WO2014079820A1 - Use of anthranilamide compounds for reducing insect-vectored viral infections - Google Patents

Use of anthranilamide compounds for reducing insect-vectored viral infections Download PDF

Info

Publication number
WO2014079820A1
WO2014079820A1 PCT/EP2013/074116 EP2013074116W WO2014079820A1 WO 2014079820 A1 WO2014079820 A1 WO 2014079820A1 EP 2013074116 W EP2013074116 W EP 2013074116W WO 2014079820 A1 WO2014079820 A1 WO 2014079820A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
plant
group
alkyl
Prior art date
Application number
PCT/EP2013/074116
Other languages
French (fr)
Inventor
Karsten KÖRBER
Jean-Yves WACH
Florian Kaiser
Matthias Pohlman
Prashant Deshmukh
Deborah L. Culbertson
W. David ROGERS
Koshi Gunjima
Michael David
Franz Josef Braun
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2014079820A1 publication Critical patent/WO2014079820A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles

Definitions

  • the present invention relates to new uses and methods of reducing insect-vectored viral infection and transmission in plants, methods of reducing damage to plants caused by viral infection, methods of crop enhancement including methods for improving plant growth, vigour and yield, by application of N-thio-anthranilamide compounds, and their mixtures with selected other pesticides.
  • the agrochemical industry is continually seeking methods of controlling plant pests and improving the growth of plants.
  • Chemicals are typically used (i) to control undesirable species (for example, pests, such as insects, or vegetation, e.g., weeds, or fungi), and (ii) to promote plant growth (e.g., by providing nutrients), and thereby improve the growth of plants.
  • Insect-vectored viral infections are a widespread cause of plant damage, for which there are few effective measures of control.
  • WO 2007/006670 describes N-thio-anthranilamide compounds with a sulfilimine or sulfoximine group and their use as pesticides.
  • PCT/EP2012/065650, PCT/EP2012/065651 , and the unpublished applications US 61/578267, US 61/593897 and US 61/651050 describe certain N- Thio-anthranilamide compounds and their use as pesticides.
  • PCT/EP2012/065648 describes N-thio-anthranilamide compounds with a sulfilimine or sulfoximine group and their use as pesticides.
  • PCT/EP2012/065649 and EP1 1 189973.8 describe processes for the synthesis of N-Thio- anthranilamide compounds.
  • International patent applications WO 2008/021 152 and WO 2008/122396 refer to the use of certain anthranilamides for increasing crop vigour and yield.
  • International patent application WO 2008/020998 refers to the in-furrow fungicide application for reducing plant damage by control of insect-vectored viral infection.
  • International patent application WO201 1/134876 decribes methods for reducing insect-vectored viral infections by application of a combination of certain insecticides, i.a. anthranilic bis-amides, and a plant activator.
  • anthranilamide compounds of formula (I) are suitable for reducing insect-vectored viral infection in a plant, reducing insect-vectored-viral transmission amongst plants, and reducing damage to a plant caused by one or more insect-vectored viral infections.
  • the present invention relates to the use of at least one pesticidally active anthranilamide compound of formula (I): wherein
  • R 1 is selected from the group consisting of halogen, methyl and halomethyl
  • R 2 is selected from the group consisting of hydrogen, halogen, halomethyl and cyano;
  • R 3 is selected from hydrogen, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6-alkenyl, C2-C6- haloalkenyl, C2-C6-alkinyl, C2-C6-haloalkinyl, Cs-Cs-cycloalkyl, Cs-Cs-halocycloalkyl, Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C4-haloalkoxy-Ci-C4-alkyl,
  • R 4 is hydrogen or halogen
  • R 5 , R 6 are selected independently of one another from the group consisting of hydrogen, Ci-Cio-alkyl, Cs-Cs-cycloalkyl, C2-Cio-alkenyl, C2-Cio-alkynyl, wherein the aforementioned aliphatic and cycloaliphatic radicals may be substituted with 1 to 10 substituents R e , and phenyl, which is unsubstituted or carries 1 to 5 substituents R f ; or
  • R 5 and R 6 together represent a C2-C7-alkylene, C2-C7-alkenylene or
  • R b is selected from the group consisting of Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkinyl, C3- Cs-cycloalkyl, Ci-C6-alkoxy, Ci-C6-alkylthio, Ci-C6-alkylsulfinyl, Ci-C6-alkylsulfonyl, wherein one or more CH2 groups of the last four radicals may be unsubstituted, partially or fully halogenated and/or carry 1 , 2 or 3 substituents selected from Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy, (Ci-C6-alkoxy)carbonyl, Ci-C6-alkylamino and di-(Ci-C6-alkyl)amino, R b is selected from the group consisting of Ci-C6-alkyl, C2-C6
  • phenyl, benzyl, pyridyl and phenoxy wherein the last four radicals may be unsubstituted, partially or fully halogenated and/or carry 1 , 2 or 3 substituents selected from Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy and (C1-C6- alkoxy)carbonyl;
  • the invention relates to a method of reducing insect-vectored viral infection in a plant by application of at least one pesticidally active anthranilamide compound of formula (I) as defined above.
  • mixtures of compounds of formula I, or a stereoisomer, salt, tautomer or N-oxide thereof, with other selected pesticides are highly suitable in the use for reducing insect- vectored viral infection in a plant, or reducing insect-vectored-viral transmission amongst plants, or reducing damage to a plant caused by one or more insect-vectored viral infections, and the respective methods by application of at least one pesticidally active anthranilamide compound of formula (I).
  • WO 2007/006670 describes N-thio-anthranilamide compounds with a sulfilimine or sulfoximine group and their use as pesticides.
  • PCT/EP2012/065650, PCT/EP2012/065651 , and the unpublished applications US 61/578267, US 61/593897 and US 61/651050 describe certain N- Thio-anthranilamide compounds and their use as pesticides.
  • PCT/EP2012/065648, PCT/EP2012/065649 and EP1 1 189973.8 describe processes for the synthesis of N-Thio-anthranilamide compounds.
  • the organic moieties mentioned in the above definitions of the variables are - like the term halogen - collective terms for individual listings of the individual group members.
  • the prefix C n -C m indicates in each case the possible number of carbon atoms in the group.
  • halogen denotes in each case fluorine, bromine, chlorine or iodine, in particular fluorine, chlorine or bromine.
  • partially or fully halogenated will be taken to mean that 1 or more, e.g. 1 , 2, 3, 4 or 5 or all of the hydrogen atoms of a given radical have been replaced by a halogen atom, in particular by fluorine or chlorine.
  • a partially or fully halogenated radical is termed below also “halo- radical”.
  • partially or fully halogenated alkyl is also termed haloalkyl.
  • alkyl as used herein (and in the alkyl moieties of other groups comprising an alkyl group, e.g. alkoxy, alkylcarbonyl, alkylthio, alkylsulfinyl, alkylsulfonyl and alkoxyalkyi) denotes in each case a straight-chain or branched alkyl group having usually from 1 to 12 or 1 to 10 carbon atoms, frequently from 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms and in particular from 1 to 3 carbon atoms.
  • Examples of CrC 4 -alkyl are methyl, ethyl, n-propyl, isopropyl, n-butyl,
  • Ci-Cio-alkyl are, apart those mentioned for CrC 6 -alkyl, n-heptyl, 1 -methylhexyl, 2- methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-methylhexyl, 1 -ethylpentyl, 2-ethylpentyl, 3- ethylpentyl, n-octyl, 1 -methyloctyl, 2-methylheptyl, 1 -ethylhexyl, 2-ethylhexyl, 1 ,2-dimethylhexyl, 1 -propylpentyl, 2-propylpentyl, nonyl, decyl, 2-propylheptyl and 3-propylheptyl.
  • alkylene (or alkanediyl) as used herein in each case denotes an alkyl radical as defined above, wherein one hydrogen atom at any position of the carbon backbone is replaced by one further binding site, thus forming a bivalent moiety.
  • haloalkyl as used herein (and in the haloalkyl moieties of other groups comprising a haloalkyl group, e.g. haloalkoxy, haloalkylthio, haloalkylcarbonyl, haloalkylsulfonyl and haloal- kylsulfinyl) denotes in each case a straight-chain or branched alkyl group having usually from 1 to 10 carbon atoms ("Ci-Ci 0 -haloalkyl”), frequently from 1 to 6 carbon atoms (“Ci-C 6 -haloalkyl”), more frequently 1 to 4 carbon atoms (“Ci-Ci 0 -haloalkyl”), wherein the hydrogen atoms of this group are partially or totally replaced with halogen atoms.
  • haloalkyl as used herein (and in the haloalkyl moieties of other groups comprising a haloalkyl
  • haloalkyl moieties are selected from CrC 4 -haloalkyl, more preferably from CrC 2 -haloalkyl, more preferably from halome- thyl, in particular from CrC 2 -fluoroalkyl.
  • Halomethyl is methyl in which 1 , 2 or 3 of the hydrogen atoms are replaced by halogen atoms. Examples are bromomethyl, chloromethyl, dichlorome- thyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichloro- fluoromethyl, chlorodifluoromethyl and the like.
  • CrC 2 -fluoroalkyl examples include fluoromethyl, difluoromethyl, trifluoromethyl, 1 -fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, pentafluoroethyl, and the like.
  • Examples for CrC 2 -haloalkyl are, apart those mentioned for d- C 2 -fluoroalkyl, chloromethyl, dichloromethyl, trichloromethyl, bromomethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1 -chloroethyl, 2-chloroethyl, 2,2,-dichloroethyl, 2,2,2- trichloroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 1 - bromoethyl, and the like.
  • Ci-C 4 -haloalkyl are, apart those mentioned for Ci-C 2 - haloalkyl, 1 -fluoropropyl, 2-fluoropropyl, 3-fluoropropyl, 3,3-difluoropropyl, 3,3,3-trifluoropropyl, heptafluoropropyl, 1 ,1 ,1 -trif I uoroprop-2-y 1 , 3-chloropropyl, 4-chlorobutyl and the like.
  • cycloalkyi as used herein (and in the cycloalkyi moieties of other groups comprising a cycloalkyi group, e.g. cycloalkoxy and cycloalkylalkyl) denotes in each case a mono- or bicydic cycloaliphatic radical having usually from 3 to 10 carbon atoms ("C 3 -Cio-cycloalkyl”), preferably 3 to 8 carbon atoms (“C 3 -C8-cycloalkyl”) or in particular 3 to 6 carbon atoms ("C 3 -C 6 - cycloalkyl").
  • Examples of monocyclic radicals having 3 to 6 carbon atoms comprise cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • Examples of monocyclic radicals having 3 to 8 carbon atoms comprise cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
  • Examples of bicydic radicals having 7 or 8 carbon atoms comprise bicyclo[2.1 .1]hexyl, bicy- clo[2.2.1 ]heptyl, bicyclo[3.1.1]heptyl, bicyclo[2.2.1]heptyl, bicyclo[2.2.2]octyl and bicy- clo[3.2.1 ]octyl.
  • cycloalkylene (or cycloalkanediyl) as used herein in each case denotes an cycloalkyi radical as defined above, wherein one hydrogen atom at any position of the carbon backbone is replaced by one further binding site, thus forming a bivalent moiety.
  • halocydoalkyi as used herein (and in the halocydoalkyi moieties of other groups comprising an halocydoalkyi group, e.g. halocycloalkylmethyl) denotes in each case a mono- or bicydic cycloaliphatic radical having usually from 3 to 10 carbon atoms, preferably 3 to 8 carbon atoms or in particular 3 to 6 carbon atoms, wherein at least one, e.g. 1 , 2, 3, 4 or 5 of the hydrogen atoms are replaced by halogen, in particular by fluorine or chlorine.
  • Examples are 1 - and 2- fluorocyclopropyl, 1 ,2-, 2,2- and 2,3-difluorocyclopropyl, 1 ,2,2-trifluorocyclopropyl, 2,2,3,3- tetrafluorocyclpropyl, 1 - and 2-chlorocyclopropyl, 1 ,2-, 2,2- and 2,3-dichlorocyclopropyl, 1 ,2,2- trichlorocyclopropyl, 2,2,3,3-tetrachlorocyclpropyl, 1 -,2- and 3-fluorocyclopentyl, 1 ,2-, 2,2-, 2,3-, 3,3-, 3,4-, 2,5-difluorocyclopentyl, 1 -,2- and 3-chlorocyclopentyl, 1 ,2-, 2,2-, 2,3-, 3,3-, 3,4-, 2,5-difluorocyclopentyl, 1 -,2- and 3-chlorocyclopentyl, 1
  • cycloalkyl-alkyl used herein denotes a cycloalkyl group, as defined above, which is bound to the remainder of the molecule via an alkylene group.
  • C 3 -C 8 -cycloalkyl-Ci- C 4 -alkyl refers to a C 3 -C 8 -cycloalkyl group as defined above which is bound to the remainder of the molecule via a CrC 4 -alkyl group, as defined above.
  • Examples are cyclopropylmethyl, cyclo- propylethyl, cyclopropylpropyl, cyclobutylmethyl, cyclobutylethyl, cyclobutyl propyl, cyclopen- tylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclohexylmethyl, cyclohexylethyl, cyclohexyl propyl, and the like.
  • alkenyl denotes in each case a monounsaturated straight-chain or branched hydrocarbon radical having usually 2 to 10 (“C 2 -Cio-alkenyl”), preferably 2 to 6 carbon atoms (“C2-C 6 -alkenyl”), in particular 2 to 4 carbon atoms (“C 2 -C 4 -alkenyl”), and a double bond in any position, for example C 2 -C 4 -alkenyl, such as ethenyl, 1 -propenyl, 2-propenyl, 1 - methylethenyl, 1 -butenyl, 2-butenyl, 3-butenyl, 1 -methyl-1 -propenyl, 2-methyl-1 -propenyl, 1 - methyl-2-propenyl or 2-methyl-2-propenyl; C 2 -C 6 -alkenyl, such as ethenyl, 1 -propenyl, 2- propen
  • alkenylene (or alkenediyl) as used herein in each case denotes an alkenyl radical as defined above, wherein one hydrogen atom at any position of the carbon backbone is replaced by one further binding site, thus forming a bivalent moiety.
  • haloalkenyl as used herein, which may also be expressed as "alkenyl which may be substituted by halogen", and the haloalkenyl moieties in haloalkenyloxy, haloalkenylcarbonyl and the like refers to unsaturated straight-chain or branched hydrocarbon radicals having 2 to 10 ("C 2 -Cio-haloalkenyl") or 2 to 6 ("C 2 -C 6 -haloalkenyl”) or 2 to 4 (“C 2 -C 4 -haloalkenyl”) carbon atoms and a double bond in any position, where some or all of the hydrogen atoms in these groups are replaced by halogen atoms as mentioned above, in particular fluorine, chlorine and bromine, for example chlorovinyl, chloroallyl and the like.
  • alkynyl denotes unsaturated straight-chain or branched hydrocarbon radicals having usually 2 to 10 (“C 2 -Cio-alkynyl”), frequently 2 to 6 (“C 2 -C 6 -alkynyl”), preferably 2 to 4 carbon atoms (“C 2 -C 4 -alkynyl”) and one or two triple bonds in any position, for example C 2 - C 4 -alkynyl, such as ethynyl, 1 -propynyl, 2-propynyl, 1 -butynyl, 2-butynyl, 3-butynyl, 1 -methyl-2- propynyl and the like, C 2 -C 6 -alkynyl, such as ethynyl, 1 -propynyl, 2-propynyl, 1 -butynyl, 2- butynyl, 3-butynyl, 1 -methyl-2-propynyl and the like
  • alkynylene (or alkynediyl) as used herein in each case denotes an alkynyl radical as defined above, wherein one hydrogen atom at any position of the carbon backbone is replaced by one further binding site, thus forming a bivalent moiety.
  • haloalkynyl as used herein, which is also expressed as “alkynyl which may be substituted by halogen”, refers to unsaturated straight-chain or branched hydrocarbon radicals having iusually 3 to 10 carbon atoms ("C 2 -Ci 0 -haloalkynyl”), frequently 2 to 6 (“C 2 -C 6 -haloalkynyl”), preferabyl 2 to 4 carbon atoms (“C 2 -C 4 -haloalkynyl”), and one or two triple bonds in any position (as mentioned above), where some or all of the hydrogen atoms in these groups are replaced by halogen atoms as mentioned above, in particular fluorine, chlorine and bromine.
  • alkoxy denotes in each case a straight-chain or branched alkyl group usually having from 1 to 10 carbon atoms ("Ci-Ci 0 -alkoxy”), frequently from 1 to 6 carbon atoms (“CrC 6 -alkoxy”), preferably 1 to 4 carbon atoms (“CrC 4 -alkoxy”), which is bound to the remainder of the molecule via an oxygen atom.
  • Ci-C 2 -Alkoxy is methoxy or ethoxy.
  • d-C 4 -Alkoxy is additionally, for example, n-propoxy, 1 -methylethoxy (isopropoxy), butoxy, 1 -methylpropoxy (sec-butoxy), 2-methylpropoxy (isobutoxy) or 1 ,1 -dimethylethoxy (tert-butoxy).
  • CrC 6 -Alkoxy is additionally, for example, pentoxy, 1 -methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 1 ,1 - dimethylpropoxy, 1 ,2-dimethylpropoxy, 2,2-dimethylpropoxy, 1 -ethylpropoxy, hexoxy, 1 - methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1 ,1 -dimethylbutoxy, 1 ,2- dimethylbutoxy, 1 ,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy,
  • CrC 8 -Alkoxy is addition- ally, for example, heptyloxy, octyloxy, 2-ethylhexyloxy and positional isomers thereof.
  • C-i-C-io- Alkoxy is additionally, for example, nonyloxy, decyloxy and positional isomers thereof.
  • haloalkoxy denotes in each case a straight-chain or branched alkoxy group, as defined above, having from 1 to 10 carbon atoms ("Ci-Ci 0 -haloalkoxy”), frequently from 1 to 6 carbon atoms (“CrC 6 -haloalkoxy”), preferably 1 to 4 carbon atoms (“CrC 4 - haloalkoxy”), more preferably 1 to 3 carbon atoms (“CrC 3 -haloalkoxy”), wherein the hydrogen atoms of this group are partially or totally replaced with halogen atoms, in particular fluorine atoms.
  • C C 2 -Haloalkoxy is, for example, OCH 2 F, OCHF 2 , OCF 3 , OCH 2 CI, OCHCI 2 , OCCI 3 , chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 2-fluoroethoxy, 2- chloroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2- fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy or OC 2 F 5.
  • Ci-C 4 -Haloalkoxy is additionally, for example, 2-fluoropropoxy, 3-fluoropropoxy, 2,2- difluoropropoxy, 2,3-difluoropropoxy, 2-chloropropoxy, 3-chloropropoxy, 2,3-dichloropropoxy, 2- bromopropoxy, 3-bromopropoxy, 3,3,3-trifluoropropoxy, 3,3,3-trichloropropoxy, OCH 2 -C 2 F 5 , OCF 2 -C 2 F 5 , 1 -(CH 2 F)-2-fluoroethoxy, 1 -(CH 2 CI)-2-chloroethoxy, 1 -(CH 2 Br)-2-bromoethoxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy or nonafluorobutoxy.
  • CrC 6 -Haloalkoxy is additionally, for example, 5-fluoropentoxy, 5-chloropentoxy, 5-brompentoxy, 5-iodopentoxy, unde- cafluoropentoxy, 6-fluorohexoxy, 6-chlorohexoxy, 6-bromohexoxy, 6-iodohexoxy or dodecafluo- rohexoxy.
  • alkoxyalkyl denotes in each case alkyl usually comprising 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, wherein 1 carbon atom carries an alkoxy radical usually comprising 1 to 10, frequently 1 to 6, in particular 1 to 4, carbon atoms as defined above.
  • Ci-C 6 -Alkoxy-Ci-C 6 -alky is a CrC 6 -alkyl group, as defined above, in which one hydrogen atom is replaced by a CrC 6 -alkoxy group, as defined above.
  • Examples are CH 2 OCH 3 , CH 2 - OC 2 H 5 , n-propoxymethyl, CH 2 -OCH(CH 3 ) 2 , n-butoxymethyl, (l -methylpropoxy)-methyl, (2- methylpropoxy)methyl, CH 2 -OC(CH 3 ) 3 , 2-(methoxy)ethyl, 2-(ethoxy)ethyl, 2-(n-propoxy)-ethyl, 2- (1 -methylethoxy)-ethyl, 2-(n-butoxy)ethyl, 2-(1 -methylpropoxy)-ethyl, 2-(2-methylpropoxy)-ethyl, 2-(1 ,1 -dimethylethoxy)-ethyl, 2-(methoxy)-propyl, 2-(ethoxy)-propyl, 2-(n-propoxy)-propyl, 2-(1 -methylethoxy)-propyl, 2-(n-butoxy)-propyl, 2-
  • haloalkoxy-alkyl denotes in each case alkyl as defined above, usually comprising 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, wherein 1 carbon atom carries an haloalkoxy radical as defined above, usually comprising 1 to 10, frequently 1 to 6, in particular 1 to 4, carbon atoms as defined above.
  • Examples are fluoromethoxymethyl, difluoromethox- ymethyl, trifluoromethoxymethyl, 1 -fluoroethoxymethyl, 2-fluoroethoxymethyl, 1 ,1 - difluoroethoxy methyl, 1 ,2-difluoroethoxymethyl, 2,2-difluoroethoxymethyl, 1 ,1 ,2- trifluoroethoxymethyl, 1 ,2,2-trifluoroethoxymethyl, 2,2,2-trifluoroethoxymethyl, pentafluoroethox- ymethyl, 1 -fluoroethoxy-1 -ethyl, 2-fluoroethoxy-1 -ethyl, 1 ,1 -difluoroethoxy-1 -ethyl, 1 ,2- difluoroethoxy-1 -ethyl, 2,2-difluoroethoxy-1 -ethyl, 1 ,1 ,2-trifluoroethoxy-1
  • alkylthio (also alkylsulfanyl or alkyl-S-)" as used herein denotes in each case a straight-chain or branched saturated alkyl group as defined above, usually comprising 1 to 10 carbon atoms (“CrCio-alkylthio”), frequently comprising 1 to 6 carbon atoms (“CrC 6 -alkylthio”), preferably 1 to 4 carbon atoms (“Ci-C 4 -alkylthio”), which is attached via a sulfur atom at any position in the alkyl group.
  • CrC 2 -Alkylthio is methylthio or ethylthio.
  • Ci-C 4 -Alkylthio is additionally, for example, n-propylthio, 1 -methylethylthio (isopropylthio), butylthio, 1 -methylpropylthio (sec- butylthio), 2-methylpropylthio (isobutylthio) or 1 ,1 -dimethylethylthio (tert-butylthio).
  • CrC 6 - Alkylthio is additionally, for example, pentylthio, 1 -methylbutylthio, 2-methylbutylthio, 3- methylbutylthio, 1 ,1 -dimethylpropylthio, 1 ,2-dimethylpropylthio, 2,2-dimethylpropylthio, 1 - ethylpropylthio, hexylthio, 1 -methylpentylthio, 2-methylpentylthio, 3-methylpentylthio, 4- methylpentylthio, 1 ,1 -dimethylbutylthio, 1 ,2-dimethylbutylthio, 1 ,3-dimethylbutylthio, 2,2- dimethylbutylthio, 2,3-dimethylbutylthio, 3,3-dimethylbutylthio, 1 -ethylbutylthio, 2-ethylbutylthio, 1 ,1
  • CrC 8 -Alkylthio is additionally, for example, heptylthio, octylthio, 2- ethylhexylthio and positional isomers thereof.
  • Ci-Ci 0 -Alkylthio is additionally, for example, nonyl- thio, decylthio and positional isomers thereof.
  • haloalkylthio refers to an alkylthio group as defined above wherein the hydrogen atoms are partially or fully substituted by fluorine, chlorine, bromine and/or iodine.
  • CrC 2 -Haloalkylthio is, for example, SCH 2 F, SCHF 2 , SCF 3 , SCH 2 CI, SCHCI 2 , SCCI 3 , chlorofluo- romethylthio, dichlorofluoromethylthio, chlorodifluoromethylthio, 2-fluoroethylthio, 2- chloroethylthio, 2-bromoethylthio, 2-iodoethylthio, 2,2-difluoroethylthio, 2,2,2-trifluoroethylthio, 2- chloro-2-fluoroethylthio, 2-chloro-2,2-difluoroethylthio, 2,2-dichloro
  • alkylsulfinyl and “S(0) n -alkyl” (wherein n is 1 ) are equivalent and, as used herein, denote an alkyl group, as defined above, attached via a sulfinyl [S(O)] group.
  • CrC 2 -alkylsulfinyl refers to a CrC 2 -alkyl group, as defined above, attached via a sulfinyl [S(O)] group.
  • C C 4 -alkylsulfinyl refers to a Ci-C 4 -alkyl group, as defined above, attached via a sulfinyl [S(O)] group.
  • Ci-C 6 -alkylsulfinyl refers to a CrC 6 -alkyl group, as defined above, attached via a sulfinyl [S(O)] group.
  • Ci-C 2 -alkylsulfinyl is methylsulfinyl or ethyl- sulfinyl.
  • Ci-C 4 -alkylsulfinyl is additionally, for example, n-propylsulfinyl, 1 -methylethylsulfinyl (isopropylsulfinyl), butylsulfinyl, 1 -methylpropylsulfinyl (sec-butylsulfinyl), 2-methylpropylsulfinyl (isobutylsulfinyl) or 1 ,1 -dimethylethylsulfinyl (tert-butylsulfinyl).
  • CrC 6 -alkylsulfinyl is additionally, for example, pentylsulfinyl, 1 -methylbutylsulfinyl, 2-methylbutylsulfinyl, 3-methylbutylsulfinyl, 1 ,1 -dimethylpropylsulfinyl, 1 ,2-dimethylpropylsulfinyl, 2,2-dimethylpropylsulfinyl, 1 -ethylpropylsulfinyl, hexylsulfinyl, 1 -methylpentylsulfinyl, 2-methylpentylsulfinyl, 3-methylpentylsulfinyl, 4-methylpentylsulfinyl, 1 ,1 -dimethylbutylsulfinyl, 1 ,2-dimethylbutylsulfinyl, 1 ,3-dimethylbutylsulfin
  • alkylsulfonyl and “S(0) n -alkyl” are equivalent and, as used herein, denote an alkyl group, as defined above, attached via a sulfonyl [S(0) 2 ] group.
  • the term "Ci-C 2 - alkylsulfonyl” refers to a CrC 2 -alkyl group, as defined above, attached via a sulfonyl [S(0) 2 ] group.
  • C C4-alkylsulfonyl refers to a CrC 4 -alkyl group, as defined above, attached via a sulfonyl [S(0) 2 ] group.
  • C C6-alkylsulfonyl refers to a CrC 6 -alkyl group, as defined above, attached via a sulfonyl [S(0) 2 ] group.
  • Ci-C 2 -alkylsulfonyl is methylsulfonyl or ethyl- sulfonyl.
  • d-C 4 -alkylsulfonyl is additionally, for example, n-propylsulfonyl, 1 -methylethylsulfonyl (isopropylsulfonyl), butylsulfonyl, 1 -methylpropylsulfonyl (sec-butylsulfonyl), 2- methylpropylsulfonyl (isobutylsulfonyl) or 1 ,1 -dimethylethylsulfonyl (tert-butylsulfonyl).
  • CrC 6 - alkylsulfonyl is additionally, for example, pentylsulfonyl, 1 -methylbutylsulfonyl, 2- methylbutylsulfonyl, 3-methylbutylsulfonyl, 1 ,1 -dimethylpropylsulfonyl, 1 ,2- dimethylpropylsulfonyl, 2,2-dimethylpropylsulfonyl, 1 -ethylpropylsulfonyl, hexylsulfonyl, 1 - methylpentylsulfonyl, 2-methylpentylsulfonyl, 3-methylpentylsulfonyl, 4-methylpentylsulfonyl, 1 ,1 -dimethylbutylsulfonyl, 1 ,2-dimethylbutylsulfonyl, 1 ,3-dimethylbutylsulf
  • alkylamino denotes in each case a group -NHR, wherein R is a straight-chain or branched alkyl group usually having from 1 to 6 carbon atoms ("Ci-C 6 - alkylamino"), preferably 1 to 4 carbon atoms("Ci-C 4 -alkylamino").
  • Ci-C 6 -alkylamino examples are methylamino, ethylamino, n-propylamino, isopropylamino, n-butylamino, 2-butylamino, iso- butylamino, tert-butylamino, and the like.
  • dialkylamino denotes in each case a group-NRR', wherein R and R', independently of each other, are a straight-chain or branched alkyl group each usually having from 1 to 6 carbon atoms ("di-(Ci-C 6 -alkyl)-amino"), preferably 1 to 4 carbon atoms (“di-(CrC 4 - alkyl)-amino").
  • Examples of a di-(Ci-C 6 -alkyl)-amino group are dimethylamino, diethylamino, dipropylamino, dibutylamino, methyl-ethyl-amino, methyl-propyl-amino, methyl-isopropylamino, methyl-butyl-amino, methyl-isobutyl-amino, ethyl-propyl-amino, ethyl-isopropylamino, ethyl- butyl-amino, ethyl-isobutyl-amino, and the like.
  • cycloalkylamino denotes in each case a group -NHR, wherein R is a cycloalkyi group usually having from 3 to 8 carbon atoms ("C 3 -C 8 -cycloalkylamino"), preferably 3 to 6 carbon atoms("C 3 -C 6 -cycloalkylamino").
  • C 3 -C 8 -cycloalkylamino are cycloprop- ylamino, cyclobutylamino, cyclopentylamino, cyclohexylamino, and the like.
  • alkylaminosulfonyl denotes in each case a straight-chain or branched alkylamino group as defined above, which is bound to the remainder of the molecule via a sulfonyl [S(0) 2 ] group.
  • alkylaminosulfonyl group examples include methylaminosulfonyl, ethyla- minosulfonyl, n-propylaminosulfonyl, isopropylaminosulfonyl, n-butylaminosulfonyl, 2- butylaminosulfonyl, iso-butylaminosulfonyl, tert-butylaminosulfonyl, and the like.
  • dialkylaminosulfonyl denotes in each case a straight-chain or branched alkylamino group as defined above, which is bound to the remainder of the molecule via a sulfonyl [S(0) 2 ] group.
  • dialkylaminosulfonyl group examples include dimethylaminosul- fonyl, diethylaminosulfonyl, dipropylaminosulfonyl, dibutylaminosulfonyl, methyl-ethyl- aminosulfonyl, methyl-propyl-aminosulfonyl, methyl-isopropylaminosulfonyl, methyl-butyl- aminosulfonyl, methyl-isobutyl-aminosulfonyl, ethyl-propyl-aminosulfonyl, ethyl- isopropylaminosulfonyl, ethyl-butyl-aminosulfonyl, ethyl-isobutyl-aminosulfonyl, and the like.
  • aryl refers to a mono-, bi- or tricyclic aromatic hydrocarbon radical such as phenyl or naphthyl, in particular phenyl.
  • heteroaryl refers to a mono-, bi- or tricyclic heteroaromatic hydrocarbon radical, preferably to a monocyclic heteroaromatic radical, such as pyridyl, pyrimidyl and the like.
  • a saturated, partially unsaturated or unsaturated 3- to 8-membered ring system which contains 1 to 4 heteroatoms selected from oxygen, nitrogen, sulfur, is a ring system wherein two oxygen atoms must not be in adjacent positions and wherein at least 1 carbon atom must be in the ring system e.g.
  • a saturated, partially unsaturated or unsaturated 3- to 8-membered ring system which contains 1 to 4 heteroatoms selected from oxygen, nitrogen, sulfur also is e.g.
  • a saturated, partially unsaturated or unsaturated 5-or 6-membered heterocycle which contains 1 to 4 heteroatoms selected from oxygen, nitrogen and sulfur, such as pyridine, pyrimidine, (1 ,2,4)-oxadiazole, (1 ,3,4)-oxadiazole, pyrrole, furan, thiophene, oxazole, thiazole, imidazole, pyrazole, isoxazole, 1 ,2,4-triazole, tetrazole, pyrazine, pyridazine, oxazoline, thiazoline, tetrahy- drofuran, tetrahydropyran, morpholine, piperidine, piperazine, pyrroline, pyrrolidine, oxazolidine, thiazolidine; or
  • a saturated, partially unsaturated or unsaturated 5-or 6-membered heterocycle which contains 1 nitrogen atom and 0 to 2 further heteroatoms selected from oxygen, nitrogen and sulfur, preferably from oxygen and nitrogen, such as piperidine, piperazin and morpholine.
  • this ring system is a saturated, partially unsaturated or unsaturated 3- to 6- membered ring system which contains 1 to 4 heteroatoms selected from oxygen, nitrogen, sulfur, wherein two oxygen atoms must not be in adjacent positions and wherein at least 1 carbon atom must be in the ring system.
  • this ring system is a radical of pyridine, pyrimidine, (1 ,2,4)-oxadiazole, 1 ,3,4- oxadiazole, pyrrole, furan, thiophene, oxazole, thiazole, imidazole, pyrazole, isoxazole, 1 ,2,4- triazole, tetrazole, pyrazine, pyridazine, oxazoline, thiazoline, tetrahydrofuran, tetrahydropyran, morpholine, piperidine, piperazine, pyrroline, pyrrolidine, oxazolidine, thiazolidine, oxirane or oxetane.
  • Preparation of the compounds of formula I can be accomplished according to standard methods of organic chemistry, e.g. by the methods or working examples described in WO 2007/006670, PCT/EP2012/065650 and PCT/EP2012/065651 , without being limited to the routes given therein.
  • the compounds of the formula (I) may have one or more centers of chirality, in which case they are present as mixtures of enantiomers or diastereomers.
  • the invention provides both the pure enantiomers or pure diastereomers of the compounds of formula (I), and their mixtures and the use according to the invention of the pure enantiomers or pure diastereomers of the compound of formula (I) or its mixtures.
  • Suitable compounds of the formula (I) also include all possible geometrical stereoisomers (cis/trans isomers) and mixtures thereof. Cis/trans isomers may be present with respect to an alkene, carbon-nitrogen double- bond, nitrogen-sulfur double bond or amide group.
  • stereoisomer(s) encompasses both optical isomers, such as enantiomers or diastereomers, the latter existing due to more than one center of chirality in the molecule, as well as geometrical isomers (cis/trans isomers).
  • Salts of the compounds of the present invention are preferably agriculturally and veterinarily acceptable salts. They can be formed in a customary method, e.g. by reacting the compound with an acid if the compound of the present invention has a basic functionality or by reacting the compound with a suitable base if the compound of the present invention has an acidic functionality.
  • suitable "agriculturally useful salts” or “agriculturally acceptable salts” are especially the salts of those cations or the acid addition salts of those acids whose cations and anions, respectively, do not have any adverse effect on the action of the compounds according to the present invention.
  • Suitable cations are in particular the ions of the alkali metals, preferably lithium, sodium and potassium, of the alkaline earth metals, preferably calcium, magnesium and barium, and of the transition metals, preferably manganese, copper, zinc and iron, and also ammonium (NhV) and substituted ammonium in which one to four of the hydrogen atoms are replaced by Ci-C4-alkyl, Ci-C4-hydroxyalkyl, Ci-C4-alkoxy, Ci-C4-alkoxy-Ci-C4-alkyl, hydroxy-Ci- C4-alkoxy-Ci-C4-alkyl, phenyl or benzyl.
  • substituted ammonium ions comprise me- thylammonium, isopropylammonium, dimethylammonium, diisopropylammonium, trime- thylammonium, tetramethylammonium, tetraethylammonium, tetrabutylammonium, 2- hydroxyethylammonium, 2-(2-hydroxyethoxy)ethyl-ammonium, bis(2-hydroxyethyl)ammonium, benzyltrimethylammonium and benzyltriethylammonium, furthermore phosphonium ions, sul- fonium ions, preferably tri(Ci-C4-alkyl)sulfonium, and sulfoxonium ions, preferably tri(Ci-C4- alkyl)sulfoxonium.
  • Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogen sulfate, sulfate, dihydrogen phosphate, hydrogen phosphate, phosphate, nitrate, hydrogen carbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of Ci-C4-alkanoic acids, preferably formate, acetate, propionate and butyrate. They can be formed by reacting the compounds of the formulae I with an acid of the corresponding anion, preferably of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.
  • N- oxide includes any compound of the present invention which has at least one tertiary nitrogen atom that is oxidized to an N-oxide moiety.
  • N-oxides of compounds (I) can in particular be prepared by oxidizing the ring nitrogen atom(s) of the pyridine ring and/or the pyrazole ring with a suitable oxidizing agent, such as peroxo carboxylic acids or other peroxides. The person skilled in the art knows if and in which positions compounds of the formula (I) of the present invention may form N-oxides.
  • the compounds of the present invention may be amorphous or may exist in one ore more different crystalline states (polymorphs) which may have different macroscopic properties such as stability or show different biological properties such as activities.
  • the present invention includes both amorphous and crystalline compounds of formula (I), their enantiomers or diastereomers, mixtures of different crystalline states of the respective compound of formula (I), its enantiomers or diastereomers, as well as amorphous or crystalline salts thereof.
  • co-crystal denotes a complex of the compounds according to the invention or a stereoisomer, salt, tautomer or N-oxide thereof, with one or more other molecules (preferably one molecule type), wherein usually the ratio of the compound according to the invention and the other molecule is a stoichiometric ratio.
  • solvate denotes a co-complex of the compounds according to the invention, or a stereoisomer, salt, tautomer or N-oxide thereof, with solvent molecules.
  • the solvent is usually liquid. Examples of solvents are methanol, ethanol, toluol, xylol.
  • a preferred solvent which forms solvates is water, which solvates are referred to as "hydrates".
  • a solvate or hydrate is usually characterized by the presence of a fixed number of n molecules solvent per m molecules compound according to the invention.
  • Agronomically acceptable salts of the compounds I can be formed in a customary manner, e.g. by reaction with an acid of the anion in question.
  • R 4 is halogen
  • R 2 is selected from the group consisting of bromo, chloro, cyano
  • R 7 is selected from the group consisting of bromo, chloro, trifluoromethyl. OCHF2, and wherein the variables R 2 , R 7 , R 5 , R 6 and k are as defined herein. Preferred are methods and uses of compounds of formula (I), in which the compound of formula I is a compound of formula IC:
  • R 1 is selected from the group consisting of halogen and halomethyl
  • R 2 is selected from the group consisting of bromo, chloro and cyano
  • R 1 is selected from the group consisting of halogen, methyl and halomethyl
  • R 2 is selected from the group consisting of bromo, chloro and cyano
  • R 5 , R 6 are selected independently of one another from the group consisting of hydrogen, Ci-Cio-alkyl, Cs-Cs-cycloalkyI, wherein the aforementioned aliphatic and cycloaliphatic radicals may be substituted with 1 to 10 substituents R e .
  • R 7 is selected from the group consisting of bromo, difluoromethyl, trifluoromethyl, cyano, OCHF2, OCH2F and
  • R 7 is selected from the group consisting of bromo, difluoromethyl, trifluoromethyl and OCHF2.
  • R 5 and R 6 are selected from methyl, ethyl, isopropyl, n-propyl, n-butyl, isobutyl, tert-butyl, cyclo- propyl, cyclopropylmethyl.
  • R 5 and R 6 are identical.
  • the methods and uses according to the invention comprise at least one compound of formula (IA)
  • R 4 is CI
  • R 1 is selected from the group consisting of CI, Br, and methyl
  • R 2 is selected from the group consisting of bromo and chloro
  • R 5 , R 6 are selected independently of one another from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl.
  • R 7 is selected from the group consisting of difluoromethyl, trifluoromethyl.
  • Examples of especially preferred anthranilamide compounds I of the present invention are of formula (IA-1 )
  • R 1 , R 2 , R 7 , R 5 , R 6 are as defined herein.
  • Examples of preferred compounds of formula I in the methods and uses according to the invention are compiled in tables 1 to 60 below. Moreover, the meanings mentioned below for the individual variables in the tables are per se, independently of the combination in which they are mentioned, a particularly preferred embodiment of the substituents in question.
  • Table 2 Compounds of the formula (IA-1 ) in which R 1 is Br, R 2 is CI, R 7 is CF3 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 3 Compounds of the formula (IA-1 ) in which R 1 is CI, R 2 is CI, R 7 is CF 3 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 7 Compounds of the formula (IA-1 ) in which R 1 is CI, R 2 is Br, R 7 is CF3 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 8 Compounds of the formula (IA-1 ) in which R 1 is methyl, R 2 is Br, R 7 is CF3 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 1 Compounds of the formula (IA-1 ) in which R 1 is CI, R 2 is cyano, R 7 is CF3 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 12 Compounds of the formula (IA-1 ) in which R 1 is methyl, R 2 is cyano, R 7 is CF3 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 13 Compounds of the formula (IA-1 ) in which R 1 is F, R 2 is CI, R 7 is CHF 2 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 17 Compounds of the formula (IA-1 ) in which R 1 is F, R 2 is Br, R 7 is CHF2 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 18 Compounds of the formula (IA-1 ) in which R 1 is Br, R 2 is Br, R 7 is CHF 2 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 19 Compounds of the formula (IA-1 ) in which R 1 is CI, R 2 is Br, R 7 is CHF 2 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 20 Compounds of the formula (IA-1 ) in which R 1 is methyl, R 2 is Br, R 7 is CHF2 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 21 Compounds of the formula (IA-1 ) in which R 1 is F, R 2 is cyano, R 7 is CHF2 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 22 Compounds of the formula (IA-1 ) in which R 1 is Br, R 2 is cyano, R 7 is CHF2 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 28 Compounds of the formula (IA-1 ) in which R 1 is methyl, R 2 is CI, R 7 is Br and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 29 Compounds of the formula (IA-1 ) in which R 1 is F, R 2 is Br, R 7 is Br and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 33 Compounds of the formula (IA-1 ) in which R 1 is F, R 2 is cyano, R 7 is Br and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 34 Compounds of the formula (IA-1 ) in which R 1 is Br, R 2 is cyano, R 7 is Br and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 40 Compounds of the formula (IA-1 ) in which R 1 is methyl, R 2 is CI, R 7 is CI and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 41 Compounds of the formula (IA-1 ) in which R 1 is F, R 2 is Br, R 7 is CI and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 47 Compounds of the formula (IA-1 ) in which R 1 is CI, R 2 is cyano, R 7 is CI and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 48 Compounds of the formula (IA-1 ) in which R 1 is methyl, R 2 is cyano, R 7 is CI and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 52 Compounds of the formula (IA-1 ) in which R 1 is methyl, R 2 is CI, R 7 is OCHF 2 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 53 Compounds of the formula (IA-1 ) in which R 1 is F, R 2 is Br, R 7 is OCHF 2 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 57 Compounds of the formula (IA-1 ) in which R 1 is F, R 2 is cyano, R 7 is OCHF 2 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 58 Compounds of the formula (IA-1 ) in which R 1 is Br, R 2 is cyano, R 7 is OCHF 2 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A;
  • Table 60 Compounds of the formula (IA-1 ) in which R 1 is methyl, R 2 is cyano, R 7 is OCHF 2 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A.
  • Table A Compounds of the formula (IA-1 ) in which R 1 is methyl, R 2 is cyano, R 7 is OCHF 2 and the combination of R 5 and R 6 for a compound corresponds in each case to one row of Table A.
  • A-103 CH CH 2 CH(CH 3 ) 2 A-145 c-C 6 Hii CH 2 CH 2 CH 2 CH 3
  • A-1 18 C-C4H7 CH(CH 3 ) 2 A-160 CH 2 CH CH 2 C(CH 3 ) 3
  • A-1 19 C-C5H9 CH(CH 3 ) 2 A-161 CH 2 C ⁇ CH C(CH 3 ) 3
  • A-178 CH CH 2 CH 2 CH(CH 3 ) 2
  • A-203 CH CH 2 CH(CH 3 )CH 2 CH 3
  • A-245 c-C 6 Hii CH 2 CH CH 2
  • A-260 CH 2 CH CH 2 CH 2 C ⁇ CH A-302 C2H5 CHF 2
  • A-460 CH 2 CH CH 2 C-C5H9 A-502 C2H5 CH 2 -c-C 3 H 5 R 5 R 6 R 5 R 6
  • A-610 CH 2 CH CH 2 C6H5 A-652 C2H5 CH 2 CH 2 -c-C 3 H 5
  • A-628 CH CH 2 CH2-C-C4H7
  • c-C 3 H 5 cyclopropyl; C-C4H7: cyclobutyl; C-C5H9: cyclopentyl; c-CeHu: cyclohexyl;
  • CH2-c-C 3 H 5 cyclopropylmethyl; CH(CH 3 )-c-C 3 H 5 : 1 -cyclopropylethyl; CH2-C-C5H9: cyclopentylmethyl; CH2-C-C5H9: cyclopentylmethyl; C6H 5 : phenyl;
  • CH2CH2-C-C3H5 2-cyclopropylethyl
  • CH2-C-C4H7 2-cyclobutylmethyl
  • 2-EtHex 2-etHex:
  • a group of especially preferred compounds of formula I are compounds 1-1 to I-40 of formula IA- 1 which are listed in the table C in the example section.
  • a compound selected from the compounds 1-1 to I-40 as defined in Table C in the Example Section at the end of the description, are preferred in the methods and uses according to the invention.
  • a compound selected from compounds 1-1 1 , 1-16, 1-21 , I-26, 1-31 is the compound I in the methods and uses according to the invention, which are defined in accordance with Table C of the example section:
  • 1-1 1 is the compound I in the methods and uses according to the invention.
  • 1-16 is the compound I in the methods and uses according to the invention.
  • 1-21 is the compound I in the methods and uses according to the invention.
  • I-26 is the compound I in the methods and uses according to the invention.
  • 1-31 is the compound I in the methods and uses according to the invention.
  • the method is connected with controlling hemiptera, preferably aphids or whitefly.
  • Plants exhibiting aphid damage can have a variety of symptoms, such as decreased growth rates, mottled leaves, yellowing, stunted growth, curled leaves, browning, wilting, low yields and death.
  • the removal of sap creates a lack of vigour in the plant, and aphid saliva is toxic to plants.
  • Hemiptera, in particular aphids frequently transmit disease- causing organisms like plant viruses to their hosts.
  • the green peach aphid (Myzus persicae) is a vector for more than 1 10 plant viruses.
  • Cotton aphids (Aphis gossypii) often infect sugarcane, papaya and groundnuts with viruses. Aphids contributed to the spread of late blight (Phytophthora in- festans) among potatoes in the Great Irish Potato Famine of the 1840s.
  • the cherry aphid or black cherry aphid, Myzus cerasi, is responsible for some leaf curl of cherry trees. This can easily be distinguished from 'leaf curl' caused by Taphrina fungus species due to the presence of aphids beneath the leaves.
  • honeydew The coating of plants with honeydew can contribute to the spread of fungi which can damage plants.
  • Honeydew produced by aphids has been observed to reduce the effectiveness of fungicides as well.
  • the neonicotinoids represent the fastest-growing class of insecticides introduced to the market since the commercialization of pyrethroids (Nauen and Denholm, 2005: Archives of Insect Biochemistry and Physiology 58:200-215) and are extremely valuable insect control agents not least because they had exhibited little or no cross-resistance to the older insecticide classes, which suffer markedly from resistance problems
  • the invention also provides a method of protecting a crop of useful plants, from virus infection. Such a method involves applying to said crop, treating a plant propagation material of said crop with, and/or applying to said insects, a compound of formula I.
  • the method of reducing insect-vectored viral infection in a plant is not connected to the ability of a compound of formula I to control insects, in particular aphids.
  • the method of reducing insect-vectored viral infection in a plant is especially surprisingly effective if the compound of formula I in question is not effective, or not very effective, or not sufficiently effective in the control of insects (e.g. aphids).
  • the compound of formula I may be used in a resistance management strategy with a view to controlling resistance to the neonicotinoid class of insecticides.
  • a resistance management strategy may involve alternating applications of a compound of formula I and a neonicotinoid insecticide, either on an application by application alternation (including different types of application, such as treatment of plant propa- gation material and foliar spray), or seasonal/crop alternation basis (e.g. use a compound of formula I on a first crop/for control in a first growing season, and use a neonicotinoid insecticide for a subsequent crop/growing season, or vice versa), and this forms yet a further aspect of the invention.
  • application alternation including different types of application, such as treatment of plant propa- gation material and foliar spray
  • seasonal/crop alternation basis e.g. use a compound of formula I on a first crop/for control in a first growing season, and use a neonicotinoid insecticide for a subsequent crop/
  • a further aspect of the invention provides a method of controlling a plant virus in a crop of useful plants susceptible to and/or under attack by neonicotinoid resistant insects which carry said plant virus, which method comprises applying to said crop, treating a plant propagation material of said crop with, and/or applying to said insects, a compound of formula I.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Sobemovirus.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Caulimovirus.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Closterovirus.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Sequivirus.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Enamovirus.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Luteovirus.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Polerovirus.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Umbravirus. In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Nanovirus.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Cytorhabdovirus.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Nucleorhabdovirus.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is soybean.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is rice.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is cotton.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is oilseed rape.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is peanut.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is cereal.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is wheat.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is barley.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is corn.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is a specialty crop.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is fruiting vegetable. In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is leafy vegetable.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is tomato.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is pepper.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is eggplant.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is cabbage.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is lettuce.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is potatoes.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is onions.
  • the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is tobacco.
  • the invention relates to a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, which is selected from the compounds 1-1 to I-40 as defined in Table C. More specifically, the compound I is selected from compounds 1-1 1 , 1-16, 1-21 , I-26, 1-31 which are defined in accordance with Table C of the example section. More specifically, the invention relates to a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound 1-1 1. Analogously, the invention relates to a use or method as explained, applying specifically compound 1-16. Analogously, the invention relates to a use or method as explained, applying specifically compound 1-16.
  • the invention relates to a use or method as explained, applying specifically compound 1-21. Analogously, the invention relates to a use or method as explained, applying specifically compound I-26. Analogously, the invention relates to a use or method as explained, applying specifically compound 1-31 .
  • the invention relates to a use or method for reducing insect- vectored viral infection in a plant/crop, wherein the virus and the plant/crop is as defined in entries VC-1 to VC-224 of Table VC, which method comprises applying a compound of formula I, which is selected from the compounds 1-1 to I-40 as defined in Table C. More specifically, the invention relates to a use or method for reducing insect-vectored viral infection in a plant/crop, wherein the virus and the plant/crop is as defined in entries VC-1 to VC-224 of Table VC, which method comprises applying a compound 1-1 1. Analogously, the invention relates to a use or method as explained, applying specifically compound 1-16.
  • the invention relates to a use or method as explained, applying specifically compound 1-16. Analogously, the invention relates to a use or method as explained, applying specifically compound 1-21 . Analogously, the invention relates to a use or method as explained, applying specifically compound I-26. Analogously, the invention relates to a use or method as explained, applying specifically compound I- 31 .
  • insects which are one or more of as an example Acyrthosiphum pisum, Aphis citricola, Aphis craccivora, Aphis fabae, Aphis frangulae, Aphis glycines, Aphis gossypii, Aphis nasturtii, Aphis pomi, Aphis spiraecola, Aulacorthum solani, Brachycaudus helichrysi, Brevicoryne brassicae, Diuraphis noxia, Dysaphis devecta, Dysaphis plantaginea, Eriosoma lanigerum, Hyalopterus pruni, Lipaphis erysimi, Macrosiphum avenae, Macrosiphum euphorbiae, Macrosiphum rosae, Myzus cerasi F., Myzus nicotianae, Myzus per- s
  • Methods of the invention as described herein may also involve a step of assessing whether insects are resistant to neonicotinoid insecticides and/or whether said insects carry a plant virus.
  • This step will in general involve collecting a sample of insects from the area (e.g. crop, field, habitat) to be treated, before actually applying a compound of formula I, and testing (for example using any suitable phenotypic, biochemical or molecular biological technique applicable) for resistance/sensitivity and/or the presence or absence of a virus.
  • the active agents of the invention may be applied as sole ingredients, or alternatively, each agent may be in the form of an agrochemical composition comprising an agrochemically acceptable diluent or carrier. References herein to the active agents of the invention or components comprising said agents shall be deemed to include the agents as sole ingredients or agrochemical compositions thereof.
  • the active agents of the invention may be applied simultaneously, separately or sequentially. Each active agent may be applied directly as separate components or as a mixture of the two.
  • the compounds of formula I as well as the terms "compounds for methods according to the (present) invention”, “compounds according to the (present) invention” or “compounds of formula (I)” or “compound(s) II", which all compound(s) are applied in methods according to the present invention comprise the compound(s) as defined herein as well as a known stereoisomer, salt, tautomer or N-oxide thereof.
  • composition(s) according to the invention or “composition(s) of the present invention” encompasses composition(s) comprising at least one compound of formula I or mixtures of the compounds of formula I with other pesticidallyactive compound(s) II for being used and/or ap- plied in methods according to the invention as defined above.
  • the compounds of formula I and/or their mixtures of the present invention, their stereoisomers, their salts or their N-oxides, are particularly useful for being applied in methods for soil application methods for controlling invertebrate pests, in particular for controlling insects, arthropods and nematodes and especially (spider) mites. Therefore, the invention relates to the use of compounds of formula I and/or their mixtures, for combating or controlling invertebrate pests, in particular invertebrate pests of the group of insects, arachnids or nematodes.
  • the present invention relates further to a composition comprising at least one compound of formula I and/or its mixtures, including a stereoisomer, salt, tautomer or N-oxide thereof, and at least one inert liquid and/or solid carrier.
  • the invention relates to an agricultural composition comprising at least one compound of formula I and at least one liquid and/or solid carrier for use in the methods of the present invention.
  • pesticidally active compounds II with which the compounds of formula I are combined with for the methods according to present invention are the following:
  • the compounds of formula I can be combined and used in mixture with another pesticidally active compound (II) and applied in agriculture.
  • another pesticidally active compound (II) is active against said soil-living arthropod pest.
  • a skilled person is familiar with such compounds and knows which compounds are active against a specific target organism.
  • the compound (II) pesticides together with which the compounds of formula I may be used according to the purpose of the present invention, and with which potential synergistic effects with regard to the method of uses might be produced, are selected and grouped according to the Mode of Action Classification from the Insecticde Resistance Action Committee (IRAC) and are selected from group M consisting of
  • Acetylcholine esterase (AChE) inhibitors from the class of
  • organophosphates including acephate, azamethiphos, azinphos-ethyl, az- inphosmethyl, cadusafos, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos, chlorpyrifos-methyl, coumaphos, cyanophos, demeton-S-methyl, diazinon, dichlorvos/ DDVP, dicrotophos, dimethoate, dimethylvinphos, disul- foton, EPN, ethion, ethoprophos, famphur, fenamiphos, fenitrothion, fenthion, fosthiazate, heptenophos, imicyafos, isofenphos, isopropyl O- (methoxyamino- thio-phosphoryl) salicylate, isoxathion, malathion, mecarbam, methoxyamino-
  • II-M.2A cyclodiene organochlorine compounds including endosulfan or chlordane; or II-M.2B fiproles (phenylpyrazoles), including ethiprole, fipronil, flufiprole, pyrafluprole and pyriprole;
  • II-M.3A pyrethroids including acrinathrin, allethrin, d-cis-trans allethrin, d-trans alle- thrin, bifenthrin, bioallethrin, bioallethrin S-cylclopentenyl, bioresmethrin, cy- cloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma- cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, theta- cypermethrin, zeta-cypermethrin, cyphenothrin, deltamethrin, empenthrin, esfenvalerate, etofenprox, fenpropathrin, f
  • Nicotinic acetylcholine receptor agonists from the class of
  • II-M.8B chloropicrin or II-M.8C sulfuryl fluoride, or
  • II-M.1 Microbial disruptors of insect midgut membranes, including bacillus thurin- giensis or bacillus sphaericus and the insecticdal proteins they produce such as bacillus thuringiensis subsp. israelensis, bacillus sphaericus, bacillus thu- ringiensis subsp. aizawai, bacillus thuringiensis subsp. kurstaki and bacillus thuringiensis subsp.
  • Cry1 Ab Cry1 Ac, Cryl Fa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb and Cry34/35Ab1 ;
  • ll-M 12 Inhibitors of mitochondrial ATP synthase including
  • ll-M 12B organotin miticides such as azocyclotin, cyhexatin or fenbutatin oxide, or ll-M 12C propargite, or
  • Inhibitors of the chitin biosynthesis type 1 including buprofezin;
  • Ecdyson receptor agonists such as diacylhydrazines, including methoxyfeno- zide, tebufenozide, halofenozide, fufenozide or chromafenozide; II-M.19 Octopamin receptor agonists, including amitraz;
  • Mitochondrial complex III electron transport inhibitors including
  • acaricides and insecticides such as fenazaquin, fenpyroximate, pyrim- idifen, pyridaben, tebufenpyrad or tolfenpyrad, or
  • Inhibitors of the acetyl CoA carboxylase including Tetronic and Tetramic acid derivatives, including spirodiclofen, spiromesifen or spirotetramat;
  • phosphine such as aluminium phosphide, calcium phosphide, phosphine or zinc phosphide, or
  • Mitochondrial complex II electron transport inhibitors such as beta-ketonitrile derivatives, including cyenopyrafen or cyflumetofen;
  • N2-(1 -methyl-2-methylsulfonylethyl)phthalamid or the compound ll-M.26.3: 3-bromo-N- ⁇ 2-bromo-4-chloro-6-[(1 -cyclopropylethyl)carbamoyl]phenyl ⁇ -1 -(3- chlorpyridin-2-yl)-1 H-pyrazole-5-carboxamide (proposed ISO name: cyclaniliprole), or the compound
  • ll-M.26.4 methyl-2-[3,5-dibromo-2-( ⁇ [3-bromo-1 -(3-chlorpyridin-2-yl)-1 H-pyrazol-5- yl]carbonyl ⁇ amino)benzoyl]-1 ,2-dimethylhydrazinecarboxylate; or a compound selected from ll-M.26.5a) to ll-M.26.5d):
  • II-M.26.5a N-[2-(5-amino-1 ,3,4-thiadiazol-2-yl)-4-chloro-6-methyl-phenyl]-5-bromo-2-(3- chloro-2-pyridyl)pyrazole-3-carboxamide;
  • ll-M.26.5b 5-chloro-2-(3-chloro-2-pyridyl)-N-[2,4-dichloro-6-[(1 -cyano-1 -methyl- ethyl)carbamoyl]phenyl]pyrazole-3-carboxamide;
  • ll-M.26.5c 5-bromo-N-[2,4-dichloro-6-(methylcarbamoyl)phenyl]-2-(3,5-dichloro-2- pyridyl)pyrazole-3-carboxamide;
  • ll-M.26.6 N2-(1 -cyano-1 -methyl-ethyl)-N1 -(2,4-dimethylphenyl)-3-iodo-phthalamide; or ll-M.26.7: 3-chloro-N2-(1 -cyano-1 -methyl-ethyl)-N1 -(2,4-dimethylphenyl)phthalamide; ll-M.X insecticidal active compounds of unknown or uncertain mode of action, including afidopyropen, azadirachtin, amidoflumet, benzoximate, bifenazate, bromo- propylate, chinomethionat, cryolite, dicofol, flufenerim, flometoquin, fluensul- fone, flupyradifurone, piperonyl butoxide, pyridalyl, pyrifluquinazon, sulfoxaflor, pyflubumide or the compounds
  • ll-M.X.6a (E/Z)-N-[1 -[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide
  • ll-M.X.6b (E/Z)-N-[1 -[(6-chloro-5-fluoro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro- acetamide;
  • ll-M.X.6c (E/Z)-2,2,2-trifluoro-N-[1 -[(6-fluoro-3-pyridyl)methyl]-2-pyridylidene]acetamide
  • ll-M.X.6d (E/Z)-N-[1 -[(6-bromo-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide
  • ll-M.X.6e (E/Z)-N-[1 -[1 -(6-chloro-3-pyridyl)ethyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide
  • ll-M.X.6f (E/Z)-N-[1 -[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2-difluoro-acetamide
  • ll-M.X.7 triflumezopyrim; or -M.X.8: 4-[5-[3-chloro-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-4H-isoxazol-3-yl]-N-
  • Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity Bacillus firmus, B. thuringiensis ssp. israelensis, B. t. ssp. galleriae, B. t. ssp. kurstaki, Beauveria bassiana, Burkholderia sp., Chromobacterium sub- tsugae, Cydia pomonella granulosis virus, Isaria fumosorosea, Lecanicillium longisporum, L. muscarium (formerly Verticillium lecanii), Metarhizium an- isopliae, M.
  • the quinoline derivative flometoquin is shown in WO2006/013896.
  • the aminofuranone compounds flupyradifurone is known from WO 2007/1 15644.
  • the sulfoximine compound sulfoxaflor is known from WO2007/149134.
  • the pyrethroid momfluorothrin is known from US6908945.
  • the pyrazole acaricide pyflubumide is known from WO2007/020986.
  • the isoxazoline compound II- M.X.1 has been described in WO2005/085216, II-M.X.8 in WO2009/002809 and in
  • the pyripyropene derivative II-M.X.2 has been described in WO 2006/129714.
  • the spiroketal-substituted cyclic ketoenol derivative II-M.X.3 is known from WO2006/089633 and the biphenyl-substituted spirocyclic ke- toenol derivative II-M.X.4 from WO2008/06791 1 .
  • Triazoylphenylsulfide like II-M.X.5 have been described in WO2006/043635 and biological control agents on basis of bacillus firmus in WO2009/124707.
  • the neonicotionids M4A.1 is known from WO20120/069266 and
  • Cyantraniliprole (Cyazypyr) is known from e.g. WO 2004/067528.
  • the phthalamides ll-M.26.1 and ll-M.26.2 are both known from WO 2007/101540.
  • the anthranilamide ll-M.26.3 has been described in WO 2005/077934.
  • the hydrazide compound ll-M.26.4 has been described in WO 2007/043677.
  • the anthranilamide ll-M.26.5a) is described in WO201 1/085575, the ll-M.26.5b) in WO2008/134969, the ll-M.26.5c) in US201 1/046186 and the ll-M.26.5d in WO2012/034403.
  • the diamide compounds ll-M.26.6 and ll-M.26.7 can be found in CN102613183.
  • the mesoionic antagonist compound II-M.X.9 was described in WO2012/0921 15, the nemati- cide II-M.X.10 in WO2013/055584 and the Pyridalyl-type analogue II-M.X.12 in
  • biopesticides from group ll-M.Y, and from group F.XIII as described below, their preparation and their biological activity e.g. against harmful fungi, pests is known (e-Pesticide Manual V 5.2 (ISBN 978 1 901396 85 0) (2008-201 1 ); http://www.epa.gov/opp00001/biopesticides/, see product lists therein; http://www.omri.org/omri-lists, see lists therein; Bio-Pesticides Database BPDB http://sitem.herts.ac.uk/aeru/bpdb/, see A to Z link therein).
  • biopesticides are registered and/or are commercially available: aluminium silicate (SCREENTM DUO from Certis LLC, USA), Ampelomyces quisqualis M-10 (e.g. AQ 10® from Intrachem Bio GmbH & Co. KG, Germany), Ascophyllum nodosum (Norwegian kelp, Brown kelp) extract (e.g. ORKA GOLD from Becker Underwood, South Africa), Aspergillus flavus NRRL 21882 (e.g. AFLA- GUARD® from Syngenta, CH), Aureobasidium pullulans (e.g. BOTECTOR® from bio-ferm
  • Azospirillum brasilense XOH e.g. AZOS from Xtreme Gardening, USA USA or RTI Reforestation Technologies International; USA
  • Bacillus amyloliquefaciens IT-45 CNCM I 3800, NCBI 1091041 ) (e.g. RHIZOCELL C from ITHEC, France)
  • B. amyloliquefaciens subsp. plantarum MBI600 NRRL B-50595, deposited at United States Department of Agriculture
  • B. pumilus QST 2808 (NRRL Accession No. B 30087) (e.g.
  • B. subtilis GB03 e.g. KODIAK from Gustafson, Inc., USA
  • B. subtilis GB07 EPIC from Gustafson, Inc., USA
  • B. subtilis QST-713 NRRL-Nr. B 21661 in RHAPSODY®, SERENADE® MAX and SERENADE® ASO from Agra-Quest Inc., USA
  • B. subtilis var. amylolique-'faciens FZB24 e.g. TAEGRO® from Novozyme Biologicals, Inc., USA
  • B. subtilis var. amyloliquefaciens D747 e.g.
  • BROAD-- BAND® from Becker Underwood, South Africa
  • Bradyrhizobium sp. e.g. VAULT® from Becker Underwood, USA
  • B. japonicum e.g. VAULT® from Becker Underwood, USA
  • Candida oleophila 1-82 e.g. ASPIRE® from Ecogen Inc., USA
  • Candida saitoana e.g. BIO- CURE® (in mixture with lysozyme) and BIOCOAT® from Micro Flo Company, USA (BASF SE) and Arysta
  • Chitosan e.g. ARMOUR-ZEN from BotriZen Ltd., NZ
  • ca- tenulata also named Gliocladium catenulatum (e.g. isolate J1446: PRESTOP® from Verdera, Finland), Coniothyrium minitans CON/M/91 -08 (e.g. Contans® WG from Prophyta, Germany), Cryphonectria parasitica (e.g. Endothia parasitica from CNICM, France), Cryptococcus albidus (e.g. YIELD PLUS® from Anchor Bio-Technologies, South Africa), Ecklonia maxima (kelp) extract (e.g. KELPAK SL from Kelp Products Ltd, South Africa), Fusarium oxysporum (e.g.
  • Gliocladium catenulatum e.g. isolate J1446: PRESTOP® from Verdera, Finland
  • Coniothyrium minitans CON/M/91 -08 e.g. Contans® WG from Prophyta, Germany
  • Cryphonectria parasitica e
  • BIO- FOX® from S.I.A.P.A., Italy, FUSACLEAN® from Natural Plant Protection, France
  • Glomus intraradices e.g. MYC 4000 from ITHEC, France
  • Glomus intraradices RTI-801 e.g. MYKOS from Xtreme Gardening, USA or RTI Reforestation Technologies International; USA
  • grapefruit seeds and pulp extract e.g. BC-1000 from Chemie S.A., Chile
  • Isaria fumosorosea Apopka-97 ATCC 20874) (PFR-97TM from Certis LLC, USA
  • Lecanicillium muscarium (formerly Verticillium lecanii) (e.g.
  • MYCOTAL from Koppert BV, Netherlands
  • Lecanicillium longisporum KV42 and KV71 e.g. VERTALEC® from Koppert BV, Netherlands
  • Metarhizium anisopliae var. acridum IMI 330189 deposited in European Culture Collections CABI) (e.g. GREEN MUSCLE® from Becker Underwood, South Africa)
  • M. anisopliae FI-1045 e.g. BIOCANE® from Becker Underwood Pty Ltd, Australia
  • M. anisopliae var. acridum FI-985 e.g. GREEN GUARD® SC from Becker Underwood Pty Ltd, Australia
  • anisopliae F52 e.g. MET52® Novozymes Biologicals BioAg Group, Canada
  • M. anisopliae ICIPE 69 e.g. METATHR POL from ICIPE, Kenya
  • Metschnikowia fructicola e.g. SHEMER® from Agrogreen, Israel
  • Microdochium dimerum e.g. ANTIBOT® from Agrauxine, France
  • Neem oil e.g. TRILOGY®, TRIACT® 70 EC from Certis LLC, USA
  • Paecilomyces fumosoroseus strain FE 9901 e.g. NO FLYTM from Natural Industries, Inc., USA
  • lilacinus DSM 15169 e.g. NEMATA® SC from Live Systems Technology S.A., Colombia
  • P. lilacinus BCP2 e.g. PL GOLD from Becker Underwood BioAg SA Ltd, South Africa
  • mixture of Paenibacillus alvei NAS6G6 and Bacillus pumilis e.g. BAC-UP from Becker Underwood South Africa
  • Penicillium bilaiae e.g. JUMP START® from Novozymes Biologicals BioAg Group, Canada
  • Phlebiopsis gigantea e.g. ROTSTOP® from Verdera, Finland
  • potassium silicate e.g.
  • Sil-MATRIXTM from Certis LLC, USA
  • Pseudozyma flocculosa e.g. SPORODEX® from Plant Products Co. Ltd., Canada
  • Pythium oligandrum DV74 e.g. POLYVERSUM® from Remeslo SSRO, Biopreparaty, Czech Rep.
  • Reynoutria sachlinensis extract e.g. REGALIA® from Marrone Biolnnovations, USA
  • Rhizobium leguminosarum bv. phaseolii e.g. RHIZO-STICK from Becker Underwood, USA
  • R. I. trifolii e.g. DORMAL from Becker Underwood, USA
  • viciae e.g. NODULATOR from Becker Underwood, USA
  • Sinorhizobium meliloti e.g. DORMAL ALFALFA from Becker Underwood, USA; NITRAGIN® Gold from Novozymes Biologicals BioAg Group, Canada
  • Steinernema feltiae NE-
  • MA--SHIELD® from BioWorks, Inc., USA Streptomyces lydicus WYEC 108 (e.g. Actinovate® from Natural Industries, Inc., USA, US 5,403,584), S. violaceusniger YCED-9 (e.g. DT-9® from Natural Industries, Inc., USA, US 5,968,503), Talaromyces flavus V1 17b (e.g. PROTUS® from Prophyta, Germany), Trichoderma asperellum SKT-1 (e.g. ECO-HOPE® from Kumiai Chemical Industry Co., Ltd., Japan), T. atroviride LC52 (e.g.
  • T. fertile JM41 R e.g. RICHPLUSTM from Becker Underwood Bio Ag SA Ltd, South Africa
  • T. harzianum T-22 e.g. PLANTSHIELD® der Firma BioWorks Inc., USA
  • T. harzianum TH 35 e.g. ROOT PRO® from Mycontrol Ltd., Israel
  • T. harzianum T-39 e.g. TRICHODEX® and TRICHODERMA 2000® from Mycontrol Ltd., Israel and Makhteshim Ltd., Israel
  • T. harzianum and T. viride e.g. TRICHOPEL from Agrimm Technologies Ltd, NZ
  • T. TRICHOPEL from Agrimm Technologies Ltd, NZ
  • T. TRICHOPEL from Agrimm Technologies Ltd, NZ
  • T. TRICHOPEL from Agrimm Technologies Ltd, NZ
  • T. TRICHOPEL from Agrimm Technologies Ltd, NZ
  • T. TRICHOPEL from Agrimm Technologies Ltd, NZ
  • T. viride ICC080 e.g. REMEDIER® WP from Isagro Ricerca, Italy
  • T. polysporum and T. harzi- anum e.g. BINAB® from BINAB Bio-Innovation AB, Sweden
  • T. stromaticum e.g. TRICO- VAB® from C.E.P.L.A.C., Brazil
  • T. virens GL-21 also named Gliocladium virens
  • SOIL- GARD® from Certis LLC, USA
  • T. viride e.g. TRIECO® from Ecosense Labs. (India) Pvt.
  • T. viride TV1 e.g. T. viride TV1 from Agribiotec srl, Italy
  • Ulocladium oudemansii HRU3 e.g. BOTRY-ZEN® from Botry-Zen Ltd, NZ
  • Bacillus amyloliquefaciens AP-136 NRRL B-50614
  • B. amyloliquefaciens AP-188 NRRL B-50615
  • B. amyloliquefaciens AP-218 NRRL B-50618
  • B. amyloliquefaciens AP-219 NRRL B-50619)
  • amyloliquefaciens AP-295 (NRRL B-50620), B. mojavensis AP-209 (No. NRRL B- 50616), B. solisalsi AP-217 (NRRL B-50617), B. pumilus strain INR-7 (otherwise referred to as BU-F22 (NRRL B-50153) and BU-F33 (NRRL B-50185)), B. simplex ABU 288 (NRRL B-50340) and B. amyloliquefaciens subsp. plantarum MBI600 (NRRL B-50595) have been mentioned i.a. in US patent appl. 20120149571 , WO 2012/079073.
  • Bacillus subtilis 1430 is deposited with the United States Department of Agriculture on Nov. 10, 201 1 under the strain designation Bacillus subtilis 1430. It has also been deposited at The National Collections of Industrial and Marine Bacteria Ltd. (NCIB), Torry Research Station, P.O. Box 31 , 135 Abbey Road, Aberdeen, AB9 8DG, Scotland. under accession number 1237 on December 22, 1986. Bacillus amyloliquefaciens MBI600 is known as plant growth-promoting rice seed treatment from Int. J. Microbiol. Res. ISSN 0975-5276, 3(2) (201 1 ), 120-130 and further described e.g. in US 2012/0149571 A1 .
  • This strain MBI600 is commercially available as liquid formulation product Integral® (Becker-Underwood Inc., USA). Recently, the strain MBI 600 has been reclassified as Bacillus amyloliquefaciens subsp. plantarum based on polyphasic testing which combines classical microbiological methods relying on a mixture of traditional tools (such as culture-based methods) and molecular tools (such as genotyping and fatty acids analysis). Thus, Bacillus subtilis MBI600 (or MBI 600 or MBI-600) is identical to Bacillus amyloliquefaciens subsp. plantarum MBI600, formerly Bacillus subtilis MBI600.
  • Metarhizium anisopliae IMI33 is commercially available from Becker Underwood as product Green Guard.
  • M. anisopliae var acridium strain IMI 330189 (NRRL-50758) is commercially available from Becker Underwood as product Green Muscle.
  • Bacillus subtilis strain FB17 was originally isolated from red beet roots in North America (System Appl. Microbiol 27 (2004) 372-379). This Bacillus subtilis strain promotes plant health (US 2010/0260735 A1 ; WO 201 1/109395 A2).
  • B. subtilis FB17 has also been deposited at American Type Culture Collection (ATCC), Manassas, VA, USA, under accession number PTA-1 1857 on April 26, 201 1 .
  • Bacillus subtilis strain FB17 may also be referred to as UD1022 or UD10-22.
  • the at least one biopesticide II is selected from the groups ll-M.Y-1 to ll-M.Y-2:
  • ll-M.Y-1 Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity:
  • the at least one biopesticide II is selected from group ll-M.Y-1 .
  • the at least one biopesticide II is se- lected from ll-M.Y-2.
  • the at least one biopesticide II is Bacillus amyloliquefaciens subsp. plantarum MBI600. These mixtures are particularly suitable in soybean.
  • the at least one biopesticide II is B. pumilus strain INR-7 (otherwise referred to as BU-F22 (NRRL B-50153) and BU-F33 (NRRL B- 50185; see WO 2012/079073). These mixtures are particularly suitable in soybean and corn.
  • the at least one biopesticide II is Bacillus pumilus, preferably B. pumilis strain INR-7 (otherwise referred to as BU-F22 (NRRL B- 50153) and BU-F33 (NRRL B-50185). These mixtures are particularly suitable in soybean and corn.
  • the at least one biopesticide II is Bacillus simplex, preferably B. simplex strain ABU 288 (NRRL B-50340). These mixtures are particularly suitable in soybean and corn.
  • the at least one biopesticide II is selected from Trichoderma asperellum, T. atroviride, T. fertile, T. gamsii, T. harmatum; mixture of T. harzia-'num and T. viride; mixture of T. polysporum and T. harzianum; T. stromaticum, T. virens (also named Gliocladium virens) and T. viride; preferably Trichoderma fertile, in particular T. fertile strain JM41 R. These mixtures are particularly suitable in soybean and corn.
  • the at least one biopesticide II is Sphaerodes mycoparasitica, preferably Sphaerodes mycoparasitica strain IDAC 301008-01 (also referred to as strain SMCD2220-01 ). These mixtures are particularly suitable in soybean and corn.
  • the at least one biopesticide II is Beauveria bassiana, preferably Beauveria bassiana strain PPRI5339. These mixtures are particularly suitable in soybean and corn.
  • the at least one biopesticide II is Metarhizium anisopliae or M. anisopliae var. acridium, preferably selectged from M anisolpiae strain IMI33 and M. anisopliae var. acridium strain IMI 330189. These mixtures are particularly suitable in soybean and corn.
  • Bradyrhizobium sp. meaning any Bradyrhizobium species and/or strain
  • biopesticide II is Bradyrhizobium japonicum (B. japonicum).
  • B. japonicum is not one of the strains TA-1 1 or 532c.
  • B. japonicum strains were cultivated using media and fermentation techniques known in the art, e.g. in yeast extract-mannitol broth (YEM) at 27°C for about 5 days.
  • USDA refers to United States Department of Agriculture Culture Collection, Beltsville, Md., USA (see e.g. Belts- ville Rhizobium Culture Collection Catalog March 1987 ARS-30).
  • B. japonicum strain G49 (INRA, Angers, France) is described in Fernandez-Flouret, D. & Cleyet-Marel, J. C. (1987) C R Acad Agric Fr 73, 163-171 ), especially for soybean grown in Europe, in particular in France.
  • B. japonicum strain TA-1 1 (TA1 1 NOD+) (NRRL B-18466) is i.a. described in US 5,021 ,076; AppI Environ Microbiol (1990) 56, 2399-2403 and commercially available as liquid inoculant for soybean (VAULT® NP, Becker Underwood, USA). Further B.
  • japonicum strains as example for biopesticide II are described in US2012/0252672A. Further suitable and especially in Canada commercially available strain 532c (The Nitragin Company, Milwaukee, Wisconsin, USA, field isolate from Wisconsin; Nitragin strain collection No. 61A152; Can J Plant Sci 70 (1990), 661 -666).
  • strains have been re-classified as a novel species Bradyrhizobium elkanii, e.g. strain USDA 76 (Can. J. Microbiol., 1992, 38, 501 - 505).
  • B. japonicum strain is E-109 (variant of strain USDA 138, see e.g. Eur. J. Soil Biol. 45 (2009) 28-35; Biol Fertil Soils (201 1 ) 47:81-89, depos- ited at Agriculture Collection Laboratory of the Instituto de Microbiologia y Zoologia Agncola (IMYZA), Instituto Nacional de Tecnologi ' a Agropecuaria (INTA), Castelar, Argentina).
  • This strain is especially suitable for soybean grown in South America, in particular in Argentina.

Abstract

The present invention relates to agricultural methods using anthranilamide compounds of formula (I) wherein R1, R2, R3, R4, R5, R6, R7 and k are as defined in the description; and their mixtures. The anthranilamide compounds of formula (I) are highly suitable for methods for reducing insect-vectored viral infection and transmission in plants, methods of reducing damage to plants caused by viral infection, and methods of crop enhancement including methods for improving plant growth, vigour and yield, by application of a combination of an anthranilic bis-amide or an aminothiadiazole (ryanodine receptor modulator) insecticide and a plant activator,to compositions comprising the combinations and to plant propagation material treated therewith.

Description

Use of anthranilamide compounds for reducing insect-vectored viral infections Description The present invention relates to new uses and methods of reducing insect-vectored viral infection and transmission in plants, methods of reducing damage to plants caused by viral infection, methods of crop enhancement including methods for improving plant growth, vigour and yield, by application of N-thio-anthranilamide compounds, and their mixtures with selected other pesticides.
The agrochemical industry is continually seeking methods of controlling plant pests and improving the growth of plants. Chemicals are typically used (i) to control undesirable species (for example, pests, such as insects, or vegetation, e.g., weeds, or fungi), and (ii) to promote plant growth (e.g., by providing nutrients), and thereby improve the growth of plants. Insect-vectored viral infections are a widespread cause of plant damage, for which there are few effective measures of control.
WO 2007/006670, describes N-thio-anthranilamide compounds with a sulfilimine or sulfoximine group and their use as pesticides. PCT/EP2012/065650, PCT/EP2012/065651 , and the unpublished applications US 61/578267, US 61/593897 and US 61/651050 describe certain N- Thio-anthranilamide compounds and their use as pesticides. PCT/EP2012/065648,
PCT/EP2012/065649 and EP1 1 189973.8 describe processes for the synthesis of N-Thio- anthranilamide compounds.
International patent applications WO 2008/021 152 and WO 2008/122396 refer to the use of certain anthranilamides for increasing crop vigour and yield. International patent application WO 2008/020998 refers to the in-furrow fungicide application for reducing plant damage by control of insect-vectored viral infection. International patent application WO201 1/134876 decribes methods for reducing insect-vectored viral infections by application of a combination of certain insecticides, i.a. anthranilic bis-amides, and a plant activator. There exists a need for alternative methods for controlling insect-vectored viral infection and transmission in plants, and for reducing the damage to plants caused by such viral infections, especially useful plants such as crops.
It is therefore an object of the present invention to provide compounds suitable and effective in said methods.
Surprisingly, it has now been found that anthranilamide compounds of formula (I) are suitable for reducing insect-vectored viral infection in a plant, reducing insect-vectored-viral transmission amongst plants, and reducing damage to a plant caused by one or more insect-vectored viral infections.
Therefore, in a first aspect, the present invention relates to the use of at least one pesticidally active anthranilamide compound of formula (I):
Figure imgf000003_0001
wherein
R1 is selected from the group consisting of halogen, methyl and halomethyl;
R2 is selected from the group consisting of hydrogen, halogen, halomethyl and cyano;
R3 is selected from hydrogen, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6-alkenyl, C2-C6- haloalkenyl, C2-C6-alkinyl, C2-C6-haloalkinyl, Cs-Cs-cycloalkyl, Cs-Cs-halocycloalkyl, Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C4-haloalkoxy-Ci-C4-alkyl,
C(=0)Ra, C(=0)ORb and C(=0)NRcRd;
R4 is hydrogen or halogen;
R5, R6 are selected independently of one another from the group consisting of hydrogen, Ci-Cio-alkyl, Cs-Cs-cycloalkyl, C2-Cio-alkenyl, C2-Cio-alkynyl, wherein the aforementioned aliphatic and cycloaliphatic radicals may be substituted with 1 to 10 substituents Re, and phenyl, which is unsubstituted or carries 1 to 5 substituents Rf; or
R5 and R6 together represent a C2-C7-alkylene, C2-C7-alkenylene or
C6-Cg-alkynylene chain forming together with the sulfur atom to which they are attached a 3-, 4-, 5-, 6-, 7-, 8-, 9- or 10-membered saturated, partially unsaturated or fully unsaturated ring, wherein 1 to 4 of the CH2 groups in the C2-C7-alkylene chain or 1 to 4 of any of the CH2 or CH groups in the C2-C7-alkenylene chain or 1 to 4 of any of the CH2 groups in the C6-Cg-alkynylene chain may be replaced by 1 to 4 groups independently selected from the group consisting of C=0, C=S, O, S, N, NO, SO, SO2 and NH , and wherein the carbon and/or nitrogen atoms in the C2- C7-alkylene, C2-C7-alkenylene or Ce-Cg-alkynylene chain may be substituted with 1 to 5 substituents independently selected from the group consisting of halogen, cyano, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy, Ci-C6-alkylthio, Ci-C6-haloalkylthio, Cs-Cs-cycloalkyl, Cs-Cs-halocycloalkyl, C2-C6-alkenyl, C2-C6- haloalkenyl, C2-C6-alkynyl and C2-C6-haloalkynyl; said substituents being identical or different from one another if more than one substituent is present; R7 is selected from the group consisting of bromo, chloro, difluoromethyl, trifluorome- thyl, nitro, cyano, OCH3, OCHF2, OCH2F, OCH2CF3, S(=0)nCH3, and S(=0)nCF3; is selected from the group consisting of Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkinyl, C3- Cs-cycloalkyl, Ci-C6-alkoxy, Ci-C6-alkylthio, Ci-C6-alkylsulfinyl, Ci-C6-alkylsulfonyl, wherein one or more CH2 groups of the aforementioned radicals may be replaced by a C=0 group, and/or the aliphatic and cycloaliphatic moieties of the aforementioned radicals may be unsubstituted, partially or fully halogenated and/or may carry 1 or 2 substituents selected from C1-C4 alkoxy;
phenyl, benzyl, pyridyl and phenoxy, wherein the last four radicals may be unsubstituted, partially or fully halogenated and/or carry 1 , 2 or 3 substituents selected from Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy, (Ci-C6-alkoxy)carbonyl, Ci-C6-alkylamino and di-(Ci-C6-alkyl)amino, Rb is selected from the group consisting of Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkinyl, C3- Cs-cycloalkyl, Ci-C6-alkoxy, Ci-C6-alkylthio, Ci-C6-alkylsulfinyl, Ci-C6-alkylsulfonyl, wherein one or more CH2 groups of the aforementioned radicals may be replaced by a C=0 group, and/or the aliphatic and cycloaliphatic moieties of the aforementioned radicals may be unsubstituted, partially or fully halogenated and/or may carry 1 or 2 substituents selected from Ci-C4-alkoxy;
phenyl, benzyl, pyridyl and phenoxy, wherein the last four radicals may be unsubstituted, partially or fully halogenated and/or carry 1 , 2 or 3 substituents selected from Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy and (C1-C6- alkoxy)carbonyl;
Rd are, independently from one another and independently of each occurrence, selected from the group consisting of hydrogen, cyano, Ci-C6-alkyl, C2-C6-alkenyl, C2- C6-alkinyl, Cs-Cs-cycloalkyl, wherein one or more CH2 groups of the aforementioned radicals may be replaced by a C=0 group, and/or the aliphatic and cycloaliphatic moieties of the aforementioned radicals may be unsubstituted, partially or fully halogenated and/or may carry 1 or 2 radicals selected from Ci-C4-alkoxy;
Ci-C6-alkoxy, Ci-C6-haloalkoxy, Ci-C6-alkylthio, Ci-C6-alkylsulfinyl, C1-C6- alkylsulfonyl, Ci-C6-haloalkylthio, phenyl, benzyl, pyridyl and phenoxy, wherein the four last mentioned radicals may be unsubstituted, partially or fully halogenated and/or carry 1 , 2 or 3 substituents selected from Ci-C6-alkyl, Ci-C6-haloalkyl, C1-C6- alkoxy, C1-C6 haloalkoxy and (Ci-C6-alkoxy)carbonyl; or
Rc and Rd, together with the nitrogen atom to which they are bound, may form a 3-, 4-, 5-, 6- or 7-membered saturated, partially unsaturated or fully unsaturated heterocyclic ring which may additionally contain 1 or 2 further heteroatoms or heteroatom groups selected from N, O, S, NO, SO and SO2, as ring members, where the heterocyclic ring may optionally be substituted with halogen, Ci-C4-haloalkyl, C1-C4- alkoxy or Ci-C4-haloalkoxy; Re is independently selected from the group consisting of halogen, cyano, nitro, -OH , - SH , -SCN , Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkinyl, Cs-Cs-cycloalkyl, wherein one or more Chb groups of the aforementioned radicals may be replaced by a C=0 group, and/or the aliphatic and cycloaliphatic moieties of the aforementioned radicals may be unsubstituted, partially or fully halogenated and/or may carry 1 or 2 radicals selected from C1-C4 alkoxy;
Ci-C6-alkoxy, Ci-C6-haloalkoxy, Ci-C6-alkylthio, Ci-C6-alkylsulfinyl, C1-C6- alkylsulfonyl, Ci-C6-haloalkylthio, -ORa, -N RcRd, -S(0)nRa, -S(0)nN RcRd, -C(=0)Ra, -C(=0)N RcRd, -C(=0)ORb, -C(=S)Ra, -C(=S)N RcRd, -C(=S)ORb, -C(=S)SRb, -C(=N Rc)Rb, -C(=N Rc)N RcRd, phenyl, benzyl, pyridyl and phenoxy, wherein the last four radicals may be unsubstituted, partially or fully halogenated and/or carry 1 , 2 or 3 substituents selected from Ci-C6-alkyl, Ci-C6-haloalkyl, C1-C6- alkoxy and Ci-C6-haloalkoxy; or
two vicinal radicals Re together form a group =0, =CH(Ci-C4-alkyl), =C(Ci-C4- alkyl)Ci-C4-alkyl, =N(Ci-C6-alkyl) or =NO(Ci-C6-alkyl);
Rf is independently selected from the group consisting of halogen, cyano, nitro, -OH , - SH , -SCN , Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkinyl, Cs-Cs-cycloalkyl, wherein one or more CH2 groups of the aforementioned radicals may be replaced by a C=0 group, and/or the aliphatic and cycloaliphatic moieties of the aforementioned radicals may be unsubstituted, partially or fully halogenated and/or may carry 1 or 2 radicals selected from C1-C4 alkoxy;
Ci-C6-alkoxy, Ci-C6-haloalkoxy, Ci-C6-alkylthio, Ci-C6-alkylsulfinyl, C1-C6- alkylsulfonyl, Ci-C6-haloalkylthio, -ORa, -N RcRd, -S(0)nRa, -S(0)nN RcRd, -C(=0)Ra, -C(=0)N RcRd, -C(=0)OR , -C(=S)Ra, -C(=S)N RcRd, -C(=S)OR , -C(=S)SR , -C(=N Rc)R , and -C(=N Rc)N RcRd; k is O or l ; n is 0, 1 or 2; or a stereoisomer, salt, tautomer or N-oxide, or a polymorphic crystalline form, a co-crystal or a solvate of a compound or a stereoisomer, salt, tautomer or N-oxide thereof; for reducing insect-vectored viral infection in a plant.
Furthermore, the invention relates to a method of reducing insect-vectored viral infection in a plant by application of at least one pesticidally active anthranilamide compound of formula (I) as defined above.
Furthermore, in this context, it has also been found that the compounds of formula I and their mixtures with other pesticides, are especially suitable for the purpose of the invention.
Thus, also the mixtures of compounds of formula I, or a stereoisomer, salt, tautomer or N-oxide thereof, with other selected pesticides, are highly suitable in the use for reducing insect- vectored viral infection in a plant, or reducing insect-vectored-viral transmission amongst plants, or reducing damage to a plant caused by one or more insect-vectored viral infections, and the respective methods by application of at least one pesticidally active anthranilamide compound of formula (I).
Compounds of formula I
WO 2007/006670, describes N-thio-anthranilamide compounds with a sulfilimine or sulfoximine group and their use as pesticides. PCT/EP2012/065650, PCT/EP2012/065651 , and the unpublished applications US 61/578267, US 61/593897 and US 61/651050 describe certain N- Thio-anthranilamide compounds and their use as pesticides.
PCT/EP2012/065648, PCT/EP2012/065649 and EP1 1 189973.8 describe processes for the synthesis of N-Thio-anthranilamide compounds.
However, although the anthranilamide compounds of formula (I) themselves and their combined application with other insecticides are known to have shown activity against certain crop damaging insect pests, the compounds of formula I and some of their selected mixtures with pesticidally active compounds (II) have not yet been described for solving discussed problems as mentioned above.
Especially, their surprisingly excellent applicability for reducing insect-vectored viral infection in a plant, or reducing insect-vectored-viral transmission amongst plants, or reducing damage to a plant caused by one or more insect-vectored viral infections, and their extraordinary activity against virus-transmitting pests have not been described previously.
The organic moieties mentioned in the above definitions of the variables are - like the term halogen - collective terms for individual listings of the individual group members. The prefix Cn-Cm indicates in each case the possible number of carbon atoms in the group.
The term halogen denotes in each case fluorine, bromine, chlorine or iodine, in particular fluorine, chlorine or bromine.
The term "partially or fully halogenated" will be taken to mean that 1 or more, e.g. 1 , 2, 3, 4 or 5 or all of the hydrogen atoms of a given radical have been replaced by a halogen atom, in particular by fluorine or chlorine. A partially or fully halogenated radical is termed below also "halo- radical". For example, partially or fully halogenated alkyl is also termed haloalkyl.
The term "alkyl" as used herein (and in the alkyl moieties of other groups comprising an alkyl group, e.g. alkoxy, alkylcarbonyl, alkylthio, alkylsulfinyl, alkylsulfonyl and alkoxyalkyi) denotes in each case a straight-chain or branched alkyl group having usually from 1 to 12 or 1 to 10 carbon atoms, frequently from 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms and in particular from 1 to 3 carbon atoms. Examples of CrC4-alkyl are methyl, ethyl, n-propyl, isopropyl, n-butyl,
2- butyl (sec-butyl), isobutyl and tert-butyl. Examples for CrC6-alkyl are, apart those mentioned for Ci-C4-alkyl, n-pentyl, 1 -methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1 -ethylpropyl, n-hexyl, 1 ,1 -dimethylpropyl, 1 ,2-dimethylpropyl, 1 -methylpentyl, 2-methylpentyl,
3- methylpentyl, 4-methylpentyl, 1 ,1 -dimethylbutyl, 1 ,2-dimethylbutyl, 1 ,3-dimethylbutyl, 2,2- dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1 -ethylbutyl, 2-ethylbutyl, 1 ,1 ,2- trimethylpropyl, 1 ,2,2-trimethylpropyl, 1 -ethyl-1 -methylpropyl and 1 -ethyl-2-methylpropyl. Examples for Ci-Cio-alkyl are, apart those mentioned for CrC6-alkyl, n-heptyl, 1 -methylhexyl, 2- methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-methylhexyl, 1 -ethylpentyl, 2-ethylpentyl, 3- ethylpentyl, n-octyl, 1 -methyloctyl, 2-methylheptyl, 1 -ethylhexyl, 2-ethylhexyl, 1 ,2-dimethylhexyl, 1 -propylpentyl, 2-propylpentyl, nonyl, decyl, 2-propylheptyl and 3-propylheptyl.
The term "alkylene" (or alkanediyl) as used herein in each case denotes an alkyl radical as defined above, wherein one hydrogen atom at any position of the carbon backbone is replaced by one further binding site, thus forming a bivalent moiety.
The term "haloalkyl" as used herein (and in the haloalkyl moieties of other groups comprising a haloalkyl group, e.g. haloalkoxy, haloalkylthio, haloalkylcarbonyl, haloalkylsulfonyl and haloal- kylsulfinyl) denotes in each case a straight-chain or branched alkyl group having usually from 1 to 10 carbon atoms ("Ci-Ci0-haloalkyl"), frequently from 1 to 6 carbon atoms ("Ci-C6-haloalkyl"), more frequently 1 to 4 carbon atoms ("Ci-Ci0-haloalkyl"), wherein the hydrogen atoms of this group are partially or totally replaced with halogen atoms. Preferred haloalkyl moieties are selected from CrC4-haloalkyl, more preferably from CrC2-haloalkyl, more preferably from halome- thyl, in particular from CrC2-fluoroalkyl. Halomethyl is methyl in which 1 , 2 or 3 of the hydrogen atoms are replaced by halogen atoms. Examples are bromomethyl, chloromethyl, dichlorome- thyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichloro- fluoromethyl, chlorodifluoromethyl and the like. Examples for CrC2-fluoroalkyl are fluoromethyl, difluoromethyl, trifluoromethyl, 1 -fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, pentafluoroethyl, and the like. Examples for CrC2-haloalkyl are, apart those mentioned for d- C2-fluoroalkyl, chloromethyl, dichloromethyl, trichloromethyl, bromomethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1 -chloroethyl, 2-chloroethyl, 2,2,-dichloroethyl, 2,2,2- trichloroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 1 - bromoethyl, and the like. Examples for Ci-C4-haloalkyl are, apart those mentioned for Ci-C2- haloalkyl, 1 -fluoropropyl, 2-fluoropropyl, 3-fluoropropyl, 3,3-difluoropropyl, 3,3,3-trifluoropropyl, heptafluoropropyl, 1 ,1 ,1 -trif I uoroprop-2-y 1 , 3-chloropropyl, 4-chlorobutyl and the like.
The term "cycloalkyi" as used herein (and in the cycloalkyi moieties of other groups comprising a cycloalkyi group, e.g. cycloalkoxy and cycloalkylalkyl) denotes in each case a mono- or bicydic cycloaliphatic radical having usually from 3 to 10 carbon atoms ("C3-Cio-cycloalkyl"), preferably 3 to 8 carbon atoms ("C3-C8-cycloalkyl") or in particular 3 to 6 carbon atoms ("C3-C6- cycloalkyl"). Examples of monocyclic radicals having 3 to 6 carbon atoms comprise cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. Examples of monocyclic radicals having 3 to 8 carbon atoms comprise cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl. Examples of bicydic radicals having 7 or 8 carbon atoms comprise bicyclo[2.1 .1]hexyl, bicy- clo[2.2.1 ]heptyl, bicyclo[3.1.1]heptyl, bicyclo[2.2.1]heptyl, bicyclo[2.2.2]octyl and bicy- clo[3.2.1 ]octyl.
The term "cycloalkylene" (or cycloalkanediyl) as used herein in each case denotes an cycloalkyi radical as defined above, wherein one hydrogen atom at any position of the carbon backbone is replaced by one further binding site, thus forming a bivalent moiety.
The term "halocydoalkyi" as used herein (and in the halocydoalkyi moieties of other groups comprising an halocydoalkyi group, e.g. halocycloalkylmethyl) denotes in each case a mono- or bicydic cycloaliphatic radical having usually from 3 to 10 carbon atoms, preferably 3 to 8 carbon atoms or in particular 3 to 6 carbon atoms, wherein at least one, e.g. 1 , 2, 3, 4 or 5 of the hydrogen atoms are replaced by halogen, in particular by fluorine or chlorine. Examples are 1 - and 2- fluorocyclopropyl, 1 ,2-, 2,2- and 2,3-difluorocyclopropyl, 1 ,2,2-trifluorocyclopropyl, 2,2,3,3- tetrafluorocyclpropyl, 1 - and 2-chlorocyclopropyl, 1 ,2-, 2,2- and 2,3-dichlorocyclopropyl, 1 ,2,2- trichlorocyclopropyl, 2,2,3,3-tetrachlorocyclpropyl, 1 -,2- and 3-fluorocyclopentyl, 1 ,2-, 2,2-, 2,3-, 3,3-, 3,4-, 2,5-difluorocyclopentyl, 1 -,2- and 3-chlorocyclopentyl, 1 ,2-, 2,2-, 2,3-, 3,3-, 3,4-, 2,5- dichlorocyclopentyl and the like.
The term "cycloalkyl-alkyl" used herein denotes a cycloalkyl group, as defined above, which is bound to the remainder of the molecule via an alkylene group. The term "C3-C8-cycloalkyl-Ci- C4-alkyl" refers to a C3-C8-cycloalkyl group as defined above which is bound to the remainder of the molecule via a CrC4-alkyl group, as defined above. Examples are cyclopropylmethyl, cyclo- propylethyl, cyclopropylpropyl, cyclobutylmethyl, cyclobutylethyl, cyclobutyl propyl, cyclopen- tylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclohexylmethyl, cyclohexylethyl, cyclohexyl propyl, and the like.
The term "alkenyl" as used herein denotes in each case a monounsaturated straight-chain or branched hydrocarbon radical having usually 2 to 10 ("C2-Cio-alkenyl"), preferably 2 to 6 carbon atoms ("C2-C6-alkenyl"), in particular 2 to 4 carbon atoms ("C2-C4-alkenyl"), and a double bond in any position, for example C2-C4-alkenyl, such as ethenyl, 1 -propenyl, 2-propenyl, 1 - methylethenyl, 1 -butenyl, 2-butenyl, 3-butenyl, 1 -methyl-1 -propenyl, 2-methyl-1 -propenyl, 1 - methyl-2-propenyl or 2-methyl-2-propenyl; C2-C6-alkenyl, such as ethenyl, 1 -propenyl, 2- propenyl, 1 -methylethenyl, 1 -butenyl, 2-butenyl, 3-butenyl, 1 -methyl-1 -propenyl, 2-methyl-1 - propenyl, 1 -methyl-2-propenyl, 2-methyl-2-propenyl, 1 -pentenyl, 2-pentenyl, 3-pentenyl, 4- pentenyl, 1 -methyl-1 -butenyl, 2-methyl-1 -butenyl, 3-methyl-1 -butenyl, 1 -methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1 -methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3- butenyl, 1 ,1 -dimethyl-2-propenyl, 1 ,2-dimethyl-1 -propenyl, 1 ,2-dimethyl-2-propenyl, 1 -ethyl-1 - propenyl, 1 -ethyl-2-propenyl, 1 -hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 1 -methyl-
1 - pentenyl, 2-methyl-1 -pentenyl, 3-methyl-1 -pentenyl, 4-methyl-1 -pentenyl, 1 -methyl-2- pentenyl, 2-methyl-2-pentenyl, 3-methyl-2-pentenyl, 4-methyl-2-pentenyl, 1 -methyl-3-pentenyl,
2- methyl-3-pentenyl, 3-methyl-3-pentenyl, 4-methyl-3-pentenyl, 1 -methyl-4-pentenyl, 2-methyl- 4-pentenyl, 3-methyl-4-pentenyl, 4-methyl-4-pentenyl, 1 ,1 -dimethyl-2-butenyl, 1 ,1 -dimethyl-3- butenyl, 1 ,2-dimethyl-1 -butenyl, 1 ,2-dimethyl-2-butenyl, 1 ,2-dimethyl-3-butenyl, 1 ,3-dimethyl-1 - butenyl, 1 ,3-dimethyl-2-butenyl, 1 ,3-dimethyl-3-butenyl, 2,2-dimethyl-3-butenyl, 2,3-dimethyl-1 - butenyl, 2,3-dimethyl-2-butenyl, 2,3-dimethyl-3-butenyl, 3, 3-dimethyl-1 -butenyl, 3,3-dimethyl-2- butenyl, 1 -ethyl-1 -butenyl, 1 -ethyl-2-butenyl, 1 -ethyl-3-butenyl, 2-ethyl-1 -butenyl,
2-ethyl-2-butenyl, 2-ethyl-3-butenyl, 1 ,1 ,2-trimethyl-2-propenyl, 1 -ethyl-1 -methyl-2-propenyl, 1 - ethyl-2-methyl-1 -propenyl, 1 -ethyl-2-methyl-2-propenyl and the like, or C2-Ci0-alkenyl, such as the radicals mentioned for C2-C6-alkenyl and additionally 1 -heptenyl, 2-heptenyl, 3-heptenyl, 1 - octenyl, 2-octenyl, 3-octenyl, 4-octenyl, 1 -nonenyl, 2-nonenyl, 3-nonenyl, 4-nonenyl, 1 -decenyl, 2-decenyl, 3-decenyl, 4-decenyl, 5-decenyl and the positional isomers thereof.
The term "alkenylene" (or alkenediyl) as used herein in each case denotes an alkenyl radical as defined above, wherein one hydrogen atom at any position of the carbon backbone is replaced by one further binding site, thus forming a bivalent moiety.
The term "haloalkenyl" as used herein, which may also be expressed as "alkenyl which may be substituted by halogen", and the haloalkenyl moieties in haloalkenyloxy, haloalkenylcarbonyl and the like refers to unsaturated straight-chain or branched hydrocarbon radicals having 2 to 10 ("C2-Cio-haloalkenyl") or 2 to 6 ("C2-C6-haloalkenyl") or 2 to 4 ("C2-C4-haloalkenyl") carbon atoms and a double bond in any position, where some or all of the hydrogen atoms in these groups are replaced by halogen atoms as mentioned above, in particular fluorine, chlorine and bromine, for example chlorovinyl, chloroallyl and the like.
The term "alkynyl" as used herein denotes unsaturated straight-chain or branched hydrocarbon radicals having usually 2 to 10 ("C2-Cio-alkynyl"), frequently 2 to 6 ("C2-C6-alkynyl"), preferably 2 to 4 carbon atoms ("C2-C4-alkynyl") and one or two triple bonds in any position, for example C2- C4-alkynyl, such as ethynyl, 1 -propynyl, 2-propynyl, 1 -butynyl, 2-butynyl, 3-butynyl, 1 -methyl-2- propynyl and the like, C2-C6-alkynyl, such as ethynyl, 1 -propynyl, 2-propynyl, 1 -butynyl, 2- butynyl, 3-butynyl, 1 -methyl-2-propynyl, 1 -pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1 - methyl-2-butynyl, 1 -methyl-3-butynyl, 2-methyl-3-butynyl, 3-methyl-1 -butynyl, 1 ,1 -dimethyl-2- propynyl, 1 -ethyl-2-propynyl, 1 -hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1 -methyl-2- pentynyl, 1 -methyl-3-pentynyl, 1 -methyl-4-pentynyl, 2-methyl-3-pentynyl, 2-methyl-4-pentynyl, 3- methyl-1 -pentynyl, 3-methyl-4-pentynyl, 4-methyl-1 -pentynyl, 4-methyl-2-pentynyl, 1 ,1 -dimethyl- 2-butynyl, 1 ,1 -dimethyl-3-butynyl, 1 ,2-dimethyl-3-butynyl, 2,2-dimethyl-3-butynyl, 3,3-dimethyl-1 - butynyl, 1 -ethyl-2-butynyl, 1 -ethyl-3-butynyl, 2-ethyl-3-butynyl, 1 -ethyl-1 -methyl-2-propynyl and the like.
The term "alkynylene" (or alkynediyl) as used herein in each case denotes an alkynyl radical as defined above, wherein one hydrogen atom at any position of the carbon backbone is replaced by one further binding site, thus forming a bivalent moiety.
The term "haloalkynyl" as used herein, which is also expressed as "alkynyl which may be substituted by halogen", refers to unsaturated straight-chain or branched hydrocarbon radicals having iusually 3 to 10 carbon atoms ("C2-Ci0-haloalkynyl"), frequently 2 to 6 ("C2-C6-haloalkynyl"), preferabyl 2 to 4 carbon atoms ("C2-C4-haloalkynyl"), and one or two triple bonds in any position (as mentioned above), where some or all of the hydrogen atoms in these groups are replaced by halogen atoms as mentioned above, in particular fluorine, chlorine and bromine.
The term "alkoxy" as used herein denotes in each case a straight-chain or branched alkyl group usually having from 1 to 10 carbon atoms ("Ci-Ci0-alkoxy"), frequently from 1 to 6 carbon atoms ("CrC6-alkoxy"), preferably 1 to 4 carbon atoms ("CrC4-alkoxy"), which is bound to the remainder of the molecule via an oxygen atom. Ci-C2-Alkoxy is methoxy or ethoxy. d-C4-Alkoxy is additionally, for example, n-propoxy, 1 -methylethoxy (isopropoxy), butoxy, 1 -methylpropoxy (sec-butoxy), 2-methylpropoxy (isobutoxy) or 1 ,1 -dimethylethoxy (tert-butoxy). CrC6-Alkoxy is additionally, for example, pentoxy, 1 -methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 1 ,1 - dimethylpropoxy, 1 ,2-dimethylpropoxy, 2,2-dimethylpropoxy, 1 -ethylpropoxy, hexoxy, 1 - methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1 ,1 -dimethylbutoxy, 1 ,2- dimethylbutoxy, 1 ,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy,
3,3-dimethylbutoxy, 1 -ethylbutoxy, 2-ethylbutoxy, 1 ,1 ,2-trimethylpropoxy, 1 ,2,2- trimethylpropoxy, 1 -ethyl-1 -methylpropoxy or 1 -ethyl-2-methylpropoxy. CrC8-Alkoxy is addition- ally, for example, heptyloxy, octyloxy, 2-ethylhexyloxy and positional isomers thereof. C-i-C-io- Alkoxy is additionally, for example, nonyloxy, decyloxy and positional isomers thereof.
The term "haloalkoxy" as used herein denotes in each case a straight-chain or branched alkoxy group, as defined above, having from 1 to 10 carbon atoms ("Ci-Ci0-haloalkoxy"), frequently from 1 to 6 carbon atoms ("CrC6-haloalkoxy"), preferably 1 to 4 carbon atoms ("CrC4- haloalkoxy"), more preferably 1 to 3 carbon atoms ("CrC3-haloalkoxy"), wherein the hydrogen atoms of this group are partially or totally replaced with halogen atoms, in particular fluorine atoms. C C2-Haloalkoxy is, for example, OCH2F, OCHF2, OCF3, OCH2CI, OCHCI2, OCCI3, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 2-fluoroethoxy, 2- chloroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2- fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy or OC2F5. Ci-C4-Haloalkoxy is additionally, for example, 2-fluoropropoxy, 3-fluoropropoxy, 2,2- difluoropropoxy, 2,3-difluoropropoxy, 2-chloropropoxy, 3-chloropropoxy, 2,3-dichloropropoxy, 2- bromopropoxy, 3-bromopropoxy, 3,3,3-trifluoropropoxy, 3,3,3-trichloropropoxy, OCH2-C2F5, OCF2-C2F5, 1 -(CH2F)-2-fluoroethoxy, 1 -(CH2CI)-2-chloroethoxy, 1 -(CH2Br)-2-bromoethoxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy or nonafluorobutoxy. CrC6-Haloalkoxy is additionally, for example, 5-fluoropentoxy, 5-chloropentoxy, 5-brompentoxy, 5-iodopentoxy, unde- cafluoropentoxy, 6-fluorohexoxy, 6-chlorohexoxy, 6-bromohexoxy, 6-iodohexoxy or dodecafluo- rohexoxy.
The term "alkoxyalkyl" as used herein denotes in each case alkyl usually comprising 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, wherein 1 carbon atom carries an alkoxy radical usually comprising 1 to 10, frequently 1 to 6, in particular 1 to 4, carbon atoms as defined above. "Ci-C6-Alkoxy-Ci-C6-alky is a CrC6-alkyl group, as defined above, in which one hydrogen atom is replaced by a CrC6-alkoxy group, as defined above. Examples are CH2OCH3, CH2- OC2H5, n-propoxymethyl, CH2-OCH(CH3)2, n-butoxymethyl, (l -methylpropoxy)-methyl, (2- methylpropoxy)methyl, CH2-OC(CH3)3, 2-(methoxy)ethyl, 2-(ethoxy)ethyl, 2-(n-propoxy)-ethyl, 2- (1 -methylethoxy)-ethyl, 2-(n-butoxy)ethyl, 2-(1 -methylpropoxy)-ethyl, 2-(2-methylpropoxy)-ethyl, 2-(1 ,1 -dimethylethoxy)-ethyl, 2-(methoxy)-propyl, 2-(ethoxy)-propyl, 2-(n-propoxy)-propyl, 2-(1 - methylethoxy)-propyl, 2-(n-butoxy)-propyl, 2-(1 -methylpropoxy)-propyl, 2-(2-methylpropoxy)- propyl, 2-(1 ,1 -dimethylethoxy)-propyl, 3-(methoxy)-propyl, 3-(ethoxy)-propyl, 3-(n-propoxy)- propyl, 3-(1 -methylethoxy)-propyl, 3-(n-butoxy)-propyl, 3-(1 -methylpropoxy)-propyl, 3-(2- methylpropoxy)-propyl, 3-(1 ,1 -dimethylethoxy)-propyl, 2-(methoxy)-butyl, 2-(ethoxy)-butyl, 2-(n- propoxy)-butyl, 2-(1 -methylethoxy)-butyl, 2-(n-butoxy)-butyl, 2-(1 -methylpropoxy)-butyl, 2-(2- methyl-propoxy)-butyl, 2-(1 ,1 -dimethylethoxy)-butyl, 3-(methoxy)-butyl, 3-(ethoxy)-butyl, 3-(n- propoxy)-butyl, 3-(1 -methylethoxy)-butyl, 3-(n-butoxy)-butyl, 3-(1 -methylpropoxy)-butyl, 3-(2- methylpropoxy)-butyl, 3-(1 ,1 -dimethylethoxy)-butyl, 4-(methoxy)-butyl, 4-(ethoxy)-butyl, 4-(n- propoxy)-butyl, 4-(1 -methylethoxy)-butyl, 4-(n-butoxy)-butyl, 4-(1 -methylpropoxy)-butyl, 4-(2- methylpropoxy)-butyl, 4-(1 ,1 -dimethylethoxy)-butyl and the like.
The term "haloalkoxy-alkyl" as used herein denotes in each case alkyl as defined above, usually comprising 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, wherein 1 carbon atom carries an haloalkoxy radical as defined above, usually comprising 1 to 10, frequently 1 to 6, in particular 1 to 4, carbon atoms as defined above. Examples are fluoromethoxymethyl, difluoromethox- ymethyl, trifluoromethoxymethyl, 1 -fluoroethoxymethyl, 2-fluoroethoxymethyl, 1 ,1 - difluoroethoxy methyl, 1 ,2-difluoroethoxymethyl, 2,2-difluoroethoxymethyl, 1 ,1 ,2- trifluoroethoxymethyl, 1 ,2,2-trifluoroethoxymethyl, 2,2,2-trifluoroethoxymethyl, pentafluoroethox- ymethyl, 1 -fluoroethoxy-1 -ethyl, 2-fluoroethoxy-1 -ethyl, 1 ,1 -difluoroethoxy-1 -ethyl, 1 ,2- difluoroethoxy-1 -ethyl, 2,2-difluoroethoxy-1 -ethyl, 1 ,1 ,2-trifluoroethoxy-1 -ethyl, 1 ,2,2- trifluoroethoxy-1 -ethyl, 2,2,2-trifluoroethoxy-1 -ethyl, pentafluoroethoxy-1 -ethyl, 1 -fluoroethoxy-2- ethyl, 2-fluoroethoxy-2-ethyl, 1 ,1 -difluoroethoxy-2 -ethyl, 1 ,2-difluoroethoxy-2-ethyl, 2,2- difluoroethoxy-2-ethyl, 1 ,1 ,2-trifluoroethoxy-2-ethyl, 1 ,2,2-trifluoroethoxy-2-ethyl, 2,2,2- trifluoroethoxy-2-ethyl, pentafluoroethoxy-2-ethyl, and the like.
The term "alkylthio"(also alkylsulfanyl or alkyl-S-)" as used herein denotes in each case a straight-chain or branched saturated alkyl group as defined above, usually comprising 1 to 10 carbon atoms ("CrCio-alkylthio"), frequently comprising 1 to 6 carbon atoms ("CrC6-alkylthio"), preferably 1 to 4 carbon atoms ("Ci-C4-alkylthio"), which is attached via a sulfur atom at any position in the alkyl group. CrC2-Alkylthio is methylthio or ethylthio. Ci-C4-Alkylthio is additionally, for example, n-propylthio, 1 -methylethylthio (isopropylthio), butylthio, 1 -methylpropylthio (sec- butylthio), 2-methylpropylthio (isobutylthio) or 1 ,1 -dimethylethylthio (tert-butylthio). CrC6- Alkylthio is additionally, for example, pentylthio, 1 -methylbutylthio, 2-methylbutylthio, 3- methylbutylthio, 1 ,1 -dimethylpropylthio, 1 ,2-dimethylpropylthio, 2,2-dimethylpropylthio, 1 - ethylpropylthio, hexylthio, 1 -methylpentylthio, 2-methylpentylthio, 3-methylpentylthio, 4- methylpentylthio, 1 ,1 -dimethylbutylthio, 1 ,2-dimethylbutylthio, 1 ,3-dimethylbutylthio, 2,2- dimethylbutylthio, 2,3-dimethylbutylthio, 3,3-dimethylbutylthio, 1 -ethylbutylthio, 2-ethylbutylthio, 1 ,1 ,2-trimethylpropylthio, 1 ,2,2-trimethylpropylthio, 1 -ethyl-1 -methylpropylthio or 1 -ethyl-2- methylpropylthio. CrC8-Alkylthio is additionally, for example, heptylthio, octylthio, 2- ethylhexylthio and positional isomers thereof. Ci-Ci0-Alkylthio is additionally, for example, nonyl- thio, decylthio and positional isomers thereof.
The term "haloalkylthio" as used herein refers to an alkylthio group as defined above wherein the hydrogen atoms are partially or fully substituted by fluorine, chlorine, bromine and/or iodine. CrC2-Haloalkylthio is, for example, SCH2F, SCHF2, SCF3, SCH2CI, SCHCI2, SCCI3, chlorofluo- romethylthio, dichlorofluoromethylthio, chlorodifluoromethylthio, 2-fluoroethylthio, 2- chloroethylthio, 2-bromoethylthio, 2-iodoethylthio, 2,2-difluoroethylthio, 2,2,2-trifluoroethylthio, 2- chloro-2-fluoroethylthio, 2-chloro-2,2-difluoroethylthio, 2,2-dichloro-2-fluoroethylthio,
2,2,2-trichloroethylthio or SC2F5. CrC4-Haloalkylthio is additionally, for example,
2-fluoropropylthio, 3-fluoropropylthio, 2,2-difluoropropylthio, 2,3-difluoropropylthio,
2- chloropropylthio, 3-chloropropylthio, 2,3-dichloropropylthio, 2-bromopropylthio,
3- bromopropylthio, 3,3,3-trifluoropropylthio, 3,3,3-trichloropropylthio, SCH2-C2F5, SCF2-C2F5, 1 - (CH2F)-2-fluoroethylthio, 1 -(CH2CI)-2-chloroethylthio, 1 -(CH2Br)-2-bromoethylthio,
4-fluorobutylthio, 4-chlorobutylthio, 4-bromobutylthio or nonafluorobutylthio. CrC6-Haloalkylthio is additionally, for example, 5-fluoropentylthio, 5-chloropentylthio, 5-brompentylthio,
5- iodopentylthio, undecafluoropentylthio, 6-fluorohexylthio, 6-chlorohexylthio, 6-bromohexylthio,
6- iodohexylthio or dodecafluorohexylthio.
The terms "alkylsulfinyl" and "S(0)n-alkyl" (wherein n is 1 ) are equivalent and, as used herein, denote an alkyl group, as defined above, attached via a sulfinyl [S(O)] group. For example, the term "CrC2-alkylsulfinyl" refers to a CrC2-alkyl group, as defined above, attached via a sulfinyl [S(O)] group. The term "C C4-alkylsulfinyl" refers to a Ci-C4-alkyl group, as defined above, attached via a sulfinyl [S(O)] group. The term "Ci-C6-alkylsulfinyl" refers to a CrC6-alkyl group, as defined above, attached via a sulfinyl [S(O)] group. Ci-C2-alkylsulfinyl is methylsulfinyl or ethyl- sulfinyl. Ci-C4-alkylsulfinyl is additionally, for example, n-propylsulfinyl, 1 -methylethylsulfinyl (isopropylsulfinyl), butylsulfinyl, 1 -methylpropylsulfinyl (sec-butylsulfinyl), 2-methylpropylsulfinyl (isobutylsulfinyl) or 1 ,1 -dimethylethylsulfinyl (tert-butylsulfinyl). CrC6-alkylsulfinyl is additionally, for example, pentylsulfinyl, 1 -methylbutylsulfinyl, 2-methylbutylsulfinyl, 3-methylbutylsulfinyl, 1 ,1 -dimethylpropylsulfinyl, 1 ,2-dimethylpropylsulfinyl, 2,2-dimethylpropylsulfinyl, 1 -ethylpropylsulfinyl, hexylsulfinyl, 1 -methylpentylsulfinyl, 2-methylpentylsulfinyl, 3-methylpentylsulfinyl, 4-methylpentylsulfinyl, 1 ,1 -dimethylbutylsulfinyl, 1 ,2-dimethylbutylsulfinyl, 1 ,3-dimethylbutylsulfinyl, 2,2-dimethylbutylsulfinyl, 2,3-dimethylbutylsulfinyl, 3,3- dimethylbutylsulfinyl, 1 -ethylbutylsulfinyl, 2-ethylbutylsulfinyl, 1 ,1 ,2-trimethylpropylsulfinyl, 1 ,2,2- trimethylpropylsulfinyl, 1 -ethyl-1 -methylpropylsulfinyl or 1 -ethyl-2-methylpropylsulfinyl.
The terms "alkylsulfonyl" and "S(0)n-alkyl" (wherein n is 2) are equivalent and, as used herein, denote an alkyl group, as defined above, attached via a sulfonyl [S(0)2] group. The term "Ci-C2- alkylsulfonyl" refers to a CrC2-alkyl group, as defined above, attached via a sulfonyl [S(0)2] group. The term "C C4-alkylsulfonyl" refers to a CrC4-alkyl group, as defined above, attached via a sulfonyl [S(0)2] group. The term "C C6-alkylsulfonyl" refers to a CrC6-alkyl group, as defined above, attached via a sulfonyl [S(0)2] group. Ci-C2-alkylsulfonyl is methylsulfonyl or ethyl- sulfonyl. d-C4-alkylsulfonyl is additionally, for example, n-propylsulfonyl, 1 -methylethylsulfonyl (isopropylsulfonyl), butylsulfonyl, 1 -methylpropylsulfonyl (sec-butylsulfonyl), 2- methylpropylsulfonyl (isobutylsulfonyl) or 1 ,1 -dimethylethylsulfonyl (tert-butylsulfonyl). CrC6- alkylsulfonyl is additionally, for example, pentylsulfonyl, 1 -methylbutylsulfonyl, 2- methylbutylsulfonyl, 3-methylbutylsulfonyl, 1 ,1 -dimethylpropylsulfonyl, 1 ,2- dimethylpropylsulfonyl, 2,2-dimethylpropylsulfonyl, 1 -ethylpropylsulfonyl, hexylsulfonyl, 1 - methylpentylsulfonyl, 2-methylpentylsulfonyl, 3-methylpentylsulfonyl, 4-methylpentylsulfonyl, 1 ,1 -dimethylbutylsulfonyl, 1 ,2-dimethylbutylsulfonyl, 1 ,3-dimethylbutylsulfonyl,
2,2-dimethylbutylsulfonyl, 2,3-dimethylbutylsulfonyl, 3,3-dimethylbutylsulfonyl,
1 -ethylbutylsulfonyl, 2-ethylbutylsulfonyl, 1 ,1 ,2-trimethylpropylsulfonyl,
1 ,2,2-trimethylpropylsulfonyl, 1 -ethyl-1 -methylpropylsulfonyl or 1 -ethyl-2-methylpropylsulfonyl. The term "alkylamino" as used herein denotes in each case a group -NHR, wherein R is a straight-chain or branched alkyl group usually having from 1 to 6 carbon atoms ("Ci-C6- alkylamino"), preferably 1 to 4 carbon atoms("Ci-C4-alkylamino"). Examples of Ci-C6-alkylamino are methylamino, ethylamino, n-propylamino, isopropylamino, n-butylamino, 2-butylamino, iso- butylamino, tert-butylamino, and the like.
The term "dialkylamino" as used herein denotes in each case a group-NRR', wherein R and R', independently of each other, are a straight-chain or branched alkyl group each usually having from 1 to 6 carbon atoms ("di-(Ci-C6-alkyl)-amino"), preferably 1 to 4 carbon atoms ("di-(CrC4- alkyl)-amino"). Examples of a di-(Ci-C6-alkyl)-amino group are dimethylamino, diethylamino, dipropylamino, dibutylamino, methyl-ethyl-amino, methyl-propyl-amino, methyl-isopropylamino, methyl-butyl-amino, methyl-isobutyl-amino, ethyl-propyl-amino, ethyl-isopropylamino, ethyl- butyl-amino, ethyl-isobutyl-amino, and the like.
The term "cycloalkylamino" as used herein denotes in each case a group -NHR, wherein R is a cycloalkyi group usually having from 3 to 8 carbon atoms ("C3-C8-cycloalkylamino"), preferably 3 to 6 carbon atoms("C3-C6-cycloalkylamino"). Examples of C3-C8-cycloalkylamino are cycloprop- ylamino, cyclobutylamino, cyclopentylamino, cyclohexylamino, and the like.
The term "alkylaminosulfonyl" as used herein denotes in each case a straight-chain or branched alkylamino group as defined above, which is bound to the remainder of the molecule via a sulfonyl [S(0)2] group. Examples of an alkylaminosulfonyl group are methylaminosulfonyl, ethyla- minosulfonyl, n-propylaminosulfonyl, isopropylaminosulfonyl, n-butylaminosulfonyl, 2- butylaminosulfonyl, iso-butylaminosulfonyl, tert-butylaminosulfonyl, and the like.
The term "dialkylaminosulfonyl" as used herein denotes in each case a straight-chain or branched alkylamino group as defined above, which is bound to the remainder of the molecule via a sulfonyl [S(0)2] group. Examples of an dialkylaminosulfonyl group are dimethylaminosul- fonyl, diethylaminosulfonyl, dipropylaminosulfonyl, dibutylaminosulfonyl, methyl-ethyl- aminosulfonyl, methyl-propyl-aminosulfonyl, methyl-isopropylaminosulfonyl, methyl-butyl- aminosulfonyl, methyl-isobutyl-aminosulfonyl, ethyl-propyl-aminosulfonyl, ethyl- isopropylaminosulfonyl, ethyl-butyl-aminosulfonyl, ethyl-isobutyl-aminosulfonyl, and the like. The suffix ,,-carbonyl" in a group denotes in each case that the group is bound to the remainder of the molecule via a carbonyl C=0 group. This is the case e.g. in alkylcarbonyl, haloalkylcar- bonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkoxycarbonyl, haloal- koxycarbonyl.
The term "aryl" as used herein refers to a mono-, bi- or tricyclic aromatic hydrocarbon radical such as phenyl or naphthyl, in particular phenyl.
The term "het(ero)aryl" as used herein refers to a mono-, bi- or tricyclic heteroaromatic hydrocarbon radical, preferably to a monocyclic heteroaromatic radical, such as pyridyl, pyrimidyl and the like.
A saturated, partially unsaturated or unsaturated 3- to 8-membered ring system which contains 1 to 4 heteroatoms selected from oxygen, nitrogen, sulfur, is a ring system wherein two oxygen atoms must not be in adjacent positions and wherein at least 1 carbon atom must be in the ring system e.g. thiophene, furan, pyrrole, thiazole, oxazole, imidazole, isothiazole, isoxa- zole, pyrazole, 1 ,3,4-oxadiazole, 1 ,3,4-thiadiazole, 1 ,3,4-triazole, 1 ,2,4-oxadiazole, 1 ,2,4- thiadiazole, 1 ,2,4-triazole, 1 ,2,3-triazole, 1 ,2,3,4-tetrazole, benzo[b]thiophene, benzo[b]furan, indole, benzo[c]thiophene, benzo[c]furan, isoindole, benzoxazole, benzthiazole, benzimidazole, benzisoxazole, benzisothiazole, benzopyrazole, benzothiadiazole, benztriazole, dibenzofuran, dibenzothiophene, carbazole, pyridine, pyrazine, pyrimidine, pyridazine, 1 ,3,5-triazine, 1 ,2,4- triazine, 1 ,2,4,5-tetrazine, quinoline, isoquinoline, quinoxaline, quinazoline, cinnoline, 1 ,8- naphthyridine, 1 ,5-naphthyridine, 1 ,6-naphthyridine, 1 ,7-naphthyridine, phthalazine, pyri- dopyrimidine, purine, pteridine, 4H-quinolizine, piperidine, pyrrolidine, oxazoline, tetrahydrofu- ran, tetrahydropyran, isoxazolidine or thiazolidine, oxirane or oxetane.
A saturated, partially unsaturated or unsaturated 3- to 8-membered ring system which contains 1 to 4 heteroatoms selected from oxygen, nitrogen, sulfur also is e.g.
a saturated, partially unsaturated or unsaturated 5-or 6-membered heterocycle which contains 1 to 4 heteroatoms selected from oxygen, nitrogen and sulfur, such as pyridine, pyrimidine, (1 ,2,4)-oxadiazole, (1 ,3,4)-oxadiazole, pyrrole, furan, thiophene, oxazole, thiazole, imidazole, pyrazole, isoxazole, 1 ,2,4-triazole, tetrazole, pyrazine, pyridazine, oxazoline, thiazoline, tetrahy- drofuran, tetrahydropyran, morpholine, piperidine, piperazine, pyrroline, pyrrolidine, oxazolidine, thiazolidine; or
a saturated, partially unsaturated or unsaturated 5-or 6-membered heterocycle which contains 1 nitrogen atom and 0 to 2 further heteroatoms selected from oxygen, nitrogen and sulfur, preferably from oxygen and nitrogen, such as piperidine, piperazin and morpholine.
Preferably, this ring system is a saturated, partially unsaturated or unsaturated 3- to 6- membered ring system which contains 1 to 4 heteroatoms selected from oxygen, nitrogen, sulfur, wherein two oxygen atoms must not be in adjacent positions and wherein at least 1 carbon atom must be in the ring system. Most preferably, this ring system is a radical of pyridine, pyrimidine, (1 ,2,4)-oxadiazole, 1 ,3,4- oxadiazole, pyrrole, furan, thiophene, oxazole, thiazole, imidazole, pyrazole, isoxazole, 1 ,2,4- triazole, tetrazole, pyrazine, pyridazine, oxazoline, thiazoline, tetrahydrofuran, tetrahydropyran, morpholine, piperidine, piperazine, pyrroline, pyrrolidine, oxazolidine, thiazolidine, oxirane or oxetane.
Preparation of the compounds of formula I can be accomplished according to standard methods of organic chemistry, e.g. by the methods or working examples described in WO 2007/006670, PCT/EP2012/065650 and PCT/EP2012/065651 , without being limited to the routes given therein.
Depending on the substitution pattern, the compounds of the formula (I) may have one or more centers of chirality, in which case they are present as mixtures of enantiomers or diastereomers. The invention provides both the pure enantiomers or pure diastereomers of the compounds of formula (I), and their mixtures and the use according to the invention of the pure enantiomers or pure diastereomers of the compound of formula (I) or its mixtures. Suitable compounds of the formula (I) also include all possible geometrical stereoisomers (cis/trans isomers) and mixtures thereof. Cis/trans isomers may be present with respect to an alkene, carbon-nitrogen double- bond, nitrogen-sulfur double bond or amide group. The term "stereoisomer(s)" encompasses both optical isomers, such as enantiomers or diastereomers, the latter existing due to more than one center of chirality in the molecule, as well as geometrical isomers (cis/trans isomers).
Salts of the compounds of the present invention are preferably agriculturally and veterinarily acceptable salts. They can be formed in a customary method, e.g. by reacting the compound with an acid if the compound of the present invention has a basic functionality or by reacting the compound with a suitable base if the compound of the present invention has an acidic functionality.
In general, suitable "agriculturally useful salts" or "agriculturally acceptable salts" are especially the salts of those cations or the acid addition salts of those acids whose cations and anions, respectively, do not have any adverse effect on the action of the compounds according to the present invention. Suitable cations are in particular the ions of the alkali metals, preferably lithium, sodium and potassium, of the alkaline earth metals, preferably calcium, magnesium and barium, and of the transition metals, preferably manganese, copper, zinc and iron, and also ammonium (NhV) and substituted ammonium in which one to four of the hydrogen atoms are replaced by Ci-C4-alkyl, Ci-C4-hydroxyalkyl, Ci-C4-alkoxy, Ci-C4-alkoxy-Ci-C4-alkyl, hydroxy-Ci- C4-alkoxy-Ci-C4-alkyl, phenyl or benzyl. Examples of substituted ammonium ions comprise me- thylammonium, isopropylammonium, dimethylammonium, diisopropylammonium, trime- thylammonium, tetramethylammonium, tetraethylammonium, tetrabutylammonium, 2- hydroxyethylammonium, 2-(2-hydroxyethoxy)ethyl-ammonium, bis(2-hydroxyethyl)ammonium, benzyltrimethylammonium and benzyltriethylammonium, furthermore phosphonium ions, sul- fonium ions, preferably tri(Ci-C4-alkyl)sulfonium, and sulfoxonium ions, preferably tri(Ci-C4- alkyl)sulfoxonium.
Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogen sulfate, sulfate, dihydrogen phosphate, hydrogen phosphate, phosphate, nitrate, hydrogen carbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of Ci-C4-alkanoic acids, preferably formate, acetate, propionate and butyrate. They can be formed by reacting the compounds of the formulae I with an acid of the corresponding anion, preferably of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid. The compounds of the formula (I) may be present in the form of their N-oxides. The term "N- oxide" includes any compound of the present invention which has at least one tertiary nitrogen atom that is oxidized to an N-oxide moiety. N-oxides of compounds (I) can in particular be prepared by oxidizing the ring nitrogen atom(s) of the pyridine ring and/or the pyrazole ring with a suitable oxidizing agent, such as peroxo carboxylic acids or other peroxides. The person skilled in the art knows if and in which positions compounds of the formula (I) of the present invention may form N-oxides.
The compounds of the present invention may be amorphous or may exist in one ore more different crystalline states (polymorphs) which may have different macroscopic properties such as stability or show different biological properties such as activities. The present invention includes both amorphous and crystalline compounds of formula (I), their enantiomers or diastereomers, mixtures of different crystalline states of the respective compound of formula (I), its enantiomers or diastereomers, as well as amorphous or crystalline salts thereof. The term "co-crystal" denotes a complex of the compounds according to the invention or a stereoisomer, salt, tautomer or N-oxide thereof, with one or more other molecules (preferably one molecule type), wherein usually the ratio of the compound according to the invention and the other molecule is a stoichiometric ratio.
The term "solvate" denotes a co-complex of the compounds according to the invention, or a stereoisomer, salt, tautomer or N-oxide thereof, with solvent molecules. The solvent is usually liquid. Examples of solvents are methanol, ethanol, toluol, xylol. A preferred solvent which forms solvates is water, which solvates are referred to as "hydrates". A solvate or hydrate is usually characterized by the presence of a fixed number of n molecules solvent per m molecules compound according to the invention.
The preparation of the compounds of formula I above may lead to them being obtained as isomer mixtures. If desired, these can be resolved by the methods customary for this purpose, such as crystallization or chromatography, also on optically active adsorbate, to give the pure isomers.
Agronomically acceptable salts of the compounds I can be formed in a customary manner, e.g. by reaction with an acid of the anion in question.
Preferences
The remarks made below as to preferred embodiments of the variables (substituents) of the compounds of formulae (I) are valid on their own as well as preferably in combination with each other, as well as in combination with the stereoisomers, tautomers, N-oxides or salts thereof, and, where applicable, as well as concerning the uses and methods according to the invention and the compositions according to the invention. Preferred compounds according to the invention are compounds of formulae (I) or a stereoisomer, N-oxide or salt thereof, wherein the salt is an agriculturally or veterinarily acceptable salt. The compounds I of formula (I) and their examples include their tautomers, racemic mixtures, individual pure enantiomers and diastereomers and their optically active mixtures.
Preferred are methods and uses of compounds of formula (I), wherein the compound of formula I is a compound of formula IA:
Figure imgf000016_0001
wherein
R4 is halogen, and
wherein the variables R1, R2, R7, R5, R6 and k are as defined herein.
Preferred are methods and uses of compounds of formula (I), in which the compound of formula I is a compound of formula IB:
Figure imgf000016_0002
wherein
R2 is selected from the group consisting of bromo, chloro, cyano;
R7 is selected from the group consisting of bromo, chloro, trifluoromethyl. OCHF2, and wherein the variables R2, R7, R5, R6 and k are as defined herein. Preferred are methods and uses of compounds of formula (I), in which the compound of formula I is a compound of formula IC:
Figure imgf000017_0001
wherein
R1 is selected from the group consisting of halogen and halomethyl;
R2 is selected from the group consisting of bromo, chloro and cyano, and
wherein the variables R5, R6 and k are as defined herein.
Preferred are methods and uses of compounds of formula (I), in which the compound of formula I is a compound of formula ID:
Figure imgf000017_0002
wherein
R1 is selected from the group consisting of halogen, methyl and halomethyl;
R2 is selected from the group consisting of bromo, chloro and cyano, and
wherein the variables R5, R6 and k are as defined herein.
Preferred are methods and uses of compounds of formula (I), in which R5, R6 are selected independently of one another from the group consisting of hydrogen, Ci-Cio-alkyl, Cs-Cs-cycloalkyl, wherein the aforementioned aliphatic and cycloaliphatic radicals may be substituted with 1 to 10 substituents Re; or R5 and R6 together represent a C2-C7-alkylene chain forming together with the sulfur atom to which they are attached a 3-, 4-, 5-, 6-, 7- or 8- membered saturated, partially unsaturated or fully unsaturated ring, wherein 1 to 4 of the Chb groups in the C2-C7-alkylene chain may be replaced by 1 to 4 groups independently selected from the group consisting of C=0, C=S, O, S, N, NO, SO, SO2 and NH, and wherein the carbon and/or nitrogen atoms in the C2-C7-alkylene chain may be substituted with 1 to 5 substituents independently selected from the group consisting of halogen, cyano, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy, C1-C6- alkylthio, Ci-C6-haloalkylthio, Cs-Cs-cycloalkyI, Cs-Cs-halocycloalkyl, C2-C6-alkenyl, C2-C6- haloalkenyl, C2-C6-alkynyl and C2-C6-haloalkynyl; said substituents being identical or different from one another if more than one substituent is present.
Preferred are methods and uses of compounds of formula (I), in which R5, R6 are selected independently of one another from the group consisting of hydrogen, Ci-Cio-alkyl, Cs-Cs-cycloalkyI, wherein the aforementioned aliphatic and cycloaliphatic radicals may be substituted with 1 to 10 substituents Re.
Preferred are methods and uses of compounds of formula (I), in which R7 is selected from the group consisting of bromo, difluoromethyl, trifluoromethyl, cyano, OCHF2, OCH2F and
Preferred are methods and uses of compounds of formula (I), in which R7 is selected from the group consisting of bromo, difluoromethyl, trifluoromethyl and OCHF2.
Preferred are methods and uses of compounds of formula (I), in which Re is independently selected from the group consisting of halogen, cyano, -OH, -SH, -SCN, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkinyl, Cs-Cs-cycloalkyI, wherein one or more CH2 groups of the aforementioned radicals may be replaced by a C=0 group, and/or the aliphatic and cycloaliphatic moieties of the aforementioned radicals may be unsubstituted, partially or fully halogenated and/or may carry 1 or 2 radicals selected from Ci-C6-alkoxy, Ci-C6-haloalkoxy, Ci-C6-alkylthio, Ci-C6-alkylsulfinyl, Ci- Ce-alkylsulfonyl, Ci-C6-haloalkylthio, -ORa, -NRcRd, -S(0)nRa, -S(0)nNRcRd,
-C(=0)Ra, -C(=0)NRcRd, -C(=0)ORb, -C(=S)Ra, -C(=S)NRcRd, -C(=S)ORb,
-C(=S)SRb, -C(=NRc)Rb, -C(=NRc)NRcRd, phenyl, benzyl, pyridyl and phenoxy, wherein the last four radicals may be unsubstituted, partially or fully halogenated and/or carry 1 , 2 or 3 substituents selected from Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy and Ci-C6-haloalkoxy. Preferred are methods and uses of compounds of formula (I), in which Re is independently selected from the group consisting of halogen, cyano, -OH, -SH, -SCN, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkinyl, Cs-Cs-cycloalkyI, wherein one or more CH2 groups of the aforementioned radicals may be replaced by a C=0 group, and/or the aliphatic and cycloaliphatic moieties of the aforementioned radicals may be unsubstituted, partially or fully halogenated.
Preferred are methods and uses of compounds of formula (I) as described herein, in which in the compound of formula I
R5 and R6 are selected from methyl, ethyl, isopropyl, n-propyl, n-butyl, isobutyl, tert-butyl, cyclo- propyl, cyclopropylmethyl. Preferred are methods and uses of compounds of formula (I) as described herein, in which in the compound of formula I
R5 and R6 are identical. In a particularly preferred embodiment, the methods and uses according to the invention comprise at least one compound of formula (IA)
Figure imgf000019_0001
wherein
R4 is CI,
R1 is selected from the group consisting of CI, Br, and methyl;
R2 is selected from the group consisting of bromo and chloro;
R5, R6 are selected independently of one another from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl.
R7 is selected from the group consisting of difluoromethyl, trifluoromethyl.
Examples of especially preferred anthranilamide compounds I of the present invention are of formula (IA-1 )
Figure imgf000019_0002
wherein R1, R2, R7, R5, R6 are as defined herein. Examples of preferred compounds of formula I in the methods and uses according to the invention are compiled in tables 1 to 60 below. Moreover, the meanings mentioned below for the individual variables in the tables are per se, independently of the combination in which they are mentioned, a particularly preferred embodiment of the substituents in question.
Table 1 Compounds of the formula (IA-1 ) in which R1 is F, R2 is CI, R7 is CF3 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 2 Compounds of the formula (IA-1 ) in which R1 is Br, R2 is CI, R7 is CF3 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A; Table 3 Compounds of the formula (IA-1 ) in which R1 is CI, R2 is CI, R7 is CF3 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 4 Compounds of the formula (IA-1 ) in which R1 is methyl, R2 is CI, R7 is CF3 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 5 Compounds of the formula (IA-1 ) in which R1 is F, R2 is Br, R7 is CF3 and the com- bination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 6 Compounds of the formula (IA-1 ) in which R1 is Br, R2 is Br, R7 is CF3 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 7 Compounds of the formula (IA-1 ) in which R1 is CI, R2 is Br, R7 is CF3 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A; Table 8 Compounds of the formula (IA-1 ) in which R1 is methyl, R2 is Br, R7 is CF3 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 9 Compounds of the formula (IA-1 ) in which R1 is F, R2 is cyano, R7 is CF3 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 10 Compounds of the formula (IA-1 ) in which R1 is Br, R2 is cyano, R7 is CF3 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 1 1 Compounds of the formula (IA-1 ) in which R1 is CI, R2 is cyano, R7 is CF3 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 12 Compounds of the formula (IA-1 ) in which R1 is methyl, R2 is cyano, R7 is CF3 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A; Table 13 Compounds of the formula (IA-1 ) in which R1 is F, R2 is CI, R7 is CHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 14 Compounds of the formula (IA-1 ) in which R1 is Br, R2 is CI, R7 is CHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 15 Compounds of the formula (IA-1 ) in which R1 is CI, R2 is CI, R7 is CHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 16 Compounds of the formula (IA-1 ) in which R1 is methyl, R2 is CI, R7 is CHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 17 Compounds of the formula (IA-1 ) in which R1 is F, R2 is Br, R7 is CHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A; Table 18 Compounds of the formula (IA-1 ) in which R1 is Br, R2 is Br, R7 is CHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 19 Compounds of the formula (IA-1 ) in which R1 is CI, R2 is Br, R7 is CHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A; Table 20 Compounds of the formula (IA-1 ) in which R1 is methyl, R2 is Br, R7 is CHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 21 Compounds of the formula (IA-1 ) in which R1 is F, R2 is cyano, R7 is CHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A; Table 22 Compounds of the formula (IA-1 ) in which R1 is Br, R2 is cyano, R7 is CHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 23 Compounds of the formula (IA-1 ) in which R1 is CI, R2 is cyano, R7 is CHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 24 Compounds of the formula (IA-1 ) in which R1 is methyl, R2 is cyano, R7 is CHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 25 Compounds of the formula (IA-1 ) in which R1 is F, R2 is CI, R7 is Br and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 26 Compounds of the formula (IA-1 ) in which R1 is Br, R2 is CI, R7 is Br and the com- bination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 27 Compounds of the formula (IA-1 ) in which R1 is CI, R2 is CI, R7 is Br and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 28 Compounds of the formula (IA-1 ) in which R1 is methyl, R2 is CI, R7 is Br and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A; Table 29 Compounds of the formula (IA-1 ) in which R1 is F, R2 is Br, R7 is Br and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 30 Compounds of the formula (IA-1 ) in which R1 is Br, R2 is Br, R7 is Br and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 31 Compounds of the formula (IA-1 ) in which R1 is CI, R2 is Br, R7 is Br and the com- bination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 32 Compounds of the formula (IA-1 ) in which R1 is methyl, R2 is Br, R7 is Br and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 33 Compounds of the formula (IA-1 ) in which R1 is F, R2 is cyano, R7 is Br and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A; Table 34 Compounds of the formula (IA-1 ) in which R1 is Br, R2 is cyano, R7 is Br and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 35 Compounds of the formula (IA-1 ) in which R1 is CI, R2 is cyano, R7 is Br and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 36 Compounds of the formula (IA-1 ) in which R1 is methyl, R2 is cyano, R7 is Br and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 37 Compounds of the formula (IA-1 ) in which R1 is F, R2 is CI, R7 is CI and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 38 Compounds of the formula (IA-1 ) in which R1 is Br, R2 is CI, R7 is CI and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 39 Compounds of the formula (IA-1 ) in which R1 is CI, R2 is CI, R7 is CI and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 40 Compounds of the formula (IA-1 ) in which R1 is methyl, R2 is CI, R7 is CI and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A; Table 41 Compounds of the formula (IA-1 ) in which R1 is F, R2 is Br, R7 is CI and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 42 Compounds of the formula (IA-1 ) in which R1 is Br, R2 is Br, R7 is CI and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 43 Compounds of the formula (IA-1 ) in which R1 is CI, R2 is Br, R7 is CI and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 44 Compounds of the formula (IA-1 ) in which R1 is methyl, R2 is Br, R7 is CI and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 45 Compounds of the formula (IA-1 ) in which R1 is F, R2 is cyano, R7 is CI and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 46 Compounds of the formula (IA-1 ) in which R1 is Br, R2 is cyano, R7 is CI and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 47 Compounds of the formula (IA-1 ) in which R1 is CI, R2 is cyano, R7 is CI and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A; Table 48 Compounds of the formula (IA-1 ) in which R1 is methyl, R2 is cyano, R7 is CI and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 49 Compounds of the formula (IA-1 ) in which R1 is F, R2 is CI, R7 is OCHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 50 Compounds of the formula (IA-1 ) in which R1 is Br, R2 is CI, R7 is OCHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 51 Compounds of the formula (IA-1 ) in which R1 is CI, R2 is CI, R7 is OCHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 52 Compounds of the formula (IA-1 ) in which R1 is methyl, R2 is CI, R7 is OCHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A; Table 53 Compounds of the formula (IA-1 ) in which R1 is F, R2 is Br, R7 is OCHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 54 Compounds of the formula (IA-1 ) in which R1 is Br, R2 is Br, R7 is OCHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 55 Compounds of the formula (IA-1 ) in which R1 is CI, R2 is Br, R7 is OCHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 56 Compounds of the formula (IA-1 ) in which R1 is methyl, R2 is Br, R7 is OCHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 57 Compounds of the formula (IA-1 ) in which R1 is F, R2 is cyano, R7 is OCHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A; Table 58 Compounds of the formula (IA-1 ) in which R1 is Br, R2 is cyano, R7 is OCHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 59 Compounds of the formula (IA-1 ) in which R1 is CI, R2 is cyano, R7 is OCHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A;
Table 60 Compounds of the formula (IA-1 ) in which R1 is methyl, R2 is cyano, R7 is OCHF2 and the combination of R5 and R6 for a compound corresponds in each case to one row of Table A. Table A
R5 R6 R5 R6
A-1 CHs CH3 A-42 c-C3H5 C2H5
A-2 C2H5 CH3 A-43 C-C4H7 C2H5
A-3 CH=CH2 CH3 A-44 C-C5H9 C2H5
A-4 CH2CH2CH3 CH3 A-45 c-C6Hii C2H5
A-5 CH(CH3)2 CH3 A-46 CH2-c-C3H5 C2H5
A-6 CH2CH2CH2CH3 CH3 A-47 CH(CH3)-c-C3H5 C2H5
A-7 C(CH3)3 CH3 A-48 CH2-C-C5H9 C2H5
A-8 CH2CH(CH3)2 CH3 A-49 CH2-C-C6H11 C2H5
A-9 CH(CH3)CH2CH3 CH3 A-50 C6H5 C2H5
A-10 CH2CH=CH2 CH3 A-51 CH3 CH=CH2
A-1 1 CH2C≡CH CH3 A-52 C2H5 CH=CH2
A-12 CH(CH3)CH=CH2 CH3 A-53 CH=CH2 CH=CH2
A-13 CHF2 CH3 A-54 CH2CH2CH3 CH=CH2
A-14 CH2CI CH3 A-55 CH(CH3)2 CH=CH2
A-15 CH2CH2CN CH3 A-56 CH2CH2CH2CH3 CH=CH2
A-16 CH2CH2CI CH3 A-57 C(CH3)3 CH=CH2
A-17 c-C3H5 CH3 A-58 CH2CH(CH3)2 CH=CH2
A-18 C-C4H7 CH3 A-59 CH(CH3)CH2CH3 CH=CH2
A-19 C-C5H9 CH3 A-60 CH2CH=CH2 CH=CH2
A-20 c-C6Hii CH3 A-61 CH2C≡CH CH=CH2
A-21 CH2-c-C3H5 CH3 A-62 CH(CH3)CH=CH2 CH=CH2
A-22 CH(CH3)-c-C3H5 CH3 A-63 CHF2 CH=CH2
A-23 CH2-C-C5H9 CH3 A-64 CH2CI CH=CH2
A-24 CH2-C-C6H11 CH3 A-65 CH2CH2CN CH=CH2
A-25 C6H5 CH3 A-66 CH2CH2CI CH=CH2
A-26 CH3 C2H5 A-67 c-C3H5 CH=CH2
A-27 C2H5 C2H5 A-68 C-C4H7 CH=CH2
A-28 CH=CH2 C2H5 A-69 C-C5H9 CH=CH2
A-29 CH2CH2CH3 C2H5 A-70 c-C6Hii CH=CH2
A-30 CH(CH3)2 C2H5 A-71 CH2-c-C3H5 CH=CH2
A-31 CH2CH2CH2CH3 C2H5 A-72 CH(CH3)-c-C3H5 CH=CH2
A-32 C(CH3)3 C2H5 A-73 CH2-C-C5H9 CH=CH2
A-33 CH2CH(CH3)2 C2H5 A-74 CH2-C-C6H11 CH=CH2
A-34 CH(CH3)CH2CH3 C2H5 A-75 C6H5 CH=CH2
A-35 CH2CH=CH2 C2H5 A-76 CH3 CH2CH2CH3
A-36 CH2C≡CH C2H5 A-77 C2H5 CH2CH2CH3
A-37 CH(CH3)CH=CH2 C2H5 A-78 CH=CH2 CH2CH2CH3
A-38 CHF2 C2H5 A-79 CH2CH2CH3 CH2CH2CH3
A-39 CH2CI C2H5 A-80 CH(CH3)2 CH2CH2CH3
A-40 CH2CH2CN C2H5 A-81 CH2CH2CH2CH3 CH2CH2CH3
A-41 CH2CH2CI C2H5 A-82 C(CH3)3 CH2CH2CH3 R5 R6 R5 R6
A-83 CH2CH(CH3)2 CH2CH2CH3 A-125 C6H5 CH(CH3)2
A-84 CH(CH3)CH2CH3 CH2CH2CH3 A-126 CH3 CH2CH2CH2CH3
A-85 CH2CH=CH2 CH2CH2CH3 A-127 C2H5 CH2CH2CH2CH3
A-86 CH2C≡CH CH2CH2CH3 A-128 CH=CH2 CH2CH2CH2CH3
A-87 CH(CH3)CH=CH2 CH2CH2CH3 A-129 CH2CH2CH3 CH2CH2CH2CH3
A-88 CHF2 CH2CH2CH3 A-130 CH(CH3)2 CH2CH2CH2CH3
A-89 CH2CI CH2CH2CH3 A-131 CH2CH2CH2CH3 CH2CH2CH2CH3
A-90 CH2CH2CN CH2CH2CH3 A-132 C(CH3)3 CH2CH2CH2CH3
A-91 CH2CH2CI CH2CH2CH3 A-133 CH2CH(CH3)2 CH2CH2CH2CH3
A-92 c-C3H5 CH2CH2CH3 A-134 CH(CH3)CH2CH3 CH2CH2CH2CH3
A-93 C-C4H7 CH2CH2CH3 A-135 CH2CH=CH2 CH2CH2CH2CH3
A-94 C-C5H9 CH2CH2CH3 A-136 CH2C≡CH CH2CH2CH2CH3
A-95 c-C6Hii CH2CH2CH3 A-137 CH(CH3)CH=CH2 CH2CH2CH2CH3
A-96 CH2-c-C3H5 CH2CH2CH3 A-138 CHF2 CH2CH2CH2CH3
A-97 CH(CH3)-c-C3H5 CH2CH2CH3 A-139 CH2CI CH2CH2CH2CH3
A-98 Chb-C-CsHg CH2CH2CH3 A-140 CH2CH2CN CH2CH2CH2CH3
A-99 CH2-c-C6Hi i CH2CH2CH3 A-141 CH2CH2CI CH2CH2CH2CH3
A-100 C6H5 CH2CH2CH3 A-142 c-C3H5 CH2CH2CH2CH3
A-101 CH3 CH(CH3)2 A-143 C-C4H7 CH2CH2CH2CH3
A-102 C2H5 CH(CH3)2 A-144 C-C5H9 CH2CH2CH2CH3
A-103 CH=CH2 CH(CH3)2 A-145 c-C6Hii CH2CH2CH2CH3
A-104 CH2CH2CH3 CH(CH3)2 A-146 CH2-c-C3H5 CH2CH2CH2CH3
A-105 CH(CH3)2 CH(CH3)2 A-147 CH(CH3)-c-C3H5 CH2CH2CH2CH3
A-106 CH2CH2CH2CH3 CH(CH3)2 A-148 Chb-C-CsHg CH2CH2CH2CH3
A-107 C(CH3)3 CH(CH3)2 A-149 CH2-c-C6Hi i CH2CH2CH2CH3
A-108 CH2CH(CH3)2 CH(CH3)2 A-150 C6H5 CH2CH2CH2CH3
A-109 CH(CH3)CH2CH3 CH(CH3)2 A-151 CH3 C(CH3)3
A-1 10 CH2CH=CH2 CH(CH3)2 A-152 C2H5 C(CH3)3
A-1 1 1 CH2C≡CH CH(CH3)2 A-153 CH=CH2 C(CH3)3
A-1 12 CH(CH3)CH=CH2 CH(CH3)2 A-154 CH2CH2CH3 C(CH3)3
A-1 13 CHF2 CH(CH3)2 A-155 CH(CH3)2 C(CH3)3
A-1 14 CH2CI CH(CH3)2 A-156 CH2CH2CH2CH3 C(CH3)3
A-1 15 CH2CH2CN CH(CH3)2 A-157 C(CH3)3 C(CH3)3
A-1 16 CH2CH2CI CH(CH3)2 A-158 CH2CH(CH3)2 C(CH3)3
A-1 17 c-C3H5 CH(CH3)2 A-159 CH(CH3)CH2CH3 C(CH3)3
A-1 18 C-C4H7 CH(CH3)2 A-160 CH2CH=CH2 C(CH3)3
A-1 19 C-C5H9 CH(CH3)2 A-161 CH2C≡CH C(CH3)3
A-120 c-C6Hii CH(CH3)2 A-162 CH(CH3)CH=CH2 C(CH3)3
A-121 CH2-c-C3H5 CH(CH3)2 A-163 CHF2 C(CH3)3
A-122 CH(CH3)-c-C3H5 CH(CH3)2 A-164 CH2CI C(CH3)3
A-123 Chb-C-CsHg CH(CH3)2 A-165 CH2CH2CN C(CH3)3
A-124 CH2-c-C6Hi i CH(CH3)2 A-166 CH2CH2CI C(CH3)3 R5 R6 R5 R6
A-167 C-C3H5 C(CH3)3 A-209 CH(CH3)CH2CH3 CH(CH3)CH2CH3
A-168 C-C4H7 C(CH3)3 A-210 CH2CH=CH2 CH(CH3)CH2CH3
A-169 C-C5H9 C(CH3)3 A-21 1 CH2C≡CH CH(CH3)CH2CH3
A-170 c-C6Hii C(CH3)3 A-212 CH(CH3)CH=CH2 CH(CH3)CH2CH3
A-171 CH2-c-C3H5 C(CH3)3 A-213 CHF2 CH(CH3)CH2CH3
A-172 CH(CH3)-c-C3H5 C(CH3)3 A-214 CH2CI CH(CH3)CH2CH3
A-173 CH2-C-C5H9 C(CH3)3 A-215 CH2CH2CN CH(CH3)CH2CH3
A-174 CH2-C-C6H11 C(CH3)3 A-216 CH2CH2CI CH(CH3)CH2CH3
A-175 C6H5 C(CH3)3 A-217 c-C3H5 CH(CH3)CH2CH3
A-176 CH3 CH2CH(CH3)2 A-218 C-C4H7 CH(CH3)CH2CH3
A-177 C2H5 CH2CH(CH3)2 A-219 C-C5H9 CH(CH3)CH2CH3
A-178 CH=CH2 CH2CH(CH3)2 A-220 c-C6Hii CH(CH3)CH2CH3
A-179 CH2CH2CH3 CH2CH(CH3)2 A-221 CH2-c-C3H5 CH(CH3)CH2CH3
A-180 CH(CH3)2 CH2CH(CH3)2 A-222 CH(CH3)-c-C3H5 CH(CH3)CH2CH3
A-181 CH2CH2CH2CH3 CH2CH(CH3)2 A-223 CH2-C-C5H9 CH(CH3)CH2CH3
A-182 C(CH3)3 CH2CH(CH3)2 A-224 CH2-C-C6H11 CH(CH3)CH2CH3
A-183 CH2CH(CH3)2 CH2CH(CH3)2 A-225 C6H5 CH(CH3)CH2CH3
A-184 CH(CH3)CH2CH3 CH2CH(CH3)2 A-226 CH3 CH2CH=CH2
A-185 CH2CH=CH2 CH2CH(CH3)2 A-227 C2H5 CH2CH=CH2
A-186 CH2C≡CH CH2CH(CH3)2 A-228 CH=CH2 CH2CH=CH2
A-187 CH(CH3)CH=CH2 CH2CH(CH3)2 A-229 ChbChbCHs CH2CH=CH2
A-188 CHF2 CH2CH(CH3)2 A-230 CH(CH3)2 CH2CH=CH2
A-189 CH2CI CH2CH(CH3)2 A-231 CH2CH2CH2CH3 CH2CH=CH2
A-190 CH2CH2CN CH2CH(CH3)2 A-232 C(CH3)3 CH2CH=CH2
A-191 CH2CH2CI CH2CH(CH3)2 A-233 CH2CH(CH3)2 CH2CH=CH2
A-192 c-C3H5 CH2CH(CH3)2 A-234 CH(CH3)CH2CH3 CH2CH=CH2
A-193 C-C4H7 CH2CH(CH3)2 A-235 CH2CH=CH2 CH2CH=CH2
A-194 C-C5H9 CH2CH(CH3)2 A-236 CH2C≡CH CH2CH=CH2
A-195 c-C6Hii CH2CH(CH3)2 A-237 CH(CH3)CH=CH2 CH2CH=CH2
A-196 CH2-c-C3H5 CH2CH(CH3)2 A-238 CHF2 CH2CH=CH2
A-197 CH(CH3)-c-C3H5 CH2CH(CH3)2 A-239 CH2CI CH2CH=CH2
A-198 CH2-C-C5H9 CH2CH(CH3)2 A-240 CH2CH2CN CH2CH=CH2
A-199 CH2-C-C6H11 CH2CH(CH3)2 A-241 CH2CH2CI CH2CH=CH2
A-200 C6H5 CH2CH(CH3)2 A-242 c-C3H5 CH2CH=CH2
A-201 CH3 CH(CH3)CH2CH3 A-243 C-C4H7 CH2CH=CH2
A-202 C2H5 CH(CH3)CH2CH3 A-244 C-C5H9 CH2CH=CH2
A-203 CH=CH2 CH(CH3)CH2CH3 A-245 c-C6Hii CH2CH=CH2
A-204 CH2CH2CH3 CH(CH3)CH2CH3 A-246 CH2-c-C3H5 CH2CH=CH2
A-205 CH(CH3)2 CH(CH3)CH2CH3 A-247 CH(CH3)-c-C3H5 CH2CH=CH2
A-206 CH2CH2CH2CH3 CH(CH3)CH2CH3 A-248 CH2-C-C5H9 CH2CH=CH2
A-207 C(CH3)3 CH(CH3)CH2CH3 A-249 CH2-C-C6H11 CH2CH=CH2
A-208 CH2CH(CH3)2 CH(CH3)CH2CH3 A-250 C6H5 CH2CH=CH2 R5 R6 R5 R6
A-251 CHs CH2C≡CH A-293 C-C4H7 CH(CH3)CH=CH2
A-252 C2H5 CH2C≡CH A-294 C-C5H9 CH(CH3)CH=CH2
A-253 CH=CH2 CH2C≡CH A-295 c-C6Hii CH(CH3)CH=CH2
A-254 CH2CH2CH3 CH2C≡CH A-296 CH2-c-C3H5 CH(CH3)CH=CH2
A-255 CH(CH3)2 CH2C≡CH A-297 CH(CH3)-c-C3H5 CH(CH3)CH=CH2
A-256 CH2CH2CH2CH3 CH2C≡CH A-298 CH2-C-C5H9 CH(CH3)CH=CH2
A-257 C(CH3)3 CH2C≡CH A-299 CH2-C-C5H9 CH(CH3)CH=CH2
A-258 CH2CH(CH3)2 CH2C≡CH A-300 C6H5 CH(CH3)CH=CH2
A-259 CH(CH3)CH2CH3 CH2C≡CH A-301 CH3 CHF2
A-260 CH2CH=CH2 CH2C≡CH A-302 C2H5 CHF2
A-261 CH2C≡CH CH2C≡CH A-303 CH=CH2 CHF2
A-262 CH(CH3)CH=CH2 CH2C≡CH A-304 CH2CH2CH3 CHF2
A-263 CHF2 CH2C≡CH A-305 CH(CH3)2 CHF2
A-264 CH2CI CH2C≡CH A-306 CH2CH2CH2CH3 CHF2
A-265 CH2CH2CN CH2C≡CH A-307 C(CH3)3 CHF2
A-266 CH2CH2CI CH2C≡CH A-308 CH2CH(CH3)2 CHF2
A-267 c-C3H5 CH2C≡CH A-309 CH(CH3)CH2CH3 CHF2
A-268 C-C4H7 CH2C≡CH A-310 CH2CH=CH2 CHF2
A-269 C-C5H9 CH2C≡CH A-31 1 CH2C≡CH CHF2
A-270 c-C6Hii CH2C≡CH A-312 CH(CH3)CH=CH2 CHF2
A-271 CH2-c-C3H5 CH2C≡CH A-313 CHF2 CHF2
A-272 CH(CH3)-c-C3H5 CH2C≡CH A-314 CH2CI CHF2
A-273 CH2-C-C5H9 CH2C≡CH A-315 CH2CH2CN CHF2
A-274 CH2-C-C6H11 CH2C≡CH A-316 CH2CH2CI CHF2
A-275 C6H5 CH2C≡CH A-317 c-C3H5 CHF2
A-276 CH3 CH(CH3)CH=CH2 A-318 C-C4H7 CHF2
A-277 C2H5 CH(CH3)CH=CH2 A-319 C-C5H9 CHF2
A-278 CH=CH2 CH(CH3)CH=CH2 A-320 c-C6Hii CHF2
A-279 CH2CH2CH3 CH(CH3)CH=CH2 A-321 CH2-c-C3H5 CHF2
A-280 CH(CH3)2 CH(CH3)CH=CH2 A-322 CH(CH3)-c-C3H5 CHF2
A-281 CH2CH2CH2CH3 CH(CH3)CH=CH2 A-323 CH2-C-C5H9 CHF2
A-282 C(CH3)3 CH(CH3)CH=CH2 A-324 CH2-C-C6H11 CHF2
A-283 CH2CH(CH3)2 CH(CH3)CH=CH2 A-325 C6H5 CHF2
A-284 CH(CH3)CH2CH3 CH(CH3)CH=CH2 A-326 CH3 CH2CI
A-285 CH2CH=CH2 CH(CH3)CH=CH2 A-327 C2H5 CH2CI
A-286 CH2C≡CH CH(CH3)CH=CH2 A-328 CH=CH2 CH2CI
A-287 CH(CH3)CH=CH2 CH(CH3)CH=CH2 A-329 CH2CH2CH3 CH2CI
A-288 CHF2 CH(CH3)CH=CH2 A-330 CH(CH3)2 CH2CI
A-289 CH2CI CH(CH3)CH=CH2 A-331 CH2CH2CH2CH3 CH2CI
A-290 CH2CH2CN CH(CH3)CH=CH2 A-332 C(CH3)3 CH2CI
A-291 CH2CH2CI CH(CH3)CH=CH2 A-333 CH2CH(CH3)2 CH2CI
A-292 c-C3H5 CH(CH3)CH=CH2 A-334 CH(CH3)CH2CH3 CH2CI R5 R6 R5 R6
A-335 CH2CH=CH2 CH2CI A-377 C2H5 CH2CH2CI
A-336 CH2C≡CH CH2CI A-378 CH=CH2 CH2CH2CI
A-337 CH(CH3)CH=CH2 CH2CI A-379 CH2CH2CH3 CH2CH2CI
A-338 CHF2 CH2CI A-380 CH(CH3)2 CH2CH2CI
A-339 CH2CI CH2CI A-381 CH2CH2CH2CH3 CH2CH2CI
A-340 CH2CH2CN CH2CI A-382 C(CH3)3 CH2CH2CI
A-341 CH2CH2CI CH2CI A-383 CH2CH(CH3)2 CH2CH2CI
A-342 C-C3H5 CH2CI A-384 CH(CH3)CH2CH3 CH2CH2CI
A-343 C-C4H7 CH2CI A-385 CH2CH=CH2 CH2CH2CI
A-344 C-C5H9 CH2CI A-386 CH2C≡CH CH2CH2CI
A-345 c-C6Hii CH2CI A-387 CH(CH3)CH=CH2 CH2CH2CI
A-346 CH2-c-C3H5 CH2CI A-388 CHF2 CH2CH2CI
A-347 CH(CH3)-c-C3H5 CH2CI A-389 CH2CI CH2CH2CI
A-348 Chb-c-CsHg CH2CI A-390 CH2CH2CN CH2CH2CI
A-349 CH2-c-C6Hi i CH2CI A-391 CH2CH2CI CH2CH2CI
A-350 C6H5 CH2CI A-392 c-CsHs CH2CH2CI
A-351 CH3 CH2CH2CN A-393 C-C4H7 CH2CH2CI
A-352 C2H5 CH2CH2CN A-394 C-C5H9 CH2CH2CI
A-353 CH=CH2 CH2CH2CN A-395 c-C6Hii CH2CH2CI
A-354 CH2CH2CH3 CH2CH2CN A-396 CH2-c-C3H5 CH2CH2CI
A-355 CH(CH3)2 CH2CH2CN A-397 CH(CH3)-c-C3H5 CH2CH2CI
A-356 CH2CH2CH2CH3 CH2CH2CN A-398 Chb-C-CsHg CH2CH2CI
A-357 C(CH3)3 CH2CH2CN A-399 CH2-c-C6Hi i CH2CH2CI
A-358 CH2CH(CH3)2 CH2CH2CN A-400 C6H5 CH2CH2CI
A-359 CH(CH3)CH2CH3 CH2CH2CN A-401 CH3 C-C3H5
A-360 CH2CH=CH2 CH2CH2CN A-402 C2H5 C-C3H5
A-361 CH2C≡CH CH2CH2CN A-403 CH=CH2 C-C3H5
A-362 CH(CH3)CH=CH2 CH2CH2CN A-404 CH2CH2CH3 C-C3H5
A-363 CHF2 CH2CH2CN A-405 CH(CH3)2 C-C3H5
A-364 CH2CI CH2CH2CN A-406 CH2CH2CH2CH3 C-C3H5
A-365 CH2CH2CN CH2CH2CN A-407 C(CH3)3 C-C3H5
A-366 CH2CH2CI CH2CH2CN A-408 CH2CH(CH3)2 C-C3H5
A-367 c-C3H5 CH2CH2CN A-409 CH(CH3)CH2CH3 C-C3H5
A-368 C-C4H7 CH2CH2CN A-410 CH2CH=CH2 C-C3H5
A-369 C-C5H9 CH2CH2CN A-41 1 CH2C≡CH C-C3H5
A-370 c-C6Hii CH2CH2CN A-412 CH(CH3)CH=CH2 C-C3H5
A-371 CH2-c-C3H5 CH2CH2CN A-413 CHF2 C-C3H5
A-372 CH(CH3)-c-C3H5 CH2CH2CN A-414 CH2CI C-C3H5
A-373 Chb-c-CsHg CH2CH2CN A-415 CH2CH2CN C-C3H5
A-374 Chb-C-CsHg CH2CH2CN A-416 CH2CH2CI C-C3H5
A-375 C6H5 CH2CH2CN A-417 c-CsHs C-C3H5
A-376 CH3 CH2CH2CI A-418 C-C4H7 C-C3H5 R5 R6 R5 R6
A-419 C-C5H9 C-C3H5 A-461 CH2C≡CH C-C5H9
A-420 c-C6Hii C-C3H5 A-462 CH(CH3)CH=CH2 C-C5H9
A-421 CH2-c-C3H5 C-C3H5 A-463 CHF2 C-C5H9
A-422 CH(CH3)-c-C3H5 C-C3H5 A-464 CH2CI C-C5H9
A-423 CH2-C-C5H9 C-C3H5 A-465 CH2CH2CN C-C5H9
A-424 CH2-C-C6H11 C-C3H5 A-466 CH2CH2CI C-C5H9
A-425 C6H5 C-C3H5 A-467 C-C3H5 C-C5H9
A-426 CH3 C-C4H7 A-468 C-C4H7 C-C5H9
A-427 C2H5 C-C4H7 A-469 C-C5H9 C-C5H9
A-428 CH=CH2 C-C4H7 A-470 c-C6Hii C-C5H9
A-429 CH2CH2CH3 C-C4H7 A-471 CH2-c-C3H5 C-C5H9
A-430 CH(CH3)2 C-C4H7 A-472 CH(CH3)-c-C3H5 C-C5H9
A-431 CH2CH2CH2CH3 C-C4H7 A-473 CH2-C-C5H9 C-C5H9
A-432 C(CH3)3 C-C4H7 A-474 CH2-C-C6H11 C-C5H9
A-433 CH2CH(CH3)2 C-C4H7 A-475 C6H5 C-C5H9
A-434 CH(CH3)CH2CH3 C-C4H7 A-476 CH3 c-C6Hii
A-435 CH2CH=CH2 C-C4H7 A-477 C2H5 c-C6Hii
A-436 CH2C≡CH C-C4H7 A-478 CH=CH2 c-C6Hii
A-437 CH(CH3)CH=CH2 C-C4H7 A-479 CH2CH2CH3 c-C6Hii
A-438 CHF2 C-C4H7 A-480 CH(CH3)2 c-C6Hii
A-439 CH2CI C-C4H7 A-481 CH2CH2CH2CH3 c-C6Hii
A-440 CH2CH2CN C-C4H7 A-482 C(CH3)3 c-C6Hii
A-441 CH2CH2CI C-C4H7 A-483 CH2CH(CH3)2 c-C6Hii
A-442 c-CsHs C-C4H7 A-484 CH(CH3)CH2CH3 c-C6Hii
A-443 C-C4H7 C-C4H7 A-485 CH2CH=CH2 c-C6Hii
A-444 C-C5H9 C-C4H7 A-486 CH2C≡CH c-C6Hii
A-445 c-C6Hii C-C4H7 A-487 CH(CH3)CH=CH2 c-C6Hii
A-446 CH2-c-C3H5 C-C4H7 A-488 CHF2 c-C6Hii
A-447 CH(CH3)-c-C3H5 C-C4H7 A-489 CH2CI c-C6Hii
A-448 CH2-C-C5H9 C-C4H7 A-490 CH2CH2CN c-C6Hii
A-449 CH2-C-C6H11 C-C4H7 A-491 CH2CH2CI c-C6Hii
A-450 C6H5 C-C4H7 A-492 C-C3H5 c-C6Hii
A-451 CH3 C-C5H9 A-493 C-C4H7 c-C6Hii
A-452 C2H5 C-C5H9 A-494 C-C5H9 c-C6Hii
A-453 CH=CH2 C-C5H9 A-495 c-C6Hii c-C6Hii
A-454 CH2CH2CH3 C-C5H9 A-496 CH2-c-C3H5 c-C6Hii
A-455 CH(CH3)2 C-C5H9 A-497 CH(CH3)-c-C3H5 c-C6Hii
A-456 CH2CH2CH2CH3 C-C5H9 A-498 CH2-C-C5H9 c-C6Hii
A-457 C(CH3)3 C-C5H9 A-499 CH2-C-C6H11 c-C6Hii
A-458 CH2CH(CH3)2 C-C5H9 A-500 C6H5 c-C6Hii
A-459 CH(CH3)CH2CH3 C-C5H9 A-501 CH3 CH2-c-C3H5
A-460 CH2CH=CH2 C-C5H9 A-502 C2H5 CH2-c-C3H5 R5 R6 R5 R6
A-503 CH=CH2 CH2-c-C3H5 A-545 c-C6Hii CH(CH3)-c-C3H5
A-504 CH2CH2CH3 CH2-c-C3H5 A-546 CH2-c-C3H5 CH(CH3)-c-C3H5
A-505 CH(CH3)2 CH2-c-C3H5 A-547 CH(CH3)-c-C3H5 CH(CH3)-c-C3H5
A-506 CH2CH2CH2CH3 CH2-c-C3H5 A-548 CH2-C-C5H9 CH(CH3)-c-C3H5
A-507 C(CH3)3 CH2-c-C3H5 A-549 CH2-C-C6H11 CH(CH3)-c-C3H5
A-508 CH2CH(CH3)2 CH2-c-C3H5 A-550 C6H5 CH(CH3)-c-C3H5
A-509 CH(CH3)CH2CH3 CH2-c-C3H5 A-551 CH3 CH2-C-C5H9
A-510 CH2CH=CH2 CH2-c-C3H5 A-552 C2H5 CH2-C-C5H9
A-51 1 CH2C≡CH CH2-c-C3H5 A-553 CH=CH2 CH2-C-C5H9
A-512 CH(CH3)CH=CH2 CH2-c-C3H5 A-554 CH2CH2CH3 CH2-C-C5H9
A-513 CHF2 CH2-c-C3H5 A-555 CH(CH3)2 CH2-C-C5H9
A-514 CH2CI CH2-c-C3H5 A-556 CH2CH2CH2CH3 CH2-C-C5H9
A-515 CH2CH2CN CH2-c-C3H5 A-557 C(CH3)3 CH2-C-C5H9
A-516 CH2CH2CI CH2-c-C3H5 A-558 CH2CH(CH3)2 CH2-C-C5H9
A-517 c-C3H5 CH2-c-C3H5 A-559 CH(CH3)CH2CH3 CH2-C-C5H9
A-518 C-C4H7 CH2-c-C3H5 A-560 CH2CH=CH2 CH2-C-C5H9
A-519 C-C5H9 CH2-c-C3H5 A-561 CH2C≡CH CH2-C-C5H9
A-520 c-C6Hii CH2-c-C3H5 A-562 CH(CH3)CH=CH2 CH2-C-C5H9
A-521 CH2-c-C3H5 CH2-c-C3H5 A-563 CHF2 CH2-C-C5H9
A-522 CH(CH3)-c-C3H5 CH2-c-C3H5 A-564 CH2CI CH2-C-C5H9
A-523 CH2-C-C5H9 CH2-c-C3H5 A-565 CH2CH2CN CH2-C-C5H9
A-524 CH2-C-C6H11 CH2-c-C3H5 A-566 CH2CH2CI CH2-C-C5H9
A-525 C6H5 CH2-c-C3H5 A-567 c-C3H5 CH2-C-C5H9
A-526 CH3 CH(CH3)-c-C3H5 A-568 C-C4H7 CH2-C-C5H9
A-527 C2H5 CH(CH3)-c-C3H5 A-569 C-C5H9 CH2-C-C5H9
A-528 CH=CH2 CH(CH3)-c-C3H5 A-570 c-C6Hii CH2-C-C5H9
A-529 CH2CH2CH3 CH(CH3)-c-C3H5 A-571 CH2-c-C3H5 CH2-C-C5H9
A-530 CH(CH3)2 CH(CH3)-c-C3H5 A-572 CH(CH3)-c-C3H5 CH2-C-C5H9
A-531 ChbChbChbCHs CH(CH3)-c-C3H5 A-573 CH2-C-C5H9 CH2-C-C5H9
A-532 C(CH3)3 CH(CH3)-c-C3H5 A-574 CH2-C-C6H11 CH2-C-C5H9
A-533 CH2CH(CH3)2 CH(CH3)-c-C3H5 A-575 C6H5 CH2-C-C5H9
A-534 CH(CH3)CH2CH3 CH(CH3)-c-C3H5 A-576 CH3 CH2-c-C6Hii
A-535 CH2CH=CH2 CH(CH3)-c-C3H5 A-577 C2H5 CH2-c-C6Hii
A-536 CH2C≡CH CH(CH3)-c-C3H5 A-578 CH=CH2 CH2-c-C6Hii
A-537 CH(CH3)CH=CH2 CH(CH3)-c-C3H5 A-579 CH2CH2CH3 CH2-c-C6Hii
A-538 CHF2 CH(CH3)-c-C3H5 A-580 CH(CH3)2 CH2-c-C6Hii
A-539 CH2CI CH(CH3)-c-C3H5 A-581 CH2CH2CH2CH3 CH2-c-C6Hii
A-540 CH2CH2CN CH(CH3)-c-C3H5 A-582 C(CH3)3 CH2-c-C6Hii
A-541 CH2CH2CI CH(CH3)-c-C3H5 A-583 CH2CH(CH3)2 CH2-c-C6Hii
A-542 c-C3H5 CH(CH3)-c-C3H5 A-584 CH(CH3)CH2CH3 CH2-c-C6Hii
A-543 C-C4H7 CH(CH3)-c-C3H5 A-585 CH2CH=CH2 CH2-c-C6Hii
A-544 C-C5H9 CH(CH3)-c-C3H5 A-586 CH2C≡CH CH2-c-C6Hii R5 R6 R5 R6
A-587 CH(CH3)CH=CH2 CH2-c-C6Hii A-629 ChbChbCHs CH2-C-C4H7
A-588 CHF2 CH2-c-C6Hii A-630 CH(CH3)2 CH2-C-C4H7
A-589 CH2CI CH2-c-C6Hii A-631 CH2CH2CH2CH3 CH2-C-C4H7
A-590 CH2CH2CN CH2-c-C6Hii A-632 C(CH3)3 CH2-C-C4H7
A-591 CH2CH2CI CH2-c-C6Hii A-633 CH2CH(CH3)2 CH2-C-C4H7
A-592 C-C3H5 CH2-c-C6Hii A-634 CH(CH3)CH2CH3 CH2-C-C4H7
A-593 C-C4H7 CH2-c-C6Hii A-635 CH2CH=CH2 CH2-C-C4H7
A-594 C-C5H9 CH2-c-C6Hii A-636 CH2C≡CH CH2-C-C4H7
A-595 c-C6Hii CH2-c-C6Hii A-637 CH(CH3)CH=CH2 CH2-C-C4H7
A-596 CH2-c-C3H5 CH2-c-C6Hii A-638 CHF2 CH2-C-C4H7
A-597 CH(CH3)-c-C3H5 CH2-c-C6Hii A-639 CH2CI CH2-C-C4H7
A-598 CH2-C-C5H9 CH2-c-C6Hii A-640 CH2CH2CN CH2-C-C4H7
A-599 CH2-C-C6H11 CH2-c-C6Hii A-641 CH2CH2CI CH2-C-C4H7
A-600 C6H5 CH2-c-C6Hii A-642 c-C3H5 CH2-C-C4H7
A-601 CH3 C6H5 A-643 C-C4H7 CH2-C-C4H7
A-602 C2H5 C6H5 A-644 C-C5H9 CH2-C-C4H7
A-603 CH=CH2 C6H5 A-645 c-C6Hii CH2-C-C4H7
A-604 CH2CH2CH3 C6H5 A-646 CH2-c-C3H5 CH2-C-C4H7
A-605 CH(CH3)2 C6H5 A-647 CH(CH3)-c-C3H5 CH2-C-C4H7
A-606 CH2CH2CH2CH3 C6H5 A-648 CH2-C-C5H9 CH2-C-C4H7
A-607 C(CH3)3 C6H5 A-649 CH2-C-C6H11 CH2-C-C4H7
A-608 CH2CH(CH3)2 C6H5 A-650 C6H5 CH2-C-C4H7
A-609 CH(CH3)CH2CH3 C6H5 A-651 CH3 CH2CH2-c-C3H5
A-610 CH2CH=CH2 C6H5 A-652 C2H5 CH2CH2-c-C3H5
A-61 1 CH2C≡CH C6H5 A-653 CH=CH2 CH2CH2-c-C3H5
A-612 CH(CH3)CH=CH2 C6H5 A-654 ChbChbCHs CH2CH2-c-C3H5
A-613 CHF2 C6H5 A-655 CH(CH3)2 CH2CH2-c-C3H5
A-614 CH2CI C6H5 A-656 CH2CH2CH2CH3 CH2CH2-c-C3H5
A-615 CH2CH2CN C6H5 A-657 C(CH3)3 CH2CH2-c-C3H5
A-616 CH2CH2CI C6H5 A-658 CH2CH(CH3)2 CH2CH2-c-C3H5
A-617 c-C3H5 C6H5 A-659 CH(CH3)CH2CH3 CH2CH2-c-C3H5
A-618 C-C4H7 C6H5 A-660 CH2CH=CH2 CH2CH2-c-C3H5
A-619 C-C5H9 C6H5 A-661 CH2C≡CH CH2CH2-c-C3H5
A-620 c-C6Hii C6H5 A-662 CH(CH3)CH=CH2 CH2CH2-c-C3H5
A-621 CH2-c-C3H5 C6H5 A-663 CHF2 CH2CH2-c-C3H5
A-622 CH(CH3)-c-C3H5 C6H5 A-664 CH2CI CH2CH2-c-C3H5
A-623 CH2-C-C5H9 C6H5 A-665 CH2CH2CN CH2CH2-c-C3H5
A-624 CH2-C-C5H9 C6H5 A-666 CH2CH2CI CH2CH2-c-C3H5
A-625 C6H5 C6H5 A-667 c-C3H5 CH2CH2-c-C3H5
A-626 CH3 CH2-C-C4H7 A-668 C-C4H7 CH2CH2-c-C3H5
A-627 C2H5 CH2-C-C4H7 A-669 C-C5H9 CH2CH2-c-C3H5
A-628 CH=CH2 CH2-C-C4H7 A-670 c-C6Hii CH2CH2-c-C3H5 R5 R6 R5 R6
A-671 CH2-c-C3H5 CH2CH2-c-C3H5 A-710 CH2CH=CH2 CH(CH3)CH(CH3)2
A-672 CH(CH3)-c-C3H5 CH2CH2-c-C3H5 A-71 1 CH2C≡CH CH(CH3)CH(CH3)2
A-673 CH2-C-C5H9 CH2CH2-c-C3H5 A-712 CH(CH3)CH=CH2 CH(CH3)CH(CH3)2
A-674 CH2-C-C6H11 CH2CH2-c-C3H5 A-713 CHF2 CH(CH3)CH(CH3)2
A-675 C6H5 CH2CH2-c-C3H5 A-714 CH2CI CH(CH3)CH(CH3)2
A-676 CH3 CH2(CH2)3CH3 A-715 CH2CH2CN CH(CH3)CH(CH3)2
A-677 C2H5 CH2(CH2)3CH3 A-716 CH2CH2CI CH(CH3)CH(CH3)2
A-678 CH=CH2 CH2(CH2)3CH3 A-717 c-CsHs CH(CH3)CH(CH3)2
A-679 CH2CH2CH3 CH2(CH2)3CH3 A-718 C-C4H7 CH(CH3)CH(CH3)2
A-680 CH(CH3)2 CH2(CH2)3CH3 A-719 C-C5H9 CH(CH3)CH(CH3)2
A-681 CH2CH2CH2CH3 CH2(CH2)3CH3 A-720 c-C6Hii CH(CH3)CH(CH3)2
A-682 C(CH3)3 CH2(CH2)3CH3 A-721 CH2-c-C3H5 CH(CH3)CH(CH3)2
A-683 CH2CH(CH3)2 CH2(CH2)3CH3 A-722 CH(CH3)-c-C3H5 CH(CH3)CH(CH3)2
A-684 CH(CH3)CH2CH3 CH2(CH2)3CH3 A-723 CH2-C-C5H9 CH(CH3)CH(CH3)2
A-685 CH2CH=CH2 CH2(CH2)3CH3 A-724 CH2-C-C6H11 CH(CH3)CH(CH3)2
A-686 CH2C≡CH CH2(CH2)3CH3 A-725 C6H5 CH(CH3)CH(CH3)2
A-687 CH(CH3)CH=CH2 CH2(CH2)3CH3 A-726 CH3 CH2(CH2)4CH3
A-688 CHF2 CH2(CH2)3CH3 A-727 C2H5 CH2(CH2)4CH3
A-689 CH2CI CH2(CH2)3CH3 A-728 C(CH3)3 CH2(CH2)4CH3
A-690 CH2CH2CN CH2(CH2)3CH3 A-729 CH2(CH2)4CH3 CH2(CH2)4CH3
A-691 CH2CH2CI CH2(CH2)3CH3 A-730 CH3 2-EtHex
A-692 c-CsHs CH2(CH2)3CH3 A-731 C2H5 2-EtHex
A-693 C-C4H7 CH2(CH2)3CH3 A-732 C(CH3)3 2-EtHex
A-694 C-C5H9 CH2(CH2)3CH3 A-733 2-EtHex 2-EtHex
A-695 c-C6Hii CH2(CH2)3CH3 A-734 CH3 CH2CH2OH
A-696 CH2-c-C3H5 CH2(CH2)3CH3 A-735 C2H5 CH2CH2OH
A-697 CH(CH3)-c-C3H5 CH2(CH2)3CH3 A-736 C(CH3)3 CH2CH2OH
A-698 CH2-C-C5H9 CH2(CH2)3CH3 A-737 CH2CH2CH2CH3 CH2CH2OH
A-699 CH2-C-C6H11 CH2(CH2)3CH3 A-738 CH2(CH2)3CH3 CH2CH2OH
A-700 C6H5 CH2(CH2)3CH3 A-739 CH2CH2OH CH2CH2OH
A-701 CH3 CH(CH3)CH(CH3)2 A-740 CH2-C-C4H7 CH2-C-C4H7
A-702 C2H5 CH(CH3)CH(CH3)2 A-741 CH2CH2-c-C3H5 CH2CH2-c-C3H5
A-703 CH=CH2 CH(CH3)CH(CH3)2 A-742 CH(CH3)CH(CH3)2 CH(CH3)CH(CH3)2
A-704 CH2CH2CH3 CH(CH3)CH(CH3)2 A-743 CH2(CH2)3CH3 CH2(CH2)3CH3
A-705 CH(CH3)2 CH(CH3)CH(CH3)2 A-744 (CH2)4
A-706 CH2CH2CH2CH3 CH(CH3)CH(CH3)2 A-745 CH2CH2SCH2
A-707 C(CH3)3 CH(CH3)CH(CH3)2
A-708 CH2CH(CH3)2 CH(CH3)CH(CH3)2
A-709 CH(CH3)CH2CH3 CH(CH3)CH(CH3)2
c-C3H5: cyclopropyl; C-C4H7: cyclobutyl; C-C5H9: cyclopentyl; c-CeHu: cyclohexyl;
CH2-c-C3H5: cyclopropylmethyl; CH(CH3)-c-C3H5: 1 -cyclopropylethyl; CH2-C-C5H9: cyclopentylmethyl; CH2-C-C5H9: cyclopentylmethyl; C6H5: phenyl;
CH2CH2-C-C3H5: 2-cyclopropylethyl; CH2-C-C4H7: 2-cyclobutylmethyl; 2-EtHex:
Figure imgf000032_0001
A group of especially preferred compounds of formula I are compounds 1-1 to I-40 of formula IA- 1 which are listed in the table C in the example section.
In one embodiment, a compound selected from the compounds 1-1 to I-40 as defined in Table C in the Example Section at the end of the description, are preferred in the methods and uses according to the invention.
In one embodiment, a compound selected from compounds 1-1 1 , 1-16, 1-21 , I-26, 1-31 is the compound I in the methods and uses according to the invention, which are defined in accordance with Table C of the example section:
Table C
Figure imgf000032_0002
Figure imgf000032_0003
In one embodiment, 1-1 1 is the compound I in the methods and uses according to the invention. In one embodiment, 1-16 is the compound I in the methods and uses according to the invention. In one embodiment, 1-21 is the compound I in the methods and uses according to the invention. In one embodiment, I-26 is the compound I in the methods and uses according to the invention. In one embodiment, 1-31 is the compound I in the methods and uses according to the invention. Methods of the invention
In one embodiment of the invention, the method is connected with controlling hemiptera, preferably aphids or whitefly. Plants exhibiting aphid damage can have a variety of symptoms, such as decreased growth rates, mottled leaves, yellowing, stunted growth, curled leaves, browning, wilting, low yields and death. The removal of sap creates a lack of vigour in the plant, and aphid saliva is toxic to plants. Hemiptera, in particular aphids, frequently transmit disease- causing organisms like plant viruses to their hosts. The green peach aphid (Myzus persicae) is a vector for more than 1 10 plant viruses. Cotton aphids (Aphis gossypii) often infect sugarcane, papaya and groundnuts with viruses. Aphids contributed to the spread of late blight (Phytophthora in- festans) among potatoes in the Great Irish Potato Famine of the 1840s.
The cherry aphid or black cherry aphid, Myzus cerasi, is responsible for some leaf curl of cherry trees. This can easily be distinguished from 'leaf curl' caused by Taphrina fungus species due to the presence of aphids beneath the leaves.
The coating of plants with honeydew can contribute to the spread of fungi which can damage plants. Honeydew produced by aphids has been observed to reduce the effectiveness of fungicides as well. The damage of plants, and in particular commercial crops, has resulted in large amounts of resources and efforts being spent attempting to control the activities of Hemiptera. The neonicotinoids represent the fastest-growing class of insecticides introduced to the market since the commercialization of pyrethroids (Nauen and Denholm, 2005: Archives of Insect Biochemistry and Physiology 58:200-215) and are extremely valuable insect control agents not least because they had exhibited little or no cross-resistance to the older insecticide classes, which suffer markedly from resistance problems
By virtue of the surprising ability of a compound of formula I to control aphids, and even aphids resistant to other insecticides, especially neonicotinoids, the invention also provides a method of protecting a crop of useful plants, from virus infection. Such a method involves applying to said crop, treating a plant propagation material of said crop with, and/or applying to said insects, a compound of formula I.
In one embodiment of the invention, the method of reducing insect-vectored viral infection in a plant is not connected to the ability of a compound of formula I to control insects, in particular aphids. The method of reducing insect-vectored viral infection in a plant is especially surprisingly effective if the compound of formula I in question is not effective, or not very effective, or not sufficiently effective in the control of insects (e.g. aphids).
Since the compound of formula I does not exhibit cross-resistance to neonicotinoid resistant Hemiptera, it may be used in a resistance management strategy with a view to controlling resistance to the neonicotinoid class of insecticides. Such a strategy may involve alternating applications of a compound of formula I and a neonicotinoid insecticide, either on an application by application alternation (including different types of application, such as treatment of plant propa- gation material and foliar spray), or seasonal/crop alternation basis (e.g. use a compound of formula I on a first crop/for control in a first growing season, and use a neonicotinoid insecticide for a subsequent crop/growing season, or vice versa), and this forms yet a further aspect of the invention.
As mentioned herein, not only are insects from the Hemiptera order pests of a number of commercially important crops, the viruses that these insects carry also pose a threat. With the emergence of resistance to neonicotinoid insecticides, the severity of this threat has increased. Thus, a further aspect of the invention provides a method of controlling a plant virus in a crop of useful plants susceptible to and/or under attack by neonicotinoid resistant insects which carry said plant virus, which method comprises applying to said crop, treating a plant propagation material of said crop with, and/or applying to said insects, a compound of formula I.
Examples of plant viruses that may be controlled according to this aspect of the invention in- elude Sobemovirus, Caulimovirus (Caulimoviridae), Closterovirus (Closteroviridae), Sequivirus (Sequiviridae), Enamovirus (Luteoviridae), Luteovirus (Luteoviridae), Polerovirus (Luteoviridae), Umbravirus, Nanovirus (Nanoviridae), Cytorhabdovirus (Rhabdoviridae), Nucleorhabdovirus (Rhabdoviridae). In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Sobemovirus.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Caulimovirus.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Closterovirus.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Sequivirus.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Enamovirus.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Luteovirus.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Polerovirus.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Umbravirus. In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Nanovirus.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Cytorhabdovirus.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, wherein the virus is Nucleorhabdovirus.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is soybean.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is rice.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is cotton.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is oilseed rape.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is peanut.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is cereal.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is wheat.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is barley.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is corn.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is a specialty crop.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is fruiting vegetable. In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is leafy vegetable.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is tomato.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is pepper.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is eggplant.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is cabbage.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is lettuce.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is potatoes.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is onions.
In one embodiment, the invention relates tothe a use or method for reducing insect-vectored viral infection in a plant or crop, which method comprises applying a compound of formula I, wherein the plant or crop is tobacco.
In one embodiment, the invention relates to a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, which is selected from the compounds 1-1 to I-40 as defined in Table C. More specifically, the compound I is selected from compounds 1-1 1 , 1-16, 1-21 , I-26, 1-31 which are defined in accordance with Table C of the example section. More specifically, the invention relates to a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound 1-1 1. Analogously, the invention relates to a use or method as explained, applying specifically compound 1-16. Analogously, the invention relates to a use or method as explained, applying specifically compound 1-16. Analogously, the invention relates to a use or method as explained, applying specifically compound 1-21. Analogously, the invention relates to a use or method as explained, applying specifically compound I-26. Analogously, the invention relates to a use or method as explained, applying specifically compound 1-31 .
In embodiments E-1 to E-224, the invention relates to a use or method for reducing insect- vectored viral infection in a plant/crop, wherein the virus and the plant/crop is as defined in entries VC-1 to VC-224 of Table VC, which method comprises applying a compound of formula I, which is selected from the compounds 1-1 to I-40 as defined in Table C. More specifically, the invention relates to a use or method for reducing insect-vectored viral infection in a plant/crop, wherein the virus and the plant/crop is as defined in entries VC-1 to VC-224 of Table VC, which method comprises applying a compound 1-1 1. Analogously, the invention relates to a use or method as explained, applying specifically compound 1-16. Analogously, the invention relates to a use or method as explained, applying specifically compound 1-16. Analogously, the invention relates to a use or method as explained, applying specifically compound 1-21 . Analogously, the invention relates to a use or method as explained, applying specifically compound I-26. Analogously, the invention relates to a use or method as explained, applying specifically compound I- 31 .
Table VC
Virus Crop
VC-1 Sobemovirus soybean
VC-2 Sobemovirus rice
VC-3 Sobemovirus cotton
VC-4 Sobemovirus oilseed rape
VC-5 Sobemovirus peanut
VC-6 Sobemovirus cereal
VC-7 Sobemovirus wheat
VC-8 Sobemovirus barley
VC-9 Sobemovirus corn
VC-10 Sobemovirus specialty crops
VC-1 1 Sobemovirus fruiting vegetable
VC-12 Sobemovirus leafy vegetable
VC-13 Sobemovirus tomato
VC-14 Sobemovirus pepper
VC-15 Sobemovirus eggplant
VC-16 Sobemovirus cabbage
VC-17 Sobemovirus lettuce
VC-18 Sobemovirus potatoes
VC-19 Sobemovirus onions
VC-20 Sobemovirus tobacco
VC-21 Caulimovirus soybean
VC-22 Caulimovirus rice
VC-23 Caulimovirus cotton
VC-24 Caulimovirus oilseed rape
VC-25 Caulimovirus peanut
VC-26 Caulimovirus cereal
VC-27 Caulimovirus wheat
VC-28 Caulimovirus barley
VC-29 Caulimovirus corn Virus Crop
VC-30 Caulimovirus specialty crops
VC-31 Caulimovirus fruiting vegetable
VC-32 Caulimovirus leafy vegetable
VC-33 Caulimovirus tomato
VC-34 Caulimovirus pepper
VC-35 Caulimovirus eggplant
VC-36 Caulimovirus cabbage
VC-37 Caulimovirus lettuce
VC-38 Caulimovirus potatoes
VC-39 Caulimovirus onions
VC-40 Caulimovirus tobacco
VC-41 Closterovirus soybean
VC-42 Closterovirus rice
VC-43 Closterovirus cotton
VC-44 Closterovirus oilseed rape
VC-45 Closterovirus peanut
VC-46 Closterovirus cereal
VC-47 Closterovirus wheat
VC-48 Closterovirus barley
VC-49 Closterovirus corn
VC-50 Closterovirus specialty crops
VC-51 Closterovirus fruiting vegetable
VC-52 Closterovirus leafy vegetable
VC-53 Closterovirus tomato
VC-54 Closterovirus pepper
VC-55 Closterovirus eggplant
VC-56 Closterovirus cabbage
VC-57 Closterovirus lettuce
VC-58 Closterovirus potatoes
VC-59 Closterovirus onions
VC-60 Closterovirus tobacco
VC-61 Sequivirus soybean
VC-62 Sequivirus rice
VC-63 Sequivirus cotton
VC-64 Sequivirus oilseed rape
VC-65 Sequivirus peanut
VC-66 Sequivirus cereal
VC-67 Sequivirus wheat
VC-68 Sequivirus barley
VC-69 Sequivirus corn Virus Crop
VC-70 Sequivirus specialty crops
VC-71 Sequivirus fruiting vegetable
VC-72 Sequivirus leafy vegetable
VC-73 Sequivirus tomato
VC-74 Sequivirus pepper
VC-75 Sequivirus eggplant
VC-76 Sequivirus cabbage
VC-77 Sequivirus lettuce
VC-78 Sequivirus potatoes
VC-79 Sequivirus onions
VC-80 Sequivirus tobacco
VC-81 Enamovirus soybean
VC-82 Enamovirus rice
VC-83 Enamovirus cotton
VC-84 Enamovirus oilseed rape
VC-85 Enamovirus peanut
VC-86 Enamovirus cereal
VC-87 Enamovirus wheat
VC-88 Enamovirus barley
VC-89 Enamovirus corn
VC-90 Enamovirus specialty crops
VC-91 Enamovirus fruiting vegetable
VC-92 Enamovirus leafy vegetable
VC-93 Enamovirus tomato
VC-94 Enamovirus pepper
VC-95 Enamovirus eggplant
VC-96 Enamovirus cabbage
VC-97 Enamovirus lettuce
VC-98 Enamovirus potatoes
VC-99 Enamovirus onions
VC-100 Enamovirus tobacco
VC-101 Luteovirus soybean
VC-102 Luteovirus rice
VC-103 Luteovirus cotton
VC-104 Luteovirus oilseed rape
VC-105 Luteovirus peanut
VC-106 Luteovirus cereal
VC-107 Luteovirus wheat
VC-108 Luteovirus barley
VC-109 Luteovirus corn Virus Crop
VC-1 10 Luteovirus specialty crops
VC-1 1 1 Luteovirus fruiting vegetable
VC-1 12 Luteovirus leafy vegetable
VC-1 13 Luteovirus tomato
VC-1 14 Luteovirus pepper
VC-1 15 Luteovirus eggplant
VC-1 16 Luteovirus cabbage
VC-1 17 Luteovirus lettuce
VC-1 18 Luteovirus potatoes
VC-1 19 Luteovirus onions
VC-120 Luteovirus tobacco
VC-121 Polerovirus soybean
VC-122 Polerovirus rice
VC-123 Polerovirus cotton
VC-124 Polerovirus oilseed rape
VC-125 Polerovirus peanut
VC-126 Polerovirus cereal
VC-127 Polerovirus wheat
VC-128 Polerovirus barley
VC-129 Polerovirus corn
VC-130 Polerovirus specialty crops
VC-131 Polerovirus fruiting vegetable
VC-132 Polerovirus leafy vegetable
VC-133 Polerovirus tomato
VC-134 Polerovirus pepper
VC-135 Polerovirus eggplant
VC-136 Polerovirus cabbage
VC-137 Polerovirus lettuce
VC-138 Polerovirus potatoes
VC-139 Polerovirus onions
VC-140 Polerovirus tobacco
VC-141 Umbravirus soybean
VC-142 Umbravirus rice
VC-143 Umbravirus cotton
VC-144 Umbravirus oilseed rape
VC-145 Umbravirus peanut
VC-146 Umbravirus cereal
VC-147 Umbravirus wheat
VC-148 Umbravirus barley
VC-149 Umbravirus corn Virus Crop
VC-150 Umbravirus specialty crops
VC-151 Umbravirus fruiting vegetable
VC-152 Umbravirus leafy vegetable
VC-153 Umbravirus tomato
VC-154 Umbravirus pepper
VC-155 Umbravirus eggplant
VC-156 Umbravirus cabbage
VC-157 Umbravirus lettuce
VC-158 Umbravirus potatoes
VC-159 Umbravirus onions
VC-160 Umbravirus tobacco
VC-161 Nanovirus soybean
VC-162 Nanovirus rice
VC-163 Nanovirus cotton
VC-164 Nanovirus oilseed rape
VC-165 Nanovirus peanut
VC-166 Nanovirus cereal
VC-167 Nanovirus wheat
VC-168 Nanovirus barley
VC-169 Nanovirus corn
VC-170 Nanovirus specialty crops
VC-171 Nanovirus fruiting vegetable
VC-172 Nanovirus leafy vegetable
VC-173 Nanovirus tomato
VC-174 Nanovirus pepper
VC-175 Nanovirus eggplant
VC-176 Nanovirus cabbage
VC-177 Nanovirus lettuce
VC-178 Nanovirus potatoes
VC-179 Nanovirus onions
VC-180 Nanovirus tobacco
VC-181 Cytorhabdovirus soybean
VC-182 Cytorhabdovirus rice
VC-183 Cytorhabdovirus cotton
VC-184 Cytorhabdovirus oilseed rape
VC-185 Cytorhabdovirus peanut
VC-186 Cytorhabdovirus cereal
VC-187 Cytorhabdovirus wheat
VC-188 Cytorhabdovirus barley
VC-189 Cytorhabdovirus corn Virus Crop
VC-190 Cytorhabdovirus specialty crops
VC-191 Cytorhabdovirus fruiting vegetable
VC-192 Cytorhabdovirus leafy vegetable
VC-193 Cytorhabdovirus tomato
VC-194 Cytorhabdovirus pepper
VC-195 Cytorhabdovirus eggplant
VC-196 Cytorhabdovirus cabbage
VC-197 Cytorhabdovirus lettuce
VC-198 Cytorhabdovirus potatoes
VC-199 Cytorhabdovirus onions
VC-200 Cytorhabdovirus tobacco
VC-201 Nucleorhabdovirus soybean
VC-202 Nucleorhabdovirus rice
VC-203 Nucleorhabdovirus cotton
VC-204 Nucleorhabdovirus oilseed rape
VC-205 Nucleorhabdovirus peanut
VC-206 Nucleorhabdovirus cereal
VC-207 Nucleorhabdovirus wheat
VC-208 Nucleorhabdovirus barley
VC-209 Nucleorhabdovirus corn
VC-210 Nucleorhabdovirus specialty crops
VC-21 1 Nucleorhabdovirus fruiting vegetable
VC-212 Nucleorhabdovirus leafy vegetable
VC-213 Nucleorhabdovirus tomato
VC-214 Nucleorhabdovirus pepper
VC-215 Nucleorhabdovirus eggplant
VC-216 Nucleorhabdovirus cabbage
VC-217 Nucleorhabdovirus lettuce
VC-218 Nucleorhabdovirus potatoes
VC-219 Nucleorhabdovirus onions
VC-220 Nucleorhabdovirus tobacco
VC-221 barley yellow dwarf virus Barley
VC-222 tomato yellow leaf curl virus Tomato
VC-223 tomato yellow leaf curl virus Tomato - foliar use
VC-224 tomato yellow leaf curl virus Tomato - seed treatment
These viruses are spread preferably by insects which are one or more of as an example Acyrthosiphum pisum, Aphis citricola, Aphis craccivora, Aphis fabae, Aphis frangulae, Aphis glycines, Aphis gossypii, Aphis nasturtii, Aphis pomi, Aphis spiraecola, Aulacorthum solani, Brachycaudus helichrysi, Brevicoryne brassicae, Diuraphis noxia, Dysaphis devecta, Dysaphis plantaginea, Eriosoma lanigerum, Hyalopterus pruni, Lipaphis erysimi, Macrosiphum avenae, Macrosiphum euphorbiae, Macrosiphum rosae, Myzus cerasi F., Myzus nicotianae, Myzus per- sicae, Nasonovia ribisnigri, Pemphigus bursarius, Phorodon humuli, Rhopalosiphum insertum Wa, Rhopalosiphum maidis Fitch, Rhopalosiphum padi L, Schizaphis graminum Rond., Sitobion avenae, Toxoptera aurantii, Toxoptera citricola, Phylloxera vitifoliae, Bemisia tabaci, Myzus per- sicae, Nilaparvata lugens, Aphis gossypii, Trialeurodes vaporariorum, Bactericera cockerelli.
Methods of the invention as described herein may also involve a step of assessing whether insects are resistant to neonicotinoid insecticides and/or whether said insects carry a plant virus. This step will in general involve collecting a sample of insects from the area (e.g. crop, field, habitat) to be treated, before actually applying a compound of formula I, and testing (for example using any suitable phenotypic, biochemical or molecular biological technique applicable) for resistance/sensitivity and/or the presence or absence of a virus.
The active agents of the invention may be applied as sole ingredients, or alternatively, each agent may be in the form of an agrochemical composition comprising an agrochemically acceptable diluent or carrier. References herein to the active agents of the invention or components comprising said agents shall be deemed to include the agents as sole ingredients or agrochemical compositions thereof. The active agents of the invention may be applied simultaneously, separately or sequentially. Each active agent may be applied directly as separate components or as a mixture of the two.
Compounds and Mixtures
The compounds of formula I as well as the terms "compounds for methods according to the (present) invention", "compounds according to the (present) invention" or "compounds of formula (I)" or "compound(s) II", which all compound(s) are applied in methods according to the present invention comprise the compound(s) as defined herein as well as a known stereoisomer, salt, tautomer or N-oxide thereof.
The term "composition(s) according to the invention" or "composition(s) of the present invention" encompasses composition(s) comprising at least one compound of formula I or mixtures of the compounds of formula I with other pesticidallyactive compound(s) II for being used and/or ap- plied in methods according to the invention as defined above.
The compounds of formula I and/or their mixtures of the present invention, their stereoisomers, their salts or their N-oxides, are particularly useful for being applied in methods for soil application methods for controlling invertebrate pests, in particular for controlling insects, arthropods and nematodes and especially (spider) mites. Therefore, the invention relates to the use of compounds of formula I and/or their mixtures, for combating or controlling invertebrate pests, in particular invertebrate pests of the group of insects, arachnids or nematodes. The present invention relates further to a composition comprising at least one compound of formula I and/or its mixtures, including a stereoisomer, salt, tautomer or N-oxide thereof, and at least one inert liquid and/or solid carrier. In particular, the invention relates to an agricultural composition comprising at least one compound of formula I and at least one liquid and/or solid carrier for use in the methods of the present invention.
The pesticidally active compounds II with which the compounds of formula I are combined with for the methods according to present invention are the following:
Compounds (II)
In one embodiment of the invention, the compounds of formula I can be combined and used in mixture with another pesticidally active compound (II) and applied in agriculture. Preferably that other pesticidal active compound (II) is active against said soil-living arthropod pest. A skilled person is familiar with such compounds and knows which compounds are active against a specific target organism.
The compound (II) pesticides, together with which the compounds of formula I may be used according to the purpose of the present invention, and with which potential synergistic effects with regard to the method of uses might be produced, are selected and grouped according to the Mode of Action Classification from the Insecticde Resistance Action Committee (IRAC) and are selected from group M consisting of
II-M.1 Acetylcholine esterase (AChE) inhibitors from the class of
II-M.1A carbamates, including aldicarb, alanycarb, bendiocarb, benfuracarb, butocar- boxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fe- nobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, trimethacarb, XMC, xylylcarb and triazamate; or from the class of
II-M.1 B organophosphates, including acephate, azamethiphos, azinphos-ethyl, az- inphosmethyl, cadusafos, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos, chlorpyrifos-methyl, coumaphos, cyanophos, demeton-S-methyl, diazinon, dichlorvos/ DDVP, dicrotophos, dimethoate, dimethylvinphos, disul- foton, EPN, ethion, ethoprophos, famphur, fenamiphos, fenitrothion, fenthion, fosthiazate, heptenophos, imicyafos, isofenphos, isopropyl O- (methoxyamino- thio-phosphoryl) salicylate, isoxathion, malathion, mecarbam, methamidophos, methidathion, mevinphos, monocrotophos, naled, omethoate, oxydemeton- methyl, parathion, parathion-methyl, phenthoate, phorate, phosalone, phos- met, phosphamidon, phoxim, pirimiphos- methyl, profenofos, propetamphos, prothiofos, pyraclofos, pyridaphenthion, quinalphos, sulfotep, tebupirimfos, temephos, terbufos, tetrachlorvinphos, thiometon, triazophos, trichlorfon and vamidothion; II-M.2 GABA-gated chloride channel antagonists such as:
II-M.2A cyclodiene organochlorine compounds, including endosulfan or chlordane; or II-M.2B fiproles (phenylpyrazoles), including ethiprole, fipronil, flufiprole, pyrafluprole and pyriprole;
II-M.3 Sodium channel modulators from the class of
II-M.3A pyrethroids, including acrinathrin, allethrin, d-cis-trans allethrin, d-trans alle- thrin, bifenthrin, bioallethrin, bioallethrin S-cylclopentenyl, bioresmethrin, cy- cloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma- cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, theta- cypermethrin, zeta-cypermethrin, cyphenothrin, deltamethrin, empenthrin, esfenvalerate, etofenprox, fenpropathrin, fenvalerate, flucythrinate, flumethrin, tau-fluvalinate, halfenprox, imiprothrin, meperfluthrin, metofluthrin, momfluoro- thrin, permethrin, phenothrin, prallethrin, profluthrin, pyrethrin (pyrethrum), resmethrin, silafluofen, tefluthrin, tetramethylfluthrin, tetramethrin, tralomethrin and transfluthrin; or
II-M.3B sodium channel modulators such as DDT or methoxychlor;
II-M.4 Nicotinic acetylcholine receptor agonists (nAChR) from the class of
II-M.4A neonicotinoids, including acetamiprid, chlothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam; or the compounds
II-M.4A.1 : 1 -[(6-chloro-3-pyridinyl)methyl]-2,3,5,6,7,8-hexahydro-9-nitro-(5S,8R)-5,8- epoxy-1 H-imidazo[1 ,2-a]azepine; or
II-M.4A.2: 1 -[(6-chloro-3-pyridyl)methyl]-2-nitro-1 -[(E)-pentylideneamino]guanidine; or
II-M4A.3: 1 -[(6-chloro-3-pyridyl)methyl]-7-methyl-8-nitro-5-propoxy-3,5,6,7-tetrahydro- 2H-imidazo[1 ,2-a]pyridine; or
II-M.4B nicotine.
II-M.5 Nicotinic acetylcholine receptor allosteric activators from the class of spi- nosyns, including spinosad or spinetoram;
II-M.6 Chloride channel activators from the class of avermectins and milbemycins, including abamectin, emamectin benzoate, ivermectin, lepimectin or milbe- mectin; II-M.7 Juvenile hormone mimics, such as
II-M.7A juvenile hormone analogues as hydroprene, kinoprene and methoprene; or others as
II-M.7B fenoxycarb, or
II-M.7C pyriproxyfen;
II-M.8 miscellaneous non-specific (multi-site) inhibitors, including
II-M.8A alkyl halides as methyl bromide and other alkyl halides, or
II-M.8B chloropicrin, or II-M.8C sulfuryl fluoride, or
II-M.8D borax, or
II-M.8E tartar emetic;
-M.9 Selective homopteran feeding blockers, including
-M.9B pymetrozine, or
-M.9C flonicamid;
-M.10 Mite growth inhibitors, including
-M.10A clofentezine, hexythiazox and diflovidazin, or
-M.10B etoxazole;
II-M.1 1 Microbial disruptors of insect midgut membranes, including bacillus thurin- giensis or bacillus sphaericus and the insecticdal proteins they produce such as bacillus thuringiensis subsp. israelensis, bacillus sphaericus, bacillus thu- ringiensis subsp. aizawai, bacillus thuringiensis subsp. kurstaki and bacillus thuringiensis subsp. tenebrionis, or the Bt crop proteins: Cry1 Ab, Cry1 Ac, Cryl Fa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb and Cry34/35Ab1 ; ll-M 12 Inhibitors of mitochondrial ATP synthase, including
ll-M 12A diafenthiuron, or
ll-M 12B organotin miticides such as azocyclotin, cyhexatin or fenbutatin oxide, or ll-M 12C propargite, or
ll-M 12D tetradifon;
II-M.13 Uncouplers of oxidative phosphorylation via disruption of the proton gradient, including chlorfenapyr, DNOC or sulfluramid; ll-M.14 Nicotinic acetylcholine receptor (nAChR) channel blockers, including nereis- toxin analogues as bensultap, cartap hydrochloride, thiocyclam or thiosultap sodium;
II-M.15 Inhibitors of the chitin biosynthesis type 0, such as benzoylure including bistri- fluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hex- aflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron or triflumuron;
Inhibitors of the chitin biosynthesis type 1 , including buprofezin;
II-M.17 Moulting disruptors, Dipteran, including cyromazine;
II-M.18 Ecdyson receptor agonists such as diacylhydrazines, including methoxyfeno- zide, tebufenozide, halofenozide, fufenozide or chromafenozide; II-M.19 Octopamin receptor agonists, including amitraz;
II-M.20 Mitochondrial complex III electron transport inhibitors, including
II-M.20A hydramethylnon, or
II-M.20B acequinocyl, or
II-M.20C fluacrypyrim;
II-M.21 Mitochondrial complex I electron transport inhibitors, including
II-M.21A METI acaricides and insecticides such as fenazaquin, fenpyroximate, pyrim- idifen, pyridaben, tebufenpyrad or tolfenpyrad, or
II-M.21 B rotenone;
II-M.22 Voltage-dependent sodium channel blockers, including
II-M.22A indoxacarb, or
II-M.22B metaflumizone; or
II-M.22C 1 -[(E)-[2-(4-cyanophenyl)-1 -[3-(trifluoromethyl)phenyl]ethylidene]amino]-3-[4-
(difluoromethoxy)phenyl]urea;
II-M.23 Inhibitors of the acetyl CoA carboxylase, including Tetronic and Tetramic acid derivatives, including spirodiclofen, spiromesifen or spirotetramat;
II-M.24 Mitochondrial complex IV electron transport inhibitors, including
II-M.24A phosphine such as aluminium phosphide, calcium phosphide, phosphine or zinc phosphide, or
II-M.24B cyanide.
II-M.25 Mitochondrial complex II electron transport inhibitors, such as beta-ketonitrile derivatives, including cyenopyrafen or cyflumetofen;
II-M.26 Ryanodine receptor-modulators from the class of diamides, including flubendi- amide, chloranthraniliprole (rynaxypyr®), cyantraniliprole (cyazypyr®), or the phthalamide compounds
ll-M.26.1 : (R)-3-Chlor-N1 -{2-methyl-4-[1 ,2,2,2 -tetrafluor-1 -(trifluormethyl)ethyl]phenyl}-
N2-(1 -methyl-2-methylsulfonylethyl)phthalamid and
ll-M.26.2: (S)-3-Chlor-N1 -{2-methyl-4-[1 ,2,2,2 -tetrafluor-1 -(trifluormethyl)ethyl]phenyl}-
N2-(1 -methyl-2-methylsulfonylethyl)phthalamid, or the compound ll-M.26.3: 3-bromo-N-{2-bromo-4-chloro-6-[(1 -cyclopropylethyl)carbamoyl]phenyl}-1 -(3- chlorpyridin-2-yl)-1 H-pyrazole-5-carboxamide (proposed ISO name: cyclaniliprole), or the compound
ll-M.26.4: methyl-2-[3,5-dibromo-2-({[3-bromo-1 -(3-chlorpyridin-2-yl)-1 H-pyrazol-5- yl]carbonyl}amino)benzoyl]-1 ,2-dimethylhydrazinecarboxylate; or a compound selected from ll-M.26.5a) to ll-M.26.5d):
II-M.26.5a: N-[2-(5-amino-1 ,3,4-thiadiazol-2-yl)-4-chloro-6-methyl-phenyl]-5-bromo-2-(3- chloro-2-pyridyl)pyrazole-3-carboxamide; ll-M.26.5b: 5-chloro-2-(3-chloro-2-pyridyl)-N-[2,4-dichloro-6-[(1 -cyano-1 -methyl- ethyl)carbamoyl]phenyl]pyrazole-3-carboxamide;
ll-M.26.5c: 5-bromo-N-[2,4-dichloro-6-(methylcarbamoyl)phenyl]-2-(3,5-dichloro-2- pyridyl)pyrazole-3-carboxamide;
ll-M.26.5d: N-[2-(tert-butylcarbamoyl)-4-chloro-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-
(fluoromethoxy)pyrazole-3-carboxamide; or
ll-M.26.6: N2-(1 -cyano-1 -methyl-ethyl)-N1 -(2,4-dimethylphenyl)-3-iodo-phthalamide; or ll-M.26.7: 3-chloro-N2-(1 -cyano-1 -methyl-ethyl)-N1 -(2,4-dimethylphenyl)phthalamide; ll-M.X insecticidal active compounds of unknown or uncertain mode of action, including afidopyropen, azadirachtin, amidoflumet, benzoximate, bifenazate, bromo- propylate, chinomethionat, cryolite, dicofol, flufenerim, flometoquin, fluensul- fone, flupyradifurone, piperonyl butoxide, pyridalyl, pyrifluquinazon, sulfoxaflor, pyflubumide or the compounds
II-M.X.1 : 4-[5-(3,5-Dichloro-phenyl)-5-trifluoromethyl-4,5-dihydro-isoxazol-3-yl]-2- methyl-N-[(2,2,2-trifluoro-ethylcarbamoyl)-methyl]-benzamide, or the compound
II-M.X.2: cyclopropaneacetic acid, l .l '- S^R^aR.eS.eaS.^R.^aS.^bSH-I^- cyclopropylacetyl)oxy]methyl]-1 ,3,4,4a,5,6,6a,12,12a,12b-decahydro-12- hydroxy-4,6a,12b-trimethyl-1 1 -oxo-9-(3-pyridinyl)-2H,1 1 H-naphtho[2,1 - b]pyrano[3,4-e]pyran-3,6-diyl] ester, or the compound
II-M.X.3: 1 1 -(4-chloro-2,6-dimethylphenyl)-12-hydroxy-1 ,4-dioxa-9-azadispiro[4.2.4.2]- tetradec-1 1 -en-10-one, or the compound
II-M.X.4 3-(4'-fluoro-2,4-dimethylbiphenyl-3-yl)-4-hydroxy-8-oxa-1 -azaspiro[4.5]dec-3- en-2-one, or the compound
II-M.X.5: 1 -[2-fluoro-4-methyl-5-[(2,2,2-trifluoroethyl)sulfinyl]phenyl]-3-(trifluoromethyl)-
1 H-1 ,2,4-triazole-5-amine, or actives on basis of bacillus firmus (Votivo, I-
1582), or
II-M.X.6: a compound selected from the group of
ll-M.X.6a: (E/Z)-N-[1 -[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide; ll-M.X.6b: (E/Z)-N-[1 -[(6-chloro-5-fluoro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro- acetamide;
ll-M.X.6c: (E/Z)-2,2,2-trifluoro-N-[1 -[(6-fluoro-3-pyridyl)methyl]-2-pyridylidene]acetamide; ll-M.X.6d: (E/Z)-N-[1 -[(6-bromo-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide; ll-M.X.6e: (E/Z)-N-[1 -[1 -(6-chloro-3-pyridyl)ethyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide; ll-M.X.6f: (E/Z)-N-[1 -[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2-difluoro-acetamide; ll-M.X.6g: (E/Z)-2-chloro-N-[1 -[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2-difluoro- acetamide;
ll-M.X.6h: (E/Z)-N-[1 -[(2-chloropyrimidin-5-yl)methyl]-2-pyridylidene]-2,2,2-trifluoro- acetamide andll-M.X.6i: (E/Z)-N-[1 -[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]- 2,2,3,3,3-pentafluoro-propanamide); or
ll-M.X.7: triflumezopyrim; or -M.X.8: 4-[5-[3-chloro-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-4H-isoxazol-3-yl]-N-
[2-oxo-2-(2,2,2-trifluoroethylamino)ethyl]naphthalene-1 -carboxamide, or -M.X.9: 3-[3-chloro-5-(trifluoromethyl)phenyl]-4-oxo-1 -(pyrimidin-5-ylmethyl)pyrido[1 ,2- a]pyrimidin-1 -ium-2-olate; or
-M.X.10: 8-chloro-N-[2-chloro-5-methoxyphenyl)sulfonyl]-6-trifluoromethyl)-imidazo[1 ,2- a]pyridine-2-carboxamide; or
-M.X.1 1 : 4-[5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4H-isoxazol-3-yl]-2-rnethyl-N-(1 - oxothietan-3-yl)benzamide; or
-M.X.12: 5-[3-[2,6-dichloro-4-(3,3-dichloroallyloxy)phenoxy]propoxy]-1 H-pyrazole; or
-M.Y Biopesticides, e.g.
-M.Y-1 : Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity: Bacillus firmus, B. thuringiensis ssp. israelensis, B. t. ssp. galleriae, B. t. ssp. kurstaki, Beauveria bassiana, Burkholderia sp., Chromobacterium sub- tsugae, Cydia pomonella granulosis virus, Isaria fumosorosea, Lecanicillium longisporum, L. muscarium (formerly Verticillium lecanii), Metarhizium an- isopliae, M. anisopliae var. acridum, Paecilomyces fumosoroseus, P. lilacinus, Paenibacillus poppiliae, Pasteuria spp., P. nishizawae, P. reneformis, P. us- agae, Pseudomonas fluorescens, Steinernema feltiae, Streptomces galbus; ll-M.Y-2) Biochemical pesticides with insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity: L-carvone, citral, (E,Z)-7,9-dodecadien-1 -yl acetate, ethyl formate, (E,Z)-2,4-ethyl decadienoate (pear ester), (Z,Z,E)-7,1 1 ,13- hexadecatrienal, heptyl butyrate, isopropyl myristate, lavanulyl senecioate, 2- methyl 1 -butanol, methyl eugenol, methyl jasmonate, (E,Z)-2,13- octadecadien-1 -ol, (E,Z)-2,13-octadecadien-1 -ol acetate, (E,Z)-3,13- octadecadien-1 -ol, R-1 -octen-3-ol, pentatermanone, potassium silicate, sorbitol actanoate, (E,Z,Z)-3,8,1 1 -tetradecatrienyl acetate, (Z,E)-9,12- tetradecadien-1 -yl acetate, Z-7-tetradecen-2-one, Z-9-tetradecen-1 -yl acetate, Z-1 1 -tetradecenal, Z-1 1 -tetradecen-1 -ol, Acacia negra extract, extract of grapefruit seeds and pulp, extract of Chenopodium ambrosiodae, Catnip oil, Neem oil, Quillay extract, Tagetes oil;
The commercially available compounds II of the group M listed above may be found in The Pesticide Manual, 15th Edition, C. D. S. Tomlin, British Crop Protection Council (201 1 ) among other publications.
The quinoline derivative flometoquin is shown in WO2006/013896. The aminofuranone compounds flupyradifurone is known from WO 2007/1 15644. The sulfoximine compound sulfoxaflor is known from WO2007/149134. The pyrethroid momfluorothrin is known from US6908945. The pyrazole acaricide pyflubumide is known from WO2007/020986. The isoxazoline compound II- M.X.1 has been described in WO2005/085216, II-M.X.8 in WO2009/002809 and in
WO201 1/149749 and the isoxazoline II-M.X.1 1 in WO2013/050317. The pyripyropene derivative II-M.X.2 has been described in WO 2006/129714. The spiroketal-substituted cyclic ketoenol derivative II-M.X.3 is known from WO2006/089633 and the biphenyl-substituted spirocyclic ke- toenol derivative II-M.X.4 from WO2008/06791 1 . Triazoylphenylsulfide like II-M.X.5 have been described in WO2006/043635 and biological control agents on basis of bacillus firmus in WO2009/124707. The neonicotionids M4A.1 is known from WO20120/069266 and
WO201 1/06946, the II-M.4A.2 from WO2013/003977, the M4A.3.from WO2010/069266. The metaflumizone analogue II-M.22C is described in CN 10171577.
Cyantraniliprole (Cyazypyr) is known from e.g. WO 2004/067528. The phthalamides ll-M.26.1 and ll-M.26.2 are both known from WO 2007/101540. The anthranilamide ll-M.26.3 has been described in WO 2005/077934. The hydrazide compound ll-M.26.4 has been described in WO 2007/043677. The anthranilamide ll-M.26.5a) is described in WO201 1/085575, the ll-M.26.5b) in WO2008/134969, the ll-M.26.5c) in US201 1/046186 and the ll-M.26.5d in WO2012/034403. The diamide compounds ll-M.26.6 and ll-M.26.7 can be found in CN102613183.
The compounds ll-M.X.6a) to ΙΙ-Μ.Χ.6Ϊ) listed in II-M.X.6 have been described in
WO2012/029672.
The mesoionic antagonist compound II-M.X.9 was described in WO2012/0921 15, the nemati- cide II-M.X.10 in WO2013/055584 and the Pyridalyl-type analogue II-M.X.12 in
WO2010/060379.
Biopesticides
The biopesticides from group ll-M.Y, and from group F.XIII) as described below, their preparation and their biological activity e.g. against harmful fungi, pests is known (e-Pesticide Manual V 5.2 (ISBN 978 1 901396 85 0) (2008-201 1 ); http://www.epa.gov/opp00001/biopesticides/, see product lists therein; http://www.omri.org/omri-lists, see lists therein; Bio-Pesticides Database BPDB http://sitem.herts.ac.uk/aeru/bpdb/, see A to Z link therein). Many of these biopesticides are registered and/or are commercially available: aluminium silicate (SCREEN™ DUO from Certis LLC, USA), Ampelomyces quisqualis M-10 (e.g. AQ 10® from Intrachem Bio GmbH & Co. KG, Germany), Ascophyllum nodosum (Norwegian kelp, Brown kelp) extract (e.g. ORKA GOLD from Becker Underwood, South Africa), Aspergillus flavus NRRL 21882 (e.g. AFLA- GUARD® from Syngenta, CH), Aureobasidium pullulans (e.g. BOTECTOR® from bio-ferm
GmbH, Germany), Azospirillum brasilense XOH (e.g. AZOS from Xtreme Gardening, USA USA or RTI Reforestation Technologies International; USA), Bacillus amyloliquefaciens IT-45 (CNCM I 3800, NCBI 1091041 ) (e.g. RHIZOCELL C from ITHEC, France), B. amyloliquefaciens subsp. plantarum MBI600 (NRRL B-50595, deposited at United States Department of Agriculture) (e.g. INTEGRAL®, CLARITY, SUBTILEX NG from Becker Underwood, USA), B. pumilus QST 2808 (NRRL Accession No. B 30087) (e.g. SONATA® and BALLAD® Plus from AgraQuest Inc., USA), B. subtilis GB03 (e.g. KODIAK from Gustafson, Inc., USA), B. subtilis GB07 (EPIC from Gustafson, Inc., USA), B. subtilis QST-713 (NRRL-Nr. B 21661 in RHAPSODY®, SERENADE® MAX and SERENADE® ASO from Agra-Quest Inc., USA), B. subtilis var. amylolique-'faciens FZB24 (e.g. TAEGRO® from Novozyme Biologicals, Inc., USA), B. subtilis var. amyloliquefaciens D747 (e.g. Double Nickel 55 from Certis LLC, USA), Bacillus thuringiensis ssp. kurstaki SB4 (e.g. BETA PRO® from Becker Underwood, South Africa), Beauveria bassiana GHA (BOTANIGARD® 22WGP from Laverlam Int. Corp., USA), B. bassiana 12256 (e.g. BIOEX- PERT® SC from Live Sytems Technology S.A., Colombia), B. bassiana PRPI 5339 (ARSEF number 5339 in the USDA ARS collection of entomopathogenic fungal cultures) (e.g.
BROAD-- BAND® from Becker Underwood, South Africa), Bradyrhizobium sp. (e.g. VAULT® from Becker Underwood, USA), B. japonicum (e.g. VAULT® from Becker Underwood, USA), Candida oleophila 1-82 (e.g. ASPIRE® from Ecogen Inc., USA), Candida saitoana (e.g. BIO- CURE® (in mixture with lysozyme) and BIOCOAT® from Micro Flo Company, USA (BASF SE) and Arysta), Chitosan (e.g. ARMOUR-ZEN from BotriZen Ltd., NZ), Clonostachys rosea f. ca- tenulata, also named Gliocladium catenulatum (e.g. isolate J1446: PRESTOP® from Verdera, Finland), Coniothyrium minitans CON/M/91 -08 (e.g. Contans® WG from Prophyta, Germany), Cryphonectria parasitica (e.g. Endothia parasitica from CNICM, France), Cryptococcus albidus (e.g. YIELD PLUS® from Anchor Bio-Technologies, South Africa), Ecklonia maxima (kelp) extract (e.g. KELPAK SL from Kelp Products Ltd, South Africa), Fusarium oxysporum (e.g. BIO- FOX® from S.I.A.P.A., Italy, FUSACLEAN® from Natural Plant Protection, France), Glomus intraradices (e.g. MYC 4000 from ITHEC, France), Glomus intraradices RTI-801 (e.g. MYKOS from Xtreme Gardening, USA or RTI Reforestation Technologies International; USA), grapefruit seeds and pulp extract (e.g. BC-1000 from Chemie S.A., Chile), Isaria fumosorosea Apopka-97 (ATCC 20874) (PFR-97™ from Certis LLC, USA), Lecanicillium muscarium (formerly Verticillium lecanii) (e.g. MYCOTAL from Koppert BV, Netherlands), Lecanicillium longisporum KV42 and KV71 (e.g. VERTALEC® from Koppert BV, Netherlands), Metarhizium anisopliae var. acridum IMI 330189 (deposited in European Culture Collections CABI) (e.g. GREEN MUSCLE® from Becker Underwood, South Africa), M. anisopliae FI-1045 (e.g. BIOCANE® from Becker Underwood Pty Ltd, Australia), M. anisopliae var. acridum FI-985 (e.g. GREEN GUARD® SC from Becker Underwood Pty Ltd, Australia), M. anisopliae F52 (e.g. MET52® Novozymes Biologicals BioAg Group, Canada), M. anisopliae ICIPE 69 (e.g. METATHR POL from ICIPE, Kenya), Metschnikowia fructicola (e.g. SHEMER® from Agrogreen, Israel), Microdochium dimerum (e.g. ANTIBOT® from Agrauxine, France), Neem oil (e.g. TRILOGY®, TRIACT® 70 EC from Certis LLC, USA), Paecilomyces fumosoroseus strain FE 9901 (e.g. NO FLY™ from Natural Industries, Inc., USA), P. lilacinus DSM 15169 (e.g. NEMATA® SC from Live Systems Technology S.A., Colombia), P. lilacinus BCP2 (e.g. PL GOLD from Becker Underwood BioAg SA Ltd, South Africa), mixture of Paenibacillus alvei NAS6G6 and Bacillus pumilis (e.g. BAC-UP from Becker Underwood South Africa), Penicillium bilaiae (e.g. JUMP START® from Novozymes Biologicals BioAg Group, Canada), Phlebiopsis gigantea (e.g. ROTSTOP® from Verdera, Finland), potassium silicate (e.g. Sil-MATRIX™ from Certis LLC, USA), Pseudozyma flocculosa (e.g. SPORODEX® from Plant Products Co. Ltd., Canada), Pythium oligandrum DV74 (e.g. POLYVERSUM® from Remeslo SSRO, Biopreparaty, Czech Rep.), Reynoutria sachlinensis extract (e.g. REGALIA® from Marrone Biolnnovations, USA), Rhizobium leguminosarum bv. phaseolii (e.g. RHIZO-STICK from Becker Underwood, USA), R. I. trifolii (e.g. DORMAL from Becker Underwood, USA), R. I. bv. viciae (e.g. NODULATOR from Becker Underwood, USA), Sinorhizobium meliloti (e.g. DORMAL ALFALFA from Becker Underwood, USA; NITRAGIN® Gold from Novozymes Biologicals BioAg Group, Canada), Steinernema feltiae (NE-
MA--SHIELD® from BioWorks, Inc., USA), Streptomyces lydicus WYEC 108 (e.g. Actinovate® from Natural Industries, Inc., USA, US 5,403,584), S. violaceusniger YCED-9 (e.g. DT-9® from Natural Industries, Inc., USA, US 5,968,503), Talaromyces flavus V1 17b (e.g. PROTUS® from Prophyta, Germany), Trichoderma asperellum SKT-1 (e.g. ECO-HOPE® from Kumiai Chemical Industry Co., Ltd., Japan), T. atroviride LC52 (e.g. SENTINEL® from Agrimm Technologies Ltd, NZ), T. fertile JM41 R (e.g. RICHPLUS™ from Becker Underwood Bio Ag SA Ltd, South Africa), T. harzianum T-22 (e.g. PLANTSHIELD® der Firma BioWorks Inc., USA), T. harzianum TH 35 (e.g. ROOT PRO® from Mycontrol Ltd., Israel), T. harzianum T-39 (e.g. TRICHODEX® and TRICHODERMA 2000® from Mycontrol Ltd., Israel and Makhteshim Ltd., Israel), T. harzianum and T. viride (e.g. TRICHOPEL from Agrimm Technologies Ltd, NZ), T. harzianum ICC012 and T. viride ICC080 (e.g. REMEDIER® WP from Isagro Ricerca, Italy), T. polysporum and T. harzi- anum (e.g. BINAB® from BINAB Bio-Innovation AB, Sweden), T. stromaticum (e.g. TRICO- VAB® from C.E.P.L.A.C., Brazil), T. virens GL-21 (also named Gliocladium virens) (e.g. SOIL- GARD® from Certis LLC, USA), T. viride (e.g. TRIECO® from Ecosense Labs. (India) Pvt. Ltd., Indien, BIO-CURE® F from T. Stanes & Co. Ltd., Indien), T. viride TV1 (e.g. T. viride TV1 from Agribiotec srl, Italy), Ulocladium oudemansii HRU3 (e.g. BOTRY-ZEN® from Botry-Zen Ltd, NZ), Bacillus amyloliquefaciens AP-136 (NRRL B-50614), B. amyloliquefaciens AP-188 (NRRL B-50615), B. amyloliquefaciens AP-218 (NRRL B-50618), B. amyloliquefaciens AP-219 (NRRL B-50619), B. amyloliquefaciens AP-295 (NRRL B-50620), B. mojavensis AP-209 (No. NRRL B- 50616), B. solisalsi AP-217 (NRRL B-50617), B. pumilus strain INR-7 (otherwise referred to as BU-F22 (NRRL B-50153) and BU-F33 (NRRL B-50185)), B. simplex ABU 288 (NRRL B-50340) and B. amyloliquefaciens subsp. plantarum MBI600 (NRRL B-50595) have been mentioned i.a. in US patent appl. 20120149571 , WO 2012/079073. Beauveria bassiana DSM 12256 is known from US200020031495. Bradyrhizobium japonicum USDA is known from US patent 7,262,151. Sphaerodes mycoparasitica IDAC 301008-01 (IDAC = International Depositary Authority of Canada Collection) is known from WO 201 1/022809.
Bacillus amyloliquefaciens subsp. plantarum MBI600 having the accession number NRRL B-
50595 is deposited with the United States Department of Agriculture on Nov. 10, 201 1 under the strain designation Bacillus subtilis 1430. It has also been deposited at The National Collections of Industrial and Marine Bacteria Ltd. (NCIB), Torry Research Station, P.O. Box 31 , 135 Abbey Road, Aberdeen, AB9 8DG, Scotland. under accession number 1237 on December 22, 1986. Bacillus amyloliquefaciens MBI600 is known as plant growth-promoting rice seed treatment from Int. J. Microbiol. Res. ISSN 0975-5276, 3(2) (201 1 ), 120-130 and further described e.g. in US 2012/0149571 A1 . This strain MBI600 is commercially available as liquid formulation product Integral® (Becker-Underwood Inc., USA). Recently, the strain MBI 600 has been reclassified as Bacillus amyloliquefaciens subsp. plantarum based on polyphasic testing which combines classical microbiological methods relying on a mixture of traditional tools (such as culture-based methods) and molecular tools (such as genotyping and fatty acids analysis). Thus, Bacillus subtilis MBI600 (or MBI 600 or MBI-600) is identical to Bacillus amyloliquefaciens subsp. plantarum MBI600, formerly Bacillus subtilis MBI600.
Metarhizium anisopliae IMI33 is commercially available from Becker Underwood as product Green Guard. M. anisopliae var acridium strain IMI 330189 (NRRL-50758) is commercially available from Becker Underwood as product Green Muscle. Bacillus subtilis strain FB17 was originally isolated from red beet roots in North America (System Appl. Microbiol 27 (2004) 372-379). This Bacillus subtilis strain promotes plant health (US 2010/0260735 A1 ; WO 201 1/109395 A2). B. subtilis FB17 has also been deposited at American Type Culture Collection (ATCC), Manassas, VA, USA, under accession number PTA-1 1857 on April 26, 201 1 . Bacillus subtilis strain FB17 may also be referred to as UD1022 or UD10-22.
According to one embodiment of the inventive mixtures, the at least one biopesticide II is selected from the groups ll-M.Y-1 to ll-M.Y-2:
ll-M.Y-1 : Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity:
Bacillus firmus St 1582, B. thuringiensis ssp. israelensis SUM-6218, B. t. ssp. galleriae SDS-502, B. t. ssp. kurstaki, Beauveria bassiana GHA, B. bassiana H123, B. bassiana DSM 12256, B. bassiana PRPI 5339, Burkholderia sp. A396, Chromobacterium sub- tsugae PRAA4-1 T, Cydia pomonella granulosis virus isolate V22, Isaria fumosorosea Apopka-97, Lecanicillium longisporum KV42, L. longisporum KV71 , L. muscarium (formerly Verticillium lecanii), Metarhizium anisopliae FI-985, M. anisopliae FI-1045, M. an- isopliae F52, M. anisopliae ICIPE 69, M. anisopliae var. acridum IMI 330189, Paeci- lomyces fumosoroseus FE 9901 , P. lilacinus DSM 15169, P. lilacinus BCP2, Paeni- bacillus poppiliae Dutky-1940 (NRRL B-2309 = ATCC 14706), P. poppiliae KLN 3, P. poppiliae Dutky 1 , Pasteuria spp. Ph3, P. nishizawae PN-1 , P. reneformis Pr-3, P. us- agae, Pseudomonas fluorescens CL 145A, Steinernema feltiae, Streptomces galbus; ll-M.Y-2: Biochemical pesticides with insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity: L-carvone, citral, (E,Z)-7,9-dodecadien-1 -yl acetate, ethyl formate, (E,Z)-2,4-ethyl decadienoate (pear ester), (Z,Z,E)-7,1 1 ,13-hexadecatrienal, heptyl bu- tyrate, isopropyl myristate, lavanulyl senecioate, 2-methyl 1 -butanol, methyl eugenol, methyl jasmonate, (E,Z)-2,13-octadecadien-1 -ol, (E,Z)-2,13-octadecadien-1 -ol acetate, (E,Z)-3,13-octadecadien-1 -ol, R-1 -octen-3-ol, pentatermanone, potassium silicate, sorbitol actanoate, (E,Z,Z)-3,8,1 1 -tetradecatrienyl acetate, (Z,E)-9,12-tetradecadien-1 -yl acetate, Z-7-tetradecen-2-one, Z-9-tetradecen-1 -yl acetate, Z-1 1 -tetradecenal, Z-1 1 - tetradecen-1 -ol, Acacia negra extract, extract of grapefruit seeds and pulp, extract of Chenopodium ambrosiodae, Catnip oil, Neem oil, Quillay extract, Tagetes oil;
According to one embodiment of the inventive mixtures, the at least one biopesticide II is selected from group ll-M.Y-1 .
According to one embodiment of the inventive mixtures, the at least one biopesticide II is se- lected from ll-M.Y-2.
According to one embodiment of the inventive mixtures, the at least one biopesticide II is Bacillus amyloliquefaciens subsp. plantarum MBI600. These mixtures are particularly suitable in soybean.
According to another embodiment of the inventive mixtures, the at least one biopesticide II is B. pumilus strain INR-7 (otherwise referred to as BU-F22 (NRRL B-50153) and BU-F33 (NRRL B- 50185; see WO 2012/079073). These mixtures are particularly suitable in soybean and corn. According to another embodiment of the inventive mixtures, the at least one biopesticide II is Bacillus pumilus, preferably B. pumilis strain INR-7 (otherwise referred to as BU-F22 (NRRL B- 50153) and BU-F33 (NRRL B-50185). These mixtures are particularly suitable in soybean and corn.
According to another embodiment of the inventive mixtures, the at least one biopesticide II is Bacillus simplex, preferably B. simplex strain ABU 288 (NRRL B-50340). These mixtures are particularly suitable in soybean and corn.
According to another embodiment of the inventive mixtures, the at least one biopesticide II is selected from Trichoderma asperellum, T. atroviride, T. fertile, T. gamsii, T. harmatum; mixture of T. harzia-'num and T. viride; mixture of T. polysporum and T. harzianum; T. stromaticum, T. virens (also named Gliocladium virens) and T. viride; preferably Trichoderma fertile, in particular T. fertile strain JM41 R. These mixtures are particularly suitable in soybean and corn.
According to another embodiment of the inventive mixtures, the at least one biopesticide II is Sphaerodes mycoparasitica, preferably Sphaerodes mycoparasitica strain IDAC 301008-01 (also referred to as strain SMCD2220-01 ). These mixtures are particularly suitable in soybean and corn.
According to another embodiment of the inventive mixtures, the at least one biopesticide II is Beauveria bassiana, preferably Beauveria bassiana strain PPRI5339. These mixtures are particularly suitable in soybean and corn.
According to another embodiment of the inventive mixtures, the at least one biopesticide II is Metarhizium anisopliae or M. anisopliae var. acridium, preferably selectged from M anisolpiae strain IMI33 and M. anisopliae var. acridium strain IMI 330189. These mixtures are particularly suitable in soybean and corn.
According to another embodiment of the inventive mixtures, Bradyrhizobium sp. (meaning any Bradyrhizobium species and/or strain) as biopesticide II is Bradyrhizobium japonicum (B. japonicum). These mixtures are particularly suitable in soybean. Preferably B. japonicum is not one of the strains TA-1 1 or 532c. B. japonicum strains were cultivated using media and fermentation techniques known in the art, e.g. in yeast extract-mannitol broth (YEM) at 27°C for about 5 days.
References for various B. japonicum strains are given e.g. in US 7,262,151 (B. japonicum strains USDA 1 10 (= IITA 2121 , SEMIA 5032, RCR 3427, ARS 1-1 10, Nitragin 61A89; isolated from Glycine max in Florida in 1959, Serogroup 1 10; Appl Environ Microbiol 60, 940-94, 1994), USDA 31 (= Nitragin 61A164; isolated from Glycine max in Wisoconsin in 1941 , USA,
Serogroup 31 ), USDA 76 (plant passage of strain USDA 74 which has been isolated from Gly- cine max in California, USA, in 1956, Serogroup 76), USDA 121 (isolated from Glycine max in Ohio, USA, in 1965), USDA 3 (isolated from Glycine max in Virginia, USA, in 1914, Serogroup 6) and USDA 136 (= CB 1809, SEMIA 586, Nitragin 61A136, RCR 3407; isolated from Glycine max in Beltsville, Maryland in 1961 ; Appl Environ Microbiol 60, 940-94, 1994). USDA refers to United States Department of Agriculture Culture Collection, Beltsville, Md., USA (see e.g. Belts- ville Rhizobium Culture Collection Catalog March 1987 ARS-30). Further suitable B. japonicum strain G49 (INRA, Angers, France) is described in Fernandez-Flouret, D. & Cleyet-Marel, J. C. (1987) C R Acad Agric Fr 73, 163-171 ), especially for soybean grown in Europe, in particular in France. Further suitable B. japonicum strain TA-1 1 (TA1 1 NOD+) (NRRL B-18466) is i.a. described in US 5,021 ,076; AppI Environ Microbiol (1990) 56, 2399-2403 and commercially available as liquid inoculant for soybean (VAULT® NP, Becker Underwood, USA). Further B. japonicum strains as example for biopesticide II are described in US2012/0252672A. Further suitable and especially in Canada commercially available strain 532c (The Nitragin Company, Milwaukee, Wisconsin, USA, field isolate from Wisconsin; Nitragin strain collection No. 61A152; Can J Plant Sci 70 (1990), 661 -666).
Other suitable and commercially available B. japonicum strains (see e.g. AppI Environ Microbiol 2007, 73(8), 2635) are SEMIA 566 (isolated from North American inoculant in 1966 and used in Brazilian commercial inoculants from 1966 to 1978), SEMIA 586 (= CB 1809; originally isolated in Maryland, USA but received from Austrailia in 1966 and used in Brazilian inoculants in 1977), CPAC 15 (= SEMIA 5079; a natural varaiant of SEMIA 566 used in commercial inoculants since 1992) and CPAC 7 (= SEMIA 5080; a natural variant of SEMIA 586 used in commercial inoculants since 1992). These strains are especially suitable for soybean grown in Australia or South America, in particular in Brazil. Some of the abovementioned strains have been re-classified as a novel species Bradyrhizobium elkanii, e.g. strain USDA 76 (Can. J. Microbiol., 1992, 38, 501 - 505).
Another suitable and commercially available B. japonicum strain is E-109 (variant of strain USDA 138, see e.g. Eur. J. Soil Biol. 45 (2009) 28-35; Biol Fertil Soils (201 1 ) 47:81-89, depos- ited at Agriculture Collection Laboratory of the Instituto de Microbiologia y Zoologia Agncola (IMYZA), Instituto Nacional de Tecnologi 'a Agropecuaria (INTA), Castelar, Argentina). This strain is especially suitable for soybean grown in South America, in particular in Argentina. The present invention also relates to mixtures, wherein the at least one biopesticide II is selected from Bradyrhizobium elkanii and Bradyrhizobium liaoningense (B. elkanii and B. liaoningen- se), more preferably from B. elkanii. These mixtures are particularly suitable in soybean. B. elkanii and liaoningense were cultivated using media and fermentation techniques known in the art, e.g. in yeast extract-mannitol broth (YEM) at 27°C for about 5 days.
Suitable and commercially available B. elkanii strains are SEMIA 587 and SEMIA 5019 (=29W) (see e.g. AppI Environ Microbiol 2007, 73(8), 2635) and USDA 3254 and USDA 76 and USDA 94. Further commercially available B. elkanii strains are U-1301 and U-1302 (e.g. product Ni- troagin® Optimize from Novozymes Bio As S.A., Brazil or NITRASEC for soybean from LAGE y Cia, Brazil). These strains are especially suitable for soybean grown in Australia or South America, in particular in Brazil.
The present invention also relates to mixtures, wherein the at least one biopesticide II is select- ed from Bradyrhizobium japonicum (B. japonicum) and further comprisies a compound III, wherein compound III is selected from jasmonic acid or salts or derivatives thereof including cis- jasmone, preferably methyl-jasmonate or cis-jasmone.
The present invention also relates to mixtures, wherein biopesticide II is selected from Bradyrhizobium sp. (Arachis) (B. sp. Arachis) which shall describe the cowpea miscellany cross- inoculation group which includes inter alia indigenous cowpea bradyrhizobia on cowpea (Vigna unguiculata), siratro (Macroptilium atropurpureum), lima bean (Phaseolus lunatus), and peanut (Arachis hypogaea). This mixture comprising as biopesticide II B. sp. Arachis is especially suit- able for use in peanut, Cowpea, Mung bean, Moth bean, Dune bean, Rice bean, Snake bean and Creeping vigna, in particular peanut.
Suitable and commercially available B. sp. (Arachis) strain is CB1015 (= IITA 1006, USDA 3446 presumably originally collected in India; from Australian Inoculants Research Group; see e.g. http://www.qaseeds.com.au/inoculant_applic.php; Beltsville Rhizobium Culture Collection Catalog March 1987 USDA-ARS ARS-30). These strains are especially suitable for peanut grown in Australia, North America or South America, in particular in Brazil. Further suitable strain is brad- yrhizobium sp. PNL01 (Becker Underwood; ISO Rep Marita McCreary, QC Manager Padma Somasageran; IDENTIFICATION OF RHIZOBIA SPECIES THAT CAN ESTABLISH NITRO- GEN-FIXING NODULES IN CROTALARIA LONGIROSTRATA. April 29, 2010, University of Massachusetts Amherst: http://www.wpi.edu/Pubs/E-project/Available/E-project-042810- 163614/unrestricted/Bisson.Mason._ldentification_of_Rhizobia_Species_That_can_Establish_N itrogen-Fixing_Nodules_in_Crotalia_Longirostrata.pdf).
Suitable and commercially available Bradyrhizobium sp. (Arachis) strains especially for cowpea and peanut but also for soybean are Bradyrhizobium SEMIA 6144, SEMIA 6462 (= BR 3267) and SEMIA 6464 (= BR 3262) (deposited at FEPAGRO-MIRCEN, R. Gongalves Dias, 570 Porto
Alegre - RS, 90130-060, Brazil; see e.g. FEMS Microbiology Letters (2010) 303(2), 123-131 ;
Revista Brasileira de Ciencia do Solo (201 1 ) 35(3);739-742, ISSN 0100-0683).
The present invention also relates to mixtures wherein the at least one biopesticide II is selected from Bradyrhizobium sp. (Arachis) and further comprises a compound III, wherein compound III is selected from jasmonic acid or salts or derivatives thereof including cis-jasmone, preferably methyl-jasmonate or cis-jasmone.
The present invention also relates to mixtures, wherein the at least one biopesticide II is selected from Bradyrhizobium sp. (Lupine) (also called B. lupini, B. lupines or Rhizobium lupini). This mixture is especially suitable for use in dry beans and lupins.
Suitable and commercially available B. lupini strain is LL13 (isolated from Lupinus iuteus nodules from French soils; deposited at INRA, Dijon and Angers, France;
http://agriculture.gouv.fr/IMG/pdf/ch20060216.pdf). This strain is especially suitable for lupins grown in Australia, North America or Europe, in particular in Europe.
Further suitable and commercially available B. lupini strains WU425 (isolated in Esperance, Western Australia from a non-Australian legume Ornthopus compressus), WSM4024 (isolated from lupins in Australia by CRS during a 2005 survey) and WSM471 (isolated from Ornithopus pinnatus in Oyster Harbour, Western Australia) are described e.g. in Palta J.A. and Berger J.B. (eds), 2008, Proceedings 12th International Lupin Conference, 14-18 Sept. 2008, Fremantle, Western Australia. International Lupin Association, Canterbury, New Zealand, 47-50, ISBN 0- 86476-153-8:
http://www.lupins.org/pdf/conference/2008/Agronomy%20and%20Production/John%20Howieso n%20and%20G%20OHara.pdf; Appl Environ Microbiol (2005) 71 , 7041 -7052 and Australian J. Exp. Agricult. (1996) 36(1 ), 63-70.
The present invention also relates to mixtures wherein the at least one biopesticide II is selected from Bradyrhizobium sp. (Lupine) (B. lupini) and further comprises a compound III, wherein compound III is selected from jasmonic acid or salts or derivatives thereof including cis- jasmone, preferably methyl-jasmonate or cis-jasmone.
The present invention also relates to mixtures, wherein the at least one biopesticide II is selected from Mesorhizobium sp. (meaning any Mesorhizobium species and/or strain), more prefera- bly Mesorhizobium ciceri. These mixtures are particularly suitable in cowpea.
Suitable and commercially available M. sp. strains are e.g. M. ciceri CC1 192 (=UPM 848, CECT 5549; from Horticultural Research Station, Gosford, Australia; collected in Israel from Cicer ari- etinum nodules; Can J Microbial (2002) 48, 279-284) and Mesorhizobium sp. strains WSM1271 (collected in Sardinia, Italy, from plant host Biserrula pelecinus), WSM 1497 (collected in Myko- nos, Greece, from plant host Biserrula pelecinus), M. loti strains CC829 (commerical inoculant for Lotus pedunculatus and L. ulginosus in Australia, isolated from L. ulginosus nodules in USA) and SU343 (commercial inoculant for Lotus corniculatus in Australia; isolated from host nodules in USA) all of which are deposited at Western Australian Soil Microbiology (WSM) culture collection, Australia and/or CSIRO collection (CC), Canberra, Australian Capirtal Territory (see e.g. Soil Biol Biochem (2004) 36(8), 1309-1317; Plant and Soil (201 1 ) 348(1 -2), 231 -243).
Suitable and commercially available M. loti strains are e.g. M. loti CC829 for Lotus pedunculatus.
The present invention also relates to mixtures wherein the at least one biopesticide II is selected from Bradyrhizobium sp. (Lupine) (B. lupini) and further comprises a compound III, wherein compound III is selected from jasmonic acid or salts or derivatives thereof including cis- jasmone, preferably methyl-jasmonate or cis-jasmone.
The present invention also relates to mixtures wherein the at least one biopesticide II is selected from Mesorhizobium huakuii, also referred to as Rhizobium huakuii (see e.g. Appl. Environ. Microbiol. 201 1 , 77(15), 5513-5516). These mixtures are particularly suitable in Astralagus, e.g. Astalagus sinicus (Chinese milkwetch), Thermopsis, e.g. Thermopsis luinoides (Goldenbanner) and alike.
Suitable and commercially available M. huakuii strain is HN3015 which was isolated from Astralagus sinicus in a rice-growing field of Southern China (see e.g. World J. Microbiol. Biotechn. (2007) 23(6), 845-851 , ISSN 0959-3993).
The present invention also relates to mixtures wherein the at least one biopesticide II is selected from Mesorhizobium huakuii and further comprises a compound III, wherein compound III is selected from jasmonic acid or salts or derivatives thereof including cis-jasmone, preferably methyl-jasmonate or cis-jasmone.
The present invention also relates to mixtures, wherein the at least one biopesticide II is select- ed from Azospirillum amazonense, A. brasilense, A. lipoferum, A. irakense, A. halopraeferens, more preferably from A. brasilense, in particular selected from A. brasilense strains BR 1 1005
(SP 245) and AZ39 which are both commercially used in Brazil and are obtainable from EM-
BRAPA, Brazil. These mixtures are particularly suitable in soybean.
Humates are humic and fulvic acids extracted from a form of lignite coal and clay, known as leonardite. Humic acids are organic acids that occur in humus and other organically derived materials such as peat and certain soft coal. They have been shown to increase fertilizer effi- ciency in phosphate and micro-nutrient uptake by plants as well as aiding in the development of plant root systems.
Salts of jasmonic acid (jasmonate) or derivatives include without limitation the jasmonate salts potassium jasmonate, sodium jasmonate, lithium jasmonate, ammonium jasmonate, dime- thylammonium jasmonate, isopropylammonium jasmonate, diolammonium jasmonate, diethtri- ethanolammonium jasmonate, jasmonic acid methyl ester, jasmonic acid amide, jasmonic acid methylamide, jasmonic acid-L-amino acid (amide-linked) conjugates (e.g., conjugates with L- isoleucine, L- valine, L-leucine, or L-phenylalanine), 12-oxo-phytodienoic acid, coronatine, coro- nafacoyl- L-serine, coronafacoyl-L-threonine, methyl esters of 1 - oxo-indanoyl-isoleucine, me- thyl esters of 1 -oxo-indanoyl-leucine, coronalon (2- [ (6- ethyl-l-oxo-indane-4-carbonyl) -amino] - 3- methyl -pentanoic acid methyl ester), linoleic acid or derivatives thereof and cis-jasmone, or combinations of any of the above.
According to one embodiment, the microbial pesticides embrace not only the isolated, pure cultures of the respective micro-organism as defined herein, but also its cell-free extract, its sus- pensions in a whole broth culture or as a metabolite-containing supernatant or a purified metabolite obtained from a whole broth culture of the microorganism or microorganism strain.
According to a further embodiment, the microbial pesticides embrace not only the isolated, pure cultures of the respective micro-organism as defined herein, but also a cell-free extract thereof or at least one metabolite thereof, and/or a mutant of the respective micro-organism having all the identifying characteristics thereof and also a cell-free extract or at least one metabolite of the mutant.
"Whole broth culture" refers to a liquid culture containing both cells and media.
"Supernatant" refers to the liquid broth remaining when cells grown in broth are removed by centrifugation, filtration, sedimentation, or other means well known in the art.
The term "metabolite" refers to any compound, substance or byproduct produced by a microorganism (such as fungi and bacteria) that has improves plant growth, water use efficiency of the plant, plant health, plant appearance, or the population of beneficial microorganisms in the soil around the plant activity.
The term "mutant" refers a microorganism obtained by direct mutant selection but also includes microorganisms that have been further mutagenized or otherwise manipulated (e.g., via the introduction of a plasmid). Accordingly, embodiments include mutants, variants, and or derivatives of the respective microorganism, both naturally occurring and artificially induced mutants. For example, mutants may be induced by subjecting the microorganism to known mutagens, such as N-methyl-nitrosoguanidine, using conventional methods.
According to the invention, the solid material (dry matter) of the biopesticides (with the exception of oils such as Neem oil, Tagetes oil, etc.) are considered as active components (e.g. to be obtained after drying or evaporation of the extraction medium or the suspension medium in case of liquid formulations of the microbial pesticides).
In accordance with the present invention, the weight ratios and percentages used herein for biological extract such as Quillay extract are based on the total weight of the dry content (solid material) of the respective extract(s). For microbial pesticides, weight ratios and/or percentages refer to the total weight of a preparation of the respective biopesticide with at least 1 x 106 CFU/g ("colony forming units per gram total weight"), preferably with at least 1 x 108 CFU/g, even more preferably from 1 x 108 to 1 x 1012 CFU/g dry matter. Colony forming unit is measure of viable microbial cells, in particular fungal and bacterial cells. In addition, here CFU may also be understood as number of (juvenile) individual nematodes in case of (entomo-'pathogenic) nematode biopesticides, such as Stei- nernema feltiae.
Herein, microbial pesticides may be supplied in any physiological state such as active or dormant. Such dormant active component may be supplied for example frozen, dried, or lyophi- lized or partly desiccated (procedures to produce these partly desiccated organisms are given in WO2008/002371 ) or in form of spores.
Microbial pesticides used as organism in an active state can be delivered in a growth medium without any additional additives or materials or in combination with suitable nutrient mixtures. According to a further embodiment, microbial pesticides are delivered and formulated in a dormant stage, more preferably in form of spores.
The total weight ratios of compositions, which comprise a microbial pesticide as component 2, can be determined based on the total weight of the solid material (dry matter) of component 1 ) and using the amount of CFU of component 2) to calclulate the total weight of component 2) with the following equation that 1 x 109 CFU equals one gram of total weight of component 2). According to one embodiment, the compositions, which comprise a microbial pesticide, comprise between 0.01 and 90% (w/w) of dry matter (solid material) of component 1 ) and from 1 x 105 CFU to 1 x 1012 CFU of component 2) per gram total weight of the composition.
According to another embodiment, the compositions, which comprise a microbial pesticide, comprise between 5 and 70% (w/w) of dry matter (solid material) of component 1 ) and from 1 x 106 CFU to 1 x 1010 CFU of component 2) per gram total weight of the composition.
According to another embodiment, the compositions, wherein one component is a microbial pesticide, comprise between 25 and 70% (w/w) of dry matter (solid material) of component 1 ) and from 1 x 107 CFU to 1 x 109 CFU of component 2) per gram total weight of the composition. In the case of mixtures comprising a microbial pesticide, the application rates preferably range from about 1 x 106 to 5 x 1015 (or more) CFU/ha. Preferably, the spore concentration is about 1 x 107 to about 1 x 101 1 CFU/ha. In the case of (entomopathogenic) nematodes as microbial pesticides (e.g. Steinernema feltiae), the application rates preferably range inform about 1 x 105 to 1 x 1012 (or more), more preferably from 1 x 108 to 1 x 1011, even more preferably from 5 x 108 to 1 x 1010 individuals (e.g. in the form of eggs, juvenile or any other live stages, preferably in an infetive juvenile stage) per ha.
In the case of mixtures comprising microbial pesticides, the application rates with respect to plant propagation material preferably range from about 1 x 106 to 1 x 1012 (or more) CFU/seed. Preferably, the concentration is about 1 x 106 to about 1 x 1011 CFU/seed. In the case of microbial pesticides, the application rates with respect to plant propagation material also preferably range from about 1 x 107 to 1 x 1014 (or more) CFU per 100 kg of seed, preferably from 1 x 109 to about 1 x 1011 CFU per 100 kg of seed. In a preferred embodiment, the compound of formula (I) is combined with one or more other pesticidally active compound(s) II.
In a particularly preferred embodiment, the compounds of formula I are used in combination with a compound II selected from:
ethiprole, fipronil;
pyrethroids, especially lambda-cyhalothrin, alpha-cypermethrin, deltamethrin, permethrin, pyre- thrin;
neonicotinoids, especially acetamiprid, chlothianidin, dinotefuran, imidacloprid, nitenpyram, thi- acloprid and thiamethoxam;
spinosad, spinetoram; abamectin; pymetrozine, flonicamid; chlorfenapyr; teflubenzuron, bu- profezin; amitraz; spirodiclofen, spiromesifen, spirotetramat; azadirachtin, sulfoxaflor;
cyclopropaneacetic acid, l .l'- S^R^aR.eS.eaS.^R.^aS.^bSH-I^- cyclopropylacetyl)oxy]methyl]-1 ,3,4,4a,5,6,6a,12,12a,12b-decahydro-12-hydroxy-4,6a,12b- trimethyl-1 1 -oxo-9-(3-pyridinyl)-2H,1 1 H-naphtho[2,1 -b]pyrano[3,4-e]pyran-3,6-diyl] ester.
In an especially preferred embodiment, the mixtures which are especially preferred in the methods and uses of the invention, are listed in the following table M. The compounds 1-1 to I-40 are compounds of formula IA-1 and are listed in the table C in the example section. Table M
Mixture Comp. I Compound II Mixture Comp. I Compound II
M.1 1-1 fipronil M.22 I-22 fipronil
M.2 I-2 fipronil M.23 I-23 fipronil
M.3 I-3 fipronil M.24 I-24 fipronil
M.4 I-4 fipronil M.25 I-25 fipronil
M.5 I-5 fipronil M.26 I-26 fipronil
M.6 I-6 fipronil M.27 I-27 fipronil
M.7 I-7 fipronil M.28 I-28 fipronil
M.8 I-8 fipronil M.29 I-29 fipronil
M.9 I-9 fipronil M.30 I-30 fipronil
M.10 1-10 fipronil M.31 1-31 fipronil
M.1 1 1-1 1 fipronil M.32 I-32 fipronil
M.12 1-12 fipronil M.33 I-33 fipronil
M.13 1-13 fipronil M.34 I-34 fipronil
M.14 1-14 fipronil M.35 I-35 fipronil
M.15 1-15 fipronil M.36 I-36 fipronil
M.16 1-16 fipronil M.37 I-37 fipronil
M.17 1-17 fipronil M.38 I-38 fipronil
M.18 1-18 fipronil M.39 I-39 fipronil
M.19 1-19 fipronil M.40 I-40 fipronil
M.20 I-20 fipronil M.41 1-1 lambda-cyhalothrin
M.21 1-21 fipronil M.42 I-2 lambda-cyhalothrin Mixture Comp. I Compound II Mixture Comp. I Compound II
M.43 I-3 lambda-cyhalothrin M.83 I-3 alpha-cypermethrin
M.44 I-4 lambda-cyhalothrin M.84 I-4 alpha-cypermethrin
M.45 I-5 lambda-cyhalothrin M.85 I-5 alpha-cypermethrin
M.46 I-6 lambda-cyhalothrin M.86 I-6 alpha-cypermethrin
M.47 I-7 lambda-cyhalothrin M.87 I-7 alpha-cypermethrin
M.48 I-8 lambda-cyhalothrin M.88 I-8 alpha-cypermethrin
M.49 I-9 lambda-cyhalothrin M.89 I-9 alpha-cypermethrin
M.50 1-10 lambda-cyhalothrin M.90 1-10 alpha-cypermethrin
M.51 1-1 1 lambda-cyhalothrin M.91 1-1 1 alpha-cypermethrin
M.52 1-12 lambda-cyhalothrin M.92 1-12 alpha-cypermethrin
M.53 1-13 lambda-cyhalothrin M.93 1-13 alpha-cypermethrin
M.54 1-14 lambda-cyhalothrin M.94 1-14 alpha-cypermethrin
M.55 1-15 lambda-cyhalothrin M.95 1-15 alpha-cypermethrin
M.56 1-16 lambda-cyhalothrin M.96 1-16 alpha-cypermethrin
M.57 1-17 lambda-cyhalothrin M.97 1-17 alpha-cypermethrin
M.58 1-18 lambda-cyhalothrin M.98 1-18 alpha-cypermethrin
M.59 1-19 lambda-cyhalothrin M.99 1-19 alpha-cypermethrin
M.60 I-20 lambda-cyhalothrin M.100 I-20 alpha-cypermethrin
M.61 1-21 lambda-cyhalothrin M.101 1-21 alpha-cypermethrin
M.62 I-22 lambda-cyhalothrin M.102 I-22 alpha-cypermethrin
M.63 I-23 lambda-cyhalothrin M.103 I-23 alpha-cypermethrin
M.64 I-24 lambda-cyhalothrin M.104 I-24 alpha-cypermethrin
M.65 I-25 lambda-cyhalothrin M.105 I-25 alpha-cypermethrin
M.66 I-26 lambda-cyhalothrin M.106 I-26 alpha-cypermethrin
M.67 I-27 lambda-cyhalothrin M.107 I-27 alpha-cypermethrin
M.68 I-28 lambda-cyhalothrin M.108 I-28 alpha-cypermethrin
M.69 I-29 lambda-cyhalothrin M.109 I-29 alpha-cypermethrin
M.70 I-30 lambda-cyhalothrin M.1 10 I-30 alpha-cypermethrin
M.71 1-31 lambda-cyhalothrin M.1 1 1 1-31 alpha-cypermethrin
M.72 I-32 lambda-cyhalothrin M.1 12 I-32 alpha-cypermethrin
M.73 I-33 lambda-cyhalothrin M.1 13 I-33 alpha-cypermethrin
M.74 I-34 lambda-cyhalothrin M.1 14 I-34 alpha-cypermethrin
M.75 I-35 lambda-cyhalothrin M.1 15 I-35 alpha-cypermethrin
M.76 I-36 lambda-cyhalothrin M.1 16 I-36 alpha-cypermethrin
M.77 I-37 lambda-cyhalothrin M.1 17 I-37 alpha-cypermethrin
M.78 I-38 lambda-cyhalothrin M.1 18 I-38 alpha-cypermethrin
M.79 I-39 lambda-cyhalothrin M.1 19 I-39 alpha-cypermethrin
M.80 I-40 lambda-cyhalothrin M.120 I-40 alpha-cypermethrin
M.81 1-1 alpha-cypermethrin M.121 1-1 imidacloprid
M.82 I-2 alpha-cypermethrin M.122 I-2 imidacloprid Mixture Comp. I Compound II Mixture Comp. I Compound II
M.123 I-3 imidacloprid M.163 I-3 thiacloprid
M.124 I-4 imidacloprid M.164 I-4 thiacloprid
M.125 I-5 imidacloprid M.165 I-5 thiacloprid
M.126 I-6 imidacloprid M.166 I-6 thiacloprid
M.127 I-7 imidacloprid M.167 I-7 thiacloprid
M.128 I-8 imidacloprid M.168 I-8 thiacloprid
M.129 I-9 imidacloprid M.169 I-9 thiacloprid
M.130 1-10 imidacloprid M.170 1-10 thiacloprid
M.131 1-1 1 imidacloprid M.171 1-1 1 thiacloprid
M.132 1-12 imidacloprid M.172 1-12 thiacloprid
M.133 1-13 imidacloprid M.173 1-13 thiacloprid
M.134 1-14 imidacloprid M.174 1-14 thiacloprid
M.135 1-15 imidacloprid M.175 1-15 thiacloprid
M.136 1-16 imidacloprid M.176 1-16 thiacloprid
M.137 1-17 imidacloprid M.177 1-17 thiacloprid
M.138 1-18 imidacloprid M.178 1-18 thiacloprid
M.139 1-19 imidacloprid M.179 1-19 thiacloprid
M.140 I-20 imidacloprid M.180 I-20 thiacloprid
M.141 1-21 imidacloprid M.181 1-21 thiacloprid
M.142 I-22 imidacloprid M.182 I-22 thiacloprid
M.143 I-23 imidacloprid M.183 I-23 thiacloprid
M.144 I-24 imidacloprid M.184 I-24 thiacloprid
M.145 I-25 imidacloprid M.185 I-25 thiacloprid
M.146 I-26 imidacloprid M.186 I-26 thiacloprid
M.147 I-27 imidacloprid M.187 I-27 thiacloprid
M.148 I-28 imidacloprid M.188 I-28 thiacloprid
M.149 I-29 imidacloprid M.189 I-29 thiacloprid
M.150 I-30 imidacloprid M.190 I-30 thiacloprid
M.151 1-31 imidacloprid M.191 1-31 thiacloprid
M.152 I-32 imidacloprid M.192 I-32 thiacloprid
M.153 I-33 imidacloprid M.193 I-33 thiacloprid
M.154 I-34 imidacloprid M.194 I-34 thiacloprid
M.155 I-35 imidacloprid M.195 I-35 thiacloprid
M.156 I-36 imidacloprid M.196 I-36 thiacloprid
M.157 I-37 imidacloprid M.197 I-37 thiacloprid
M.158 I-38 imidacloprid M.198 I-38 thiacloprid
M.159 I-39 imidacloprid M.199 I-39 thiacloprid
M.160 I-40 imidacloprid M.200 I-40 thiacloprid
M.161 1-1 thiacloprid M.201 1-1 pymetrozine
M.162 I-2 thiacloprid M.202 I-2 pymetrozine Mixture Comp. I Compound II Mixture Comp. I Compound II
M.203 I-3 pymetrozine M.243 I-3 Flonicamid
M.204 I-4 pymetrozine M.244 I-4 Flonicamid
M.205 I-5 pymetrozine M.245 I-5 Flonicamid
M.206 I-6 pymetrozine M.246 I-6 Flonicamid
M.207 I-7 pymetrozine M.247 I-7 Flonicamid
M.208 I-8 pymetrozine M.248 I-8 Flonicamid
M.209 I-9 pymetrozine M.249 I-9 Flonicamid
M.210 1-10 pymetrozine M.250 1-10 Flonicamid
M.21 1 1-1 1 pymetrozine M.251 1-1 1 Flonicamid
M.212 1-12 pymetrozine M.252 1-12 Flonicamid
M.213 1-13 pymetrozine M.253 1-13 Flonicamid
M.214 1-14 pymetrozine M.254 1-14 Flonicamid
M.215 1-15 pymetrozine M.255 1-15 Flonicamid
M.216 1-16 pymetrozine M.256 1-16 Flonicamid
M.217 1-17 pymetrozine M.257 1-17 Flonicamid
M.218 1-18 pymetrozine M.258 1-18 Flonicamid
M.219 1-19 pymetrozine M.259 1-19 Flonicamid
M.220 I-20 pymetrozine M.260 I-20 Flonicamid
M.221 1-21 pymetrozine M.261 1-21 Flonicamid
M.222 I-22 pymetrozine M.262 I-22 Flonicamid
M.223 I-23 pymetrozine M.263 I-23 Flonicamid
M.224 I-24 pymetrozine M.264 I-24 Flonicamid
M.225 I-25 pymetrozine M.265 I-25 Flonicamid
M.226 I-26 pymetrozine M.266 I-26 Flonicamid
M.227 I-27 pymetrozine M.267 I-27 Flonicamid
M.228 I-28 pymetrozine M.268 I-28 Flonicamid
M.229 I-29 pymetrozine M.269 I-29 Flonicamid
M.230 I-30 pymetrozine M.270 I-30 Flonicamid
M.231 1-31 pymetrozine M.271 1-31 Flonicamid
M.232 I-32 pymetrozine M.272 I-32 Flonicamid
M.233 I-33 pymetrozine M.273 I-33 Flonicamid
M.234 I-34 pymetrozine M.274 I-34 Flonicamid
M.235 I-35 pymetrozine M.275 I-35 Flonicamid
M.236 I-36 pymetrozine M.276 I-36 Flonicamid
M.237 I-37 pymetrozine M.277 I-37 Flonicamid
M.238 I-38 pymetrozine M.278 I-38 Flonicamid
M.239 I-39 pymetrozine M.279 I-39 Flonicamid
M.240 I-40 pymetrozine M.280 I-40 Flonicamid
M.241 1-1 Flonicamid M.281 1-1 Spirotetramat
M.242 I-2 Flonicamid M.282 I-2 Spirotetramat Mixture Comp. I Compound II Mixture Comp. I Compound II
M.283 I-3 Spirotetramat M.323 I-3 II-M.X.2
M.284 I-4 Spirotetramat M.324 I-4 II-M.X.2
M.285 I-5 Spirotetramat M.325 I-5 II-M.X.2
M.286 I-6 Spirotetramat M.326 I-6 II-M.X.2
M.287 I-7 Spirotetramat M.327 I-7 II-M.X.2
M.288 I-8 Spirotetramat M.328 I-8 II-M.X.2
M.289 I-9 Spirotetramat M.329 I-9 II-M.X.2
M.290 1-10 Spirotetramat M.330 1-10 II-M.X.2
M.291 1-1 1 Spirotetramat M.331 1-1 1 II-M.X.2
M.292 1-12 Spirotetramat M.332 1-12 II-M.X.2
M.293 1-13 Spirotetramat M.333 1-13 II-M.X.2
M.294 1-14 Spirotetramat M.334 1-14 II-M.X.2
M.295 1-15 Spirotetramat M.335 1-15 II-M.X.2
M.296 1-16 Spirotetramat M.336 1-16 II-M.X.2
M.297 1-17 Spirotetramat M.337 1-17 II-M.X.2
M.298 1-18 Spirotetramat M.338 1-18 II-M.X.2
M.299 1-19 Spirotetramat M.339 1-19 II-M.X.2
M.300 I-20 Spirotetramat M.340 I-20 II-M.X.2
M.301 1-21 Spirotetramat M.341 1-21 II-M.X.2
M.302 I-22 Spirotetramat M.342 I-22 II-M.X.2
M.303 I-23 Spirotetramat M.343 I-23 II-M.X.2
M.304 I-24 Spirotetramat M.344 I-24 II-M.X.2
M.305 I-25 Spirotetramat M.345 I-25 II-M.X.2
M.306 I-26 Spirotetramat M.346 I-26 II-M.X.2
M.307 I-27 Spirotetramat M.347 I-27 II-M.X.2
M.308 I-28 Spirotetramat M.348 I-28 II-M.X.2
M.309 I-29 Spirotetramat M.349 I-29 II-M.X.2
M.310 I-30 Spirotetramat M.350 I-30 II-M.X.2
M.31 1 1-31 Spirotetramat M.351 1-31 II-M.X.2
M.312 I-32 Spirotetramat M.352 I-32 II-M.X.2
M.313 I-33 Spirotetramat M.353 I-33 II-M.X.2
M.314 I-34 Spirotetramat M.354 I-34 II-M.X.2
M.315 I-35 Spirotetramat M.355 I-35 II-M.X.2
M.316 I-36 Spirotetramat M.356 I-36 II-M.X.2
M.317 I-37 Spirotetramat M.357 I-37 II-M.X.2
M.318 I-38 Spirotetramat M.358 I-38 II-M.X.2
M.319 I-39 Spirotetramat M.359 I-39 II-M.X.2
M.320 I-40 Spirotetramat M.360 I-40 II-M.X.2
M.321 1-1 II-M.X.2
M.322 I-2 II-M.X.2 II-M.X.2: cyclopropaneacetic acid, 1 ,1 '-[(3S,4R,4aR,6S,6aS,12R,12aS,12bS)-4-[[(2- cyclopropylacetyl)oxy]methyl]-1 ,3,4,4a, 5,6,6a, 12,12a, 12b-decahydro-12-hydroxy-4,6a, 12b- trimethyl-1 1 -oxo-9-(3-pyridinyl)-2H,1 1 H-naphtho[2,1 -b]pyrano[3,4-e]pyran-3,6-diyl] ester,
In another embodiment of the invention, the compound (II) pesticides, together with which the compounds of formula I may be used according to the purpose of the present invention, and with which potential synergistic effects with regard to the method of uses might be produced, are selected from from group F consisting of
F.I) Respiration Inhibitors
F.1-1 ) Inhibitors of complex III at Qo site selected from the group of strobilurins including azoxystrobin, coumethoxystrobin, coumoxystrobin, dimoxystrobin, enestroburin, fluoxastrobin, kresoxim-methyl, mandestrobin, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyribencarb, triclopyricarb/chlorodincarb, trifloxystrobin, 2-[2-(2,5-dimethyl- phenoxymethyl)-phenyl]-3-methoxy-acrylic acid methyl ester and 2 (2-(3-(2,6- dichlorophenyl)-1 -methyl-allylideneaminooxymethyl)-phenyl)-2-methoxyimino- N methyl-acetamide;
oxazolidinediones and imidazolinones selected from famoxadone, fen- amidone;
F.I-2) Inhibitors of complex II selected from the group of carboxamides,
including carboxanilides selected from benodanil, benzovindiflupyr, bixafen, boscalid, carboxin, fenfuram, fenhexamid, fluopyram, flutolanil, furametpyr, isofetamid, isopyrazam, isotianil, mepronil, oxycarboxin, penflufen, penthiopy- rad, sedaxane, tecloftalam, thifluzamide, tiadinil, 2-amino-4 methyl-thiazole-5- carboxanilide, N-(3',4',5' trifluorobiphenyl-2 yl)-3-difluoromethyl-1 -methyl-1 H- pyrazole-4 carboxamide (fluxapyroxad), N-(4'-trifluoromethylthiobiphenyl-2-yl)- 3 difluoromethyl-1 -methyl-1 H pyrazole-4-carboxamide and N-(2-(1 ,3,3- trimethyl-butyl)-phenyl)-1 ,3-dimethyl-5 fluoro-1 H-pyrazole-4 carboxamide, 3- (difluoromethyl)-1 -methyl-N-(1 ,1 ,3-trimethyhindan-4-yl)pyrazole-4- carboxamide, 3-(trifluoromethyl)-1 -methyl-N-(1 , 1 ,3-trimethyhindan-4- yl)pyrazole-4-carboxamide, 1 ,3-dimethyl-N-(1 ,1 ,3-trimethylindan-4- y pynazole^-carboxamide, S-itrifluoromet Hyl)-! ,5-dimethyl-N-(1 ,1 ,3- trimethylindan-4-yl)^pyrazole-4-carboxamide, S-idifluoro-'methyl)-! ,5- dimethyl-N-(1 ,1 ,3-trimethylindan-4 yl)pyrazole-4-carboxamide, 3- (trifluorometh-'yl)-l ,5-dimethyl-N-(1 ,1.S-trimethylindan^-yl^pyrazole^- carboxamide, 1 ,3,5-tr methyl-N-(1 ,1 ,3-trimethylindan-4-yl)pyrazole-4- carboxamide, N-(7-fluoro-1 ,1 ,3-trimethyl-indan-4-yl)-1 ,3-dimethyl-pyrazole-4- carbox-'amide, N-[2-(2,4-dichlorophenyl)-2-methoxy-1 -methyl-ethyl]-3- (difluoromethyl)-1 -methyl-pyrazole-4-carboxamide;
F.I-3) Inhibitors of complex III at Qi site including cyazofamid, amisulbrom;
[(3S,6S,7R,8R)-8-benzyl-3-[(3-acetoxy-4-methoxy-pyridine-2-carbonyl)amino]- 6-methyl-4,9-dioxo-1 ,5-dioxonan-7-yl] 2-methylpropanoate, [(3S,6S,7R,8R)-8- benzyl-3-[[3-(acetoxymethoxy)-4-methoxy-pyridine-2-carbonyl]amino]-6- methyl-4,9-dioxo-1 ,5-dioxonan-7-yl] 2-methylpropanoate, [(3S,6S,7R,8R)-8- benzyl-3-[(3-isobutoxycarbonyloxy-4-methoxy-pyridine-2-carbonyl)amino]-6- methyl-4,9-dioxo-1 ,5-dioxonan-7-yl] 2-methylpropanoate, [(3S,6S,7R,8R)-8- benzyl-3-[[3-(1 ,3-benzodioxol-5-ylmethoxy)-4-methoxy-pyridine-2-car- bonyl]amino]-6-methyl-4,9-dioxo-1 ,5-dioxonan-7-yl] 2-methylpropanoate, 3S,6S,7/?,8R)-3-[[(3-hydroxy-4-methoxy-2-pyridinyl)carbonyl]amino]-6-methyl- 4,9-dioxo-8-(phenylmethyl)-1 ,5-dioxonan-7-yl 2-methylpropanoate; F.I-4) Other respiration inhibitors (complex I uncouplers), including diflumetorim;
(5,8-difluoroquinazolin-4-yl)-{2-[2-fluoro-4-(4-trifluoromethylpyridin-2-yloxy)- phenyl]-ethyl}-amine; tecnazen; ametoctradin; silthiofam;
and including nitrophenyl derivates selected from binapacryl, dinobuton, di- nocap, fluazinam, ferimzone; nitrthal-isopropyl,
and including organometal compounds selected from fentin salts, including fentin-acetate, fentin chloride or fentin hydroxide;
F.ll) Sterol biosynthesis inhibitors (SBI fungicides)
F.II-1 ) C14 demethylase inhibitors,
including triazoles selected from azaconazole, bitertanol, bromuconazole, cy- proconazole, difenoconazole, diniconazole, diniconazole-M, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imiben- conazole, ipconazole, metconazole, myclobutanil, paclobutrazole, pen- conazole, propiconazole, prothioconazole, simeconazole, tebuconazole, tetra- conazole, triadimefon, triadimenol, triticonazole, uniconazole, 1 -[re/-(2S;3R)-3- (2-chlorophenyl)-2-(2,4-difluorophenyl)-oxiranylmethyl]-5-thiocyanato-1 H- [1 ,2,4]triazole, 2-[re/-(2S;3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)- oxiranylmethyl]-2H-[1 ,2,4]triazole-3-thiol, 2-[2-chloro-4-(4- chlorophenoxy)phenyl]-1 -(1 ,2,4-triazol-1 -yl)pentan-2-ol, 1 -[4-(4- chlorophenoxy)-2-(trifluoromethyl)phenyl]-1 -cyclopropyl-2-(1 ,2,4-triazol-1 - yl)ethanol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1 -(1 ,2,4-triazol-1 - yl)butan-2-ol, 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1 -(1 ,2,4-triazol-1 - yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-3-methyl-1 - (1 ,2,4-triazol-1 -yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]- 1 -(1 ,2,4-triazol-1 -yl)propan-2-ol, 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-3- methyl-1 -(1 ,2,4-triazol-1 -yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2- (trifluoromethyl)phenyl]-1 -(1 ,2,4-triazol-1 -yl)pentan-2-ol, 2-[4-(4- fluorophenoxy)-2-(trifluoromethyl)phenyl]-1 -(1 ,2,4-triazol-1 -yl)propan-2-ol; and including imidazoles selected from imazalil, pefurazoate, oxpoconazole, prochloraz, triflumizole;
and including pyrimidines, pyridines and piperazines selected from fenarimol, nuarimol, pyrifenox, triforine, [3-(4-chloro-2-fluoro-phenyl)-5-(2,4- difluorophenyl)isoxazol-4-yl]-(3-pyridyl)methanol; F.I 1-2) Delta14-reductase inhitors,
including morpholines selected from aldimorph, dodemorph, dodemorph- acetate, fenpropimorph, tridemorph;
and including piperidines selected from fenpropidin, piperalin;
and including spiroketalamines selected from spiroxamine;
F.II-3) Inhibitors of 3-keto reductase including hydroxyanilides selected from fenhex- amid;
F.lll) Nucleic acid synthesis inhibitors
F.III-1 ) RNA, DNA synthesis inhibitors,
including phenylamides or acyl amino acid fungicides selected from benalaxyl, benalaxyl-M, kiralaxyl, metalaxyl, metalaxyl-M (mefenoxam), ofurace, oxadix- yi;
and including isoxazoles and iosothiazolones selected from hymexazole, oc- thilinone;
F.III-2) DNA topisomerase inhibitors selected from oxolinic acid;
F.III-3) Nucleotide metabolism inhibitors including hydroxy (2-amino)-pyrimidines selected from bupirimate;
F.IV) Inhibitors of cell division and or cytoskeleton
F.IV-1 ) Tubulin inhibitors:
including benzimidazoles and thiophanates selected from benomyl, car- bendazim, fuberidazole, thiabendazole, thiophanate-methyl;
and including triazolopyrimidines selected from 5-chloro-7 (4-methylpiperidin- 1 -yl)-6-(2,4,6-trifluorophenyl)-[1 ,2,4]triazolo[1 ,5 a]pyrimidine
F.IV-2) Other cell division inhibitors
including benzamides and phenyl acetamides selected from diethofencarb, ethaboxam, pencycuron, fluopicolide, zoxamide;
F.IV-3) Actin inhibitors including benzophenones selected from metrafenone; pyrio- fenone;
F.V) Inhibitors of amino acid and protein synthesis
F.V-1 ) Methionine synthesis inhibitors including anilino-pyrimidines selected from cy- prodinil, mepanipyrim, nitrapyrin, pyrimethanil;
F.V-2) Protein synthesis inhibitors including antibiotics selected from blasticidin-S, kasugamycin, kasugamycin hydrochloride-hydrate, mildiomycin, streptomycin, oxytetracyclin, polyoxine, validamycin A;
F.VI) Signal transduction inhibitors
F.VI-1 ) MAP / Histidine kinase inhibitors including dicarboximides selected from
fluoroimid, iprodione, procymidone, vinclozolin;
and including phenylpyrroles selected from fenpiclonil, fludioxonil; F.VI-2) G protein inhibitors including quinolines selected from quinoxyfen;
F.VII) Lipid and membrane synthesis inhibitors
F.VI 1-1 ) Phospholipid biosynthesis inhibitors including organophosphorus compounds selected from edifenphos, iprobenfos, pyrazophos;
and including dithiolanes selected from isoprothiolane; F.VII-2) Lipid peroxidation
including aromatic hydrocarbons selected from dicloran, quintozene, tec- nazene, tolclofos-methyl, biphenyl, chloroneb, etridiazole;
F.VII-3) Carboxyl acid amides (CAA fungicides)
including cinnamic or mandelic acid amides selected from dimethomorph, flumorph, mandiproamid, pyrimorph;
and including valinamide carbamates selected from benthiavalicarb, iprovali- carb, pyribencarb, valifenalate and N-(1 -(1 -(4-cyano-phenyl)ethanesulfonyl)- but-2-yl) carbamic acid-(4-fluorophenyl) ester;
F.VII-4) Compounds affecting cell membrane permeability and fatty acides including carbamates selected from propamocarb, propamocarb-hydrochlorid; F.VII-5) fatty acid amide hydrolase inhibitors: 1 -[4-[4-[5-(2,6-difluorophenyl)-4,5- dihydro-3 isoxazolyl]-2-thiazolyl]-1 -piperidinyl]-2-[5-methyl-3-(trifluoromethyl)-
1 H-pyrazol-1 yl]ethanone;
F.VIII) Inhibitors with Multi Site Action
F.VIII-1 ) Inorganic active substances selected from Bordeaux mixture, copper acetate, copper hydroxide, copper oxychloride, basic copper sulfate, sulfur; F.VIII-2) Thio- and dithiocarbamates selected from ferbam, mancozeb, maneb, metam, methasulphocarb, metiram, propineb, thiram, zineb, ziram;
F.VIII-3) Organochlorine compounds including phthalimides, sulfamides, chloronitriles selected from anilazine, chlorothalonil, captafol, captan, folpet, dichlofluanid, dichlorophen, flusulfamide, hexachlorobenzene, pentachlorphenole and its salts, phthalide, tolylfluanid, N-(4-chloro-2-nitro-phenyl)-N-ethyl-4-methyl- benzenesulfonamide;
F.VIII-4) Guanidines selected from guanidine, dodine, dodine free base, guazatine, guazatine-acetate, iminoctadine, iminoctadine-triacetate, iminoctadine- tris(albesilate), dithianon, 2,6-dimethyl-1 H,5H-[1 ,4]dithiino[2,3-c:5,6- c']dipyrrole-1 ,3,5,7(2H,6H)-tetraone;
F.VIII-5) Ahtraquinones selected from dithianon;
F.IX) Cell wall synthesis inhibitors
F.IX-1 ) Inhibitors of glucan synthesis selected from validamycin, polyoxin B;
F.IX-2) Melanin synthesis inhibitors selected from pyroquilon, tricyclazole, carpropa- mide, dicyclomet, fenoxanil;
F.X) Plant defence inducers
F.X-1 ) Salicylic acid pathway selected from acibenzolar-S-methyl;
F.X-2) Others selected from probenazole, isotianil, tiadinil, prohexadione-calcium;
including phosphonates selected from fosetyl, fosetyl-aluminum, phosphorous acid and its salts;
F.XI) Unknown mode of action:
bronopol, chinomethionat, cyflufenamid, cymoxanil, dazomet, debacarb, di- clomezine, difenzoquat, difenzoquat-methylsulfate, diphenylamin, fenpyraza- mine, flumetover, flusulfamide, flutianil, methasulfocarb, , nitrapyrin, nitrothal- isopropyl, oxathiapiprolin, 2-[3,5-bis(difluoromethyl)-1 H-pyrazol-1 -yl]-1 -[4-(4- {5-[2-(prop-2-yn-1 -yloxy)phenyl]-4,5-dihydro-1 ,2-oxazol-3-yl}-1 ,3-thiazol-2- yl)piperidin-1 -yl]ethanone, 2-[3,5-bis(difluoromethyl)-1 H-pyrazol-1 -yl]-1 -[4-(4- {5-[2-fluoro-6-(prop-2-yn-1 -yl-oxy)phenyl]-4,5-dihydro-1 ,2-oxazol-3-yl}-1 ,3- th azol-2-yl)piperidin-1 -yl]ethanone, 2 [3,5-bis(difluoromethyl)-1 H-pyrazol-1 - yl]-1 -[4-(4-{5-[2-chloro-6-(prop-2-yn-1 -yl-oxy)phenyl]-4,5-dihydro-1 ,2-oxazol-3- yl}-1 ,3-thiazol-2 yl)piperidin-1 -yl]ethanone, oxin-copper, proquinazid, tebuflo- quin, tecloftalam, triazoxide, 2-butoxy-6-iodo-3-propylchromen-4-one, N- (cyclopropylmethoxyimino-(6-difluoro-methoxy-2,3-difluoro-phenyl)-methyl)-2- phenyl acetamide, N'-(4-(4-chloro-3-trifluoromethyl-phenoxy)-2,5-dimethyl- phenyl)-N-ethyl-N methyl formamidine, N' (4-(4-fluoro-3-trifluoromethyl- phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-N-methyl formamidine, N'-(2-methyl-5- trifluoromethyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-N-ethyl-N-methyl formamidine, N'-(5-difluoromethyl-2 methyl-4-(3-trimethylsilanyl-propoxy)- phenyl)-N-ethyl-N-methyl formamidine, 2-{1 -[2-(5-methyl-3-trifluoromethyl- pyrazole-1 -yl)-acetyl]-piperidin-4-yl}-thiazole-4-carboxylic acid methyl-(1 ,2,3,4- tetrahydro-naphthalen-1 -yl)-amide, 2-{1 -[2-(5-methyl-3-trifluoromethyl- pyrazole-1 -yl)-acetyl]-piperidin-4-yl}-thiazole-4-carboxylic acid methyl-(R)- 1 ,2,3,4-tetrahydro-naphthalen-1 -yl-amide, methoxy-acetic acid 6-tert-butyl-8- fluoro-2,3-dimethyl-quinolin-4-yl ester and N-Methyl-2-{1 -[(5-methyl-3-trifluoro- methyl-1 H-pyrazol-1 -yl)-acetyl]-piperidin-4-yl}-N-[(1 R)-1 ,2,3,4- tetrahydronaphthalen-1 -yl]-4-thiazolecarboxamide, 3-[5-(4-chloro-phenyl)-2,3- dimethyl-isoxazolidin-3 yl]-pyridine, pyrisoxazole, 5-amino-2-isopropyl-3-oxo- 4-ortho-tolyl-2,3-dihydro-pyrazole-1 carbothioic acid S-allyl ester, N-(6- methoxy-pyridin-3-yl) cyclopropanecarboxylic acid amide, 5-chloro-1 (4,6- dimethoxy-pyrimidin-2-yl)-2-methyl-1 H-benzoimidazole, 2-(4-chloro-phenyl)-N- [4-(3,4-dimethoxy-phenyl)-isoxazol-5-yl]-2-prop-2-ynyloxy-acetamide, ethyl (Z) 3 amino-2-cyano-3-phenyl-prop-2-enoate , tert-butyl N-[6-[[(Z)-[(1 - methyltetrazol-5-yl)-phenyl-methylene]amino]oxymethyl]-2-pyridyl]carbamate , pentyl N-[6-[[(Z)-[(1 -methyltetrazol-5-yl)-phenyl-methylene]amino]oxymethyl]- 2-pyridyl]carbamate , 2-[2-[(7,8-difluoro-2-methyl-3-quinolyl)oxy]-6-fluoro- phenyl]propan-2-ol, 2-[2-fluoro-6-[(8-fluoro-2-methyl-3- quinolyl)oxy]phenyl]propan-2-ol , 3-(5-fluoro-3,3,4,4-tetramethyl-3,4- dihydroiso-'quinolin-l -y quinoline, 3-(4,4-difluoro-3,3-dimethyl-3,4- dihydroisoquinolin-l -y^quinoline, 3-(4,4,5-trifluoro-3,3-dimethyl-3,4- dihydroisoquinolin-1 -yl)quinoline;
F.XII) Growth regulators:
abscisic acid, amidochlor, ancymidol, 6-benzylaminopurine, brassinolide, bu- tralin, chlormequat (chlormequat chloride), choline chloride, cyclanilide, da- minozide, dikegulac, dimethipin, 2,6-dimethylpuridine, ethephon, flumetralin, flurprimidol, fluthiacet, forchlorfenuron, gibberellic acid, inabenfide, indole-3- acetic acid , maleic hydrazide, mefluidide, mepiquat (mepiquat chloride), naphthaleneacetic acid, N 6 benzyladenine, paclobutrazol, prohexadione (prohexadione-calcium), prohydrojasmon, thidiazuron, triapenthenol, tributyl phosphorotrithioate, 2,3,5 tri iodobenzoic acid , trinexapac-ethyl and unicona- zole;
F.XIII) Biopesticides
F.XIII-1 ) Microbial pesticides with fungicidal, bactericidal, viricidal and/or plant defense acti-vator activity: Ampelomyces quisqualis, Aspergillus flavus, Aureobasidium pullulans, Bacillus amyloliquefaciens, B. mojavensis, B. pumilus, B. simplex, B. solisalsi, B. subtilis, B. subtilis var. amyloliquefaciens, Candida oleophila, C. saitoana, Clavibacter michiganensis (bacterio-phages), Coniothyrium mini- tans, Cryphonectria parasitica, Cryptococcus albidus, Fusarium oxysporum, Clonostachys rosea f. catenulate (also named Gliocladium catenulatum), Glio- cladium roseum, Met-'schnikowia fructicola, Microdochium dimerum, Paeni- bacillus poly-myxa, Pantoea agglomerans, Phlebiopsis gigantea, Pseudozyma flocculosa, Pythium oli-gandrum, Sphaerodes mycoparasitica, Streptomyces lydicus, S. violaceusniger, Talaromy-ces flavus, Trichoderma asperellum, T. atroviride, T. fertile, T. gamsii, T. harmatum; mixture of T. harzia-'num and T. viride; mixture of T. polysporum and T. harzianum; T. stromaticum, T. virens (also named Gliocladium virens), T. viride, Typhula phacorrhiza, Ulocladium oudema, U. oudemansii, Verticillium dahlia, zucchini yellow mosaic virus (avir- ulent strain);
F.XIII-2) Biochemical pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: chitosan (hydrolysate), jasmonic acid or salts or derivatives thereof, lami-narin, Menhaden fish oil, natamycin, Plum pox virus coat protein, Reynoutria sachlinensis ex-tract, salicylic acid, tea tree oil;
F.XIII-3) Microbial pesticides with plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity: Azospirillum amazonense A. brasilense, A. lipofer-um, A. irakense, A. halopraeferens, Bradyrhizobium sp., B. japonicum, Glomus intraradices, Mesorhizobium sp., Paenibacillus alvei, Penicillium bilaiae, Rhizobium leguminosarum bv. phaseolii, R. I. trifolii, R. I. bv. viciae, Sinorhizobium meliloti;
F.XIII-4) Biochemical pesticides with plant stress reducing, plant growth regulator and/or plant yield enhancing activity: abscisic acid, aluminium silicate (kaolin), 3-decen-2-one, ho-mobrassinlide, humates, lysophosphatidyl ethano- lamine, polymeric polyhydroxy acid, Ascophyllum nodosum (Norwegian kelp, Brown kelp) extract and Ecklonia maxima (kelp) extract.
The commercially available compounds II of the group F listed above may be found in The Pesticide Manual, 15th Edition, C. D. S. Tomlin, British Crop Protection Council (201 1 ) among other publications. Their preparation and their activity against harmful fungi is known (cf.:
http://www.alanwood.net/pesticides/); these substances are commercially available. The compounds described by lUPAC nomenclature, their preparation and their fungicidal activity are also known (cf. Can. J. Plant Sci. 48(6), 587-94, 1968; EP A 141 317; EP-A 152 031 ; EP-A 226 917; EP A 243 970; EP A 256 503; EP-A 428 941 ; EP-A 532 022; EP-A 1 028 125; EP-A 1 035 122; EP A 1 201 648; EP A 1 122 244, JP 2002316902; DE 19650197; DE 10021412; DE 102005009458; US 3,296,272; US 3,325,503; WO 98/46608; WO 99/14187; WO 99/24413; WO 99/27783; WO 00/29404; WO 00/46148; WO 00/65913; WO 01/54501 ; WO 01/56358; WO 02/22583; WO 02/40431 ; WO 03/10149; WO 03/1 1853; WO 03/14103; WO 03/16286; WO 03/53145; WO 03/61388; WO 03/66609; WO 03/74491 ; WO 04/49804; WO 04/83193; WO 05/120234; WO 05/123689; WO 05/123690; WO 05/63721 ; WO 05/87772; WO 05/87773; WO 06/15866; WO 06/87325; WO 06/87343; WO 07/82098; WO 07/90624, WO 1 1/028657).
The biopesticides of group F .XI 11 are disclosed above in the paragraphs about biopesticides from group ll-M.Y
In a particularly preferred embodiment of the invention, the compound (II) pesticides, together with which the compounds of formula I may be used according to the purpose of the present invention, and with which potential synergistic effects with regard to the method of uses might be produced, are plant activators.
Plant activators are substances that protect plants by activating their defence mechanisms against pests or diseases. Plant activators suitable for use in the methods of the present invention include, for example, acibenzolar, acibenzolar-S-methyl and probenazole. Mixtures of plant activators can also be used in the present invention. In preferred embodiments of the invention, the plant activator is acibenzolar-S-methyl.
Accordingly, in a first preferred aspect, the present invention provides a method of reducing insect-vectored viral infection in a plant by application of a combination of a compound of formula (I), (IA), (IB), (IC) or (ID), and acibenzolar-S-methyl. In a preferred embodiment, the present invention provides a method of reducing insect-vectored viral infection in a plant by application of a combination of a compound selected from Tables 1 to 60 or Table C, and acibenzolar-S- methyl. Therefore, in one embodiment, the invention relates to the uses according to the invention, especially the use for reducing insect-vectored viral infection in a plant, wherein the compound of formula I as defined herein is combined with one or more other pesticidally active compound(s) II selected from insecticides, fungicides and plant activators. The compound of formula I, or a combination comprising it, may be applied to the plant, plant propagation material or locus thereof, or any combination thereof. Accordingly, the present invention provides methods as described herein comprising the application of a compound of formula I, or a combination comprising it to a plant, plant propagation material or locus thereof, or any combination thereof.
In an additional aspect, the present invention provides the use of the pesticidally active compounds of formula (I), (IA), (IB), (IC) or (ID) as defined herein for reducing insect- vectored-viral transmission amongst plants. The invention also provides the method of reducing insect- vectored-viral transmission amongst plants, by application of at least one pesticidally active an- thranilamide compound of formula (I), I), (IA), (IB), (IC) or (ID) as defined herein.
In a further aspect, the present invention provides the use of the compounds of formula (I), (IA), (IB), (IC) or (ID) as defined herein for reducing damage to a plant caused by one or more insect- vectored viral infections, by application of a combination of a pesticidally active compound of formula (I), (II), (III) or (IV) and a plant activator. The invention also provides the method of reducing damage to a plant caused by one or more insect-vectored viral infections, by application of at least one pesticidally active anthranilamide compound of formula (I), I), (IA), (IB), (IC) or (ID) as defined herein.
The invention also comprises pesticidally active anthranilamide compounds of formula (I), (IA), (IB), (IC) or (ID) as defined herein, for use in the methods of the present invention, e.g. the method of reducing insect-vectored viral infection in a plant, or method of reducing insect- vectored-viral transmission amongst plants, or method of reducing damage to a plant caused by one or more insect-vectored viral infections.
The invention also comprises the use of at least one pesticidally active anthranilamide compound of formula (I), (IA), (IB), (IC) or (ID) as defined herein, in the methods of the invention as described herein.
In the uses and methods of the invention, the application may be the simultaneous, separate or sequential application to a plant, plant propagation material or locus thereof.
The methods and uses according to the invention improve the growth of the plants, increase the yield and improve the tolerance of the plants to abiotic stress.
The term "Locus" means the fields on which the plants to be treated are growing, or where the seeds of cultivated plants are sown, or the place where the seed will be placed into the soil. The term "increasing the yield" of a plant means that the yield of a product of the plant is increased by a measurable amount over the yield of the same product of the plant produced under the same conditions, but without the application of the combinations according to the present invention. It is preferred that the yield is increased by at least about 0.5 %, preferably 1 %, more preferably 2 %, yet more preferably 4 % or more. Even more preferred is an increase in yield of at least about 5 %, 10 %, 15 % or 20 % or more.
According to the present invention, 'crop enhancement' means an improvement in plant vigour, an improvement in plant quality and/or improved tolerance to stress factors.
According to the present invention, an 'improvement in plant vigour' means that certain traits are improved qualitatively or quantitatively when compared with the same trait in a control plant which has been grown under the same conditions in the absence of the method of the invention. Such traits include, but are not limited to, early and/or improved germination, improved emergence, the ability to use less seeds, increased root growth, a more developed root system, increased root nodulation, increased shoot growth, increased tillering, stronger tillers, more productive tillers, increased or improved plant stand, less plant verse (lodging), an increase and/or improvement in plant height, an increase in plant weight (fresh or dry), bigger leaf blades, greener leaf colour, increased pigment content, increased photosynthetic activity, earlier flowering, longer panicles, early grain maturity, increased seed, fruit or pod size, increased pod or ear number, increased seed number per pod or ear, increased seed mass, enhanced seed filling, less dead basal leaves, delay of senescence, improved vitality of the plant, increased levels of amino acids in storage tissues and/or less inputs needed (e.g. less fertiliser, water and/or labour needed). A plant with improved vigour may have an increase in any of the aforementioned traits or any combination or two or more of the aforementioned traits.
According to the present invention, an 'improvement in plant quality' means that certain traits are improved qualitatively or quantitatively when compared with the same trait in a control plant which has been grown under the same conditions in the absence of the method of the invention. Such traits include, but are not limited to, improved visual appearance of the plant, reduced ethylene (reduced production and/or inhibition of reception), improved quality of harvested material, e.g. seeds, fruits, leaves, vegetables (such improved quality may manifest as improved visual appearance of the harvested material), improved carbohydrate content (e.g. increased quantities of sugar and/or starch, improved sugar acid ratio, reduction of reducing sugars, increased rate of development of sugar), improved protein content, improved oil content and composition, improved nutritional value, reduction in anti-nutritional compounds, improved organoleptic prop- erties (e.g. improved taste) and/or improved consumer health benefits (e.g. increased levels of vitamins and anti-oxidants)), improved post-harvest characteristics (e.g. enhanced shelf-life and/or storage stability, easier processability, easier extraction of compounds), more homogenous crop development (e.g. synchronised germination, flowering and/or fruiting of plants), and/or improved seed quality (e.g. for use in following seasons). A plant with improved quality may have an increase in any of the aforementioned traits or any combination or two or more of the aforementioned traits.
According to the present invention, an 'improved tolerance to stress factors' means that certain traits are improved qualitatively or quantitatively when compared with the same trait in a control plant which has been grown under the same conditions in the absence of the method of the invention. Such traits include, but are not limited to, an increased tolerance and/or resistance to abiotic stress factors which cause sub-optimal growing conditions such as drought (e.g. any stress which leads to a lack of water content in plants, a lack of water uptake potential or a reduction in the water supply to plants), cold exposure, heat exposure, osmotic stress, UV stress, flooding, increased salinity (e.g. in the soil), increased mineral exposure, ozone exposure, high light exposure and/or limited availability of nutrients (e.g. nitrogen and/or phosphorus nutrients). A plant with improved tolerance to stress factors may have an increase in any of the aforementioned traits or any combination or two or more of the aforementioned traits. In the case of drought and nutrient stress, such improved tolerances may be due to, for example, more efficient uptake, use or retention of water and nutrients.
Any or all of the above crop enhancements may lead to an improved yield by improving e.g. plant physiology, plant growth and development and/or plant architecture. In the context of the present invention 'y e\d' includes, but is not limited to, (i) an increase in biomass production, grain yield, starch content, oil content and/or protein content, which may result from (a) an increase in the amount produced by the plant per se or (b) an improved ability to harvest plant matter, (ii) an improvement in the composition of the harvested material (e.g. improved sugar acid ratios, improved oil composition, increased nutritional value, reduction of anti-nutritional compounds, increased consumer health benefits) and/or (iii) an increased/facilitated ability to harvest the crop, improved processability of the crop and/or better storage stability/shelf life. Increased yield of an agricultural plant means that, where it is possible to take a quantitative measurement, the yield of a product of the respective plant is increased by a measurable amount over the yield of the same product of the plant produced under the same conditions, but without application of the present invention. According to the present invention, it is preferred that the yield be increased by at least.0.5 %, more preferred at least 1 %, even more preferred at least 2 %, still more preferred at least 4 %, preferably 5 % or even more.
Any or all of the above crop enhancements may also lead to an improved utilisation of land, i.e. land which was previously unavailable or sub-optimal for cultivation may become available. For example, plants which show an increased ability to survive in drought conditions, may be able to be cultivated in areas of sub-optimal rainfall, e.g. perhaps on the fringe of a desert or even the desert itself.
The plant, plant propagation material or locus thereof may be treated with a compound of for- mula I, or a combination comprising it, before the material is sown or planted. Alternatively, the plant, plant propagation material or locus thereof may be treated with a compound of formula I, or a combination comprising it, after the material is sown or planted. Additionally, the compound of formula I, or a combination comprising it, may be applied to the previously treated propagation material, either before its planting, and/or at its planting and/or during its growth. Therefore, the invention also comprises a method according to the invention, wherein the plant, plant propagation material, or the locus thereof, is treated before its planting, and/or at its planting and/or during its growth.
In one embodiment, the invention relates to a use or method for reducing insect-vectored viral infection in a plant, which method comprises applying a compound of formula I, by treating the plant, plant propagation material, or the locus thereof, before its planting, and/or at its planting and/or during its growth, wherein the compound of formula I is selected from the compounds 1-1 to I-40 as defined in Table C. More specifically, the compound I is selected from compounds I- 1 1 , 1-16, 1-21 , I-26, 1-31 which are defined in accordance with Table C of the example section. More specifically, the invention relates to a use or method for reducing insect-vectored viral in- fection in a plant, which method comprises applying a compound 1-1 1 by treating the plant, plant propagation material, or the locus thereof, before its planting, and/or at its planting and/or during its growth. Analogously, the invention relates to a use or method as explained, applying specifically compound 1-16. Analogously, the invention relates to a use or method as explained, applying specifically compound 1-16. Analogously, the invention relates to a use or method as ex- plained, applying specifically compound 1-21. Analogously, the invention relates to a use or method as explained, applying specifically compound I-26. Analogously, the invention relates to a use or method as explained, applying specifically compound 1-31 .
Typically, the treatment of the soil with a compound of formula I, or a combination comprising it, whether as a single composition or as individual components, can occur on several occasions during the growth of a plant up to the harvest (i.e. before its planting, and/or at its planting and/or during its growth). The treatment of a single composition and then the individual components in succession is also envisaged during the growth of a plant. The compound of formula I, or a combination comprising it, may be applied to the locus of the plant on one or more occasions during the growth of the plant. It can be applied to the planting site before the seed is sown, during the sowing of the seed, pre-emergence and/or post- emergence. The combination can also be used while the plant is being grown in a green house and the use can be continued after transplantation. The soil may, for example, be treated directly, prior to transplanting, at transplanting or after transplanting.
The use of the compound of formula I, or a combination comprising it, can be via any suitable method, which ensures that the agents penetrate the soil, for example, nursery tray application, in furrow application, soil drenching, soil injection, drip irrigation, application through sprinklers or central pivot, incorporation into soil (broad cast or in band) are such methods.
The rate and frequency of use of the compound of formula I, or a combination comprising it, on the plant may vary within wide limits and depends on the type of use, the specific active agents, the nature of the soil, the method of application (pre- or post-emergence, etc.), the plant to be controlled, the prevailing climatic conditions, and other factors governed by the method of application, the time of application and the target plant.
When employed in plant protection, the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.001 to 1 kg per ha., more preferably from 0.005 to 0.9 kg per ha, in particular from 0.005 to 0.5 kg per ha.
In general, "virucidally effective amount" means the amount of active ingredients or mixture according to the invention needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target virus. The virucidally effective amount can vary for the various mixtures/compositions used in the invention. A virucidally effective amount of the compositions will also vary according to the prevailing conditions such as desired virucidally effect and duration, weather, target species, locus, mode of application, and the like.
In the case of foliar treatment ,the quantity of active ingredient ranges from 0.0001 to 500 g per 100 m2, preferably from 0.001 to 20 g per 100 m2, or from 1 to 100 g per hectare, preferably from 10 to 50 g per hectare, or from 12 to 50 g per hectare, or from 10 to 30 g per hectare, or from 20 to 40 g per hectare, or from 10 to 20 g per hectare, or from 20 to 30 g per hectare, or from 30 to 40 g per hectare, or from 40 to 50 g per hectare.
In treatment of plant propagation materials such as seeds, e. g. by dusting, coating or drenching seed, amounts of active substance of from 0.1 to 1000 g, preferably from 0.1 to 300 g, more preferably from 0.1 to 100 g and most preferably from 0.25 to 100 g, per 100 kilogram of plant propagation material (preferably seed) are generally required.
In the case of soil treatment, the quantity of active ingredient ranges from 0.0001 to 500 g per 100 m2, preferably from 0.001 to 20 g per 100 m2. In the event the compound of formula I, is used in a combination comprising it, and the components of the invention are applied individually, the time elapse between applications of the components to the locus of the plant should be such that on application of the second component the improved plant growth characteristics are demonstrated. The order of the application of the components is not critical. The second component is applied within preferably 14, such as 10, for example, 5, more preferably 4, especially 3, advantageously 1 , days of the first component. Most preferably, the components are applied simultaneously or sequentially.
If the compound of formula I is used in combination with e.g. a plant activator, the rate of appli- cation of the compound of formula I is as described above and is most preferably, 50g to 200g / ha, and the rate of application of plant activator is from 5g to 50g / ha.
When used as seed drenching agent, convenient rates of application are from 10mg to 1 g of active substance per kg of seeds.
The term "plant propagation material" is understood to denote all the generative parts of the plant, such as seeds, which can be used for the multiplication of the latter and vegetative plant material such as cuttings and tubers (for example, potatoes). There may be mentioned, e.g., the seeds (in the strict sense), roots, fruits, tubers, bulbs, rhizomes, parts of plants. Germinated plants and young plants, which are to be transplanted after germination or after emergence from the soil, may also be mentioned. These young plants may be protected before transplantation by a total or partial treatment by immersion.
Further, the present invention is also applicable for use with a plant propagation material, e.g. plant seed that has already undergone a treatment with a pesticide. Even distribution of the combination of the invention and adherence thereof to the seeds is desired during treatment of the propagation material, for example, a seed. The treatment could vary from a thin film of the formulation containing the combination of the invention on a plant propagation material, such as a seed, where the original size and/or shape are recognizable to a thick film (such as a coating or pelleting with many layers of different materials (such as carriers, for example, clays; different formulations, such as of active ingredients; polymers; and colourants) where the original shape and/or size of the seed is no longer recognisable.
Accordingly, in one embodiment the compound of formula I, or a combination comprising it, is adhered to the propagation material, such as a seed. In an alternative embodiment, the compound of formula I, or a combination comprising it, is present on the seed in a pellet form.
Although it is believed that the present method can be applied to a seed in any physiological state, it is preferred that the seed be in a sufficiently durable state that it incurs no damage dur- ing the treatment process. Typically, the seed would be a seed that had been harvested from the field; removed from the plant; and separated from any cob, stalk, outer husk, and surrounding pulp or other non-seed plant material. The seed would preferably also be biologically stable to the extent that the treatment would cause no biological damage to the seed. It is believed that the treatment can be applied to the seed at any time between harvest of the seed and sowing of the seed or during the sowing process (seed directed applications). The seed treatment occurs to an unsown seed, and the term "unsown seed" is meant to include seed at any period between the harvest of the seed and the sowing of the seed in the ground for the purpose of germination and growth of the plant. Treatment to an unsown seed is not meant to include those practices in which the pesticide is applied to the soil but would include any application practice that would target the seed during the sowing/planting process.
The treated plant propagation material of the present invention can be treated in the same manner as conventional plant propagation material. The treated propagation material can be stored, handled, sowed and tilled in the same manner as any other pesticide treated material, such as seeds. Preferably, the treatment occurs before sowing of the seed so that the seed being sown or planted has been pre-treated. The compounds, combinations, compositions, uses and methods of the present invention may be used for the treatment of any plant including, for example, cereals (wheat, barley, rye, oats, maize (including field com, pop corn and sweet corn), rice, sorghum and related crops); beet (sugar beet and fodder beet); leguminous plants (beans, lentils, peas, soybeans); oil plants (rape, mustard, sun-flowers); cucumber plants (marrows, cucumbers, melons); fibre plants (cot- ton, flax, hemp, jute); vegetables (spinach, lettuce, asparagus, cabbages, carrots, eggplants, onions, pepper, toma-toes, potatoes, paprika, okra); plantation crops (bananas, fruit trees, rubber trees, tree nurse-ries), ornamentals (flowers, shrubs, broad-leaved trees and evergreens, such as conifers); as well as other plants such as vines, bushberries (such as blueberries), caneberries, cranberries, peppermint, rhubarb, spearmint, sugar cane and turf grasses includ- ing, for example, cool-season turf grasses (for example, bluegrasses (Poa L), such as Kentucky bluegrass (Poa pratensis L), rough bluegrass (Poa trivialis L), Canada bluegrass (Poa com- pressa L.) and an-nual bluegrass (Poa annua L); bentgrasses (Agrostis L), such as creeping bentgrass (Agrostis palustris Huds.), colonial bentgrass (Agrostis tenius Sibth.), velvet bent- grass (Agrostis canina L.) and redtop (Agrostis alba L); fescues (Festuca L), such as tall fescue (Festuca arundinacea Schreb.), meadow fescue (Festuca elatior L.) and fine fescues such as creeping red fescue (Festuca rubra L), chewings fescue (Festuca rubra var. commutata Gaud.), sheep fescue (Festuca ovina L.) and hard fescue (Festuca longifolia); and ryegrasses (Lolium L), such as perennial ryegrass (Lolium perenne L.) and annual (Italian) ryegrass (Lolium multi- florum Lam.)) and warm-season turf grasses (for example, Bermudagrasses (Cynodon L. C. Rich), including hybrid and common Bermudagrass; Zoysiagrasses (Zoysia Willd.), St. Au- gustinegrass (Steno-taphrum secundatum (Walt.) Kuntze); and centipedegrass (Eremochloa ophiuroides (Munro.) Hack.)).
The compounds, combinations, compositions, uses and methods of the present invention are particularly suitable for the treatment of crops, such as field crops, fruits, vegetables, nuts (par- ticularly pea-nuts), berries, tropical plantations, ornamentals and others, such as wheat, barley, rye, oats, rice, maize, sorghum, beans, lentils, peas, soybeans, rape, mustard, poppy, sugar- and fodder- beet, cotton, flax, hemp, jute, sunflowers, castor oil, groundnuts, potatoes, tobacco, sugar cane, apples, pears, plums, peaches, nectarines, apricots, cherries, oranges, lemons, grapefruit, mandarins, olives vines, hops, almonds, walnuts, hazelnuts, avocado, bananas, tea, coffee, coconut, cocoa, natural rubber plants, oil plants, strawberries, raspberries, blackberries, spin-ach, lettuce, asparagus, cabbages, Chinese kale, carrots, onions, tomatoes, cucumbers, pepper, eggplants, melons, paprika, chilli, roses, chrysanthemums and carnations. The com- pounds, combinations, compositions, uses and methods of the present invention are particularly suitable for the treatment of tomato, tobacco, peanut or barley.
In a further preferred embodiment, the present invention provides a method of reducing damage to a tomato, tobacco, peanut or barley plant caused by one or more insect- vectored viral infec- tions, by application of a compound of formula I.
The plants may also be genetically modified. The present invention may preferably be used in high pH (such as 7 to 8.5) soil types.
Suitable plants also include plants that have been rendered tolerant to herbicides like bro- moxynil or classes of herbicides (such as HPPD inhibitors, ALS inhibitors; for example primisul- furon, prosulfuron and trifloxysulfuron, EPSPS (5-enol-pyrovyl-shikimate-3- phosphate- synthase) inhibitors, GS (glutamine synthetase) inhibitors or PPO (protoporphyrinogen-oxidase) inhibitors) as a result of conventional methods of breeding or genetic engineering. An example of a crop that has been rendered tolerant to imidazolinones (e.g. imazamox) by conventional methods of breeding (mutagenesis) is Clearfield(R) summer rape (Canola). Examples of crops that have been rendered tolerant to herbicides or classes of herbicides by genetic engineering methods include glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady(R), Herculex l(R) and LibertyLink(R). Suitable plants also include plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known from toxin-producing bacteria, especially those of the genus Bacillus.
Suitable plants also include plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising antipathogenic substances having a selective action, such as the so-called "pathogenesis-related proteins" (PRPs, see e.g. European patent application EP 0,392,225). Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from European patent applications EP 0,392,225 and EP 0,353,191 and International patent application WO 95/33818. The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
The compounds, combinations, compositions, uses and methods of the present invention are particularly suitable for the treatment of plants which are susceptible to damage by insect- vectored viral infections transmitted by whitefly, aphid, leafhopper or thrips, such as leaf curl virus, which may be transmitted by whitefly.
Accordingly, in a preferred embodiment, the present invention provides a method or use for reducing insect-vectored viral infection in a plant by application of a compound of formula I, optionally in a combination, preferably in combination with a plant activator, and most preferably in combination with acibenzolar-S-methyl, wherein the plant is susceptible to damage by viral in- fections transmitted by whitefly, aphid, leafhopper or thrips.
In an additional preferred embodiment, the present invention provides a method or use for reducing insect-vectored viral transmission amongst plants by application of a compound of for- mula I, optionally in a combination, preferably in combination with a plant activator, wherein the plant is susceptible to damage by viral infections transmitted by whitefly, aphid, leafhopper or thrips. In a further preferred embodiment, the present invention provides a method or use for reducing damage to a plant caused by one or more viral infections transmitted by whitefly, aphid, leaf- hopper or thrips, by application of a compound of formula I, optionally in a combination, preferably in combination with a plant activator, and most preferably in combination with acibenzolar-S- methyl.
In further additional preferred aspects, the present invention provides for the use of a compound of formula I, optionally in a combination, preferably in combination with a plant activator, and most preferably in combination with acibenzolar-S-methyl, in the methods of the present invention, wherein the plant is susceptible to damage by viral infections transmitted by whitefly, aphid, leafhopper or thrips.
In each and every aspect of the present invention, the compounds, combinations, compositions, uses and methods of the present invention, as defined herein, are particularly suitable for the treatment of tomato, tobacco, peanut and barley, in order to protect them from damage by insect-vectored viral infec-tions transmitted by whitefly, aphid, leafhopper or thrips.
In the treatments or applications of the invention the compounds of the invention (compound of formula (I), (IA), (IB), (IC) or (ID) as described herein) are generally in the form of a formulation containing other customary formulation adjuvants because it allows, for example, less burdensome handling and application.
A variety of formulation types exist: dry flowables (DF), liquid flowables (LF), true liquids (TL), emulsifiable concentrates (EC), suspension concentrates (SC), dusts (D), wettable powders (WP), suspoemulsions (SE), water-dispersible granules (WG) and others, such as encapsulations in polymeric substances. Some are registered for use only by commercial applicators us- ing closed application systems; others are readily available for on-farm use as dusts, slurries, water-soluble bags, or liquid ready-to-apply formulations. Normally however, commercial products are usually formulated as concentrates, where the end user will normally employ dilute formulations. How the components of the invention are to be used will also determine the formulation type, for example, if they are to be used as a seed treatment, then an aqueous composi- tion is preferred.
Examples for composition types and their preparation are:
i) Water-soluble concentrates (SL, LS)
10-60 wt% of a compound I according to the invention and 5-15 wt% wetting agent (e.g. alcohol alkoxylates) are dissolved in water and/or in a water-soluble solvent (e.g. alcohols) up to 100 wt%. The active substance dissolves upon dilution with water.
ii) Dispersible concentrates (DC)
5-25 wt% of a compound I according to the invention and 1 -10 wt% dispersant (e. g. polyvinylpyrrolidone) are dissolved in up to 100 wt% organic solvent (e.g. cyclohexanone). Dilution with water gives a dispersion.
iii) Emulsifiable concentrates (EC)
15-70 wt% of a compound I according to the invention and 5-10 wt% emulsifiers (e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in up to 100 wt% water- insoluble organic solvent (e.g. aromatic hydrocarbon). Dilution with water gives an emulsion. iv) Emulsions (EW, EO, ES)
5-40 wt% of a compound I according to the invention and 1 -10 wt% emulsifiers (e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in 20-40 wt% water-insoluble organic solvent (e.g. aromatic hydrocarbon). This mixture is introduced into up to 100 wt% water by means of an emulsifying machine and made into a homogeneous emulsion. Dilution with water gives an emulsion.
v) Suspensions (SC, OD, FS)
In an agitated ball mill, 20-60 wt% of a compound I according to the invention are comminuted with addition of 2-10 wt% dispersants and wetting agents (e.g. sodium lignosulfonate and alco- hoi ethoxylate), 0,1 -2 wt% thickener (e.g. xanthan gum) and up to 100 wt% water to give a fine active substance suspension. Dilution with water gives a stable suspension of the active substance. For FS type composition up to 40 wt% binder (e.g. polyvinylalcohol) is added.
vi) Water-dispersible granules and water-soluble granules (WG, SG)
50-80 wt% of a compound I according to the invention are ground finely with addition of up to 100 wt% dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate) and prepared as water-dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance.
vii) Water-dispersible powders and water-soluble powders (WP, SP, WS)
50-80 wt% of a compound I according to the invention are ground in a rotor-stator mill with addition of 1 -5 wt% dispersants (e.g. sodium lignosulfonate), 1 -3 wt% wetting agents (e.g. alcohol ethoxylate) and up to 100 wt% solid carrier, e.g. silica gel. Dilution with water gives a stable dispersion or solution of the active substance.
viii) Gel (GW, GF)
In an agitated ball mill, 5-25 wt% of a compound I according to the invention are comminuted with addition of 3-10 wt% dispersants (e.g. sodium lignosulfonate), 1 -5 wt% thickener (e.g. car- boxymethylcellulose) and up to 100 wt% water to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance.
ix) Microemulsion (ME)
5-20 wt% of a compound I according to the invention are added to 5-30 wt% organic solvent blend (e.g. fatty acid dimethylamide and cyclohexanone), 10-25 wt% surfactant blend (e.g. alkohol ethoxylate and arylphenol ethoxylate), and water up to 100 %. This mixture is stirred for 1 h to produce spontaneously a thermodynamically stable microemulsion.
x) Microcapsules (CS)
An oil phase comprising 5-50 wt% of a compound I according to the invention, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), 2-15 wt% acrylic monomers (e.g.
methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). Radical polymerization initiated by a radi- cal initiator results in the formation of poly(meth)acrylate microcapsules. Alternatively, an oil phase comprising 5-50 wt% of a compound I according to the invention, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), and an isocyanate monomer (e.g. diphenylme- thene-4,4'-diisocyanatae) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). The addition of a polyamine (e.g. hexamethylenediamine) results in the formation of a polyurea microcapsules. The monomers amount to 1 -10 wt%. The wt% relate to the total CS composition.
xi) Dustable powders (DP, DS)
1 -10 wt% of a compound I according to the invention are ground finely and mixed intimately with up to 100 wt% solid carrier, e.g. finely divided kaolin.
xii) Granules (GR, FG)
0.5-30 wt% of a compound I according to the invention is ground finely and associated with up to 100 wt% solid carrier (e.g. silicate). Granulation is achieved by extrusion, spray-drying or the fluidized bed.
xiii) Ultra-low volume liquids (UL)
1 -50 wt% of a compound I according to the invention are dissolved in up to 100 wt% organic solvent, e.g. aromatic hydrocarbon.
The compositions types i) to xi) may optionally comprise further auxiliaries, such as 0,1 -1 wt% bactericides, 5-15 wt% anti-freezing agents, 0,1 -1 wt% anti-foaming agents, and 0,1 -1 wt% colorants.
The agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, and most preferably between 0.5 and 75%, by weight of active substance. The active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).
In one embodiment, a suspoconcentration (SC) is preferred for the agrochemical application. In one sub-embodiment thereof, the SC agrochemical composition comprises between 50 to 500 g/L (grams per Litre), or between 100 and 250 g/L, or 100 g/L or 150g/L or 200g/L or 250 g/L. In a further embodiment, thegranules according to formulation type xii are especially preferred for the application in rice.
If used in a combination, the compound of formula (I), (IA), (IB), (IC) or (ID) and the combination partner, e.g. a plant activator, can be part of a single composition and used simultaneously (i.e. they are mixed together - often referred to as "a pre-mix"), or can be separate products and used separately or sequentially. In the event they are separate products, they can be mixed together shortly before use by the user. It is often more practical, where possible, for commercially available formulations of the compound of formula (I), (IA), (IB), (IC) or (ID), and the combination partner, e.g. a plant activator, to be brought together in the desired mixing ratio in a container (often referred to as a "tank mixture") in water shortly before application. In an embodiment, the compound of formula (I), (IA), (IB), (IC) or (ID), and the combination partner, e.g. a plant activator, are used in single composition that has been specifically formulated, the composition comprising at least one of the adjuvants customary in formulation technology, such as extenders, e.g., solvents or solid carriers, or surface-active compounds (surfac- tants).
Suitable formulation adjuvants are, for example, solid carriers, solvents, stabilisers, slow- release adjuvants, dyes and optionally surface-active substances (surfactants). Suitable carriers and adjuvants in this case include all substances customarily used in crop protection products, especially in products for controlling snails and slugs. Suitable adjuvants, such as solvents, sol- id carriers, surface-active compounds, non-ionic surfactants, cationic surfactants, anionic surfactants and further adjuvants in the compositions used in accordance with the invention are, for example, the same as those described in EP 0,736,252.
The compositions may comprise from 0.1 to 99 %, in particular 0.1 to 95 %, of the combination and from 1 to 99.9 %, in particular 5 to 99.9 %, of at least one solid or liquid auxiliary. The composition may additionally comprise from 0 to 25 %, in particular 0.1 to 20 %, of surfactants (percent is in each case per cent by weight). While concentrated compositions are more preferred as commercial goods, the end user generally uses dilute compositions that comprise considerably lower concentrations of the combination.
Further aspects of formulations
The invention also relates to agrochemical compositions suitable for applying in the methods and uses according to the invention, comprising an auxiliary and at least one compound of for- mula (I) according to the invention.
An agrochemical composition comprises a pesticidally effective amount of a compound of formula (I). The term "effective amount" denotes an amount of the compound of formula I, optionally in combination with compound II, which is sufficient for observing an effect on cultivated plants, especially for controlling harmful pests on cultivated plants, and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the animal pests species to be controlled, the treated cultivated plant or material, the climatic conditions and the specific compound I used. The compounds of formula (I), their stereoisomers, salts, tautomers and N-oxides and salts can be converted into customary types of agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), capsules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g. WG, SG, GR, FG, GG, MG), insecticidal articles (e.g. LN), as well as gel formulations for the treatment of plant propagation materials such as seeds (e.g. GF). These and further compositions types are defined in the "Catalogue of pesticide formulation types and international coding system", Technical Monograph No. 2, 6th Ed. May 2008, CropLife International.
The compositions are prepared in a known manner, such as described by Mollet and Grube- mann, Formulation technology, Wiley VCH, Weinheim, 2001 ; or Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005.
Suitable auxiliaries are e.g. solvents, liquid carriers, solid carriers or fillers, surfactants, disper- sants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhe-sion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compati- bilizers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.
Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetrahydronaphthalene, alky- lated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclo^hexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g. lactates, carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof. Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e.g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.
Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emusifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon's, Vol.1 : Emulsifiers & De- tergents, McCutcheon's Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).
Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof. Examples of sulfonates are alkylarylsulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkyhnaphthalenes, sulfosuccinates or sulfosuccinamates. Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters. Examples of phosphates are phosphate esters. Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates. Suitable nonionic surfactants are alkoxylates, N-subsituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof. Examples of alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents. Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide. Examples of N-subsititued fatty acid amides are fatty acid glucamides or fatty acid alkanolamides. Examples of esters are fatty acid esters, glycerol esters or monoglycerides. Examples of sugar- based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or alkyl- polyglucosides. Examples of polymeric surfactants are home- or copolymers of vinylpyrrolidone, vinylalcohols, or vinylacetate.
Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines. Suitable amphoteric surfactants are alkylbetains and imidazolines. Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide and polypropylene oxide. Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or poly- ethyleneamines.
Suitable adjuvants are compounds, which have a neglectable or even no pesticidal activity themselves, and which improve the biological performance of the compound I on the target. Examples are surfactants, mineral or vegetable oils, and other auxilaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.
Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellulose), anorganic clays (organically modified or unmodified), polycarboxylates, and silicates. Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothiazolinones and benzisothiazolinones.
Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin. Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids.
Suitable colorants (e.g. in red, blue, or green) are pigments of low water solubility and water- soluble dyes. Examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanofer- rate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants).
Suitable tackifiers or binders are polyvinylpyrrolidone, polyvinylacetates, polyvinyl alcohols, pol- yacrylates, biological or synthetic waxes, and cellulose ethers. The agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, and in particular between 0.5 and 75%, by weight of active substance. The active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).
The compounds and mixtures according to the invention are suitable for use in seed treatment. Solutions for seed treatment (LS), Suspoemulsions (SE), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES), emulsifiable concentrates (EC) and gels (GF) are usually employed for the purposes of treatment of plant propagation materials, particularly seeds. The compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40% by weight, in the ready-to-use preparations. Application can be carried out before or during sowing. Methods for applying compound I and compositions thereof, respectively, on to plant propagation material, especially seeds include dress- ing, coating, pelleting, dusting, soaking and in-furrow application methods of the propagation material. Preferably, compound I or the compositions thereof, respectively, are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.
Various types of oils, wetters, adjuvants, fertilizer, or micronutrients, and further pesticides (e.g. herbicides, insecticides, fungicides, growth regulators, safeners) may be added to the active substances or the compositions cormprising them as premix or, if appropriate not until immediately prior to use (tank mix). These agents can be admixed with the compositions according to the invention in a weight ratio of 1 : 100 to 100: 1 , preferably 1 : 10 to 10: 1.
Usually, the agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained.
According to one embodiment, individual components of the composition according to the invention such as parts of a kit or parts of a binary or ternary mixture may be mixed by the user himself in a spray tank and further auxiliaries may be added, if appropriate.
In a further embodiment, either individual components of the composition according to the invention or partially premixed components, e. g. components comprising compounds I and/or optionally active compound II, may be mixed by the user in a spray tank and further auxiliaries and additives may be added, if appropriate.
In a further embodiment, either individual components of the composition according to the invention or partially premixed components, can be applied jointly (e.g. after tank mix) or consecutively. Applications
Due to their excellent activity, the compounds of the present invention may be used for controlling invertebrate pests. The mixtures according to the invention are effective through both contact and ingestion.
The mixtures according to the invention can be applied to any and all developmental stages, such as egg, larva, pupa, and adult. The pests may be controlled by contacting the target pest, its food supply, habitat, breeding ground or its locus with a pesticidally effective amount of the inventive mixtures or of compositions comprising the mixtures.
According to a preferred embodiment, the mixtures according to the invention are used in crop protection, especially for the protection of living plants.
According to another specific embodiment of the invention, the mixtures according to the pre- sent invention are employed via soil application. Soil application is especially favorable for use against ants, termites, crickets, or cockroaches.
According to another embodiment of the invention, for use against non crop pests such as ants, termites, wasps, flies, mosquitoes, crickets, locusts, or cockroaches the mixtures according to the present invention are prepared into a bait preparation.
The bait can be a liquid, a solid or a semisolid preparation (e.g. a gel).
The animal pest (also referred to as "invertebrate pest"), i.e. the insects, arachnids and nematodes, the plant, soil or water in which the plant is growing can be contacted with the present compounds of formula I or composition(s) comprising them by any application method known in the art. As such, "contacting" includes both direct contact (applying the com- pounds/compositions directly on the animal pest or plant - typically to the foliage, stem or roots of the plant) and indirect contact (applying the compounds/mixtures/compositions to the locus of the animal pest or plant).
The compounds of formula I or the pesticidal compositions comprising them may be used to protect growing plants and crops from attack or infestation by animal pests, especially insects, acaridae or arachnids by contacting the plant/crop with a pesticidally effective amount of compounds of formula I. The term "crop" refers both to growing and harvested crops.
The compounds of the present invention and the compositions comprising them are particularly important in the control of a multitude of insects on various cultivated plants, such as cereal, root crops, oil crops, vegetables, spices, ornamentals, for example seed of durum and other wheat, barley, oats, rye, maize (fodder maize and sugar maize / sweet and field corn), soybeans, oil crops, crucifers, cotton, sunflowers, bananas, rice, oilseed rape, turnip rape, sugar- beet, fodder beet, eggplants, potatoes, grass, lawn, turf, fodder grass, tomatoes, leeks, pumpkin/squash, cabbage, iceberg lettuce, pepper, cucumbers, melons, Brassica species, melons, beans, peas, garlic, onions, carrots, tuberous plants such as potatoes, sugar cane, tobacco, grapes, petunias, geranium/pelargoniums, pansies and impatiens.
The compounds of the present invention are employed as such or in form of compositions by treating the insects or the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms to be protected from insecticidal attack with an insecticidally effective amount of the active compounds. The application can be carried out both before and after the infection of the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms by the insects.
The present invention also includes a method of combating animal pests which comprises contacting the animal pests, their habitat, breeding ground, food supply, cultivated plants, seed, soil, area, material or environment in which the animal pests are growing or may grow, or the materials, plants, seeds, soils, surfaces or spaces to be protected from animal attack or infestation with a pesticidally effective amount of a mixture of at least one active compound I.
Moreover, animal pests may be controlled by contacting the target pest, its food supply, habitat, breeding ground or its locus with a pesticidally effective amount of compounds of formula I. As such, the application may be carried out before or after the infection of the locus, growing crops, or harvested crops by the pest.
The compounds of the invention can also be applied preventively to places at which occurrence of the pests is expected.
The compounds of formula I may be also used to protect growing plants from attack or infestation by pests by contacting the plant with a pesticidally effective amount of compounds of formula I. As such, "contacting" includes both direct contact (applying the compounds/compositions directly on the pest and/or plant - typically to the foliage, stem or roots of the plant) and indirect contact (applying the compounds/compositions to the locus of the pest and/or plant).
Seed treatment
The compounds of formula I are especially also suitable for the treatment of seeds in order to protect the seed from insect pest, in particular from soil-living insect pests and the resulting plant's roots and shoots against soil pests and foliar insects.
The compounds of formula I are particularly useful for the protection of the seed from soil pests and the resulting plant's roots and shoots against soil pests and foliar insects. The protection of the resulting plant's roots and shoots is preferred. More preferred is the protection of resulting plant's shoots from piercing and sucking insects, wherein the protection from aphids is most preferred.
The present invention therefore comprises a method for the protection of seeds from insects, in particular from soil insects and of the seedling's roots and shoots from insects, in particular from soil and foliar insects, said method comprising contacting the seeds before sowing and/or after pregermination with a compound of the general formula I or a salt thereof. Particularly preferred is a method, wherein the plant's roots and shoots are protected, more preferably a method, wherein the plants shoots are protected form piercing and sucking insects, most preferably a method, wherein the plants shoots are protected from aphids.
Consequently, the present invention relates to methods for the protection of seeds, from soil insects and of the resulting plant's roots and shoots from soil and foliar insects wherein the seeds are contacted before sowing and/or after pregermination with the neonicotinoid insecti- cide cycloxaprid alone or in combination with a selected pesticidal active compound II. The term seed embraces seeds and plant propagules of all kinds including but not limited to true seeds, seed pieces, suckers, corms, bulbs, fruit, tubers, grains, cuttings, cut shoots and the like and means in a preferred embodiment true seeds. The term seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking and seed pelleting.
The present invention also comprises seeds coated with or containing the active compound. The term "coated with and/or containing" generally signifies that the active ingredient is for the most part on the surface of the propagation product at the time of application, although a great- er or lesser part of the ingredient may penetrate into the propagation product, depending on the method of application. When the said propagation product is (re)planted, it may absorb the active ingredient.
In general, suitable seeds are seeds of cereals, root crops, oil crops, vegetables, spices, orna- mentals, for example seed of durum and other wheat, barley, oats, rye, maize (fodder maize and sugar maize / sweet and field corn), soybeans, oil crops, crucifers, cotton, sunflowers, bananas, rice, oilseed rape, turnip rape, sugarbeet, fodder beet, eggplants, potatoes, grass, lawn, turf, fodder grass, tomatoes, leeks, pumpkin/squash, cabbage, iceberg lettuce, pepper, cucumbers, melons, Brassica species, melons, beans, peas, garlic, onions, carrots, tuberous plants such as potatoes, sugar cane, tobacco, grapes, petunias, geranium/pelargoniums, pansies and impatiens.
The seed treatment application of the active compound is carried out by spraying or by dusting the seeds before sowing of the plants and before emergence of the plants.
Compositions which are especially useful for seed treatment are e.g.:
A Soluble concentrates (SL, LS)
D Emulsions (EW, EO, ES)
E Suspensions (SC, OD, FS)
F Water-dispersible granules and water-soluble granules (WG, SG)
G Water-dispersible powders and water-soluble powders (WP, SP, WS)
H Gel-Formulations (GF)
I Dustable powders (DP, DS)
Conventional seed treatment formulations include for example flowable concentrates FS, solutions LS, powders for dry treatment DS, water dispersible powders for slurry treatment WS, water-soluble powders SS and emulsion ES and EC and gel formulation GF. These formulations can be applied to the seed diluted or undiluted. Application to the seeds is carried out before sowing, either directly on the seeds or after having pregerminated the latter
In a preferred embodiment a FS formulation is used for seed treatment. Typcially, a FS formulation may comprise 1 -800 g/l of active ingredient, 1-200 g/l Surfactant, 0 to 200 g/l antifreezing agent, 0 to 400 g/l of binder, 0 to 200 g/l of a pigment and up to 1 liter of a solvent, preferably water.
Especially preferred FS formulations of compounds of formula I for seed treatment usually com- prise from 0.1 to 80% by weight (1 to 800 g/l) of the active ingredient, from 0.1 to 20 % by weight (1 to 200 g/l) of at least one surfactant, e.g. 0.05 to 5 % by weight of a wetter and from 0.5 to 15 % by weight of a dispersing agent, up to 20 % by weight, e.g. from 5 to 20 % of an anti-freeze agent, from 0 to 15 % by weight, e.g. 1 to 15 % by weight of a pigment and/or a dye, from 0 to 40 % by weight, e.g. 1 to 40 % by weight of a binder (sticker /adhesion agent), option- ally up to 5 % by weight, e.g. from 0.1 to 5 % by weight of a thickener, optionally from 0.1 to 2 % of an anti-foam agent, and optionally a preservative such as a biocide, antioxidant or the like, e.g. in an amount from 0.01 to 1 % by weight and a filler/vehicle up to 100 % by weight.
Seed Treatment formulations may additionally also comprise binders and optionally colorants. Binders can be added to improve the adhesion of the active materials on the seeds after treatment. Suitable binders are homo- and copolymers from alkylene oxides like ethylene oxide or propylene oxide, polyvinylacetate, polyvinylalcohols, polyvinylpyrrolidones, and copolymers thereof, ethylene-vinyl acetate copolymers, acrylic homo- and copolymers, polyethyleneamines, polyethyleneamides and polyethyleneimines, polysaccharides like celluloses, tylose and starch, polyolefin homo- and copolymers like olefin/maleic anhydride copolymers, polyurethanes, polyesters, polystyrene homo and copolymers
Optionally, also colorants can be included in the formulation. Suitable colorants or dyes for seed treatment formulations are Rhodamin B, C.I. Pigment Red 1 12, C.I. Solvent Red 1 , pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 15:1 , pigment blue 80, pigment yellow 1 , pigment yellow 13, pigment red 1 12, pigment red 48:2, pigment red 48:1 , pigment red 57:1 , pigment red 53:1 , pigment orange 43, pigment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51 , acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108.
Examples of a gelling agent is carrageen (Satiagel®)
In the treatment of seed, the application rates of the compounds I are generally from 0.1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, more preferably from 1 g to 1000 g per 100 kg of seed and in particular from 1 g to 200 g per 100 kg of seed.
The invention therefore also relates to seed comprising a compound of the formula I, or an agriculturally useful salt of I, as defined herein. The amount of the compound I or the agriculturally useful salt thereof will in general vary from 0.1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 1000 g per 100 kg of seed. For specific crops such as lettuce the rate can be higher. In general, "pesticidally effective amount" means the amount of active ingredient needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target organism. The pesticidally effective amount can vary for the various com- pounds/compositions used in the invention. A pesticidally effective amount of the compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.
The compounds of formula I or the pesticidal compositions comprising them may be used to protect growing plants and crops from attack or infestation by animal pests, especially insects, acaridae or arachnids by contacting the plant/crop with a pesticidally effective amount of compounds of formula I. The term "crop" refers both to growing and harvested crops.
Thus, as with regards to the use and for the purpose of the present invention, vegetables are to be understood as meaning for example fruiting vegetables and inflorescences as vegetables, i.e. bell peppers, chillies, tomatoes, aubergines, cucumbers, pumpkins, courgettes, broad beans, climbing and dwarf beans, peas, artichokes and maize. Further also leafy vegetables like head-forming lettuce, chicory, endives, various types of cress, of rocket, lamb's lettuce, iceberg lettuce, leeks, spinach and chard. Furthermore tuber vegetables, root vegetables and stem vegetables, like celeriac/celery, beetroot, carrots, radish, horseradish, scorzonera, asparagus, beet for human consumption, palm hearts and bamboo shoots. Further also bulb vegetables like onions, leeks, fennel and garlic. Brassica vegetables such as cauliflower, broccoli, kohlrabi, red cabbage, white cabbage, curly kale, Savoy cabbage, Brussels sprouts and Chinese cabbage are also vegetable in the sense of the present application.
Regarding the use and for the purpose of the present invention, perennial crops are to be understood as meaning citrus, for example, oranges, grapefruits, tangerines, lemons, limes, Seville oranges, cumquats and satsumas. Also pome fruit such as, for example, apples, pears and quinces, and stone fruit such as, for example, peaches, nectarines, cherries, plums, quetsch, apricots. Further grapevines, hops, olives, tea and tropical crops such as, for example, mangoes, papayas, figs, pineapples, dates, bananas, durians, kaki fruit, coconuts, cacao, coffee, avocados lychees, maracujas, and. guavas. Furthermore soft fruit such as, for example, currants, gooseberries, raspberries, blackberries, blueberries, strawberries, cranberries, kiwi fruit and American cranberries. Almonds and nuts such as, for example, hazelnuts, walnuts, pistachios, cashew nuts, para nuts, pecan nuts, butternuts, chestnuts, hickory nuts, macadamia nuts and peanuts are also fruits in the sense of the present invention.
As with regard to the use and for the purpose of the present invention, ornamentals are understood as meaning annual and perennial plants, for example cut flowers such as, for example, roses, carnations, gerbera, lilies, marguerites, chrysanthemums, tulips, narcissus, anemones, poppies, amaryllis, dahlias, azaleas, hibiscus, but also for example border plants, pot plants and perennials such as, for example, roses, Tagetes, violas, geraniums, fuchsias, hibiscus, chrysanthemum, busy lizzie, cyclamen, African violet, sunflowers, begonias. Furthermore for example also bushes and conifers such as, for example, ficus, rhododendron, firs, spruces, pines, yews, juniper, umbrella pines, oleander.
As regards the use, spices are understood as meaning annual and perennial plants such as, for example, aniseed, chilli pepper, paprika, pepper, vanilla, marjoram, thyme, cloves, juniper berries, cinnamon, tarragon, coriander, saffron, ginger.
Furthermore the compounds of the present invention and the compositions comprising them are particularly important in the control of a multitude of insects on various cultivated plants, such as cereal and oil crops, for example seed of durum and other wheat, barley, oats, rye, maize (fodder maize and sugar maize / sweet and field corn), soybeans, oil crops, crucifers, cotton, bananas, rice, oilseed rape, turnip rape, sugarbeet, fodder beet, eggplants, potatoes, grass, lawn, turf, fodder grass, sugar cane or tobacco. The compounds of the invention can also be applied preventively to places at which occurrence of the pests is expected.
"Locus" means a habitat, breeding ground, plant, seed, soil, area, material or environment in which a pest or parasite is growing or may grow.
Plants which can be treated with compound(s) of formula I / inventive mixture(s) in-clude all genetically modified plants or transgenic plants, e.g. crops which tolerate the action of herbicides or fungicides or insecticides owing to breeding, including genetic engineering methods, or plants which have modified characteristics in comparison with existing plants, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures.
The term "plant propagation material" is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. pota- toes), which can be used for the multiplication of the plant. This in-cludes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants. Seedlings and young plants, which are to be transplanted after germination or after emergence from soil, may also be included. These young plants or these plant propagation materials may be treated and protected, optionally also prophylactically, with a plant protection compound either at or before planting or transplanting, by a total or partial treatment and by immersion or pouring
The term "cultivated plants" refers to "modified plants" and "transgenic plants". "Modi-fied plants" are those which have been modified by conventional breeding techniques. "Transgenic plants are those, which genetic material has been so modified by the use of recombinant DNA tech- niques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination. Typically, one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant. Such genetic modifications also include but are not limited to targeted post-transtional modifica- tion of protein(s), oligo- or poly-peptides e. g. by glycosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties.
Preferred plants, from which "modified plants" and/or "transgenic plants" can be derived can be selected from the group consisting of cereals such as wheat, barley, rye and oat, alfalfa, apples, banana, beet, broccoli, broccoli , Brussels sprouts, cabbage, canola (rapeseed), carrot, cauliflower, cherries, chickpea , Chinese cabbage, Chinese mus-tard, collard, cotton, cranberries , creeping bentgrass, cucumber, eggplant, flax, grape, grapefruit , kale, kiwi , kohlrabi, maize (corn), melon, mizuna, mustard , papaya, pea-nut, pears, pepper, persimmons , pigeonpea , pineapple , plum, plum , potato, raspber-ry, rice, rutabaga, sorghum, soybean, squash, strawberries , sugar beet, sugarcane, sunflower, sweet corn, tobacco, tomato, turnip, walnut, watermelon and winter squash,
more preferably from the group consisting of alfalfa, barley, canola (rapeseed), cotton, maize (corn), papaya, potato, rice, sorghum, soybean, squash, sugar beet, tomato and cereals such as wheat, barley, rye and oat, most preferably, the plant is selected from soybean, tomatoes and cereals such as wheat, barley, rye and oat, utmost preferably from soybean and cereals such as wheat, barley, rye and oat.
The cultivated plants are plants, which comprise at least one trait. The term "trait" refers to a property, which is present in the plant either by genetic enginieering or by conventional breeding techniques. Examples of traits are
herbicide tolerance,
insecticide resistance by expression of bacertial toxins,
fungicidal resistance or viral resistance or bacterial resistance,
antibiotic resistance,
stress tolerance,
maturation alteration,
content modification of chemicals present in the cultivated plant compared to the corre-sponding wild-type plant,
modified nutrient uptake,
and male sterility.
Principally, cultivated plants may also comprise combinations of the aforementioned traits, e.g. they may be tolerant to the action of herbicides and express bacertial toxins.
Principally, all cultivated plants may also provide combinations of the aforementioned proper- ties, e.g. they may be tolerant to the action of herbicides and express bacertial toxins.
In the detailed description below, the term "plant" refers to a cultivated plant.
Tolerance to herbicides can be obtained by creating insensitivity at the site of action of the herb- icide by expression of a target enzyme which is resistant to herbicide; rapid metabolism (conjugation or degradation) of the herbicide by expression of enzymes which inactivate herbicide; or poor uptake and translocation of the herbicide. Examples are the expression of enzymes which are tolerant to the herbicide in comparison to wild type enzymes, such as the expression of 5- enolpyruvylshikimate-3-phosphate syn-thase (EPSPS), which is tolerant to glyphosate (see e.g. Heck et.al, Crop Sci. 45, 2005, 329-339; Funke et.al, PNAS 103, 2006, 13010-13015;
US5188642, US4940835, US5633435, US5804425, US5627061 ), the expression of glutamine synthase which is tolerant to glufosinate and bialaphos (see e.g. US5646024, US5561236) and DNA constructs coding for dicamba-degrading enzymes (see e.g. US7105724). Gene constructs can be obtained, for example, from micro-organism or plants, which are tolerant to said herbicides, such as the Agrobacterium strain CP4 EPSPS which is resistant to glyphosate; Streptomyces bacteria which are resistance to glufosinate; Arabidopsis, Daucus carotte, Pseu- domonoas sp. or Zea mais with chimeric gene sequences coging for HDDP (see e.g.
W01996/38567, WO 2004/55191 ); Arabidopsis thaliana which is resistant to protox inhibitors (see e.g. US2002/0073443).
Preferaby, the herbicide tolerant plant can be selected from cereals such as wheat, barley, rye, oat; canola, sorghum, soybean, rice, oil seed rape, sugar beet, sugarcane, grapes, lentils, sun- flowers, alfalfa, pome fruits; stone fruits; peanuts; coffee; tea; straw-berries; turf; vegetables, such as tomatoes, potatoes, cucurbits and lettuce, more pref-erably, the plant is selected from soybean, tomatoes and cereals such as wheat, bar-ley, rye and oat, most preferably from soybean and cereals such as wheat, barley, rye and oat. Examples of commercial available transgenic plants with tolerance to herbicides, are the corn varieties "Roundup Ready Corn", "Roundup Ready 2" (Monsanto), "Agrisure GT", "Agrisure GT/CB/LL", "Agrisure GT/RW",„Agrisure 3000GT" (Syngenta), "Yield-Gard VT Rootworm/RR2" and "YieldGard VT Triple" (Monsanto) with tolerance to glyphosate; the corn varieties "Liberty Link" (Bayer), "Herculex I", "Herculex RW", "Her-culex Xtra"(Dow, Pioneer), "Agrisure GT/CB/LL" and "Agrisure CB/LL/RW" (Syngenta) with tolerance to glufosinate; the soybean varieties
"Roundup Ready Soybean" (Mon-santo) and "Optimum GAT" (DuPont, Pioneer) with tolerance to glyphosate; the cotton varieties "Roundup Ready Cotton" and "Roundup Ready Flex" (Monsanto) with toler-ance to glyphosate; the cotton variety "FiberMax Liberty Link" (Bayer) with tolerance to glufosinate; the cotton variety "BXN" (Calgene) with tolerance to bromoxynil; the canola varieties ..Navigator" und ..Compass" (Rhone-Poulenc) with bromoxynil tolerance; the canola varierty"Roundup Ready Canola" (Monsanto) with glyphosate tolerance; the canola variety "InVigor" (Bayer) with glufosinate tolerance; the rice variety "Liberty Link Rice" (Bayer) with glulfosinate tolerance and the alfalfa variety "Roundup Ready Alfalfa" with glyphosate tolerance. Further transgenic plants with herbicide are commonly known, for instance alfalfa, apple, euca- lyptus, flax, grape, lentils, oil seed rape, peas, potato, rice, sugar beet, sunflower, tobacco, to- matom turf grass and wheat with toler-ance to glyphosate (see e.g. US5188642, US4940835, US5633435, US5804425, US5627061 ); beans, soybean, cotton, peas, potato, sunflower, tomato, tobacco, corn, sorghum and sugarcane with tolerance to dicamba (see e.g. US7105724 and US5670454); pepper, apple, tomato, hirse, sunflower, tobacco, potato, corn, cucumber, wheat and sorghum with tolerance to 2,4-D (see e.g. US6153401 , US6100446, WO2005107437, US5608147 and US5670454); sugarbeet, potato, tomato and tobacco with tolerance to gluphosinate (see e.g. US5646024, US5561236); canola, barley, cot-ton, lettuce, melon, millet, oats, potato, rice, rye, sorghum, soybean, sugarbeet, sun-flower, tobacco, tomato and wheat with tolerance to acetolactate synthase (ALS) inhib-iting herbicides, such as triazolopyrimidine sulfonamides, sulfonylureas and imidazoli-nones (see e.g. US5013659, WO2006060634, US4761373, US5304732, US621 1438, US621 1439 and US6222100); cereal, sugar cane, rice, corn, tobacco, soybean, cotton, rapeseed, sugar beet and potato with tolerance to HPPD inhibi- tor herbicides (see e.g. WO2004/055191 , W0199638567, W01997049816 and US6791014); wheat, soybean, cotton, sugar beet, rape, rice, sorghum and sugar cane with tolerance to pro- toporphy-rinogen oxidase (PPO) inhibitor herbicides (see e.g. US2002/0073443,
US20080052798, Pest Management Science, 61 , 2005, 277-285). The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
Plants, which are capable of synthesising one or more selectively acting bacerial tox-ins, comprise for example at least one toxin from toxin-producing bacteria, especially those of the genus Bacillus, in particular plants capable of synthesising one or more insecticidal proteins from Bacillus cereus or Bacillus popliae; or insecticidal proteins from Bacillus thuringiensis, such as del- ta.-endotoxins, e.g. CrylA(b), CrylA(c), CrylF, CrylF(a2), CryllA(b), CrylllA, CrylllB(bl ) or Cry9c, or vegetative insecticidal proteins (VIP), e.g. VIP1 , VIP2, VIP3 or VIP3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp. or Xenorhabdus spp., such as Photorhab-dus luminescens, Xenorhabdus nematophilus; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins; toxins produced by fungi, such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins; agglutinins; proteinase inhibitors, such as trypsine inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors; ribo-some-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bry-odin; steroid metabolism enzymes, such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ecdy- sone inhibitors, HMG-COA-reductase, ion channel blockers, such as blockers of sodium or calcium channels, ju-venile hormone esterase, diuretic hormone receptors, stilbene synthase, bibenzyl syn-thase, chitinases and glucanases. In the context of the present invention there are to be understood by .delta. -endotoxins, for example CrylA(b), CrylA(c), CrylF, CrylF(a2), CryllA(b), CrylllA, CrylllB(bl ) or Cry9c, or vegetative insecticidal proteins (VIP), for example VIP1 , VIP2, VIP3 or VIP3A, expressly also hybrid toxins, truncated toxins and modified toxins. Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701 ). An exam- pie for a truncated toxin is a truncated CrylA(b), which is expressed in the Bt1 1 maize from Syngenta Seed SAS, as described below. In the case of modified toxins, one or more amino acids of the naturally occurring toxin are replaced. In such amino acid replacements, preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of CrylllA055, a cathepsin-D-recognition sequence is inserted into a Cry- IIIA toxin (see WO 03/018810). Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A-451 878 and WO 03/052073. The processes for the preparation of such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Cryl-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A- 0 367 474, EP-A-0 401 979 and WO 90/13651. The toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects. Such insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and butter-flies (Lepidoptera).
Preferably, the plant capable of expression of bacterial toxins is selected from cereals such as wheat, barley, rye, oat; canola, sorghum, soybean, rice, oil seed rape, sugar beet, sugarcane, grapes, lentils, sunflowers, alfalfa, pome fruits; stone fruits; peanuts; coffee; tea; strawberries; turf; vegetables, such as tomatoes, potatoes, cucurbits and lettuce, more preferably, the plant is selected from soybean, tomatoes and cereals such as wheat, barley, rye and oat, most preferably from soybean, maize and cereals such as wheat, barley, rye and oat.
Examples of commercial available transgenic plants capable of expression of bacterial toxins are the corn varieties "YieldGard corn rootworm" (Monsanto), "YieldGard VT" (Monsanto), "Her- culex RW" (Dow, Pioneer), "Herculex Rootworm" (Dow, Pioneer) and "Agrisure CRW" (Syngen- ta) with resistance against corn rootworm; the corn varieties "YieldGard corn borer" (Monsanto), „YieldGard VT Pro" (Monsanto), "Agrisure CB/LL" (Syngenta), "Agrisure 3000GT" (Syngenta), "Hercules I", "Hercules II" (Dow, Pioneer), "KnockOut" (Novartis),„NatureGard" (Mycogen) and „Starl_ink" (Aventis) with re-sistance against corn borer, the corn varieties„Herculex I" (Dow, Pioneer) and„Hercu-lex Xtra" (Dow, Pioneer) with resistance against western bean cutworm, corn borer, black cutworm and fall armyworm; the corn variety "YieldGard Plus" (Monsanto) with resistance against corn borer and corn rootworm; the cotton variety "Bollgard I"" (Mon-santo) with resistance against tobacco budworm; the cotton varieties "Bollgard II" (Monsanto),„Wid- eStrike" (Dow) and„VipCot" (Syngenta) with resistance against tobac-co budworm, cotton boll- worm, fall armyworm, beet armyworm, cabbage looper, soy-bean lopper and pink bollworm; the potato varieties "NewLeaf", "NewLeaf Y" and "NewLeaf Plus" (Monsanto) with tobacco horn- worm resistance and the eggplant varie-ties "Bt brinjal", "Dumaguete Long Purple", "Mara" with resistance against brinjal fruit and shoot borer, bruit borer and cotton bollworm (see e.g.
US5128130). Further trans-genic plants with insecticide resistance are commonly known, such as yellow stem-borer resistant rice (see e.g. Molecular Breeding, Volume 18, 2006, Number 1 ), lepi-dopteran resistant lettuce (see e.g. US5349124 ), resistant soybean (see e.g. US7432421 ) and rice with resistance against Lepidopterans, such as rice stemborer, rice skipper, rice cutworm, rice caseworm, rice leaffolder and rice armyworm (see e.g. WO2001021821 ). The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Preferably, plants, which are capable of synthesising antipathogenic substances are selected from soybean, tomatoes and cereals such as wheat, barley, rye and oat, most preferably from soybean and cereals such as wheat, barley, rye and oat. Plants, which are capable of synthesising antipathogenic substances having a selec-tive action are for example plants expressing the so-called "pathogenesis-related pro-teins" (PRPs, see e.g. EP-A-0 392 225) or so-called "antifungal proteins" (AFPs, see e.g. US6864068). A wide range of antifungal proteins with activity against plant patho-genic fungi have been isolated from certain plant species and are common knowledge. Examples of such antipathogenic substanc- es and transgenic plants capable of synthe-sising such antipathogenic substances are known, for example, from EP-A-0 392 225, WO93/05153, WO 95/33818, and EP-A-0 353 191 . Transgenic plants which are re-sistant against fungicidal, viral and bacterial pathogens are produced by introducing plant resistance genes. Numerous resistant genes have been identified, isolated and were used to improve plant resistant, such as the N gene which was intro-duced into tobac- co lines that are susceptible to Tobacco Mosaic Virus (TMV) in order to produce TMV-resistant tobacco plants (see e.g. US 5571706), the Prf gene, which was intro-duced into plants to obtain enhanced pathogen resistance (see e.g. WO 199802545) and the Rps2 gene from Arabidopsis thaliana, which was used to create resistance to bacterial pathogens including Pseudomonas syringae (see e.g. WO 199528423). Plants exhibiting systemic acquired resistance response were obtained by introducing a nucleic acid molecule encoding the TIR domain of the N gene (see e.g. US 6630618). Further examples of known resistance genes are the Xa21 gene, which has been intoruduced into a number of rice cultivars (see e.g. US5952485, US5977434, W01999/09151 , W01996/22375), the Rcg1 gene for colletotrichum resistance (see e.g.
US2006/225152), the prpl gene (see e.g. US5859332, WO 2008017706), the ppv-cp gene to introduce resistance against plum pox virus (see e.g. US PP15,154Ps), the P1 gene (see e.g. US5968828), genes such as Blb1 , Blb2, Blb3 and RB2 to introduce resistance against phy- tophthora infestans in potato (see e.g. US7148397), the LRPKml gene (see e.g.
W01999064600), the P1 gene for potato virus Y resistance (see e.g. US5968828), the HA5-1 gene (see e.g. US5877403 and US6046384), the PIP gene to indroduce a broad resistant to viruses, such as potato virus X (PVX), potato virus Y (PVY), potato leafroll virus (PLRV) (see e.g. EP0707069) and genes such as Arabidop-sis NI16, ScaM4 and ScaM5 genes to obtain fungicidal resistance (see e.g. US6706952 and EP1018553). The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
Antipathogenic substances which can be expressed by such transgenic plants include, for example, ion channel blockers, such as blockers for sodium and calcium channels, for example the viral KP1 , KP4 or KP6 toxins; stilbene synthases; bibenzyl synthases; chitinases; glu- canases; the so-called "pathogenesis-related proteins"" (PRPs; see e.g. EP-A-0 392 225); anti- pathogenic substances produced by microorganisms, for exam-pie peptide antibiotics or heterocyclic antibiotics (see e.g. WO 95/33818) or protein or polypeptide factors involved in plant pathogen defense (so-called ""plant disease re-sistance genes"", as described in WO
03/000906). Antipatogenic substances produced by the plants are able to protect the plants against a variety of pathogens, such as fungi, viruses and bacteria. Useful plants of elevated interest in connection with present invention are cereals, such as wheat, barley, rye and oat; soybean; maize; rice; oil seed rape; pome fruits; stone fruits; peanuts; coffee; tea; strawberries; turf; vines and vegetables, such as tomatoes, potatoes, cucurbits, papaya, melon, lenses and lettuce, more preferably selected from soybean, tomatoes and cereals such as wheat, barley, rye and oat, most preferably from soybean and cereals such as wheat, barley, rye and oat.
Transgenic plants with resistance against fungal pathogens, are, for examples, soy-beans with resistance against asian soybean rust (see e.g. WO 2008017706); plants such as alfalfa, corn, cotton, sugar beet, oileed, rape, tomato, soybean, wheat, potato and tobacco with resistance against phytophtora infestants (see e.g. US5859332, US7148397, EP1334979); corn with resistance against leaf blights, ear rots and stalk rots (such as anthracnose leaf bligh, anthrac- nose stalk rot, diplodia ear rot, fusarium verticilioides, gibberella zeae and top dieback, see e.g. US2006/225152); apples with resistance against apple scab (venturia inaequalis, see e.g.
W01999064600); plants such as rice, wheat, barley, rye, corn, oats, potato, melon, soybean and sorghum with resistance against fursarium diseases, such as fusarium graminearum, fusarium spo-rotrichioides, fusarium lateritium, fusarium pseudograminearum fusarium sam- bucinum, fusarium culmorum, fusarium poae, fusarium acuminatum, fusarium equiseti (see e.g. US6646184, EP1477557); plants, such as corn, soybean, cereals (in particular wheat, rye, balrey, oats, rye, rice), tobacco, sorghum, sugarcane and potatoes with broad fun-gicidal resistance (see e.g. US5689046, US6706952, EP1018553 and US6020129).
Transgenic plants with resistance against bacterial pathogens and which are covered by the present invention, are, for examples, rice with resistance against xylella fastidi-osa (see e.g. US6232528); plants, such as rice, cotton, soybean, potato, sorghum, corn, wheat, balrey, sugarcane, tomato and pepper, with resistance against bacterial blight (see e.g. WO2006/42145, US5952485, US5977434, W01999/09151 , W01996/22375); tomato with resistance against pseudomonas syringae (see e.g. Can. J. Plant Path., 1983, 5: 251 -255). Transgenic plants with resistance against viral pathogens, are, for examples, stone fruits, such as plum, almond, apricot, cherry, peach, nectarine, with resistance against plum pox virus (PPV, see e.g. US PP15,154Ps, EP0626449); potatoes with resistance against potato virus Y (see e.g. US5968828); plants such as potato, tomato, cucumber and leguminosaes which are resistant against tomato spotted wilt virus (TSWV, see e.g. EP0626449, US5973135); corn with resistance against maize streak virus (see e.g. US6040496); papaya with resistance against papaya ring spot virus (PRSV, see e.g. S5877403, US6046384); cucurbitaceae, such as cucumber, melon, watermelon and pumkin, and solanaceae, such as potato, tobacco, tomato, eggplant, paprika and pepper, with resistance against cucumber mosaic virus (CMV, see e.g. US6849780); cucurbitaceae, such as cucumber, melon, watermelon and pumkin, with re- sistance against watermelon mosaic virus and zucchini yellow mosaic virus (see e.g.
US6015942); potatoes with resistance against potato leafroll virus (PLRV, see e.g.
US5576202); potatoes with a broad resistance to viruses, such as potato virus X (PVX), potato virus Y (PVY), potato leafroll virus (PLRV) (see e.g. EP0707069). Plants wich are resistant to antibiotics, such as kanamycin, neomycin and ampicillin. The naturally occurring bacterial nptll gene expresses the enzyme that blocks the ef-fects of the antibiotics kanamycin and neomycin. The ampicillin resistance gene ampR (also known as blaTEMI ) is derived from the bacterium Salmonella paratyphi and is used as a marker gene in the transfor- mation of micro-organisms and plants. It is re-sponsible for the synthesis of the enzyme beta- lactamase, which neutralises antibiotics in the penicillin group, including ampicillin. Transgenic plants with resistance against antibiotics, are, for examples potatoe, tomato, flax, canola, oilseed rape, rape seed and corn (see e.g. Plant Cell Reports, 20, 2001 , 610-615. Trends in Plant Science, 1 1 , 2006, 317-319. Plant Molecular Biology, 37, 1998, 287-296. Mol Gen Genet., 257, 1998, 606-13.). Plant Cell Reports, 6, 1987, 333-336. Federal Register (USA), Vol.60,
No.1 13, 1995, page 31 139. Federal Register (USA), Vol.67, No.226, 2002, page 70392. Federal Register (USA), Vol.63, No.88, 1998, page 25194. Federal Register (USA), Vol.60, No.141 , 1995, page 37870. Canadian Food Inspection Agency, FD/OFB-095-264-A, October 1999, FD/OFB-099-127-A, October 1999. Preferably, the plant is selected from soybean, tomatoes and cereals, such as wheat, barley, rye and oat, most preferably from soybean and cereals such as wheat, barley, rye and oat.
Plants which are tolerant to stress conditions (see e.g. WO 200004173, WO2007131699, CA2521729 and US20080229448) are plants, which show increased tolerance to abiotic stress conditions such as drought, high salinity, high light intensi-ties, high UV irradiation, chemical pollution (such as high heavy metal concentration), low or high temperatures, limitied supply of nutrients (i.e. nitrogen, phosphorous) and population stress. Preferably, transgenic plants with resistance to stress conditions, are selected from rice, corn, soybean, sugarcane, alfalfa, wheat, tomato, potato, barley, rapeseed, beans, oats, sorghum and cotton with tolerance to drought (see e.g. WO2005048693, WO2008002480 and WO 2007030001 ); corn, soybean, wheat, cotton, rice, rapeseed and alfalfa with tolerance to low temperatures (see e.g. US4731499 and WO20071 12122); rice, cotton, potato, soybean, wheat, barley, rye, sorghum, alfalfa, grape, tomato, sunflower and tobacco with tolerance to high salinity (see e.g. US7256326, us7034139, WO/2001/030990). The methods of producing such transgen-ic plants are generally known to the person skilled in the art and are described, for ex-ample, in the publications mentioned above. Preferably, the plant is selected from soy-bean, tomatoes and cereals such as wheat, barley, rye and oat, most preferably from soybean and cereals such as wheat, barley, rye and oat. Altered maturation properties, are for example delayed ripening, delayed softening and early maturity. Preferably, transgenic plants with modified maturation properties, are, selected from tomato, melon, raspberry, strawberry, muskmelon, pepper and papaya with delayed ripening (see e.g. US 5767376, US7084321 , US6107548, US5981831 , W01995035387, US 5952546, US 5512466, W01997001952, wo1992/008798, Plant Cell. 1989, 53-63. Plant Molecular Biolo- gy, 50, 2002). The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Preferably, the plant is selected from fruits, such as tomato, vine, melon, papaya, banana, pepper, raspberry and strawberry; stone fruits, such as cherry, apricot and peach; pome fruits, such as apple and pear; and citrus fruits, such as citron, lime, orange, pomelo, grapefruit, and mandarin, more preferably from tomato, vine, apple, banana, organge and strawberry, most preferably tomatoes. Content modification is synthesis of modified chemical compounds (if compared to the corresponding wildtype plant) or synthesis of enhanced amounts of chemical (if corn-pounds compared to the corresponding wildtype plant) and corresponds to an in-creased or reduced amount of vitamins, amino acids, proteins and starch, different oils and a reduced amount of nicotine. Commercial examples are the soybean varieties "Vistive II" and "Visitive III" with low- linolenic/medium oleic content; the corn variety "Mavera high-value corn" with in-creased lysine content; and the soybean variety "Mavera high value soybean" with yielding 5% more protein compared to conventional varieties when processed into soy-bean meal. Further transgenic plants with altered content are, for example, potato and corn with modified amylopectin content (see e.g. US6784338, US20070261 136); cano-la, corn, cotton, grape, catalpa, cattail, rice, soy- bean, wheat, sunflower, balsam pear and vernonia with a modified oil content (see e.g.
US7294759, US7.157.621 , US5850026, us6441278, US 6380462, 6365802, US 6974898, WO2001079499, US 20060075515 and US7294759); sunflower with increased fatty acid content (see e.g. US6084164); soybeans with modified allergens content (so called "hypoallergenic soy-bean, see e.g. US 6864362); tobacco with reduced nicotine content (see e.g.
US20060185684, WO2005000352 and WO2007064636); canola and soybean with increased lysine content (see e.g. Bio/Technology 13, 1995, 577 - 582); corn and soy-bean with altered composition of methionine, leucine, isoleucine and valine (see e.g. US6946589, US6905877); soybean with enhanced sulfur amino acid content (see e.g. EP0929685, W01997041239); tomato with increased free amino acid contents, such as asparagine, aspartic acid, serine, threo- nine, alanine, histidine and glutamic acid (see e.g. US672741 1 ); corn with enhanced amino acid content (see e.g. WO050771 17); potato, corn and rice with modified starch content (see e.g. W01997044471 and US7317146); tomato,corn, grape, alfalfa, apple, beans and peas with modified flavonoid content (see e.g. WO0004175); corn, rice, sorghum, cotton, soybeans with altered content of phenolic compounds (see e.g. US20080235829). The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Preferably, the plant is selected from soybean, tomatoes and cereals such as wheat, barley, rye and oat, most preferably from soybean and cereals such as wheat, barley, rye and oat. Enhanced nutrient utilization is e.g. assimilation or metabolism of nitrogen or phospho-rous. Preferably, transgenic plants with enhanced nitrogen assimilatory and utilization capacities are selected from for example, canola, corn, wheat, sunflower, rice, tobacco, soybean, cotton, alfalfa, tomato, wheat, potato, sugar beet, sugar cane and rapeseed (see e.g. W0199500991 1 , W01997030163, US6084153, US5955651 and US6864405). Plants with improved phospho- rous uptake are, for example, tomato and potatoe (see e.g. US7417181 ). The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Preferably, the plant is selected from soybean, toma-toes and cereals such as wheat, barley, rye and oat, most preferably from soybean and cereals such as wheat, barley,
Transgenic plants with male steriliy are preferably selected from canola, corn, tomato, rice, Indi- an mustard, wheat, soybean and sunflower (see e.g. US6720481 , US6281348, US5659124, US6399856, US7345222, US7230168, US6072102, EP1 135982, WO2001092544 and
W01996040949). The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Preferably, the plant is selected from soybean, tomatoes and cereals such as wheat, most pref- erably from soybean and cereals such as wheat, barley.
Plants, which produce higher quality fiber are e.g. transgenic cotton plants. The such improved quality of the fiber is related to improved micronaire of the fiber, increased strength, improved staple length, improved length unifomity and color of the fibers (see e.g. WO 1996/26639, US7329802, US6472588 and WO 2001/17333). The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
As set forth above, cultivated plants may comprise one or more traits, e.g. selected from the group consisting of herbicide tolerance, insecticide resistance, fungicidal re-sistance, viral resistance, bacterial resistance, stress tolerance, maturation alteration, content modification, modified nutrient uptake and male sterility (see e.g. WO2005033319 and US6376754).
Examples of commercial available transgenic plants with two combined properties are the corn varieties "YieldGard Roundup Ready" and YieldGard Roundup Ready 2" (Monsanto) with glyphosate tolerance and resistance to corn borer; the corn variety "Agrisure CB/LL" (Syntenta) with glufosinate tolerance and corn borer resistance; the corn variety "Yield Gard VT Root- worm/RR2" with glyphosate tolerance and corn root-worm resistance; the corn variety "Yield Gard VT Triple" with glyphosate tolerance and resistance against corn rootworm and corn borer; the corn variety "Herculex I" with glufosinate tolerance and lepidopteran resistance (Cry1 F), i.e. against western bean cutworm, corn borer, black cutworm and fall armyworm; the corn variety "YieldGard Corn Rootworm/Roundup Ready 2" (Monsanto) with glyphosate tolerance and corn rootworm resistance; the corn variety "Agrisure GT/RW" (Syngenta) with gluphosinate tolerance and lepidopteran resistance (Cry3A), i.e. against western corn rootworm, northern corn root- worm and Mexican corn rootworm; the corn variety "Herculex RW" (Dow, Pioneer) with glufosinate tolerance and lepidopteran resistance (Cry34/35Ab1 ), i.e. against western corn rootworm, northern corn rootworm and Mexican corn root-worm; the corn variety "Yield Gard VT Rootworm/RR2" with glyphosate tolerance and corn rootworm resistance; the soybean variety "Optimum GAT" (DuPont, Pioneer) with glyphosate tolerance and ALS herbicide tolerance; the corn variety "Mavera high-value corn" with glyphosate tolerance, resistance to corn rootworm and European corn borer and high lysine trait. Examples of commercial available transgenic plants with three traits are the corn varie-ty "Her- culex I / Roundup Ready 2" with glyphosate tolerance, gluphosinate tolerance and lepidopteran resistance (Cry1 F), i.e. against western bean cutworm, corn borer, black cutworm and fall armyworm; the corn variety "YieldGard Plus / Roundup Ready 2" (Monsanto) with glyphosate tolerance, corn rootworm resistance and corn borer re-sistance; the corn variety "Agrisure GT/CB/LL" (Syngenta) with tolerance to glyphosate tolerance, tolerance to gluphosinate and corn borer resistance; the corn variety "Hercu-lex Xtra" (Dow, Pioneer) with glufosinate tolerance and lepidopteran resistance (Cryl F + Cry34/35Ab1 ), i.e. against western corn rootworm, northern corn rootworm, Mecxican corn rootworm, western bean cutworm, corn borer, black cutworm and fall armyworm; the corn varieties "Agrisure CB/LL/RW" (Syngenta) with glufosinate toler-ance, corn borer resistance (CrylAb) and lepidopteran resistance (Cry3A), i.e. against western corn rootworm, northern corn rootworm and Mexican corn rootworm; the corn variety "Agrisure 3000GT" (Syngenta) with glyphosate tolerance + corn borer resistance (CrylAb) and lepidopteran resistance (Cry3A), i.e. against western corn rootworm, northern corn rootworm and Mexican corn rootworm. The methods of producing such transgenic plants are generally known to the person skilled in the art.
An example of a commercial available transgenic plant with four traits is„Hercules Quad-Stack" with glyphosate tolerance, glufosinate tolerance, corn borer resistance and corn rootworm resistance.
Preferably, the cultivated plants are plants, which comprise at least one trait selected from herbicide tolerance, insecticide resistance by expression of bacertial toxins, fungi-cidal resistance or viral resistance or bacterial resistance by expression of antipatho-genic substances, stress tolerance, content modification of chemicals present in the cultivated plant compared to the corre- sponding wild-type plant.
More preferably, the cultivated plants are plants, which comprise at least one trait selected from herbicide tolerance, insecticide resistance by expression of bacertial toxins, fungicidal resistance or viral resistance or bacterial resistance by expression of anti-pathogenic substances, content modification of chemicals present in the cultivated plant compared to the corresponding wild-type plant.
Most preferably, the cultivated plants are plants, which are tolerant to the action of herbicides and plants, which express bacterial toxins, which provides resistance against animal pests (such as insects or arachnids or nematodes), wherein the bacteri-al toxin is preferably a toxin from Bacillus thuriginensis. Herein, the cultivated plant is preferably selected from soybean, tomatoes and cereals such as wheat, barley, rye and oat, most preferably from soybean and cereals such as wheat, barley, rye and oat. Pests
The invention in particular relates to application methods for combating arthropod pests, and nematode pests, which are known to transmit virus from plant to plant. The term "soil-living" means that the habitat, breeding ground, area or environment in which a pest or parasite is growing or may grow is the soil.
The use of the compounds according to the present invention extends to a wide range of different animal pests. These include but are not limited to, the following families:
Insects from the order of the lepidopterans (Lepidoptera), for example Agrotis ypsilon, Agrotis segetum, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheimatobia brumata, Choris- toneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendroli- mus pini, Diaphania nitidalis, Diatraea grandiosella, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria bouliana, Feltia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha molesta, Heliothis armigera, Heliothis virescens, Heliothis zea, Hellula undalis, Hibernia defoliaria, Hyphantria cunea, Hyponomeuta malinellus, Keiferia lycopersicella, Lambdina fiscellaria, Laphygma exigua, Leucoptera coffeella, Leucoptera scitella, Lithocolletis blancardella, Lobesia botrana, Loxostege sticticalis, Lymantria dispar, Lymantria monacha, Ly- onetia clerkella, Malacosoma neustria, Mamestra brassicae, Orgyia pseudotsugata, Ostrinia nubilalis, Panolis flammea, Pectinophora gossypiella, Peridroma saucia, Phalera bucephala, Phthorimaea operculella, Phyllocnistis citrella, Pieris brassicae, Plathypena scabra, Plutella xy- lostella, Pseudoplusia includens, Rhyacionia frustrana, Scrobipalpula absoluta, Sitotroga cere- alella, Sparganothis pilleriana, Spodoptera frugiperda, Spodoptera littoralis, Spodoptera litura, Thaumatopoea pityocampa, Tortrix viridana, Trichoplusia ni and Zeiraphera canadensis; beetles (Coleoptera), for example Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus, Am- phimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Aphtho- na euphoridae, Athous haemorrhoidalis, Atomaria linearis, Blastophagus piniperda, Blitophaga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebu- losa, Cerotoma trifurcata, Cetonia aurata, Ceuthorrhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus vespertinus, Crioceris asparagi, Ctenicera ssp., Diabrotica longicornis, Diabrotica semipunctata, Diabrotica 12-punctata Diabrotica speciosa, Diabrotica virgifera, Epilachna varivestis, Epitrix hirtipennis, Eutinobothrus brasiliensis, Hylobius abietis, Hypera brunneipennis, Hypera postica, Ips typographus, Lema bilineata, Lema melanopus, Leptinotarsa decemlineata, Limonius californicus, Lissorhoptrus oryzophilus, Melanotus communis, Meligethes aeneus, Melolontha hippocastani, Melolontha melolontha, Oulema oryzae, Otiorrhynchus sulcatus, Otiorrhynchus ovatus, Phaedon cochleariae, Phyllobius pyri, Phyllotreta chrysocephala, Phyllophaga sp., Phyllopertha horticola, Phyllotreta nemorum, Phyllotreta stri- olata, Popillia japonica, Sitona lineatus and Sitophilus granaria; flies, mosquitoes {Diptera), e.g. Aedes aegypti, Aedes albopictus, Aedes vexans, Anastrepha ludens, Anopheles maculipennis, Anopheles crucians, Anopheles albimanus, Anopheles gam- biae, Anopheles freeborni, Anopheles leucosphyrus, Anopheles minimus, Anopheles quadri- maculatus, Calliphora vicina, Ceratitis capitata, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya macellaria, Chrysops discalis, Chrysops silacea, Chrysops atlanticus, Cochliomyia hominivorax, Contarinia sorghicola Cordylobia anthropophaga, Culicoides furens, Culex pipiens, Culex nigripalpus, Culex quinquefasciatus, Culex tarsalis, Culiseta inornata, Culiseta melanura, Dacus cucurbitae, Dacus oleae, Dasineura brassicae, Delia antique, Delia coarctata, Delia pla- tura, Delia radicum, Dermatobia hominis, Fannia canicularis, Geomyza Tripunctata, Gasterophi- lus intestinalis, Glossina morsitans, Glossina palpalis, Glossina fuscipes, Glossina tachinoides, Haematobia irritans, Haplodiplosis equestris, Hippelates spp., Hylemyia platura, Hypoderma lineata, Leptoconops torrens, Liriomyza sativae, Liriomyza trifolii, Lucilia caprina, Lucilia cu- prina, Lucilia sericata, Lycoria pectoralis, Mansonia titillanus, Mayetiola destructor, Musca au- tumnalis, Musca domestica, Muscina stabulans, Oestrus ovis, Opomyza florum, Oscinella frit, Pegomya hysocyami, Phorbia antiqua, Phorbia brassicae, Phorbia coarctata, Phlebotomus ar- gentipes, Psorophora columbiae, Psila rosae, Psorophora discolor, Prosimulium mixtum, Rhag- oletis cerasi, Rhagoletis pomonella, Sarcophaga haemorrhoidalis, Sarcophaga spp., Simulium vittatum, Stomoxys calcitrans, Tabanus bovinus, Tabanus atratus, Tabanus lineola, and Taba- nus similis, Tipula oleracea, and Tipula paludosa; thrips (Thysanoptera), e.g. Dichromothrips corbetti, Dichromothrips ssp., Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci, termites (Isoptera), e.g. Calotermes flavicollis, Leucotermes flavipes, Heterotermes aureus, Re- ticulitermes flavipes, Reticulitermes virginicus, Reticulitermes lucifugus, Reticulitermes san- tonensis, Reticulitermes grassei, Termes natalensis, and Coptotermes formosanus; cockroaches (Blattaria - Blattodea), e.g. Blattella germanica, Blattella asahinae, Periplaneta americana, Periplaneta japonica, Periplaneta brunnea, Periplaneta fuligginosa, Periplaneta aus- tralasiae, and Blatta orientalis; bugs, aphids, leafhoppers, whiteflies, scale insects, cicadas {Hemiptera), e.g. Acrosternum hilare, Blissus leucopterus, Cyrtopeltis notatus, Dysdercus cingulatus, Dysdercus intermedius, Eurygaster integriceps, Euschistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nezara viridula, Piesma quadrata, Solubea insularis , Thyanta perditor,
Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, Aphis fabae, Aphis forbesi, Aphis pomi, Aphis gossypii, Aphis grossulariae, Aphis schneideri, Aphis spiraecola, Aphis sambuci, Acyrthosiphon pisum, Aulacorthum solani, Bemisia argentifolii, Brachycaudus cardui, Brachy- caudus helichrysi, Brachycaudus persicae, Brachycaudus prunicola, Brevicoryne brassicae, Capitophorus horni, Cerosipha gossypii, Chaetosiphon fragaefolii, Cryptomyzus ribis, Dreyfusia nordmannianae, Dreyfusia piceae, Dysaphis radicola, Dysaulacorthum pseudosolani, Dysaphis plantaginea, Dysaphis pyri, Empoasca fabae, Hyalopterus pruni, Hyperomyzus lactucae, Macrosiphum avenae, Macrosiphum euphorbiae, Macrosiphon rosae, Megoura viciae,
Melanaphis pyrarius, Metopolophium dirhodum, Myzus persicae, Myzus ascalonicus, Myzus cerasi, Myzus varians, Nasonovia ribis-nigri, Nilaparvata lugens, Pemphigus bursarius,
Perkinsiella saccharicida, Phorodon humuli, Psylla mali, Psylla piri, Rhopalomyzus ascalonicus, Rhopalosiphum maidis, Rhopalosiphum padi, Rhopalosiphum insertum, Sappaphis mala, Sap- paphis mali, Schizaphis graminum, Schizoneura lanuginosa, Sitobion avenae, Trialeurodes va- porariorum, Toxoptera aurantiiand, Viteus vitifolii, Cimex lectularius, Cimex hemipterus, Reduvi- us senilis, Triatoma spp., and Arilus critatus; ants, bees, wasps, sawflies {Hymenoptera), e.g. Athalia rosae, Atta cephalotes, Atta capiguara, Atta cephalotes, Atta laevigata, Atta robusta, Atta sexdens, Atta texana, Crematogaster spp., Hoplocampa minuta, Hoplocampa testudinea, Lasius niger, Monomorium pharaonis, Solenopsis geminata, Solenopsis invicta, Solenopsis richteri, Solenopsis xyloni, Pogonomyrmex barbatus, Pogonomyrmex californicus, Pheidole megacephala, Dasymutilla occidentalis, Bombus spp., Vespula squamosa, Paravespula vulgaris, Paravespula pennsylvanica, Paravespula germanica, Dolichovespula maculata, Vespa crabro, Polistes rubiginosa, Camponotus floridanus, and Linepithema humile; crickets, grasshoppers, locusts {Orthoptera), e.g. Acheta domestica, Gryllotalpa gryllotalpa, Lo- custa migratoria, Melanoplus bivittatus, Melanoplus femurrubrum, Melanoplus mexicanus, Mel- anoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Schistocerca america- na, Schistocerca gregaria, Dociostaurus maroccanus, Tachycines asynamorus, Oedaleus sen- egalensis, Zonozerus variegatus, Hieroglyphus daganensis, Kraussaria angulifera, Calliptamus italicus, Chortoicetes terminifera, and Locustana pardalina; arachnoidea, such as arachnids (Acarina), e.g. of the families Argasidae, Ixodidae and Sar- coptidae, such as Amblyomma americanum, Amblyomma variegatum, Ambryomma maculatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Dermacentor andersoni, Dermacentor variabilis, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ixodes scapularis, Ixodes holocyclus, Ixodes pacificus, Ornithodorus mou- bata, Ornithodorus hermsi, Ornithodorus turicata, Ornithonyssus bacoti, Otobius megnini, Der- manyssus gallinae, Psoroptes ovis, Rhipicephalus sanguineus, Rhipicephalus appendiculatus, Rhipicephalus evertsi, Sarcoptes scabiei, and Eriophyidae spp. such as Aculus schlechtendali, Phyllocoptrata oleivora and Eriophyes sheldoni; Tarsonemidae spp. such as Phytonemus palli- dus and Polyphagotarsonemus latus; Tenuipalpidae spp. such as Brevipalpus phoenicis;
Tetranychidae spp. such as Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius and Tetranychus urticae, Panonychus ulmi, Panonychus citri, and Oligonychus pratensis; Araneida, e.g. Latrodectus mactans, and Loxosceles reclusa; fleas {Siphonaptera), e.g. Ctenocephalides felis, Ctenocephalides canis, Xenopsylla cheopis, Pulex irritans, Tunga penetrans, and Nosopsyllus fasciatus, silverfish, firebrat (Thysanura), e.g. Lepisma saccharina and Thermobia domestica, centipedes {Chilopoda), e.g. Scutigera coleoptrata, millipedes {Diplopoda), e.g. Narceus spp.,
Earwigs {Dermaptera), e.g. forficula auricularia, lice (Phthiraptera), e.g. Pediculus humanus capitis, Pediculus humanus corporis, Pthirus pubis, Haematopinus eurysternus, Haematopinus suis, Linognathus vituli, Bovicola bovis, Menopon gallinae, Menacanthus stramineus and Solenopotes capillatus.
Collembola (springtails), e.g. Onychiurus ssp..
The compounds of the present invention, including their salts, N-oxides and stereoisomers are also suitable for controlling nematodes, especially plant parasitic nematodes such as root knot nematodes, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, and other
Meloidogyne species; cyst-forming nematodes, Globodera rostochiensis and other Globodera species; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; Seed gall nematodes, Anguina species; Stem and foliar nematodes, Aphelenchoides species; Sting nematodes, Belonolaimus longicaudatus and other Belono- laimus species; Pine nematodes, Bursaphelenchus xylophilus and other Bursaphelenchus species; Ring nematodes, Criconema species, Criconemella species, Criconemoides species, Mesocriconema species; Stem and bulb nematodes, Ditylenchus destructor, Ditylenchus dip- saci and other Ditylenchus species; Awl nematodes, Dolichodorus species; Spiral nematodes, Heliocotylenchus multicinctus and other Helicotylenchus species; Sheath and sheathoid nema- todes, Hemicycliophora species and Hemicriconemoides species; Hirshmanniella species;
Lance nematodes, Hoploaimus species; false rootknot nematodes, Nacobbus species; Needle nematodes, Longidorus elongatus and other Longidorus species; Lesion nematodes, Pratylen- chus neglectus, Pratylenchus penetrans, Pratylenchus curvitatus, Pratylenchus goodeyi and other Pratylenchus species; Burrowing nematodes, Radopholus similis and other Radopholus species; Reniform nematodes, Rotylenchus robustus and other Rotylenchus species; Scutello- nema species; Stubby root nematodes, Trichodorus primitivus and other Trichodorus species, Paratrichodorus species; Stunt nematodes, Tylenchorhynchus claytoni, Tylenchorhynchus du- bius and other Tylenchorhynchus species; Citrus nematodes, Tylenchulus species; Dagger nematodes, Xiphinema species; and other plant parasitic nematode species.
Compounds and mixtures of the present invention are particularly useful for controlling insects, preferably sucking or piercing insects such as insects from the genera Thysanoptera, Diptera and especially Hemiptera, and chewing-biting pests such as insects from the genera of Lepi- doptera and Coleoptera, in particular the following species: Thysanoptera : Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci,
Diptera, e.g. Aedes aegypti, Aedes albopictus, Aedes vexans, Anastrepha ludens, Anopheles maculipennis, Anopheles crucians, Anopheles albimanus, Anopheles gambiae, Anopheles free- borni, Anopheles leucosphyrus, Anopheles minimus, Anopheles quadrimaculatus, Calliphora vicina, Ceratitis capitata, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya macellaria, Chrysops discalis, Chrysops silacea, Chrysops atlanticus, Cochliomyia hominivorax, Contarinia sorghicola Cordylobia anthropophaga, Culicoides furens, Culex pipiens, Culex nigripalpus, Cu- lex quinquefasciatus, Culex tarsalis, Culiseta inornata, Culiseta melanura, Dacus cucurbitae, Dacus oleae, Dasineura brassicae, Delia antique, Delia coarctata, Delia platura, Delia radicum, Dermatobia hominis, Fannia canicularis, Geomyza Tripunctata, Gasterophilus intestinalis, Glossina morsitans, Glossina palpalis, Glossina fuscipes, Glossina tachinoides, Haematobia irritans, Haplodiplosis equestris, Hippelates spp., Hylemyia platura, Hypoderma lineata, Lepto- conops torrens, Liriomyza sativae, Liriomyza trifolii, Lucilia caprina, Lucilia cuprina, Lucilia seri- cata, Lycoria pectoralis, Mansonia titillanus, Mayetiola destructor, Musca autumnalis, Musca domestica, Muscina stabulans, Oestrus ovis, Opomyza florum, Oscinella frit, Pegomya hysocy- ami, Phorbia antiqua, Phorbia brassicae, Phorbia coarctata, Phlebotomus argentipes, Psoro- phora columbiae, Psila rosae, Psorophora discolor, Prosimulium mixtum, Rhagoletis cerasi, Rhagoletis pomonella, Sarcophaga haemorrhoidalis, Sarcophaga spp., Simulium vittatum, Stomoxys calcitrans, Tabanus bovinus, Tabanus atratus, Tabanus lineola, and Tabanus similis, Tipula oleracea, and Tipula paludosa;
Hemiptera, in particular aphids: Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, Aphis fabae, Aphis forbesi, Aphis pomi, Aphis gossypii, Aphis grossulariae, Aphis schneideri, Aphis spiraecola, Aphis sambuci, Acyrthosiphon pisum, Aulacorthum solani, Brachycaudus car- dui, Brachycaudus helichrysi, Brachycaudus persicae, Brachycaudus prunicola, Brevicoryne brassicae, Capitophorus horni, Cerosipha gossypii, Chaetosiphon fragaefolii, Cryptomyzus ribis, Dreyfusia nordmannianae, Dreyfusia piceae, Dysaphis radicola, Dysaulacorthum pseudosolani, Dysaphis plantaginea, Dysaphis pyri, Empoasca fabae, Hyalopterus pruni, Hyperomyzus lac- tucae, Macrosiphum avenae, Macrosiphum euphorbiae, Macrosiphon rosae, Megoura viciae, Melanaphis pyrarius, Metopolophium dirhodum, Myzodes persicae, Myzus ascalonicus, Myzus cerasi, Myzus varians, Nasonovia ribis-nigri, Nilaparvata lugens, Pemphigus bursarius,
Perkinsiella saccharicida, Phorodon humuli, Psylla mali, Psylla piri, Rhopalomyzus ascalonicus, Rhopalosiphum maidis, Rhopalosiphum padi, Rhopalosiphum insertum, Sappaphis mala, Sap- paphis mali, Schizaphis graminum, Schizoneura lanuginosa, Sitobion avenae, Trialeurodes va- porariorum, Toxoptera aurantiiand, and Viteus vitifolii.
Lepidoptera, in particular: Agrotis ypsilon, Agrotis segetum, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheimatobia brumata, Choristoneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendrolimus pini, Diaphania nitidalis, Diatraea grandiosel- la, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria bouliana, Feltia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha molesta, Heliothis armige- ra, Heliothis virescens, Heliothis zea, Hellula undalis, Hibernia defoliaria, Hyphantria cunea, Hyponomeuta malinellus, Keiferia lycopersicella, Lambdina fiscellaria, Laphygma exigua, Leu- coptera coffeella, Leucoptera scitella, Lithocolletis blancardella, Lobesia botrana, Loxostege sticticalis, Lymantria dispar, Lymantria monacha, Lyonetia clerkella, Malacosoma neustria, Mamestra brassicae, Orgyia pseudotsugata, Ostrinia nubilalis, Panolis flammea, Pectinophora gossypiella, Peridroma saucia, Phalera bucephala, Phthorimaea operculella, Phyllocnistis citrel- la, Pieris brassicae, Plathypena scabra, Plutella xylostella, Pseudoplusia includens, Rhyacionia frustrana, Scrobipalpula absoluta, Sitotroga cerealella, Sparganothis pilleriana, Spodoptera fru- giperda, Spodoptera littoralis, Spodoptera litura, Thaumatopoea pityocampa, Tortrix viridana, Trichoplusia ni and Zeiraphera canadensis.
Compounds and mixtures of the present invention are particularly useful for controlling insects from the order of Coleoptera, in particular Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus, Amphimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Aph- thona euphoridae, Athous haemorrhoidalis, Atomaria linearis, Blastophagus piniperda, Blitoph- aga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebulosa, Cerotoma trifurcata, Cetonia aurata, Ceuthorrhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus vespertinus, Crioceris asparagi, Ctenicera ssp., Dia- brotica longicornis, Diabrotica semipunctata, Diabrotica 12-punctata Diabrotica speciosa, Dia- brotica virgifera, Epilachna varivestis, Epitrix hirtipennis, Eutinobothrus brasiliensis, Hylobius abietis, Hypera brunneipennis, Hypera postica, Ips typographus, Lema bilineata, Lema melano- pus, Leptinotarsa decemlineata, Limonius californicus, Lissorhoptrus oryzophilus, Melanotus communis, Meligethes aeneus, Melolontha hippocastani, Melolontha melolontha, Oulema ory- zae, Otiorrhynchus sulcatus, Otiorrhynchus ovatus, Phaedon cochleariae, Phyllobius pyri, Phyllotreta chrysocephala, Phyllophaga sp., Phyllopertha horticola, Phyllotreta nemorum, Phyllotreta striolata, Popillia japonica, Sitona lineatus and Sitophilus granaria. The compounds of formula I and their mixtures are particularly useful for controlling insects of the orders aphids, leafhoppers, whiteflies and also from the orders Lepidoptera, Coleoptera, Hemiptera and Thysanoptera.
Examples
The present invention is now illustrated in further detail by the following examples.
The compounds I of formula I can be accomplished according to standard methods of organic chemistry, e.g. by the methods or working examples described in WO 2007/006670,
PCT/EP2012/065650, PCT/E P2012/065651.
The characterization can be done by coupled High Performance Liquid Chromatography / mass spectrometry (HPLC/MS), by NMR or by their melting points.
A group of especially preferred compounds of formula I are compounds of formula IA-1 as listed in table C below.
Method A: Analytical HPLC column: RP-18 column Chromolith Speed ROD from Merck
KgaA (Germany). Elution: acetonitrile + 0.1 % trifluoroacetic acid (TFA) / water + 0.1 % trifluoroacetic acid (TFA) in a ratio of from 5:95 to 95:5 in 5 minutes at 40 °C.
Method B: Analytical UPLC column: Phenomenex Kinetex 1 ,7 μηι XB-C18 100A; 50 x 2.1 mm; mobile phase: A: water + 0.1 % trifluoroacetic acid (TFA); B: acetonitrile + 0.1 % TFA; gradient:
5-100% B in 1.50 minutes; 100% B 0.20 min; flow: 0,8-1 ,0mL/min in 1 ,50 minutes at 60°C.
MS-method: ESI positive. 1H-NMR. The signals are characterized by chemical shift (ppm) vs. tetramethylsilane, by their multiplicity and by their integral (relative number of hydrogen atoms given). The following abbreviations are used to characterize the multiplicity of the signals: m = multiplett, q = quartett, t = triplett, d = doublet and s = singulett.
Preparation Examples:
logP determinations were performed via capillary electrophorese on a cePro9600™ from CombiSep.
Starting materials
6,8-dichloro-1 H-benzo[d][1 ,3]oxazine-2,4-dione and 6-chloro-8-methyl-1 H-3,1 - benzoxazine-2,4-dione were prepared according to WO 2007/43677.
S,S-Diisopropyl-S-aminosulfonium 2,4,6-trimethylphenylsulfonat was prepared according to Y. Tamura et al, Tetrahedron 1975, 31 , 3035-3040.
2-(3-Chloropyridin-2-yl)-5-bromo-2H-pyrazole-3-carbonyl chloride was prepared according to WO 2007/24833.
Preparation Examples P.1 to P.4
Example P.1 : S,S-Dimethyl sulfinium sulfate
To a solution of sodium methylate (15.76 g of a 30% solution in methanol, 87.54 mmol,
1 .100 equiv.) in methanol (60 mL) was added dimethyl sulphide (5.44 g, 6.40 mL, 87.6 mmol, 1 .10 equiv.) at -5-0°C. To this mixture was added a pre-cooled solution (-20°C) of hydroxyla- mine-O-sulfonic acid (9.00 g, 79.6 mmol) in methanol (60 mL) and the internal temperature was maintained at -5-0°C. After stirring at room temperature overnight, all solids were removed by filtration. The filtrate was concentrated in vacuo and the residue was triturated with acetonitrile (50 mL) to yield the title compound (7.88 g, 39%).
The following compounds were prepared by analogy to example P.1 :
S,S-diethyl sulfinium sulfate
S-ethyl-S-isopropyl sulfinium sulfate
S,S-diisopropyl sulfinium sulfate
S,S-bis(2-cyclopropylmethyl) sulfinium sulfate
S,S-bis(2-cyclopropylethyl) sulfinium sulfate
S,S-bis(cyclobutylmethyl) sulfinium sulfate
S,S-bis(cyclopentylmethyl) sulfinium sulfate
S-cyclopropylmethyl-S-ethyl sulfinium sulfate
S-(2-cyclopropylethyl)-S-ethyl sulfinium sulfate
S-(2-cyclopropylethyl)-S-isopropyl sulfinium sulfate
S-(1 -cyclopropylethyl)-S-isopropyl sulfinium sulfate
S-cyclobutylmethyl-S-ethyl sulfinium sulfate
S-cyclopentylmethyl-S-ethyl sulfinium sulfate S-cyclopropylmethyl-S-isopropyl sulfinium sulfate
S-cyclobutylmethyl-S-isopropyl sulfinium sulfate
5- cyclopentylmethyl-S-isopropyl sulfinium sulfate
S,S-di-n-propyl sulfinium sulfate
S-vinyl-S-ethyl sulfinium sulfate
Example P.2: 8-Bromo-6-chloro-1 H-benzo[d][1 ,3]oxazine-2,4-dione
To a solution of 2-amino-3-bromo-5-chlorobenzoic acid (10.0 g, 39.9 mmol) in dioxane (170 mL) was added phosgene (20% in toluene, 42.0 mL, 79.9 mmol) over a period of 15 mins. The reac- tion was stirred at ambient temperature for 48 h and then concentrated in vacuo. The resulting solid was crushed and further dried in vacuo to yield the desired product (12.6 g, 1 14%) which was used in the subsequent step without further purification.
The following compounds were prepared by analogy to example P.2:
6,8-dichloro-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6,8-dibromo-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6- Bromo-8-chloro-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
8-Bromo-6-chloro-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-chloro-8-methyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-bromo-8-methyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-cyano-8-methyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-chloro-8-trifluoromethyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
8-chloro-6-trifluoromethyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-bromo-8-trifluoromethyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
8-bromo-6-trifluoromethyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
8-chloro-6-cyano-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-chloro-8-methoxy-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-chloro-8-cyclopropyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-chloro-8-ethyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-difluoromethoxy-8-methyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-cyano-8-methoxy-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-fluoro-8-methyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-iodo-8-methyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-nitro-8-methyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-(5-chloro-2-thienyl)-8-methyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-(3-pyrazol-1 H-yl)-8-methyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-(3-isoxazolyl)-8-methyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-(hydroxyiminomethyl)-8-methyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-(methoxyiminomethyl)-8-methyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione,
6-(dimethylhydrazonomethyl)-8-methyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione and
6-(2,2,2-trifluoroethylhydrazonomethyl)-8-methyl-1 H-benzo[d][1 ,3]oxazine-2,4-dione. Example P.3: 1 -(3-chloro-2-pyridyl)-3-trifluoromethyl-1 H-pyrazol
a) 2.71 kg of 1 ,1 ,1 -trifluoro-4-methoxy-but-3-en-2-one, 2,44 kg of ethanol and 3.10 kg of water were charged into a reaction vessel. 20 ml of concentrated hydrochloric acid and 0,80 kg of hydrazine hydrate were successively added and the mixture was heated to reflux for 4 h. The mix- tures was allowed to cool and neutralized by addition of 10 % aqueous NaOH to about pH 4-5. Then the mixture was evaporated. Toluene was added and the mixture was again evaporated to yield 2 kg of raw 3-trifluoromethylpyrazole with a purity of > 85 %.
b) 1 .72 kg (10.75 mol) of the raw 3-trifluoromethylpyrazole obtained in step a), 1.75 kg (1 1.83 mol) of 2,3-dichloropyridine and 4.73 kg of dimethyl formamide were charged to a reaction ves- sel. 2.97 kg (21.50 mol) of potassium carbonate were added, the mixture was heated to 120°C with stirring and kept at 120-125°C for further 3 h. The reaction mixtures was cooled to 25°C and poured into 20 I of water. The thus obtained mixture was extracted twice with 5 L of tert- butylmethyl ether. The combined organic phases were washed with 4 I of water and then evaporated to dryness. Toluene was added and the mixture was again evaporated to dryness. There- by, the 2.7 kg of the title compound was obtained (purity > 75% as determined by GC; yield 81.5%). The product can be purified by distillation.
H-NMR (400 MHz, CDCI3): δ [delta] = 6.73 (d, 1 H), 7.38 (d, 1 H), 7.95 (m, 1 H), 8.14 (m, 1 H), 8.46 (m, 1 H). Example P.4: 2-(3-Chloropyridin-2-yl)-5-trifluoromethyl-2H-pyrazole-3-carbonyl chloride
In a reaction vessel equipped with a thermometer, septum, nitrogen inlet and stirring bar, 10.0 g (40.4 mmol) of 1 -(3-chloro-2-pyridyl)-3-trifloromethyl-1 H-pyrazole were dissolved in 50 ml of dry dimethoxyethane. By means of a syringe, 40.4 ml of a 2 M solution (80.8 mmol, 2.0 equiv.) of isopropyl magnesium chloride in tetrahydrofuran were added dropwise with stirring, while cool- ing the vessel with an ice bath and keeping the internal temperature at about 5°C. The mixture was stirred for further 2 hours at 5°C. Then the ice-bath was removed and carbon dioxide was bubbled through mixture causing an increase of the temperature up to 28°C. After 10 minutes, the exothermic reaction has ceased, and, the mixture was cooled and all volatiles were removed by evaporation. The residue containing the carboxylate compound l-A was taken up in 50 ml. of dichloromethane and one drop of dry DMF was added. To this mixture, 14.41 g (121 .2 mmol, 3.0 equiv.) of thionyl chloride were added and heated to reflux for 3 hours. After cooling, the resulting precipitate was removed by filtration and the mother liquid was concentrated in vacuum to obtain 13.0 g of the title compound (purity >85%, yield 100%) which was used in the next step without further purification.
H-NMR (400 MHz, CDC ): 5[delta] = 7.43-7.54 (m, 2H), 7.93 (d, 1 H), 8.52 (m, 1 H).
Example P.5: 2-amino-5-chloro-N-(dimethyl- 4-sulfanylidene)-3-methyl-benzamide
To a solution of 6-chloro-8-methyl-1 H-3,1 -benzoxazine-2,4-dione (3.00 g, 12.8 mmol) in dichloromethane (40 ml.) was added dimethyl sulfinium sulfate (2.25 g, 8.93 mmol, 0.70 equiv.) and potassium tert-butylate (1 .58 g, 14.0 mmol, 1.10 equiv.) at room temperature. The mixture was stirred for 1.5 h, upon which water was added and the layers were separated. The aqueous layer was extracted with dichloromethane, combined organic layers were dried over sodium sulphate and concentrated in vacuo. The residue was purified by flash-chromatography on silica gel to yield the title compound (2.63 g, 84%).
Characterization by HPLC-MS: 1 .855 min, M = 245.00.
Example P.6: 2-amino-5-chloro-N-(bis-2-methylpropyl- 4-sulfanylidene)-3-methyl-benzamide To a solution of 6-chloro-8-methyl-1 H-3,1 -benzoxazine-2,4-dione (3.00 g, 12.8 mmol) in dichloromethane (40 mL) was added bis-2-methylpropyl sulfinium sulfate (3.76 g, 8.93 mmol, 0.70 equiv.) and potassium tert-butylate (1.58 g, 14.0 mmol, 1 .10 equiv.) at room temperature. The mixture was stirred for 1 .5 h, upon which water was added and the layers were separated. The aqueous layer was extracted with dichloromethane, combined organic layers were dried over sodium sulphate and concentrated in vacuo. The residue was purified by flash-chromatography on silica gel to yield the title compound (2.89 g, 69%).
Characterization by H-NMR (400 MHz, DMSO-de): 5[delta] = 1.04 (m, 12 H), 2.06 (s, 3H), 2.96 (m, 2H), 3.01 (m, 2H), 6.62 (br. s, 2H), 7.03 (s, 1 H), 7.72 (s, 1 H).
Example P.7: 2-amino-5-chloro-N-(diethyl- 4-sulfanylidene)-3-methyl-benzamide
To a solution of 6-chloro-8-methyl-1 H-3,1 -benzoxazine-2,4-dione (2 g, 0.01 mol) in anhydrous propylene carbonate (30 mL) was added bis-2-ethyl sulfinium sulfate (2.04 g, 0.01 mol, 0.70 equiv.) and triethyl amine (1 .38 mL, 1.0 g g, 0.01 mol, 1.05 equiv.) at room temperature. The mixture was stirred for 4.5 h, and then added dropwise to ice-water. The mixture was extracted with dichloromethane and the combined organic layers were dried over sodium sulphate and concentrated in vacuo. The residue was triturated with ether to yield the title compound (1.43 g, 55%).
Characterization by H-NMR (400 MHz, CDCI3): 5[delta] = 1.39 (t, 6 H), 2.13 (s, 3H), 3.02 (q, 4H), 5.95 (br. S, 2H), 7.01 (s, 1 H), 7.98 (s, 1 H).
Example P.8: 2-amino-3,5-dichloro-N-(bis-2-methylpropyl- 4-sulfanylidene)-benzamide
The title compound was prepared by analogy to the method of example P.6
Yield: 60%
Characterization by H-NMR (400 MHz, DMSO-d6): 5[delta] = 1.23 (d, 6H), 1 .38 (d, 6H), 3.42 (m, 2H), 7.02 (br. s, 2H), 7.41 (s, 1 H), 7.95 (s, 1 H).
Example P.9: 2-amino-3,5-dibromo-N-(bis-2-methylpropyl- 4-sulfanylidene)-benzamide
The title compound was prepared by analogy to the method of example P.6
Yield: 66%
Characterization by HPLC-MS: 3.409 min, m/z = 410.90 (Method A) Preparation of the compounds of formula IA-1 (Examples 1 to 4)
Figure imgf000112_0001
Example 1 : 2-(3-chloro-2-pyridyl)-N-[2,4-dichloro-6-[(diethyl- 4- sulfanylidene)carbamoyl]phenyl]-5-(trifluoromethyl)pyrazole-3-carboxamide (Compound 1-16) To a suspension of potassium carbonate (8.08 g, 58.5 mmol, 1 .50 equiv) and 2-amino-3,5- dichloro-N-(diethyl- 4-sulfanylidene)benzamide (1 1 .43 g, 38.98 mmol) in acetonitrile (100 mL) was added a solution of 2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carbonyl chloride (15.8 g, 43.31 mmol, 1 .10 equiv.) in acetonitrile (50 mL) at room temperature. After 6 h at this temperature, the solids were filtered off. The resulting filtrate was washed with water and dried over Na2S04. After filtration, the filtrate was concentrated in vacuum and the resulting solids were crystallized from diisopropyl ether to yield the title compound (19.53 g, 88%).
Characterization by 1H-NMR (400 MHz, DMSO-afe):
5[delta] = 1.13 (t, 6H), 2.91 (m, 2H), 3.08 (m, 2H), 7.67 (dd, 1 H), 7.77 (s, 2H), 7.89 (s, 1 H), 8.22 (d, 1 H), 8.51 (d, 1 H), 10.73 (s, 1 H).
Example 2: Synthesis of 2-(3-chloro-2-pyridyl)-N-[2,4-dichloro-6-[(bis-2-propyl- 4- sulfanylidene)carbamoyl]phenyl]-5-(trifluoromethyl)pyrazole-3-carboxamide (Compound (I-26) To a suspension of potassium carbonate (0.892 g, 6.46 mmol, 1 .10 equiv) and 2-amino-3,5- dichloro-N-(bis-2-propyl- 4-sulfanylidene)benzamide (2.05 g, 5.87 mmol) in toluene (30 mL) was added a solution of 2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carbonyl chloride (2.02 g, 5.87 mmol, 1.00 equiv.) in toluene (20 mL) at 60°C. After 45 min at this temperature, the mixture was cooled and water was added. The resulting precipitate was collected by filtration, washed with water and toluene and dried to obtain the title compound (3.07 g, 84%).
Characterization by HPLC-MS: 1 .395 min, M = 602.1 (Method B)
Characterization by 1H-NMR (400 MHz, DMSO-afe):
5[delta] = 1 .18 (d, 6H), 1.22 (d, 6H), 3.30 (m, 2H), 7.68 (dd, 1 H), 7.75 (m, 2H), 7.81 (s, 1 H), 8.21 (d, 1 H), 8.54 (d, 1 H), 10.76 (s, 1 H). Example 3: Synthesis of 2-(3-chloro-2-pyridyl)-N-[2-methyl-4-chloro-6-[(bis-2-propyl- 4- sulfanylidene)carbamoyl]phenyl]-5-(trifluoromethyl)pyrazole-3-carboxamide (Compound 1-21 ) To a suspension of potassium carbonate (126.01 g, 91 1 .76 mmol, 1.30 equiv) and 2-amino-3- methyl-5-chloro-N-(bis-2-propyl- 4-sulfanylidene)benzamide (21 1 g, 701 mmol) in
dichloromethane (300 ml.) was added a solution of 2-(3-chloro-2-pyridyl)-5-
(trifluoromethyl)pyrazole-3-carbonyl chloride (256.78 g, 771 .49 mmol, 1.10 equiv.) in
dichloromethane (200 ml.) at room temperature. After 2 h at this temperature, the solids were filtered off. The resulting filtrate was washed with water and dried over Na2S04. After filtration, the filtrate was concentrated in vacuum and the resulting solids were crystallized from diisopro- pyl ether to yield the title compound (344.2 g, 85%).
Characterization by HPLC-MS: 1.303 min, M= 574.3 (Method B)
Characterization by H-NMR (400 MHz, DMSO-d6): 5[delta] = 1.20 (d, 6H), 1.30 (d, 6H), 2.15 (s, 3H), 3.30 (m, 2H), 7.41 (s, 1 H), 7.62 (m, 2H), 7.80 (s, 1 H), 8.22 (d, 1 H), 8.52(d, 1 H), 10.88 (s, 1 H).
Example 4a: 2-(3-chloro-2-pyridyl)-N-[2-methyl-4-chloro-6-[(diethyl- 4- sulfanylidene)carbamoyl]phenyl]-5-(trifluoromethyl)pyrazole-3-carboxamide (Compound 1-1 1 ) To a suspension of potassium carbonate (0.71 g, 10 mmol, 1.3 equiv) and 2-amino-3-methyl-5- chloro-N-(diethyl- 4-sulfanylidene)benzamide (1.42 g, 3.96 mmol) in propylene carbonate (20 ml.) was added a solution of 2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carbonyl chloride (1 .35 g, 4.35 mmol, 1.10 equiv.) in propylene carbonate (10 ml.) at room temperature. After 24 h at this temperature, the mixture was poured onto water and spiked with ethanol under vigorous stirring. The resulting solids were collected by filtration and contained pure title compound (1.57 g, 73%).
Characterization by HPLC-MS: 1 .19 min, m/z 546.1 (M+H)+; (Method B)
Characterization by H-NMR (500 MHz, DMSO) [delta]: 10.87 (s, 1 H), 8.53 (d, 1 H), 8.22 (d, 1 H), 7.75 (s, 1 H), 7.65 (m, 2H), 7.40 (s, 1 H), 3.09 (m, 2H), 2.92 (m, 2H) 1 .15 (m, 6H).
Example 4b: 2-(3-chloro-2-pyridyl)-N-[2-methyl-4-chloro-6-[(diethyl- 4- sulfanylidene)carbamoyl]phenyl]-5-(trifluoromethyl)pyrazole-3-carboxamide (Compound 1-1 1 ) To a solution of 2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carbonyl chloride
(150 g, 435 mmol) in acetonitrile (900 ml.) at room temperature was added potassium carbonate (59 g, 427 mmol). A solution of 2-amino-5-chloro-N-(diethyl-sulfanylidene)-3-methyl- benzamide (1 17 g, 427 mmol) in acetonitrile (100 ml.) was added dropwise within 1 hour while maintaining a reaction temperature of 25-28°C with occasional cooling (slightly exothermic reaction). The mixture was stirred for 16 hours at room temperature. The reaction mixture was then poured on ice-water mixture (5
L) and the pH was adjusted to 7-8 with concentrated HCI. The mixture stirred for an additional 2 hours. The light brown solid was filtered, washed with water and dried under air to give the crude product (229 g). 3 combined batches of crude product (789 g) were suspended in acetonitrile (2.6 L) and dissolved upon heating at 60°C. After 1 hour of stirring at 60°C the solution was cooled by means of an ice-bath and the thereby formed solid was filtered off. The mother-liquor was concentrated to 300 mL and cooled with ice-bath. Thereby additional solid formed was filtered. The combined solids were washed with cold acetonitrile and dried at 50°C in a vacuum-oven over night to give the title product (703 g, 89%) as a crystalline white solid.
By the methods described in examples 1 to 4 or analogy therof, the compounds of formula (IA- 1 ) summarized in table C were prepared:
Figure imgf000114_0001
Table C
Figure imgf000114_0002
Figure imgf000115_0001
B. Biology
Trial results: Applications of compounds of the invention, or combinations comprising it, to con- trol tomato yellow leaf curl virus (TYLC) in tomatoes.
1 . Foliar use
Method:
Studies are carried out on tomato plants of the variety Fayrouz with the main goal to measure efficacy on the whitefly Bemisia tabaci. The plot size is e.g. 4.8 m2 and 6 replicates are used in the trial. Products are applied 3 times on young tomato plants at BBCH stages 14, 17 and 51 at spray intervals between 12 and 19 days. The spray volume is at the first application 350 l/ha and later 500 l/ha. The evaluation of this study is done counting the adult whiteflies (Bemisia tabaci) as well as the nymphs and the eggs in each plot. In addition to the direct whitefly effect, visual symptoms of the virus, mainly TYLCV (tomato yellow leaf curl virus) are evaluated also. 2. Soil use
Method:
2.1 . Soil studies are carried out on tomato plants with the main goal to measure efficacy on the whitefly Bemisia tabaci. The plot size is e.g. 4.8 m2 and 6 replicates are used in the trial. Prod- ucts are applied once on young tomato plants at BBCH stage 14 as a drench. The spray volume is at the first application 350 l/ha. The evaluation of this study is done counting the adult white- flies (Bemisia tabaci) as well as the nymphs and the eggs in each plot. In addition to the direct whitefly effect, visual symptoms of the virus, mainly TYLCV (tomato yellow leaf curl virus) are evaluated also.
2. 2. Barley seeds are treated with ten different concentrations of technical active ingredient (compounds of formula I), dissolved in acetone. Treated barley seeds are sown into small plastic flowerpots (4 pots per concentration) containing standard soil. The pots are carefully irrigated and kept in a greenhouse (23C, 50%RH). When the plants are approximately 5cm high
(BBCH 12), the young barley plants are infested with BYDV-viruliferous Rhopalosiphum padi (BYDV: barley yellow dwarf virus). Two weeks after planting single leaves are removed from each pot, and leaf disks are punched out of the tip of five different leaves. They are transferred into 96 well microtiter plates. Each treatement-dose combination is represented 20 times. Fresh aphids from the aphid colony are added to each well. The plates w are covered with an air per- meable plastic foil and incubated for three days. Compound efficacy is then assessed. ED50 values are obtained fitting the data with a non-linear two parameter logistic model. Plant height is recorded shortly before harvesting the treated plants, by measuring the length of the longest leaf growing in the respective pot. On day 14 after the first infestation, aphid population densities are scored on the barley plants and ranked (4 = very high aphid density; 3 = many aphids; 2 = average aphid density; 1 = few aphids; 0 = no aphids). Fourteen days after the first infestation, leafs are cut from the potted plants. The leaf samples are later used for the ELISA test. For the ELISA test, leaves from each pot are treated separately, resulting in four replicates per treatment and dilution. For the test, three identical plates are prepared. In addition to plant material from the differently treated plants, a BYDV positive control and a BYDV negative control (one well) provided with the ELISA test kit, is added to the plates. At the end of each ELISA test preparation the 96-well microtiter plates containing the sample extracts are assessed measuring optical absorbances (405 nm) using a plate reader.
In this test, compound 1-1 1 showed a reduction in virus transmission as shown in figure 1 .
Plant height (in cm, figure 2), plant biomass (in g, figure 3) were measured and aphid densities were determined (aphid density rating: 3 = many aphids; 2 = average aphid density; 1 = few aphids; 0 = no aphids, figure 4).
As can be seen in figures 1 to 4, treatment of barley seeds with compounds of formula I, exemplified with compound 1-1 1 , lead to a reduction in virus transmission by aphids. Additionally, aphid density is reduced and both plant biomass and plant height are increased as compared to untreated controls.

Claims

Claims
1 . Use of at least one pesticidally active anthranilamide compound of formula (I):
Figure imgf000117_0001
wherein
R1 is selected from the group consisting of halogen, methyl and halomethyl;
R2 is selected from the group consisting of hydrogen, halogen, halomethyl and cyano;
R3 is selected from hydrogen, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6-alkenyl, C2-C6- haloalkenyl, C2-C6-alkinyl, C2-C6-haloalkinyl, Cs-Cs-cycloalkyl, Cs-Cs-halocycloalkyl, Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C4-haloalkoxy-Ci-C4-alkyl,
C(=0)Ra, C(=0)ORb and C(=0)NRcRd;
R4 is hydrogen or halogen;
R5, R6 are selected independently of one another from the group consisting of hydrogen, Ci-Cio-alkyl, Cs-Cs-cycloalkyl, C2-Cio-alkenyl, C2-Cio-alkynyl, wherein the aforementioned aliphatic and cycloaliphatic radicals may be substituted with 1 to 10 substitu- ents Re, and phenyl, which is unsubstituted or carries 1 to 5 substituents Rf; or
R5 and R6 together represent a C2-C7-alkylene, C2-C7-alkenylene or
C6-Cg-alkynylene chain forming together with the sulfur atom to which they are attached a 3-, 4-, 5-, 6-, 7-, 8-, 9- or 10-membered saturated, partially unsaturated or fully unsaturated ring, wherein 1 to 4 of the CH2 groups in the C2-C7-alkylene chain or 1 to 4 of any of the CH2 or CH groups in the C2-C7-alkenylene chain or 1 to 4 of any of the CH2 groups in the C6-Cg-alkynylene chain may be replaced by 1 to 4 groups independently selected from the group consisting of C=0, C=S, O, S, N, NO, SO, SO2 and NH, and wherein the carbon and/or nitrogen atoms in the C2- C7-alkylene, C2-C7-alkenylene or Ce-Cg-alkynylene chain may be substituted with 1 to 5 substituents independently selected from the group consisting of halogen, cy- ano, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy, Ci-C6-alkylthio, Ci-C6-haloalkylthio, Cs-Cs-cycloalkyl, C3-Cs-halocycloalkyl, C2-C6-alkenyl, C2-C6- haloalkenyl, C2-C6-alkynyl and C2-C6-haloalkynyl; said substituents being identical or different from one another if more than one substituent is present;
R7 is selected from the group consisting of bromo, chloro, difluoromethyl, trifluorome- thyl, nitro, cyano, OCH3, OCHF2, OCH2F, OCH2CF3, S(=0)nCH3, and S(=0)nCF3; Ra is selected from the group consisting of Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkinyl, Cs-
Cs-cycloalkyl, Ci-C6-alkoxy, Ci-C6-alkylthio, Ci-C6-alkylsulfinyl, Ci-C6-alkylsulfonyl, wherein one or more CH2 groups of the aforementioned radicals may be replaced by a C=0 group, and/or the aliphatic and cycloaliphatic moieties of the aforementioned radicals may be unsubstituted, partially or fully halogenated and/or may carry 1 or 2 substituents selected from C1-C4 alkoxy;
phenyl, benzyl, pyridyl and phenoxy, wherein the last four radicals may be unsubstituted, partially or fully halogenated and/or carry 1 , 2 or 3 substituents selected from Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy, (Ci-C6-alkoxy)carbonyl, Ci-C6-alkylamino and di-(Ci-C6-alkyl)amino,
Rb is selected from the group consisting of Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkinyl, Cs- Cs-cycloalkyl, Ci-C6-alkoxy, Ci-C6-alkylthio, Ci-C6-alkylsulfinyl, Ci-C6-alkylsulfonyl, wherein one or more CH2 groups of the aforementioned radicals may be replaced by a C=0 group, and/or the aliphatic and cycloaliphatic moieties of the aforementioned radicals may be unsubstituted, partially or fully halogenated and/or may carry 1 or 2 substituents selected from Ci-C4-alkoxy;
phenyl, benzyl, pyridyl and phenoxy, wherein the last four radicals may be unsubstituted, partially or fully halogenated and/or carry 1 , 2 or 3 substituents selected from Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy and (C1-C6- alkoxy)carbonyl;
Rc, Rd are, independently from one another and independently of each occurrence, selected from the group consisting of hydrogen, cyano, Ci-C6-alkyl, C2-C6-alkenyl, C2- C6-alkinyl, Cs-Cs-cycloalkyl, wherein one or more CH2 groups of the aforementioned radicals may be replaced by a C=0 group, and/or the aliphatic and cycloaliphatic moieties of the aforementioned radicals may be unsubstituted, partially or fully halogenated and/or may carry 1 or 2 radicals selected from Ci-C4-alkoxy;
Ci-C6-alkoxy, Ci-C6-haloalkoxy, Ci-C6-alkylthio, Ci-C6-alkylsulfinyl, C1-C6- alkylsulfonyl, Ci-C6-haloalkylthio, phenyl, benzyl, pyridyl and phenoxy, wherein the four last mentioned radicals may be unsubstituted, partially or fully halogenated and/or carry 1 , 2 or 3 substituents selected from Ci-C6-alkyl, Ci-C6-haloalkyl, C1-C6- alkoxy, C1-C6 haloalkoxy and (Ci-C6-alkoxy)carbonyl; or
Rc and Rd, together with the nitrogen atom to which they are bound, may form a 3-, 4-, 5-, 6- or 7-membered saturated, partially unsaturated or fully unsaturated hetero- cyclic ring which may additionally contain 1 or 2 further heteroatoms or heteroatom groups selected from N , O, S, NO, SO and SO2, as ring members, where the heterocyclic ring may optionally be substituted with halogen, Ci-C4-haloalkyl, C1-C4- alkoxy or Ci-C4-haloalkoxy;
Re is independently selected from the group consisting of halogen, cyano, nitro, -OH , - SH , -SCN , Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkinyl, Cs-Cs-cycloalkyl, wherein one or more CH2 groups of the aforementioned radicals may be replaced by a C=0 group, and/or the aliphatic and cycloaliphatic moieties of the aforementioned radicals may be unsubstituted, partially or fully halogenated and/or may carry 1 or 2 radicals selected from C1-C4 alkoxy;
Ci-C6-alkoxy, Ci-C6-haloalkoxy, Ci-C6-alkylthio, Ci-C6-alkylsulfinyl, C1-C6- alkylsulfonyl, Ci-C6-haloalkylthio, -ORa, -N RcRd, -S(0)nRa, -S(0)nN RcRd,
-C(=0)Ra, -C(=0)N RcRd, -C(=0)ORb, -C(=S)Ra, -C(=S)N RcRd, -C(=S)ORb,
-C(=S)SRb, -C(=N Rc)Rb, -C(=N Rc)N RcRd, phenyl, benzyl, pyridyl and phenoxy, wherein the last four radicals may be unsubstituted, partially or fully halogenated and/or carry 1 , 2 or 3 substituents selected from Ci-C6-alkyl, Ci-C6-haloalkyl, C1-C6- alkoxy and Ci-C6-haloalkoxy; or
two vicinal radicals Re together form a group =0, =CH(Ci-C4-alkyl), =C(Ci-C4- alkyl)Ci-C4-alkyl, =N (Ci-C6-alkyl) or =NO(Ci-C6-alkyl);
Rf is independently selected from the group consisting of halogen, cyano, nitro, -OH , - SH , -SCN , Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkinyl, Cs-Cs-cycloalkyl, wherein one or more CH2 groups of the aforementioned radicals may be replaced by a C=0 group, and/or the aliphatic and cycloaliphatic moieties of the aforementioned radicals may be unsubstituted, partially or fully halogenated and/or may carry 1 or 2 radicals selected from C1-C4 alkoxy;
Ci-C6-alkoxy, Ci-C6-haloalkoxy, Ci-C6-alkylthio, Ci-C6-alkylsulfinyl, C1-C6- alkylsulfonyl, Ci-C6-haloalkylthio, -ORa, -N RcRd, -S(0)nRa, -S(0)nN RcRd,
-C(=0)Ra, -C(=0)N RcRd, -C(=0)OR , -C(=S)Ra, -C(=S)N RcRd, -C(=S)OR ,
-C(=S)SR , -C(=N Rc)R , and -C(=N Rc)N RcRd; k is O or l ; n is 0, 1 or 2; or a stereoisomer, salt, tautomer or N-oxide, or a polymorphic crystalline form, a co-crystal or a solvate of a compound or a stereoisomer, salt, tautomer or N-oxide thereof, for reducing insect-vectored viral infection in a plant.
Use according to claim 1 , wherein the compound of formula I is combined with one or more other pesticidally active compound(s) II selected from insecticides, fungicides and plant activators. Use according to claim 1 or 2, in which the compound of formula I is a compound of formula IA:
Figure imgf000120_0001
wherein
4 is halogen.
Use according to claim 1 , 2 or 3, in which the compound of formula I is a compound of formula IB:
Figure imgf000120_0002
R2 is selected from the group consisting of bromo, chloro, cyano;
R7 is selected from the group consisting of bromo, chloro, trifluoromethyl, OCHF2.
Use according to claim 1 , 2 or 3, in which the compound of formula I is a compound of formula IC:
Figure imgf000121_0001
wherein
R1 is selected from the group consisting of halogen and halomethyl;
R2 is selected from the group consisting of bromo, chloro and cyano.
Use according to claim 1 , 2 or 3, in which the compound of formula I is a compound of formula ID:
Figure imgf000121_0002
wherein
R1 is selected from the group consisting of halogen, methyl and halomethyl;
R2 is selected from the group consisting of bromo, chloro and cyano.
Use according to any of claims 1 to 6, in which in the compound of formula I
R5 and R6 are selected from methyl, ethyl, isopropyl, n-propyl, n-butyl, isobutyl, tert-butyl, cyclopropyl, cyclopropylmethyl.
Use according to any of claims 1 to 7, in which in the compound of formula I
R5 and R6 are identical.
Use of a pesticidally active compound of formula (I) as defined in any of claims 1 to 8, for reducing insect-vectored-viral transmission amongst plants. 10 Use of a pesticidally active compound of formula (I) as defined in any of claims 1 to 8, for reducing damage to a plant caused by one or more insect-vectored viral infections.
1 1 . Use according to any of claims 1 to 10, wherein the rate of application of the compound of formula (I), (IA), (IB), (IC) or (ID) is 0.001 to 1 kg per ha.
12. Use according to any of claims 1 to 1 1 , wherein the plant is a crop plant selected from field crops, fruits, vegetables, nuts, peanuts, berries, tropical plantations, ornamentals and wheat, barley, rye, oats, rice, maize, sorghum, beans, lentils, peas, soybeans, rape, mus- tard, poppy, sugar- and fodder- beet, cotton, flax, hemp, jute, sunflowers, castor oil, groundnuts, potatoes, tobacco, sugar cane, apples, pears, plums, peaches, nectarines, apricots, cherries, oranges, lemons, grapefruit, mandarins, olives vines, hops, almonds, walnuts, hazelnuts, avocado, bananas, tea, coffee, coconut, cocoa, natural rubber plants, oil plants, strawberries, raspberries, blackberries, spinach, lettuce, asparagus, cabbages, Chinese kale, carrots, onions, tomatoes, cucumbers, pepper, eggplants, melons, paprika, chilli, roses, chrysanthemums and carnations.
13. Use according to claim 12 wherein the plant is tomato, tobacco, peanut or barley. 14. Use according to any of claims 1 to 12, wherein the plant is susceptible to damage by viral infections transmitted by whitefly, aphid, leafhopper or thrips.
15. Method of reducing insect-vectored viral infection in a plant, or
method of reducing insect-vectored-viral transmission amongst plants, or
method of reducing damage to a plant caused by one or more insect-vectored viral infections,
by application of at least one pesticidally active anthranilamide compound of formula (I), (IA), (IB), (IC) or (ID) as defined in any of claims 1 to 8. 16. Method according to claim 15, wherein the plant, plant propagation material, or the locus thereof, is treated before its planting, and/or at its planting and/or during its growth.
17. Method according to claim 15 or 16, wherein the treatment is via nursery tray application, in furrow application, soil drenching, soil injection, drip irrigation, application through sprin- klers or central pivot, or incorporation into the soil, such as via broad cast or in band.
18. Method according to any of claims 1 to 17, wherein the compound of formula (I) is used in combination with one or more other pesticidally active compound(s) II. 19. Method according to claim 18, wherein the compound of formula (I) is used in combination with a compound II selected from:
ethiprole, fipronil;
pyrethroids, including lambda-cyhalothrin, alpha-cypermethrin, deltamethrin, permethrin, pyrethrin; neonicotinoids, including acetamiprid, chlothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam;
spinosad, spinetoram; abamectin; pymetrozine, flonicamid; chlorfenapyr; teflubenzuron, buprofezin; amitraz; spirodiclofen, spiromesifen, spirotetramat; azadirachtin, sulfoxaflor; cyclopropaneacetic acid, 1 ,1 '-[(3S,4R,4aR,6S,6aS,12R,12aS,12bS)-4-[[(2- cyclopropylacetyl)oxy]methyl]-1 ,3, 4,4a, 5, 6, 6a, 12, 12a, 12b-decahydro-12-hydroxy- 4,6a,12b-trimethyl-1 1 -oxo-9-(3-pyridinyl)-2H,1 1 H-naphtho[2,1 -b]pyrano[3,4-e]pyran-3,6- diyl] ester.
A pesticidally active anthranilamide compound of formula (I), (IA), (IB), (IC) or (ID) as defined in any of claims 1 to 8, for use in the methods of any one of claims 1 to 19.
Use of at least one pesticidally active anthranilamide compound of formula (I), (IA), (IB), (IC) or (ID) as defined in any of claims 1 to 8, in the methods of any one of claims 1 to 19.
PCT/EP2013/074116 2012-11-22 2013-11-19 Use of anthranilamide compounds for reducing insect-vectored viral infections WO2014079820A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261729351P 2012-11-22 2012-11-22
US61/729,351 2012-11-22
US201361763983P 2013-02-13 2013-02-13
US61/763,983 2013-02-13

Publications (1)

Publication Number Publication Date
WO2014079820A1 true WO2014079820A1 (en) 2014-05-30

Family

ID=49585415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/074116 WO2014079820A1 (en) 2012-11-22 2013-11-19 Use of anthranilamide compounds for reducing insect-vectored viral infections

Country Status (2)

Country Link
AR (1) AR093782A1 (en)
WO (1) WO2014079820A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9556141B2 (en) 2011-11-21 2017-01-31 Basf Se Process for preparing N-substituted 1H-pyrazole-5-carboxylate compounds and derivatives thereof
EP3069610A4 (en) * 2013-11-13 2017-04-12 Nippon Soda Co., Ltd. Co-crystal and method for producing same
US9765052B2 (en) 2013-02-20 2017-09-19 Basf Se Anthranilamide compounds, their mixtures and the use thereof as pesticides
CN108558761A (en) * 2018-05-21 2018-09-21 青岛清原化合物有限公司 A kind of triazole sulphur humulone-salicylic acid eutectic and its preparation method and application
WO2019123194A1 (en) 2017-12-20 2019-06-27 Pi Industries Ltd. Anthranilamides, their use as insecticide and processes for preparing the same.
WO2019123195A1 (en) 2017-12-20 2019-06-27 Pi Industries Ltd. Pyrazolopyridine-diamides, their use as insecticide and processes for preparing the same.
WO2019150220A1 (en) 2018-01-30 2019-08-08 Pi Industries Ltd. Novel anthranilamides, their use as insecticide and processes for preparing the same.

Citations (235)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3296272A (en) 1965-04-01 1967-01-03 Dow Chemical Co Sulfinyl- and sulfonylpyridines
US3325503A (en) 1965-02-18 1967-06-13 Diamond Alkali Co Polychloro derivatives of mono- and dicyano pyridines and a method for their preparation
EP0141317A2 (en) 1983-10-21 1985-05-15 BASF Aktiengesellschaft 7-Amino-azolo[1,5-a]pyrimidines and fungicides containing them
EP0152031A2 (en) 1984-02-03 1985-08-21 Shionogi & Co., Ltd. Azolyl cycloalkanol derivatives and agricultural fungicides
EP0226917A1 (en) 1985-12-20 1987-07-01 BASF Aktiengesellschaft Acrylic acid esters and fungicides containing these compounds
EP0243970A1 (en) 1986-05-02 1987-11-04 Stauffer Chemical Company Fungicidal pyridyl imidates
EP0256503A2 (en) 1986-08-12 1988-02-24 Mitsubishi Kasei Corporation Pyridinecarboxamide derivatives and their use as fungicide
US4731499A (en) 1987-01-29 1988-03-15 Pioneer Hi-Bred International, Inc. Hybrid corn plant and seed
US4761373A (en) 1984-03-06 1988-08-02 Molecular Genetics, Inc. Herbicide resistance in plants
EP0353191A2 (en) 1988-07-29 1990-01-31 Ciba-Geigy Ag DNA sequences encoding polypeptides having beta-1,3-glucanase activity
EP0367474A1 (en) 1988-11-01 1990-05-09 Mycogen Corporation Novel bacillus thuringiensis isolate denoted b.t. ps81gg, active against lepidopteran pests, and a gene encoding a lepidopteran-active toxin
EP0374753A2 (en) 1988-12-19 1990-06-27 American Cyanamid Company Insecticidal toxines, genes coding therefor, antibodies binding them, transgenic plant cells and plants expressing these toxines
US4940835A (en) 1985-10-29 1990-07-10 Monsanto Company Glyphosate-resistant plants
EP0392225A2 (en) 1989-03-24 1990-10-17 Ciba-Geigy Ag Disease-resistant transgenic plants
WO1990013651A1 (en) 1989-05-09 1990-11-15 Imperial Chemical Industries Plc Bacterial genes
EP0401979A2 (en) 1989-05-18 1990-12-12 Mycogen Corporation Novel bacillus thuringiensis isolates active against lepidopteran pests, and genes encoding novel lepidopteran-active toxins
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
EP0427529A1 (en) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Larvicidal lectins and plant insect resistance based thereon
EP0428941A1 (en) 1989-11-10 1991-05-29 Agro-Kanesho Co., Ltd. Hexahydrotriazine compounds and insecticides
US5021076A (en) 1989-03-17 1991-06-04 The United States Of America As Represented By The Secretary Of Agriculture Enhancement of nitrogen fixation with Bradyrhizobium japonicum mutants
EP0451878A1 (en) 1985-01-18 1991-10-16 Plant Genetic Systems, N.V. Modifying plants by genetic engineering to combat or control insects
WO1992008798A1 (en) 1990-11-08 1992-05-29 Imperial Chemical Industries Plc Expression of genes in transgenic plants
US5128130A (en) 1988-01-22 1992-07-07 Mycogen Corporation Hybrid Bacillus thuringiensis gene, plasmid and transformed Pseudomonas fluorescens
US5188642A (en) 1985-08-07 1993-02-23 Monsanto Company Glyphosate-resistant plants
EP0532022A1 (en) 1991-09-13 1993-03-17 Ube Industries, Ltd. Acrylate compound, preparation process thereof and fungicide using the same
WO1993005153A1 (en) 1991-08-29 1993-03-18 Zeneca Limited Biocidal proteins
WO1993007278A1 (en) 1991-10-04 1993-04-15 Ciba-Geigy Ag Synthetic dna sequence having enhanced insecticidal activity in maize
US5304732A (en) 1984-03-06 1994-04-19 Mgi Pharma, Inc. Herbicide resistance in plants
US5349124A (en) 1988-04-25 1994-09-20 Monsanto Company Insect-resistant lettuce plants
EP0626449A2 (en) 1993-05-28 1994-11-30 Bayer Ag DNA coding for plant virus sequences
US5403584A (en) 1993-06-30 1995-04-04 Idaho Research Foundation, Inc. Use of Streptomyces WYEC 108 to control plant pathogens
WO1995009911A1 (en) 1993-10-06 1995-04-13 New York University Transgenic plants that exhibit enhanced nitrogen assimilation
WO1995028423A1 (en) 1994-04-13 1995-10-26 The General Hospital Corporation Rps gene family, primers, probes, and detection methods
WO1995033818A2 (en) 1994-06-08 1995-12-14 Ciba-Geigy Ag Genes for the synthesis of antipathogenic substances
WO1995034656A1 (en) 1994-06-10 1995-12-21 Ciba-Geigy Ag Novel bacillus thuringiensis genes coding toxins active against lepidopteran pests
WO1995035387A1 (en) 1994-06-17 1995-12-28 Epitope, Inc. Regulated expression of heterologous genes in plants and transgenic fruit with a modified ripening phenotype
EP0707069A2 (en) 1994-07-21 1996-04-17 Jinro Limited Process for preparing virus-resistant transgenic plant
US5512466A (en) 1990-12-26 1996-04-30 Monsanto Company Control of fruit ripening and senescence in plants
WO1996022375A2 (en) 1995-01-17 1996-07-25 The Regents Of The University Of California Procedures and materials for conferring disease resistance in plants
WO1996026639A1 (en) 1995-02-28 1996-09-06 Calgene, Inc. Cotton modification using ovary-tissue transcriptional factors
US5561236A (en) 1986-03-11 1996-10-01 Plant Genetic Systems Genetically engineered plant cells and plants exhibiting resistance to glutamine synthetase inhibitors, DNA fragments and recombinants for use in the production of said cells and plants
EP0736252A2 (en) 1995-04-05 1996-10-09 Ciba-Geigy Ag Synergistic compositions with diafenthiuron
US5571706A (en) 1994-06-17 1996-11-05 The United States Of America As Represented By The Secretary Of Agriculture Plant virus resistance gene and methods
US5576202A (en) 1994-05-19 1996-11-19 Helsinki University Licensing, Ltd. Virus-resistant transgenic plants
WO1996038567A2 (en) 1995-06-02 1996-12-05 Rhone-Poulenc Agrochimie Dna sequence of a gene of hydroxy-phenyl pyruvate dioxygenase and production of plants containing a gene of hydroxy-phenyl pyruvate dioxygenase and which are tolerant to certain herbicides
WO1996040949A1 (en) 1995-06-07 1996-12-19 Pioneer Hi-Bred International, Inc. Induction of male sterility in plants by expression of high levels of avidin
WO1997001952A1 (en) 1995-06-30 1997-01-23 Dna Plant Technology Corporation Delayed ripening tomato plants
US5608147A (en) 1994-01-11 1997-03-04 Kaphammer; Bryan J. tfdA gene selectable markers in plants and the use thereof
US5627061A (en) 1990-08-31 1997-05-06 Monsanto Company Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases
US5659124A (en) 1992-09-24 1997-08-19 Novartis Corporation Transgenic male sterile plants for the production of hybrid seeds
WO1997030163A1 (en) 1996-02-14 1997-08-21 The Governors Of The University Of Alberta Plants having enhanced nitrogen assimilation/metabolism
US5670454A (en) 1994-12-15 1997-09-23 Basf Aktiengesellschaft Herbicides of the auxin type for treating transgenic crop plants
WO1997041239A2 (en) 1996-04-30 1997-11-06 Pioneer Hi-Bred International, Inc. Transgenic plants with enhanced sulfur amino acid content
US5689046A (en) 1987-09-30 1997-11-18 Bayer Aktiengesellschaft Stilbene synthase gene
WO1997044471A2 (en) 1996-05-17 1997-11-27 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Potato plants with reduced cytosolic starch phosphorylasis and modified germination
WO1997049816A1 (en) 1996-06-27 1997-12-31 E.I. Du Pont De Nemours And Company Plant gene for p-hydroxyphenylpyruvate dioxygenase
WO1998002545A2 (en) 1996-07-11 1998-01-22 The Regents Of The University Of California Compositions and methods for plant pathogen resistance
DE19650197A1 (en) 1996-12-04 1998-06-10 Bayer Ag 3-thiocarbamoylpyrazole derivatives
US5767376A (en) 1995-06-07 1998-06-16 University Of Hawaii At Manoa Nucleic acids encoding a papaya ACC synthase gene
WO1998046608A1 (en) 1997-04-14 1998-10-22 American Cyanamid Company Fungicidal trifluoromethylalkylamino-triazolopyrimidines
US5850026A (en) 1996-07-03 1998-12-15 Cargill, Incorporated Canola oil having increased oleic acid and decreased linolenic acid content
US5859332A (en) 1992-03-20 1999-01-12 Max-Planck-Gesellschaft Zur Forderung Fungus-responsive chimaeric gene
WO1999009151A2 (en) 1997-08-13 1999-02-25 The Regents Of The University Of California Procedures and materials for conferring disease resistance in plants
US5877403A (en) 1994-12-30 1999-03-02 Seminis Vegetable Seeds, Inc. Papaya ringspot virus protease gene
WO1999014187A1 (en) 1997-09-18 1999-03-25 Basf Aktiengesellschaft Benzamidoxim derivatives, intermediate products and methods for preparing and using them as fungicides
WO1999024413A2 (en) 1997-11-12 1999-05-20 Bayer Aktiengesellschaft Isothiazole carboxylic acid amides and the application thereof in order to protect plants
WO1999027783A1 (en) 1997-12-04 1999-06-10 Dow Agrosciences Llc Fungicidal compositions and methods, and compounds and methods for the preparation thereof
US5952485A (en) 1995-01-17 1999-09-14 The Regents Of The University Of California Procedures and materials for conferring disease resistance in plants
US5952546A (en) 1996-06-27 1999-09-14 Dna Plant Technology Corporation Delayed ripening tomato plants with T-DNA bearing a truncated ACC2 synthase gene
US5955651A (en) 1989-05-03 1999-09-21 New York University Transgenic plants that exhibit enhanced nitrogen assimilation
US5968503A (en) 1993-06-30 1999-10-19 Idaho Research Foundation, Inc. Use of streptomyces bacteria to control plant pathogens and degrade turf thatch
US5968828A (en) 1994-05-19 1999-10-19 Helsinki University Licensing Ltd. Oy Virus-resistant transgenic plants comprising cells transformed with a polynucleotide encoding a potyviridae P1 protein or P1 protein fragment
US5977434A (en) 1995-01-17 1999-11-02 The Regents Of The University Of California Procedures and materials for conferring disease resistance in plants
US5981831A (en) 1994-02-23 1999-11-09 Unilever Patent Holdings B.V. Exo-(1--4)-β-D galactanase
WO1999064600A1 (en) 1998-06-08 1999-12-16 Istituto Agrario Di San Michele All'adige NUCLEOTIDE SEQUENCES OF THE APPLE LRPKm1 GENE, ENCODED AMINO ACID SEQUENCE AND USES THEREOF
US6015942A (en) 1994-12-30 2000-01-18 Seminis Vegetable Seeds, Inc. Transgenic plants exhibiting heterologous virus resistance
WO2000004175A1 (en) 1998-07-14 2000-01-27 Unilever Plc Methods and composition for modulating flavonoid content
WO2000004173A1 (en) 1998-07-17 2000-01-27 Aventis Cropscience N.V. Methods and means to modulate programmed cell death in eukaryotic cells
US6040496A (en) 1995-06-30 2000-03-21 Novartis Finance Corporation Use of translationally altered RNA to confer resistance to maize dwarf mosaic virus and other monocotyledonous plant viruses
US6046384A (en) 1995-06-07 2000-04-04 Seminis Vegetable Seeds, Inc. Papaya ringspot virus NIa protease gene
WO2000029404A1 (en) 1998-11-17 2000-05-25 Kumiai Chemical Industry Co., Ltd. Pyrimidinylbenzimidazole and triazinylbenzimidazole derivatives and agricultura/horticultural bactericides
US6072102A (en) 1994-12-08 2000-06-06 Pioneer Hi-Bred International, Inc. Reversible nuclear genetic system for male sterility in transgenic plants
US6084153A (en) 1996-02-14 2000-07-04 The Governors Of The University Of Alberta Plants having enhanced nitrogen assimilation/metabolism
US6084164A (en) 1996-03-25 2000-07-04 Pioneer Hi-Bred International, Inc. Sunflower seeds with enhanced saturated fatty acid contents
EP1018553A1 (en) 1999-01-08 2000-07-12 Korea Kumho Petrochemical Co. Ltd. Transgenic plants with divergent SCaM4 or SCaM5 gene to achieve multiple disease resistance
US6100446A (en) 1986-08-29 2000-08-08 Hoechst Schering Agrevo Gmbh Microorganisms and plasmids for 2,4-dichlorophenoxyacetic acid (2,4-D)monooxygenase formation and process for the production of these plasmids and strains
WO2000046148A1 (en) 1999-02-02 2000-08-10 Sintokogio, Ltd. Silica gel carrying titanium oxide photocatalyst in high concentration and method for preparation thereof
EP1028125A1 (en) 1998-11-30 2000-08-16 Isagro Ricerca S.r.l. Dipeptide compounds having fungicidal activity and their agronomic use
US6107548A (en) 1996-04-02 2000-08-22 Zeneca Limited DNA sequences from muskmelon (Cucumis melo) related to fruit ripening
EP1035122A1 (en) 1999-03-11 2000-09-13 Rohm And Haas Company Heterocyclic subsituted isoxazolidines and their use as fungicides
WO2000065913A1 (en) 1999-04-28 2000-11-09 Takeda Chemical Industries, Ltd. Sulfonamide derivatives
WO2001017333A1 (en) 1999-09-10 2001-03-15 Texas Tech University Transgenic fiber producing plants with increased expression of sucrose phosphate synthase
WO2001021821A2 (en) 1999-09-17 2001-03-29 Aventis Cropscience N.V. Insect-resistant rice plants
US6211439B1 (en) 1984-08-10 2001-04-03 Mgi Pharma, Inc Herbicide resistance in plants
WO2001030990A2 (en) 1999-10-13 2001-05-03 Avestha Gengraine Technologies Pvt. Ltd. Isolated nucleic acid sequence conferring salt tolerance in rice plant
US6232528B1 (en) 1996-06-26 2001-05-15 University Of Florida Research Foundation Incorporated Disease resistance in vitis
DE10021412A1 (en) 1999-12-13 2001-06-21 Bayer Ag Fungicidal active ingredient combinations
WO2001054501A2 (en) 2000-01-25 2001-08-02 Syngenta Participations Ag Herbicidal composition
EP1122244A1 (en) 2000-02-04 2001-08-08 Sumitomo Chemical Company, Limited Uracil compounds and their use
WO2001056358A2 (en) 2000-01-28 2001-08-09 Rohm And Haas Company Enhanced propertied pesticides
US6281348B1 (en) 1994-12-08 2001-08-28 Pioneer Hi-Bred International, Inc. Reversible nuclear genetic system for male sterility in transgenic plants
EP1135982A1 (en) 1999-09-30 2001-09-26 Japan Tobacco Inc. Method of constructing male sterile plant
WO2001079499A1 (en) 2000-04-18 2001-10-25 Commonwealth Scientific And Industrial Research Organisation Method of modifying the content of cottonseed oil
WO2001092544A1 (en) 2000-05-30 2001-12-06 University Of Delhi Regulation of lethal gene expression in plants
WO2002015701A2 (en) 2000-08-25 2002-02-28 Syngenta Participations Ag Bacillus thuringiensis crystal protein hybrids
US20020031495A1 (en) 1998-04-29 2002-03-14 Esperanza Morales Pesticidally active isolate of beauveria bassiana, methods of preparing and using same for pest control in agriculture
WO2002022583A2 (en) 2000-09-18 2002-03-21 E. I. Du Pont De Nemours And Company Pyridinyl amides and imides for use as fungicides
US6365802B2 (en) 1998-08-14 2002-04-02 Calgene Llc Methods for increasing stearate content in soybean oil
US6376754B1 (en) 1997-03-07 2002-04-23 Asgrow Seed Company Plants having resistance to multiple herbicides and its use
EP1201648A1 (en) 1999-08-05 2002-05-02 Kumiai Chemical Industry Co., Ltd. Carbamate derivatives and agricultural/horticultural bactericides
WO2002040431A2 (en) 2000-11-17 2002-05-23 Dow Agrosciences Llc Compounds having fungicidal activity and processes to make and use same
US20020073443A1 (en) 1996-02-28 2002-06-13 Heifetz Peter B. Herbicide tolerance achieved through plastid transformation
JP2002316902A (en) 2001-04-20 2002-10-31 Sumitomo Chem Co Ltd Plant blight-preventing agent composition
WO2003000906A2 (en) 2001-06-22 2003-01-03 Syngenta Participations Ag Plant disease resistance genes
WO2003010149A1 (en) 2001-07-25 2003-02-06 Bayer Cropscience Ag Pyrazolylcarboxanilides as fungicides
WO2003011853A1 (en) 2001-07-30 2003-02-13 Dow Agrosciences Llc 6-aryl-4-aminopicolinates and their use as herbicides
WO2003014103A1 (en) 2001-08-03 2003-02-20 Bayer Cropscience S.A. Iodobenzopyran-4-one derivatives having fungicidal activity
WO2003016286A1 (en) 2001-08-17 2003-02-27 Sankyo Agro Company, Limited 3-phenoxy-4-pyridazinol derivative and herbicide composition containing the same
WO2003018810A2 (en) 2001-08-31 2003-03-06 Syngenta Participations Ag Modified cry3a toxins and nucleic acid sequences coding therefor
WO2003052073A2 (en) 2001-12-17 2003-06-26 Syngenta Participations Ag Novel corn event
WO2003053145A1 (en) 2001-12-21 2003-07-03 Nissan Chemical Industries, Ltd. Bactericidal composition
WO2003061388A1 (en) 2002-01-18 2003-07-31 Sumitomo Chemical Takeda Agro Company, Limited Fused heterocyclic sulfonylurea compound, herbicide containing the same, and method of controlling weed with the same
EP1334979A1 (en) 2002-02-08 2003-08-13 Kweek-en Researchbedrijf Agrico B.V. Gene conferring resistance to Phytophthera infestans (late-blight) in Solanaceae
WO2003066609A1 (en) 2002-02-04 2003-08-14 Bayer Cropscience Aktiengesellschaft Disubstituted thiazolyl carboxanilides and their use as microbicides
WO2003074491A1 (en) 2002-03-05 2003-09-12 Syngenta Participations Ag O-cyclopropyl-carboxanilides and their use as fungicides
US6630618B2 (en) 2000-03-21 2003-10-07 The United States Of America As Represented By The Secretary Of Agriculture Transgenic plants having non-pathogen induced systemic acquired resistance (SAR)
US6646184B2 (en) 1999-03-31 2003-11-11 Syngenta Participations Ag Trichothecene-resistant transgenic plants
US6706952B1 (en) 1999-12-15 2004-03-16 Syngenta Participations Ag Arabidopsis gene encoding a protein involved in the regulation of SAR gene expression in plants
US6720481B1 (en) 2001-02-27 2004-04-13 Pioneer Hi-Bred International, Inc. Canola cultivar 46A42
US6727411B2 (en) 1999-12-13 2004-04-27 Ajinomoto Co., Inc. Method of producing transgenic plants having improved amino acid composition
WO2004049804A2 (en) 2002-11-29 2004-06-17 Syngenta Participations Ag Fungicidal combinations for crop potection
WO2004055191A1 (en) 2002-12-17 2004-07-01 Biogemma Expression of hydroxyphenylpyruvate dioxygenase in plastids of plants for herbicide tolerance
WO2004067528A1 (en) 2003-01-28 2004-08-12 E.I. Du Pont De Nemours And Company Cyano anthranilamide insecticides
US6784338B1 (en) 1990-12-21 2004-08-31 Basf Plant Science Gmbh Genetically engineered modification of potato to form amylopectin-type starch
US6791014B2 (en) 2000-08-11 2004-09-14 Aventis Cropscience, S.A. Use of HPPD inhibitors as selection agents in plant transformation
WO2004083193A1 (en) 2003-03-17 2004-09-30 Sumitomo Chemical Company, Limited Amide compound and bactericide composition containing the same
CA2521729A1 (en) 2003-04-09 2004-10-21 Bayer Bioscience N.V. Methods and means for increasing the tolerance of plants to stress conditions
EP1477557A1 (en) 1999-03-31 2004-11-17 Syngenta Participations AG transgenic plant resistant to mycotoxins and methods
WO2005000352A1 (en) 2003-06-04 2005-01-06 Vector Tobacco Ltd. Method of reducing the harmful effects of orally or transdermally delivered nicotine
US6849780B2 (en) 1994-12-30 2005-02-01 Seminis Vegetable Seeds, Inc. Plants resistant to cucumber mosaic virus strain V34
US6864405B1 (en) 1993-10-06 2005-03-08 New York University Transgenic plants that exhibit enhanced nitrogen assimilation
US6864362B2 (en) 2000-03-16 2005-03-08 E. I. Du Pont De Nemours And Company Hypoallergenic transgenic soybeans
US6864068B2 (en) 1995-12-13 2005-03-08 Syngenta Limited Antifungal proteins
WO2005033319A2 (en) 2003-10-02 2005-04-14 Monsanto Technology Llc Stacking crop improvement traits in transgenic plants
WO2005048693A2 (en) 2003-11-19 2005-06-02 Agricultural Biotechnology Center Plant with improved drought tolerance
US6905877B1 (en) 1997-12-10 2005-06-14 Pioneer Hi-Bred International, Inc. Compositions and methods for altering amino acid content of proteins
US6908945B2 (en) 2002-04-12 2005-06-21 Sumitomo Chemical Company, Limited Ester compound and its use
WO2005063721A1 (en) 2003-12-19 2005-07-14 E.I. Dupont De Nemours And Company Herbicidal pyrimidines
WO2005077934A1 (en) 2004-02-18 2005-08-25 Ishihara Sangyo Kaisha, Ltd. Anthranilamides, process for the production thereof, and pest controllers containing the same
WO2005077117A2 (en) 2004-02-10 2005-08-25 Monsanto Technology, Llc. Transgenic corn seed with enhanced amino acid content
WO2005085216A1 (en) 2004-03-05 2005-09-15 Nissan Chemical Industries, Ltd. Isoxazoline-substituted benzamide compound and noxious organism control agent
WO2005087772A1 (en) 2004-03-10 2005-09-22 Basf Aktiengesellschaft 5,6-dialkyl-7-amino-triazolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said compounds
WO2005087773A1 (en) 2004-03-10 2005-09-22 Basf Aktiengesellschaft 5,6-dialkyl-7-amino-triazolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said compounds
WO2005107437A2 (en) 2004-04-30 2005-11-17 Dow Agrosciences Llc Novel herbicide resistance genes
WO2005120234A2 (en) 2004-06-03 2005-12-22 E.I. Dupont De Nemours And Company Fungicidal mixtures of amidinylphenyl compounds
WO2005123689A1 (en) 2004-06-18 2005-12-29 Basf Aktiengesellschaft 1-methyl-3-trifluoromethyl-pyrazole-4-carboxylic acid (ortho-phenyl)-anilides and to use thereof as fungicide
WO2005123690A1 (en) 2004-06-18 2005-12-29 Basf Aktiengesellschaft 1-methyl-3-difluoromethyl-pyrazol-4-carbonic acid-(ortho-phenyl)-anilides, and use thereof as a fungicide
WO2006013896A1 (en) 2004-08-04 2006-02-09 Meiji Seika Kaisha, Ltd. Quinoline derivative and insecticide containing same as active constituent
WO2006015866A1 (en) 2004-08-12 2006-02-16 Syngenta Participations Ag Method for protecting useful plants or plant propagation material
US20060075515A1 (en) 2004-08-11 2006-04-06 Luethy Michael H Enhanced zein reduction in transgenic corn seed
WO2006042145A2 (en) 2004-10-07 2006-04-20 Cornell Research Foundation, Inc. THE RICE BACTERIAL BLIGHT DISEASE RESISTANCE GENE xa5
US7034139B2 (en) 2001-08-07 2006-04-25 Incorporated Administrative Agency Rice gene for controlling tolerance to salt stress
WO2006043635A1 (en) 2004-10-20 2006-04-27 Kumiai Chemical Industry Co., Ltd. 3-triazolylphenyl sulfide derivative and insecticide/acaricide/nematicide containing the same as active ingredient
WO2006060634A2 (en) 2004-12-01 2006-06-08 Basf Agrochemical Products, B.V. Novel mutation involved in increased tolerance to imidazolinone herbicides in plants
US7084321B2 (en) 2001-04-11 2006-08-01 Cornell Research Foundation, Inc. Isolated nucleic acid molecules relating to papaya fruit ripening
US20060185684A1 (en) 2001-06-08 2006-08-24 Anthony Albino Method of reducing the harmful effects of orally or transdermally delivered nicotine
WO2006087325A1 (en) 2005-02-16 2006-08-24 Basf Aktiengesellschaft 5-alkoxyalkyl-6-alkyl-7-amino-azolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said substances
WO2006087343A1 (en) 2005-02-16 2006-08-24 Basf Aktiengesellschaft Pyrazole carboxylic acid anilides, method for the production thereof and agents containing them for controlling pathogenic fungi
WO2006089633A2 (en) 2005-02-22 2006-08-31 Bayer Cropscience Ag Spiroketal-substituted cyclic ketoenols
DE102005009458A1 (en) 2005-03-02 2006-09-07 Bayer Cropscience Ag pyrazolylcarboxanilides
US7105724B2 (en) 1997-04-04 2006-09-12 Board Of Regents Of University Of Nebraska Methods and materials for making and using transgenic dicamba-degrading organisms
US20060225152A1 (en) 2005-04-04 2006-10-05 E.I. Du Pont De Nemours And Company Polynucleotides and methods for making plants resistant to fungal pathogens
WO2006129714A1 (en) 2005-06-01 2006-12-07 Meiji Seika Kaisha, Ltd. Pest control agent
US7148397B2 (en) 2002-08-29 2006-12-12 The United States Of America As Represented By The Secretary Of Agriculture Solanum bulbocastanum late blight resistance gene and use thereof
US7157621B2 (en) 2001-06-29 2007-01-02 E. I. Du Pont De Nemours And Company Alteration of oil traits in plants
WO2007006670A1 (en) 2005-07-07 2007-01-18 Basf Aktiengesellschaft N-thio-anthranilamid compounds and their use as pesticides
WO2007020986A1 (en) 2005-08-12 2007-02-22 Nihon Nohyaku Co., Ltd. Substituted pyrazolecarboxylic acid anilide derivative or salt thereof, intermediate thereof, agent for agricultural and horticultural use, and use thereof
WO2007024833A1 (en) 2005-08-24 2007-03-01 E. I. Du Pont De Nemours And Company Anthranilamides for controlling invertebrate pests
WO2007030001A1 (en) 2005-09-06 2007-03-15 Plant Research International B.V. A transgenic plant having enhanced drought tolerance
WO2007043677A1 (en) 2005-10-14 2007-04-19 Sumitomo Chemical Company, Limited Hydrazide compound and pesticidal use of the same
US7230168B2 (en) 2001-12-20 2007-06-12 The Curators Of The University Of Missouri Reversible male sterility in transgenic plants by expression of cytokinin oxidase
WO2007082098A2 (en) 2006-01-13 2007-07-19 Dow Agrosciences Llc 6-(poly-substituted aryl)-4-aminopicolinates and their use as herbicides
US7256326B2 (en) 1998-03-18 2007-08-14 Eduardo Blumwald Genetic engineering salt tolerance in crop plants
WO2007090624A2 (en) 2006-02-09 2007-08-16 Syngenta Participations Ag A method of protecting a plant propagation material, a plant, and/or plant organs
US7262151B2 (en) 2001-07-06 2007-08-28 Mcgill University Methods and compositions for production of lipo-chito oligosaccharides by rhizobacteria
WO2007101540A1 (en) 2006-03-06 2007-09-13 Bayer Cropscience Ag Combinations of active ingredients with insecticidal properties
WO2007112122A2 (en) 2006-03-27 2007-10-04 Monsanto Technology Llc Methods of producing and using cold temperature tolerant plants, seeds, and crops
WO2007115644A1 (en) 2006-03-31 2007-10-18 Bayer Cropscience Ag Substituted enaminocarbonyl compounds
US20070261136A1 (en) 2006-05-02 2007-11-08 Pioneer Hi-Bred International, Inc. High Amylopectin Maize
WO2007131699A2 (en) 2006-05-12 2007-11-22 Bayer Bioscience N.V. Novel stress-related microrna molecules and uses thereof
WO2007149134A1 (en) 2006-06-23 2007-12-27 Dow Agrosciences Llc A method to control insects resistant to common insecticides
WO2008002480A2 (en) 2006-06-23 2008-01-03 Monsanto Co. Transgenic crop plants with improved stress tolerance
WO2008002371A1 (en) 2006-06-23 2008-01-03 Becker Underwood Inc. Improved shelf life and on seed stabilization of liquid bacterium inoculants
US7317146B2 (en) 2003-12-31 2008-01-08 Pioneer Hi-Bred International, Inc. Production of cereal grain with reduced starch granule size and uses thereof
US7329802B1 (en) 1998-02-17 2008-02-12 Henry Daniell Genetic engineering of cotton to increase fiber strength, water absorption and dye binding
WO2008017706A1 (en) 2006-08-10 2008-02-14 Basf Plant Science Gmbh Method of increasing resistance against soybean rust in transgenic plants
WO2008020998A2 (en) 2006-08-08 2008-02-21 Bayer Cropscience Lp Method of improving plant growth by reducing viral infections
WO2008021152A2 (en) 2006-08-09 2008-02-21 E. I. Du Pont De Nemours And Company Agronomic method
US20080052798A1 (en) 2006-03-09 2008-02-28 E.I. Du Pont De Nemours And Company Polynucleotide Encoding a Maize Herbicide Resistance Gene and Methods for Use
US7345222B1 (en) 1996-04-11 2008-03-18 Gene Shears Pty. Limited Use of DNA sequences for male sterility in transgenic plants
WO2008067911A1 (en) 2006-12-04 2008-06-12 Bayer Cropscience Ag Biphenyl-substituted spirocyclic ketoenols
US7417181B2 (en) 2005-04-07 2008-08-26 The Samuel Roberts Noble Foundation Plants with increased phosphorous uptake
US20080229448A1 (en) 2004-12-20 2008-09-18 Mendel Biotechnology, Inc. Plant Stress Tolerance from Modified Ap2 Transcription Factors
US20080235829A1 (en) 2001-03-08 2008-09-25 The Ohio State University Research Foundation Transgenic plants with altered levels of phenolic compounds
US7432421B2 (en) 2007-02-28 2008-10-07 Pioneer Hi-Bred International, Inc. Soybean variety XB30E07
WO2008122396A2 (en) 2007-04-04 2008-10-16 Syngenta Participations Ag Method of improving the growth of a plant
WO2008134969A1 (en) 2007-04-30 2008-11-13 Sinochem Corporation Benzamide compounds and applications thereof
WO2009002809A2 (en) 2007-06-26 2008-12-31 E. I. Du Pont De Nemours And Company Naphthalene isoxazoline invertebrate pest control agents
WO2009124707A2 (en) 2008-04-07 2009-10-15 Bayer Cropscience Ag Combinations of biological control agents and insecticides or fungicides
CN101715774A (en) 2008-10-09 2010-06-02 浙江化工科技集团有限公司 Preparation and use of compound having insecticidal activity
WO2010060379A1 (en) 2008-11-28 2010-06-03 中国中化集团公司 Ether compounds with nitrogen-containing 5-member heterocycle and the uses thereof
WO2010069266A1 (en) 2008-12-19 2010-06-24 华东理工大学 Heterocyclic nitrogenous or oxygenous compounds with insecticidal activity formed from dialdehydes and their preparation and uses thereof
US20100260735A1 (en) 2009-04-13 2010-10-14 University of Delawre Methods for promoting plant health
WO2011006946A2 (en) 2009-07-15 2011-01-20 Basf Se Polymeric hair dyes
US20110046186A1 (en) 2008-07-07 2011-02-24 Bin Li 1-Substituted Pyridyl-Pyrazolyl Amide Compounds and Uses Thereof
WO2011022809A1 (en) 2009-08-28 2011-03-03 University Of Saskatchewan Fusarium and fusarium mycotoxin biocontrol
WO2011028657A1 (en) 2009-09-01 2011-03-10 Dow Agrosciences Llc Synergistic fungicidal compositions containing a 5-fluoropyrimidine derivative for fungal control in cereals
WO2011085575A1 (en) 2010-01-15 2011-07-21 江苏省农药研究所股份有限公司 Ortho-heterocyclyl formanilide compounds, their synthesis methods and use
WO2011109395A2 (en) 2010-03-01 2011-09-09 University Of Delaware Compositions and methods for increasing biomass, iron concentration, and tolerance to pathogens in plants
WO2011134876A1 (en) 2010-04-30 2011-11-03 Syngenta Participations Ag A method of reducing insect-vectored viral infections
WO2011149749A1 (en) 2010-05-27 2011-12-01 E.I. Du Pont De Nemours And Company Crystalline form of 4- [5 - [3 -chloro-5 - (trifluoromethyl) phenyl] -4, 5 - dihydro - 5 - (trifluoromethyl) -3 - isoxazolyl] -n- [2-0x0-2- [ ( 2, 2, 2 - trifluoroethyl) amino] ethyl] -1- naphthalenecarboxamide
WO2012029672A1 (en) 2010-08-31 2012-03-08 Meiji Seikaファルマ株式会社 Noxious organism control agent
WO2012034403A1 (en) 2010-09-14 2012-03-22 中化蓝天集团有限公司 Fluoromethoxypyrazole anthranilamide compounds, synthesization methods and uses thereof
WO2012069266A1 (en) 2010-11-26 2012-05-31 Robert Bosch Gmbh Cutting element composition comprising an integrated lubricant
WO2012079073A1 (en) 2010-12-10 2012-06-14 Auburn University Inoculants including bacillus bacteria for inducing production of volatile organic compounds in plants
WO2012092115A1 (en) 2010-12-29 2012-07-05 E. I. Du Pont De Nemours And Company Mesoionic pyrido [1,2 -a] pyrimidine pesticides
CN102613183A (en) 2012-03-07 2012-08-01 中化蓝天集团有限公司 Insecticide
US20120252672A1 (en) 2011-03-31 2012-10-04 Novozymes Biologicals, Inc. Competitive and Effective Bacterial Strains
WO2013003977A1 (en) 2011-07-01 2013-01-10 合肥星宇化学有限责任公司 Compound of 2,5-disubstituted-3-nitroimino-1,2,4-triazoline and preparation method and use as pesticide thereof
WO2013024009A1 (en) 2011-08-12 2013-02-21 Basf Se N-thio-anthranilamide compounds and their use as pesticides
WO2013024007A1 (en) 2011-08-12 2013-02-21 Basf Se Process for preparing n-substituted 1h-pyrazole-5-carbonylchloride compounds
WO2013024008A1 (en) 2011-08-12 2013-02-21 Basf Se Aniline type compounds
WO2013024010A1 (en) 2011-08-12 2013-02-21 Basf Se N-thio-anthranilamide compounds and their use as pesticides
WO2013050317A1 (en) 2011-10-03 2013-04-11 Syngenta Limited Polymorphs of an isoxazoline derivative
WO2013055584A1 (en) 2011-10-13 2013-04-18 E. I. Du Pont De Nemours And Company Solid forms of nematocidal sulfonamides

Patent Citations (253)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3325503A (en) 1965-02-18 1967-06-13 Diamond Alkali Co Polychloro derivatives of mono- and dicyano pyridines and a method for their preparation
US3296272A (en) 1965-04-01 1967-01-03 Dow Chemical Co Sulfinyl- and sulfonylpyridines
EP0141317A2 (en) 1983-10-21 1985-05-15 BASF Aktiengesellschaft 7-Amino-azolo[1,5-a]pyrimidines and fungicides containing them
EP0152031A2 (en) 1984-02-03 1985-08-21 Shionogi & Co., Ltd. Azolyl cycloalkanol derivatives and agricultural fungicides
US5304732A (en) 1984-03-06 1994-04-19 Mgi Pharma, Inc. Herbicide resistance in plants
US6211438B1 (en) 1984-03-06 2001-04-03 Mgi Pharma, Inc. Herbicide resistance in plants
US4761373A (en) 1984-03-06 1988-08-02 Molecular Genetics, Inc. Herbicide resistance in plants
US6222100B1 (en) 1984-03-06 2001-04-24 Mgi Pharma, Inc. Herbicide resistance in plants
US6211439B1 (en) 1984-08-10 2001-04-03 Mgi Pharma, Inc Herbicide resistance in plants
EP0451878A1 (en) 1985-01-18 1991-10-16 Plant Genetic Systems, N.V. Modifying plants by genetic engineering to combat or control insects
US5188642A (en) 1985-08-07 1993-02-23 Monsanto Company Glyphosate-resistant plants
US4940835A (en) 1985-10-29 1990-07-10 Monsanto Company Glyphosate-resistant plants
EP0226917A1 (en) 1985-12-20 1987-07-01 BASF Aktiengesellschaft Acrylic acid esters and fungicides containing these compounds
US5561236A (en) 1986-03-11 1996-10-01 Plant Genetic Systems Genetically engineered plant cells and plants exhibiting resistance to glutamine synthetase inhibitors, DNA fragments and recombinants for use in the production of said cells and plants
US5646024A (en) 1986-03-11 1997-07-08 Plant Genetic Systems, N.V. Genetically engineered plant cells and plants exhibiting resistance to glutamine synthetase inhibitors, DNA fragments and recombinants for use in the production of said cells and plants
EP0243970A1 (en) 1986-05-02 1987-11-04 Stauffer Chemical Company Fungicidal pyridyl imidates
EP0256503A2 (en) 1986-08-12 1988-02-24 Mitsubishi Kasei Corporation Pyridinecarboxamide derivatives and their use as fungicide
US6153401A (en) 1986-08-29 2000-11-28 Hoechst Schering Agrevo Gnbh Microorganisms and plasmids for 2,4-dichlorophenoxyacetic acid (2,4-D) monooxygenase formation and process for the production of these plasmids and strains
US6100446A (en) 1986-08-29 2000-08-08 Hoechst Schering Agrevo Gmbh Microorganisms and plasmids for 2,4-dichlorophenoxyacetic acid (2,4-D)monooxygenase formation and process for the production of these plasmids and strains
US4731499A (en) 1987-01-29 1988-03-15 Pioneer Hi-Bred International, Inc. Hybrid corn plant and seed
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US6020129A (en) 1987-09-30 2000-02-01 Bayer Aktiengesellschaft Stilbene synthase gene
US5689046A (en) 1987-09-30 1997-11-18 Bayer Aktiengesellschaft Stilbene synthase gene
US5128130A (en) 1988-01-22 1992-07-07 Mycogen Corporation Hybrid Bacillus thuringiensis gene, plasmid and transformed Pseudomonas fluorescens
US5349124A (en) 1988-04-25 1994-09-20 Monsanto Company Insect-resistant lettuce plants
EP0353191A2 (en) 1988-07-29 1990-01-31 Ciba-Geigy Ag DNA sequences encoding polypeptides having beta-1,3-glucanase activity
EP0367474A1 (en) 1988-11-01 1990-05-09 Mycogen Corporation Novel bacillus thuringiensis isolate denoted b.t. ps81gg, active against lepidopteran pests, and a gene encoding a lepidopteran-active toxin
EP0374753A2 (en) 1988-12-19 1990-06-27 American Cyanamid Company Insecticidal toxines, genes coding therefor, antibodies binding them, transgenic plant cells and plants expressing these toxines
US5021076A (en) 1989-03-17 1991-06-04 The United States Of America As Represented By The Secretary Of Agriculture Enhancement of nitrogen fixation with Bradyrhizobium japonicum mutants
EP0392225A2 (en) 1989-03-24 1990-10-17 Ciba-Geigy Ag Disease-resistant transgenic plants
US5955651A (en) 1989-05-03 1999-09-21 New York University Transgenic plants that exhibit enhanced nitrogen assimilation
WO1990013651A1 (en) 1989-05-09 1990-11-15 Imperial Chemical Industries Plc Bacterial genes
EP0401979A2 (en) 1989-05-18 1990-12-12 Mycogen Corporation Novel bacillus thuringiensis isolates active against lepidopteran pests, and genes encoding novel lepidopteran-active toxins
EP0427529A1 (en) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Larvicidal lectins and plant insect resistance based thereon
EP0428941A1 (en) 1989-11-10 1991-05-29 Agro-Kanesho Co., Ltd. Hexahydrotriazine compounds and insecticides
US5804425A (en) 1990-08-31 1998-09-08 Monsanto Company Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases
US5633435A (en) 1990-08-31 1997-05-27 Monsanto Company Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases
US5627061A (en) 1990-08-31 1997-05-06 Monsanto Company Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases
WO1992008798A1 (en) 1990-11-08 1992-05-29 Imperial Chemical Industries Plc Expression of genes in transgenic plants
US6784338B1 (en) 1990-12-21 2004-08-31 Basf Plant Science Gmbh Genetically engineered modification of potato to form amylopectin-type starch
US5512466A (en) 1990-12-26 1996-04-30 Monsanto Company Control of fruit ripening and senescence in plants
WO1993005153A1 (en) 1991-08-29 1993-03-18 Zeneca Limited Biocidal proteins
EP0532022A1 (en) 1991-09-13 1993-03-17 Ube Industries, Ltd. Acrylate compound, preparation process thereof and fungicide using the same
WO1993007278A1 (en) 1991-10-04 1993-04-15 Ciba-Geigy Ag Synthetic dna sequence having enhanced insecticidal activity in maize
US5859332A (en) 1992-03-20 1999-01-12 Max-Planck-Gesellschaft Zur Forderung Fungus-responsive chimaeric gene
US5659124A (en) 1992-09-24 1997-08-19 Novartis Corporation Transgenic male sterile plants for the production of hybrid seeds
US5973135A (en) 1993-05-28 1999-10-26 Bayer Aktiengesellschaft DNA comprising plum pox virus and tomato spotted wilt virus cDNAS for disease resistance
EP0626449A2 (en) 1993-05-28 1994-11-30 Bayer Ag DNA coding for plant virus sequences
US5968503A (en) 1993-06-30 1999-10-19 Idaho Research Foundation, Inc. Use of streptomyces bacteria to control plant pathogens and degrade turf thatch
US5403584A (en) 1993-06-30 1995-04-04 Idaho Research Foundation, Inc. Use of Streptomyces WYEC 108 to control plant pathogens
US6864405B1 (en) 1993-10-06 2005-03-08 New York University Transgenic plants that exhibit enhanced nitrogen assimilation
WO1995009911A1 (en) 1993-10-06 1995-04-13 New York University Transgenic plants that exhibit enhanced nitrogen assimilation
US5608147A (en) 1994-01-11 1997-03-04 Kaphammer; Bryan J. tfdA gene selectable markers in plants and the use thereof
US5981831A (en) 1994-02-23 1999-11-09 Unilever Patent Holdings B.V. Exo-(1--4)-β-D galactanase
WO1995028423A1 (en) 1994-04-13 1995-10-26 The General Hospital Corporation Rps gene family, primers, probes, and detection methods
US5576202A (en) 1994-05-19 1996-11-19 Helsinki University Licensing, Ltd. Virus-resistant transgenic plants
US5968828A (en) 1994-05-19 1999-10-19 Helsinki University Licensing Ltd. Oy Virus-resistant transgenic plants comprising cells transformed with a polynucleotide encoding a potyviridae P1 protein or P1 protein fragment
WO1995033818A2 (en) 1994-06-08 1995-12-14 Ciba-Geigy Ag Genes for the synthesis of antipathogenic substances
WO1995034656A1 (en) 1994-06-10 1995-12-21 Ciba-Geigy Ag Novel bacillus thuringiensis genes coding toxins active against lepidopteran pests
WO1995035387A1 (en) 1994-06-17 1995-12-28 Epitope, Inc. Regulated expression of heterologous genes in plants and transgenic fruit with a modified ripening phenotype
US5571706A (en) 1994-06-17 1996-11-05 The United States Of America As Represented By The Secretary Of Agriculture Plant virus resistance gene and methods
EP0707069A2 (en) 1994-07-21 1996-04-17 Jinro Limited Process for preparing virus-resistant transgenic plant
US6281348B1 (en) 1994-12-08 2001-08-28 Pioneer Hi-Bred International, Inc. Reversible nuclear genetic system for male sterility in transgenic plants
US6072102A (en) 1994-12-08 2000-06-06 Pioneer Hi-Bred International, Inc. Reversible nuclear genetic system for male sterility in transgenic plants
US6399856B1 (en) 1994-12-08 2002-06-04 Pioneer Hi-Bred International, Inc. Reversible nuclear genetic system for male sterility in transgenic plants
US5670454A (en) 1994-12-15 1997-09-23 Basf Aktiengesellschaft Herbicides of the auxin type for treating transgenic crop plants
US6849780B2 (en) 1994-12-30 2005-02-01 Seminis Vegetable Seeds, Inc. Plants resistant to cucumber mosaic virus strain V34
US5877403A (en) 1994-12-30 1999-03-02 Seminis Vegetable Seeds, Inc. Papaya ringspot virus protease gene
US6015942A (en) 1994-12-30 2000-01-18 Seminis Vegetable Seeds, Inc. Transgenic plants exhibiting heterologous virus resistance
WO1996022375A2 (en) 1995-01-17 1996-07-25 The Regents Of The University Of California Procedures and materials for conferring disease resistance in plants
US5952485A (en) 1995-01-17 1999-09-14 The Regents Of The University Of California Procedures and materials for conferring disease resistance in plants
US5977434A (en) 1995-01-17 1999-11-02 The Regents Of The University Of California Procedures and materials for conferring disease resistance in plants
WO1996026639A1 (en) 1995-02-28 1996-09-06 Calgene, Inc. Cotton modification using ovary-tissue transcriptional factors
EP0736252A2 (en) 1995-04-05 1996-10-09 Ciba-Geigy Ag Synergistic compositions with diafenthiuron
WO1996038567A2 (en) 1995-06-02 1996-12-05 Rhone-Poulenc Agrochimie Dna sequence of a gene of hydroxy-phenyl pyruvate dioxygenase and production of plants containing a gene of hydroxy-phenyl pyruvate dioxygenase and which are tolerant to certain herbicides
US6046384A (en) 1995-06-07 2000-04-04 Seminis Vegetable Seeds, Inc. Papaya ringspot virus NIa protease gene
US5767376A (en) 1995-06-07 1998-06-16 University Of Hawaii At Manoa Nucleic acids encoding a papaya ACC synthase gene
WO1996040949A1 (en) 1995-06-07 1996-12-19 Pioneer Hi-Bred International, Inc. Induction of male sterility in plants by expression of high levels of avidin
WO1997001952A1 (en) 1995-06-30 1997-01-23 Dna Plant Technology Corporation Delayed ripening tomato plants
US6040496A (en) 1995-06-30 2000-03-21 Novartis Finance Corporation Use of translationally altered RNA to confer resistance to maize dwarf mosaic virus and other monocotyledonous plant viruses
US6864068B2 (en) 1995-12-13 2005-03-08 Syngenta Limited Antifungal proteins
US6084153A (en) 1996-02-14 2000-07-04 The Governors Of The University Of Alberta Plants having enhanced nitrogen assimilation/metabolism
WO1997030163A1 (en) 1996-02-14 1997-08-21 The Governors Of The University Of Alberta Plants having enhanced nitrogen assimilation/metabolism
US20020073443A1 (en) 1996-02-28 2002-06-13 Heifetz Peter B. Herbicide tolerance achieved through plastid transformation
US6084164A (en) 1996-03-25 2000-07-04 Pioneer Hi-Bred International, Inc. Sunflower seeds with enhanced saturated fatty acid contents
US6107548A (en) 1996-04-02 2000-08-22 Zeneca Limited DNA sequences from muskmelon (Cucumis melo) related to fruit ripening
US7345222B1 (en) 1996-04-11 2008-03-18 Gene Shears Pty. Limited Use of DNA sequences for male sterility in transgenic plants
WO1997041239A2 (en) 1996-04-30 1997-11-06 Pioneer Hi-Bred International, Inc. Transgenic plants with enhanced sulfur amino acid content
EP0929685A2 (en) 1996-04-30 1999-07-21 Pioneer Hi-Bred International, Inc. Transgenic plants with enhanced sulfur amino acid content
WO1997044471A2 (en) 1996-05-17 1997-11-27 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Potato plants with reduced cytosolic starch phosphorylasis and modified germination
US6232528B1 (en) 1996-06-26 2001-05-15 University Of Florida Research Foundation Incorporated Disease resistance in vitis
US5952546A (en) 1996-06-27 1999-09-14 Dna Plant Technology Corporation Delayed ripening tomato plants with T-DNA bearing a truncated ACC2 synthase gene
WO1997049816A1 (en) 1996-06-27 1997-12-31 E.I. Du Pont De Nemours And Company Plant gene for p-hydroxyphenylpyruvate dioxygenase
US6441278B1 (en) 1996-07-03 2002-08-27 Cargill Incorporated Canola oil having increased oleic acid and decreased linolenic acid content
US5850026A (en) 1996-07-03 1998-12-15 Cargill, Incorporated Canola oil having increased oleic acid and decreased linolenic acid content
WO1998002545A2 (en) 1996-07-11 1998-01-22 The Regents Of The University Of California Compositions and methods for plant pathogen resistance
DE19650197A1 (en) 1996-12-04 1998-06-10 Bayer Ag 3-thiocarbamoylpyrazole derivatives
US6376754B1 (en) 1997-03-07 2002-04-23 Asgrow Seed Company Plants having resistance to multiple herbicides and its use
US7105724B2 (en) 1997-04-04 2006-09-12 Board Of Regents Of University Of Nebraska Methods and materials for making and using transgenic dicamba-degrading organisms
WO1998046608A1 (en) 1997-04-14 1998-10-22 American Cyanamid Company Fungicidal trifluoromethylalkylamino-triazolopyrimidines
WO1999009151A2 (en) 1997-08-13 1999-02-25 The Regents Of The University Of California Procedures and materials for conferring disease resistance in plants
WO1999014187A1 (en) 1997-09-18 1999-03-25 Basf Aktiengesellschaft Benzamidoxim derivatives, intermediate products and methods for preparing and using them as fungicides
WO1999024413A2 (en) 1997-11-12 1999-05-20 Bayer Aktiengesellschaft Isothiazole carboxylic acid amides and the application thereof in order to protect plants
WO1999027783A1 (en) 1997-12-04 1999-06-10 Dow Agrosciences Llc Fungicidal compositions and methods, and compounds and methods for the preparation thereof
US6905877B1 (en) 1997-12-10 2005-06-14 Pioneer Hi-Bred International, Inc. Compositions and methods for altering amino acid content of proteins
US6946589B1 (en) 1997-12-10 2005-09-20 Pioneer Hi-Bred International, Inc. Compositions and methods for altering amino acid content of proteins
US7329802B1 (en) 1998-02-17 2008-02-12 Henry Daniell Genetic engineering of cotton to increase fiber strength, water absorption and dye binding
US7256326B2 (en) 1998-03-18 2007-08-14 Eduardo Blumwald Genetic engineering salt tolerance in crop plants
US20020031495A1 (en) 1998-04-29 2002-03-14 Esperanza Morales Pesticidally active isolate of beauveria bassiana, methods of preparing and using same for pest control in agriculture
WO1999064600A1 (en) 1998-06-08 1999-12-16 Istituto Agrario Di San Michele All'adige NUCLEOTIDE SEQUENCES OF THE APPLE LRPKm1 GENE, ENCODED AMINO ACID SEQUENCE AND USES THEREOF
WO2000004175A1 (en) 1998-07-14 2000-01-27 Unilever Plc Methods and composition for modulating flavonoid content
WO2000004173A1 (en) 1998-07-17 2000-01-27 Aventis Cropscience N.V. Methods and means to modulate programmed cell death in eukaryotic cells
US6380462B1 (en) 1998-08-14 2002-04-30 Calgene Llc Method for increasing stearate content in soybean oil
US6365802B2 (en) 1998-08-14 2002-04-02 Calgene Llc Methods for increasing stearate content in soybean oil
WO2000029404A1 (en) 1998-11-17 2000-05-25 Kumiai Chemical Industry Co., Ltd. Pyrimidinylbenzimidazole and triazinylbenzimidazole derivatives and agricultura/horticultural bactericides
EP1028125A1 (en) 1998-11-30 2000-08-16 Isagro Ricerca S.r.l. Dipeptide compounds having fungicidal activity and their agronomic use
EP1018553A1 (en) 1999-01-08 2000-07-12 Korea Kumho Petrochemical Co. Ltd. Transgenic plants with divergent SCaM4 or SCaM5 gene to achieve multiple disease resistance
WO2000046148A1 (en) 1999-02-02 2000-08-10 Sintokogio, Ltd. Silica gel carrying titanium oxide photocatalyst in high concentration and method for preparation thereof
EP1035122A1 (en) 1999-03-11 2000-09-13 Rohm And Haas Company Heterocyclic subsituted isoxazolidines and their use as fungicides
US6646184B2 (en) 1999-03-31 2003-11-11 Syngenta Participations Ag Trichothecene-resistant transgenic plants
EP1477557A1 (en) 1999-03-31 2004-11-17 Syngenta Participations AG transgenic plant resistant to mycotoxins and methods
WO2000065913A1 (en) 1999-04-28 2000-11-09 Takeda Chemical Industries, Ltd. Sulfonamide derivatives
EP1201648A1 (en) 1999-08-05 2002-05-02 Kumiai Chemical Industry Co., Ltd. Carbamate derivatives and agricultural/horticultural bactericides
US6472588B1 (en) 1999-09-10 2002-10-29 Texas Tech University Transgenic cotton plants with altered fiber characteristics transformed with a sucrose phosphate synthase nucleic acid
WO2001017333A1 (en) 1999-09-10 2001-03-15 Texas Tech University Transgenic fiber producing plants with increased expression of sucrose phosphate synthase
WO2001021821A2 (en) 1999-09-17 2001-03-29 Aventis Cropscience N.V. Insect-resistant rice plants
EP1135982A1 (en) 1999-09-30 2001-09-26 Japan Tobacco Inc. Method of constructing male sterile plant
WO2001030990A2 (en) 1999-10-13 2001-05-03 Avestha Gengraine Technologies Pvt. Ltd. Isolated nucleic acid sequence conferring salt tolerance in rice plant
US6727411B2 (en) 1999-12-13 2004-04-27 Ajinomoto Co., Inc. Method of producing transgenic plants having improved amino acid composition
DE10021412A1 (en) 1999-12-13 2001-06-21 Bayer Ag Fungicidal active ingredient combinations
US6706952B1 (en) 1999-12-15 2004-03-16 Syngenta Participations Ag Arabidopsis gene encoding a protein involved in the regulation of SAR gene expression in plants
WO2001054501A2 (en) 2000-01-25 2001-08-02 Syngenta Participations Ag Herbicidal composition
WO2001056358A2 (en) 2000-01-28 2001-08-09 Rohm And Haas Company Enhanced propertied pesticides
EP1122244A1 (en) 2000-02-04 2001-08-08 Sumitomo Chemical Company, Limited Uracil compounds and their use
US6864362B2 (en) 2000-03-16 2005-03-08 E. I. Du Pont De Nemours And Company Hypoallergenic transgenic soybeans
US6630618B2 (en) 2000-03-21 2003-10-07 The United States Of America As Represented By The Secretary Of Agriculture Transgenic plants having non-pathogen induced systemic acquired resistance (SAR)
US6974898B2 (en) 2000-04-18 2005-12-13 Commonwealth Scientific And Industrial Research Organisation Method of modifying the content of cottonseed oil
WO2001079499A1 (en) 2000-04-18 2001-10-25 Commonwealth Scientific And Industrial Research Organisation Method of modifying the content of cottonseed oil
WO2001092544A1 (en) 2000-05-30 2001-12-06 University Of Delhi Regulation of lethal gene expression in plants
US6791014B2 (en) 2000-08-11 2004-09-14 Aventis Cropscience, S.A. Use of HPPD inhibitors as selection agents in plant transformation
WO2002015701A2 (en) 2000-08-25 2002-02-28 Syngenta Participations Ag Bacillus thuringiensis crystal protein hybrids
WO2002022583A2 (en) 2000-09-18 2002-03-21 E. I. Du Pont De Nemours And Company Pyridinyl amides and imides for use as fungicides
WO2002040431A2 (en) 2000-11-17 2002-05-23 Dow Agrosciences Llc Compounds having fungicidal activity and processes to make and use same
US6720481B1 (en) 2001-02-27 2004-04-13 Pioneer Hi-Bred International, Inc. Canola cultivar 46A42
US20080235829A1 (en) 2001-03-08 2008-09-25 The Ohio State University Research Foundation Transgenic plants with altered levels of phenolic compounds
US7084321B2 (en) 2001-04-11 2006-08-01 Cornell Research Foundation, Inc. Isolated nucleic acid molecules relating to papaya fruit ripening
JP2002316902A (en) 2001-04-20 2002-10-31 Sumitomo Chem Co Ltd Plant blight-preventing agent composition
US20060185684A1 (en) 2001-06-08 2006-08-24 Anthony Albino Method of reducing the harmful effects of orally or transdermally delivered nicotine
WO2003000906A2 (en) 2001-06-22 2003-01-03 Syngenta Participations Ag Plant disease resistance genes
US7157621B2 (en) 2001-06-29 2007-01-02 E. I. Du Pont De Nemours And Company Alteration of oil traits in plants
US7294759B2 (en) 2001-06-29 2007-11-13 E. I. Du Pont De Nemours And Company Alteration of oil traits in plants
US7262151B2 (en) 2001-07-06 2007-08-28 Mcgill University Methods and compositions for production of lipo-chito oligosaccharides by rhizobacteria
WO2003010149A1 (en) 2001-07-25 2003-02-06 Bayer Cropscience Ag Pyrazolylcarboxanilides as fungicides
WO2003011853A1 (en) 2001-07-30 2003-02-13 Dow Agrosciences Llc 6-aryl-4-aminopicolinates and their use as herbicides
WO2003014103A1 (en) 2001-08-03 2003-02-20 Bayer Cropscience S.A. Iodobenzopyran-4-one derivatives having fungicidal activity
US7034139B2 (en) 2001-08-07 2006-04-25 Incorporated Administrative Agency Rice gene for controlling tolerance to salt stress
WO2003016286A1 (en) 2001-08-17 2003-02-27 Sankyo Agro Company, Limited 3-phenoxy-4-pyridazinol derivative and herbicide composition containing the same
WO2003018810A2 (en) 2001-08-31 2003-03-06 Syngenta Participations Ag Modified cry3a toxins and nucleic acid sequences coding therefor
WO2003052073A2 (en) 2001-12-17 2003-06-26 Syngenta Participations Ag Novel corn event
US7230168B2 (en) 2001-12-20 2007-06-12 The Curators Of The University Of Missouri Reversible male sterility in transgenic plants by expression of cytokinin oxidase
WO2003053145A1 (en) 2001-12-21 2003-07-03 Nissan Chemical Industries, Ltd. Bactericidal composition
WO2003061388A1 (en) 2002-01-18 2003-07-31 Sumitomo Chemical Takeda Agro Company, Limited Fused heterocyclic sulfonylurea compound, herbicide containing the same, and method of controlling weed with the same
WO2003066609A1 (en) 2002-02-04 2003-08-14 Bayer Cropscience Aktiengesellschaft Disubstituted thiazolyl carboxanilides and their use as microbicides
EP1334979A1 (en) 2002-02-08 2003-08-13 Kweek-en Researchbedrijf Agrico B.V. Gene conferring resistance to Phytophthera infestans (late-blight) in Solanaceae
WO2003074491A1 (en) 2002-03-05 2003-09-12 Syngenta Participations Ag O-cyclopropyl-carboxanilides and their use as fungicides
US6908945B2 (en) 2002-04-12 2005-06-21 Sumitomo Chemical Company, Limited Ester compound and its use
US7148397B2 (en) 2002-08-29 2006-12-12 The United States Of America As Represented By The Secretary Of Agriculture Solanum bulbocastanum late blight resistance gene and use thereof
WO2004049804A2 (en) 2002-11-29 2004-06-17 Syngenta Participations Ag Fungicidal combinations for crop potection
WO2004055191A1 (en) 2002-12-17 2004-07-01 Biogemma Expression of hydroxyphenylpyruvate dioxygenase in plastids of plants for herbicide tolerance
WO2004067528A1 (en) 2003-01-28 2004-08-12 E.I. Du Pont De Nemours And Company Cyano anthranilamide insecticides
WO2004083193A1 (en) 2003-03-17 2004-09-30 Sumitomo Chemical Company, Limited Amide compound and bactericide composition containing the same
CA2521729A1 (en) 2003-04-09 2004-10-21 Bayer Bioscience N.V. Methods and means for increasing the tolerance of plants to stress conditions
WO2005000352A1 (en) 2003-06-04 2005-01-06 Vector Tobacco Ltd. Method of reducing the harmful effects of orally or transdermally delivered nicotine
WO2005033319A2 (en) 2003-10-02 2005-04-14 Monsanto Technology Llc Stacking crop improvement traits in transgenic plants
WO2005048693A2 (en) 2003-11-19 2005-06-02 Agricultural Biotechnology Center Plant with improved drought tolerance
WO2005063721A1 (en) 2003-12-19 2005-07-14 E.I. Dupont De Nemours And Company Herbicidal pyrimidines
US7317146B2 (en) 2003-12-31 2008-01-08 Pioneer Hi-Bred International, Inc. Production of cereal grain with reduced starch granule size and uses thereof
WO2005077117A2 (en) 2004-02-10 2005-08-25 Monsanto Technology, Llc. Transgenic corn seed with enhanced amino acid content
WO2005077934A1 (en) 2004-02-18 2005-08-25 Ishihara Sangyo Kaisha, Ltd. Anthranilamides, process for the production thereof, and pest controllers containing the same
WO2005085216A1 (en) 2004-03-05 2005-09-15 Nissan Chemical Industries, Ltd. Isoxazoline-substituted benzamide compound and noxious organism control agent
WO2005087773A1 (en) 2004-03-10 2005-09-22 Basf Aktiengesellschaft 5,6-dialkyl-7-amino-triazolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said compounds
WO2005087772A1 (en) 2004-03-10 2005-09-22 Basf Aktiengesellschaft 5,6-dialkyl-7-amino-triazolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said compounds
WO2005107437A2 (en) 2004-04-30 2005-11-17 Dow Agrosciences Llc Novel herbicide resistance genes
WO2005120234A2 (en) 2004-06-03 2005-12-22 E.I. Dupont De Nemours And Company Fungicidal mixtures of amidinylphenyl compounds
WO2005123690A1 (en) 2004-06-18 2005-12-29 Basf Aktiengesellschaft 1-methyl-3-difluoromethyl-pyrazol-4-carbonic acid-(ortho-phenyl)-anilides, and use thereof as a fungicide
WO2005123689A1 (en) 2004-06-18 2005-12-29 Basf Aktiengesellschaft 1-methyl-3-trifluoromethyl-pyrazole-4-carboxylic acid (ortho-phenyl)-anilides and to use thereof as fungicide
WO2006013896A1 (en) 2004-08-04 2006-02-09 Meiji Seika Kaisha, Ltd. Quinoline derivative and insecticide containing same as active constituent
US20060075515A1 (en) 2004-08-11 2006-04-06 Luethy Michael H Enhanced zein reduction in transgenic corn seed
WO2006015866A1 (en) 2004-08-12 2006-02-16 Syngenta Participations Ag Method for protecting useful plants or plant propagation material
WO2006042145A2 (en) 2004-10-07 2006-04-20 Cornell Research Foundation, Inc. THE RICE BACTERIAL BLIGHT DISEASE RESISTANCE GENE xa5
WO2006043635A1 (en) 2004-10-20 2006-04-27 Kumiai Chemical Industry Co., Ltd. 3-triazolylphenyl sulfide derivative and insecticide/acaricide/nematicide containing the same as active ingredient
WO2006060634A2 (en) 2004-12-01 2006-06-08 Basf Agrochemical Products, B.V. Novel mutation involved in increased tolerance to imidazolinone herbicides in plants
US20080229448A1 (en) 2004-12-20 2008-09-18 Mendel Biotechnology, Inc. Plant Stress Tolerance from Modified Ap2 Transcription Factors
WO2006087343A1 (en) 2005-02-16 2006-08-24 Basf Aktiengesellschaft Pyrazole carboxylic acid anilides, method for the production thereof and agents containing them for controlling pathogenic fungi
WO2006087325A1 (en) 2005-02-16 2006-08-24 Basf Aktiengesellschaft 5-alkoxyalkyl-6-alkyl-7-amino-azolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said substances
WO2006089633A2 (en) 2005-02-22 2006-08-31 Bayer Cropscience Ag Spiroketal-substituted cyclic ketoenols
DE102005009458A1 (en) 2005-03-02 2006-09-07 Bayer Cropscience Ag pyrazolylcarboxanilides
US20060225152A1 (en) 2005-04-04 2006-10-05 E.I. Du Pont De Nemours And Company Polynucleotides and methods for making plants resistant to fungal pathogens
US7417181B2 (en) 2005-04-07 2008-08-26 The Samuel Roberts Noble Foundation Plants with increased phosphorous uptake
WO2006129714A1 (en) 2005-06-01 2006-12-07 Meiji Seika Kaisha, Ltd. Pest control agent
WO2007006670A1 (en) 2005-07-07 2007-01-18 Basf Aktiengesellschaft N-thio-anthranilamid compounds and their use as pesticides
WO2007020986A1 (en) 2005-08-12 2007-02-22 Nihon Nohyaku Co., Ltd. Substituted pyrazolecarboxylic acid anilide derivative or salt thereof, intermediate thereof, agent for agricultural and horticultural use, and use thereof
WO2007024833A1 (en) 2005-08-24 2007-03-01 E. I. Du Pont De Nemours And Company Anthranilamides for controlling invertebrate pests
WO2007030001A1 (en) 2005-09-06 2007-03-15 Plant Research International B.V. A transgenic plant having enhanced drought tolerance
WO2007043677A1 (en) 2005-10-14 2007-04-19 Sumitomo Chemical Company, Limited Hydrazide compound and pesticidal use of the same
WO2007064636A1 (en) 2005-12-02 2007-06-07 Vector Tobacco Inc. Method of reducing the harmful effects of orally or transdermally delivered nicotine
WO2007082098A2 (en) 2006-01-13 2007-07-19 Dow Agrosciences Llc 6-(poly-substituted aryl)-4-aminopicolinates and their use as herbicides
WO2007090624A2 (en) 2006-02-09 2007-08-16 Syngenta Participations Ag A method of protecting a plant propagation material, a plant, and/or plant organs
WO2007101540A1 (en) 2006-03-06 2007-09-13 Bayer Cropscience Ag Combinations of active ingredients with insecticidal properties
US20080052798A1 (en) 2006-03-09 2008-02-28 E.I. Du Pont De Nemours And Company Polynucleotide Encoding a Maize Herbicide Resistance Gene and Methods for Use
WO2007112122A2 (en) 2006-03-27 2007-10-04 Monsanto Technology Llc Methods of producing and using cold temperature tolerant plants, seeds, and crops
WO2007115644A1 (en) 2006-03-31 2007-10-18 Bayer Cropscience Ag Substituted enaminocarbonyl compounds
US20070261136A1 (en) 2006-05-02 2007-11-08 Pioneer Hi-Bred International, Inc. High Amylopectin Maize
WO2007131699A2 (en) 2006-05-12 2007-11-22 Bayer Bioscience N.V. Novel stress-related microrna molecules and uses thereof
WO2008002480A2 (en) 2006-06-23 2008-01-03 Monsanto Co. Transgenic crop plants with improved stress tolerance
WO2007149134A1 (en) 2006-06-23 2007-12-27 Dow Agrosciences Llc A method to control insects resistant to common insecticides
WO2008002371A1 (en) 2006-06-23 2008-01-03 Becker Underwood Inc. Improved shelf life and on seed stabilization of liquid bacterium inoculants
WO2008020998A2 (en) 2006-08-08 2008-02-21 Bayer Cropscience Lp Method of improving plant growth by reducing viral infections
WO2008021152A2 (en) 2006-08-09 2008-02-21 E. I. Du Pont De Nemours And Company Agronomic method
WO2008017706A1 (en) 2006-08-10 2008-02-14 Basf Plant Science Gmbh Method of increasing resistance against soybean rust in transgenic plants
WO2008067911A1 (en) 2006-12-04 2008-06-12 Bayer Cropscience Ag Biphenyl-substituted spirocyclic ketoenols
US7432421B2 (en) 2007-02-28 2008-10-07 Pioneer Hi-Bred International, Inc. Soybean variety XB30E07
WO2008122396A2 (en) 2007-04-04 2008-10-16 Syngenta Participations Ag Method of improving the growth of a plant
WO2008134969A1 (en) 2007-04-30 2008-11-13 Sinochem Corporation Benzamide compounds and applications thereof
WO2009002809A2 (en) 2007-06-26 2008-12-31 E. I. Du Pont De Nemours And Company Naphthalene isoxazoline invertebrate pest control agents
WO2009124707A2 (en) 2008-04-07 2009-10-15 Bayer Cropscience Ag Combinations of biological control agents and insecticides or fungicides
US20110046186A1 (en) 2008-07-07 2011-02-24 Bin Li 1-Substituted Pyridyl-Pyrazolyl Amide Compounds and Uses Thereof
CN101715774A (en) 2008-10-09 2010-06-02 浙江化工科技集团有限公司 Preparation and use of compound having insecticidal activity
WO2010060379A1 (en) 2008-11-28 2010-06-03 中国中化集团公司 Ether compounds with nitrogen-containing 5-member heterocycle and the uses thereof
WO2010069266A1 (en) 2008-12-19 2010-06-24 华东理工大学 Heterocyclic nitrogenous or oxygenous compounds with insecticidal activity formed from dialdehydes and their preparation and uses thereof
US20100260735A1 (en) 2009-04-13 2010-10-14 University of Delawre Methods for promoting plant health
WO2011006946A2 (en) 2009-07-15 2011-01-20 Basf Se Polymeric hair dyes
WO2011022809A1 (en) 2009-08-28 2011-03-03 University Of Saskatchewan Fusarium and fusarium mycotoxin biocontrol
WO2011028657A1 (en) 2009-09-01 2011-03-10 Dow Agrosciences Llc Synergistic fungicidal compositions containing a 5-fluoropyrimidine derivative for fungal control in cereals
WO2011085575A1 (en) 2010-01-15 2011-07-21 江苏省农药研究所股份有限公司 Ortho-heterocyclyl formanilide compounds, their synthesis methods and use
WO2011109395A2 (en) 2010-03-01 2011-09-09 University Of Delaware Compositions and methods for increasing biomass, iron concentration, and tolerance to pathogens in plants
WO2011134876A1 (en) 2010-04-30 2011-11-03 Syngenta Participations Ag A method of reducing insect-vectored viral infections
WO2011149749A1 (en) 2010-05-27 2011-12-01 E.I. Du Pont De Nemours And Company Crystalline form of 4- [5 - [3 -chloro-5 - (trifluoromethyl) phenyl] -4, 5 - dihydro - 5 - (trifluoromethyl) -3 - isoxazolyl] -n- [2-0x0-2- [ ( 2, 2, 2 - trifluoroethyl) amino] ethyl] -1- naphthalenecarboxamide
WO2012029672A1 (en) 2010-08-31 2012-03-08 Meiji Seikaファルマ株式会社 Noxious organism control agent
WO2012034403A1 (en) 2010-09-14 2012-03-22 中化蓝天集团有限公司 Fluoromethoxypyrazole anthranilamide compounds, synthesization methods and uses thereof
WO2012069266A1 (en) 2010-11-26 2012-05-31 Robert Bosch Gmbh Cutting element composition comprising an integrated lubricant
WO2012079073A1 (en) 2010-12-10 2012-06-14 Auburn University Inoculants including bacillus bacteria for inducing production of volatile organic compounds in plants
US20120149571A1 (en) 2010-12-10 2012-06-14 Auburn University Inoculants Including Bacillus Bacteria for Inducing Production of Volatile Organic Compounds in Plants
WO2012092115A1 (en) 2010-12-29 2012-07-05 E. I. Du Pont De Nemours And Company Mesoionic pyrido [1,2 -a] pyrimidine pesticides
US20120252672A1 (en) 2011-03-31 2012-10-04 Novozymes Biologicals, Inc. Competitive and Effective Bacterial Strains
WO2013003977A1 (en) 2011-07-01 2013-01-10 合肥星宇化学有限责任公司 Compound of 2,5-disubstituted-3-nitroimino-1,2,4-triazoline and preparation method and use as pesticide thereof
WO2013024009A1 (en) 2011-08-12 2013-02-21 Basf Se N-thio-anthranilamide compounds and their use as pesticides
WO2013024007A1 (en) 2011-08-12 2013-02-21 Basf Se Process for preparing n-substituted 1h-pyrazole-5-carbonylchloride compounds
WO2013024008A1 (en) 2011-08-12 2013-02-21 Basf Se Aniline type compounds
WO2013024010A1 (en) 2011-08-12 2013-02-21 Basf Se N-thio-anthranilamide compounds and their use as pesticides
WO2013050317A1 (en) 2011-10-03 2013-04-11 Syngenta Limited Polymorphs of an isoxazoline derivative
WO2013055584A1 (en) 2011-10-13 2013-04-18 E. I. Du Pont De Nemours And Company Solid forms of nematocidal sulfonamides
CN102613183A (en) 2012-03-07 2012-08-01 中化蓝天集团有限公司 Insecticide

Non-Patent Citations (49)

* Cited by examiner, † Cited by third party
Title
"FD/OFB-095-264-A", October 1999, CANADIAN FOOD INSPECTION AGENCY
"McCutcheon's, Vol. 1 : Emulsifiers & Detergents", vol. 1, 2008, MCCUTCHEON'S DIRECTORIES
"Technical Monograph No. 2", May 2008, CROPLIFE INTERNATIONAL, article "Catalogue of pesticide formulation types and international coding system"
"The Pesticide Manual", 2011, BRITISH CROP PROTECTION COUNCIL
APPL ENVIRON MICROBIOL, vol. 56, 1990, pages 2399 - 2403
APPL ENVIRON MICROBIOL, vol. 60, 1994, pages 940 - 94
APPL ENVIRON MICROBIOL, vol. 71, 2005, pages 7041 - 7052
APPL ENVIRON MICROBIOL, vol. 73, no. 8, 2007, pages 2635
APPL. ENVIRON. MICROBIOL., vol. 77, no. 15, 2011, pages 5513 - 5516
AUSTRALIAN J. EXP. AGRICULT., vol. 36, no. 1, 1996, pages 63 - 70
BIO/TECHNOLOGY, vol. 13, 1995, pages 577 - 582
BIOL FERTIL SOILS, vol. 47, 2011, pages 81 - 89
C. D. S. TOMLIN: "The Pesticide Manual", 2011, BRITISH CROP PROTECTION COUNCIL
CAN J MICROBIAL, vol. 48, 2002, pages 279 - 284
CAN J PLANT SCI, vol. 70, 1990, pages 661 - 666
CAN. J. MICROBIOL., vol. 38, 1992, pages 501 - 505
CAN. J. PLANT PATH., vol. 5, 1983, pages 251 - 255
CAN. J. PLANT SCI., vol. 48, no. 6, 1968, pages 587 - 94
EUR. J. SOIL BIOL., vol. 45, 2009, pages 28 - 35
FEDERAL REGISTER (USA, vol. 60, no. 113, 1995, pages 31139
FEDERAL REGISTER (USA, vol. 60, no. 141, 1995, pages 37870
FEDERAL REGISTER (USA, vol. 63, no. 88, 1998, pages 25194
FEDERAL REGISTER (USA, vol. 67, no. 226, 2002, pages 70392
FEMS MICROBIOLOGY LETTERS, vol. 303, no. 2, 2010, pages 123 - 131
FERNANDEZ-FLOURET, D.; CLEYET-MAREL, J. C., C R ACAD AGRIC FR, vol. 73, 1987, pages 163 - 171
FUNKE, PNAS, vol. 103, 2006, pages 13010 - 13015
HECK, CROP SCI., vol. 45, 2005, pages 329 - 339
INT. J. MICROBIOL. RES., vol. 3, no. 2, 2011, pages 120 - 130
KNOWLES: "Agrow Reports DS243", 2005, T&F INFORMA, article "New developments in crop protection product formulation"
KNOWLES: "Agrow Reports DS256", 2006, T&F INFORMA, article "Adjuvants and additives"
MOL GEN GENET., vol. 257, 1998, pages 606 - 13
MOLECULAR BREEDING, vol. 18, no. 1, 2006
MOLLET; GRUBE- MANN: "Formulation technology", 2001, WILEY VCH
NAUEN; DENHOLM, ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY, vol. 58, 2005, pages 200 - 215
PALTA J.A; BERGER J.B, PROCEEDINGS 12TH INTERNATIONAL LUPIN CONFERENCE
PEST MANAGEMENT SCIENCE, vol. 61, 2005, pages 277 - 285
PLANT AND SOIL, vol. 348, no. 1-2, 2011, pages 231 - 243
PLANT CELL REPORTS, vol. 20, 2001, pages 610 - 615
PLANT CELL REPORTS, vol. 6, 1987, pages 333 - 336
PLANT CELL, 1989, pages 53 - 63
PLANT MOLECULAR BIOLOGY, 2002, pages 50
PLANT MOLECULAR BIOLOGY, vol. 37, 1998, pages 287 - 296
REVISTA BRASILEIRA DE CIENCIA DO SOLO, vol. 35, no. 3, 2011, pages 739 - 742
SOIL BIOL BIOCHEM, vol. 36, no. 8, 2004, pages 1309 - 1317
SYSTEM APPL. MICROBIOL, vol. 27, 2004, pages 372 - 379
THOMAS M. PERRING ET AL: "MANAGEMENT OF PLANT VIRAL DISEASES THROUGH CHEMICAL CONTROL OF INSECT VECTORS", ANNUAL REVIEW OF ENTOMOLOGY, vol. 44, no. 1, 1 January 1999 (1999-01-01), pages 457 - 481, XP055089744, ISSN: 0066-4170, DOI: 10.1146/annurev.ento.44.1.457 *
TRENDS IN PLANT SCIENCE, vol. 11, 2006, pages 317 - 319
WORLD J. MICROBIOL. BIOTECHN., vol. 23, no. 6, 2007, pages 845 - 851
Y. TAMURA ET AL., TETRAHEDRON, vol. 31, 1975, pages 3035 - 3040

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9556141B2 (en) 2011-11-21 2017-01-31 Basf Se Process for preparing N-substituted 1H-pyrazole-5-carboxylate compounds and derivatives thereof
US9765052B2 (en) 2013-02-20 2017-09-19 Basf Se Anthranilamide compounds, their mixtures and the use thereof as pesticides
EP3069610A4 (en) * 2013-11-13 2017-04-12 Nippon Soda Co., Ltd. Co-crystal and method for producing same
US9648879B2 (en) 2013-11-13 2017-05-16 Nippon Soda Co., Ltd. Co-crystal and method for producing same
WO2019123194A1 (en) 2017-12-20 2019-06-27 Pi Industries Ltd. Anthranilamides, their use as insecticide and processes for preparing the same.
WO2019123195A1 (en) 2017-12-20 2019-06-27 Pi Industries Ltd. Pyrazolopyridine-diamides, their use as insecticide and processes for preparing the same.
WO2019150220A1 (en) 2018-01-30 2019-08-08 Pi Industries Ltd. Novel anthranilamides, their use as insecticide and processes for preparing the same.
CN108558761A (en) * 2018-05-21 2018-09-21 青岛清原化合物有限公司 A kind of triazole sulphur humulone-salicylic acid eutectic and its preparation method and application

Also Published As

Publication number Publication date
AR093782A1 (en) 2015-06-24

Similar Documents

Publication Publication Date Title
AU2020201830B2 (en) Pesticidal mixture comprising a pyrazole compound and an insecticide
US11570992B2 (en) Bicyclic compounds
US9174967B2 (en) Substituted pyrazole-containing compounds and their use as pesticides
US9765052B2 (en) Anthranilamide compounds, their mixtures and the use thereof as pesticides
US9044016B2 (en) N-thio-anthranilamide compounds and their use as pesticides
EP2903442A1 (en) Pesticidally active mixtures comprising anthranilamide compounds
EP2903438A1 (en) Pesticidally active mixtures comprising anthranilamide compounds
EP2903441A1 (en) Use of anthranilamide compounds in soil and seed treatment application methods
US20140179519A1 (en) N-thio-anthranilamide compounds and their use as pesticides
WO2014053406A1 (en) Method of controlling ryanodine-modulator insecticide resistant insects
WO2014079820A1 (en) Use of anthranilamide compounds for reducing insect-vectored viral infections
US20150250174A1 (en) Use of n-thio-anthranilamide compounds on cultivated plants
US20180368404A1 (en) 3-pyridyl heterobicyclic compound for controlling invertebrate pests
WO2014053403A1 (en) Method of controlling insecticide resistant insects
WO2014053401A2 (en) Method of improving plant health
WO2014053407A1 (en) N-thio-anthranilamide compounds and their use as pesticides
WO2014053402A1 (en) Method for controlling non-crop pests
US20230031024A1 (en) Substituted pyrimidinium compounds for combating animal pests

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13792031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13792031

Country of ref document: EP

Kind code of ref document: A1