WO2014049861A1 - Spectroscope - Google Patents

Spectroscope Download PDF

Info

Publication number
WO2014049861A1
WO2014049861A1 PCT/JP2012/075208 JP2012075208W WO2014049861A1 WO 2014049861 A1 WO2014049861 A1 WO 2014049861A1 JP 2012075208 W JP2012075208 W JP 2012075208W WO 2014049861 A1 WO2014049861 A1 WO 2014049861A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
light
resonance
photodetector
spectroscope
Prior art date
Application number
PCT/JP2012/075208
Other languages
French (fr)
Japanese (ja)
Inventor
博樹 丹
Original Assignee
パイオニア株式会社
東北パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 東北パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/075208 priority Critical patent/WO2014049861A1/en
Publication of WO2014049861A1 publication Critical patent/WO2014049861A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to a spectrometer.
  • Dispersion spectrometers using infrared spectroscopy are known. This type of spectroscope irradiates a substance to be measured with infrared light, separates transmitted light or reflected light from the substance, obtains a spectrum, and measures the characteristics of the target substance.
  • a conventional dispersion-type spectroscope has a configuration in which transmitted light or reflected light from a target substance is spatially dispersed by a dispersing element such as a grating or a prism and received by a light receiving unit such as a CCD array.
  • Patent Document 1 discloses an interference filter that enables selection of a wavelength by making a gap between a pair of support substrates variable.
  • the dispersion type spectrometer as described above is based on the principle of spatially dispersing light by a dispersion element such as a grating, and therefore requires a sufficient space for dispersing light between the dispersion element and the light receiving unit. To do. For this reason, it is difficult to reduce the size of the device itself.
  • An object of this invention is to provide the spectrometer which can be reduced in size.
  • the invention according to claim 1 is a spectrometer, comprising a plurality of light receiving elements, each of the light receiving elements comprising a resonance part, wherein the plurality of resonance parts resonate at different wavelengths. To do.
  • the structure of the spectrometer which concerns on 1st Example is shown.
  • the structure of the spectrometer which concerns on 2nd Example is shown.
  • the structure of the spectrometer which concerns on 3rd Example is shown.
  • the spectroscope includes a plurality of light receiving elements, each of the light receiving elements includes a resonance unit, and the plurality of resonance units resonate at different wavelengths.
  • the above spectroscope includes a plurality of light receiving elements, and each light receiving element includes a resonance unit.
  • the plurality of resonating parts resonate at different wavelengths. Therefore, the incident light is split by the plurality of resonance parts.
  • each of the light receiving elements includes a photo detector
  • each of the resonating units includes a semi-reflective layer and a total reflective layer that are arranged to face each other
  • the photo detector is arranged with respect to the resonating unit. It arrange
  • the photodetector and the resonance unit are arranged in this order from the light receiving surface side of the light receiving element, that is, the light incident side.
  • the light of the wavelength selected by the resonance unit is detected by each photodetector.
  • each of the light receiving elements includes a photo detector
  • each of the resonating units includes a pair of semi-reflective layers disposed so as to face each other, and the photo detector is arranged with respect to the resonating unit. It arrange
  • the resonator unit and the photodetector are arranged in this order from the light receiving surface side of the light receiving element, that is, the light incident side.
  • the light of the wavelength selected by the resonance unit is detected by each photodetector.
  • each of the resonance units includes a first resonance unit and a second resonance unit
  • each of the light receiving elements includes the first resonance unit and the second resonance unit.
  • the photodetector is arranged between the resonance part.
  • the photodetector is disposed between the two resonating portions.
  • the light of the wavelength selected by the resonance unit is detected by each photodetector.
  • the first resonating unit includes a pair of semi-reflective layers disposed opposite to each other, and the second resonating unit includes a semi-reflective layer and a total reflective layer disposed opposite to each other.
  • the plurality of light receiving elements are arranged side by side in a direction intersecting the incident direction in the order of a light receiving element having a large thickness in a light incident direction to a thin light receiving element.
  • FIG. 1A shows the configuration of the spectrometer 100 according to the first embodiment.
  • the spectrometer 100 is used to measure the properties of a substance.
  • Light emitted from a light source passes through the measurement target substance and then enters the spectroscope 100 as light L.
  • the light L is incident on the spectroscope 100 as light including only light in a specific direction or light narrowed to a predetermined width, for example, through a pinhole or using an optical fiber.
  • Spectroscope 100 includes a plurality of light receiving elements 10 arranged side by side. Specifically, as shown in FIG. 1A, when the incident method of the light L is the X direction, the plurality of light receiving elements 10 are in a direction crossing the X direction, that is, a direction perpendicular to the X direction. They are arranged in an array in the direction. More specifically, the plurality of light receiving elements 10 are arranged side by side in the Y direction intersecting with the X direction, which is the light incident direction, in the order of the light receiving elements 10 having a large thickness in the X direction to the thin light receiving elements 10.
  • the shape of the light receiving element 10 viewed in the X direction that is, the cross-sectional shape is rectangular.
  • FIG. 1B shows an enlarged view of a part 10x of the spectroscope 100 in FIG.
  • FIG. 1B is an enlarged view of a three-stage portion of the light receiving element 10 constituting the spectroscope 100.
  • One light receiving element 10 includes a photodetector 11 and a resonating unit 12.
  • the resonating parts 12 included in the three light receiving elements 10 are designated as resonating parts 12p to 12r, respectively.
  • the resonating portions 12p to 12r have different lengths in the X direction, that is, the light incident direction, that is, the optical path lengths, and thus have different resonance wavelengths ⁇ .
  • the resonance wavelengths of the resonance parts 12p to 12r are ⁇ p, ⁇ q, and ⁇ r, respectively.
  • the spectroscope 100 is configured by arranging a plurality of light receiving elements 10 including the photodetector 11 and the resonating units 12 having different resonance wavelengths ⁇ side by side.
  • the spectroscope 100 has both a spectroscopic function and a light receiving function. That is, the photodetector 11 of each light receiving element 10 functions as a light receiving unit. A plurality of adjacently arranged resonating parts 12 exhibit a spectral function. In other words, the incident light L passes through the plurality of photodetectors 11 and then enters the plurality of resonance portions 12 having different resonance wavelengths. In each resonating unit 12, light having a wavelength corresponding to each optical path length is selected and supplied to the photodetector 11. The plurality of resonating units 12 of the spectroscope 100 realizes a spectroscopic function by the plurality of resonating units 12 having different resonance wavelengths selecting light of different wavelengths.
  • the configuration of one resonator 12 is shown in FIG.
  • the resonator 12 is formed by integrating a semi-reflective layer 13, a dielectric layer 14, and a total reflection layer 15.
  • the dielectric layer 14 may be made of an inorganic material or an organic material.
  • the semi-reflective layer 13 and the total reflective layer 15 are disposed to face each other.
  • the light L that has passed through the photodetector 11 passes through the semi-reflective layer 13, travels through the dielectric layer 14, is reflected by the total reflective layer 15, passes through the dielectric layer 14 again, and returns to the semi-reflective layer 13.
  • the light that has been repeatedly reflected between the semi-reflective layer 13 and the total reflective layer 15 is light having a wavelength that depends on the optical path length of the resonating unit 12, and is transmitted through the semi-transmissive layer 13 and incident on the photodetector 11. To do.
  • the photodetector 11 outputs the intensity of incident light as an electrical signal.
  • the spectroscope 100 includes the plurality of resonating units 12 having a spectroscopic function and the plurality of photodetectors 11 having a light receiving function, and thus splits incident light into a plurality of wavelengths. The intensity can be detected.
  • the photodetector 11 and the resonating unit 12 are disposed adjacent to each other, a space corresponding to the space between the dispersive element and the light receiving unit in the conventional dispersive spectroscope is not required, and thus the size can be reduced.
  • FIG. 2A shows the configuration of the spectroscope 200 according to the second embodiment. Similar to the first embodiment, the light L enters the spectroscope 200 as light including only light in a specific direction.
  • the spectroscope 200 includes a plurality of light receiving elements 20 arranged side by side. Specifically, as shown in FIG. 2A, the plurality of light receiving elements 20 are arranged in an array in the Y direction. More specifically, the plurality of light receiving elements 20 are arranged in the Y direction intersecting with the X direction, which is the light incident direction, in the order from the light receiving element 20 having a large thickness in the X direction to the thin light receiving element 20.
  • the shape of the light receiving element 20 viewed in the X direction that is, the cross-sectional shape is rectangular.
  • FIG. 2B shows an enlarged view of a part 20x of the spectroscope 200 in FIG.
  • FIG. 2B is an enlarged view of the three-stage portion of the light receiving element 20 constituting the spectroscope 200.
  • One light receiving element 20 includes a photodetector 21, a first resonance unit 221, and a second resonance unit 222.
  • the photodetector 21 is disposed between the first resonance unit 221 and the second resonance unit 222.
  • the first resonance parts 221 included in the three light receiving elements 20 are the resonance parts 221p to 221r, respectively, and the second resonance part 222 is the resonance parts 222p to 222r, respectively.
  • the resonating units 221p to 221r and 222p to 222r have different lengths in the X direction, that is, the light incident direction, that is, optical path lengths.
  • the wavelength of light selected by the resonance units 221 and 222 of the light receiving element 20 is determined by the sum of the lengths (optical path lengths) of the first resonance unit 221, the photodetector 21, and the second resonance unit 222. , ⁇ q, ⁇ r.
  • the spectroscope 200 is configured by arranging a plurality of light receiving elements 20 including the photodetector 21 and the resonating units 221 and 222 having different resonance wavelengths ⁇ side by side.
  • the spectroscope 200 has both a spectroscopic function and a light receiving function. That is, the photodetector 21 of each light receiving element 20 functions as a light receiving unit.
  • a plurality of adjacently arranged resonating portions 221 and 222 exhibit a spectral function. That is, the incident light L passes through the first resonating unit 221, passes through the photodetector 21, and enters the second resonating unit 222.
  • light having a wavelength corresponding to each optical path length is selected and supplied to the photodetector 21.
  • the plurality of resonance units 221 and 222 of the spectroscope 200 realize a spectral function by selecting light of different wavelengths by the plurality of resonance units 221 and 222 having different resonance wavelengths.
  • the configuration of the resonators 221 and 222 is shown in FIG.
  • the resonator 221 is formed by integrating a pair of opposed semi-reflective layers 23 and a dielectric layer 24 sandwiched therebetween.
  • the resonator 222 is formed by integrating the semi-reflective layer 23, the dielectric layer 24, and the total reflection layer 25.
  • the semi-reflective layer 23 and the total reflective layer 25 are disposed to face each other.
  • the light L that has passed through the first resonator 221 and the photodetector 21 is reflected by the total reflection layer 15 of the second resonator 222 and returns to the photodetector 21 and the second resonator 221 again.
  • the light repeatedly reflected between the semi-reflective layer 13 and the total reflection layer 15 on the light receiving surface side of the light receiving element 20 is light having a wavelength that depends on the optical path length of the light receiving element 20, and is incident on the photodetector 21. To do.
  • the photodetector 21 outputs the intensity of incident light as an electrical signal.
  • the spectroscope 200 includes the plurality of resonating units 221 and 222 having a spectroscopic function and the plurality of photodetectors 21 having a light receiving function, and thus splits incident light into a plurality of wavelengths. The intensity can be detected. Further, since the photodetector 21 and the resonating units 221 and 222 are disposed adjacent to each other, a space corresponding to the space between the dispersive element and the light receiving unit in the conventional dispersive spectroscope is not required, and thus the size can be reduced. .
  • FIG. 3A shows a configuration of a spectrometer 300 according to the third embodiment. Similar to the first embodiment, the light L enters the spectroscope 300 as light including only light in a specific direction.
  • the spectroscope 300 includes a plurality of light receiving elements 30 arranged side by side. Specifically, as shown in FIG. 3A, the plurality of light receiving elements 30 are arranged in an array in the Y direction. More specifically, the plurality of light receiving elements 30 are arranged in the Y direction intersecting with the X direction which is the incident direction of light in the order of the light receiving elements 30 having a large thickness in the X direction to the thin light receiving elements 30.
  • the shape of the light receiving element 30 viewed in the X direction that is, the cross-sectional shape is rectangular.
  • FIG. 3B is an enlarged view of a part 30x of the spectroscope 300 in FIG.
  • FIG. 3B is an enlarged view of the three-stage portion of the light receiving element 30 constituting the spectroscope 300.
  • One light receiving element 30 includes a photodetector 31 and a resonating unit 32.
  • the resonating parts 32 included in the three light receiving elements 30 are designated as resonating parts 32p to 32r, respectively.
  • the resonating portions 32p to 32r have different lengths in the X direction, that is, the light incident direction, that is, the optical path lengths, and thus have different resonance wavelengths ⁇ .
  • the resonance wavelengths of the resonance parts 32p to 32r are ⁇ p, ⁇ q, and ⁇ r, respectively.
  • the spectroscope 300 is configured by arranging a plurality of light receiving elements 30 including the photodetector 31 and the resonating units 32 having different resonance wavelengths ⁇ side by side.
  • the spectroscope 300 has both a spectroscopic function and a light receiving function. That is, the photodetector 31 of each light receiving element 30 functions as a light receiving unit. A plurality of adjacently arranged resonating parts 32 exhibit a spectral function. The incident light L is incident on a plurality of resonance portions 32 having different resonance wavelengths. In each resonance part 32, the light of a wavelength according to each optical path length is selected and supplied to the photodetector 31. The plurality of resonating units 32 of the spectroscope 300 realize a spectroscopic function by the light having different wavelengths selected by the plurality of resonating units 32 having different resonance wavelengths.
  • the configuration of one resonator 32 is shown in FIG.
  • the resonator 32 is formed by integrating two semi-reflective layers 33 arranged opposite to each other and a dielectric layer 34 sandwiched therebetween.
  • the light L incident on the resonating unit 32 passes through the semi-reflective layer 33, travels through the dielectric layer 34, is reflected by the semi-reflective layer 33, passes through the dielectric layer 34 again, and returns to the semi-reflective layer 33.
  • the light that is repeatedly reflected between the pair of semi-reflective layers 33 is light having a wavelength that depends on the optical path length of the resonating unit 32, and is transmitted through the semi-transmissive layer 33 and incident on the photodetector 31.
  • the photodetector 31 outputs the intensity of incident light as an electrical signal.
  • the spectroscope 300 includes the plurality of resonating units 32 having a spectroscopic function and the plurality of photodetectors 31 having a light receiving function, and thus splits incident light into a plurality of wavelengths. The intensity can be detected.
  • the photodetector 31 and the resonating unit 32 are disposed adjacent to each other, a space corresponding to the space between the dispersive element and the light receiving unit in the conventional dispersive spectroscope is not required, so that the size can be reduced.
  • the present invention can be used for a measuring instrument using a spectroscopic method for spectrally separating infrared light, visible light, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

Provided is a spectroscope having a reduced size. This spectroscope is provided with a plurality of light receiving elements, and the light receiving elements are respectively provided with photodetectors and resonance sections. The resonance sections respectively select light at wavelengths different from each other by resonating at different wavelengths, and spectroscopic functions for inputted light as a whole are achieved. The light selected by means of the resonance sections, said light being at respective wavelengths, is detected by means of the photodetectors.

Description

分光器Spectrometer
 本発明は、 本発明は分光器に関する。 The present invention relates to a spectrometer.
 赤外分光法による分散型の分光器が知られている。この種の分光器は、測定対象の物質に赤外光を照射し、物質による透過光又は反射光を分光してスペクトルを得て、対象物質の特性を測定する。従来の分散型の分光器は、対象物質からの透過光又は反射光をグレーティング又はプリズムなどの分散素子により空間的に分散させ、CCDアレイなどの受光部により受講する構成を有する。 Dispersion spectrometers using infrared spectroscopy are known. This type of spectroscope irradiates a substance to be measured with infrared light, separates transmitted light or reflected light from the substance, obtains a spectrum, and measures the characteristics of the target substance. A conventional dispersion-type spectroscope has a configuration in which transmitted light or reflected light from a target substance is spatially dispersed by a dispersing element such as a grating or a prism and received by a light receiving unit such as a CCD array.
 なお、一対の支持基板間のギャップを可変とすることにより、波長の選択を可能とする干渉フィルタが特許文献1に記載されている。 Note that Patent Document 1 discloses an interference filter that enables selection of a wavelength by making a gap between a pair of support substrates variable.
特開平11-248934号公報Japanese Patent Laid-Open No. 11-248934
 上記のような分散型の分光器は、グレーティングなどの分散素子により空間的に光を分散させる原理であるため、分散素子と受光部との間に光を分散させるための十分な空間を必要とする。このため、装置自体を小型化することが難しい。 The dispersion type spectrometer as described above is based on the principle of spatially dispersing light by a dispersion element such as a grating, and therefore requires a sufficient space for dispersing light between the dispersion element and the light receiving unit. To do. For this reason, it is difficult to reduce the size of the device itself.
 本発明の解決しようとする課題としては、上記のものが一例として挙げられる。本発明は、小型化が可能な分光器を提供することを目的とする。 The above is one example of problems to be solved by the present invention. An object of this invention is to provide the spectrometer which can be reduced in size.
 請求項1に記載の発明は、分光器であって、複数の受光素子を備え、前記受光素子の各々は共振部を備え、複数の前記共振部は、互いに異なる波長で共振することを特徴とする。 The invention according to claim 1 is a spectrometer, comprising a plurality of light receiving elements, each of the light receiving elements comprising a resonance part, wherein the plurality of resonance parts resonate at different wavelengths. To do.
第1実施例に係る分光器の構成を示す。The structure of the spectrometer which concerns on 1st Example is shown. 第2実施例に係る分光器の構成を示す。The structure of the spectrometer which concerns on 2nd Example is shown. 第3実施例に係る分光器の構成を示す。The structure of the spectrometer which concerns on 3rd Example is shown.
 本発明の好適な実施形態では、分光器は、複数の受光素子を備え、前記受光素子の各々は共振部を備え、複数の前記共振部は、互いに異なる波長で共振する。 In a preferred embodiment of the present invention, the spectroscope includes a plurality of light receiving elements, each of the light receiving elements includes a resonance unit, and the plurality of resonance units resonate at different wavelengths.
 上記の分光器は複数の受光素子を備え、各受光素子は共振部を備える。複数の共振部は、互いに異なる波長で共振する。よって、入射した光は複数の共振部により分光される。 The above spectroscope includes a plurality of light receiving elements, and each light receiving element includes a resonance unit. The plurality of resonating parts resonate at different wavelengths. Therefore, the incident light is split by the plurality of resonance parts.
 上記の分光器の一態様は、前記受光素子の各々はフォトディテクタを備え、前記共振部の各々は、対向配置された半反射層及び全反射層を備え、前記フォトディテクタは、前記共振部に対して前記受光素子の受光面側に配置される。 In one aspect of the spectroscope, each of the light receiving elements includes a photo detector, each of the resonating units includes a semi-reflective layer and a total reflective layer that are arranged to face each other, and the photo detector is arranged with respect to the resonating unit. It arrange | positions at the light-receiving surface side of the said light receiving element.
 この態様では、受光素子の受光面側、即ち光の入射側から順に、フォトディテクタ、共振部の順に配置される。共振部で選択された波長の光が各フォトディテクタにより検出される。 In this aspect, the photodetector and the resonance unit are arranged in this order from the light receiving surface side of the light receiving element, that is, the light incident side. The light of the wavelength selected by the resonance unit is detected by each photodetector.
 上記の分光器の他の一態様は、前記受光素子の各々はフォトディテクタを備え、前記共振部の各々は、対向配置された一対の半反射層を備え、前記フォトディテクタは、前記共振部に対して前記受光素子の受光面側と逆側に配置される。 In another aspect of the spectroscope, each of the light receiving elements includes a photo detector, each of the resonating units includes a pair of semi-reflective layers disposed so as to face each other, and the photo detector is arranged with respect to the resonating unit. It arrange | positions on the opposite side to the light-receiving surface side of the said light receiving element.
 この態様では、受光素子の受光面側、即ち光の入射側から順に、共振部、フォトディテクタの順に配置される。共振部で選択された波長の光が各フォトディテクタにより検出される。 In this aspect, the resonator unit and the photodetector are arranged in this order from the light receiving surface side of the light receiving element, that is, the light incident side. The light of the wavelength selected by the resonance unit is detected by each photodetector.
 上記の分光器の他の一態様は、前記共振部の各々は、第1の共振部と第2の共振部とを備え、前記受光素子の各々は、前記第1の共振部と前記第2の共振部との間に配置されたフォトディテクタを備える。 In another aspect of the spectroscope, each of the resonance units includes a first resonance unit and a second resonance unit, and each of the light receiving elements includes the first resonance unit and the second resonance unit. The photodetector is arranged between the resonance part.
 この態様では、各受光素子において、フォトディテクタは2つの共振部の間に配置される。共振部で選択された波長の光が各フォトディテクタにより検出される。また、好適には、前記第1の共振部は対向配置された一対の半反射層を備え、前記第2の共振部は対向配置された半反射層及び全反射層を備える。 In this aspect, in each light receiving element, the photodetector is disposed between the two resonating portions. The light of the wavelength selected by the resonance unit is detected by each photodetector. Preferably, the first resonating unit includes a pair of semi-reflective layers disposed opposite to each other, and the second resonating unit includes a semi-reflective layer and a total reflective layer disposed opposite to each other.
 好適な例では、前記複数の受光素子は、光の入射方向における厚さが厚い受光素子から薄い受光素子の順に、前記入射方向と交差する方向に並べて配置される。 In a preferred example, the plurality of light receiving elements are arranged side by side in a direction intersecting the incident direction in the order of a light receiving element having a large thickness in a light incident direction to a thin light receiving element.
 以下、図面を参照して本発明の好適な実施例について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 [第1実施例]
 図1(a)は、第1実施例に係る分光器100の構成を示す。分光器100は、物質の性質の測定に使用される。図示しない光源から出射した光は、測定の対象物質を透過するなどした後、光Lとして分光器100へ入射する。光Lは、例えばピンホールを通過させる、又は、光ファイバを使用することにより、特定の方向の光のみを含む光、又は所定の幅に絞られた光として分光器100へ入射する。
[First embodiment]
FIG. 1A shows the configuration of the spectrometer 100 according to the first embodiment. The spectrometer 100 is used to measure the properties of a substance. Light emitted from a light source (not shown) passes through the measurement target substance and then enters the spectroscope 100 as light L. The light L is incident on the spectroscope 100 as light including only light in a specific direction or light narrowed to a predetermined width, for example, through a pinhole or using an optical fiber.
 分光器100は、複数の受光素子10が並べて配置されてなる。具体的には、図1(a)に示すように、光Lの入射方法をX方向とすると、複数の受光素子10は、X方向と交差する方向、即ちX方向に垂直な方向であるY方向に並べてアレイ状に配置される。より詳細には、複数の受光素子10は、X方向における厚さが厚い受光素子10から薄い受光素子10の順に、光の入射方向であるX方向と交差するY方向に並べて配置される。受光素子10をX方向に見た形状、即ち断面形状は矩形である。 Spectroscope 100 includes a plurality of light receiving elements 10 arranged side by side. Specifically, as shown in FIG. 1A, when the incident method of the light L is the X direction, the plurality of light receiving elements 10 are in a direction crossing the X direction, that is, a direction perpendicular to the X direction. They are arranged in an array in the direction. More specifically, the plurality of light receiving elements 10 are arranged side by side in the Y direction intersecting with the X direction, which is the light incident direction, in the order of the light receiving elements 10 having a large thickness in the X direction to the thin light receiving elements 10. The shape of the light receiving element 10 viewed in the X direction, that is, the cross-sectional shape is rectangular.
 図1(a)における分光器100の一部10xを拡大したものを図1(b)に示す。図1(b)は、分光器100を構成する受光素子10の3段分の部分を拡大したものである。1つの受光素子10は、フォトディテクタ11と、共振部12とを備える。図1(b)において、3つの受光素子10に含まれる共振部12をそれぞれ共振部12p~12rとする。共振部12p~12rは、光の入射方向であるX方向における長さ、即ち、光路長が異なっており、それにより共振波長λが異なっている。共振部12p~12rの共振波長はそれぞれλp、λq、λrとなっている。このように、フォトディテクタ11と、異なる共振波長λを有する共振部12とを備える複数の受光素子10が並べて隣接配置されることにより分光器100が構成されている。 FIG. 1B shows an enlarged view of a part 10x of the spectroscope 100 in FIG. FIG. 1B is an enlarged view of a three-stage portion of the light receiving element 10 constituting the spectroscope 100. One light receiving element 10 includes a photodetector 11 and a resonating unit 12. In FIG. 1B, the resonating parts 12 included in the three light receiving elements 10 are designated as resonating parts 12p to 12r, respectively. The resonating portions 12p to 12r have different lengths in the X direction, that is, the light incident direction, that is, the optical path lengths, and thus have different resonance wavelengths λ. The resonance wavelengths of the resonance parts 12p to 12r are λp, λq, and λr, respectively. As described above, the spectroscope 100 is configured by arranging a plurality of light receiving elements 10 including the photodetector 11 and the resonating units 12 having different resonance wavelengths λ side by side.
 分光器100は、分光機能と受光機能とを併せ持っている。即ち、各受光素子10のフォトディテクタ11は受光部として機能する。複数の隣接配置された共振部12は分光機能を発揮する。即ち、入射する光Lは、複数のフォトディテクタ11を透過した後、共振波長の異なる複数の共振部12に入射する。各共振部12では、各々の光路長に応じた波長の光を選択してフォトディテクタ11に供給する。共振波長の異なる複数の共振部12が異なる波長の光を選択することにより、分光器100の複数の共振部12は分光機能を実現する。 The spectroscope 100 has both a spectroscopic function and a light receiving function. That is, the photodetector 11 of each light receiving element 10 functions as a light receiving unit. A plurality of adjacently arranged resonating parts 12 exhibit a spectral function. In other words, the incident light L passes through the plurality of photodetectors 11 and then enters the plurality of resonance portions 12 having different resonance wavelengths. In each resonating unit 12, light having a wavelength corresponding to each optical path length is selected and supplied to the photodetector 11. The plurality of resonating units 12 of the spectroscope 100 realizes a spectroscopic function by the plurality of resonating units 12 having different resonance wavelengths selecting light of different wavelengths.
 1つの共振器12の構成を図1(c)に示す。共振器12は、半反射層13と、誘電体層14と、全反射層15とを一体化してなる。誘電体層14は、無機材料又は有機材料で構成しても構わない。半反射層13と全反射層15とは対向配置される。フォトディテクタ11を透過した光Lは、半反射層13を透過して誘電体層14を進み、全反射層15で反射されて再び誘電体層14を通過して半反射層13へ戻る。こうして、半反射層13と全反射層15との間で反射を繰り返した光は、共振部12の光路長に依存する波長の光であり、これが半透過層13を透過してフォトディテクタ11に入射する。フォトディテクタ11は、入射した光の強度を電気信号として出力する。 The configuration of one resonator 12 is shown in FIG. The resonator 12 is formed by integrating a semi-reflective layer 13, a dielectric layer 14, and a total reflection layer 15. The dielectric layer 14 may be made of an inorganic material or an organic material. The semi-reflective layer 13 and the total reflective layer 15 are disposed to face each other. The light L that has passed through the photodetector 11 passes through the semi-reflective layer 13, travels through the dielectric layer 14, is reflected by the total reflective layer 15, passes through the dielectric layer 14 again, and returns to the semi-reflective layer 13. Thus, the light that has been repeatedly reflected between the semi-reflective layer 13 and the total reflective layer 15 is light having a wavelength that depends on the optical path length of the resonating unit 12, and is transmitted through the semi-transmissive layer 13 and incident on the photodetector 11. To do. The photodetector 11 outputs the intensity of incident light as an electrical signal.
 このように、第1実施例の分光器100は、分光機能を有する複数の共振部12と、受光機能を有する複数のフォトディテクタ11とを備えるので、入射する光を複数の波長に分光してその強度を検出することができる。また、フォトディテクタ11と共振部12とは隣接配置されるので、従来の分散型分光器における分散素子と受光部の間のスペースに相当するスペースを必要としないため、小型化が可能となる。 As described above, the spectroscope 100 according to the first embodiment includes the plurality of resonating units 12 having a spectroscopic function and the plurality of photodetectors 11 having a light receiving function, and thus splits incident light into a plurality of wavelengths. The intensity can be detected. In addition, since the photodetector 11 and the resonating unit 12 are disposed adjacent to each other, a space corresponding to the space between the dispersive element and the light receiving unit in the conventional dispersive spectroscope is not required, and thus the size can be reduced.
 [第2実施例]
 図2(a)は、第2実施例に係る分光器200の構成を示す。光Lは、第1実施例と同様に、特定の方向の光のみを含む光として分光器200へ入射する。
[Second Embodiment]
FIG. 2A shows the configuration of the spectroscope 200 according to the second embodiment. Similar to the first embodiment, the light L enters the spectroscope 200 as light including only light in a specific direction.
 分光器200は、複数の受光素子20が並べて配置されてなる。具体的には、図2(a)に示すように、複数の受光素子20はY方向に並べてアレイ状に配置される。より詳細には、複数の受光素子20は、X方向における厚さが厚い受光素子20から薄い受光素子20の順に、光の入射方向であるX方向と交差するY方向に並べて配置される。受光素子20をX方向に見た形状、即ち断面形状は矩形である。 The spectroscope 200 includes a plurality of light receiving elements 20 arranged side by side. Specifically, as shown in FIG. 2A, the plurality of light receiving elements 20 are arranged in an array in the Y direction. More specifically, the plurality of light receiving elements 20 are arranged in the Y direction intersecting with the X direction, which is the light incident direction, in the order from the light receiving element 20 having a large thickness in the X direction to the thin light receiving element 20. The shape of the light receiving element 20 viewed in the X direction, that is, the cross-sectional shape is rectangular.
 図2(a)における分光器200の一部20xを拡大したものを図2(b)に示す。図2(b)は、分光器200を構成する受光素子20の3段分の部分を拡大したものである。1つの受光素子20は、フォトディテクタ21と、第1の共振部221と、第2の共振部222とを備える。フォトディテクタ21は、第1の共振部221と第2の共振部222との間に配置される。 FIG. 2B shows an enlarged view of a part 20x of the spectroscope 200 in FIG. FIG. 2B is an enlarged view of the three-stage portion of the light receiving element 20 constituting the spectroscope 200. One light receiving element 20 includes a photodetector 21, a first resonance unit 221, and a second resonance unit 222. The photodetector 21 is disposed between the first resonance unit 221 and the second resonance unit 222.
 図2(b)において、3つの受光素子20に含まれる第1の共振部221をそれぞれ共振部221p~221rとし、第2の共振部222をそれぞれ共振部222p~222rとする。共振部221p~221r、及び、222p~222rは、光の入射方向であるX方向における長さ、即ち、光路長が異なっている。受光素子20の共振部221及び222が選択する光の波長は、第1の共振部221と、フォトディテクタ21と、第2の共振部222との長さ(光路長)の合計により決まり、それぞれλp、λq、λrとなっている。このように、フォトディテクタ21と、異なる共振波長λを有する共振部221及び222とを備える複数の受光素子20が並べて隣接配置されることにより分光器200が構成されている。 In FIG. 2B, the first resonance parts 221 included in the three light receiving elements 20 are the resonance parts 221p to 221r, respectively, and the second resonance part 222 is the resonance parts 222p to 222r, respectively. The resonating units 221p to 221r and 222p to 222r have different lengths in the X direction, that is, the light incident direction, that is, optical path lengths. The wavelength of light selected by the resonance units 221 and 222 of the light receiving element 20 is determined by the sum of the lengths (optical path lengths) of the first resonance unit 221, the photodetector 21, and the second resonance unit 222. , Λq, λr. Thus, the spectroscope 200 is configured by arranging a plurality of light receiving elements 20 including the photodetector 21 and the resonating units 221 and 222 having different resonance wavelengths λ side by side.
 分光器200は、分光機能と受光機能とを併せ持っている。即ち、各受光素子20のフォトディテクタ21は受光部として機能する。複数の隣接配置された共振部221及び222は分光機能を発揮する。即ち、入射する光Lは、第1の共振部221を透過し、フォトディテクタ21を透過し、第2の共振部222に入射する。各共振部221及び222では、各々の光路長に応じた波長の光を選択してフォトディテクタ21に供給する。共振波長の異なる複数の共振部221及び222が異なる波長の光を選択することにより、分光器200の複数の共振部221及び222は分光機能を実現する。 The spectroscope 200 has both a spectroscopic function and a light receiving function. That is, the photodetector 21 of each light receiving element 20 functions as a light receiving unit. A plurality of adjacently arranged resonating portions 221 and 222 exhibit a spectral function. That is, the incident light L passes through the first resonating unit 221, passes through the photodetector 21, and enters the second resonating unit 222. In each of the resonating units 221 and 222, light having a wavelength corresponding to each optical path length is selected and supplied to the photodetector 21. The plurality of resonance units 221 and 222 of the spectroscope 200 realize a spectral function by selecting light of different wavelengths by the plurality of resonance units 221 and 222 having different resonance wavelengths.
 共振器221及び222の構成を図2(c)に示す。共振器221は、対向配置された一対の半反射層23と、それらに挟まれた誘電体層24とを一体化してなる。共振器222は、半反射層23と、誘電体層24と、全反射層25とを一体化してなる。半反射層23と全反射層25は対向配置される。第1の共振器221及びフォトディテクタ21を透過した光Lは、第2の共振器222の全反射層15で反射されて再びフォトディテクタ21及び第2の共振器221へと戻る。こうして、受光素子20の受光面側の半反射層13と全反射層15との間で反射を繰り返した光は、受光素子20の光路長に依存する波長の光であり、これがフォトディテクタ21に入射する。フォトディテクタ21は、入射した光の強度を電気信号として出力する。  The configuration of the resonators 221 and 222 is shown in FIG. The resonator 221 is formed by integrating a pair of opposed semi-reflective layers 23 and a dielectric layer 24 sandwiched therebetween. The resonator 222 is formed by integrating the semi-reflective layer 23, the dielectric layer 24, and the total reflection layer 25. The semi-reflective layer 23 and the total reflective layer 25 are disposed to face each other. The light L that has passed through the first resonator 221 and the photodetector 21 is reflected by the total reflection layer 15 of the second resonator 222 and returns to the photodetector 21 and the second resonator 221 again. Thus, the light repeatedly reflected between the semi-reflective layer 13 and the total reflection layer 15 on the light receiving surface side of the light receiving element 20 is light having a wavelength that depends on the optical path length of the light receiving element 20, and is incident on the photodetector 21. To do. The photodetector 21 outputs the intensity of incident light as an electrical signal. *
 このように、第2実施例の分光器200は、分光機能を有する複数の共振部221、222と、受光機能を有する複数のフォトディテクタ21とを備えるので、入射する光を複数の波長に分光してその強度を検出することができる。また、フォトディテクタ21と共振部221、222とは隣接配置されるので、従来の分散型分光器における分散素子と受光部の間のスペースに相当するスペースを必要としないため、小型化が可能となる。 As described above, the spectroscope 200 according to the second embodiment includes the plurality of resonating units 221 and 222 having a spectroscopic function and the plurality of photodetectors 21 having a light receiving function, and thus splits incident light into a plurality of wavelengths. The intensity can be detected. Further, since the photodetector 21 and the resonating units 221 and 222 are disposed adjacent to each other, a space corresponding to the space between the dispersive element and the light receiving unit in the conventional dispersive spectroscope is not required, and thus the size can be reduced. .
 [第3実施例]
 図3(a)は、第3実施例に係る分光器300の構成を示す。光Lは、第1実施例と同様に、特定の方向の光のみを含む光として分光器300へ入射する。
[Third embodiment]
FIG. 3A shows a configuration of a spectrometer 300 according to the third embodiment. Similar to the first embodiment, the light L enters the spectroscope 300 as light including only light in a specific direction.
 分光器300は、複数の受光素子30が並べて配置されてなる。具体的には、図3(a)に示すように、複数の受光素子30はY方向に並べてアレイ状に配置される。より詳細には、複数の受光素子30は、X方向における厚さが厚い受光素子30から薄い受光素子30の順に、光の入射方向であるX方向と交差するY方向に並べて配置される。受光素子30をX方向に見た形状、即ち断面形状は矩形である。 The spectroscope 300 includes a plurality of light receiving elements 30 arranged side by side. Specifically, as shown in FIG. 3A, the plurality of light receiving elements 30 are arranged in an array in the Y direction. More specifically, the plurality of light receiving elements 30 are arranged in the Y direction intersecting with the X direction which is the incident direction of light in the order of the light receiving elements 30 having a large thickness in the X direction to the thin light receiving elements 30. The shape of the light receiving element 30 viewed in the X direction, that is, the cross-sectional shape is rectangular.
 図3(a)における分光器300の一部30xを拡大したものを図3(b)に示す。図3(b)は、分光器300を構成する受光素子30の3段分の部分を拡大したものである。1つの受光素子30は、フォトディテクタ31と、共振部32とを備える。図3(b)において、3つの受光素子30に含まれる共振部32をそれぞれ共振部32p~32rとする。共振部32p~32rは、光の入射方向であるX方向における長さ、即ち、光路長が異なっており、それにより共振波長λが異なっている。共振部32p~32rの共振波長はそれぞれλp、λq、λrとなっている。このように、フォトディテクタ31と、異なる共振波長λを有する共振部32とを備える複数の受光素子30が並べて隣接配置されることにより分光器300が構成されている。 3B is an enlarged view of a part 30x of the spectroscope 300 in FIG. FIG. 3B is an enlarged view of the three-stage portion of the light receiving element 30 constituting the spectroscope 300. One light receiving element 30 includes a photodetector 31 and a resonating unit 32. In FIG. 3B, the resonating parts 32 included in the three light receiving elements 30 are designated as resonating parts 32p to 32r, respectively. The resonating portions 32p to 32r have different lengths in the X direction, that is, the light incident direction, that is, the optical path lengths, and thus have different resonance wavelengths λ. The resonance wavelengths of the resonance parts 32p to 32r are λp, λq, and λr, respectively. As described above, the spectroscope 300 is configured by arranging a plurality of light receiving elements 30 including the photodetector 31 and the resonating units 32 having different resonance wavelengths λ side by side.
 分光器300は、分光機能と受光機能とを併せ持っている。即ち、各受光素子30のフォトディテクタ31は受光部として機能する。複数の隣接配置された共振部32は分光機能を発揮する。入射する光Lは、共振波長の異なる複数の共振部32に入射する。各共振部32では、各々の光路長に応じた波長の光を選択してフォトディテクタ31に供給する。共振波長の異なる複数の共振部32が異なる波長の光を選択することにより、分光器300の複数の共振部32は分光機能を実現する。 The spectroscope 300 has both a spectroscopic function and a light receiving function. That is, the photodetector 31 of each light receiving element 30 functions as a light receiving unit. A plurality of adjacently arranged resonating parts 32 exhibit a spectral function. The incident light L is incident on a plurality of resonance portions 32 having different resonance wavelengths. In each resonance part 32, the light of a wavelength according to each optical path length is selected and supplied to the photodetector 31. The plurality of resonating units 32 of the spectroscope 300 realize a spectroscopic function by the light having different wavelengths selected by the plurality of resonating units 32 having different resonance wavelengths.
 1つの共振器32の構成を図3(c)に示す。共振器32は、対向配置された2つの半反射層33と、その間に挟まれた誘電体層34とを一体化してなる。共振部32に入射した光Lは、半反射層33を透過して誘電体層34を進み、半反射層33で反射されて再び誘電体層34を通過して半反射層33へ戻る。こうして、一対の半反射層33の間で反射を繰り返した光は、共振部32の光路長に依存する波長の光であり、これが半透過層33を透過してフォトディテクタ31に入射する。フォトディテクタ31は、入射した光の強度を電気信号として出力する。 The configuration of one resonator 32 is shown in FIG. The resonator 32 is formed by integrating two semi-reflective layers 33 arranged opposite to each other and a dielectric layer 34 sandwiched therebetween. The light L incident on the resonating unit 32 passes through the semi-reflective layer 33, travels through the dielectric layer 34, is reflected by the semi-reflective layer 33, passes through the dielectric layer 34 again, and returns to the semi-reflective layer 33. Thus, the light that is repeatedly reflected between the pair of semi-reflective layers 33 is light having a wavelength that depends on the optical path length of the resonating unit 32, and is transmitted through the semi-transmissive layer 33 and incident on the photodetector 31. The photodetector 31 outputs the intensity of incident light as an electrical signal.
 このように、第3実施例の分光器300は、分光機能を有する複数の共振部32と、受光機能を有する複数のフォトディテクタ31とを備えるので、入射する光を複数の波長に分光してその強度を検出することができる。また、フォトディテクタ31と共振部32とは隣接配置されるので、従来の分散型分光器における分散素子と受光部の間のスペースに相当するスペースを必要としないため、小型化が可能となる。 As described above, the spectroscope 300 according to the third embodiment includes the plurality of resonating units 32 having a spectroscopic function and the plurality of photodetectors 31 having a light receiving function, and thus splits incident light into a plurality of wavelengths. The intensity can be detected. In addition, since the photodetector 31 and the resonating unit 32 are disposed adjacent to each other, a space corresponding to the space between the dispersive element and the light receiving unit in the conventional dispersive spectroscope is not required, so that the size can be reduced.
 本発明は、赤外線や可視光等を分光する分光法を利用した測定機器など利用可能である。 The present invention can be used for a measuring instrument using a spectroscopic method for spectrally separating infrared light, visible light, or the like.
 10、20、30 受光素子
 11、21、31 フォトディテクタ
 12、32、221、222 共振部
 13、23、33 半反射層
 14、24、34 誘電体層
 15、25 全反射層
10, 20, 30 Photodetector 11, 21, 31 Photo detector 12, 32, 221, 222 Resonator 13, 23, 33 Semi-reflective layer 14, 24, 34 Dielectric layer 15, 25 Total reflective layer

Claims (6)

  1.  複数の受光素子を備え、
     前記受光素子の各々は共振部を備え、
     複数の前記共振部は、互いに異なる波長で共振することを特徴とする分光器。
    A plurality of light receiving elements,
    Each of the light receiving elements includes a resonance part,
    A plurality of the resonating units resonate at different wavelengths from each other.
  2.  前記受光素子の各々はフォトディテクタを備え、
     前記共振部の各々は、対向配置された半反射層及び全反射層を備え、
     前記フォトディテクタは、前記共振部に対して前記受光素子の受光面側に配置されることを特徴とする請求項1に記載の分光器。
    Each of the light receiving elements includes a photodetector,
    Each of the resonating parts includes a semi-reflective layer and a total reflective layer arranged to face each other,
    The spectroscope according to claim 1, wherein the photodetector is disposed on a light receiving surface side of the light receiving element with respect to the resonance unit.
  3.  前記受光素子の各々はフォトディテクタを備え、
     前記共振部の各々は、対向配置された一対の半反射層を備え、
     前記フォトディテクタは、前記共振部に対して前記受光素子の受光面側と逆側に配置されることを特徴とする請求項1に記載の分光器。
    Each of the light receiving elements includes a photodetector,
    Each of the resonating parts includes a pair of semi-reflective layers arranged to face each other.
    The spectroscope according to claim 1, wherein the photodetector is disposed on a side opposite to a light receiving surface side of the light receiving element with respect to the resonance unit.
  4.  前記共振部の各々は、第1の共振部と第2の共振部とを備え、
     前記受光素子の各々は、前記第1の共振部と前記第2の共振部との間に配置されたフォトディテクタを備えることを特徴とする請求項1に記載の分光器。
    Each of the resonance parts includes a first resonance part and a second resonance part,
    2. The spectroscope according to claim 1, wherein each of the light receiving elements includes a photodetector disposed between the first resonance unit and the second resonance unit.
  5.  前記第1の共振部は対向配置された一対の半反射層を備え、前記第2の共振部は対向配置された半反射層及び全反射層を備えることを特徴とする請求項4に記載の分光器。 The said 1st resonance part is equipped with a pair of semi-reflective layer arrange | positioned facing, The said 2nd resonance part is provided with the semi-reflection layer and total reflection layer which were arrange | positioned facing each other. Spectroscope.
  6.  前記複数の受光素子は、光の入射方向における厚さが厚い受光素子から薄い受光素子の順に、前記入射方向と交差する方向に並べて配置されることを特徴とする請求項1乃至5のいずれか一項に記載の分光器。 The plurality of light receiving elements are arranged side by side in a direction intersecting the incident direction in order from a light receiving element having a large thickness in a light incident direction to a thin light receiving element. The spectroscope according to one item.
PCT/JP2012/075208 2012-09-28 2012-09-28 Spectroscope WO2014049861A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/075208 WO2014049861A1 (en) 2012-09-28 2012-09-28 Spectroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/075208 WO2014049861A1 (en) 2012-09-28 2012-09-28 Spectroscope

Publications (1)

Publication Number Publication Date
WO2014049861A1 true WO2014049861A1 (en) 2014-04-03

Family

ID=50387320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075208 WO2014049861A1 (en) 2012-09-28 2012-09-28 Spectroscope

Country Status (1)

Country Link
WO (1) WO2014049861A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339784A (en) * 1976-09-23 1978-04-11 Ibm Spectrophotometer
JPS62267624A (en) * 1986-05-15 1987-11-20 Minolta Camera Co Ltd Spectrometric sensor
US6380531B1 (en) * 1998-12-04 2002-04-30 The Board Of Trustees Of The Leland Stanford Junior University Wavelength tunable narrow linewidth resonant cavity light detectors
JP2010520615A (en) * 2007-03-01 2010-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Photodetector device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339784A (en) * 1976-09-23 1978-04-11 Ibm Spectrophotometer
JPS62267624A (en) * 1986-05-15 1987-11-20 Minolta Camera Co Ltd Spectrometric sensor
US6380531B1 (en) * 1998-12-04 2002-04-30 The Board Of Trustees Of The Leland Stanford Junior University Wavelength tunable narrow linewidth resonant cavity light detectors
JP2010520615A (en) * 2007-03-01 2010-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Photodetector device

Similar Documents

Publication Publication Date Title
KR102395781B1 (en) Optical filter and spectrometer including sub-wavelength double grating
US10883874B2 (en) Dual coupler device, spectrometer including the dual coupler device, and non-invasive biometric sensor including the spectrometer
JP6392876B2 (en) Guided-mode resonance device
CA2680887C (en) Planar waveguide wavelength dispersive devices with multiple waveguide input aperture
US20050264808A1 (en) Multi channel Raman spectroscopy system and method
TWI541493B (en) A dispersive element and a spectrometer thereof
Carmo et al. A review of visible-range Fabry–Perot microspectrometers in silicon for the industry
US20210080631A1 (en) System and method for optical filtering
Hsu et al. A gradient grating period guided-mode resonance spectrometer
TWI445933B (en) Color detector having area scaled photodetectors
JP2011117884A (en) Spectrophotometer
US20210302230A1 (en) Optical device and spectrometer comprising such a device
US10393580B2 (en) Spectrometer including light filter
Ohtera et al. Photonic crystals for the application to spectrometers and wavelength filters
WO2014049861A1 (en) Spectroscope
JP6639470B2 (en) Apparatus for spatial and wavelength-resolved detection of light emission emitted from at least one OLED or LED
JP5026988B2 (en) Mechanical coupling between near-infrared material concentration measurement and temperature profile measurement by fiber Bragg grating of glass fiber
CN102680096B (en) Low resolution optical fiber monochromator
JP2011220889A (en) Optical measuring apparatus
WO2022137902A1 (en) Optical member and optical device
Mousa et al. Toward spectrometerless instant Raman identification with tailored metasurfaces-powered guided-mode resonances (GMR) filters
Kerber et al. Design of highly reflective subwavelength diffraction gratings for use in a tunable spectrometer
KR20200025994A (en) Optical filter and spectrometer including sub-wavelength reflector, and electronic apparatus including the spectrometer
Rout et al. Guided Mode Resonance aided In-plane Color Filters for Compact Spectrometer
Müller et al. Ultra-compact In-Line Scattering Polarimetry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP