
R1-O-C(=O)-CH=CH        (3)
R2-O-C(=O)-CH=CH        (4)
ここで、R1およびR2は上記で定義した通りである。
Component (A) can be produced, for example, by reacting a compound represented by the following formula (3) and a compound represented by the following formula (4) with ethanolamine at room temperature. This reaction is highly active at room temperature and does not require a catalyst. In order to prevent gelation, it is preferable to add a solvent or the like to lower the apparent concentration.
R1-O—C (═O) —CH═CH 2 (3)
R2-O—C (═O) —CH═CH 2 (4)
Here, R1 and R2 are as defined above.
 なお、成分(A)を上記方法で製造するとき、主な生成物である目的の成分(A)以外にも多種類の副反応物が生成するが、塗料分野では、成分(A)を、これらの副生成物を含んだ状態で使用するのが通常である。 In addition, when the component (A) is produced by the above method, many kinds of side reaction products are generated in addition to the target component (A) which is the main product. Usually, these by-products are used.
 上記式(3)および(4)で示される化合物としては、例えば、ダイセル・サイテック株式会社製のTPGDA(商品名)(トリプロピレングリコールジアクリレート)およびOTA480(商品名)(グリセリンプロポキシトリアクリレート)、ならびに日本化薬株式会社製のジペンタエリスリトールヘキサアクリレートが挙げられる。 As the compounds represented by the above formulas (3) and (4), for example, TPGDA (trade name) (tripropylene glycol diacrylate) and OTA 480 (trade name) (glycerin propoxytriacrylate) manufactured by Daicel-Cytec Corporation, In addition, dipentaerythritol hexaacrylate manufactured by Nippon Kayaku Co., Ltd. may be mentioned.
 上記OTA480は、下記式(5)を有する化合物である。 The OTA480 is a compound having the following formula (5).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 成分(A)として特に好ましいのは、下記式(2)を有する化合物である。 Particularly preferred as component (A) is a compound having the following formula (2).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 成分(A)が上記式(2)を有する化合物であるとき、得られる組成物は保存安定性が良く、また、得られる塗膜は、耐折り曲げ性、加工性、透明性、三次元成形性、耐傷付性、耐摩耗性および耐汚染性のバランスが非常に良い。また、一般に、基材フィルムに塗料を塗布して得られる積層体を製造する製造ラインでは、積層体をロールに巻き取るときに積層体同士がブロッキングするのを防ぐために、塗膜の上にセパレータを置くのが通常であるが、成分(A)が上記式(2)の化合物である場合には、硬化反応が非常に速いので、セパレータを使用する必要がないという利点がある。 When the component (A) is a compound having the above formula (2), the resulting composition has good storage stability, and the resulting coating film has bending resistance, workability, transparency, and three-dimensional formability. The balance of scratch resistance, abrasion resistance and stain resistance is very good. Also, in general, in a production line for producing a laminate obtained by applying a paint to a base film, a separator is placed on a coating film in order to prevent the laminates from blocking each other when the laminate is wound around a roll. However, when the component (A) is a compound of the above formula (2), the curing reaction is very fast, so there is an advantage that it is not necessary to use a separator.
(B)ポリイソシアネート
 成分(B)は、1分子中に2以上のイソシアネート基(-N=C=O)を有する化合物である。具体的には、メチレンビス-4-シクロヘキシルイソシアネート、トリレンジイソシアネートのトリメチロールプロパンアダクト体、ヘキサメチレンジイソシアネートのトリメチロールプロパンアダクト体、イソホロンジイソシアネートのトリメチロールプロパンアダクト体、トリレンジイソシアネートのイソシアヌレート体、ヘキサメチレンジイソシアネートのイソシアヌレート体、イソホロンジイソシアネートのイソシアヌレート体およびヘキサメチレンジイソシアネートのビウレット体等のポリイソシアネート、および上記ポリイソシアネートのブロック型イソシアネート等のウレタン架橋剤を挙げることができる。また、架橋の際には、必要に応じてジブチルスズジラウレートおよびジブチルスズジエチルヘキソエート等の触媒を添加してもよい。
(B) The polyisocyanate component (B) is a compound having two or more isocyanate groups (—N═C═O) in one molecule. Specifically, methylene bis-4-cyclohexyl isocyanate, trimethylol propane adduct of tolylene diisocyanate, trimethylol propane adduct of hexamethylene diisocyanate, trimethylol propane adduct of isophorone diisocyanate, isocyanurate of tolylene diisocyanate, hexa Examples thereof include polyisocyanates such as isocyanurate of methylene diisocyanate, isocyanurate of isophorone diisocyanate and biuret of hexamethylene diisocyanate, and urethane crosslinking agents such as block type isocyanates of the above polyisocyanate. Further, at the time of crosslinking, a catalyst such as dibutyltin dilaurate and dibutyltin diethylhexoate may be added as necessary.
 これらの中で、塗膜の耐折り曲げ性および三次元成形性ならびに塗料の保存安定性の観点から、1分子中にイソシアネート基を3個以上有するものが好ましく、特に、下記式(6)で表される、ヘキサメチレンジイソシアネートの3量体でありかつイソシアネート環構造をもつものや、下記式(7)で表される、ヘキサメチレンジイソシアネートの3量体でありかつトリメチロールプロパンアダクト体であるものが好適に使用され得る。これらはヘキサメチレン鎖の先の互いに離れた位置にイソシアネート基が存在するという構造上の特徴があり、そのため、得られる塗膜は弾性があり、耐傷付性および耐摩耗性に優れる。 Among these, those having three or more isocyanate groups in one molecule are preferable from the viewpoint of the bending resistance and three-dimensional formability of the coating film and the storage stability of the paint, and particularly represented by the following formula (6). A hexamethylene diisocyanate trimer having an isocyanate ring structure, or a hexamethylene diisocyanate trimer represented by the following formula (7) and a trimethylolpropane adduct. It can be suitably used. These have a structural feature that isocyanate groups are present at positions away from each other at the end of the hexamethylene chain, and thus the resulting coating film is elastic and excellent in scratch resistance and abrasion resistance.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 本発明の樹脂組成物は、成分(A)における水酸基と成分(B)におけるイソシアネート基との反応により硬化を生じる。硬化が十分に生じるように、本発明の樹脂組成物は、成分(A)の水酸基の個数(a)と成分(B)のイソシアネート基の個数(b)の比(a/b)が0.5~1.2、好ましくは0.7~1.1の範囲にある。上記比が上記下限未満であると、得られる塗膜の耐折り曲げ性および三次元成形性に劣る。上記比が上記上限より大きいと、得られる塗膜の水性汚染物、例えば水性マジックに対する耐汚染性に劣る。 The resin composition of the present invention is cured by the reaction between the hydroxyl group in component (A) and the isocyanate group in component (B). The resin composition of the present invention has a ratio (a / b) of the number of hydroxyl groups (a) in component (A) to the number of isocyanate groups (b) in component (B) (a / b) so that curing can occur sufficiently. It is in the range of 5 to 1.2, preferably 0.7 to 1.1. When the ratio is less than the lower limit, the resulting coating film is inferior in bending resistance and three-dimensional formability. When the ratio is larger than the above upper limit, the resulting coating film is poor in stain resistance against aqueous contaminants such as aqueous magic.
 また、本発明の樹脂組成物は、成分(A)以外の(メタ)アクリレート系化合物(A’)
をさらに含んでいてもよい。成分(A’)を含めることにより、塗膜の特性を積層体の用途に応じて適宜調節することができる。成分(A’)を含む場合には、成分(A)の水酸基の個数(a)および成分(A’)の水酸基の個数(a’)の合計(a+a’)と成分(B)のイソシアネート基の個数(b)との比((a+a’)/b)が0.5~1.2、好ましくは0.7~1.1の範囲にある。上記比が上記下限未満であると、得られる塗膜の耐折り曲げ性および三次元成形性に劣る。上記比が上記上限より大きいと、得られる塗膜の水性汚染物、例えば水性マジックに対する耐汚染性に劣る。なお、成分(A’)は、水酸基を有していてもいなくてもよい。成分(A)と成分(A’)との配合比は、積層体の用途に応じて適宜決めることができる。成分(A)の量と成分(A’)の量との和を100質量%としたとき、通常は成分(A)10~100質量%および成分(A’)90~0質量%であり、好ましくは成分(A)50~100質量%および成分(A’)50~0質量%である。
In addition, the resin composition of the present invention comprises a (meth) acrylate compound (A ′) other than the component (A).
May further be included. By including the component (A ′), the properties of the coating film can be appropriately adjusted according to the use of the laminate. When the component (A ′) is included, the total number (a + a ′) of the number of hydroxyl groups (a) of the component (A) and the number of hydroxyl groups (a ′) of the component (A ′) and the isocyanate group of the component (B) The ratio ((a + a ′) / b) to the number (b) of is in the range of 0.5 to 1.2, preferably 0.7 to 1.1. When the ratio is less than the lower limit, the resulting coating film is inferior in bending resistance and three-dimensional formability. When the ratio is larger than the above upper limit, the resulting coating film is poor in stain resistance against aqueous contaminants such as aqueous magic. In addition, the component (A ′) may or may not have a hydroxyl group. The compounding ratio of the component (A) and the component (A ′) can be appropriately determined according to the use of the laminate. When the sum of the amount of the component (A) and the amount of the component (A ′) is 100% by mass, the component (A) is usually 10 to 100% by mass and the component (A ′) is 90 to 0% by mass, The component (A) is preferably 50 to 100% by mass and the component (A ′) is preferably 50 to 0% by mass.
 上記(メタ)アクリレート系化合物(A’)としては、例えば、ポリウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリアクリル(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリアルキレングリコールポリ(メタ)アクリレートおよびポリエーテル(メタ)アクリレート等の(メタ)アクリロイルオキシ基含有プレポリマー又はオリゴマー;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソボニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、フェニルセロソルブ(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2-アクリロイルオキシエチルハイドロゲンフタレート、ジメチルアミノエチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレートおよびトリメチルシロキシエチルメタクリレート等の(メタ)アクリロイルオキシ基を1個含有する化合物;ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2,2‘-ビス(4-(メタ)アクリロイルオキシポリエチレンオキシフェニル)プロパンおよび2,2’-ビス(4-(メタ)アクリロイルオキシポリプロピレンオキシフェニル)プロパン等の(メタ)アクリロイルオキシ基を2個含有する化合物;トリメチロールプロパントリ(メタ)アクリレートおよびトリメチロールエタントリ(メタ)アクリレート等の(メタ)アクリロイルオキシ基を3個含有する化合物;ペンタエリスリトールテトラ(メタ)アクリレート等の(メタ)アクリロイルオキシ基を4個含有する化合物;ジペンタエリスリトールヘキサアクリレート等の(メタ)アクリロイルオキシ基を6個含有する化合物等を挙げることができ、これらを1種又は2種以上を使用することができる。 Examples of the (meth) acrylate compound (A ′) include polyurethane (meth) acrylate, polyester (meth) acrylate, polyacryl (meth) acrylate, epoxy (meth) acrylate, polyalkylene glycol poly (meth) acrylate and (Meth) acryloyloxy group-containing prepolymer or oligomer such as polyether (meth) acrylate; methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl ( (Meth) acrylate, lauryl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, phenyl (meth) Acrylate, phenyl cellosolve (meth) acrylate, 2-methoxyethyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 2-acryloyloxyethyl hydrogen phthalate, dimethylaminoethyl (meth) acrylate, trifluoro Compounds containing one (meth) acryloyloxy group such as ethyl (meth) acrylate and trimethylsiloxyethyl methacrylate; diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) ) Acrylate, polyethylene glycol di (meth) acrylate, 2,2'-bis (4- (meth) acryloyloxypolyethyleneoxyphenyl) pro And compounds containing two (meth) acryloyloxy groups such as 2,2′-bis (4- (meth) acryloyloxypolypropyleneoxyphenyl) propane; trimethylolpropane tri (meth) acrylate and trimethylolethanetri ( Compounds containing 3 (meth) acryloyloxy groups such as (meth) acrylate; compounds containing 4 (meth) acryloyloxy groups such as pentaerythritol tetra (meth) acrylate; (meth) such as dipentaerythritol hexaacrylate The compound etc. which contain six acryloyloxy groups can be mentioned, These can use 1 type (s) or 2 or more types.
 なお、本明細書では、成分(A)および成分(A’)の各々の単位量当たりの水酸基の個数を、JIS-K-1557-1:2007に基づいて決定した。すなわち、成分(A)および成分(A’)の各々の水酸基をアセチル化試薬(無水酢酸のピリジン溶液)によりアセチル化した後、過剰のアセチル化試薬を水により加水分解し、生成した酢酸を京都電子工業株式会社の電位差自動滴定装置AT-610型を使用して水酸化カリウムのエタノール溶液で滴定する方法により上記個数を求めた。また、成分(B)の単位量当たりのイソシアネート基の個数を、JIS-K-7301:1995に基づいて決定した。すなわち、成分(B)のイソシアネート基をジノルマルブチルアミンと反応させた後、過剰のジノルマルブチルアミンを京都電子工業株式会社の電位差自動滴定装置AT-610型を使用して塩酸水溶液で滴定する方法により上記個数を求めた。 In this specification, the number of hydroxyl groups per unit amount of each of component (A) and component (A ′) was determined based on JIS-K-1557-1: 2007. That is, each hydroxyl group of component (A) and component (A ′) is acetylated with an acetylating reagent (acetic anhydride in pyridine), then excess acetylating reagent is hydrolyzed with water, and the resulting acetic acid is converted into Kyoto. The above number was determined by titration with an ethanol solution of potassium hydroxide using a potentiometric automatic titrator AT-610, manufactured by Denki Kogyo Co., Ltd. The number of isocyanate groups per unit amount of component (B) was determined based on JIS-K-7301: 1995. That is, by reacting the isocyanate group of component (B) with dinormal butylamine, and then titrating excess dinormal butylamine with an aqueous hydrochloric acid solution using an automatic potentiometric titrator AT-610 type manufactured by Kyoto Electronics Industry Co., Ltd. The above number was determined.
(C)光重合開始剤
 成分(C)はラジカル重合型の光重合開始剤であり、公知のものを使用することができる。例えば、トリアジン系化合物、アセトフェノン系化合物、ビイミダゾール化合物、ベンゾイン系化合物、ベンゾフェノン系化合物、チオキサントン系化合物、アントラセン系化合物、アルキルフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、オキシムフェニル酢酸エステル系化合物、ヒドロキシケトン系化合物およびアミノベンゾエート系化合物などの光重合開始剤が挙げられる。これらをそれぞれ単独で、または2種以上を組み合わせて用いることができる。これらの中ではベンゾフェノン系化合物が、その反応機構が水素引抜によるラジカル発生型であるため好ましく、具体的には、ベンゾフェノン、メチル-o-ベンゾイルベンゾエート、4-メチルベンゾフェノン、4、4’-ビス(ジエチルアミノ)ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(tert-ブチルパーオキシカルボ
ニル)ベンゾフェノンおよび2,4,6-トリメチルベンゾフェノンなどを挙げることが
できる。
(C) The photopolymerization initiator component (C) is a radical polymerization type photopolymerization initiator, and known ones can be used. For example, triazine compounds, acetophenone compounds, biimidazole compounds, benzoin compounds, benzophenone compounds, thioxanthone compounds, anthracene compounds, alkylphenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds And photopolymerization initiators such as oxime phenylacetate compounds, hydroxyketone compounds and aminobenzoate compounds. These can be used alone or in combination of two or more. Among these, benzophenone compounds are preferable because the reaction mechanism is a radical generation type by hydrogen abstraction. Specifically, benzophenone, methyl-o-benzoylbenzoate, 4-methylbenzophenone, 4,4′-bis ( Diethylamino) benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 3,3 ′, 4,4′-tetra (tert-butylperoxycarbonyl) benzophenone and 2, Examples include 4,6-trimethylbenzophenone.
 成分(C)の配合量は、他の成分の種類や所望の塗膜厚みにより適宜選択することができ、一般的には成分(A)100質量部に対して、または成分(A’)が存在する場合には成分(A)と成分(A’)の合計100質量部に対して、0.5~10質量部程度である。例えば、成分(A)が上記式(2)の化合物であり、成分(B)が上記式(6)の化合物であり、成分(C)がベンゾフェノンであるとき、塗膜厚みが0.5~30μmである場合には、成分(A)100質量部に対して成分(C)の量は4~10質量部であり、塗膜厚みが30μm~500μmである場合には、成分(A)100質量部に対して0.5~8質量部である。塗膜厚みが薄いときの方が、概して成分(C)の量が多いのは、薄いほど酸素ラジカルによる硬化阻害の影響が起こり易いためである。 The compounding quantity of a component (C) can be suitably selected with the kind of other component, and desired coating-film thickness, Generally, with respect to 100 mass parts of component (A), or a component (A ') When present, the amount is about 0.5 to 10 parts by mass with respect to 100 parts by mass in total of component (A) and component (A ′). For example, when the component (A) is a compound of the above formula (2), the component (B) is a compound of the above formula (6), and the component (C) is benzophenone, the coating thickness is 0.5 to When the thickness is 30 μm, the amount of the component (C) is 4 to 10 parts by mass with respect to 100 parts by mass of the component (A), and when the coating thickness is 30 to 500 μm, the component (A) 100 0.5 to 8 parts by mass with respect to parts by mass. The reason why the amount of the component (C) is generally larger when the thickness of the coating film is thinner is that the thinner the film, the more easily the influence of curing inhibition by oxygen radicals occurs.
(F)微粒子
 本発明の樹脂組成物は、粒子径1nm~300nmの微粒子を成分(A)100質量部に対して、または成分(A’)が存在する場合には成分(A)と成分(A’)の合計100質量部に対して、1~50質量部の量で含むのが好ましい。成分(F)は、本発明の樹脂組成物から得られる塗膜の硬度を高める働きをする。成分(F)としては、無機微粒子、有機微粒子のどちらも使用することができる。
 無機微粒子としては、例えば、シリカ(二酸化珪素);酸化アルミニウム、ジルコニア、チタニア、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウムスズ酸化物、酸化アンチモン、酸化セリウム等の金属酸化物微粒子;弗化マグネシウム、弗化ナトリウム等の金属弗化物微粒子;金属微粒子;金属硫化物微粒子;金属窒化物微粒子;などをあげることができる。
 有機微粒子としては、例えば、スチレン系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、エチレン系樹脂、アミノ系化合物とホルムアルデヒドとの硬化樹脂などの樹脂ビーズをあげることができる。
 これらは、1種単独で又は2種以上組み合わせて用いることができる。
 また微粒子の塗料中での分散性を高めたり、得られる塗膜の硬度を高めたりする目的で、当該微粒子の表面をビニルシラン、アミノシラン等のシラン系カップリング剤;チタネート系カップリング剤;アルミネート系カップリング剤;(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合基やエポキシ基などの反応性官能基を有する有機化合物;脂肪酸、脂肪酸金属塩等の表面処理剤などにより処理したものを使用してもよい。
 これらの中でより硬度の高い塗膜を得るためにシリカ、酸化アルミニウムの微粒子が好ましく、シリカの微粒子がより好ましい。シリカ微粒子の市販品としては、日産化学工業株式会社のスノーテックス(商品名)、扶桑化学工業株式会社のクォートロン(商品名)などをあげることができる。
(F) Fine particles The resin composition of the present invention comprises fine particles having a particle size of 1 nm to 300 nm based on 100 parts by mass of component (A), or component (A) and component (A ′) when component (A ′) is present. It is preferably contained in an amount of 1 to 50 parts by mass with respect to 100 parts by mass in total of A ′). Component (F) serves to increase the hardness of the coating film obtained from the resin composition of the present invention. As the component (F), both inorganic fine particles and organic fine particles can be used.
Examples of the inorganic fine particles include silica (silicon dioxide); metal oxide fine particles such as aluminum oxide, zirconia, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide, antimony oxide, and cerium oxide; Metal fluoride fine particles such as magnesium fluoride and sodium fluoride; metal fine particles; metal sulfide fine particles; metal nitride fine particles;
Examples of the organic fine particles include resin beads such as a styrene resin, an acrylic resin, a polycarbonate resin, an ethylene resin, and a cured resin of an amino compound and formaldehyde.
These can be used alone or in combination of two or more.
In addition, for the purpose of increasing the dispersibility of the fine particles in the paint or increasing the hardness of the resulting coating film, the surface of the fine particles is treated with a silane coupling agent such as vinylsilane or aminosilane; a titanate coupling agent; Coupling agent; Organic compound having an ethylenically unsaturated bond group such as (meth) acryloyl group, vinyl group and allyl group and reactive functional group such as epoxy group; Surface treatment agent such as fatty acid and fatty acid metal salt You may use what was processed.
Of these, silica and aluminum oxide fine particles are preferable, and silica fine particles are more preferable in order to obtain a coating film with higher hardness. Examples of commercially available silica fine particles include Snowtex (trade name) manufactured by Nissan Chemical Industries, Ltd., Quartron (trade name) manufactured by Fuso Chemical Industries, Ltd., and the like.
 成分(F)の粒子径は、得られる塗膜の透明性を付与するために300nm以下である必要がある。また粒子径の粗い場合は得られる塗膜の硬さが不十分になり易い。好ましくは200nm以下であり、より好ましくは120nm以下である。一方、粒子径の下限は特にないが、通常入手可能な粒子は細かくてもせいぜい1nm程度である。 The particle diameter of the component (F) needs to be 300 nm or less in order to impart transparency of the resulting coating film. Moreover, when the particle diameter is coarse, the hardness of the obtained coating film tends to be insufficient. Preferably it is 200 nm or less, More preferably, it is 120 nm or less. On the other hand, there is no particular lower limit of the particle diameter, but normally available particles are at most about 1 nm even if they are fine.
 なお本明細書において、微粒子の粒子径は、日機装株式会社のレーザー回折・散乱式粒度分析計MT3200II(商品名)を使用して測定した粒子径分布曲線において、粒子の小さい方からの累積が50質量%となる粒子径である。 In the present specification, the particle diameter of the fine particles is a cumulative particle diameter distribution curve of 50 measured using a laser diffraction / scattering particle size analyzer MT3200II (trade name) manufactured by Nikkiso Co., Ltd. The particle diameter is mass%.
 また成分(F)の配合量は、成分(A)100質量部に対して、または成分(A’)が存在する場合には成分(A)と成分(A’)の合計100質量部に対して、1~50質量部である。1質量部以下では塗膜の硬度の改良効果を得られない。50質量部以上では耐折り曲げ性が低下する。好ましくは3~25質量部である。 Moreover, the compounding quantity of a component (F) is with respect to 100 mass parts of components (A), or when a component (A ') exists, with respect to a total of 100 mass parts of a component (A) and a component (A'). 1 to 50 parts by mass. If it is 1 part by mass or less, the effect of improving the hardness of the coating film cannot be obtained. If it is 50 parts by mass or more, the bending resistance is lowered. The amount is preferably 3 to 25 parts by mass.
(D)溶剤
 本発明の組成物は希釈のために必要に応じて溶剤を含んでいてもよい。溶剤は、成分(A)、(A’)、(B)、(C)および(E)と相溶性であり、かつ成分(A)、(A’)、(B)、(C)、(E)および(F)と反応したりこれらの成分の自己反応を触媒したりしないものであれば、特に制限されない。例えば、1-メトキシ-2-プロパノール、酢酸nブチル、トルエンおよびメチルエチルケトン、メチルイソブチルケトン、酢酸エチル、ダイアセトンアルコールなどの公知のものを使用することができる。中でも、1-メトキシ-2-プロパノールを40質量%以上、より好ましくは80質量%以上含む溶剤が好ましく、上記組成物が塗布されるところの、下記に述べる熱可塑性樹脂フィルム(3)が、無延伸のポリエステル系樹脂フィルム等の耐溶剤性の低い樹脂フィルムの場合には特にそうである。一般に、無延伸のポリエステル系樹脂フィルムは、三次元成形性および耐折り曲げ性に優れるとともに表面光沢に優れるので化粧フィルムの基材フィルムとして広く使用されているが、耐溶剤性に劣る。そのため、溶剤を含む組成物を基材フィルムとしての無延伸のポリエステル系樹脂フィルムに塗布すると、得られる化粧フィルムの表面光沢を失ったり、場合によっては基材フィルムが膨潤して化粧フィルムが得られなくなるという問題がある。溶剤が、1-メトキシ-2-プロパノールを40質量%以上含むものであると、上記問題を生じない。
(D) Solvent The composition of the present invention may contain a solvent as needed for dilution. The solvent is compatible with components (A), (A ′), (B), (C) and (E), and components (A), (A ′), (B), (C), ( There is no particular limitation as long as it does not react with E) and (F) or catalyze the self-reaction of these components. For example, known compounds such as 1-methoxy-2-propanol, n-butyl acetate, toluene and methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, diacetone alcohol and the like can be used. Of these, a solvent containing 40% by mass or more, more preferably 80% by mass or more of 1-methoxy-2-propanol is preferable, and the thermoplastic resin film (3) described below is coated with the above composition. This is especially true in the case of a resin film having low solvent resistance such as a stretched polyester resin film. In general, unstretched polyester-based resin films are widely used as base films for decorative films because they are excellent in three-dimensional formability and bending resistance and surface gloss, but are poor in solvent resistance. Therefore, when a composition containing a solvent is applied to an unstretched polyester resin film as a base film, the surface gloss of the resulting decorative film is lost, or in some cases the base film swells and a decorative film is obtained. There is a problem of disappearing. If the solvent contains 40% by mass or more of 1-methoxy-2-propanol, the above problem does not occur.
 溶剤の量は、塗工装置や塗膜厚みに応じて好適な粘度になるように適宜調節することができる。通常は、成分(A)100質量部に対して、または成分(A’)が存在する場合には成分(A)と成分(A’)の合計100質量部に対して、150~250質量部である。 The amount of the solvent can be appropriately adjusted so as to have a suitable viscosity according to the coating apparatus and the thickness of the coating film. Usually, 150 to 250 parts by mass with respect to 100 parts by mass of component (A) or, when component (A ′) is present, with respect to 100 parts by mass of component (A) and component (A ′) in total. It is.
(E)紫外線反応性弗素系表面改質剤
 本発明の組成物は、塗料のはじき防止や、塗膜の耐指紋性、耐汚染性、ブロッキング防止のために、紫外線反応性弗素系表面改質剤(E)を更に含み得る。紫外線反応性弗素系表面改質剤(E)は、フッ素含有基、親水性基、親油性基および紫外線反応性基を有する化合物が好ましく、成分(E)の市販例としては、DIC株式会社のメガファックRS-75(商品名)などがある。成分(E)の量は、成分(A)100質量部に対して、または成分(A’)が存在する場合には成分(A)と成分(A’)の合計100質量部に対して、0.1~5質量部が好ましく、より好ましくは0.2~2.0 質量部である。5質量部よりも多いと、表面硬度が低下する場合がある。
(E) UV-reactive fluorine-based surface modifier The composition of the present invention is a UV-reactive fluorine-based surface modifier for preventing paint repellency and for preventing fingerprint resistance, stain resistance and blocking of the coating film. Agent (E) may further be included. The ultraviolet-reactive fluorine-based surface modifier (E) is preferably a compound having a fluorine-containing group, a hydrophilic group, a lipophilic group, and an ultraviolet-reactive group. Mega-Face RS-75 (trade name) is available. The amount of component (E) is based on 100 parts by weight of component (A) or, if component (A ′) is present, based on a total of 100 parts by weight of component (A) and component (A ′), The amount is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 2.0 parts by mass. If the amount is more than 5 parts by mass, the surface hardness may decrease.
 また、本発明の樹脂組成物は、本発明の効果を損なわない範囲で、酸化防止剤、耐候性安定剤、耐光性安定剤、紫外線吸収剤、熱安定剤、帯電防止剤、界面活性剤、着色剤、赤外線遮蔽剤、レべリング剤、チクソ性付与剤、フィラー等の添加剤を1種、又は2種以上含んでいてもよい。 Further, the resin composition of the present invention is an antioxidant, a weather resistance stabilizer, a light resistance stabilizer, an ultraviolet absorber, a heat stabilizer, an antistatic agent, a surfactant, within a range not impairing the effects of the present invention. One type or two or more types of additives such as a colorant, an infrared shielding agent, a leveling agent, a thixotropic agent, and a filler may be included.
 本発明の樹脂組成物は、上記成分(A)、(B)、(C)および好ましくは(F)、ならびに他の任意成分を混合、攪拌することにより得られる。 The resin composition of the present invention can be obtained by mixing and stirring the above components (A), (B), (C) and preferably (F), and other optional components.
 こうして得られた樹脂組成物は活性エネルギー線硬化性であり、これを基材としての熱可塑性樹脂フィルム(3)の表面に塗布し、紫外線や可視光線、電子線等の活性エネルギー線を照射して硬化させると、耐傷付き性、耐摩耗性、耐汚染性および耐折り曲げ性に優れた塗膜(1)を有する積層体が得られる。あるいは、耐溶剤性に優れる基材、例えば表面に離型処理が施された2軸延伸ポリエチレンテレフタレートフィルムに上記組成物を塗布・乾燥・硬化して塗膜(1)を形成した後、熱ラミネートやドライラミネートなどの方法により熱可塑性樹脂フィルム(3)と積層することにより、塗膜(1)を有する積層体が得られる。 The resin composition thus obtained is active energy ray-curable, and this is applied to the surface of the thermoplastic resin film (3) as a base material and irradiated with active energy rays such as ultraviolet rays, visible rays, and electron beams. When cured, a laminate having a coating film (1) excellent in scratch resistance, abrasion resistance, contamination resistance and bending resistance is obtained. Alternatively, after the coating composition (1) is formed by applying, drying and curing the above composition to a substrate having excellent solvent resistance, for example, a biaxially stretched polyethylene terephthalate film having a release treatment applied to the surface, thermal lamination is performed. By laminating with the thermoplastic resin film (3) by a method such as dry lamination, a laminate having the coating film (1) is obtained.
 また、本発明の樹脂組成物は、硬化反応が速いので、この組成物を基材に塗布して積層体を製造するときのライン速度を高めることができ、したがって、製造コストを下げることができる。 Further, since the resin composition of the present invention has a fast curing reaction, it is possible to increase the line speed when the composition is applied to a substrate to produce a laminate, and thus the manufacturing cost can be reduced. .
 塗膜(1)の厚さは0.5μm以上であることが好ましい。これよりも薄いと耐傷付き性が不十分になることがある。一方、塗膜の厚さの上限は特にない。しかし、不必要に厚い塗膜はコストアップ要因になるばかりであるから、厚くてもせいぜい60μmである。 The thickness of the coating film (1) is preferably 0.5 μm or more. If it is thinner than this, scratch resistance may be insufficient. On the other hand, there is no upper limit on the thickness of the coating film. However, since an unnecessarily thick coating film only increases the cost, the thickness is 60 μm at most.
熱可塑性樹脂フィルム(3)
 上記樹脂組成物からなる塗膜(1)が積層されて積層体を形成するところの熱可塑性樹脂フィルム(3)としては、任意の熱可塑性樹脂フィルムを使用することができる。例えば、ポリ塩化ビニル樹脂、非結晶性、低結晶性または結晶性のポリエステル、ポリプロピレン、ポリエチレン等のポリオレフィン、アクリロニトリル・ブタジエン・スチレン共重合樹脂(ABS樹脂)やスチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・エチレン・ブタジエン・スチレン共重合体の水素添加物などのスチレン系樹脂、ポリアミド、アクリル、ポリカーボネート、ポリウレタン等の熱可塑性樹脂の無延伸フィルム、一軸延伸フィルムおよび二軸延伸フィルムを挙げることができる。好ましくは、ポリ塩化ビニル樹脂や非結晶性ポリエステル樹脂の無延伸フィルム、あるいは延伸加工した結晶性ポリエステルフィルムが用いられる。また、積層体に高光沢性を付与しようとする場合には、熱可塑性樹脂フィルム(3)は、それ自体が高い表面光沢を有することが好ましく、また透明であることが好ましい。具体的には、非結晶性ポリエステル樹脂の無延伸フィルムおよび延伸加工したポリエステル系フィルムが好ましく、ポリエチレンテレフタレート、グリコール共重合ポリエチレンテレフタレート、酸共重合ポリエチレンテレフタレートおよびポリエチレンナフタレートなどのポリエステル系樹脂またはこれらの任意の組み合わせからなる二軸延伸ポリエステル系フィルムが特に好ましい。
Thermoplastic resin film (3)
Any thermoplastic resin film can be used as the thermoplastic resin film (3) where the coating film (1) made of the resin composition is laminated to form a laminate. For example, polyvinyl chloride resin, non-crystalline, low crystalline or crystalline polyester, polypropylene, polyolefin such as polyethylene, acrylonitrile / butadiene / styrene copolymer resin (ABS resin), styrene / ethylene / butadiene / styrene copolymer Styrene resin such as hydrogenated styrene / ethylene / butadiene / styrene copolymer, unstretched film of thermoplastic resin such as polyamide, acrylic, polycarbonate, polyurethane, uniaxially stretched film and biaxially stretched film it can. Preferably, a non-stretched film of a polyvinyl chloride resin or an amorphous polyester resin or a stretched crystalline polyester film is used. Moreover, when it is going to provide high glossiness to a laminated body, it is preferable that a thermoplastic resin film (3) itself has high surface glossiness, and it is preferable that it is transparent. Specifically, a non-stretched film of an amorphous polyester resin and a stretched polyester film are preferable. Polyester resins such as polyethylene terephthalate, glycol copolymerized polyethylene terephthalate, acid copolymerized polyethylene terephthalate, and polyethylene naphthalate, or these resins A biaxially stretched polyester film comprising any combination is particularly preferred.
 上記非結晶性ポリエステル樹脂の無延伸フィルムとして、リケンテクノス株式会社のSET329  FZ26401{商品名、シクロヘキサンジメタノール共重合ポリエチレンテレフタレート(PETG樹脂)フィルム}を挙げることができ、二軸延伸ポリエステル系フィルムとして、東レ株式会社のルミラー(商品名)、ユニチカ株式会社のエンブレットS25(商品名)、帝人株式会社のメリネックス(705)#75(商品名)および東洋紡績株式会社のA4300(商品名)を挙げることができる。 Examples of the non-stretched film of the non-crystalline polyester resin include SET329 FZ26401 {trade name, cyclohexanedimethanol copolymerized polyethylene terephthalate (PETG resin) film} manufactured by Riken Technos Co., Ltd. Mention of Lumirror (trade name) of Co., Ltd., Emblet S25 (trade name) of Unitika Co., Ltd., Melinex (705) # 75 (trade name) of Teijin Ltd. and A4300 (trade name) of Toyobo Co., Ltd. it can.
 熱可塑性樹脂フィルム(3)の厚みは、通常10μm~100μmであり、好ましくは15~50μmである。上記下限よりも薄いと、積層体に皺が入ることがあり、上記上限よりも厚いと、ラッピング成形時の積層体に跳ね返りが生じたり、コーティング加工やラミネート加工の加工速度を低く抑えなければならなくなったりすることがある。 The thickness of the thermoplastic resin film (3) is usually 10 μm to 100 μm, preferably 15 to 50 μm. If it is thinner than the above lower limit, wrinkles may enter the laminated body. If it is thicker than the above upper limit, the laminated body will be bounced during lapping molding, and the processing speed of coating and laminating must be kept low. It may disappear.
 上記組成物からなる塗膜(1)の熱可塑性樹脂フィルム(3)への積層は、上記組成物を熱可塑性樹脂フィルム(3)に直接に又は後述するアンカーコート(2)層を介して塗布・乾燥・硬化することにより、あるいは、耐溶剤性に優れる基材、例えば表面に離型処理が施された2軸延伸ポリエチレンテレフタレートフィルムに上記組成物を塗布・乾燥・硬化して塗膜(1)を形成した後、これを熱ラミネートやドライラミネートなどの方法により熱可塑性樹脂フィルム(3)に直接に又はアンカーコート(2)層を介して貼合することにより行うことができる。 Lamination of the coating film (1) composed of the above composition onto the thermoplastic resin film (3) is applied directly to the thermoplastic resin film (3) or via an anchor coat (2) layer described later. A coating film (1) by applying, drying and curing the above composition to a substrate excellent in solvent resistance, for example, a biaxially stretched polyethylene terephthalate film having a release treatment applied to the surface by drying and curing ) Can be performed by bonding directly to the thermoplastic resin film (3) or via the anchor coat (2) layer by a method such as thermal lamination or dry lamination.
アンカーコート(2)
 上記積層体は、塗膜(1)と熱可塑性樹脂フィルム(3)との間にアンカーコート(2)を有し得る。アンカーコート(2)を設けることにより、塗膜(1)と熱可塑性樹脂フィルム(3)との間の接着強度を高めることができる。
Anchor coat (2)
The laminate may have an anchor coat (2) between the coating film (1) and the thermoplastic resin film (3). By providing the anchor coat (2), the adhesive strength between the coating film (1) and the thermoplastic resin film (3) can be increased.
 アンカーコート(2)を形成するためのアンカーコート剤としては、1-メトキシ-2-プロパノール、酢酸n-ブチル、トルエン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、アセトンなどの公知の溶剤に良く溶解し、かつ、十分なアンカー効果を得られるものであれば、特に制限はなく、ポリエステル系、アクリル系、ポリウレタン系、アクリルウレタン系およびポリエステルウレタン系等の慣用のものを使用することができる。市販例として、東洋紡株式会社のバイロン24SS(商品名)、株式会社トクシキのAU2141NTなどを挙げることができる。 As an anchor coating agent for forming the anchor coat (2), it is well soluble in known solvents such as 1-methoxy-2-propanol, n-butyl acetate, toluene, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, acetone and the like. As long as a sufficient anchor effect can be obtained, there is no particular limitation, and conventional ones such as polyester, acrylic, polyurethane, acrylic urethane, and polyester urethane can be used. Commercially available examples include Byron 24SS (trade name) manufactured by Toyobo Co., Ltd., AU2141NT manufactured by Tokushi Co., Ltd., and the like.
 アンカーコート(2)を設ける場合には、熱可塑性樹脂フィルム(3)の片面に、慣用の方法でアンカーコート剤を塗布してアンカーコート(2)を形成しておき、このアンカーコート(2)の上に上記組成物からなる塗膜(1)を積層することができる。 When the anchor coat (2) is provided, the anchor coat (2) is formed on one surface of the thermoplastic resin film (3) by applying an anchor coat agent by a conventional method. The anchor coat (2) A coating film (1) comprising the above composition can be laminated on the substrate.
 アンカーコート(2)の厚みは通常0.1~5μm程度、好ましくは0.5~2μmである。 The thickness of the anchor coat (2) is usually about 0.1 to 5 μm, preferably 0.5 to 2 μm.
 熱可塑性樹脂フィルム(3)に上記樹脂組成物やアンカーコート剤を塗布する方法は特に制限されず、公知のウェブ塗布方法を使用することができる。具体的には、ロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、エアナイフコートおよびダイコートなどの方法が挙げられる。 The method for applying the resin composition or the anchor coating agent to the thermoplastic resin film (3) is not particularly limited, and a known web application method can be used. Specific examples include roll coating, gravure coating, reverse coating, roll brushing, spray coating, air knife coating, and die coating.
熱可塑性樹脂フィルム(5)
 上記積層体は、熱可塑性樹脂フィルム(3)の塗膜(1)が積層された面とは逆の面に、接着剤層(4)を介して熱可塑性樹脂フィルム(5)がさらに積層されていてもよく(図1を参照)、その上に更に接着剤層(6)を設けてもよい。塗膜(1)を有する積層体を、特に、表面に凹凸を有する被着体(例えばパーチクルボード)に貼り付けるとき、積層体が熱可塑性樹脂フィルム(5)をさらに有すると、上記凹凸が積層体の表面に及ぶのを防ぐことができ、したがって鮮映性を保つことができて好ましい。
Thermoplastic resin film (5)
In the laminate, the thermoplastic resin film (5) is further laminated via an adhesive layer (4) on the surface opposite to the surface on which the coating film (1) of the thermoplastic resin film (3) is laminated. (Refer to FIG. 1), and an adhesive layer (6) may be further provided thereon. When the laminate having the coating film (1) is attached to an adherend (for example, a particle board) having irregularities on the surface, the irregularities are laminated when the laminate further has a thermoplastic resin film (5). It is preferable that it can be prevented from reaching the surface of the film, and therefore, vividness can be maintained.
 熱可塑性樹脂フィルム(5)の積層は、例えば、熱可塑性樹脂フィルム(3)の塗膜(1)が積層された面とは逆の面に接着剤を塗布して接着剤層(4)を形成し、その上に、金属ロール-ゴムロールの熱ラミネート装置を用いて熱可塑性樹脂フィルム(5)を貼り合わせることにより行うことができる。このとき、金属ロール側が塗膜(1)に接するようにする。金属ロールの表面温度は、120℃以上が好ましく、より好ましくは160℃以上である。表面温度の上限は、熱可塑性樹脂フィルム(3)の耐熱性を考慮すると、250℃程度である。上記金属ロールとして鏡面金属ロールを用いると、積層体の表面(塗膜(1)の表面)により高い光沢を付与することができる。上記金属ロールとしてエンボス金属ロールを用いると、積層体の表面(塗膜(1)の表面)にエンボスを付与することができる。 The lamination of the thermoplastic resin film (5) is performed, for example, by applying an adhesive on the surface opposite to the surface on which the coating film (1) of the thermoplastic resin film (3) is laminated, and then applying the adhesive layer (4). The thermoplastic resin film (5) can be formed thereon by using a metal roll-rubber roll heat laminating apparatus. At this time, the metal roll side is brought into contact with the coating film (1). The surface temperature of the metal roll is preferably 120 ° C. or higher, more preferably 160 ° C. or higher. The upper limit of the surface temperature is about 250 ° C. in consideration of the heat resistance of the thermoplastic resin film (3). When a mirror surface metal roll is used as the metal roll, high gloss can be imparted to the surface of the laminate (the surface of the coating film (1)). When an embossed metal roll is used as the metal roll, embossing can be imparted to the surface of the laminate (the surface of the coating film (1)).
 上記熱可塑性樹脂フィルム(5)の厚みは特に制限されないが、通常20~1000μmであり、好ましくは、100~500μmである。薄すぎると、積層体を被着体に貼り付けたときに、被着体の表面の凹凸が積層体の表面に及び、鮮映性を得られないことがあり、厚すぎると、積層体の被着体への貼合作業性が低下し易い。 The thickness of the thermoplastic resin film (5) is not particularly limited, but is usually 20 to 1000 μm, preferably 100 to 500 μm. If it is too thin, when the laminate is affixed to the adherend, the irregularities on the surface of the adherend may reach the surface of the laminate, and may not provide sharpness. If it is too thick, Bonding workability to the adherend tends to be lowered.
 上記熱可塑性樹脂フィルム(5)としては、上記熱可塑性樹脂フィルム(3)に関して挙げたものが使用され得る。また、熱可塑性樹脂フィルム(5)を有する積層体を被着体に貼り付けるとき、端部等を加温して折り曲げ加工し易くすることが好ましく、そのために、熱可塑性樹脂フィルム(5)は、ガラス転移温度が60~130℃であることが好ましい。そのようなガラス転移温度を有する熱可塑性樹脂フィルムとして、例えば、アクリル樹脂、ポリ塩化ビニル樹脂、ポリエステル樹脂およびアクリロニトリル・ブタジエン・スチレン共重合樹脂のフィルムを挙げることができる。 As the thermoplastic resin film (5), those mentioned for the thermoplastic resin film (3) can be used. In addition, when the laminate having the thermoplastic resin film (5) is attached to the adherend, it is preferable to heat the end portions and the like to facilitate the bending process. For this reason, the thermoplastic resin film (5) The glass transition temperature is preferably 60 to 130 ° C. Examples of the thermoplastic resin film having such a glass transition temperature include films of acrylic resin, polyvinyl chloride resin, polyester resin, and acrylonitrile / butadiene / styrene copolymer resin.
 中でも、熱可塑性樹脂フィルム(5)が、下記樹脂(α-1)および(α-2):
(α-1)ジカルボン酸成分がテレフタル酸であり、グリコール成分がエチレングリコール60モル%以上90モル%未満と1,4-シクロヘキサンジメタノール10モル%以上40モル%未満から成る非晶性ポリエチレンテレフタレート系樹脂(PETG) 30~70質量%、好ましくは40~60質量%、および
(α-2)ジカルボン酸成分がテレフタル酸90モル%以上99モル%未満とイソフタル酸1モル%以上10モル%未満から成り、グリコール成分がエチレングリコールである結晶性ポリエチレンテレフタレート系樹脂  70~30質量%、好ましくは60~40質量%、
を含む、ここで樹脂(α-1)の量と樹脂(α-2)の量との合計は100質量%である、芳香族ポリエステル系樹脂組成物から成るフィルムは、60~130℃のガラス転移温度を有するとともに、剛性が高く、したがってフィルムの厚みを薄くしても鮮映性を得ることができ、これはコスト低下をもたらすので好適である。
Among them, the thermoplastic resin film (5) has the following resins (α-1) and (α-2):
(Α-1) Amorphous polyethylene terephthalate in which the dicarboxylic acid component is terephthalic acid, and the glycol component is composed of 60 mol% or more and less than 90 mol% of ethylene glycol and 10 mol% or more and less than 40 mol% of 1,4-cyclohexanedimethanol. Resin (PETG) 30 to 70% by mass, preferably 40 to 60% by mass, and (α-2) dicarboxylic acid component is 90 to 99% by mol of terephthalic acid and 1 to 10% by mol of isophthalic acid A crystalline polyethylene terephthalate resin having a glycol component of ethylene glycol of 70 to 30% by mass, preferably 60 to 40% by mass,
Wherein the total amount of the resin (α-1) and the resin (α-2) is 100% by mass, and the film made of the aromatic polyester resin composition is a glass of 60 to 130 ° C. It has a transition temperature and has high rigidity, so that even if the thickness of the film is reduced, sharpness can be obtained, which is preferable because it leads to cost reduction.
 上記芳香族ポリエステル系樹脂組成物は、更に、ポリブチレンテレフタレート系樹脂、ポリトリメチレンテレフタレート系樹脂、ジカルボン酸成分がテレフタル酸とイソフタル酸でありグリコール成分がテトラメチレングリコールであるポリブチレンテレフタレート系共重合樹脂などのその他のポリエステル系樹脂を含み得る。また、樹脂(α-1)、樹脂(α-2)、及び上記その他のポリエステル系樹脂の合計量を100質量部としたとき、上記以外の更なる樹脂を、0.1~10質量部の範囲で含んでいてもよい。上記更なる樹脂としては、例えば、メタクリル酸エステル-スチレン/ブタジエンゴムグラフト共重合体、アクリロニトリル-スチレン/ブタジエンゴムグラフト共重合体、アクリロニトリル-スチレン/エチレン-プロピレンゴムグラフト共重合体、アクリロニトリル-スチレン/アクリル酸エステルグラフト共重合体、メタクリル酸エステル/アクリル酸エステルゴムグラフト共重合体、メタクリル酸エステル-アクリロニトリル/アクリル酸エステルゴムグラフト共重合体および熱可塑性ポリエステルエラストマーなどのエラストマー樹脂を挙げることができる。また、上記芳香族ポリエステル系樹脂組成物はさらに、滑剤、酸化防止剤、耐候性安定剤、熱安定剤、離型剤、帯電防止剤および界面活性剤等の添加剤を0.1~5質量部の範囲で含んでいてもよい。上記滑剤としては、例えば、パラフィンワックス、ホリエチレンワックス、ポリプロピレンワックスなどの炭化水素系ワックス、ステアリン酸、ヒドロキシステアリン酸、複合型ステアリン酸、オレイン酸などの脂肪酸系ワックス、ステアリン酸アミド、オキシステアリン酸アミド、オレイン酸アミド、エルシルアミド、リシノール酸アミド、ベヘン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミドなどの脂肪族アミド系ワックス、ステアリン酸n-ブチル、モンタン酸エステルワックスなどの脂肪族エステル系ワックス、脂肪族金属石けん系ワックス、尿素-ホルムアルデヒドワックスなどをあげることができる。また、顔料および無機充填剤をさらに含有させることができる。上記顔料には特に制限はなく、例えば、酸化チタン(白色)およびカーボンブラック(黒色)などが挙げられる。上記無機充填剤としては、例えば、軽質炭酸カルシウム、重質炭酸カルシウム、含水珪酸マグネシウムおよびタルクなどが挙げられる。 The aromatic polyester resin composition further comprises a polybutylene terephthalate resin, a polytrimethylene terephthalate resin, a polytrimethylene terephthalate resin, a polybutylene terephthalate copolymer in which the dicarboxylic acid component is terephthalic acid and isophthalic acid, and the glycol component is tetramethylene glycol. Other polyester resins such as resins may be included. Further, when the total amount of the resin (α-1), the resin (α-2), and the other polyester-based resin is 100 parts by mass, a further resin other than the above is added in an amount of 0.1 to 10 parts by mass. It may be included in the range. Examples of the further resin include methacrylic acid ester-styrene / butadiene rubber graft copolymer, acrylonitrile-styrene / butadiene rubber graft copolymer, acrylonitrile-styrene / ethylene-propylene rubber graft copolymer, acrylonitrile-styrene / Mention may be made of elastomer resins such as acrylic ester graft copolymers, methacrylic ester / acrylic ester rubber graft copolymers, methacrylic ester-acrylonitrile / acrylic ester rubber graft copolymers and thermoplastic polyester elastomers. The aromatic polyester resin composition further contains 0.1 to 5 mass of additives such as a lubricant, an antioxidant, a weather resistance stabilizer, a heat stabilizer, a release agent, an antistatic agent and a surfactant. It may be included in the range of parts. Examples of the lubricant include hydrocarbon waxes such as paraffin wax, polyethylene wax, and polypropylene wax, fatty acid waxes such as stearic acid, hydroxystearic acid, composite stearic acid, and oleic acid, stearamide, and oxystearic acid. Aliphatic amide waxes such as amide, oleic acid amide, erucyl amide, ricinoleic acid amide, behenic acid amide, methylene bis stearic acid amide, ethylene bis stearic acid amide, aliphatic esters such as stearic acid n-butyl and montanic acid ester wax And waxes, aliphatic metal soap waxes, urea-formaldehyde waxes and the like. Further, a pigment and an inorganic filler can be further contained. There is no restriction | limiting in particular in the said pigment, For example, a titanium oxide (white), carbon black (black), etc. are mentioned. Examples of the inorganic filler include light calcium carbonate, heavy calcium carbonate, hydrous magnesium silicate, and talc.
 上記芳香族ポリエステル系樹脂組成物から成るフィルムは、任意の方法で製造することができ、例えば、カレンダー加工機を用いて製膜することができ、あるいは、押出機とTダイを用いて製膜することもできる。カレンダー加工機は任意のものを使用することができ、例えば直立型3本ロール、直立型4本ロール、L型4本ロール、逆L型4本ロールおよびZ型ロールなどを挙げることができる。押出機は任意のものをし使用することができ、例えば単軸押出機、同方向回転二軸押出機、異方向回転二軸押出機などを挙げることができる。Tダイは任意のものを使用することが出来、例えばマニホールドダイ、フィッシュテールダイおよびコートハンガーダイなどを挙げることができる。 The film comprising the aromatic polyester resin composition can be produced by any method, for example, can be formed using a calendar processing machine, or can be formed using an extruder and a T die. You can also Any calendar processing machine can be used, and examples thereof include an upright three roll, an upright four roll, an L four roll, an inverted L four roll, and a Z roll. Any extruder can be used, and examples thereof include a single-screw extruder, a same-direction rotating twin-screw extruder, and a different-direction rotating twin-screw extruder. Any T die can be used, and examples thereof include a manifold die, a fishtail die, and a coat hanger die.
 図1に示す積層体の場合には、好ましくは、熱可塑性樹脂フィルム(3)が二軸延伸ポリエステル系フィルムであり、熱可塑性樹脂フィルム(5)が上記芳香族ポリエステル系樹脂組成物のフィルムである。 In the case of the laminate shown in FIG. 1, preferably, the thermoplastic resin film (3) is a biaxially stretched polyester film, and the thermoplastic resin film (5) is a film of the above aromatic polyester resin composition. is there.
 上記接着剤層(4)および接着剤層(6)を形成する接着剤としては、十分な接着強度を得られるものであれば、特に制限はなく、例えば、アクリル系、エチレン酢酸ビニル系、酢酸ビニル系、ポリエステル系、ポリウレタン系、エポキシ樹脂系、クロロプレンゴム系、スチレンブタジエンゴム系などの慣用の接着剤が使用可能である。接着剤層を設ける方法は特に制限されず、公知のウェブ塗布方法を使用することができる。具体的には、ロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、エアナイフコートおよびダイコートなどの方法が挙げられる。このとき、必要に応じて任意の希釈溶剤、例えば1-メトキシ-2-プロパノール、酢酸nブチル、トルエン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、アセトンを使用することができる。 The adhesive for forming the adhesive layer (4) and the adhesive layer (6) is not particularly limited as long as sufficient adhesive strength can be obtained. For example, acrylic, ethylene vinyl acetate, acetic acid Conventional adhesives such as vinyl, polyester, polyurethane, epoxy resin, chloroprene rubber and styrene butadiene rubber can be used. The method in particular of providing an adhesive bond layer is not restrict | limited, A well-known web application | coating method can be used. Specific examples include roll coating, gravure coating, reverse coating, roll brushing, spray coating, air knife coating, and die coating. At this time, any diluent solvent such as 1-methoxy-2-propanol, nbutyl acetate, toluene, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, and acetone can be used as necessary.
以下、本発明を実施例により説明するが、本発明はこれに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to this.
合成例1
 ダイセル・サイテック株式会社製のOTA480(製品名、上記式(5)のグリセリンプロポキシトリアクリレート)と2-アミノエタノールとを前者2モルに対し後者1モルの割合の量でガラス製のビーカーに仕込み、温度23℃で72時間反応させて、上記式(2)の構造を有する、4個のアクリロイルオキシ基を有するエタノールアミン変性ポリエーテルアクリレート(A-1)を得た。成分(A-1)の単位量当たりの水酸基の個数は、上述した方法により測定したところ、1.09モル/kgであった。
Synthesis example 1
Daicel Cytec Co., Ltd. OTA480 (product name, glycerin propoxytriacrylate of formula (5) above) and 2-aminoethanol were charged into a glass beaker in an amount of 1 mol of the latter to 2 mol of the former, The reaction was carried out at a temperature of 23 ° C. for 72 hours to obtain an ethanolamine-modified polyether acrylate (A-1) having four acryloyloxy groups having the structure of the above formula (2). The number of hydroxyl groups per unit amount of component (A-1) was 1.09 mol / kg as measured by the method described above.
合成例2
 上記合成例1において、OTA480(ダイセル・サイテック株式会社製、商品名)に替えてトリプロピレングリコールジアクリレート(ダイセル・サイテック社製)を使用したこと以外は上記合成例1と同様にして、2個のアクリロイルオキシ基を有するエタノールアミン変性ポリエーテルアクリレート(A-2)を合成した。成分(A-2)の単位量当たりの水酸基の個数は、1.51モル/kgであった。
Synthesis example 2
In Synthesis Example 1, two samples were used in the same manner as in Synthesis Example 1 except that tripropylene glycol diacrylate (manufactured by Daicel-Cytec) was used instead of OTA480 (manufactured by Daicel-Cytec). An ethanolamine-modified polyether acrylate (A-2) having an acryloyloxy group was synthesized. The number of hydroxyl groups per unit amount of component (A-2) was 1.51 mol / kg.
実施例1
 成分(A)としての成分(A-1)100質量部、成分(B)としての日本ポリウレタン工業株式会社製のコロネートHX(商品名、上記式(6)のポリイソシアネート)(B-1)25質量部、成分(C)としてのベンゾフェノン(C-1)7質量部、および成分(D)としての1-メトキシ-2-プロパノール200質量部を他の任意成分としてのはじき防止剤(共栄社株式会社製のポリフロー75(商品名))0.3質量部とともに混合、攪拌して活性エネルギー線硬化性樹脂組成物を得た。なお、成分(B-1)の単位量当たりのイソシアネート基の個数は、上述した方法により測定したところ、5.12モル/kgであった。したがって、成分(A-1)100質量部における水酸基の個数(a)と成分(B-1)25質量部におけるイソシアネート基の個数(b)の比(a/b)は、1.09×100/(5.12×25)=109/128=0.85である。
Example 1
100 parts by mass of component (A-1) as component (A), Coronate HX (trade name, polyisocyanate of formula (6) above) (B-1) 25 manufactured by Nippon Polyurethane Industry Co., Ltd. as component (B) Anti-repellent agent (Kyoeisha Co., Ltd.) as other optional components of 10 parts by mass, 7 parts by mass of benzophenone (C-1) as component (C), and 200 parts by mass of 1-methoxy-2-propanol as component (D) An active energy ray-curable resin composition was obtained by mixing and stirring together with 0.3 part by mass of manufactured Polyflow 75 (trade name). The number of isocyanate groups per unit amount of component (B-1) was 5.12 mol / kg as measured by the method described above. Therefore, the ratio (a / b) of the number of hydroxyl groups (a) in 100 parts by mass of component (A-1) to the number of isocyanate groups (b) in 25 parts by mass of component (B-1) is 1.09 × 100. /(5.12×25)=109/128=0.85.
 熱可塑性樹脂フィルム(3)としてユニチカ株式会社の二軸延伸ポリエステルフィルム「ユニチカS」(商品名、厚み50μm)を使用し、その片面にアンカーコート剤(東洋紡株式会社のバイロン24SS(商品名))を乾燥膜厚で1μmになるように塗布して、片面にアンカーコート(2)を有する熱可塑性樹脂フィルム(3)を得た。アンカーコート(2)の上に上記で得た樹脂組成物を塗布し、乾燥し、紫外線照射し、そして得られた積層体をロールに巻取る工程を一連の製造ラインで、50m/分のライン速度で連続して行った。ロールへの巻取りは、セパレータを使用しなくても良好に行うことができた。上記樹脂組成物の塗布は、フィルムメイヤーバー方式の塗工装置を用い、乾燥後の塗膜厚みが11μmとなるように行った。なお、実施例および比較例におけるライン速度は、製造ラインにおいて積層体を安定的に製造できる最も速い速度である。得られた積層体について、下記試験(1)~(7)を行った。結果を表1に示す。 Unitika's biaxially stretched polyester film “Unitika S” (trade name, thickness 50 μm) is used as the thermoplastic resin film (3), and an anchor coating agent (Toyobo Co., Ltd. Byron 24SS (trade name)) is used on one side. Was applied to a dry film thickness of 1 μm to obtain a thermoplastic resin film (3) having an anchor coat (2) on one side. The process of applying the resin composition obtained above on the anchor coat (2), drying, irradiating with ultraviolet rays, and winding the obtained laminate on a roll is a series of production lines, 50 m / min line Performed continuously at speed. The roll could be wound well without using a separator. The resin composition was applied using a film Mayer bar type coating apparatus so that the coating thickness after drying was 11 μm. In addition, the line speed in an Example and a comparative example is the fastest speed which can manufacture a laminated body stably in a production line. The obtained laminates were subjected to the following tests (1) to (7). The results are shown in Table 1.
実施例2
 成分(B)として、住化バイエルウレタン株式会社のスミジュールHT(商品名、上記式(7)のポリイソシアネート、単位量当たりのイソシアネート基の個数:3.10モル/kg)(B-2)を42質量部の量で使用したこと以外は、実施例1と同様にして積層体を製造した。結果を表1に示す。
Example 2
As a component (B), Sumidur HT of Sumika Bayer Urethane Co., Ltd. (trade name, polyisocyanate of the above formula (7), number of isocyanate groups per unit amount: 3.10 mol / kg) (B-2) Was used in the same manner as in Example 1 except that 42 was used in an amount of 42 parts by mass. The results are shown in Table 1.
実施例3~6および比較例1~2
 実施例1において成分(B)の量を表1のように変更したこと以外は実施例1と同様にして積層体を製造した。結果を表1に示す。
Examples 3 to 6 and Comparative Examples 1 and 2
A laminate was produced in the same manner as in Example 1 except that the amount of component (B) in Example 1 was changed as shown in Table 1. The results are shown in Table 1.
比較例3
 実施例6において、成分(A-1)に代えて合成例2で得た成分(A-2)を使用したこと以外は実施例6と同様にして積層体を製造した。このときのライン速度は実施例6と同様に50m/分であったが、ロールへの巻取りにはセパレータが必要であった。結果を表1に示す。
Comparative Example 3
In Example 6, a laminate was produced in the same manner as in Example 6 except that the component (A-2) obtained in Synthesis Example 2 was used in place of the component (A-1). The line speed at this time was 50 m / min as in Example 6, but a separator was required for winding onto the roll. The results are shown in Table 1.
比較例4
 実施例1において、成分(A-1)に代えて、トリプロピレングリコールジアクリレート(ダイセル・サイテック社製、単位量当たりの水酸基の個数:0モル/kg)(A-3)を使用し、成分(C)として、アルキルフェノン系光重合開始剤(チバ・ジャパン株式会社のダロキュア1173(商品名)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン)(C-2)を5質量部の量で使用したこと以外は、実施例1と同様にして積層体を製造した。このときのライン速度は30m/分であった。成分(C)としてベンゾフェノン(C-1)を使用しなかったのは、成分(A-1)に代えて上記(A-3)を使用すると、上記(C-1)では硬化速度が遅いためである。上記(A-3)と上記(B-1)との硬化が、ゲル化することなく速い速度で進むように、成分(C)として上記(C-2)を使用した。下記比較例5および6についても同様である。なお、成分(C)の量が5質量部であるのは、7質量部では多過ぎてゲル化を生じるからである。結果を表1に示す。
Comparative Example 4
In Example 1, instead of component (A-1), tripropylene glycol diacrylate (manufactured by Daicel Cytec Co., Ltd., number of hydroxyl groups per unit amount: 0 mol / kg) (A-3) was used. (C) is an alkylphenone photopolymerization initiator (Darocur 1173 (trade name), 2-hydroxy-2-methyl-1-phenyl-propan-1-one) (C-2) from Ciba Japan Co., Ltd. A laminate was produced in the same manner as in Example 1 except that it was used in an amount of 5 parts by mass. The line speed at this time was 30 m / min. The reason why benzophenone (C-1) was not used as component (C) was that when (A-3) was used instead of component (A-1), the curing rate was slow in (C-1). It is. The component (C-2) was used as the component (C) so that the curing of the component (A-3) and the component (B-1) proceeded at a high speed without gelation. The same applies to Comparative Examples 5 and 6 below. The amount of component (C) is 5 parts by mass because 7 parts by mass is too large and gelation occurs. The results are shown in Table 1.
比較例5
 実施例1において、成分(A-1)に代えて、ジペンタエリスリトールヘキサアクリレート(日本化薬株式会社製、単位量当たりの水酸基の個数:0.63モル/kg)(A-4)を使用し、また、比(a/b)が0.85になるように成分(B)の量を変えたこと以外は実施例1と同様にして積層体を製造した。結果を表1に示す。なお、上記(A-4)は、構造上は水酸基を有しないが、アクリロイルオキシ基の一部が加水分解された成分を含むために水酸基が存在する。下記比較例6における(A-5)についても同様である。
Comparative Example 5
In Example 1, dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., number of hydroxyl groups per unit amount: 0.63 mol / kg) (A-4) was used instead of component (A-1). In addition, a laminate was manufactured in the same manner as in Example 1 except that the amount of the component (B) was changed so that the ratio (a / b) was 0.85. The results are shown in Table 1. The above (A-4) does not have a hydroxyl group in structure, but a hydroxyl group exists because it contains a component in which a part of the acryloyloxy group is hydrolyzed. The same applies to (A-5) in Comparative Example 6 below.
比較例6
 実施例1において、成分(A-1)に代えて、ジトリメチロールプロパンテトラアクリレート(日本化薬株式会社製、単位量当たりの水酸基の個数:0.35モル/kg)(A-5)を使用し、また、比(a/b)が0.85になるように成分(B)の量を変えたこと以外は実施例1と同様にして積層体を製造した。結果を表1に示す。
Comparative Example 6
In Example 1, instead of component (A-1), ditrimethylolpropane tetraacrylate (manufactured by Nippon Kayaku Co., Ltd., number of hydroxyl groups per unit amount: 0.35 mol / kg) (A-5) was used. In addition, a laminate was manufactured in the same manner as in Example 1 except that the amount of the component (B) was changed so that the ratio (a / b) was 0.85. The results are shown in Table 1.
比較例7
 実施例1において、樹脂組成物としてナトコ株式会社製の「自己治癒塗料No.100」(商品名、ポリジメチルシロキサングラフトアクリレート系塗料)を使用し、その乾燥膜
厚を20μmとしたこと以外は実施例1と同様にして積層体を得た。このときのライン速度は10m/分であり、ロールへの巻取りにはセパレータが必要であった。結果を表1に示す。なお、比較例7における塗膜厚さを実施例1における厚さ(11μm)よりも厚くしたのは、上記自己治癒塗料の最も重要な特性に対応する耐傷付き性-1および2の結果が◎になるようにして実施例と比較するためである。耐傷付き性は、塗膜厚さが厚い方が良好である。
Comparative Example 7
In Example 1, “self-healing paint No. 100” (trade name, polydimethylsiloxane graft acrylate-based paint) manufactured by NATCO Co., Ltd. was used as the resin composition, and the dry film thickness was 20 μm. A laminate was obtained in the same manner as in Example 1. The line speed at this time was 10 m / min, and a separator was required for winding onto a roll. The results are shown in Table 1. The film thickness in Comparative Example 7 was made thicker than the thickness in Example 1 (11 μm) because the results of scratch resistance-1 and 2 corresponding to the most important characteristics of the self-healing paint were This is for comparison with the example. The scratch resistance is better when the coating thickness is thicker.
実施例7
 実施例1において、塗膜厚みを2μmにしたこと以外は実施例1と同様にして積層体を製造した。このときのライン速度は40m/分であった。実施例1よりもライン速度が遅いのは、塗膜が薄いと、酸素ラジカルの影響が塗膜の内部にまで及び、その結果、塗膜全体の硬化速度が遅くなるためである。結果を表1に示す。
Example 7
In Example 1, a laminate was produced in the same manner as in Example 1 except that the coating thickness was 2 μm. The line speed at this time was 40 m / min. The reason why the line speed is slower than that of Example 1 is that when the coating film is thin, the influence of oxygen radicals reaches the inside of the coating film, and as a result, the curing speed of the entire coating film becomes slow. The results are shown in Table 1.
実施例8
 実施例1において、塗膜厚みを50μmにしたこと以外は実施例1と同様にして積層体を製造した。このときのライン速度は50m/分であった。結果を表1に示す。
Example 8
In Example 1, a laminate was produced in the same manner as in Example 1 except that the coating thickness was 50 μm. The line speed at this time was 50 m / min. The results are shown in Table 1.
実施例9
 実施例1において、成分(D)としてメチルエチルケトンを使用したこと以外は実施例1と同様にして積層体を製造した。このときのライン速度は50m/分であった。結果を表1に示す。
Example 9
In Example 1, a laminate was produced in the same manner as in Example 1 except that methyl ethyl ketone was used as the component (D). The line speed at this time was 50 m / min. The results are shown in Table 1.
試験方法
(1)鉛筆硬度
 JIS K 5600-5-4に従い、200g荷重の条件で、鉛筆{三菱鉛筆株式会社の「ユニ」(商品名)}を用いて、塗膜表面の硬度を評価した。
Test Method (1) Pencil Hardness According to JIS K 5600-5-4, the hardness of the coating film surface was evaluated using a pencil {"Uni" (trade name) of Mitsubishi Pencil Co., Ltd.} under a 200 g load condition.
(2)耐傷付き性-1
 上記で得られた積層体を長さ200mm×幅25mmの大きさに切り出して試験片とし、これを塗膜面が表面になるようにJIS  L  0849の学振試験機に置いた。続いて、学振試験機の摩擦端子に#0000のスチールウールを取り付けた後、荷重1Kgを載せ、試験片の表面を5往復擦った。上記表面を目視観察し、以下の基準で評価した。
   ◎:傷がない
   ○:1~3本の傷がある
   △:4~10本の傷がある
   ×:11本以上の傷がある
(2) Scratch resistance-1
The laminate obtained above was cut into a size of 200 mm in length and 25 mm in width to obtain a test piece, which was placed in a JIS L 0849 Gakushin tester so that the coating surface would be the surface. Subsequently, after # 0000 steel wool was attached to the friction terminal of the Gakushin Tester, a load of 1 kg was placed, and the surface of the test piece was rubbed 5 times. The surface was visually observed and evaluated according to the following criteria.
◎: No scratch ○: 1 to 3 scratches △: 4 to 10 scratches ×: 11 or more scratches
(3)耐傷付き性-2
 上記で得られた積層体を長さ150mm×幅75mmの大きさに切り出して試験片とし、これを塗膜面が表面になるように硝子板上に置いた。仲屋ブラシ工業製の4行真鍮ブラシ(荷重500gf)を用いて、試験片の表面を片道100mmの距離で10往復擦った。上記表面を目視観察し、以下の基準で評価した。
   ◎:傷がない
   ○:1~3本の傷がある
   △:4~10本の傷がある
   ×:11本以上の傷がある
(3) Scratch resistance-2
The laminate obtained above was cut into a size of 150 mm length × 75 mm width to make a test piece, which was placed on a glass plate so that the coating film surface was the surface. Using a four-row brass brush (load: 500 gf) manufactured by Nakaya Brush Industry, the surface of the test piece was rubbed 10 times at a distance of 100 mm in one way. The surface was visually observed and evaluated according to the following criteria.
◎: No scratch ○: 1 to 3 scratches △: 4 to 10 scratches ×: 11 or more scratches
(4)耐汚染性-1
 上記で得られた積層体の塗膜表面を油性赤マジックによりスポット汚染した後、汚染部分を時計皿で被覆し、室温で24時間放置した。次いで、汚染部分を、イソプロピルアルコールを十分含ませたキムワイプ(商品名)を用いて、キムワイプに新たに汚れが付かなくなるまで拭いて洗浄した後、上記部分を目視観察し、以下の基準で評価した。
   ◎:汚染無し
   ○:汚染が僅かに残っている
   △:汚染がかなり残っている
   ×:汚染が著しく残っている
(4) Pollution resistance-1
After the surface of the coating film of the laminate obtained above was spot-contaminated with oily red magic, the contaminated part was covered with a watch glass and left at room temperature for 24 hours. Subsequently, the contaminated portion was cleaned by wiping until the wiping of the kimwipe was completely removed using a Kimwipe (trade name) sufficiently containing isopropyl alcohol, and the above portion was visually observed and evaluated according to the following criteria. .
◎: No contamination ○: Slight contamination remains △: Contamination remains significantly ×: Contamination remains significantly
(5)耐汚染性-2
 上記で得られた積層体の塗膜表面を水性赤マジックによりスポット汚染した後、汚染部分を時計皿で被覆し、室温で24時間放置した。次いで、汚染部分を、流水で十分洗浄した後、水道水を十分含ませたキムワイプ(商品名)を用いて、キムワイプに新たに汚れが付かなくなるまで拭いて洗浄した後、上記部分を目視観察し、以下の基準で評価した。
   ◎:汚染無し
   ○:汚染が僅かに残っている
   △:汚染がかなり残っている
   ×:汚染が著しく残っている
(5) Pollution resistance-2
After the surface of the coating film of the laminate obtained above was spot-contaminated with aqueous red magic, the contaminated part was covered with a watch glass and allowed to stand at room temperature for 24 hours. Next, after thoroughly washing the contaminated part with running water, using a Kimwipe (trade name) sufficiently containing tap water, wiping and cleaning until the Kimwipe is no longer dirty, and then visually observing the above part. The evaluation was based on the following criteria.
◎: No contamination ○: Slight contamination remains △: Contamination remains significantly ×: Contamination remains significantly
(6)耐折り曲げ性
 上記で得られた積層体を100mm×50mmの大きさに切り出し、これを、日東電工製の両面テープNo.500Aを用いて厚さ0.3mmのアルミ板に塗膜面が表面になるように貼り付けて試験片とした。この試験片を、直径2mmのマンドレルを取り付けたJIS K 5600-5-1タイプ1の折り曲げ試験装置を用いて、塗膜面が外側になる様に2秒をかけて均等な速度で180°に折り曲げた。折り曲げ終了後、折り曲げた箇所の中央30mm部分について、塗膜の割れ(クラック)の有無を確認し、以下の基準で評価した。
   ◎:クラック無し
   ○:クラックが1本ある
   △:クラックが2~3本ある
   ×:クラックが4本以上ある
(6) Bending resistance The laminate obtained above was cut into a size of 100 mm × 50 mm, and this was cut into a double-sided tape No. 2 manufactured by Nitto Denko. Using 500 A, a test piece was prepared by adhering to an aluminum plate having a thickness of 0.3 mm so that the coating film surface was the surface. Using a JIS K 5600-5-1 type 1 bending test apparatus to which a mandrel having a diameter of 2 mm is attached, the test piece is turned to 180 ° at an even speed over 2 seconds so that the coating surface is on the outside. Bent. After the end of bending, the presence or absence of cracks in the coating film was confirmed for the central 30 mm portion of the bent portion, and evaluated according to the following criteria.
◎: No crack ○: One crack △: Two to three cracks ×: Four or more cracks
(7)外観性
 上記で得られた積層体を100mm×100mmの大きさに切り出し、塗膜面が上側になるように、水平に配置した平滑なガラス板上に載せた。積層体の四隅のカールをガラス平面からの垂直な距離で測定し、その平均値を求め、以下の基準で評価した。
   ◎:2mm未満
   ○:2mm以上 5mm未満
   △:5mm以上 10mm未満
   ×:10mm以上
(7) Appearance The laminate obtained above was cut into a size of 100 mm × 100 mm and placed on a smooth glass plate arranged horizontally so that the coating film surface was on the upper side. The curls at the four corners of the laminate were measured at a vertical distance from the glass plane, the average value was determined, and evaluated according to the following criteria.
◎: Less than 2 mm ○: 2 mm or more and less than 5 mm △: 5 mm or more and less than 10 mm ×: 10 mm or more
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1から分かるように、本発明の組成物は、該組成物からなる塗膜を有する積層体を高いライン速度で製造することができ、また、上記塗膜は、耐傷付き性、耐汚染性、耐折り曲げ性および外観性に優れる。一方、比(a/b)が本発明の範囲外である比較例1および2の組成物は、得られる塗膜の耐傷付き性、耐汚染性および耐折り曲げ性のいずれかに劣る。成分(A)として(メタ)アクリロイルオキシ基の数が本発明の範囲より少ないものを使用した比較例3の組成物は、得られる塗膜の耐傷付き性および耐汚染性に劣る。成分(A)として、エタノールアミン残基を有しないものを使用した比較例4~6の組成物は硬化速度が遅く、したがってライン速度が遅かった。また、得られる塗膜の耐傷付き性、耐汚染性、耐折り曲げ性および外観性のいずれかに劣った。樹脂組成物として、自己治癒塗料であるポリジメチルシロキサングラフトアクリレート系塗料を使用した比較例7では、塗膜の耐汚染性に劣った。また、実施例7と実施例8との比較から明らかなように、塗膜厚さが厚い方がライン速度を高くすることができるところ、比較例7では、塗膜厚さを実施例1よりも厚くしたにも関わらず、硬化速度が遅く、したがってライン速度が遅かった。 As can be seen from Table 1, the composition of the present invention can produce a laminate having a coating film comprising the composition at a high line speed, and the coating film has scratch resistance and stain resistance. Excellent bending resistance and appearance. On the other hand, the compositions of Comparative Examples 1 and 2 having a ratio (a / b) outside the scope of the present invention are inferior in any of scratch resistance, stain resistance and bending resistance of the resulting coating film. The composition of Comparative Example 3 using a component (A) having a smaller number of (meth) acryloyloxy groups than the range of the present invention is inferior in scratch resistance and stain resistance of the resulting coating film. The compositions of Comparative Examples 4 to 6 using the component (A) having no ethanolamine residue had a slow curing speed and therefore a slow line speed. Further, the obtained coating film was inferior in any of scratch resistance, stain resistance, bending resistance and appearance. In Comparative Example 7 in which a polydimethylsiloxane graft acrylate paint, which is a self-healing paint, was used as the resin composition, the coating film was poor in stain resistance. Further, as is clear from the comparison between Example 7 and Example 8, the thicker coating film can increase the line speed, but in Comparative Example 7, the coating film thickness is higher than that of Example 1. Despite the increase in thickness, the cure rate was slow and therefore the line speed was slow.
実施例10
 実施例1において、熱可塑性樹脂フィルム(3)として、リケンテクノス株式会社製のSET329  FZ26401(商品名、シクロヘキサンジメタノール共重合ポリエチレンテレフタレート(PETG樹脂)フィルム、厚み100μm、表面のJIS-7105-1981に準拠して測定された60°グロス90%)を使用し、アンカーコート剤を使用しなかったこと以外は実施例1と同様にして積層体を製造した。このときのライン速度は50m/分であった。得られた積層体について、上記(1)~(7)の試験を行った。また、塗膜(1)の表面の60°グロスをJIS-7105-1981に従って測定した。結果を表2に示す。
Example 10
In Example 1, as the thermoplastic resin film (3), SET329 FZ26401 (trade name, cyclohexanedimethanol copolymerized polyethylene terephthalate (PETG resin) film manufactured by Riken Technos Co., Ltd., thickness 100 μm, conforming to JIS-7105-1981 on the surface. A laminate was produced in the same manner as in Example 1 except that the 60 ° gloss (90%) measured in this manner was used and no anchor coat agent was used. The line speed at this time was 50 m / min. The obtained laminates were subjected to the tests (1) to (7). Further, the 60 ° gloss of the surface of the coating film (1) was measured according to JIS-7105-1981. The results are shown in Table 2.
実施例11
 実施例10において、成分(D)としてメチルエチルケトン:1-メトキシ-2-プロパノール=50:50(体積比)の混合溶剤を使用したこと以外は実施例10と同様にして積層体を製造した。結果を表2に示す。
Example 11
A laminate was produced in the same manner as in Example 10, except that a mixed solvent of methyl ethyl ketone: 1-methoxy-2-propanol = 50: 50 (volume ratio) was used as the component (D). The results are shown in Table 2.
参考例1
 実施例10において、成分(D)としてメチルエチルケトンを使用したこと以外は実施例10と同様にして積層体の製造を行ったが、基材としての熱可塑性樹脂フィルム(3)が膨潤し、積層体を得ることができなかった。
Reference example 1
In Example 10, a laminate was produced in the same manner as in Example 10 except that methyl ethyl ketone was used as component (D). However, the thermoplastic resin film (3) as a base material swelled, and the laminate was produced. Could not get.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表2に示されるように、基材としての熱可塑性樹脂フィルム(3)が無延伸のポリエステルフィルムであるとき、溶剤(D)としてメチルエチルケトンを使用すると、基材フィルムが膨潤して積層体を得ることができなかった(参考例1)。しかし、溶剤(D)として1-メトキシ-2-プロパノール(D-2)を40質量%以上含むものを使用すると、基材フィルムが膨潤することなく、かつ基材フィルムの光沢を低下させることなく、積層体を得ることができた(実施例10および11)。 As shown in Table 2, when the thermoplastic resin film (3) as the substrate is an unstretched polyester film, when methyl ethyl ketone is used as the solvent (D), the substrate film swells to obtain a laminate. (Reference Example 1). However, when a solvent containing 1% by mass of 1-methoxy-2-propanol (D-2) is used as the solvent (D), the base film does not swell and the gloss of the base film is not lowered. A laminate was obtained (Examples 10 and 11).
実施例12
 熱可塑性樹脂フィルム(3)として東洋紡株式会社の二軸延伸ポリエステルフィルム「E5101(商品名)」(厚み25μm)を使用し、その片面に、東洋紡株式会社のアンカーコート剤「バイロン24SS(商品名)」を乾燥膜厚で1μになるようグラビア方式の塗工装置を用いて塗布して、片面にアンカーコート(2)を有する熱可塑性樹脂フィルム(3)を得た。アンカーコート(2)の上に、実施例1で得た活性エネルギー線硬化性樹脂組成物を塗布し、乾燥し、紫外線照射し、そして得られた積層体をロールに巻取る工程を一連の製造ラインで、50m/分のライン速度で連続して行った。ロールへの巻取りは、セパレータを使用しなくても良好に行うことができた。上記樹脂組成物の塗布は、フィルムメイヤーバー方式の塗工装置を用い、乾燥後の塗膜厚みが11μmとなるように行った。
Example 12
A biaxially stretched polyester film “E5101 (trade name)” (thickness 25 μm) of Toyobo Co., Ltd. is used as the thermoplastic resin film (3), and an anchor coating agent “Byron 24SS (trade name) of Toyobo Co., Ltd. is used on one side thereof. Was applied using a gravure coating device so as to have a dry film thickness of 1 μm to obtain a thermoplastic resin film (3) having an anchor coat (2) on one side. A series of steps of applying the active energy ray-curable resin composition obtained in Example 1 on the anchor coat (2), drying, irradiating with ultraviolet rays, and winding the obtained laminate on a roll The line was run continuously at a line speed of 50 m / min. The roll could be wound well without using a separator. The resin composition was applied using a film Mayer bar type coating apparatus so that the coating thickness after drying was 11 μm.
 上記で得られた積層体の熱可塑性樹脂フィルム(3)の上に株式会社トクシキのポリエステル系ホットメルト型接着剤「AD-170-20(商品名)」を乾燥後の厚みが2.5μmとなるように塗布し、その上に、下記で得られた熱可塑性樹脂フィルム(5)を、鏡面金属ロール-ゴムロールの熱ラミネート装置を用いて貼り合せて、図1に示す構成の積層体を得た。このとき、金属ロール側が塗膜(1)に接するようにするとともに、金属ロールの表面温度を190℃に設定した。こうして得られた積層体について、上記試験(1
)~(7)および下記試験(8)~(10)を行った。また、塗膜(1)の表面の60°グロスをJIS-7105-1981に従って測定した。結果を表3に示す。
On the thermoplastic resin film (3) of the laminate obtained above, a polyester hot melt adhesive “AD-170-20 (trade name)” manufactured by Tokushi Co., Ltd. has a thickness of 2.5 μm after drying. Then, the thermoplastic resin film (5) obtained as described below is bonded using a mirror metal roll-rubber roll thermal laminator to obtain a laminate having the structure shown in FIG. It was. At this time, the metal roll side was in contact with the coating film (1), and the surface temperature of the metal roll was set to 190 ° C. For the laminate thus obtained, the above test (1
) To (7) and the following tests (8) to (10) were conducted. Further, the 60 ° gloss of the surface of the coating film (1) was measured according to JIS-7105-1981. The results are shown in Table 3.
熱可塑性樹脂フィルム(5)の作製
 イーストマンケミカルカンパニー社のPETG樹脂「Cadence  GS1(商品名)」44質量部、万凱新材料社の結晶性ポリエチレンテレフタレート系樹脂「WK-801(商品名)」(ジカルボン酸成分:テレフタル酸90モル%以上99モル%未満とイソフタル酸1モル%以上10モル%未満の混合物;グリコール成分:エチレングリコール)41質量部、東レ株式会社のポリブチレンテレフタレート樹脂「トレコン1200M(商品名)」15質量部、株式会社カネカのコア・シェル型アクリルゴム「カネエースFM-40(商品名)」2質量部、コグニスジャパン株式会社の滑剤「ロキシオールG78(商品名)」0.5質量部、および石原産業株式会社の酸化チタン(白色顔料)「タイペークCR-60-2(商品名)」12質量部からなる樹脂組成物を、真空ベント付きの二軸押出機とその押出機に接続されたTダイからフィルム状に溶融押出し、溶融フィルムを金属製の鏡面冷却ロールとゴム製の冷却ロールとで挟持することにより冷却固化して熱可塑性樹脂フィルム(5)を得た。
Production of thermoplastic resin film (5) 44 parts by mass of PETG resin “Cadence GS1 (trade name)” of Eastman Chemical Company, Inc. Crystalline polyethylene terephthalate resin “WK-801 (trade name)” (Dicarboxylic acid component: mixture of terephthalic acid 90 mol% or more and less than 99 mol% and isophthalic acid 1 mol% or more and less than 10 mol%; glycol component: ethylene glycol) 41 parts by mass, polybutylene terephthalate resin “Toraycon 1200M” manufactured by Toray Industries, Inc. (Trade name) ”15 parts by weight, Kaneka Co., Ltd. core-shell type acrylic rubber“ Kane Ace FM-40 (trade name) ”2 parts by weight, Cognis Japan Co., Ltd. lubricant“ Roxyol G78 (trade name) ”0.5 Parts by weight, and titanium oxide (white pigment) “Taipe” from Ishihara Sangyo Co., Ltd. "CR-60-2 (trade name)" 12 parts by mass of a resin composition is melt-extruded into a film form from a twin-screw extruder with a vacuum vent and a T-die connected to the extruder. A thermoplastic resin film (5) was obtained by being cooled and solidified by being sandwiched between a mirror cooling roll made of rubber and a cooling roll made of rubber.
実施例13
 成分(B)として、住化バイエルウレタン株式会社のスミジュールHT(商品名、上記式(7)のポリイソシアネート、単位量当たりのイソシアネート基の個数:3.10モル/kg)(B-2)を42質量部の量で使用したこと以外は、実施例12と同様にして積層体を製造した。結果を表3に示す。
Example 13
As a component (B), Sumidur HT of Sumika Bayer Urethane Co., Ltd. (trade name, polyisocyanate of the above formula (7), number of isocyanate groups per unit amount: 3.10 mol / kg) (B-2) Was used in the same manner as in Example 12 except that 42 was used in an amount of 42 parts by mass. The results are shown in Table 3.
実施例14~17および比較例8~9
 実施例12において成分(B)の量を表3のように変更したこと以外は実施例12と同様にして積層体を製造した。結果を表3に示す。
Examples 14 to 17 and Comparative Examples 8 to 9
A laminate was produced in the same manner as in Example 12 except that the amount of component (B) in Example 12 was changed as shown in Table 3. The results are shown in Table 3.
比較例10
 実施例17において、成分(A-1)に代えて合成例2で得た成分(A-2)を使用したこと以外は実施例17と同様にして積層体を製造した。このときのライン速度は実施例17と同様に50m/分であったが、ロールへの巻取りにはセパレータが必要であった。結果を表3に示す。
Comparative Example 10
A laminate was produced in the same manner as in Example 17 except that the component (A-2) obtained in Synthesis Example 2 was used in place of the component (A-1). The line speed at this time was 50 m / min as in Example 17, but a separator was required for winding on the roll. The results are shown in Table 3.
比較例11
 実施例12において、成分(A-1)に代えて、トリプロピレングリコールジアクリレート(ダイセル・サイテック社製、単位量当たりの水酸基の個数:0モル/kg)(A-3)を使用し、成分(C)として、アルキルフェノン系光重合開始剤(チバ・ジャパン株式会社のダロキュア1173(商品名)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン)(C-2)を5質量部の量で使用したこと以外は、実施例12と同様にして積層体を製造した。このときのライン速度は30m/分であった。成分(C)としてベンゾフェノン(C-1)を使用しなかったのは、成分(A-1)に代えて上記(A-3)を使用すると、上記(C-1)では硬化速度が遅いためである。上記(A-3)と上記(B-1)との硬化が、ゲル化することなく速い速度で進むように、成分(C)として上記(C-2)を使用した。下記比較例12および13についても同様である。なお、成分(C)の量が5質量部であるのは、7質量部では多過ぎてゲル化を生じるからである。結果を表3に示す。
Comparative Example 11
In Example 12, instead of component (A-1), tripropylene glycol diacrylate (manufactured by Daicel Cytec Co., Ltd., number of hydroxyl groups per unit amount: 0 mol / kg) (A-3) was used. (C) is an alkylphenone photopolymerization initiator (Darocur 1173 (trade name), 2-hydroxy-2-methyl-1-phenyl-propan-1-one) (C-2) from Ciba Japan Co., Ltd. A laminate was produced in the same manner as in Example 12 except that it was used in an amount of 5 parts by mass. The line speed at this time was 30 m / min. The reason why benzophenone (C-1) was not used as component (C) was that when (A-3) was used instead of component (A-1), the curing rate was slow in (C-1). It is. The component (C-2) was used as the component (C) so that the curing of the component (A-3) and the component (B-1) proceeded at a high speed without gelation. The same applies to Comparative Examples 12 and 13 below. The amount of component (C) is 5 parts by mass because 7 parts by mass is too large and gelation occurs. The results are shown in Table 3.
比較例12
 実施例12において、成分(A-1)に代えて、ジペンタエリスリトールヘキサアクリレート(日本化薬株式会社製、単位量当たりの水酸
基の個数:0.63モル/kg)(A-4)を使用し、また、比(a/b)が0.85になるように成分(B)の量を変えたこと以外は実施例12と同様にして積層体を製造した。結果を表3に示す。なお、上記(A-4)は、構造上は水酸基を有しないが、アクリロイルオキシ基の一部が加水分解された成分を含むために水酸基が存在する。下記比較例13における(A-5)についても同様である。
Comparative Example 12
In Example 12, dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., number of hydroxyl groups per unit amount: 0.63 mol / kg) (A-4) was used instead of component (A-1). Further, a laminate was produced in the same manner as in Example 12 except that the amount of component (B) was changed so that the ratio (a / b) was 0.85. The results are shown in Table 3. The above (A-4) does not have a hydroxyl group in structure, but a hydroxyl group exists because it contains a component in which a part of the acryloyloxy group is hydrolyzed. The same applies to (A-5) in Comparative Example 13 below.
比較例13
 実施例12において、成分(A-1)に代えて、ジトリメチロールプロパンテトラアクリレート(日本化薬株式会社製、単位量当たりの水酸基の個数:0.35モル/kg)(A-5)を使用し、また、比(a/b)が0.85になるように成分(B)の量を変えたこと以外は実施例12と同様にして積層体を製造した。結果を表3に示す。
Comparative Example 13
In Example 12, instead of component (A-1), ditrimethylolpropane tetraacrylate (manufactured by Nippon Kayaku Co., Ltd., number of hydroxyl groups per unit amount: 0.35 mol / kg) (A-5) was used. Further, a laminate was produced in the same manner as in Example 12 except that the amount of component (B) was changed so that the ratio (a / b) was 0.85. The results are shown in Table 3.
実施例18
 実施例12において、塗膜厚みを2μmにしたこと以外は実施例12と同様にして積層体を製造した。このときのライン速度は40m/分であった。実施例12よりもライン速度が遅いのは、塗膜が薄いと、酸素ラジカルの影響が塗膜の内部にまで及び、その結果、塗膜全体の硬化速度が遅くなるためである。結果を表3に示す。
Example 18
In Example 12, a laminate was produced in the same manner as in Example 12 except that the thickness of the coating film was 2 μm. The line speed at this time was 40 m / min. The reason why the line speed is slower than in Example 12 is that when the coating film is thin, the influence of oxygen radicals reaches the inside of the coating film, and as a result, the curing speed of the entire coating film becomes slow. The results are shown in Table 3.
実施例19
 実施例12において、塗膜厚みを50μmにしたこと以外は実施例12と同様にして積層体を製造した。このときのライン速度は50m/分であった。結果を表3に示す。
Example 19
In Example 12, a laminate was produced in the same manner as in Example 12 except that the thickness of the coating film was 50 μm. The line speed at this time was 50 m / min. The results are shown in Table 3.
実施例20
 実施例12において、成分(D)としてメチルエチルケトンを使用したこと以外は実施例12と同様にして積層体を製造した。このときのライン速度は50m/分であった。結果を表3に示す。
Example 20
In Example 12, a laminate was produced in the same manner as in Example 12 except that methyl ethyl ketone was used as the component (D). The line speed at this time was 50 m / min. The results are shown in Table 3.
実施例21
 本実施例は、成分(A)の他に成分(A’)を添加した例である。成分(A)として50質量部の成分(A-1)を使用し、成分(A’)として50質量部の成分(A-4)を使用した。さらに表3に示す成分(B)~(E)を使用して活性エネルギー線硬化性樹脂組成物を得たこと以外は実施例12と同様にして積層体を製造した。結果を表3に示す。
Example 21
In this example, component (A ′) was added in addition to component (A). As component (A), 50 parts by mass of component (A-1) was used, and as component (A ′), 50 parts by mass of component (A-4) was used. Furthermore, a laminate was produced in the same manner as in Example 12 except that the active energy ray-curable resin composition was obtained using the components (B) to (E) shown in Table 3. The results are shown in Table 3.
実施例22
 成分(E)の配合量を2.0質量部としたこと以外は実施例21と同様にして積層体を製造した。結果を表3に示す。
Example 22
A laminate was produced in the same manner as in Example 21 except that the amount of component (E) was 2.0 parts by mass. The results are shown in Table 3.
試験方法
(8)溶剤ラビング試験
 上記で得られた積層体を100mm×100mmの大きさに切り出し、メチルエチルケトンを十分含ませたキムワイプ(商品名)を用いて、塗膜(1)の表面をごしごしと10往復拭いた後の当該部分の光沢や鮮映性の変化の有無を目視観察し、以下の基準で評価した。
   ○:表面光沢や鮮映性の変化はなかった
   ×:表面光沢や鮮映性の変化があった
Test method (8) Solvent rubbing test The laminate obtained above was cut into a size of 100 mm × 100 mm, and the surface of the coating film (1) was scrubbed using Kimwipe (trade name) sufficiently containing methyl ethyl ketone. The presence or absence of a change in gloss or sharpness of the portion after 10 reciprocating wipes was visually observed and evaluated according to the following criteria.
○: No change in surface gloss or sharpness ×: Change in surface gloss or sharpness
(9)グリセリン試験
 上記で得られた積層体を100mm×100mmの大きさに切り出し、100℃に調節したグリセリンに30秒浸漬した後の塗膜(1)の表面の光沢や鮮映性の変化の有無を目視観察し、以下の基準で評価した。
   ○:表面光沢や鮮映性の変化はなかった
   ×:表面光沢や鮮映性の変化があった
(9) Glycerin test Changes in gloss and sharpness of the surface of the coating film (1) after the laminate obtained above was cut into a size of 100 mm × 100 mm and immersed in glycerin adjusted to 100 ° C. for 30 seconds. The presence or absence of was visually observed and evaluated according to the following criteria.
○: No change in surface gloss or sharpness ×: Change in surface gloss or sharpness
(10)耐スクラッチ性(ツメ)
 上記で得られた積層体を120mm×60mmの大きさに切り出し、塗膜(1)が上になるようにガラス板の上にのせ、左手でおさえながら、右手のツメで塗膜(1)の表面を擦り、傷付き性を下記の基準により目視評価した。
   ◎:傷がまったく認められない
   ○:傷がほとんど認められない
   △:傷が少し認められる
   ×:傷が著しく認められる
(10) Scratch resistance (claw)
The laminate obtained above is cut into a size of 120 mm × 60 mm and placed on a glass plate so that the coating film (1) is on top. The surface was rubbed and the scratch resistance was visually evaluated according to the following criteria.
◎: Scratches are not recognized at all ○: Scratches are hardly observed △: Scratches are slightly observed ×: Scratches are remarkably recognized
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表3から分かるように、本発明の活性エネルギー線硬化性樹脂組成物からなる塗膜(1)を有する積層体は、高い光沢を有し、かつ、耐傷付き性、耐汚染性、耐折り曲げ性、外観性等の特性も良好である。一方、比(a/b)が、本発明の下限未満である比較例8の積層体は耐折り曲げ性に劣り、本発明の上限よりも大きい比較例9の積層体は水系汚染物に対する耐汚染性に劣る。成分(A)として、(メタ)アクリロイルオキシ基の数が本発明の範囲よりも少ないものを使用した比較例10の積層体は耐傷付き性、溶剤ラビング試験およびグリセリン試験に劣る。成分(A)として、エタノールアミン残基を有しないものを使用した比較例11~13では、樹脂組成物の硬化速度が遅く、したがってライン速度が遅かった。また、得られる積層体の耐傷付き性、耐汚染性、耐折り曲げ性、外観性、溶剤ラビング試験、グリセリン試験、及び耐スクラッチ試験のいずれかに劣った。 As can be seen from Table 3, the laminate having the coating film (1) made of the active energy ray-curable resin composition of the present invention has high gloss and has scratch resistance, stain resistance, and bending resistance. Moreover, characteristics such as appearance are also good. On the other hand, the laminate of Comparative Example 8 in which the ratio (a / b) is less than the lower limit of the present invention is inferior in bending resistance, and the laminate of Comparative Example 9 having a ratio (a / b) larger than the upper limit of the present invention is resistant to contamination by aqueous contaminants. Inferior to sex. As the component (A), the laminate of Comparative Example 10 in which the number of (meth) acryloyloxy groups is less than the range of the present invention is inferior to scratch resistance, solvent rubbing test and glycerin test. In Comparative Examples 11 to 13 using a component (A) that does not have an ethanolamine residue, the curing rate of the resin composition was slow, and therefore the line speed was slow. Further, the obtained laminate was inferior to any of scratch resistance, stain resistance, bending resistance, appearance, solvent rubbing test, glycerin test, and scratch resistance test.
実施例23
 実施例12おいて、熱可塑性樹脂フィルム(3)として、リケンテクノス株式会社製のSET329  FZ26401(商品名、シクロヘキサンジメタノール共重合ポリエチレンテレフタレート(PETG樹脂)フィルム、厚み100μm、表面のJIS-7105-1981に準拠して測定された60°グロス90%)であって、アンカーコート処理をしていないものを使用したこと以外は実施例12と同様にして積層体の製造および評価試験を行った。結果を表4に示す。
Example 23
In Example 12, as a thermoplastic resin film (3), SET329 FZ26401 (trade name, cyclohexanedimethanol copolymerized polyethylene terephthalate (PETG resin) film manufactured by Riken Technos Co., Ltd., thickness 100 μm, surface JIS-7105-1981 A laminate was manufactured and evaluated in the same manner as in Example 12 except that a 60 ° gloss (measured in accordance with 90%) and not subjected to anchor coating treatment was used. The results are shown in Table 4.
実施例24
 成分(D)としてメチルエチルケトン:1-メトキシ-2-プロパノール=50:50(体積比)の混合溶剤を使用したこと以外は実施例23と同様にして積層体を製造した。結果を表4に示す。
Example 24
A laminate was produced in the same manner as in Example 23 except that a mixed solvent of methyl ethyl ketone: 1-methoxy-2-propanol = 50: 50 (volume ratio) was used as the component (D). The results are shown in Table 4.
参考例2
 成分(D)としてメチルエチルケトンを使用したこと以外は実施例23と同様にして積層体の製造を行ったが、熱可塑性樹脂フィルム(3)が膨潤し、積層体を得ることができなかった。
Reference example 2
A laminate was produced in the same manner as in Example 23 except that methyl ethyl ketone was used as the component (D). However, the thermoplastic resin film (3) swelled and a laminate could not be obtained.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表4に示されるように、熱可塑性樹脂フィルム(3)が無延伸のポリエステルフィルムであるとき、溶剤(D)としてメチルエチルケトンを使用すると、熱可塑性樹脂フィルム(3)が膨潤して積層体を得ることができなかった(参考例1)。しかし、溶剤(D)として1-メトキシ-2-プロパノール(D-2)を40質量%以上含むものを使用すると、熱可塑性樹脂フィルム(3)が膨潤することなく、かつ熱可塑性樹脂フィルム(3)の光沢を低下させることなく、積層体を得ることができた。  As shown in Table 4, when the thermoplastic resin film (3) is an unstretched polyester film, when methyl ethyl ketone is used as the solvent (D), the thermoplastic resin film (3) swells to obtain a laminate. (Reference Example 1). However, when a solvent (D) containing 1% by mass of 1-methoxy-2-propanol (D-2) is used, the thermoplastic resin film (3) does not swell and the thermoplastic resin film (3 It was possible to obtain a laminate without reducing the gloss of *
実施例25
 成分(A)として成分(A-1)70質量部、
 成分(A’)としてジペンタエリスリトールヘキサアクリレート(日本化薬株式会社製、単位量当たりの水酸基の個数:0.63モル/kg)(A-4)を30質量部、
 成分(B)として日本ポリウレタン工業株式会社製のコロネートHX(商品名、上記式(6)のポリイソシアネート)(B-1)22質量部、
 成分(C)としてベンゾフェノン(C-1)5質量部、
 チバ・ジャパン株式会社のダロキュア1173(商品名、アルキルフェノン系光重合開始剤、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン)(C-2)2質量部、
 成分(F)としての平均粒子径80nmの高純度コロイダルシリカ(F-1)8質量部、及び、成分(D)としての1-メトキシ-2-プロパノール(D-1)200質量部を攪拌して活性エネルギー線硬化性樹脂組成物を得た。
 なお成分(B-1)の単位量当たりのイソシアネート基の個数は、上述した方法により測定したところ、5.12モル/kgであった。従って、成分(A-1)70質量部と成分(A-2)30質量部における水酸基の個数(a)と成分(B-1)22質量部におけるイソシアネート基の個数(b)の比(a/b)は、
(1.09×70+0.63×30)/(5.12×22)=0.85である。
Example 25
70 parts by weight of component (A-1) as component (A)
30 parts by mass of dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., number of hydroxyl groups per unit amount: 0.63 mol / kg) (A-4) as component (A ′)
Coronate HX (trade name, polyisocyanate of the above formula (6)) (B-1) 22 parts by mass as a component (B) manufactured by Nippon Polyurethane Industry Co., Ltd.
5 parts by mass of benzophenone (C-1) as component (C)
Ciba Japan Co., Ltd. Darocur 1173 (trade name, alkylphenone photopolymerization initiator, 2-hydroxy-2-methyl-1-phenyl-propan-1-one) (C-2) 2 parts by mass,
8 parts by mass of high-purity colloidal silica (F-1) having an average particle diameter of 80 nm as component (F) and 200 parts by mass of 1-methoxy-2-propanol (D-1) as component (D) were stirred. Thus, an active energy ray-curable resin composition was obtained.
The number of isocyanate groups per unit amount of component (B-1) was 5.12 mol / kg as measured by the method described above. Therefore, the ratio of the number of hydroxyl groups (a) in 70 parts by mass of component (A-1) and 30 parts by mass of component (A-2) to the number of isocyanate groups (b) in 22 parts by mass of component (B-1) (a / B)
It is (1.09 * 70 + 0.63 * 30) / (5.12 * 22) = 0.85.
 熱可塑性樹脂フィルム(3)としてユニチカ株式会社の二軸延伸ポリエステルフィルム「エンブレットS25」(商品名、厚み25μm)を使用し、その片面にアンカーコート剤(東洋紡株式会社のバイロン24SS(商品名))を乾燥膜厚で1μmになるように塗布して、片面にアンカーコート(2)を有する熱可塑性樹脂フィルム(3)を得た。アンカーコート(2)の上に上記で得た樹脂組成物を塗布し、乾燥し、紫外線照射し、そして得られた積層体をロールに巻取る工程を一連の製造ラインで、50m/分のライン速度で連続して行った。ロールへの巻取りは、セパレータを使用しなくても良好に行うことができた。上記樹脂組成物の塗布は、フィルムメイヤーバー方式の塗工装置を用い、乾燥後の塗膜厚みが11μmとなるように行った。なお、実施例および比較例におけるライン速度は、製造ラインにおいて積層体を安定的に製造できる最も速い速度である。得られた積層体について、上記試験(1)~(7)および下記試験(11)を行った。結果を表5に示す。 A biaxially stretched polyester film “Embret S25” (trade name, thickness 25 μm) manufactured by Unitika Ltd. is used as the thermoplastic resin film (3), and an anchor coating agent (byron 24SS (trade name) manufactured by Toyobo Co., Ltd.) is used on one side thereof. ) Was applied to a dry film thickness of 1 μm to obtain a thermoplastic resin film (3) having an anchor coat (2) on one side. The process of applying the resin composition obtained above on the anchor coat (2), drying, irradiating with ultraviolet rays, and winding the obtained laminate on a roll is a series of production lines, 50 m / min line Performed continuously at speed. The roll could be wound well without using a separator. The resin composition was applied using a film Mayer bar type coating apparatus so that the coating thickness after drying was 11 μm. In addition, the line speed in an Example and a comparative example is the fastest speed which can manufacture a laminated body stably in a production line. The obtained laminates were subjected to the above tests (1) to (7) and the following test (11). The results are shown in Table 5.
実施例26
 成分(B)として、住化バイエルウレタン株式会社のスミジュールHT(商品名、上記式(7)のポリイソシアネート、単位量当たりのイソシアネート基の個数:3.10モル/kg)(B-2)を36質量部の量で使用したこと以外は、実施例25と同様にして積層体を製造した。結果を表5に示す。
Example 26
As a component (B), Sumidur HT of Sumika Bayer Urethane Co., Ltd. (trade name, polyisocyanate of the above formula (7), number of isocyanate groups per unit amount: 3.10 mol / kg) (B-2) Was used in the same manner as in Example 25 except that 36 was used in an amount of 36 parts by mass. The results are shown in Table 5.
実施例27~30および比較例14~15
 実施例25において成分(B)の量を表5のように変更したこと以外は実施例25と同様にして積層体を製造した。結果を表5に示す。
Examples 27-30 and Comparative Examples 14-15
A laminate was produced in the same manner as in Example 25 except that the amount of component (B) in Example 25 was changed as shown in Table 5. The results are shown in Table 5.
実施例31
 実施例25において、成分(A)として成分(A-1)100質量部、成分(B)として成分(B-1)25質量部、成分(C)として成分(C-1)7質量部を使用したこと以外は実施例25と同様にして積層体を製造した。結果を表6に示す。
Example 31
In Example 25, 100 parts by mass of the component (A-1) as the component (A), 25 parts by mass of the component (B-1) as the component (B), and 7 parts by mass of the component (C-1) as the component (C). A laminate was produced in the same manner as in Example 25 except that it was used. The results are shown in Table 6.
比較例16
 実施例31において、成分(A-1)に代えて合成例2で得た成分(A-2)100質量部、成分(B)として成分(B-1)35質量部を使用したこと以外は実施例31と同様にして積層体を製造した。このときのライン速度は実施例31と同様に50m/分であったが、ロールへの巻取りにはセパレータが必要であった。結果を表6に示す。
Comparative Example 16
In Example 31, except that 100 parts by mass of the component (A-2) obtained in Synthesis Example 2 was used instead of the component (A-1), and 35 parts by mass of the component (B-1) was used as the component (B). A laminate was manufactured in the same manner as in Example 31. The line speed at this time was 50 m / min as in Example 31, but a separator was required for winding on the roll. The results are shown in Table 6.
比較例17
 実施例31において、成分(A-1)に代えて、トリプロピレングリコールジアクリレート(ダイセル・サイテック社製、単位量当たりの水酸基の個数:0モル/kg)(A-3)を使用し、成分(C)として、アルキルフェノン系光重合開始剤(チバ・ジャパン株式会社のダロキュア1173(商品名)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン)(C-2)を5質量部の量で使用したこと以外は、実施例31と同様にして積層体を製造した。このときのライン速度は30m/分であった。成分(C)としてベンゾフェノン(C-1)を使用しなかったのは、成分(A-1)に代えて上記(A-3)を使用すると、上記(C-1)では硬化速度が遅いためである。上記(A-3)と上記(B-1)との硬化が、ゲル化することなく速い速度で進むように、成分(C)として上記(C-2)を使用した。下記比較例18および19についても同様である。なお、成分(C)の量が5質量部であるのは、7質量部では多過ぎてゲル化を生じるからである。結果を表6に示す。
Comparative Example 17
In Example 31, instead of component (A-1), tripropylene glycol diacrylate (manufactured by Daicel-Cytec, number of hydroxyl groups per unit amount: 0 mol / kg) (A-3) was used. (C) is an alkylphenone photopolymerization initiator (Darocur 1173 (trade name), 2-hydroxy-2-methyl-1-phenyl-propan-1-one) (C-2) from Ciba Japan Co., Ltd. A laminate was produced in the same manner as in Example 31 except that it was used in an amount of 5 parts by mass. The line speed at this time was 30 m / min. The reason why benzophenone (C-1) was not used as component (C) was that when (A-3) was used instead of component (A-1), the curing rate was slow in (C-1). It is. The component (C-2) was used as the component (C) so that the curing of the component (A-3) and the component (B-1) proceeded at a high speed without gelation. The same applies to Comparative Examples 18 and 19 below. The amount of component (C) is 5 parts by mass because 7 parts by mass is too large and gelation occurs. The results are shown in Table 6.
比較例18
 実施例31において、成分(A-1)に代えて、ジペンタエリスリトールヘキサアクリレート(日本化薬株式会社製、単位量当たりの水酸基の個数:0.63モル/kg)(A-4)を使用し、また、比(a/b)が0.85になるように成分(B)の量を変えたこと以外は実施例31と同様にして積層体を製造した。結果を表6に示す。なお、上記(A-4)は、構造上は水酸基を有しないが、アクリロイルオキシ基の一部が加水分解された成分を含むために水酸基が存在する。下記比較例19における(A-5)についても同様である。
Comparative Example 18
In Example 31, instead of component (A-1), dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., number of hydroxyl groups per unit amount: 0.63 mol / kg) (A-4) was used. In addition, a laminate was manufactured in the same manner as in Example 31 except that the amount of the component (B) was changed so that the ratio (a / b) was 0.85. The results are shown in Table 6. The above (A-4) does not have a hydroxyl group in structure, but a hydroxyl group exists because it contains a component in which a part of the acryloyloxy group is hydrolyzed. The same applies to (A-5) in Comparative Example 19 below.
比較例19
 実施例31において、成分(A-1)に代えて、ジトリメチロールプロパンテトラアクリレート(日本化薬株式会社製、単位量当たりの水酸基の個数:0.35モル/kg)(A-5)を使用し、また、比(a/b)が0.85になるように成分(B)の量を変えたこと以外は実施例31と同様にして積層体を製造した。結果を表6に示す。
Comparative Example 19
In Example 31, instead of component (A-1), ditrimethylolpropane tetraacrylate (manufactured by Nippon Kayaku Co., Ltd., number of hydroxyl groups per unit amount: 0.35 mol / kg) (A-5) was used. In addition, a laminate was manufactured in the same manner as in Example 31 except that the amount of the component (B) was changed so that the ratio (a / b) was 0.85. The results are shown in Table 6.
実施例32
 実施例31において、塗膜厚みを2μmにしたこと以外は実施例31と同様にして積層体を製造した。このときのライン速度は40m/分であった。実施例31よりもライン速度が遅いのは、塗膜が薄いと、酸素ラジカルの影響が塗膜の内部にまで及び、その結果、塗膜全体の硬化速度が遅くなるためである。結果を表6に示す。
Example 32
In Example 31, a laminate was produced in the same manner as in Example 31 except that the thickness of the coating film was 2 μm. The line speed at this time was 40 m / min. The reason why the line speed is slower than in Example 31 is that when the coating film is thin, the influence of oxygen radicals reaches the inside of the coating film, and as a result, the curing speed of the entire coating film becomes slow. The results are shown in Table 6.
実施例33
 実施例31において、塗膜厚みを50μmにしたこと以外は実施例31と同様にして積層体を製造した。このときのライン速度は50m/分であった。結果を表6に示す。
Example 33
In Example 31, a laminate was produced in the same manner as in Example 31 except that the coating thickness was 50 μm. The line speed at this time was 50 m / min. The results are shown in Table 6.
実施例34
 実施例31において、成分(D)としてメチルエチルケトン(D-2)を使用したこと以外は実施例31と同様にして積層体を製造した。結果を表6に示す。
Example 34
A laminate was produced in the same manner as in Example 31 except that methyl ethyl ketone (D-2) was used as the component (D) in Example 31. The results are shown in Table 6.
実施例35~37、参考例3~4
 実施例25において、成分(F-1)の配合量を表7に示す量に変更したこと以外は全て同様にして積層体を製造した。結果を表7に示す。
Examples 35 to 37, Reference Examples 3 to 4
A laminate was produced in the same manner as in Example 25 except that the amount of component (F-1) was changed to the amount shown in Table 7. The results are shown in Table 7.
実施例38
 実施例36において、成分(F)として平均粒子径20nmの高純度コロイダルシリカ(F-2)を使用したこと以外は全て同様にして積層体を製造した。結果を表7に示す。
Example 38
A laminate was produced in the same manner as in Example 36 except that high-purity colloidal silica (F-2) having an average particle diameter of 20 nm was used as the component (F). The results are shown in Table 7.
実施例39
 実施例36において、成分(F)として平均粒子径150nmの高純度コロイダルシリカ(F-3)を使用したこと以外は全て同様にして積層体を製造した。結果を表7に示す。
Example 39
A laminate was produced in the same manner as in Example 36, except that high-purity colloidal silica (F-3) having an average particle diameter of 150 nm was used as the component (F). The results are shown in Table 7.
実施例40
 実施例36において、成分(F)として平均粒子径250nmの高純度コロイダルシリカ(F-4)を使用したこと以外は全て同様にして積層体を製造した。結果を表7に示す。
Example 40
A laminate was produced in the same manner as in Example 36 except that high-purity colloidal silica (F-4) having an average particle diameter of 250 nm was used as the component (F). The results are shown in Table 7.
参考例5
 実施例36において、成分(F)として平均粒子径400nmの高純度コロイダルシリカ(F-5)を使用したこと以外は全て同様にして積層体を製造した。結果を表7に示す。
Reference Example 5
A laminate was produced in the same manner as in Example 36 except that high-purity colloidal silica (F-5) having an average particle diameter of 400 nm was used as the component (F). The results are shown in Table 7.
実施例41、42
 実施例25において、成分(A)及び成分(B)の配合量を表8に示す量に変更したこと以外は全て同様にして積層体を製造した。このときのライン速度は50m/分であった。結果を表8に示す。
Examples 41 and 42
In Example 25, a laminate was produced in the same manner except that the amounts of component (A) and component (B) were changed to the amounts shown in Table 8. The line speed at this time was 50 m / min. The results are shown in Table 8.
実施例43
 実施例42において、更に成分(E)としてDIC株式会社のメガファックRS-75(商品名)(E-1)0.5質量部を使用したこと以外は全て同様にして積層体を製造した。このときのライン速度は50m/分であった。結果を表8に示す。
Example 43
A laminate was produced in the same manner as in Example 42 except that 0.5 part by mass of MegaFac RS-75 (trade name) (E-1) manufactured by DIC Corporation was used as the component (E). The line speed at this time was 50 m / min. The results are shown in Table 8.
実施例44
 実施例43において、成分(E-1)の配合量を2.0質量部に変更したこと以外は全て同様にして積層体を製造した。このときのライン速度は50m/分であった。結果を表8に示す。
Example 44
A laminate was produced in the same manner as in Example 43, except that the amount of component (E-1) was changed to 2.0 parts by mass. The line speed at this time was 50 m / min. The results are shown in Table 8.
試験方法
(11)ヘイズ
 JIS K 7105に従い、積層体の塗膜(1)側を入射面として測定した。
Test method (11) Haze According to JIS K 7105, the coating film (1) side of the laminate was measured as the incident surface.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表5~8から分かるように、本発明の組成物は、該組成物からなる塗膜を有する積層体を高いライン速度で製造することができ、また、上記塗膜は、耐傷付き性、耐汚染性、耐折り曲げ性、外観性及び透明性に優れる。
 一方、比(a/b)が本発明の範囲外である比較例14および15の組成物は、得られる塗膜の耐傷付き性、耐汚染性および耐折り曲げ性のいずれかに劣る。
 成分(A)として(メタ)アクリロイルオキシ基の数が本発明の範囲より少ないものを使用した比較例16の組成物は、得られる塗膜の耐傷付き性および耐汚染性に劣る。
 成分(A)として、エタノールアミン残基を有しないもののみを使用した比較例17~19の組成物は硬化速度が遅く、したがってライン速度が遅かった。また、得られる塗膜の耐傷付き性、耐汚染性、耐折り曲げ性および外観性のいずれかに劣った。
 成分(F)を使用していない参考例3は鉛筆硬度が不十分である。
 成分(F)の配合量が本発明の好ましい範囲よりも多い参考例4は耐折り曲げ性に劣る。
 成分(F)の粒子径が本発明の好ましい範囲よりも大きい参考例5は透明性(ヘイズ)に劣る。
As can be seen from Tables 5 to 8, the composition of the present invention can produce a laminate having a coating film comprising the composition at a high line speed, and the coating film has scratch resistance, Excellent contamination, bending resistance, appearance and transparency.
On the other hand, the compositions of Comparative Examples 14 and 15 whose ratio (a / b) is outside the scope of the present invention are inferior in any of the scratch resistance, stain resistance and bending resistance of the resulting coating film.
The composition of Comparative Example 16 using a component (A) having a smaller number of (meth) acryloyloxy groups than the range of the present invention is inferior in scratch resistance and stain resistance of the resulting coating film.
The compositions of Comparative Examples 17 to 19 using only those having no ethanolamine residue as the component (A) had a slow curing speed and therefore a slow line speed. Further, the obtained coating film was inferior in any of scratch resistance, stain resistance, bending resistance and appearance.
In Reference Example 3 in which the component (F) is not used, the pencil hardness is insufficient.
Reference Example 4 in which the amount of component (F) is greater than the preferred range of the present invention is inferior in bending resistance.
Reference Example 5 in which the particle diameter of the component (F) is larger than the preferred range of the present invention is inferior in transparency (haze).
実施例45
 実施例31において、熱可塑性樹脂フィルム(3)として、リケンテクノス株式会社製のSET329 FZ26401(商品名、シクロヘキサンジメタノール共重合ポリエチレンテレフタレート(PETG樹脂)フィルム、厚み100μm、表面のJIS-7105-1981に準拠して測定された60°グロス90%)を使用し、アンカーコート剤を使用しなかったこと以外は実施例31と同様にして積層体を製造した。このときのライン速度は50m/分であった。得られた積層体について、上記(1)~(7)の試験を行った。また、塗膜(1)の表面の60°グロスをJIS-7105-1981に従って測定した。結果を表9に示す。
Example 45
In Example 31, as the thermoplastic resin film (3), SET329 FZ26401 (trade name, cyclohexanedimethanol copolymerized polyethylene terephthalate (PETG resin) film manufactured by Riken Technos Co., Ltd., thickness 100 μm, conforming to JIS-7105-1981 on the surface. And a laminate was produced in the same manner as in Example 31 except that the 60 ° gloss (90%) was used and no anchor coat agent was used. The line speed at this time was 50 m / min. The obtained laminates were subjected to the tests (1) to (7). Further, the 60 ° gloss of the surface of the coating film (1) was measured according to JIS-7105-1981. The results are shown in Table 9.
実施例46
 実施例45において、成分(D)として1-メトキシ-2-プロパノール(D-1):メチルエチルケトン(D-2)=50:50(質量比)の混合溶剤を使用したこと以外は実施例45と同様にして積層体を製造した。結果を表9に示す。
Example 46
Example 45 is the same as Example 45 except that a mixed solvent of 1-methoxy-2-propanol (D-1): methyl ethyl ketone (D-2) = 50: 50 (mass ratio) was used as the component (D). A laminate was produced in the same manner. The results are shown in Table 9.
参考例6
実施例45において、成分(D)としてメチルエチルケトン(D-2)を使用したこと以外は実施例45と同様にして積層体の製造を行ったが、基材としての熱可塑性樹脂フィルム(3)が膨潤し、積層体を得ることができなかった。
Reference Example 6
In Example 45, a laminate was produced in the same manner as in Example 45 except that methyl ethyl ketone (D-2) was used as the component (D). The thermoplastic resin film (3) as a base material was produced. It swelled and a laminate could not be obtained.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表9に示されるように、基材としての熱可塑性樹脂フィルム(3)が無延伸の非結晶性ポリエステルフィルムであるとき、溶剤(D)としてメチルエチルケトンを使用すると、基材フィルムが膨潤して積層体を得ることができなかった(参考例6)。しかし、溶剤(D)として1-メトキシ-2-プロパノール(D-2)を40質量%以上含むものを使用すると、基材フィルムが膨潤することなく、かつ基材フィルムの光沢を低下させることなく、積層体を得ることができた(実施例45及び46)。
As shown in Table 9, when the thermoplastic resin film (3) as the base material is an unstretched amorphous polyester film, when methyl ethyl ketone is used as the solvent (D), the base film swells and is laminated. A body could not be obtained (Reference Example 6). However, when a solvent containing 1% by mass of 1-methoxy-2-propanol (D-2) is used as the solvent (D), the base film does not swell and the gloss of the base film is not lowered. A laminate was obtained (Examples 45 and 46).
1:塗膜
2:アンカーコート
3:熱可塑性樹脂フィルム
4:接着剤層
5:熱可塑性樹脂フィルム
1: Coating film 2: Anchor coat 3: Thermoplastic resin film 4: Adhesive layer 5: Thermoplastic resin film

Claims (15)

  1. (A)下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    (ここで、R1およびR2は各々、1以上の(メタ)アクリロイルオキシ基を有するポリエーテル(メタ)アクリレート残基であり、R1における(メタ)アクリロイルオキシ基の数とR2における(メタ)アクリロイルオキシ基の数の合計が3以上である)を有するエタノールアミン変性ポリエーテル(メタ)アクリレート、
    (B)1分子中に2以上のイソシアネート基を有するポリイソシアネート、および
    (C)光重合開始剤
    を含み、成分(A)の水酸基の個数(a)と成分(B)のイソシアネート基の個数(b)との比(a/b)が0.5~1.2の範囲にあることを特徴とする活性エネルギー線硬化性樹脂組成物。
    (A) The following formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (Where R1 and R2 are each a polyether (meth) acrylate residue having one or more (meth) acryloyloxy groups, and the number of (meth) acryloyloxy groups in R1 and (meth) acryloyloxy in R2 Ethanolamine-modified polyether (meth) acrylate having a total number of groups of 3 or more,
    (B) a polyisocyanate having two or more isocyanate groups in one molecule, and (C) a photopolymerization initiator, the number of hydroxyl groups (a) in component (A) and the number of isocyanate groups in component (B) ( An active energy ray-curable resin composition having a ratio (a / b) to b) in the range of 0.5 to 1.2.
  2.  成分(A)が下記式(2):
    Figure JPOXMLDOC01-appb-C000002
    で表わされる化合物である、請求項1に記載の組成物。
    Component (A) is represented by the following formula (2):
    Figure JPOXMLDOC01-appb-C000002
    The composition of Claim 1 which is a compound represented by these.
  3. (A)下記式(1):
    Figure JPOXMLDOC01-appb-C000003
    (ここで、R1およびR2は各々、1以上の(メタ)アクリロイルオキシ基を有するポリエーテル(メタ)アクリレート残基であり、R1における(メタ)アクリロイルオキシ基の数とR2における(メタ)アクリロイルオキシ基の数の合計が3以上である)を有するエタノールアミン変性ポリエーテル(メタ)アクリレート、
    (A’)成分(A)以外の(メタ)アクリレート系化合物、
    (B)1分子中に2以上のイソシアネート基を有するポリイソシアネート、および
    (C)光重合開始剤
    を含み、成分(A)の水酸基の個数(a)および成分(A’)の水酸基の個数(a’)の合計(a+a’)と成分(B)のイソシアネート基の個数(b)との比((a+a’)/b)が0.5~1.2の範囲にあることを特徴とする活性エネルギー線硬化性樹脂組成物。
    (A) The following formula (1):
    Figure JPOXMLDOC01-appb-C000003
    (Where R1 and R2 are each a polyether (meth) acrylate residue having one or more (meth) acryloyloxy groups, and the number of (meth) acryloyloxy groups in R1 and (meth) acryloyloxy in R2 Ethanolamine-modified polyether (meth) acrylate having a total number of groups of 3 or more,
    (A ′) (meth) acrylate compounds other than component (A),
    (B) a polyisocyanate having two or more isocyanate groups in one molecule, and (C) a photopolymerization initiator, the number of hydroxyl groups (a) in component (A) and the number of hydroxyl groups in component (A ′) ( The ratio ((a + a ′) / b) of the total (a + a ′) of a ′) to the number of isocyanate groups (b) in component (B) is in the range of 0.5 to 1.2. An active energy ray-curable resin composition.
  4.  成分(A)が下記式(2):
    Figure JPOXMLDOC01-appb-C000004
    で表わされる化合物である、請求項3に記載の組成物。
    Component (A) is represented by the following formula (2):
    Figure JPOXMLDOC01-appb-C000004
    The composition of Claim 3 which is a compound represented by these.
  5.  前記成分(B)が、1分子中に3個のイソシアネート基を有するポリイソシアネートである、請求項1~5の何れか1項に記載の組成物。 The composition according to any one of claims 1 to 5, wherein the component (B) is a polyisocyanate having three isocyanate groups in one molecule.
  6.  (D)溶剤
    をさらに含み、前記成分(D)の量が前記成分(A)100質量部に対して150~250質量部である、請求項1、2および5の何れか1項に記載の組成物。
    6. The solvent according to claim 1, further comprising (D) a solvent, wherein the amount of the component (D) is 150 to 250 parts by mass with respect to 100 parts by mass of the component (A). Composition.
  7.  (D)溶剤
    をさらに含み、成分(D)の量が成分(A)と成分(A’)の合計100質量部に対して150~250質量部である、請求項3~5の何れか1項に記載の組成物。
    6. The method according to claim 3, further comprising (D) a solvent, wherein the amount of component (D) is 150 to 250 parts by mass with respect to a total of 100 parts by mass of component (A) and component (A ′). The composition according to item.
  8.  成分(D)が、1-メトキシ-2-プロパノールを40質量%以上含む溶剤である、請求項6または7に記載の組成物。 The composition according to claim 6 or 7, wherein the component (D) is a solvent containing 40% by mass or more of 1-methoxy-2-propanol.
  9. (E)紫外線反応性フッ素系表面改質剤
    をさらに含み、成分(E)の量が成分(A)100質量部に対して0.1~5質量部である、請求項1、2、5、6および8の何れか1項に記載の組成物。
    (E) An ultraviolet-reactive fluorine-based surface modifier is further included, and the amount of component (E) is 0.1 to 5 parts by mass with respect to 100 parts by mass of component (A). 9. The composition according to any one of 6 and 8.
  10. (E)紫外線反応性フッ素系表面改質剤
    をさらに含み、成分(E)の量が成分(A)と成分(A’)の合計100質量部に対して0.1~5質量部である、請求項3~5、7および8の何れか1項に記載の組成物。
    (E) An ultraviolet reactive fluorine-based surface modifier is further included, and the amount of component (E) is 0.1 to 5 parts by mass with respect to 100 parts by mass in total of component (A) and component (A ′). The composition according to any one of claims 3 to 5, 7 and 8.
  11.  (F)粒子径1nm~300nmの微粒子
    をさらに含み、成分(F)の量が、成分(A)100質量部に対して1~50質量部である、請求項1、2、5、6、8または9の何れか1項に記載の組成物。
    (F) The composition further comprises fine particles having a particle diameter of 1 nm to 300 nm, and the amount of component (F) is 1 to 50 parts by mass with respect to 100 parts by mass of component (A). 10. The composition according to any one of 8 or 9.
  12.  (F)粒子径1nm~300nmの微粒子
    をさらに含み、前記成分(F)の量が、前記成分(A)と成分(A’)の合計100質量部に対し1~50質量部である、請求項3~5、7、8または10の何れか1項に記載の組成物。
    (F) Fine particles having a particle diameter of 1 nm to 300 nm are further included, and the amount of the component (F) is 1 to 50 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (A ′). Item 11. The composition according to any one of Items 3 to 5, 7, 8, or 10.
  13.  請求項1~12の何れか1項に記載の組成物からなる塗料。 A paint comprising the composition according to any one of claims 1 to 12.
  14.  熱可塑性樹脂フィルム(3)の片面に、アンカーコート層(2)を介してまたは介さないで、請求項13に記載の塗料からなる塗膜(1)が積層された積層体。 The laminated body by which the coating film (1) which consists of a coating material of Claim 13 was laminated | stacked on one side of the thermoplastic resin film (3) through the anchor coat layer (2) or not.
  15.  熱可塑性樹脂フィルム(3)の、塗膜(1)が積層されていない面に接着剤層(4)を介して熱可塑性樹脂フィルム(5)を有する、請求項14に記載の積層体。 The laminated body of Claim 14 which has a thermoplastic resin film (5) through the adhesive bond layer (4) in the surface in which the coating film (1) is not laminated | stacked of a thermoplastic resin film (3).
PCT/JP2012/080777 2012-11-28 2012-11-28 Active-energy-ray-curable resin composition WO2014083644A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/080777 WO2014083644A1 (en) 2012-11-28 2012-11-28 Active-energy-ray-curable resin composition
TW102142457A TWI577733B (en) 2012-11-28 2013-11-21 Active energy ray hardening resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080777 WO2014083644A1 (en) 2012-11-28 2012-11-28 Active-energy-ray-curable resin composition

Publications (1)

Publication Number Publication Date
WO2014083644A1 true WO2014083644A1 (en) 2014-06-05

Family

ID=50827318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080777 WO2014083644A1 (en) 2012-11-28 2012-11-28 Active-energy-ray-curable resin composition

Country Status (2)

Country Link
TW (1) TWI577733B (en)
WO (1) WO2014083644A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018172527A (en) * 2017-03-31 2018-11-08 日揮触媒化成株式会社 Coating liquid for formation of transparent film and substrate with transparent film
EP3158008B1 (en) 2014-06-23 2019-12-25 Arkema France Multifunctional acrylic oligomers of branched structure, by polyaddition between multifunctional amines and acrylates

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533884B (en) * 2020-05-08 2022-03-15 深圳市前海博扬研究院有限公司 Polyurethane modified acrylate UV resin and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE804019A (en) * 1972-09-18 1973-12-17 Desoto Inc MICHAEL ADDITIONAL REACTION PRODUCTS, NON-GELIFIED, RADIATION CURING
US3914165A (en) * 1972-09-18 1975-10-21 Desoto Inc Radiation curable non-gelled michael addition reaction products
US3925349A (en) * 1972-09-18 1975-12-09 Desoto Inc Radiation curable non-gelled michael addition reaction products
EP0280222A2 (en) * 1987-02-27 1988-08-31 BASF Aktiengesellschaft Addition products from acrylates and amines, and their use in radiation-curable masses
JPH04318087A (en) * 1991-04-15 1992-11-09 Fujikura Kasei Co Ltd Photosetting paint composition
JPH0931150A (en) * 1995-05-15 1997-02-04 Dainippon Ink & Chem Inc Urethane prepolymer, active-energy-ray-curable water-base polyurethane resin composition, and its production
JP2001040247A (en) * 1999-07-30 2001-02-13 Kansai Paint Co Ltd Curable coating composition and method for forming coating film
JP2001207086A (en) * 2000-01-28 2001-07-31 Riken Vinyl Industry Co Ltd Ultraviolet curable coating material composition and method for manufacturing laminated product by using the same
JP2004224834A (en) * 2003-01-20 2004-08-12 Riken Technos Corp Ionizing radiation-sensitive coating composition and laminate using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792500A (en) * 2009-10-09 2010-08-04 长兴化学工业股份有限公司 Polymerizable composition and optical film comprising same

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE804019A (en) * 1972-09-18 1973-12-17 Desoto Inc MICHAEL ADDITIONAL REACTION PRODUCTS, NON-GELIFIED, RADIATION CURING
NL7312860A (en) * 1972-09-18 1974-03-20
DE2346424A1 (en) * 1972-09-18 1974-04-11 Desoto Inc RADIANT, NON-GELLED MICHAEL ADDITION PRODUCTS
FR2200297A1 (en) * 1972-09-18 1974-04-19 Desoto Inc
JPS4994736A (en) * 1972-09-18 1974-09-09
US3844916A (en) * 1972-09-18 1974-10-29 Desoto Inc Radiation curable non-gelled michael addition reaction products
US3914165A (en) * 1972-09-18 1975-10-21 Desoto Inc Radiation curable non-gelled michael addition reaction products
US3925349A (en) * 1972-09-18 1975-12-09 Desoto Inc Radiation curable non-gelled michael addition reaction products
GB1448737A (en) * 1972-09-18 1976-09-08 Desoto Inc Polymerizable compositions
CA1016692A (en) * 1972-09-18 1977-08-30 Desoto Radiation curable non-gelled michael addition reaction products
EP0280222A2 (en) * 1987-02-27 1988-08-31 BASF Aktiengesellschaft Addition products from acrylates and amines, and their use in radiation-curable masses
DE3706355A1 (en) * 1987-02-27 1988-09-08 Basf Ag ADDITIONAL PRODUCTS OF ACRYLATES AND AMINES AND THEIR USE IN RADIANT CURRENT MEASURES
JPS63227553A (en) * 1987-02-27 1988-09-21 ビーエーエスエフ アクチェンゲゼルシャフト Adduct produced from acrylate and amine and use for radiation-curable material
JPH04318087A (en) * 1991-04-15 1992-11-09 Fujikura Kasei Co Ltd Photosetting paint composition
JPH0931150A (en) * 1995-05-15 1997-02-04 Dainippon Ink & Chem Inc Urethane prepolymer, active-energy-ray-curable water-base polyurethane resin composition, and its production
JP2001040247A (en) * 1999-07-30 2001-02-13 Kansai Paint Co Ltd Curable coating composition and method for forming coating film
JP2001207086A (en) * 2000-01-28 2001-07-31 Riken Vinyl Industry Co Ltd Ultraviolet curable coating material composition and method for manufacturing laminated product by using the same
JP2004224834A (en) * 2003-01-20 2004-08-12 Riken Technos Corp Ionizing radiation-sensitive coating composition and laminate using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3158008B1 (en) 2014-06-23 2019-12-25 Arkema France Multifunctional acrylic oligomers of branched structure, by polyaddition between multifunctional amines and acrylates
EP3158008B2 (en) 2014-06-23 2023-05-17 Arkema France Multifunctional acrylic oligomers of branched structure, by polyaddition between multifunctional amines and acrylates
JP2018172527A (en) * 2017-03-31 2018-11-08 日揮触媒化成株式会社 Coating liquid for formation of transparent film and substrate with transparent film
JP6990521B2 (en) 2017-03-31 2022-01-12 日揮触媒化成株式会社 Coating liquid for forming a transparent film and a base material with a transparent film

Also Published As

Publication number Publication date
TWI577733B (en) 2017-04-11
TW201430052A (en) 2014-08-01

Similar Documents

Publication Publication Date Title
JP6509945B2 (en) Transparent resin laminate
JP7064313B2 (en) Hardcourt laminated film
EP3272529B1 (en) Hard coat laminated film
WO2016147734A1 (en) Molded body
JP5434568B2 (en) Hard coat film for molding
JP2013119553A (en) Coating for lower layer formation used as groundwork of hard coat layer, and laminate formed by applying the coating for lower layer formation
JP5990280B2 (en) Articles with glass-like designs
JP2019151105A (en) Hard coat laminate film
JP5882756B2 (en) Active energy ray-curable resin composition
WO2014083644A1 (en) Active-energy-ray-curable resin composition
US11549031B2 (en) Coating material for forming matte hard coat, and decorative sheet using same
WO2022185815A1 (en) Laminate and method for producing same
JP6782719B2 (en) Adhesives and articles using them
US11433651B2 (en) Hard coat laminated film
JP6719919B2 (en) Hard coat laminated film
JP6780941B2 (en) Transparent resin laminate
JP2019026832A (en) Coating and decorative sheet using the same
JP3207136U (en) Articles with glass-like designs
JP2017128002A (en) Molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP