WO2013190158A1 - Method for producing electrodes for polymer fuel cells - Google Patents

Method for producing electrodes for polymer fuel cells Download PDF

Info

Publication number
WO2013190158A1
WO2013190158A1 PCT/ES2013/070393 ES2013070393W WO2013190158A1 WO 2013190158 A1 WO2013190158 A1 WO 2013190158A1 ES 2013070393 W ES2013070393 W ES 2013070393W WO 2013190158 A1 WO2013190158 A1 WO 2013190158A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrode
face
electrochemical
electrochemical cell
Prior art date
Application number
PCT/ES2013/070393
Other languages
Spanish (es)
French (fr)
Inventor
Antonio José MARTÍN FERNÁNDEZ
Antonio Alfonso MARTÍNEZ CHAPARRO
Original Assignee
Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat) filed Critical Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat)
Publication of WO2013190158A1 publication Critical patent/WO2013190158A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/002Cell separation, e.g. membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8853Electrodeposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention falls within the field of fuel cells, and in particular refers to procedures that allow the manufacture of electrodes intended for application in polymeric fuel cells, as well as electrochemical deposit cells.
  • Fuel cells are the most efficient devices that exist for the production of electricity from hydrogen. Its widespread use in different applications, portable, mobile and stationary, will allow the transition to a sustainable economy based on hydrogen as fuel.
  • PEMFC Proton Exchange Membrane Fuel Cells
  • batteries are closer to commercialization and widespread use, having demonstrated their viability in many different applications, such as electric vehicles (urban buses, cargo transporters, cars), stationary and portable applications.
  • the results of demonstration projects carried out in different places, inside and outside Spain show that electric vehicles powered by a hydrogen-powered fuel cell, combined with some auxiliary power element such as batteries or supercapacitors, work with similar benefits (power, speed, autonomy, reliability) to traditional vehicles based on internal combustion engine, with the additional advantage of not emitting pollutants.
  • REPLACEMENT SHEET (Rule 26) they need about 0.5 to 1 gPt-kW "1 on their electrodes.
  • the durability of PEMFCs is limited by the reactivity of platinum with its carbon support, which limits it to about 4000 hours of operation in applications automotive, even below what is required to be competitive with current vehicles.
  • species in the gas phase participate, usually oxygen in the cathode and hydrogen in the anode, and in the liquid phase, usually protons, on the solid catalyst particle, which is why they are known as three-phase reactions (gas-liquid-solid), and require that the electrode have a particular structure that allows its coexistence on a microscopic scale.
  • gas diffusion electrodes integrated by a series of microporous layers, usually three, that allow electric conduction and sim transport of reagents and liquid and gaseous products: the gas diffuser layer (GDL), the microporous layer and the catalyst layer.
  • the first consists of a 0.5-1 mm thick carbon cloth or paper, the second is usually a layer of microporous carbon such as carbon black of about 0.1-0.5 mm, and the third is a thinner layer, about 5-30 ⁇ , of platinum particles supported on carbon black.
  • the substrate is normally used (carbon cloth or paper) on which the other two layers of carbon black and platinum deposited on carbon black are successively deposited.
  • Different methods are used for this, such as impregnation or airbrush.
  • These methods although simple, distribute the catalyst randomly, which means that part of the deposited platinum is not active because it is not exposed to the reagents in the fuel cell.
  • electrode manufacturing techniques that allow reducing the amount of platinum necessary, and increasing its durability, as well as distributing the catalyst homogeneously over the entire surface of the substrate so that all deposited catalyst is active. It is also of interest that these methods are affordable on a large scale, and can be used to prepare electrodes with different types of catalyst, of activity similar to that of platinum, but with lower cost.
  • the method of electrochemical deposition for the preparation of sheet metal is well known, and is used industrially in different applications: synthesis of materials, metallurgical refinement, coatings, preparation of electronic circuits, among others. It is a method that requires little investment in equipment and is usually carried out at low temperature (below 80 ° C) and ambient pressure. Its use for the preparation of electrodes for fuel cells is described by Mart ⁇ n, E.J. et al. (J. Power Sources, 2009, 192, 14-20).
  • the procedure described there uses a rectangular electrochemical cell provided with three electrodes: the substrate on which the catalyst will be deposited, a microporous platinum counter electrode as a counter electrode and a reference electrode based on mercury / mercury sulfate, electrodeposition being carried out under potentiostatic conditions by the application of a program consisting of scans of potential or pulses of potential using a solution of hexachloroplatmate as an electrolyte. It is shown that with this technique electrodes with a lower catalyst charge and high activity are obtained.
  • the authors of the present invention have developed an electrochemical cell that allows the electrodeposition or electrochemical deposition process to be carried out more efficiently and distributing the catalyst homogeneously over the surface of the substrate.
  • said electrochemical cell allows the deposition of thin layers of various catalysts.
  • the electrodeposition process using said electrochemical cell makes it possible to significantly reduce the amount of platinum necessary, further increasing its durability.
  • One of the main characteristics of the developed cell is the incorporation of an ion conductive membrane with low electrical resistivity that prevents the gases generated in the electrolyte in contact with the counter electrode from reaching the deposit substrate, thus avoiding reactions parallel to those of electrodeposition which decrease the faradaic efficiency of said process and cause interference in the properties of the deposited catalyst.
  • Another additional characteristic of the cell is that it allows the control of the atmosphere in the outer part of the substrate, since since it is a paper or cloth substrate, it has high permeability to ambient oxygen, which can by this way reach the interface of the substrate with the electrolyte and cause parallel reactions.
  • This electrochemical cell has the additional advantage of being able to be used not only to carry out the electrodeposition reaction, but also as a cell for the study or testing of the electrodes in a controlled atmosphere, since in the same cell the electrode can be prepared, carry out the electrochemical and / or chemical post-treatments that may be necessary, and the first characterization tests to be carried out: measurement of the area of electrodeposited platinum and the activity for oxygen reduction.
  • a first aspect of the present invention is an electrochemical cell suitable for the electrodeposition of a catalyst on a substrate, wherein said electrochemical cell comprises:
  • a first wall comprises:
  • a substrate comprising an inner face and an outer face, where the outer face comprises a gas diffuser layer and the inner face comprises a microporous layer;
  • a second chamber comprising at least two conduits for the entry and exit of gases, suitable to allow control of the atmosphere on the outside of the substrate,
  • a second wall comprises:
  • a counter electrode comprising an inner face and an outer face
  • said cell may have flexible devices or means that allow the first electrical contact to be pressed on the opposite side of the substrate, thus favoring the homogeneous contact between them and isolating said rear face of the electrode from the electrolyte liquid, essential aspects for achieving homogeneous deposits in large areas.
  • the electrochemical cell comprises: a housing in the form of a parallelepiped open at least on one of its faces, where the face opposite the open face comprises a first window;
  • closing block adapted to cover the open face of the housing, where said closing block comprises a recess arranged in the outer face and a second through window arranged at the bottom of the recess, such that the face of the block of Closing with the second through window is the face adapted to cover the open face of the housing, where:
  • the housing and the closing block are connected defining inside the first subchamber in contact with the inner face of the substrate, - the first window of the housing is closed externally by an assembly that consecutively comprises the membrane, the counter electrode and the second electrical contact, so that the membrane and the counter electrode are distanced from each other giving rise to the second subchamber which is in contact with the inside face of the counter electrode,
  • the recess of the closing block houses the substrate and the first electrical contact, the inner face of the substrate being in contact with the second through window, where said recess is closed by the outer face of the closing block by means of a cover hermetic, so that inside said recess the second chamber is formed in which the outer face of the substrate and the first electrical contact are housed.
  • a further aspect of the present invention is a process for the preparation of an electrode, wherein said process comprises the deposition of a catalyst on a substrate by means of the electrodeposition technique, where the substrate is a hydrated hydrated substrate comprising a layer of carbon microporous, characterized in that the electrodeposition is carried out in an electrochemical cell as previously defined, and where said procedure further comprises: prior to electrodeposition, coating the microporous carbon layer with a microporous layer comprising a mixture of carbon black and a ionomer, and subjecting the substrate to a suitable activation process to provide the coated face with ionic and hydrophilic conductivity, where said activation process is carried out by chemical, electrochemical or a combination of both; and / or subsequently to electrodeposition, subjecting the electrode obtained to a treatment selected from a heat treatment, an electrochemical treatment and a combination thereof, where the electrochemical treatment comprises subjecting the electrode to an electrochemical cycling in sulfuric acid at scanning rates. and controlled sweep limits until a stable response of the intensity between two consecutive sweeps is
  • test bench for the characterization and measurement of the catalytic activity of an electrode, wherein said test bench comprises:
  • a final aspect of the present invention relates to a method for the selection of an electrode suitable for use in a fuel cell, wherein said method comprises: - depositing the electrode in a test bench as defined previously, in the place intended to house the substrate;
  • Figure 1 corresponds to a side view of the electrodeposition cell assembly.
  • Figure 2 corresponds to a PEMFC monocell polarization curve with Pt-WC catalyst> 3 electrodeposited at the cathode.
  • the present invention relates to an electrochemical cell that allows the deposition of a catalyst on a substrate by means of the electrodeposition technique.
  • Said electrochemical cell comprises a chamber adapted to house an electrolyte and an ion conducting membrane and impermeable to the passage of gases located inside said chamber, so that the membrane separates the chamber into two subchambers.
  • the chamber is limited by at least two parallel walls.
  • the first wall comprises a substrate, which in turn comprises an inner face and an outer face, and a first electrical contact located in contact with the outer face of the substrate.
  • the second wall comprises a counter electrode, which in turn comprises an inner face and an outer face, and a second electrical contact located in contact with the outer face of the counter electrode.
  • the arrangement of the different elements causes the membrane to separate the chamber into two subchambers: a first subchamber that is in contact with the inner face of the substrate and a second subchamber that is in contact with the inner face of the counter electrode.
  • the outer face of the substrate and the first electrical contact are located inside a second chamber that comprises at least two conduits for gas inlet and outlet, respectively. This allows controlling the composition of the atmosphere on the outer face of the substrate, preventing the ambient oxygen from reaching said substrate.
  • the substrate used in said cell is a conventional substrate for gas diffusion electrodes, which comprises on its outer face a gas diffuser layer and on its inner face a microporous layer, which allow the electrical conduction and simultaneous transport of reagents and liquid products And soda.
  • Said gas diffuser layer preferably comprises a carbon cloth or paper with a thickness of between 0.5 and 1 mm.
  • the gas diffuser layer is impregnated with a hydrophobic agent.
  • the microporous layer is a layer of a material comprising pores of micro and nanometric size.
  • it is a layer of microporous carbon, such as carbon black, and has a thickness between 0.1 and 0.5 mm.
  • this microporous layer is also impregnated with a hydrophobic agent.
  • the microporous layer is deposited on the gas diffuser layer, so that on said microporous layer a catalyst is deposited during the electrodeposition process.
  • the deposition of the microporous layer can be done by techniques such as airbrushing or electrospray, widely known in the state of the art.
  • the substrate is square in shape with varying between lxl cm 2 and 10x10 cm 2 surface, more preferably the surface is between 3x3 and 6x6 cm 2, even more preferably between 4x4 and 5x5 cm 2. Higher dimensions may make it difficult to obtain a homogeneous catalyst deposit, while lower dimensions may cause the so-called "edge effect" which also entails the difficulty of obtaining a homogeneous deposit.
  • Said substrate is connected by its outer face, that is, by the gas diffuser layer, to a first electrical contact that allows electrical conduction to an external circuit.
  • said first electrical contact has the same dimensions as the substrate. Also preferably, said first electrical contact is a copper foil.
  • the second chamber in which the outer face of the substrate is housed and the first electrical contact comprises a cover that allows said chamber to be closed.
  • the aforementioned cover comprises the at least two conduits for the entry and exit of gases. These ducts can be two holes between 1 and 3 mm in diameter with standard fittings.
  • the counter electrode of the electrochemical cell of the invention is an electrode on whose surface a catalyst with an electrochemical area per unit of geometric area greater than that of the substrate is deposited.
  • the counter electrode must be tight and stable.
  • said counter electrode comprises a graphite plate in contact with a cloth or carbon paper electrode on whose inner face platinum is deposited as a catalyst.
  • the counter electrode has geometric dimensions somewhat larger than those of the substrate to be deposited, more preferably it has dimensions of between 5-15% larger than those of said substrate, and is arranged centrally with respect to said substratum. That is, in their location all their faces protrude the same distance with respect to the faces of the substrate.
  • Said counter electrode is connected on its outer face to a second electrical contact that allows electrical conduction to an external circuit.
  • said second electrical contact has the same dimensions as the counter electrode.
  • said second electrical contact is a copper foil.
  • the electrochemical cell of the invention is characterized in that it comprises an ion conducting membrane with low electrical and hydrophilic resistivity, but impermeable to the passage of gases, located between the substrate and the counter electrode, where said membrane separates the first subchamber in contact with the substrate of the second subchamber in contact with the counter electrode.
  • This membrane prevents the gases generated in the electrolyte in contact with the counter electrode from reaching the deposit substrate, thus increasing the performance of the electrodeposition reaction and avoiding its interference in the deposition reactions.
  • the substrate, the membrane and the counter electrode are arranged in parallel arrangement in the electrochemical cell of the invention, so that the membrane is housed in parallel between the front face of the counter electrode and the front face of the substrate.
  • the ion conducting membrane is housed in parallel to the front face of the counter electrode at a distance between 2 and 5 mm.
  • the electrochemical cell comprises an electrolyte disposed in the first subchamber and in the second subchamber, so that the ion conducting membrane and impermeable to the passage of gases separates the electrolyte disposed in the first subchamber from the electrolyte disposed in the second subchamber.
  • the electrochemical cell of the invention further comprises flexible means located on the outer face of the first electrical contact, which allow said first electrical contact to be pressed on the substrate to be deposited, obtaining a homogeneous and low-resistive contact of importance between them. to get homogeneous deposits in large areas.
  • Said flexible means are preferably at least one spring or a foam padding, and can be found attached to a metal sheet of somewhat smaller dimensions than the electrical contact that contacts the outer face of the substrate.
  • the flexible means are compressed on the first electrical contact by means of the cover that allows the second chamber to close.
  • FIG. 1 A particular embodiment of the electrochemical cell of the present invention is represented in Figure 1. Said figure corresponds to a side view of the electrodeposition cell assembly.
  • the electrochemical cell comprises: a housing (1) in the form of an open parallelepiped at least on one of its faces, where the face opposite the open face comprises a first window (2);
  • closing block (3) adapted to cover the open face of the housing, wherein said closing block comprises a recess (4) disposed on the outer face and a second through window (5) arranged at the bottom of the recess, such that the face of the closing block with the second through window is the face adapted to cover the open face of the housing, where:
  • the housing (1) and the closing block (2) are joined defining inside the first sub chamber (6) in contact with the inner face of the substrate, - the first window (2) of the housing is closed externally by an assembly that consecutively comprises the membrane (7), the counter electrode (8) and the second electrical contact (9), so that the membrane (7) and the counter electrode (8) are spaced apart from each other giving rise to the second subchamber that is in contact with the inside face of the counter electrode (8),
  • the recess (5) of the closing block (3) houses the substrate (10) and the first electrical contact (11), the substrate (10) being in contact with the second through window (5), where said recessed is closed by the outer face of the closing block by means of an airtight cover (20), so that the second chamber is formed inside said recess in which the outer face of the substrate and the first are housed inside electrical contact.
  • the first and second windows (2 and 4) have a square shape.
  • This electrochemical cell comprises a parallelepiped-shaped housing (1), where said parallelepiped is open at least on one of its faces, and the opposite side of it comprises a window (2) that allows the passage of ions and current during the reaction of electrodeposition between the active zone of the substrate (10) and the counter electrode (8).
  • Said housing (1) houses in the external part comprising the window (2), an assembly that consecutively comprises the ion conducting membrane (7), the counter electrode (8) and the second electrical contact (9).
  • the membrane (7) is attached to the window of the housing (1), so that said membrane (7) covers the entire window (2).
  • the membrane can be joined to the window (2) by incorporating a first gasket (12) that allows the membrane edges to be sealed.
  • the counter electrode (8) comprises a substrate (8a), on whose surface a catalyst is deposited, and a graphite plate (8b). Said counter electrode (8) is placed next to the membrane (7) so that said membrane (7) and the counter electrode (8) are spaced apart from each other, giving rise to the second subchamber in contact with the counter electrode. In a preferred embodiment, the distance between the counter electrode (8) and the membrane (7) is 2-5 mm.
  • the substrate (8a) is a carbon cloth or paper and the catalyst deposited thereon is platinum.
  • a second joint (13) can be located between the membrane and the counter electrode to seal the edges of both elements.
  • the second electrical contact (9) that provides the electric current to the external circuit is located on the outer face of the counter electrode.
  • the constituent material of the cell housing (1) is a material sufficiently resistant to chemical agents, in particular to acids, and especially to sulfuric acid comprised in the electrolyte.
  • said material is a polymethacrylate, although others such as Teflon, PVC, or some other sufficiently rigid, resistant and impermeable polymer can also be used.
  • the electrochemical cell shown in Figure 1 further comprises a closing block (3) adapted to cover the open face of the housing (1).
  • Said closing block comprises a recess (4) disposed on the outer face connected to a second window (5) arranged at the bottom of the recess, such that the face of the closing block having the second through window is the adapted face to cover the open face of the housing (1).
  • the closing block houses inside the substrate (10) and the first electrical contact (11), the substrate (10) being in contact with the second through window (5).
  • the chamber closure block (3) is connected to the housing (1) so that at its junction they define the first sub-chamber (6) in contact with the substrate (11).
  • connection between both pieces is carried out by means of screws and a silicone gasket (14), in order to obtain a sufficient seal.
  • the interior dimensions of the first subchamber formed between the housing and the closing block should be such that once the desired amount of catalyst has been deposited, the concentration of its precursors in the electrolyte has not decreased by more than 10% .
  • the through window (5) has the same dimensions as the geometric active area of the substrate.
  • the closing block (3) can incorporate, at least, another window (15) of dimensions larger than the window (5), which allows the preparation of electrodes of those dimensions in the same cell without having to perform Modifications on it. As many stepped windows can be incorporated as desired for the preparation of electrodes with different active areas, as long as the closing elements and electrical contacts according to the different sizes are used.
  • Said closing block (3) houses inside the substrate (10) and the first electrical contact (11) located on the outer face thereof, so that the inner face of the substrate is in contact with the first sub-chamber (6) formed by the union of the housing (1) with the closing block (3) through the window (5).
  • the substrate (10) is square in shape with varying between lxl cm 2 and 10x10 cm 2 surface, more preferably the surface is between 3x3 and 6x6 cm 2, even more preferably between 4x4 and 5x5 cm 2
  • the substrate (10) can be attached to the hole (5) of the closing block (3) by means of a gasket (16), preferably, a gasket with sufficient hydrophobicity, such as a teflon gasket, for sealing the edges of the electrode that prevents the electrolyte from leaving.
  • a gasket (16) preferably, a gasket with sufficient hydrophobicity, such as a teflon gasket, for sealing the edges of the electrode that prevents the electrolyte from leaving.
  • the recess (4) included in the closing block (3) is closed by the external face of said closing block by means of a hermetic cover (20), so that the recessed forms the second chamber in which the face is housed exterior of the substrate and the first electrical contact.
  • This hermetic cover (20) also includes holes intended for the passage of some gas to the block (3) to carry out the deposition of the catalyst in a controlled atmosphere, which allows to achieve anoxic conditions during the deposition, since dissolved oxygen is a reagent that gives place to parallel reactions (oxygen reduction) and influences the characteristics of the deposit, especially when the catalyst is platinum and tungsten oxide.
  • Said cover (20) can also comprise the flexible means (19) that allow the first electrical contact to be pressed on the substrate to be deposited, obtaining a homogeneous and low resistive contact between them, perfectly isolating the substrate from the electrolyte liquid.
  • Said flexible means are preferably at least one spring or a foam padding.
  • said cover (20) comprises a hole, preferably in its geometric center, which allows the passage of the electric cable connected to the first electrical contact (11) and having its same diameter to favor the sealing.
  • the recess (4) also houses a frame (18) whose internal dimensions coincide with the active area of the substrate or electrode to be prepared, while the external dimensions must match the measurements of the substrate.
  • Said frame is constituted by one or more pieces of electrically inert and insulating material, and is located on the outside of the first electrical contact (11) and firmly presses the edges of said first electrical contact and of the substrate against the edges of the recess ( 4) intern of the closing block (3), thus improving the tightness of the cell.
  • the electrochemical cell further comprises an access opening to the first sub chamber that is in contact with the substrate, and has a cover (17) adapted to close said opening to isolate the electrolyte from ambient air.
  • Said cover (17) also allows an orderly electrode to be placed in order, if necessary, and the conduits for the passage of gases.
  • the electrochemical cell can also comprise a series of joints (21,22) that allow the union of the frame (18) and the hermetic cover (20) and of the frame (18) with the first electrical contact (11).
  • the electrochemical cell of the invention has the additional advantage of being able to be used not only to carry out the electrodeposition reaction, but also as a cell for the study or testing of electrodes in a controlled atmosphere, since the electrode can be prepared in the same cell , carry out the electrochemical and / or chemical post-treatments that may be necessary, and carry out the first characterization tests: measurement of the area of electrodeposited platinum and the activity for oxygen reduction.
  • the electrolyte when the cell is used to effect an electrodeposition reaction of a catalyst on a substrate, the electrolyte is located in the first and second subchambers and comprises an aqueous solution comprising a precursor of the catalyst material to be deposited. on the substrate.
  • the catalyst to be deposited is platinum, whereby in that case the electrolyte can be an aqueous solution comprising a platinum precursor, such as for example a platinum salt such as hexachloroplatinate.
  • the electrolyte may comprise additional agents to facilitate the electrodeposition process, such as sulfuric acid, and additional compounds that may be part of the catalyst together with platinum, such as cobalt or tungsten salts.
  • the electrolyte when the cell is used for electrode testing and verifying oxygen reduction, is an inert electrolyte and ion conductor.
  • the electrolyte is a solution of sulfuric acid or perchloric acid.
  • the holes intended for the passage of gases from the cover (20) are used for the passage of oxygen or air during the test phase of the electrode.
  • connection of the cover (20) to the closing block (3) can be carried out by means of screws, although it is also possible to carry it out by elastic elements, such as clamps or jaws for quick assembly and disassembly operations.
  • the present invention relates to a method for preparing an electrode comprising the deposition of a catalyst on a substrate by means of the electrodeposition technique, characterized in that the electrodeposition is carried out in an electrochemical cell as previously defined. Said procedure allows the deposit to be carried out under potentiostatic conditions or under galvanostatic conditions depending on the parameter to be controlled, the electrochemical potential of the substrate or the intensity of the deposit current, respectively.
  • suitable equipment such as a potentiostat and a reference electrode, which allows the electrochemical potential to be set with respect to a reference electrode on the substrate surface, and varies according to a suitable potential program.
  • Said program may consist of potential scans or potential pulses, applying as many scans as necessary to ensure the deposit of the desired amount of catalyst. Typical values include between 25 and 100 sweeps.
  • the electrodeposition is performed by applying a potential sweep between 0.05 V and 0.9 V using as an electrolyte an aqueous solution of hexachloroplatinate in sulfuric acid and boric acid.
  • an electric current for example between 0.1 and 5 mA / cm 2
  • the electrodeposition process can have different stages depending on the catalyst profile that one wishes to obtain. In addition, it may require the bubbling of nitrogen gas into the solution and the passage of nitrogen through the outer face of the substrate to ensure anoxic conditions.
  • the amount of deposited catalyst can be estimated from the electric current, according to Faraday's law.
  • the substrate on which the electrodeposition is performed is a hydrophobicized substrate that prevents the electrolyte from percolating therethrough.
  • hydrophobic substrates comprising a layer of carbon paper or cloth and a layer of hydrophobic microporous carbon.
  • a hydrophobic substrate can be prepared starting from a layer of carbon paper or cloth, one of its faces being coated with a layer of hydrophobic microporous carbon with an appropriate agent such as Teflon.
  • the microporous carbon layer of the hydrophobic substrate is coated with another hydrophilic microporous layer by a mixture comprising carbon black, an ionomer and a dispersing agent.
  • the ionomer is added as an ionic conductor in order to provide the active layer of the proton conduction substrate, but in concentrations sufficiently small to avoid an excessive diffusion barrier of the catalyst precursor anions to the grains of the carbon.
  • said ionomer is commercially available under the name of Nafion.
  • the dispersing agent is a liquid that is added to the mixture to form a suspension and thus make the deposit possible by suitable techniques.
  • the dispersing agent is of an alcoholic nature, the use of isopropanol being even more preferred.
  • the ionomer remains in the microporous layer after deposition, while the dispersing agent is removed by evaporation and is not part of the deposited final layer.
  • the deposition of the different layers that constitute the substrate can be carried out by airbrushing or electrospray techniques.
  • the process of the invention further comprises subjecting the substrate to an activation process in order to provide it with ionic conductivity and hydrophilic character exclusively on the deposit surface.
  • Said activation process can be carried out by chemical or electrochemical means.
  • the activation by chemical means comprises contacting the face of the substrate on which the electrodeposition is to be carried out with a concentrated nitric acid solution for a time ranging from 1 to 10 seconds, and subsequent washing with water to remove acid residues.
  • electrochemical activation comprises subjecting the substrate on which the electrodeposition is to be cycled to electrochemical potential.
  • the potential cycling is performed at a scan rate of between 10 and 100 mV / s and controlled scan limits (for example anodic limit of 0.0-0.1 V vs NHE, cathodic limit of 1.0 to 1.5 V vs NHE, where NHE comes from Normal Hydrogen Electrodé), using sulfuric acid, in a concentration for example of 0.5 M, as electrolyte.
  • the substrate must be subjected to a sufficient number of sweeps, until a desired value of the double layer charge current is achieved, which indicates the hydrophilic character achieved, without penetration of the electrolyte into the face. back of the substrate. Typical values range between 25 and 100 sweeps.
  • This method has the advantage of being able to monitor the activation of the substrate in real time from the measurement of the current, which allows a better process control.
  • Electrochemical activation is performed with the substrate in the electrochemical cell of the invention, while chemical activation can be performed outside said cell. However, both could be carried out in the cell without disassembling the substrate.
  • the substrate has a way in which the active area is surrounded by additional substrate to ensure correct mounting and sealing.
  • the electrolyte used in the electrochemical cell that allows the electrodeposition process to be carried out is an aqueous solution comprising the precursor of the catalyst material to be deposited on the substrate.
  • the catalyst to be deposited is platinum, whereby in that case the electrolyte can be an aqueous solution comprising a platinum precursor, such as for example a platinum salt such as hexachloroplatinate.
  • the electrolyte may comprise additional agents to facilitate the electrodeposition process, such as sulfuric acid, and additional compounds that may be part of the catalyst together with platinum, such as cobalt or tungsten salts. This electrolyte is poured into the appropriate amount in the electrodeposition cell.
  • the electrodeposition process is carried out. This process can be carried out in potentiostatic conditions or in galvanostatic conditions depending on the parameter to be controlled, as previously mentioned.
  • the electrodeposition process can be carried out in successive stages. For example, after completing the first electrodeposition, the formed electrode can be removed from the cell, to deposit another hydrophilic microporous layer on it and again complete another electrodeposition process. Electrodes are thus obtained with layers of catalysts composed of thin sheets with structure: substrate-hydrophobic microporous layer-hydrofoil-catalyst microporous layer -hydro-catalyst-microporous layer ...
  • the electrode is disassembled from the cell and can be used, for example, for application in a fuel cell.
  • the process of the invention further comprises subjecting the electrode obtained to a subsequent treatment selected from an electrochemical treatment, a heat treatment and a combination thereof.
  • the subsequent treatment is an electrochemical treatment comprising subjecting the electrode to electrochemical cycling in order to remove labile elements from the reservoir, that is, that part of the electrodeposit that has not been properly fixed to the surface of the substrate.
  • This treatment therefore seeks to leave only the well adhered part of the deposited material.
  • this electrochemical treatment comprises subjecting the electrode to an electrochemical cycling in sulfuric acid, more preferably at a concentration of 0.5 M, at controlled scanning rates and scanning limits, until a stable response of the current intensity between Two consecutive sweeps.
  • This subsequent treatment can be carried out in the same electrochemical cell of the invention.
  • the subsequent treatment is a heat treatment comprising subjecting the electrode to a heating stage at a temperature between 100 and 150 ° C in a humid atmosphere. Preferably, said heating is carried out for a time between 10 and 60 minutes.
  • This heat treatment is carried out in order to cure components such as the ionomer used in the initial coating of the substrate.
  • a solution of the ionomer for example Naphion solution in alcohols
  • this treatment can facilitate the polymerization and formation of the ionomer layer that gives the electrode a proton conductivity.
  • this process allows to improve the integrity of the electrode, as well as to eliminate possible additives from the electrodeposition process.
  • the process of the invention allows to obtain an electrodeposited electrode in which the catalyst is distributed in a surface layer of about 1-10 microns, compared to 15-30 microns of the electrodes prepared by other procedures.
  • the catalyst preferably Pt, Pt-Co or Pt-WC "3 alloys, is coating part of the carbon grains of the microporous layer only in those areas where it has been exposed to the electrolyte. Therefore, electrodes with a very thin layer of catalyst, which results in a better performance mainly at high current demands.
  • the images obtained by SEM show a different catalyst distribution.In addition, the mass activity (by weight of Pt) is higher in the electrodes obtained with the process of the invention.
  • an additional aspect described is an electrode obtainable according to a procedure as defined above.
  • said electrode is characterized in that the deposited catalyst is distributed in a surface layer of between 1 and 10 microns.
  • a further aspect described is a fuel cell comprising an electrode as previously described, that is, an electrode obtainable according to the process of the invention. Also preferably, said fuel cell comprises an electrode obtainable according to the method of the invention characterized because the deposited catalyst is distributed in a surface layer of between 1 and 10 microns.
  • the electrochemical cell of the present invention can be used in a test bench to carry out the first characterization tests of an electrode intended for incorporation into a fuel cell, which can be obtained by the electrodeposition technique mentioned above. Such tests include the measurement of the electrodeposited catalyst area and the activity for oxygen reduction.
  • test bench for the characterization and measurement of the catalytic activity of an electrode, wherein said test bench comprises:
  • an inert electrolyte and - a source of electricity or potentiostat / galvanostat capable of controlling and recording the electrochemical potential of the electrode and the current intensity in the cell.
  • the inert electrolyte is an aqueous solution of sulfuric acid or perchloric acid.
  • a final aspect of the invention relates to a method for selecting an electrode suitable for use in a fuel cell, wherein said method comprises: a) depositing the electrode in an electrochemical cell as defined previously, in the place intended for host the substrate; b) fill the chamber adapted to house the electrolyte with an inert electrolyte; c) supplying oxygen or air to the outside of the electrode through the gas inlet of the second chamber; d) apply a suitable electrochemical potential between the electrode and a reference electrode, for example between 0.1 and 0.5 V against the reference electrode; and e) verify if an electric current occurs due to oxygen reduction, where the production of said electric current is indicative that the electrode is suitable for use in a fuel cell.
  • Step a) of this procedure consists in locating the electrode to be tested in the electrochemical cell described above in the same place where the substrate is located. If the electrode has been formed in the same electrochemical cell, it is deposited in the same place where it was formed.
  • the electrolyte used must be inert, that is, it must not react with the electrode or any other species of the solution.
  • said electrolyte is a solution of sulfuric acid or perchloric acid.
  • the oxygen can be supplied by bubbling the solution with gas 0 2 and passing 0 2 through the outer face of the electrode so that it reaches all the catalyst deposited in the electrode where, in contact with the electrolyte, the desired electrochemical reaction undergoes, that is, its reduction with water formation. That is, the recording of an increase in the intensity of electric current by putting oxygen in the cell, which is proportional to the rate of reduction, is indicative that the electrode is suitable for use in a fuel cell.
  • the oxygen is supplied through the holes intended for this purpose located in the sealed cap (20) of the cell described in the particular embodiment of the invention.
  • the test to verify the reduction of oxygen can be carried out in potentiostatic or galvanostatic form, as previously mentioned, and allows the initial selection of the electrodes suitable for final assembly in a fuel cell.
  • Example 1 Electrodeposition procedure using the electrochemical cell of the invention
  • Equipment A potentiostat / electroplating (Autolab, Eco Chemie) has been used as a current source and / or voltage source, capable of supplying at least 10V and 1A in direct current for an active area of 4x4 cm 2 .
  • Electrochemical cell Designed in Ciemat (Fig. L). This cell has been used for the preparation of electrodes of 4x4 cm 2 .
  • a microporous layer between 20 and 50 microns thick was added to the hydrophobic carbon paper or cloth substrate by aerosol deposition of an ink consisting of carbon black, dissolved ionomer and dispersing agent (isopropanol). After removal of the dispersing agent by drying in an air stream, the substrate was pretreated by electrochemical activation. For this, the substrate was located in the electrochemical cell described, filled with 0.5M H 2 S04 electrolyte, dissolved oxygen was removed by upper and back bubbling with N 2 for 30 min, and which continued during the electrodeposition process, since The substrate was then subjected to an electrochemical cycling of 50 or 100 mV / s between 0.07 (at 0.1) and 1 (at 1.3) V vs.
  • the deposit electrolyte was emptied (H 2 SO 4 + H 2 PtCl6 + Na 2 W04), and filled with 0.5M H 2 S04. Dissolved oxygen was removed by upper and posterior bubbling with N 2 for 30 min, and that continued during the process.
  • the electrode was subjected to an electrochemical cycling of 50 or 100 mV / s between 0.07 (at 0.1) and 1.3 (at 1.5) V vs. NHE During this process the adsorption / desorption current of H on Pt was monitored, which is proportional to the area of deposited Pt. Once it reached a constant value, after about 5-20 cycles, the cycling was completed and with it the process.
  • the electrochemical area was measured, that is, the catalytically active area, using the process described in the International Journal of Hydrogen Energy, Vol 34, ⁇ ssue 11, 2009, Pages 4838-4846, and the electrocatalytic activity measurement to reduce oxygen, by bubbling oxygen inside the cell and behind the substrate.
  • the electrode obtained with Pt-WC> 3 electrodeposited was tested as a cathode in a PEMFC monocell).
  • the other elements of the monocell were: commercial Pt / C electrode with 0.25 mg / cm 2 as anode, Nafion 212R as electrolyte.
  • the polarization curve shown in Figure 2 was obtained using the following conditions: feeding with H 2 at anode and 0 2 at cathode, at 80 ° C, 100% humidification, and constant stoichiometric ratio H 2/0 2:. 1.5 / 3.0 relative pressure: 1 atm.

Abstract

The invention relates to an electrochemical cell suitable for electrodepositing a catalyst on a substrate, and to a method for producing an electrode by means of the electrodeposition technique, using said electrochemical cell.

Description

MÉTODO PARA LA PREPARACIÓN DE ELECTRODOS PARA PILAS DE METHOD FOR THE PREPARATION OF ELECTRODES FOR BATTERIES
COMBUSTIBLE POLIMÉRICAS POLYMER FUEL
CAMPO DE LA INVENCIÓN La presente invención se encuadra dentro del campo de las pilas de combustible, y en particular se refiere a procedimientos que permiten la fabricación de electrodos destinados a su aplicación en pilas de combustible poliméricas, así como a celdas de depósito electroquímico. FIELD OF THE INVENTION The present invention falls within the field of fuel cells, and in particular refers to procedures that allow the manufacture of electrodes intended for application in polymeric fuel cells, as well as electrochemical deposit cells.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Las pilas de combustible son los dispositivos más eficientes que existen para la producción de electricidad a partir de hidrógeno. Su utilización generalizada en distintas aplicaciones, portátiles, móviles y estacionarias, permitirá el paso a una economía sostenible basada en el hidrógeno como combustible. Entre las distintas tecnologías de pila de combustible, las pilas de tipo PEMFC ("Protón Exchange Membrane Fuel Cells") están más cercanas a la comercialización y uso generalizado, por haber demostrado su viabilidad en muy diversas aplicaciones, como vehículos eléctricos (autobuses urbanos, transportadores de carga, coches), aplicaciones estacionarias y portátiles. Por ejemplo, los resultados de proyectos de demostración llevados a cabo en distintos lugares, dentro y fuera de España, muestran que los vehículos eléctricos propulsados por una pila de combustible alimentada con hidrógeno, combinada con algún elemento de potencia auxiliar como baterías o supercondensadores, funcionan con prestaciones similares (potencia, velocidad, autonomía, fiabilidad) a los vehículos tradicionales basados en motor de combustión interna, con la ventaja adicional de no emitir contaminantes. Fuel cells are the most efficient devices that exist for the production of electricity from hydrogen. Its widespread use in different applications, portable, mobile and stationary, will allow the transition to a sustainable economy based on hydrogen as fuel. Among the different fuel cell technologies, PEMFC ("Proton Exchange Membrane Fuel Cells") batteries are closer to commercialization and widespread use, having demonstrated their viability in many different applications, such as electric vehicles (urban buses, cargo transporters, cars), stationary and portable applications. For example, the results of demonstration projects carried out in different places, inside and outside Spain, show that electric vehicles powered by a hydrogen-powered fuel cell, combined with some auxiliary power element such as batteries or supercapacitors, work with similar benefits (power, speed, autonomy, reliability) to traditional vehicles based on internal combustion engine, with the additional advantage of not emitting pollutants.
Para el desarrollo y generalización de las pilas de combustible existen dos principales obstáculos, como son el coste de fabricación de la pila y su durabilidad. Ello se debe por un lado a que las pilas PEMFC, por funcionar a baja temperatura (<80 °C), requieren de un catalizador para las reacciones electroquímicas que es platino. Este metal precioso es caro y escaso; se estima que su producción anual no sería suficiente para cubrir los requerimientos de pilas de combustible según el estado actual de la tecnología, que There are two main obstacles to the development and generalization of fuel cells, such as the cost of manufacturing the battery and its durability. This is due to the fact that PEMFC batteries, because they operate at a low temperature (<80 ° C), require a catalyst for electrochemical reactions that is platinum. This precious metal is expensive and scarce; it is estimated that its annual production would not be sufficient to meet the requirements of fuel cells according to the current state of technology, which
HOJA DE REEMPLAZO (Regla 26) necesitan alrededor de 0,5 a 1 gPt-kW"1 en sus electrodos. Por otro lado, la durabilidad de las PEMFC está limitada por la reactividad del platino con su soporte de carbón, que la limita a unas 4000 h de funcionamiento en aplicaciones de automoción, aún por debajo de lo requerido para que sean competitivas con los vehículos actuales. En las reacciones electroquímicas que tienen lugar en los electrodos de una pila PEMFC participan especies en fase gaseosa, normalmente oxígeno en el cátodo e hidrógeno en el ánodo, y en fase líquida, normalmente protones, sobre la partícula sólida de catalizador. Por ello se conocen como reacciones en tres fases (gas-líquido-sólido), y requieren que el electrodo tenga una estructura particular que permita su coexistencia a escala microscópica. Esto se consigue mediante los conocidos como electrodos de difusión de gas, integrados por una serie de capas microporosas, normalmente tres, que permiten la conducción eléctrica y transporte simultáneo de reactivos y productos líquidos y gaseosos: la capa difusora de gases (GDL), la capa microporosa y la capa de catalizador. La primera está constituida por una tela o papel de carbón de 0,5-1 mm de espesor, la segunda es normalmente una capa de carbón microporoso como el negro de carbón de unos 0,1-0,5 mm, y la tercera es una capa más fina, de unos 5-30 μιη, de partículas de platino soportadas sobre negro de carbón. REPLACEMENT SHEET (Rule 26) they need about 0.5 to 1 gPt-kW "1 on their electrodes. On the other hand, the durability of PEMFCs is limited by the reactivity of platinum with its carbon support, which limits it to about 4000 hours of operation in applications automotive, even below what is required to be competitive with current vehicles.In the electrochemical reactions that take place in the electrodes of a PEMFC battery, species in the gas phase participate, usually oxygen in the cathode and hydrogen in the anode, and in the liquid phase, usually protons, on the solid catalyst particle, which is why they are known as three-phase reactions (gas-liquid-solid), and require that the electrode have a particular structure that allows its coexistence on a microscopic scale. achieved by means of what are known as gas diffusion electrodes, integrated by a series of microporous layers, usually three, that allow electric conduction and sim transport of reagents and liquid and gaseous products: the gas diffuser layer (GDL), the microporous layer and the catalyst layer. The first consists of a 0.5-1 mm thick carbon cloth or paper, the second is usually a layer of microporous carbon such as carbon black of about 0.1-0.5 mm, and the third is a thinner layer, about 5-30 μιη, of platinum particles supported on carbon black.
Para la fabricación de estos electrodos normalmente se parte del sustrato (tela o papel de carbón) sobre el que se depositan sucesivamente las otras dos capas, de negro de carbón y de platino depositado sobre negro de carbón. Se utilizan para ello diferentes métodos, como son la impregnación o la aerografta. Estos métodos, si bien son sencillos, distribuyen el catalizador en forma aleatoria, lo que da lugar a que parte del platino depositado no sea activo por no quedar expuesto a los reactivos en la pila de combustible. A la luz de los problemas existentes en el estado de la técnica, se hace necesario para el desarrollo de las pilas de combustible disponer de técnicas para fabricación de electrodos que permitan reducir la cantidad de platino necesaria, y aumentar su durabilidad, así como distribuir el catalizador de forma homogénea sobre toda la superficie del sustrato de manera que todo el catalizador depositado resulte activo. Es también de interés que estos métodos sean asequibles a gran escala, y puedan utilizarse para preparar electrodos con distintos tipos de catalizador, de actividad parecida a la del platino, pero con menor coste. For the manufacture of these electrodes, the substrate is normally used (carbon cloth or paper) on which the other two layers of carbon black and platinum deposited on carbon black are successively deposited. Different methods are used for this, such as impregnation or airbrush. These methods, although simple, distribute the catalyst randomly, which means that part of the deposited platinum is not active because it is not exposed to the reagents in the fuel cell. In light of the problems existing in the state of the art, it becomes necessary for the development of fuel cells to have electrode manufacturing techniques that allow reducing the amount of platinum necessary, and increasing its durability, as well as distributing the catalyst homogeneously over the entire surface of the substrate so that all deposited catalyst is active. It is also of interest that these methods are affordable on a large scale, and can be used to prepare electrodes with different types of catalyst, of activity similar to that of platinum, but with lower cost.
El método de depósito electroquímico para la preparación de láminas de metales es bien conocido, y se utiliza a nivel industrial en distintas aplicaciones: síntesis de materiales, refinamiento metalúrgico, recubrimientos, preparación de circuitos electrónicos, entre otros. Es un método que requiere poca inversión en equipamiento y normalmente se lleva a cabo a baja temperatura (por debajo de 80°C) y presión ambiental. Su utilización para la preparación de electrodos para pilas de combustible se describe por Martín, E.J. y col. (J. Power Sources, 2009, 192, 14-20). El procedimiento allí descrito utiliza una celda electroquímica rectangular provista de tres electrodos: el sustrato sobre el que se depositará el catalizador, un contraelectrodo microporoso de platino como contraelectrodo y un electrodo de referencia basado en mercurio/sulfato mercuroso, efectuándose la electrodeposición en condiciones potenciostáticas mediante la aplicación de un programa que consiste en barridos de potencial o en pulsos de potencial utilizando una solución de hexacloroplatmato como electrolito. Se demuestra que con esta técnica se obtienen electrodos con menor carga de catalizador y una alta actividad de éste. The method of electrochemical deposition for the preparation of sheet metal is well known, and is used industrially in different applications: synthesis of materials, metallurgical refinement, coatings, preparation of electronic circuits, among others. It is a method that requires little investment in equipment and is usually carried out at low temperature (below 80 ° C) and ambient pressure. Its use for the preparation of electrodes for fuel cells is described by Martín, E.J. et al. (J. Power Sources, 2009, 192, 14-20). The procedure described there uses a rectangular electrochemical cell provided with three electrodes: the substrate on which the catalyst will be deposited, a microporous platinum counter electrode as a counter electrode and a reference electrode based on mercury / mercury sulfate, electrodeposition being carried out under potentiostatic conditions by the application of a program consisting of scans of potential or pulses of potential using a solution of hexachloroplatmate as an electrolyte. It is shown that with this technique electrodes with a lower catalyst charge and high activity are obtained.
No obstante, es necesario el desarrollo de técnicas y/o dispositivos que permitan efectuar el proceso de electrodeposición de forma más eficaz, mejorando además la distribución del catalizador sobre la superficie del sustrato en el que se depositan. However, the development of techniques and / or devices that allow the electrodeposition process to be carried out more efficiently is necessary, further improving the distribution of the catalyst on the surface of the substrate in which they are deposited.
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
Los autores de la presente invención han desarrollado una celda electroquímica que permite realizar el proceso de electrodeposición, o de depósito electroquímico, de forma más eficaz y distribuyendo el catalizador de forma homogénea sobre la superficie del sustrato. Como ventaja adicional, dicha celda electroquímica permite el depósito de capas delgadas de diversos catalizadores.  The authors of the present invention have developed an electrochemical cell that allows the electrodeposition or electrochemical deposition process to be carried out more efficiently and distributing the catalyst homogeneously over the surface of the substrate. As an additional advantage, said electrochemical cell allows the deposition of thin layers of various catalysts.
El procedimiento de electrodeposición utilizando dicha celda electroquímica permite reducir de forma significativa la cantidad de platino necesaria, aumentando además su durabilidad. Una de las principales características de la celda desarrollada es la incorporación de una membrana conductora de iones con baja resistividad eléctrica que evita que los gases generados en el electrolito en contacto con el contraelectrodo lleguen al sustrato de depósito, evitando así reacciones paralelas a las de electrodeposición que disminuyen la eficiencia faradaica de dicho proceso y provocan una interferencia en las propiedades del catalizador depositado. The electrodeposition process using said electrochemical cell makes it possible to significantly reduce the amount of platinum necessary, further increasing its durability. One of the main characteristics of the developed cell is the incorporation of an ion conductive membrane with low electrical resistivity that prevents the gases generated in the electrolyte in contact with the counter electrode from reaching the deposit substrate, thus avoiding reactions parallel to those of electrodeposition which decrease the faradaic efficiency of said process and cause interference in the properties of the deposited catalyst.
Otra característica adicional de la celda es que permite el control de la atmósfera en la parte exterior del sustrato, dado que al tratarse de un sustrato de papel o tela, tiene alta permeabilidad al oxígeno ambiental, el cual puede por esta vía llegar a la interfase del sustrato con el electrolito y provocar reacciones paralelas. Another additional characteristic of the cell is that it allows the control of the atmosphere in the outer part of the substrate, since since it is a paper or cloth substrate, it has high permeability to ambient oxygen, which can by this way reach the interface of the substrate with the electrolyte and cause parallel reactions.
Esta celda electroquímica tiene la ventaja adicional de poder ser empleada no sólo para efectuar la reacción de electrodepósito, sino también como celda para el estudio o ensayo de los electrodos en atmósfera controlada, dado que en la misma celda se puede preparar el electrodo, efectuar los post-tratamientos electroquímicos y/o químicos que pudieran ser necesarios, y llevarse a cabo los primeros ensayos de caracterización: medida del área de platino electrodepositado y de la actividad para la reducción de oxígeno. This electrochemical cell has the additional advantage of being able to be used not only to carry out the electrodeposition reaction, but also as a cell for the study or testing of the electrodes in a controlled atmosphere, since in the same cell the electrode can be prepared, carry out the electrochemical and / or chemical post-treatments that may be necessary, and the first characterization tests to be carried out: measurement of the area of electrodeposited platinum and the activity for oxygen reduction.
Así, un primer aspecto de la presente invención lo constituye una celda electroquímica adecuada para la electrodeposición de un catalizador sobre un sustrato, donde dicha celda electroquímica comprende: Thus, a first aspect of the present invention is an electrochemical cell suitable for the electrodeposition of a catalyst on a substrate, wherein said electrochemical cell comprises:
- una primera cámara adaptada para albergar un electrolito, donde dicha cámara se encuentra limitada al menos por dos paredes paralelas, donde: una primera pared comprende:  - a first chamber adapted to house an electrolyte, where said chamber is limited by at least two parallel walls, where: a first wall comprises:
- un sustrato que comprende una cara interior y una cara exterior, donde la cara exterior comprende una capa difusora de gases y la cara interior comprende una capa microporosa;  - a substrate comprising an inner face and an outer face, where the outer face comprises a gas diffuser layer and the inner face comprises a microporous layer;
- un primer contacto eléctrico ubicado en contacto con la cara exterior del sustrato;  - a first electrical contact located in contact with the outer face of the substrate;
donde la cara exterior del sustrato y el primer contacto eléctrico se encuentran ubicados en el interior de una segunda cámara que comprende al menos dos conductos para la entrada y salida de gases, adecuada para permitir el control de la atmósfera en la parte exterior del sustrato, where the outer face of the substrate and the first electrical contact are located inside a second chamber comprising at least two conduits for the entry and exit of gases, suitable to allow control of the atmosphere on the outside of the substrate,
una segunda pared comprende:  A second wall comprises:
- un contraelectrodo que comprende una cara interior y una cara exterior,  - a counter electrode comprising an inner face and an outer face,
- un segundo contacto eléctrico ubicado en contacto con la cara exterior del contraelectrodo;  - a second electrical contact located in contact with the outer face of the counter electrode;
- una membrana conductora de iones e impermeable al paso de gases ubicada en el interior de la cámara separando a ésta en dos subcámaras, una primera subcámara en contacto con la cara interior del sustrato y una segunda subcámara en contacto con la cara interior del contraelectrodo; donde el sustrato, la membrana y el contraelectrodo se encuentran ubicados en disposición paralela.  - an ion conductive membrane and impermeable to the passage of gases located inside the chamber by separating it into two sub-chambers, a first sub-chamber in contact with the inner face of the substrate and a second sub-chamber in contact with the inner face of the counter electrode; where the substrate, the membrane and the counter electrode are located in parallel arrangement.
Además, dicha celda puede disponer de unos dispositivos o medios flexibles que permiten presionar el primer contacto eléctrico sobre la cara opuesta del sustrato, favoreciendo así el contacto homogéneo entre ellos y aislando dicha cara posterior del electrodo del líquido electrolito, aspectos esenciales para conseguir depósitos homogéneos en áreas extensas. In addition, said cell may have flexible devices or means that allow the first electrical contact to be pressed on the opposite side of the substrate, thus favoring the homogeneous contact between them and isolating said rear face of the electrode from the electrolyte liquid, essential aspects for achieving homogeneous deposits in large areas.
En una realización particular, la celda electroquímica comprende: - una carcasa en forma de paralelepípedo abierto al menos en una de sus caras, donde la cara opuesta a la cara abierta comprende una primera ventana; In a particular embodiment, the electrochemical cell comprises: a housing in the form of a parallelepiped open at least on one of its faces, where the face opposite the open face comprises a first window;
- un bloque de cierre adaptado para cubrir la cara abierta de la carcasa, donde dicho bloque de cierre comprende un cajeado dispuesto en la cara exterior y, una segunda ventana pasante dispuesta en el fondo del cajeado, de tal modo que la cara del bloque de cierre con la segunda ventana pasante es la cara adaptada para cubrir la cara abierta de la carcasa, donde: - a closing block adapted to cover the open face of the housing, where said closing block comprises a recess arranged in the outer face and a second through window arranged at the bottom of the recess, such that the face of the block of Closing with the second through window is the face adapted to cover the open face of the housing, where:
- la carcasa y el bloque de cierre, se encuentran unidos definiendo en su interior la primera subcámara en contacto con la cara interior del sustrato, - la primera ventana de la carcasa está cerrada exteriormente por un conjunto que comprende de forma consecutiva la membrana, el contraelectrodo y el segundo contacto eléctrico, de manera que la membrana y el contraelectrodo están distanciados entre sí dando lugar a la segunda subcámara que está en contacto con la cara interior del contraelectrodo, - the housing and the closing block, are connected defining inside the first subchamber in contact with the inner face of the substrate, - the first window of the housing is closed externally by an assembly that consecutively comprises the membrane, the counter electrode and the second electrical contact, so that the membrane and the counter electrode are distanced from each other giving rise to the second subchamber which is in contact with the inside face of the counter electrode,
- el cajeado del bloque de cierre alberga el sustrato y el primer contacto eléctrico, siendo la cara interior del sustrato la que está en contacto con la segunda ventana pasante, donde dicho cajeado se encuentra cerrado por la cara exterior del bloque de cierre mediante una tapa hermética, de manera que en el interior de dicho cajeado se forma la segunda cámara en la que quedan alojados la cara exterior del sustrato y el primer contacto eléctrico. - the recess of the closing block houses the substrate and the first electrical contact, the inner face of the substrate being in contact with the second through window, where said recess is closed by the outer face of the closing block by means of a cover hermetic, so that inside said recess the second chamber is formed in which the outer face of the substrate and the first electrical contact are housed.
Un aspecto adicional de la presente invención lo constituye un procedimiento para la preparación de un electrodo, donde dicho procedimiento comprende el depósito de un catalizador sobre un sustrato mediante la técnica de electrodeposición, donde el sustrato es un sustrato hidra fobizado que comprende una capa de carbón microporosa, caracterizado porque la electrodeposición se realiza en una celda electroquímica como se ha definido previamente, y donde dicho procedimiento comprende además: previamente a la electrodeposición, recubrir la capa de carbón microporosa con una capa microporosa que comprende una mezcla de negro de carbono y un ionómero, y someter el sustrato a un proceso de activación adecuado para dotar a la cara recubierta de conductividad iónica e hidrófila, donde dicho proceso de activación se realiza por vía química, electroquímica o una combinación de ambas; y/o posteriormente a la electrodeposición, someter el electrodo obtenido a un tratamiento seleccionado entre un tratamiento térmico, un tratamiento electroquímico y una combinación de los mismos, donde el tratamiento electroquímico comprende someter el electrodo a un ciclado electroquímico en ácido sulfúrico a velocidades de barrido y límites de barrido controlados hasta obtener una respuesta estable de la intensidad entre dos barridos consecutivos y el tratamiento térmico comprende someter el electrodo a una etapa de calentamiento a una temperatura comprendida entre 100°C y 150°C en atmósfera húmeda. A further aspect of the present invention is a process for the preparation of an electrode, wherein said process comprises the deposition of a catalyst on a substrate by means of the electrodeposition technique, where the substrate is a hydrated hydrated substrate comprising a layer of carbon microporous, characterized in that the electrodeposition is carried out in an electrochemical cell as previously defined, and where said procedure further comprises: prior to electrodeposition, coating the microporous carbon layer with a microporous layer comprising a mixture of carbon black and a ionomer, and subjecting the substrate to a suitable activation process to provide the coated face with ionic and hydrophilic conductivity, where said activation process is carried out by chemical, electrochemical or a combination of both; and / or subsequently to electrodeposition, subjecting the electrode obtained to a treatment selected from a heat treatment, an electrochemical treatment and a combination thereof, where the electrochemical treatment comprises subjecting the electrode to an electrochemical cycling in sulfuric acid at scanning rates. and controlled sweep limits until a stable response of the intensity between two consecutive sweeps is obtained and the heat treatment comprises subjecting the electrode to a heating stage at a temperature between 100 ° C and 150 ° C in a humid atmosphere.
Otro aspecto de la invención se dirige a un banco de ensayos para la caracterización y medida de la actividad catalítica de un electrodo, donde dicho banco de ensayos comprende: Another aspect of the invention is directed to a test bench for the characterization and measurement of the catalytic activity of an electrode, wherein said test bench comprises:
- una celda electroquímica tal como se ha definido previamente, en donde el sustrato se sustituye por el electrodo a ensayar, - an electrochemical cell as previously defined, wherein the substrate is replaced by the electrode to be tested,
- un electrolito inerte, y - an inert electrolyte, and
- una fuente de electricidad o potenciostato/galvanostato capaz de controlar y registrar el potencial electroquímico del electrodo y la intensidad de corriente en la celda. - a source of electricity or potentiostat / galvanostat capable of controlling and recording the electrochemical potential of the electrode and the current intensity in the cell.
Un último aspecto de la presente invención se refiere a un procedimiento para la selección de un electrodo apto para su utilización en una pila de combustible, donde dicho procedimiento comprende: - depositar el electrodo en un banco de ensayos como se ha definido previamente, en el lugar destinado a alojar el sustrato; A final aspect of the present invention relates to a method for the selection of an electrode suitable for use in a fuel cell, wherein said method comprises: - depositing the electrode in a test bench as defined previously, in the place intended to house the substrate;
- llenar con un electrolito inerte y conductor de iones la cámara adaptada para albergar el electrolito; - fill the chamber adapted to house the electrolyte with an inert electrolyte and ion conductor;
- suministrar oxígeno o aire a la parte exterior del electrodo a través del conducto de entrada de gases de la segunda cámara; - supplying oxygen or air to the outside of the electrode through the gas inlet duct of the second chamber;
- aplicar un potencial electroquímico adecuado entre el electrodo y un electrodo de referencia; y - apply a suitable electrochemical potential between the electrode and a reference electrode; Y
- verificar si se produce paso de corriente eléctrica debida a la reducción de oxígeno, donde la producción de dicha corriente eléctrica es el indicativo de que el electrodo es apto para su utilización en una pila de combustible. - Check if there is an electric current passing due to oxygen reduction, where the production of said electric current is indicative that the electrode is suitable for use in a fuel cell.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La Figura 1 corresponde con una vista lateral del montaje de la celda de electrodepósito. La Figura 2 corresponde con una curva de polarización de monocelda PEMFC con catalizador Pt-WC>3 electrodepositado en el cátodo. Figure 1 corresponds to a side view of the electrodeposition cell assembly. Figure 2 corresponds to a PEMFC monocell polarization curve with Pt-WC catalyst> 3 electrodeposited at the cathode.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN En un primer aspecto, la presente invención se refiere a una celda electroquímica que permite efectuar el depósito de un catalizador sobre un sustrato mediante la técnica de electrodeposición. DETAILED DESCRIPTION OF THE INVENTION In a first aspect, the present invention relates to an electrochemical cell that allows the deposition of a catalyst on a substrate by means of the electrodeposition technique.
Dicha celda electroquímica comprende una cámara adaptada para albergar un electrolito y una membrana conductora de iones e impermeable al paso de gases ubicada en el interior de dicha cámara, de manera que la membrana separa la cámara en dos subcámaras. Said electrochemical cell comprises a chamber adapted to house an electrolyte and an ion conducting membrane and impermeable to the passage of gases located inside said chamber, so that the membrane separates the chamber into two subchambers.
La cámara se encuentra limitada al menos por dos paredes paralelas. La primera pared comprende un sustrato, que comprende a su vez una cara interior y una cara exterior, y un primer contacto eléctrico ubicado en contacto con la cara exterior del sustrato. Por su parte, la segunda pared comprende un contraelectrodo, que comprende a su vez una cara interior y una cara exterior, y un segundo contacto eléctrico ubicado en contacto con la cara exterior del contraelectrodo. The chamber is limited by at least two parallel walls. The first wall comprises a substrate, which in turn comprises an inner face and an outer face, and a first electrical contact located in contact with the outer face of the substrate. For its part, the second wall comprises a counter electrode, which in turn comprises an inner face and an outer face, and a second electrical contact located in contact with the outer face of the counter electrode.
La disposición de los distintos elementos hace que la membrana separe la cámara en dos subcámaras: una primera subcámara que queda en contacto con la cara interior del sustrato y una segunda subcámara que queda en contacto con la cara interior del contraelectrodo. The arrangement of the different elements causes the membrane to separate the chamber into two subchambers: a first subchamber that is in contact with the inner face of the substrate and a second subchamber that is in contact with the inner face of the counter electrode.
La cara exterior del sustrato y el primer contacto eléctrico se encuentran ubicados en el interior de una segunda cámara que comprende, al menos, dos conductos para entrada y salida de gases, respectivamente. Esto permite controlar la composición de la atmósfera en la cara exterior del sustrato, evitando que el oxígeno ambiental llegue a dicho sustrato. The outer face of the substrate and the first electrical contact are located inside a second chamber that comprises at least two conduits for gas inlet and outlet, respectively. This allows controlling the composition of the atmosphere on the outer face of the substrate, preventing the ambient oxygen from reaching said substrate.
El sustrato empleado en dicha celda es un sustrato convencional para electrodos de difusión de gas, que comprende en su cara exterior una capa difusora de gases y en su cara interior una capa microporosa, que permiten la conducción eléctrica y transporte simultaneo de reactivos y productos líquidos y gaseosos. Dicha capa difusora de gases comprende, de forma preferente, una tela o papel de carbón con un espesor de entre 0.5 y 1 mm. En una realización preferente, la capa difusora de gases está impregnada con un agente hidrófobo. The substrate used in said cell is a conventional substrate for gas diffusion electrodes, which comprises on its outer face a gas diffuser layer and on its inner face a microporous layer, which allow the electrical conduction and simultaneous transport of reagents and liquid products And soda. Said gas diffuser layer preferably comprises a carbon cloth or paper with a thickness of between 0.5 and 1 mm. In a preferred embodiment, the gas diffuser layer is impregnated with a hydrophobic agent.
Por su parte, la capa microporosa es una capa de un material que comprende poros de tamaño micro y nanométrico. De forma preferente, es una capa de carbón microporoso, tal como el negro de carbón, y tiene un espesor de entre 0.1 y 0.5 mm. En una realización preferente, esta capa microporosa también está impregnada con un agente hidrófobo. On the other hand, the microporous layer is a layer of a material comprising pores of micro and nanometric size. Preferably, it is a layer of microporous carbon, such as carbon black, and has a thickness between 0.1 and 0.5 mm. In a preferred embodiment, this microporous layer is also impregnated with a hydrophobic agent.
La capa microporosa se deposita sobre la capa difusora de gases, de manera que sobre dicha capa microporosa se deposita un catalizador durante el proceso de electrodeposición. El depósito de la capa microporosa se puede efectuar mediante técnicas tales como aerografía o electropulverización, ampliamente conocidas en el estado de la técnica. The microporous layer is deposited on the gas diffuser layer, so that on said microporous layer a catalyst is deposited during the electrodeposition process. The deposition of the microporous layer can be done by techniques such as airbrushing or electrospray, widely known in the state of the art.
En una realización particular, el sustrato es de forma cuadrada con una superficie que oscila entre lxl cm2 y 10x10 cm2, de forma más preferente la superficie está comprendida entre 3x3 y 6x6 cm2, aún más preferentemente entre 4x4 y 5x5 cm2. Dimensiones superiores pueden dificultar la obtención de un depósito de catalizador homogéneo, mientras que dimensiones inferiores pueden provocar el denominado "efecto de bordes" que también conlleva la dificultad de obtener un depósito homogéneo. In a particular embodiment, the substrate is square in shape with varying between lxl cm 2 and 10x10 cm 2 surface, more preferably the surface is between 3x3 and 6x6 cm 2, even more preferably between 4x4 and 5x5 cm 2. Higher dimensions may make it difficult to obtain a homogeneous catalyst deposit, while lower dimensions may cause the so-called "edge effect" which also entails the difficulty of obtaining a homogeneous deposit.
El mencionado sustrato se encuentra unido por su cara exterior, es decir, por la capa difusora de gases, a un primer contacto eléctrico que permite la conducción eléctrica a un circuito externo. Said substrate is connected by its outer face, that is, by the gas diffuser layer, to a first electrical contact that allows electrical conduction to an external circuit.
En una realización preferente, dicho primer contacto eléctrico presenta las mismas dimensiones que el sustrato. También de forma preferente, dicho primer contacto eléctrico es una lámina de cobre. In a preferred embodiment, said first electrical contact has the same dimensions as the substrate. Also preferably, said first electrical contact is a copper foil.
En una realización preferente, la segunda cámara en la que quedan alojados la cara exterior del sustrato y el primer contacto eléctrico comprende una tapa que permite el cierre de dicha cámara. La mencionada tapa comprende los, al menos, dos conductos para la entrada y salida de gases. Dichos conductos pueden ser dos orificios de entre 1 y 3 mm de diámetro con racoraje estándar. Por su parte, el contraelectrodo de la celda electroquímica de la invención es un electrodo sobre cuya superficie se encuentra depositado un catalizador con un área electroquímica por unidad de área geométrica superior a la del sustrato. El contraelectrodo debe ser estanco y estable. De forma preferente, dicho contraelectrodo comprende una placa de grafito en contacto con un electrodo de tela o papel de carbón sobre cuya cara interior se encuentra depositado platino como catalizador. In a preferred embodiment, the second chamber in which the outer face of the substrate is housed and the first electrical contact comprises a cover that allows said chamber to be closed. The aforementioned cover comprises the at least two conduits for the entry and exit of gases. These ducts can be two holes between 1 and 3 mm in diameter with standard fittings. On the other hand, the counter electrode of the electrochemical cell of the invention is an electrode on whose surface a catalyst with an electrochemical area per unit of geometric area greater than that of the substrate is deposited. The counter electrode must be tight and stable. Preferably, said counter electrode comprises a graphite plate in contact with a cloth or carbon paper electrode on whose inner face platinum is deposited as a catalyst.
En una forma de realización preferente, el contraelectrodo tiene dimensiones geométricas algo mayores que las del sustrato a depositar, más preferentemente tiene unas dimensiones de entre 5-15% mayores que las de dicho sustrato, y se encuentra dispuesto de forma centrada con respecto a dicho sustrato. Es decir, en su ubicación todas sus caras sobresalen la misma distancia con respecto a las caras del sustrato. In a preferred embodiment, the counter electrode has geometric dimensions somewhat larger than those of the substrate to be deposited, more preferably it has dimensions of between 5-15% larger than those of said substrate, and is arranged centrally with respect to said substratum. That is, in their location all their faces protrude the same distance with respect to the faces of the substrate.
Dicho contraelectrodo se encuentra unido en su cara exterior a un segundo contacto eléctrico que permite la conducción eléctrica a un circuito externo. En una realización preferente, dicho segundo contacto eléctrico presenta las mismas dimensiones que el contraelectrodo. También de forma preferente, dicho segundo contacto eléctrico es una lámina de cobre. Said counter electrode is connected on its outer face to a second electrical contact that allows electrical conduction to an external circuit. In a preferred embodiment, said second electrical contact has the same dimensions as the counter electrode. Also preferably, said second electrical contact is a copper foil.
La celda electroquímica de la invención se caracteriza porque comprende una membrana conductora de iones con baja resistividad eléctrica e hidrófila, pero impermeable al paso de gases, ubicada entre el sustrato y el contraelectrodo, donde dicha membrana separa la primera subcámara en contacto con el sustrato de la segunda subcámara en contacto con el contraelectrodo. La presencia de esta membrana evita que los gases generados en el electrolito en contacto con el contraelectrodo lleguen al sustrato de depósito, aumentando así el rendimiento de la reacción de electrodeposición y evitando su interferencia en las reacciones de depósito. The electrochemical cell of the invention is characterized in that it comprises an ion conducting membrane with low electrical and hydrophilic resistivity, but impermeable to the passage of gases, located between the substrate and the counter electrode, where said membrane separates the first subchamber in contact with the substrate of the second subchamber in contact with the counter electrode. The presence of this membrane prevents the gases generated in the electrolyte in contact with the counter electrode from reaching the deposit substrate, thus increasing the performance of the electrodeposition reaction and avoiding its interference in the deposition reactions.
El sustrato, la membrana y el contraelectrodo se encuentran dispuestos en disposición paralela en la celda electroquímica de la invención, de manera que la membrana se aloja en paralelo entre la cara anterior del contraelectrodo y la cara anterior del sustrato. The substrate, the membrane and the counter electrode are arranged in parallel arrangement in the electrochemical cell of the invention, so that the membrane is housed in parallel between the front face of the counter electrode and the front face of the substrate.
En una realización preferente, la membrana conductora de iones se aloja en paralelo a la cara anterior del contraelectrodo a una distancia de entre 2 y 5 mm. En una realización particular, la celda electroquímica comprende un electrolito dispuesto en la primera subcámara y en la segunda subcámara, de manera que la membrana conductora de iones e impermeable al paso de gases separa el electrolito dispuesto en la primera subcámara del electrolito dispuesto en la segunda subcámara. En otra realización particular, la celda electroquímica de la invención comprende además medios flexibles ubicados en la cara exterior del primer contacto eléctrico, que permiten presionar dicho primer contacto eléctrico sobre el sustrato a depositar, obteniéndose entre ellos un contacto homogéneo y poco resistivo, de importancia para conseguir depósitos homogéneos en áreas extensas. Dichos medios flexibles son, preferentemente, al menos un muelle o un relleno de espuma, y se pueden encontrar unidos a una chapa metálica de dimensiones algo menores que el contacto eléctrico que contacta con la cara exterior del sustrato. En una realización particular, los medios flexibles se encuentran comprimidos sobre el primer contacto eléctrico por medio de la tapa que permite el cierre de la segunda cámara. Forma de realización particular In a preferred embodiment, the ion conducting membrane is housed in parallel to the front face of the counter electrode at a distance between 2 and 5 mm. In a particular embodiment, the electrochemical cell comprises an electrolyte disposed in the first subchamber and in the second subchamber, so that the ion conducting membrane and impermeable to the passage of gases separates the electrolyte disposed in the first subchamber from the electrolyte disposed in the second subchamber In another particular embodiment, the electrochemical cell of the invention further comprises flexible means located on the outer face of the first electrical contact, which allow said first electrical contact to be pressed on the substrate to be deposited, obtaining a homogeneous and low-resistive contact of importance between them. to get homogeneous deposits in large areas. Said flexible means are preferably at least one spring or a foam padding, and can be found attached to a metal sheet of somewhat smaller dimensions than the electrical contact that contacts the outer face of the substrate. In a particular embodiment, the flexible means are compressed on the first electrical contact by means of the cover that allows the second chamber to close. Particular embodiment
Una forma de realización particular de la celda electroquímica de la presente invención se representa en la figura 1. Dicha figura corresponde con una vista lateral del montaje de la celda de electrodepósito. A particular embodiment of the electrochemical cell of the present invention is represented in Figure 1. Said figure corresponds to a side view of the electrodeposition cell assembly.
En esta forma de realización particular, la celda electroquímica comprende: - una carcasa (1) en forma de paralelepípedo abierto al menos en una de sus caras, donde la cara opuesta a la cara abierta comprende una primera ventana (2); In this particular embodiment, the electrochemical cell comprises: a housing (1) in the form of an open parallelepiped at least on one of its faces, where the face opposite the open face comprises a first window (2);
- un bloque (3) de cierre adaptado para cubrir la cara abierta de la carcasa, donde dicho bloque de cierre comprende un cajeado (4) dispuesto en la cara exterior y, una segunda ventana (5) pasante dispuesta en el fondo del cajeado, de tal modo que la cara del bloque de cierre con la segunda ventana pasante es la cara adaptada para cubrir la cara abierta de la carcasa, donde: - a closing block (3) adapted to cover the open face of the housing, wherein said closing block comprises a recess (4) disposed on the outer face and a second through window (5) arranged at the bottom of the recess, such that the face of the closing block with the second through window is the face adapted to cover the open face of the housing, where:
- la carcasa (1) y el bloque (2) de cierre, se encuentran unidos definiendo en su interior la primera subcámara (6) en contacto con la cara interior del sustrato, - la primera ventana (2) de la carcasa está cerrada exteriormente por un conjunto que comprende de forma consecutiva la membrana (7), el contraelectrodo (8) y el segundo contacto (9) eléctrico, de manera que la membrana (7) y el contraelectrodo (8) están distanciados entre sí dando lugar a la segunda subcámara que está en contacto con la cara interior del contraelectrodo (8), - the housing (1) and the closing block (2), are joined defining inside the first sub chamber (6) in contact with the inner face of the substrate, - the first window (2) of the housing is closed externally by an assembly that consecutively comprises the membrane (7), the counter electrode (8) and the second electrical contact (9), so that the membrane (7) and the counter electrode (8) are spaced apart from each other giving rise to the second subchamber that is in contact with the inside face of the counter electrode (8),
- el cajeado (5) del bloque (3) de cierre alberga el sustrato (10) y el primer contacto (11) eléctrico, siendo el sustrato (10) el que está en contacto con la segunda ventana (5) pasante, donde dicho cajeado se encuentra cerrado por la cara exterior del bloque de cierre mediante una tapa (20) hermética, de manera que la segunda cámara se forma en el interior de dicho cajeado en la que quedan alojados en su interior la cara exterior del sustrato y el primer contacto eléctrico. - the recess (5) of the closing block (3) houses the substrate (10) and the first electrical contact (11), the substrate (10) being in contact with the second through window (5), where said recessed is closed by the outer face of the closing block by means of an airtight cover (20), so that the second chamber is formed inside said recess in which the outer face of the substrate and the first are housed inside electrical contact.
En una realización preferente, la primera y segunda ventana (2 y 4) tienen forma cuadrada. In a preferred embodiment, the first and second windows (2 and 4) have a square shape.
Esta celda electroquímica comprende una carcasa (1) con forma de paralelepípedo, donde dicho paralelepípedo está abierto al menos en una de sus caras, y la cara opuesta a ésta comprende una ventana (2) que permite el paso de iones y corriente durante la reacción de electrodeposición entre la zona activa del sustrato (10) y el contraelectrodo (8). This electrochemical cell comprises a parallelepiped-shaped housing (1), where said parallelepiped is open at least on one of its faces, and the opposite side of it comprises a window (2) that allows the passage of ions and current during the reaction of electrodeposition between the active zone of the substrate (10) and the counter electrode (8).
Dicha carcasa (1) aloja en la parte externa que comprende la ventana (2), un conjunto que comprende de forma consecutiva la membrana conductora de iones (7), el contraelectrodo (8) y el segundo contacto eléctrico (9). Said housing (1) houses in the external part comprising the window (2), an assembly that consecutively comprises the ion conducting membrane (7), the counter electrode (8) and the second electrical contact (9).
En particular, la membrana (7) se encuentra unida a la ventana de la carcasa (1), de manera que dicha membrana (7) cubre toda la ventana (2). La unión de la membrana a la ventana (2) puede efectuarse incorporando una primera junta (12) que permite sellar los bordes de la membrana. In particular, the membrane (7) is attached to the window of the housing (1), so that said membrane (7) covers the entire window (2). The membrane can be joined to the window (2) by incorporating a first gasket (12) that allows the membrane edges to be sealed.
El contraelectrodo (8) comprende un sustrato (8a), en cuya superficie se encuentra depositado un catalizador, y una placa de grafito (8b). Dicho contraelectrodo (8) se coloca a continuación de la membrana (7) de manera que dicha membrana (7) y el contraelectrodo (8) están distanciados entre sí, dando lugar a la segunda subcámara en contacto con el contraelectrodo. En una realización preferente, la distancia entre el contraelectrodo (8) y la membrana (7) es de 2-5 mm. De forma preferente, el sustrato (8a) es una tela o papel de carbón y el catalizador depositado sobre él es platino. The counter electrode (8) comprises a substrate (8a), on whose surface a catalyst is deposited, and a graphite plate (8b). Said counter electrode (8) is placed next to the membrane (7) so that said membrane (7) and the counter electrode (8) are spaced apart from each other, giving rise to the second subchamber in contact with the counter electrode. In a preferred embodiment, the distance between the counter electrode (8) and the membrane (7) is 2-5 mm. Preferably, the substrate (8a) is a carbon cloth or paper and the catalyst deposited thereon is platinum.
Entre la membrana y el contraelectrodo se puede ubicar una segunda junta (13) para sellar los bordes de ambos elementos. En la cara exterior del contraelectrodo se ubica el segundo contacto eléctrico (9) que proporciona la corriente eléctrica al circuito externo. Between the membrane and the counter electrode a second joint (13) can be located to seal the edges of both elements. The second electrical contact (9) that provides the electric current to the external circuit is located on the outer face of the counter electrode.
En una forma de realización particular, el material constitutivo de la carcasa (1) de la celda es un material suficientemente resistente a los agentes químicos, en particular a los ácidos, y especialmente al ácido sulfúrico comprendido en el electrolito. Preferentemente, dicho material es un polimetacrilato, aunque también pueden emplearse otros como teflón, PVC, o algún otro polímero suficientemente rígido, resistente e impermeable. In a particular embodiment, the constituent material of the cell housing (1) is a material sufficiently resistant to chemical agents, in particular to acids, and especially to sulfuric acid comprised in the electrolyte. Preferably, said material is a polymethacrylate, although others such as Teflon, PVC, or some other sufficiently rigid, resistant and impermeable polymer can also be used.
La celda electroquímica representada en la figura 1 comprende además un bloque (3) de cierre adaptado para cubrir la cara abierta de la carcasa (1). Dicho bloque de cierre comprende un cajeado (4) dispuesto en la cara exterior conectado con una segunda ventana (5) dispuesta en el fondo del cajeado, de tal manera que la cara del bloque de cierre que tiene la segunda ventana pasante es la cara adaptada para cubrir la cara abierta de la carcasa (1). The electrochemical cell shown in Figure 1 further comprises a closing block (3) adapted to cover the open face of the housing (1). Said closing block comprises a recess (4) disposed on the outer face connected to a second window (5) arranged at the bottom of the recess, such that the face of the closing block having the second through window is the adapted face to cover the open face of the housing (1).
El bloque de cierre aloja en su interior el sustrato (10) y el primer contacto (11) eléctrico, siendo el sustrato (10) el que está en contacto con la segunda ventana (5) pasante. The closing block houses inside the substrate (10) and the first electrical contact (11), the substrate (10) being in contact with the second through window (5).
El bloque (3) de cierre cámara se encuentra unido la carcasa (1) de manera que en su unión definen la primera subcámara (6) en contacto con el sustrato (11). The chamber closure block (3) is connected to the housing (1) so that at its junction they define the first sub-chamber (6) in contact with the substrate (11).
De forma preferente, la unión entre ambas piezas se efectúa por medio de tornillos y una junta de silicona (14), con objeto de obtener una estanqueidad suficiente. Preferably, the connection between both pieces is carried out by means of screws and a silicone gasket (14), in order to obtain a sufficient seal.
De forma preferente, las dimensiones interiores de la primera subcámara formado entre la carcasa y el bloque de cierre deben ser tales que una vez depositada la cantidad de catalizador deseada, no haya disminuido la concentración de sus precursores en el electrolito en más de un 10%. La ventana (5) pasante tiene las mismas dimensiones que el área activa geométrica del sustrato. Preferably, the interior dimensions of the first subchamber formed between the housing and the closing block should be such that once the desired amount of catalyst has been deposited, the concentration of its precursors in the electrolyte has not decreased by more than 10% . The through window (5) has the same dimensions as the geometric active area of the substrate.
Por "área activa geométrica del sustrato" debe entenderse el área proyectada del sustrato sobre la que se efectúa el depósito del catalizador. En una realización particular, el bloque (3) de cierre puede incorporar, al menos, otra ventana (15) de dimensiones mayores que la ventana (5), que permite la preparación de electrodos de esas dimensiones en la misma celda sin tener que efectuar modificaciones sobre la misma. Pueden incorporarse tantas ventanas escalonadas como se desee para la preparación de electrodos con distintas áreas activas, siempre y cuando se utilicen los elementos de cierre y contactos eléctricos acordes a los distintos tamaños. The term "geometric active area of the substrate" means the projected area of the substrate on which the catalyst is deposited. In a particular embodiment, the closing block (3) can incorporate, at least, another window (15) of dimensions larger than the window (5), which allows the preparation of electrodes of those dimensions in the same cell without having to perform Modifications on it. As many stepped windows can be incorporated as desired for the preparation of electrodes with different active areas, as long as the closing elements and electrical contacts according to the different sizes are used.
Dicho bloque (3) de cierre aloja en su interior el sustrato (10) y el primer contacto eléctrico (11) ubicado en la cara exterior del mismo, de manera que la cara interior del sustrato queda en contacto con la primera subcámara (6) formada por la unión de la carcasa (1) con el bloque (3) de cierre a través de la ventana (5). En una realización preferente, el sustrato (10) es de forma cuadrada con una superficie que oscila entre lxl cm2 y 10x10 cm2, de forma más preferente la superficie está comprendida entre 3x3 y 6x6 cm2, aún más preferentemente entre 4x4 y 5x5 cm2. Said closing block (3) houses inside the substrate (10) and the first electrical contact (11) located on the outer face thereof, so that the inner face of the substrate is in contact with the first sub-chamber (6) formed by the union of the housing (1) with the closing block (3) through the window (5). In a preferred embodiment, the substrate (10) is square in shape with varying between lxl cm 2 and 10x10 cm 2 surface, more preferably the surface is between 3x3 and 6x6 cm 2, even more preferably between 4x4 and 5x5 cm 2
El sustrato (10) puede quedar unido al orificio (5) del bloque (3) de cierre mediante una junta (16), de preferencia, una junta con suficiente hidrofobicidad, tal como por ejemplo una junta teflonada, para el sellamiento de los bordes del electrodo que impide la salida del electrolito. The substrate (10) can be attached to the hole (5) of the closing block (3) by means of a gasket (16), preferably, a gasket with sufficient hydrophobicity, such as a teflon gasket, for sealing the edges of the electrode that prevents the electrolyte from leaving.
Todos los elementos que constituyen esta celda electroquímica deben quedar dispuestos en forma paralela. All the elements that constitute this electrochemical cell must be arranged in parallel.
La forma de paralelepípedo y las dimensiones descritas de la celda electroquímica son las más adecuadas para obtener: The parallelepiped shape and the described dimensions of the electrochemical cell are best suited to obtain:
1) una mejor economía de proceso, ya que volúmenes mayores requieren mayor cantidad de electrolito y, en consecuencia, mayor cantidad de platino, y 1) a better process economy, since larger volumes require more electrolyte and, consequently, more platinum, and
2) un depósito homogéneo que requiere que el sustrato y el contraelectrodo estén cercanos y enfrentados. El cajeado (4) comprendido en el bloque (3) de cierre se encuentra cerrado por la cara externa de dicho bloque de cierre mediante una tapa (20) hermética, de manera que el cajeado forma la segunda cámara en la que quedan alojados la cara exterior del sustrato y el primer contacto eléctrico. Esta tapa (20) hermética comprende además orificios destinados al paso de algún gas al bloque (3) para realizar el depósito del catalizador en atmósfera controlada, lo que permite conseguir condiciones anóxicas durante el depósito, ya que el oxígeno disuelto es un reactivo que da lugar a reacciones paralelas (reducción de oxígeno) e influye en las características del depósito, sobre todo cuando el catalizador es de platino y óxido de wolframio. 2) a homogeneous deposit that requires that the substrate and counter electrode be close and opposite. The recess (4) included in the closing block (3) is closed by the external face of said closing block by means of a hermetic cover (20), so that the recessed forms the second chamber in which the face is housed exterior of the substrate and the first electrical contact. This hermetic cover (20) also includes holes intended for the passage of some gas to the block (3) to carry out the deposition of the catalyst in a controlled atmosphere, which allows to achieve anoxic conditions during the deposition, since dissolved oxygen is a reagent that gives place to parallel reactions (oxygen reduction) and influences the characteristics of the deposit, especially when the catalyst is platinum and tungsten oxide.
Dicha tapa (20) puede comprender además los medios flexibles (19) que permiten presionar el primer contacto eléctrico sobre el sustrato a depositar, obteniéndose entre ellos un contacto homogéneo y poco resistivo, aislando perfectamente el sustrato del líquido electrolito. Dichos medios flexibles son, preferentemente, al menos un muelle o un relleno de espuma. Said cover (20) can also comprise the flexible means (19) that allow the first electrical contact to be pressed on the substrate to be deposited, obtaining a homogeneous and low resistive contact between them, perfectly isolating the substrate from the electrolyte liquid. Said flexible means are preferably at least one spring or a foam padding.
En una realización particular, dicha tapa (20) comprende un orificio, preferentemente en su centro geométrico, que permite el paso del cable eléctrico unido al primer contacto (11) eléctrico y que tiene su mismo diámetro para favorecer la estanqueidad. En una realización particular, el cajeado (4) alberga además un marco (18) cuyas dimensiones interiores coinciden con el área activa del sustrato o electrodo a preparar, mientras que las dimensiones externas deben coincidir con las medidas del sustrato. Dicho marco está constituido por una o más piezas de material inerte y aislante eléctricamente, y se encuentra ubicado en la parte exterior del primer contacto (11) eléctrico y presiona firmemente los bordees de dicho primer contacto eléctrico y del sustrato contra los bordes del cajeado (4) pasante del bloque (3) de cierre, mejorando así la estanqueidad de la celda. In a particular embodiment, said cover (20) comprises a hole, preferably in its geometric center, which allows the passage of the electric cable connected to the first electrical contact (11) and having its same diameter to favor the sealing. In a particular embodiment, the recess (4) also houses a frame (18) whose internal dimensions coincide with the active area of the substrate or electrode to be prepared, while the external dimensions must match the measurements of the substrate. Said frame is constituted by one or more pieces of electrically inert and insulating material, and is located on the outside of the first electrical contact (11) and firmly presses the edges of said first electrical contact and of the substrate against the edges of the recess ( 4) intern of the closing block (3), thus improving the tightness of the cell.
Dicho marco (18) permite que a su través pasen los medios flexibles (19) que presionan el primer contacto eléctrico sobre el sustrato. En una realización preferente, la celda electroquímica comprende además una abertura de acceso a la primera subcámara que está en contacto con el sustrato, y dispone de una tapa (17) adaptada para cerrar dicha abertura para aislar el electrolito del aire ambiental. Said frame (18) allows the flexible means (19) that press the first electrical contact on the substrate to pass through it. In a preferred embodiment, the electrochemical cell further comprises an access opening to the first sub chamber that is in contact with the substrate, and has a cover (17) adapted to close said opening to isolate the electrolyte from ambient air.
Dicha tapa (17) permite además colocar ordenadamente un electrodo de referencia, en caso de ser necesario, y los conductos para el paso de gases. Said cover (17) also allows an orderly electrode to be placed in order, if necessary, and the conduits for the passage of gases.
La celda electroquímica puede comprender además una serie de juntas (21,22) que permiten la unión del marco (18) y la tapa hermética (20) y del marco (18) con el primer contacto (11) eléctrico. The electrochemical cell can also comprise a series of joints (21,22) that allow the union of the frame (18) and the hermetic cover (20) and of the frame (18) with the first electrical contact (11).
La celda electroquímica de la invención tiene la ventaja adicional de poder ser empleada no sólo para efectuar la reacción de electrodepósito, sino también como celda para el estudio o ensayo de los electrodos en atmósfera controlada, dado que en la misma celda se puede preparar el electrodo, efectuar los post-tratamientos electroquímicos y/o químicos que pudieran ser necesarios, y llevarse a cabo los primeros ensayos de caracterización: medida del área de platino electrodepositado y la actividad para la reducción de oxígeno. The electrochemical cell of the invention has the additional advantage of being able to be used not only to carry out the electrodeposition reaction, but also as a cell for the study or testing of electrodes in a controlled atmosphere, since the electrode can be prepared in the same cell , carry out the electrochemical and / or chemical post-treatments that may be necessary, and carry out the first characterization tests: measurement of the area of electrodeposited platinum and the activity for oxygen reduction.
Por tanto, en una realización particular, cuando la celda se utiliza para efectuar una reacción de electrodeposición de un catalizador sobre un sustrato, el electrolito se ubica en la primera y segunda subcámaras y comprende una solución acuosa que comprende un precursor del material catalizador a depositar sobre el sustrato. De forma preferente, el catalizador a depositar es platino, por lo que en ese caso el electrolito puede ser una solución acuosa que comprende un precursor de platino, tal como por ejemplo una sal de platino como hexacloroplatinato. Therefore, in a particular embodiment, when the cell is used to effect an electrodeposition reaction of a catalyst on a substrate, the electrolyte is located in the first and second subchambers and comprises an aqueous solution comprising a precursor of the catalyst material to be deposited. on the substrate. Preferably, the catalyst to be deposited is platinum, whereby in that case the electrolyte can be an aqueous solution comprising a platinum precursor, such as for example a platinum salt such as hexachloroplatinate.
Adicionalmente, el electrolito puede comprender agentes adicionales para facilitar el proceso de electrodeposición, como ácido sulfúrico, y compuestos adicionales que pueden formar parte del catalizador junto con el platino, tales como sales de cobalto o wolframio. Additionally, the electrolyte may comprise additional agents to facilitate the electrodeposition process, such as sulfuric acid, and additional compounds that may be part of the catalyst together with platinum, such as cobalt or tungsten salts.
En otra forma de realización particular, cuando la celda se utiliza para el ensayo de electrodos y verificar la reducción de oxígeno, el electrolito es un electrolito inerte y conductor de iones. De forma preferente, el electrolito es una solución de ácido sulfúrico o ácido perclórico. En esta realización particular, los orificios destinados al paso de gases de la tapa (20) se emplean para el paso de oxígeno o aire durante la fase de ensayo del electrodo. In another particular embodiment, when the cell is used for electrode testing and verifying oxygen reduction, the electrolyte is an inert electrolyte and ion conductor. Preferably, the electrolyte is a solution of sulfuric acid or perchloric acid. In this particular embodiment, the holes intended for the passage of gases from the cover (20) are used for the passage of oxygen or air during the test phase of the electrode.
La unión de la tapa (20) al bloque (3) de cierre puede efectuarse mediante tornillos, aunque también cabe la posibilidad de llevarlo a cabo por elementos elásticos, tales como pinzas o mordazas para unas operaciones rápidas de montaje y desmontaje. The connection of the cover (20) to the closing block (3) can be carried out by means of screws, although it is also possible to carry it out by elastic elements, such as clamps or jaws for quick assembly and disassembly operations.
En otro aspecto, la presente invención se relaciona con un procedimiento para preparar un electrodo que comprende el depósito de un catalizador sobre un sustrato mediante la técnica de electrodeposición, caracterizado porque la electrodeposición se realiza en una celda electroquímica como se ha definido previamente. Dicho procedimiento permite efectuar el depósito en condiciones potencio státicas o en condiciones galvanostáticas en función del parámetro que se desee controlar, potencial electroquímico del sustrato o intensidad de corriente de depósito, respectivamente. In another aspect, the present invention relates to a method for preparing an electrode comprising the deposition of a catalyst on a substrate by means of the electrodeposition technique, characterized in that the electrodeposition is carried out in an electrochemical cell as previously defined. Said procedure allows the deposit to be carried out under potentiostatic conditions or under galvanostatic conditions depending on the parameter to be controlled, the electrochemical potential of the substrate or the intensity of the deposit current, respectively.
En condiciones potenciostáticas se requiere un equipo adecuado, tal como un potenciostato y un electrodo de referencia, que permite fijar el potencial electroquímico respecto de un electrodo de referencia en la superficie del sustrato, y variarlo según un programa de potenciales adecuado. Dicho programa puede consistir en barridos de potencial o en pulsos de potencial, aplicándose tantos barridos como sean necesarios para asegurar el depósito de la cantidad de catalizador deseada. Valores típicos incluyen entre 25 y 100 barridos. En una realización particular, la electrodeposición se realiza mediante la aplicación de un barrido de potencial entre 0.05 V y 0.9 V utilizando como electrolito una solución acuosa de hexacloroplatinato en ácido sulfúrico y ácido bórico. Under potentiostatic conditions, suitable equipment is required, such as a potentiostat and a reference electrode, which allows the electrochemical potential to be set with respect to a reference electrode on the substrate surface, and varies according to a suitable potential program. Said program may consist of potential scans or potential pulses, applying as many scans as necessary to ensure the deposit of the desired amount of catalyst. Typical values include between 25 and 100 sweeps. In a particular embodiment, the electrodeposition is performed by applying a potential sweep between 0.05 V and 0.9 V using as an electrolyte an aqueous solution of hexachloroplatinate in sulfuric acid and boric acid.
En condiciones galvanostáticas, se hace pasar una corriente eléctrica, por ejemplo de entre 0.1 y 5 mA/cm2, entre el sustrato y el contraelectrodo por medio de una fuente de corriente o galvanostato. El proceso de electrodepósito puede tener diferentes etapas en función del perfil del catalizador que se desee obtener. Además, puede requerir el borboteo de gas nitrógeno dentro de la disolución y paso de nitrógeno por la cara exterior del sustrato para asegurar condiciones anóxicas. La cantidad de catalizador depositada puede estimarse a partir de la corriente eléctrica, según la ley de Faraday. En una realización particular, el sustrato sobre el que se efectúa la electrodeposición es un sustrato hidrofobizado que evita que el electrolito percole a su través. Existen sustratos hidrofobizados comercialmente disponibles (PEMEAS®, SIGRACET®) que comprenden una capa de papel o tela de carbón y una capa de carbón microporosa hidrofobizada. Alternativamente, se puede preparar un sustrato hidrofobizado partiendo de una capa de papel o tela de carbón, recubriéndose una de sus caras con una capa de carbón microporosa hidrofobizada con un agente apropiado como teflón. Under galvanostatic conditions, an electric current, for example between 0.1 and 5 mA / cm 2 , is passed between the substrate and the counter electrode by means of a current source or electroplating. The electrodeposition process can have different stages depending on the catalyst profile that one wishes to obtain. In addition, it may require the bubbling of nitrogen gas into the solution and the passage of nitrogen through the outer face of the substrate to ensure anoxic conditions. The amount of deposited catalyst can be estimated from the electric current, according to Faraday's law. In a particular embodiment, the substrate on which the electrodeposition is performed is a hydrophobicized substrate that prevents the electrolyte from percolating therethrough. There are commercially available hydrophobic substrates (PEMEAS®, SIGRACET®) comprising a layer of carbon paper or cloth and a layer of hydrophobic microporous carbon. Alternatively, a hydrophobic substrate can be prepared starting from a layer of carbon paper or cloth, one of its faces being coated with a layer of hydrophobic microporous carbon with an appropriate agent such as Teflon.
En otra realización particular, la capa de carbón microporosa del sustrato hidrofobizado se recubre con otra capa microporosa hidrófila mediante una mezcla que comprende negro de carbón, un ionómero y un agente dispersante. El ionómero se adiciona como conductor iónico con el fin de dotar a la capa activa del sustrato de conducción protónica, pero en concentraciones suficientemente pequeñas para evitar una excesiva barrera de difusión de los aniones precursores del catalizador a los granos del carbón. De forma preferente, dicho ionómero es el comercialmente disponible bajo el nombre de Nafion. In another particular embodiment, the microporous carbon layer of the hydrophobic substrate is coated with another hydrophilic microporous layer by a mixture comprising carbon black, an ionomer and a dispersing agent. The ionomer is added as an ionic conductor in order to provide the active layer of the proton conduction substrate, but in concentrations sufficiently small to avoid an excessive diffusion barrier of the catalyst precursor anions to the grains of the carbon. Preferably, said ionomer is commercially available under the name of Nafion.
Por su parte, el agente dispersante es un líquido que se añade a la mezcla para formar una suspensión y hacer así posible el depósito mediante técnicas adecuadas. Preferentemente, el agente dispersante es de naturaleza alcohólica, siendo aún más preferente el uso de isopropanol. El ionómero permanece en la capa microporosa tras su depósito, mientras que el agente dispersante es eliminado por evaporación y no forma parte de la capa final depositada. On the other hand, the dispersing agent is a liquid that is added to the mixture to form a suspension and thus make the deposit possible by suitable techniques. Preferably, the dispersing agent is of an alcoholic nature, the use of isopropanol being even more preferred. The ionomer remains in the microporous layer after deposition, while the dispersing agent is removed by evaporation and is not part of the deposited final layer.
El depósito de las diferentes capas que constituyen el sustrato se puede llevar a cabo mediante las técnicas de aerografía o de electropulverización. The deposition of the different layers that constitute the substrate can be carried out by airbrushing or electrospray techniques.
En otra forma de realización particular, y como paso previo al proceso de electrodeposición, el procedimiento de la invención comprende además someter al sustrato a un proceso de activación con el fin de dotarlo de conductividad iónica y carácter hidrofílico exclusivamente en la superficie de depósito. Dicho proceso de activación puede llevarse a cabo por vía química o electroquímica. In another particular embodiment, and as a prior step to the electrodeposition process, the process of the invention further comprises subjecting the substrate to an activation process in order to provide it with ionic conductivity and hydrophilic character exclusively on the deposit surface. Said activation process can be carried out by chemical or electrochemical means.
En una realización particular, la activación por vía química comprende poner en contacto la cara del sustrato sobre la que se va a efectuar la electrodeposición con una disolución de ácido nítrico concentrado durante un tiempo que oscila entre 1 y 10 segundos, y posterior lavado con agua para eliminar los restos de ácido. In a particular embodiment, the activation by chemical means comprises contacting the face of the substrate on which the electrodeposition is to be carried out with a concentrated nitric acid solution for a time ranging from 1 to 10 seconds, and subsequent washing with water to remove acid residues.
En otra realización particular, la activación por vía electroquímica comprende someter al sustrato sobre el que se va a efectuar la electrodeposición a un ciclado de potencial electroquímico. De forma preferente, el ciclado de potencial se efectúa a una velocidad de barrido de entre 10 y 100 mV/s y límites de barrido controlados (por ejemplo límite anódico de 0.0-0.1 V vs NHE, límite catódico de 1.0 a 1.5 V vs NHE, donde NHE proviene de Normal Hydrogen Electrodé), utilizando ácido sulfúrico, en una concentración por ejemplo de 0.5 M, como electrolito. En este caso, el sustrato debe someterse a un número suficiente de barridos, hasta lograr un valor deseado de la corriente de carga de la doble capa, la cual indica el carácter hidrofílico alcanzado, sin que se llegue a producir penetración del electrolito hacia la cara posterior del sustrato. Valores típicos oscilan entre 25 y 100 barridos. Este método tiene la ventaja de poder monitorizarse la activación del sustrato en tiempo real a partir de la medida de la corriente, lo que permite un mejor control del proceso. In another particular embodiment, electrochemical activation comprises subjecting the substrate on which the electrodeposition is to be cycled to electrochemical potential. Preferably, the potential cycling is performed at a scan rate of between 10 and 100 mV / s and controlled scan limits (for example anodic limit of 0.0-0.1 V vs NHE, cathodic limit of 1.0 to 1.5 V vs NHE, where NHE comes from Normal Hydrogen Electrodé), using sulfuric acid, in a concentration for example of 0.5 M, as electrolyte. In this case, the substrate must be subjected to a sufficient number of sweeps, until a desired value of the double layer charge current is achieved, which indicates the hydrophilic character achieved, without penetration of the electrolyte into the face. back of the substrate. Typical values range between 25 and 100 sweeps. This method has the advantage of being able to monitor the activation of the substrate in real time from the measurement of the current, which allows a better process control.
Ambos tipos de activación pueden combinarse. Una activación química suave previa a la electroquímica acorta el tiempo necesario para esta última. Both types of activation can be combined. A gentle chemical activation prior to electrochemistry shortens the time needed for the latter.
La activación electroquímica se realiza con el sustrato en la celda electroquímica de la invención, mientras que la activación química se puede realizar fuera de dicha celda. No obstante, se podrían llevar a cabo ambas en la celda sin desmontar el sustrato. Electrochemical activation is performed with the substrate in the electrochemical cell of the invention, while chemical activation can be performed outside said cell. However, both could be carried out in the cell without disassembling the substrate.
El sustrato presenta una forma en la que el área activa está rodeada de sustrato adicional para asegurar la correcta fijación y sellado del montaje. Como ejemplo, para un área activa de 4x4 cm2 se parte de sustratos de 5x5 cm2. El área adicional es presionada por una junta hidrófoba que impide la salida del electrolito entre el sustrato y la celda. En otra realización particular, el electrolito empleado en la celda electroquímica que permite efectuar el procedimiento de electrodeposición es una solución acuosa que comprende el precursor del material catalizador a depositar sobre el sustrato. De forma preferente, el catalizador a depositar es platino, por lo que en ese caso el electrolito puede ser una solución acuosa que comprende un precursor de platino, tal como por ejemplo una sal de platino como hexacloroplatinato. Adicionalmente, el electrolito puede comprender agentes adicionales para facilitar el proceso de electrodeposición, como ácido sulfúrico, y compuestos adicionales que pueden formar parte del catalizador junto con el platino, tales como sales de cobalto o wolframio. Este electrolito se vierte en la cantidad adecuada en la celda de electrodepósito. The substrate has a way in which the active area is surrounded by additional substrate to ensure correct mounting and sealing. As an example, for an active area of 4x4 cm 2, we start from substrates of 5x5 cm 2 . The additional area is pressed by a hydrophobic joint that prevents electrolyte from flowing between the substrate and the cell. In another particular embodiment, the electrolyte used in the electrochemical cell that allows the electrodeposition process to be carried out is an aqueous solution comprising the precursor of the catalyst material to be deposited on the substrate. Preferably, the catalyst to be deposited is platinum, whereby in that case the electrolyte can be an aqueous solution comprising a platinum precursor, such as for example a platinum salt such as hexachloroplatinate. Additionally, the electrolyte may comprise additional agents to facilitate the electrodeposition process, such as sulfuric acid, and additional compounds that may be part of the catalyst together with platinum, such as cobalt or tungsten salts. This electrolyte is poured into the appropriate amount in the electrodeposition cell.
Una vez ubicados el sustrato y el electrolito en la celda de electrodepósito, se lleva a cabo el proceso de electrodeposición. Este proceso puede realizarse en condiciones potenciostáticas o en condiciones galvanostáticas en función del parámetro que se desee controlar, tal como se he mencionado previamente. El proceso de electrodepósito puede llevarse a cabo en etapas sucesivas. Por ejemplo, tras completar el primer electrodepósito, el electrodo formado puede desmontarse de la celda, para depositar sobre él otra capa microporosa hidrófila y completar de nuevo otro proceso de electrodeposición. Se obtienen así electrodos con capas de catalizadores compuestas por láminas delgadas con estructura: sustrato-capa microporosa hidrófoba- capa microporosa hidró fila-catalizador-capa microporosa hidró fila-catalizador- ... Once the substrate and electrolyte are located in the electrodeposition cell, the electrodeposition process is carried out. This process can be carried out in potentiostatic conditions or in galvanostatic conditions depending on the parameter to be controlled, as previously mentioned. The electrodeposition process can be carried out in successive stages. For example, after completing the first electrodeposition, the formed electrode can be removed from the cell, to deposit another hydrophilic microporous layer on it and again complete another electrodeposition process. Electrodes are thus obtained with layers of catalysts composed of thin sheets with structure: substrate-hydrophobic microporous layer-hydrofoil-catalyst microporous layer -hydro-catalyst-microporous layer ...
Una vez llevado a cabo el proceso de electrodeposición, el electrodo se desmonta de la celda y puede ser utilizado, por ejemplo, para su aplicación en una pila de combustible. Once the electrodeposition process has been carried out, the electrode is disassembled from the cell and can be used, for example, for application in a fuel cell.
No obstante, en una realización preferente, el procedimiento de la invención comprende además someter el electrodo obtenido a un tratamiento posterior seleccionado entre un tratamiento electroquímico, un tratamiento térmico y combinación de los mismos. However, in a preferred embodiment, the process of the invention further comprises subjecting the electrode obtained to a subsequent treatment selected from an electrochemical treatment, a heat treatment and a combination thereof.
En una realización particular, el tratamiento posterior es un tratamiento electroquímico que comprende someter el electrodo a un ciclado electroquímico con objeto de eliminar elementos lábiles del depósito, es decir, aquella parte del electrodepósito que no ha quedado bien fijado a la superficie del sustrato. Este tratamiento persigue, por tanto, dejar únicamente la parte bien adherida del material depositado. En una realización preferente, este tratamiento electroquímico comprende someter el electrodo a un ciclado electroquímico en ácido sulfúrico, más preferentemente a una concentración de 0.5 M, a velocidades de barrido y límites de barrido controlados, hasta obtener una respuesta estable de la intensidad de corriente entre dos barridos consecutivos. Este tratamiento posterior puede llevarse a cabo en la misma celda electroquímica de la invención. En otra realización particular, el tratamiento posterior es un tratamiento térmico que comprende someter el electrodo a una etapa de calentamiento a una temperatura comprendida entre 100 y 150°C en atmósfera húmeda. Preferentemente, dicho calentamiento se realiza durante un tiempo comprendido entre 10 y 60 minutos. Este tratamiento térmico se efectúa con objeto de que se efectúe el curado de componentes como el ionómero empleado en el recubrimiento inicial del sustrato. Así, al utilizarse de partida para la preparación del sustrato una disolución del ionómero, por ejemplo disolución de Nafion en alcoholes, este tratamiento puede facilitar la polimerización y formación de la capa de ionómero que da la conductividad protónica al electrodo. Además, este proceso permite mejorar la integridad del electrodo, así como eliminar posibles aditivos del proceso de electrodeposición. In a particular embodiment, the subsequent treatment is an electrochemical treatment comprising subjecting the electrode to electrochemical cycling in order to remove labile elements from the reservoir, that is, that part of the electrodeposit that has not been properly fixed to the surface of the substrate. This treatment therefore seeks to leave only the well adhered part of the deposited material. In a preferred embodiment, this electrochemical treatment comprises subjecting the electrode to an electrochemical cycling in sulfuric acid, more preferably at a concentration of 0.5 M, at controlled scanning rates and scanning limits, until a stable response of the current intensity between Two consecutive sweeps. This subsequent treatment can be carried out in the same electrochemical cell of the invention. In another particular embodiment, the subsequent treatment is a heat treatment comprising subjecting the electrode to a heating stage at a temperature between 100 and 150 ° C in a humid atmosphere. Preferably, said heating is carried out for a time between 10 and 60 minutes. This heat treatment is carried out in order to cure components such as the ionomer used in the initial coating of the substrate. Thus, when a solution of the ionomer, for example Naphion solution in alcohols, is used as starting material for the preparation of the substrate, this treatment can facilitate the polymerization and formation of the ionomer layer that gives the electrode a proton conductivity. In addition, this process allows to improve the integrity of the electrode, as well as to eliminate possible additives from the electrodeposition process.
El procedimiento de la invención permite obtener un electrodo electrodepositado en el que el catalizador se encuentra distribuido en una capa superficial de unas 1-10 mieras, frente a las 15-30 mieras de los electrodos preparados por otros procedimientos. El catalizador, preferentemente Pt, aleaciones de Pt-Co o Pt-WC"3, queda recubriendo parte de los granos de carbón de la capa microporosa únicamente en aquellas zonas en las que ha estado expuesto al electrolito. Por tanto, se obtienen electrodos con una muy fina capa de catalizador, lo que da lugar a un mejor comportamiento principalmente a altas demandas de corriente. Las imágenes obtenidas por SEM muestran una distribución de catalizador distinta. Además, la actividad másica (por unida de peso de Pt) es mayor en los electrodos obtenidos con el procedimiento de la invención. The process of the invention allows to obtain an electrodeposited electrode in which the catalyst is distributed in a surface layer of about 1-10 microns, compared to 15-30 microns of the electrodes prepared by other procedures. The catalyst, preferably Pt, Pt-Co or Pt-WC "3 alloys, is coating part of the carbon grains of the microporous layer only in those areas where it has been exposed to the electrolyte. Therefore, electrodes with a very thin layer of catalyst, which results in a better performance mainly at high current demands. The images obtained by SEM show a different catalyst distribution.In addition, the mass activity (by weight of Pt) is higher in the electrodes obtained with the process of the invention.
En consecuencia, un aspecto adicional que se describe es un electrodo obtenible según un procedimiento como se ha definido anteriormente. En una realización particular, dicho electrodo está caracterizado porque el catalizador depositado se encuentra distribuido en una capa superficial de entre 1 y 10 mieras. Accordingly, an additional aspect described is an electrode obtainable according to a procedure as defined above. In a particular embodiment, said electrode is characterized in that the deposited catalyst is distributed in a surface layer of between 1 and 10 microns.
Un aspecto adicional que se describe es una pila de combustible que comprende un electrodo como se ha descrito previamente, es decir, un electrodo obtenible según el procedimiento de la invención. También preferentemente, dicha pila de combustible comprende un electrodo obtenible según el procedimiento de la invención caracterizado porque el catalizador depositado se encuentra distribuido en una capa superficial de entre 1 y 10 mieras. A further aspect described is a fuel cell comprising an electrode as previously described, that is, an electrode obtainable according to the process of the invention. Also preferably, said fuel cell comprises an electrode obtainable according to the method of the invention characterized because the deposited catalyst is distributed in a surface layer of between 1 and 10 microns.
La celda electroquímica de la presente invención puede ser utilizada en un banco de pruebas para llevar a cabo los primeros ensayos de caracterización de un electrodo destinado a su incorporación en una pila de combustible, que puede ser obtenido mediante la técnica de electrodeposición mencionada anteriormente. Dichos ensayos incluyen la medida del área de catalizador electrodepositado y la actividad para la reducción de oxígeno. The electrochemical cell of the present invention can be used in a test bench to carry out the first characterization tests of an electrode intended for incorporation into a fuel cell, which can be obtained by the electrodeposition technique mentioned above. Such tests include the measurement of the electrodeposited catalyst area and the activity for oxygen reduction.
Por tanto, otro aspecto de la invención lo constituye un banco de ensayos para la caracterización y medida de la actividad catalítica de un electrodo, donde dicho banco de ensayos comprende: Therefore, another aspect of the invention is a test bench for the characterization and measurement of the catalytic activity of an electrode, wherein said test bench comprises:
- una celda electroquímica tal como se ha definido previamente, en donde el sustrato se sustituye por el electrodo a ensayar, y - an electrochemical cell as previously defined, wherein the substrate is replaced by the electrode to be tested, and
- un electrolito inerte, y - una fuente de electricidad o potenciostato/galvanostato capaz de controlar y registrar el potencial electroquímico del electrodo y la intensidad de corriente en la celda. - an inert electrolyte, and - a source of electricity or potentiostat / galvanostat capable of controlling and recording the electrochemical potential of the electrode and the current intensity in the cell.
En una realización particular, el electrolito inerte es una solución acuosa de ácido sulfúrico o de ácido perclórico. Un último aspecto de la invención se refiere a un procedimiento para seleccionar un electrodo apto para su utilización en una pila de combustible, donde dicho procedimiento comprende: a) depositar el electrodo en una celda electroquímica como se ha definido previamente, en el lugar destinado a alojar el sustrato; b) llenar con un electrolito inerte la cámara adaptada para albergar el electrolito; c) suministrar oxígeno o aire a la parte exterior del electrodo a través del orificio de entrada de gases de la segunda cámara; d) aplicar un potencial electroquímico adecuado entre el electrodo y un electrodo de referencia, por ejemplo entre 0.1 y 0.5 V frente al electrodo de referencia; y e) verificar si se produce paso de corriente eléctrica debida a la reducción de oxígeno, donde la producción de dicha corriente eléctrica es el indicativo de que el electrodo es apto para su utilización en una pila de combustible. In a particular embodiment, the inert electrolyte is an aqueous solution of sulfuric acid or perchloric acid. A final aspect of the invention relates to a method for selecting an electrode suitable for use in a fuel cell, wherein said method comprises: a) depositing the electrode in an electrochemical cell as defined previously, in the place intended for host the substrate; b) fill the chamber adapted to house the electrolyte with an inert electrolyte; c) supplying oxygen or air to the outside of the electrode through the gas inlet of the second chamber; d) apply a suitable electrochemical potential between the electrode and a reference electrode, for example between 0.1 and 0.5 V against the reference electrode; and e) verify if an electric current occurs due to oxygen reduction, where the production of said electric current is indicative that the electrode is suitable for use in a fuel cell.
La etapa a) de este procedimiento consiste en ubicar el electrodo a ensayar en la celda electroquímica descrita anteriormente en el mismo lugar en el que se ubica el sustrato. Si el electrodo se ha formado en la misma celda electroquímica, éste queda depositado en el mismo lugar en el que se ha formado. Step a) of this procedure consists in locating the electrode to be tested in the electrochemical cell described above in the same place where the substrate is located. If the electrode has been formed in the same electrochemical cell, it is deposited in the same place where it was formed.
El electrolito empleado debe ser inerte, es decir, no debe reaccionar con el electrodo ni con ninguna otra especie de la disolución. En una realización particular, dicho electrolito es una solución de ácido sulfúrico o de ácido perclórico. El oxígeno puede ser suministrado por borboteo de la disolución con gas 02 y paso de 02 por la cara exterior del electrodo de manera que alcance todo el catalizador depositado en el electrodo donde, en contacto con el electrolito, sufre la reacción electroquímica deseada, es decir, su reducción con formación de agua. Es decir, el registro de un aumento de la intensidad de corriente eléctrica al poner el oxígeno en la celda, el cual es proporcional a la velocidad de reducción, es el indicativo de que el electrodo es apto para su utilización en una pila de combustible. The electrolyte used must be inert, that is, it must not react with the electrode or any other species of the solution. In a particular embodiment, said electrolyte is a solution of sulfuric acid or perchloric acid. The oxygen can be supplied by bubbling the solution with gas 0 2 and passing 0 2 through the outer face of the electrode so that it reaches all the catalyst deposited in the electrode where, in contact with the electrolyte, the desired electrochemical reaction undergoes, that is, its reduction with water formation. That is, the recording of an increase in the intensity of electric current by putting oxygen in the cell, which is proportional to the rate of reduction, is indicative that the electrode is suitable for use in a fuel cell.
En una realización particular, el oxígeno es suministrado a través de los orificios destinados a tal efecto ubicados en la tapa (20) hermética de la celda descrita en la forma de realización particular de la invención. El ensayo para verificar la reducción de oxígeno puede realizarse en forma potenciostática o galvanostática, tal como se ha mencionado previamente, y permite la selección inicial de los electrodos aptos para su montaje final en una pila de combustible. Ejemplo 1. Procedimiento de electrodeposición empleando la celda electroquímica de la invención In a particular embodiment, the oxygen is supplied through the holes intended for this purpose located in the sealed cap (20) of the cell described in the particular embodiment of the invention. The test to verify the reduction of oxygen can be carried out in potentiostatic or galvanostatic form, as previously mentioned, and allows the initial selection of the electrodes suitable for final assembly in a fuel cell. Example 1. Electrodeposition procedure using the electrochemical cell of the invention
El proceso se ha llevado a cabo en un laboratorio convencional, sobre una mesa de trabajo, con toma de electricidad y gases (N2, 02/aire). Para el mismo se ha requerido: Equipamiento: Se ha empleado un potenciostato/galvanostato (Autolab, Eco Chemie) como fuente de corriente y/o fuente de voltaje, capaces de suministrar al menos 10V y 1 A en corriente continua para un área activa de 4x4 cm2. The process has been carried out in a conventional laboratory, on a work table, with electricity and gas connection (N 2 , 0 2 / air). It has been required for this: Equipment: A potentiostat / electroplating (Autolab, Eco Chemie) has been used as a current source and / or voltage source, capable of supplying at least 10V and 1A in direct current for an active area of 4x4 cm 2 .
Materiales y productos químicos: Materials and chemicals:
- Sales de los elementos que constituyen los catalizadores: H2PtCl6, Na2W04, Co(N03). - Salts of the elements that constitute the catalysts: H 2 PtCl6, Na 2 W0 4 , Co (N0 3 ).
- Electrolito: H2S04 0,5M. - Electrolyte: H 2 S0 4 0.5M.
- Negro de carbón para la preparación del sustrato - Carbon black for substrate preparation
- Teflón (disolución en agua) como agente hidrófobo - Teflon (solution in water) as hydrophobic agent
- Nafion (disolución en alcoholes alifáticos) como ionómero - Telas de carbón o papel de carbón hidrofobizados con teflón como sustrato. - Nafion (solution in aliphatic alcohols) as an ionomer - Carbon fabrics or carbon paper hydrophobicized with Teflon as a substrate.
- Celda electroquímica. Diseñada en Ciemat (Fig.l). Esta celda se ha utilizado para la preparación de electrodos de 4x4 cm2. - Electrochemical cell. Designed in Ciemat (Fig. L). This cell has been used for the preparation of electrodes of 4x4 cm 2 .
Se agregó al sustrato de papel o tela de carbón hidrofobizado una capa microporosa de entre 20 y 50 mieras de espesor mediante depósito por aerografía de una tinta compuesta por negro de carbón, ionómero disuelto y agente dispersante (isopropanol). Tras la eliminación del agente dispersante por secado en una corriente de aire se procedió al pretratamiento del sustrato mediante activación electroquímica. Para ello se ubicó el sustrato en la celda electroquímica descrita, se rellenó con electrolito H2S04 0,5M, se eliminó el oxígeno disuelto mediante borboteo superior y posterior con N2 durante 30 min, y que continuó durante el proceso de electrodepósito, y a continuación se sometió al sustrato a un ciclado electroquímico de 50 o 100 mV/s entre 0.07 (a 0.1) y 1 (a 1.3) V vs. NHE. Tras 10-50 ciclos se alcanzó una respuesta estable en intensidad y se dio por terminada la activación electroquímica. A continuación se vació el depósito y se llenó con la disolución que contenía los precursores del catalizador y el electrolito inerte (H2SO4 + H2PtCl6 + Na2W04). El sustrato fue sometido a ciclados de potencial de 50 o 100 mV/s entre -0.5 (a 0.1) y 1 (a 1.3) V vs. NHE o sometido a condiciones galvanostáticas (1-5 mA-cm"2 durante 20-60 minutos). A microporous layer between 20 and 50 microns thick was added to the hydrophobic carbon paper or cloth substrate by aerosol deposition of an ink consisting of carbon black, dissolved ionomer and dispersing agent (isopropanol). After removal of the dispersing agent by drying in an air stream, the substrate was pretreated by electrochemical activation. For this, the substrate was located in the electrochemical cell described, filled with 0.5M H 2 S04 electrolyte, dissolved oxygen was removed by upper and back bubbling with N 2 for 30 min, and which continued during the electrodeposition process, since The substrate was then subjected to an electrochemical cycling of 50 or 100 mV / s between 0.07 (at 0.1) and 1 (at 1.3) V vs. NHE After 10-50 cycles, a stable intensity response was reached and electrochemical activation was terminated. The tank was then emptied and filled with the solution containing the catalyst and electrolyte precursors inert (H 2 SO 4 + H 2 PtCl6 + Na 2 W04). The substrate was subjected to potential cycling of 50 or 100 mV / s between -0.5 (at 0.1) and 1 (at 1.3) V vs. NHE or subjected to galvanostatic conditions (1-5 mA-cm "2 for 20-60 minutes).
Una vez efectuado el depósito, se vació el electrolito de depósito (H2SO4 + H2PtCl6 + Na2W04), y se llenó con H2S04 0,5M. Se eliminó el oxígeno disuelto mediante borboteo superior y posterior con N2 durante 30 min, y que continuó durante el proceso. A continuación, se sometió el electrodo a un ciclado electroquímico de 50 o 100 mV/s entre 0.07 (a 0.1) y 1.3 (a 1.5) V vs. NHE. Durante este proceso se monitorizó la corriente de adsorción/desorción de H sobre Pt, que es proporcional al área de Pt depositada. Una vez que alcanzó un valor constante, tras unos 5-20 ciclos, se finalizó el ciclado y con ello el proceso. Once the deposit was made, the deposit electrolyte was emptied (H 2 SO 4 + H 2 PtCl6 + Na 2 W04), and filled with 0.5M H 2 S04. Dissolved oxygen was removed by upper and posterior bubbling with N 2 for 30 min, and that continued during the process. Next, the electrode was subjected to an electrochemical cycling of 50 or 100 mV / s between 0.07 (at 0.1) and 1.3 (at 1.5) V vs. NHE During this process the adsorption / desorption current of H on Pt was monitored, which is proportional to the area of deposited Pt. Once it reached a constant value, after about 5-20 cycles, the cycling was completed and with it the process.
Posteriormente se realizó la medida del área electroquímica, es decir, del área catalíticamente activa, mediante el proceso descrito en International Journal of Hydrogen Energy, Vol 34, íssue 11, 2009, Pages 4838-4846, y la medida de actividad electrocatalítica para reducción de oxígeno, mediante borboteo de oxígeno dentro de la celda y detrás del sustrato. Subsequently, the electrochemical area was measured, that is, the catalytically active area, using the process described in the International Journal of Hydrogen Energy, Vol 34, íssue 11, 2009, Pages 4838-4846, and the electrocatalytic activity measurement to reduce oxygen, by bubbling oxygen inside the cell and behind the substrate.
El electrodo obtenido con Pt-WC>3 electrodepositado se ensayo como cátodo en una monocelda PEMFC). Los otros elementos de la monocelda fueron: electrodo comercial de Pt/C con 0.25 mg/cm2 como ánodo, Nafion 212R como electrolito. Después de 300 horas de funcionamiento continuo de la monocelda bajo una demanda constante de 200 mA-cm"2, se obtuvo la curva de polarización mostrada en la Figura 2 empleando las siguientes condiciones: alimentación con H2 en ánodo y 02 en cátodo, a 80°C, 100% humidificación, y factor estequiométrico constante H2/02: 1,5/3,0. Presión relativa: 1 atm. The electrode obtained with Pt-WC> 3 electrodeposited was tested as a cathode in a PEMFC monocell). The other elements of the monocell were: commercial Pt / C electrode with 0.25 mg / cm 2 as anode, Nafion 212R as electrolyte. After 300 hours of continuous operation of the monocell under a constant demand of 200 mA-cm "2 , the polarization curve shown in Figure 2 was obtained using the following conditions: feeding with H 2 at anode and 0 2 at cathode, at 80 ° C, 100% humidification, and constant stoichiometric ratio H 2/0 2:. 1.5 / 3.0 relative pressure: 1 atm.

Claims

REIVINDICACIONES
Una celda electroquímica adecuada para la electrodeposición de un catalizador sobre un sustrato, donde dicha celda comprende: An electrochemical cell suitable for electrodeposition of a catalyst on a substrate, wherein said cell comprises:
- una primera cámara adaptada para albergar un electrolito, donde dicha cámara se encuentra limitada al menos por dos paredes paralelas, donde: una primera pared comprende:  - a first chamber adapted to house an electrolyte, where said chamber is limited by at least two parallel walls, where: a first wall comprises:
- un sustrato que comprende una cara interior y una cara exterior, donde la cara exterior comprende una capa difusora de gases y la cara interior comprende una capa microporosa;  - a substrate comprising an inner face and an outer face, where the outer face comprises a gas diffuser layer and the inner face comprises a microporous layer;
- un primer contacto eléctrico ubicado en contacto con la cara exterior del sustrato;  - a first electrical contact located in contact with the outer face of the substrate;
donde la cara exterior del sustrato y el primer contacto eléctrico se encuentran ubicados en el interior de una segunda cámara que comprende, al menos, dos conductos para la entrada y salida de gases, adecuada para permitir el control de la atmósfera en la parte exterior del sustrato,  where the outer face of the substrate and the first electrical contact are located inside a second chamber comprising at least two conduits for the entry and exit of gases, suitable to allow control of the atmosphere in the exterior part of the substratum,
una segunda pared comprende:  A second wall comprises:
- un contraelectrodo que comprende una cara interior y una cara exterior,  - a counter electrode comprising an inner face and an outer face,
- un segundo contacto eléctrico ubicado en contacto con la cara exterior del contraelectrodo;  - a second electrical contact located in contact with the outer face of the counter electrode;
- una membrana conductora de iones e impermeable al paso de gases ubicada en el interior de la primera cámara separando a ésta en dos subcámaras, una primera subcámara en contacto con la cara interior del sustrato y una segunda subcámara en contacto con cara interior del contraelectrodo;  - an ion conductive membrane and impermeable to the passage of gases located inside the first chamber separating it into two sub-chambers, a first sub-chamber in contact with the inner face of the substrate and a second sub-chamber in contact with the inner face of the counter electrode;
donde el sustrato, la membrana y el contraelectrodo se encuentran ubicados en disposición paralela.  where the substrate, the membrane and the counter electrode are located in parallel arrangement.
Celda electroquímica según reivindicación 1 , que además comprende un electrolito dispuesto en la primera subcámara y en la segunda subcámara, de manera que la Electrochemical cell according to claim 1, further comprising an electrolyte disposed in the first subchamber and in the second subchamber, such that the
HOJA DE REEMPLAZO (Regla 26) membrana conductora de iones e impermeable al paso de gases separa el electrolito dispuesto en la primera subcámara del electrolito dispuesto en la segunda subcámara. 3. Celda electroquímica según cualquiera de las reivindicaciones 1 a 2, que además comprende medios flexibles ubicados detrás del primer contacto eléctrico adaptados para presionar dicho primer contacto eléctrico sobre la cara exterior del sustrato. 4. Celda electroquímica según reivindicación 3, donde los medios flexibles es un muelle o un relleno de espuma. REPLACEMENT SHEET (Rule 26) ion conductive membrane and impermeable to the passage of gases separates the electrolyte disposed in the first subchamber from the electrolyte disposed in the second subchamber. 3. Electrochemical cell according to any of claims 1 to 2, further comprising flexible means located behind the first electrical contact adapted to press said first electrical contact on the outer face of the substrate. 4. Electrochemical cell according to claim 3, wherein the flexible means is a spring or a foam padding.
5. Celda electroquímica según cualquiera de las reivindicaciones 1 a 4, que comprende: - una carcasa en forma de paralelepípedo abierto al menos en una de sus caras, donde la cara opuesta a la cara abierta comprende una primera ventana; 5. An electrochemical cell according to any one of claims 1 to 4, comprising: a housing in the form of a parallelepiped open at least on one of its faces, where the face opposite the open face comprises a first window;
- un bloque de cierre adaptado para cubrir la cara abierta de la carcasa, donde dicho bloque de cierre comprende un cajeado dispuesto en la cara exterior y, una segunda ventana pasante dispuesta en el fondo del cajeado, de tal modo que la cara del bloque de cierre con la segunda ventana pasante es la cara adaptada para cubrir la cara abierta de la carcasa, donde: - a closing block adapted to cover the open face of the housing, where said closing block comprises a recess arranged in the outer face and a second through window arranged at the bottom of the recess, such that the face of the block of Closing with the second through window is the face adapted to cover the open face of the housing, where:
- la carcasa y el bloque de cierre, se encuentran unidos definiendo en su interior la primera subcámara en contacto con la cara interior del sustrato, - the housing and the closing block, are connected defining inside the first subchamber in contact with the inner face of the substrate,
- la primera ventana de la carcasa está cerrada exteriormente por un conjunto que comprende de forma consecutiva la membrana, el contraelectrodo y el segundo contacto eléctrico, de manera que la membrana y el contraelectrodo están distanciados entre sí dando lugar a - the first window of the housing is closed externally by an assembly that consecutively comprises the membrane, the counter electrode and the second electrical contact, so that the membrane and the counter electrode are distanced from each other giving rise to
HOJA DE REEMPLAZO (Regla 26) la segunda subcámara que está en contacto con la cara interior del contraelectrodo, REPLACEMENT SHEET (Rule 26) the second subchamber that is in contact with the inside face of the counter electrode,
- el cajeado del bloque de cierre alberga el sustrato y el primer contacto eléctrico, siendo la cara interior del sustrato la que está en contacto con la segunda ventana pasante, donde dicho cajeado se encuentra cerrado por la cara exterior del bloque de cierre mediante una tapa hermética que comprende, al menos, dos conductos para la entrada y salida de gases, de manera que en el interior de dicho cajeado se forma la segunda cámara en la que quedan alojados la cara exterior del sustrato y el primer contacto eléctrico. - the recess of the closing block houses the substrate and the first electrical contact, the inner face of the substrate being in contact with the second through window, where said recess is closed by the outer face of the closing block by means of a cover airtight comprising at least two conduits for the entry and exit of gases, so that inside said recess the second chamber is formed in which the outer face of the substrate and the first electrical contact are housed.
6. Celda electroquímica según reivindicación 5, donde la primera y segunda ventana tienen forma de cuadrado. 7. Celda electroquímica según cualquiera de las reivindicaciones 5 a 6, donde el material constitutivo de la carcasa es un polimetacrilato. 6. Electrochemical cell according to claim 5, wherein the first and second window have a square shape. 7. Electrochemical cell according to any of claims 5 to 6, wherein the housing constituent material is a polymethacrylate.
8. Celda electroquímica según cualquiera de las reivindicaciones 5 a 7, donde el sustrato tiene una superficie comprendida entre lxl cm2 y 10x10 cm2. 8. Electrochemical cell according to any one of claims 5 to 7, wherein the substrate has a surface comprised between lxl cm 2 and 10x10 cm 2 .
9. Celda electroquímica según cualquiera de las reivindicaciones 5 a 8, donde la unión del sustrato a la segunda ventana del bloque de cierre se realiza mediante una junta hidrofóbica. 9. Electrochemical cell according to any of claims 5 to 8, wherein the substrate is attached to the second window of the closure block by means of a hydrophobic joint.
10. Celda electroquímica según cualquiera de las reivindicaciones 5 a 9, donde la tapa hermética comprende medios flexibles que presionan el primer contacto eléctrico sobre el sustrato. 11. Celda electroquímica según cualquiera de las reivindicaciones 5 a 10, donde el cajeado del bloque de cierre alberga además un marco cuyas dimensiones interiores coinciden con el área activa del sustrato y las dimensiones exteriores coinciden con 10. Electrochemical cell according to any of claims 5 to 9, wherein the hermetic cover comprises flexible means that press the first electrical contact on the substrate. 11. Electrochemical cell according to any of claims 5 to 10, wherein the locking of the closing block further houses a frame whose internal dimensions coincide with the active area of the substrate and the external dimensions coincide with
HOJA DE REEMPLAZO (Regla 26) las medidas del sustrato, donde dicho marco se ubica en la parte exterior del primer contacto. REPLACEMENT SHEET (Rule 26) the substrate measures, where said frame is located on the outside of the first contact.
12. Celda electroquímica según reivindicación 1 1, donde la tapa hermética y el marco están constituidos por un material inerte y aislante eléctricamente. 12. Electrochemical cell according to claim 1, wherein the seal and the frame are constituted by an electrically inert and insulating material.
13. Celda electroquímica según cualquiera de las reivindicaciones 5 a 12, donde la carcasa comprende una abertura de acceso a la primera subcámara que está en contacto con el sustrato, y dispone de una tapa adaptada para cerrar dicha abertura para aislar el electrolito del aire ambiental. 13. Electrochemical cell according to any of claims 5 to 12, wherein the housing comprises an access opening to the first sub chamber that is in contact with the substrate, and has a cover adapted to close said opening to isolate the electrolyte from ambient air .
14. Celda electroquímica según cualquiera de las reivindicaciones 1 a 13, donde el electrolito dispuesto en la primera y segunda subcámara es una solución acuosa que comprende un precursor del material catalizador. 14. Electrochemical cell according to any of claims 1 to 13, wherein the electrolyte disposed in the first and second subchamber is an aqueous solution comprising a precursor of the catalyst material.
15. Un procedimiento para la preparación de un electrodo, donde dicho procedimiento comprende el depósito de un catalizador sobre un sustrato mediante la técnica de electrodeposición, donde el sustrato es un sustrato hidrofobizado que comprende una capa de carbón microporosa, caracterizado porque la electrodeposición se realiza en una celda electroquímica como se define en cualquiera de las reivindicaciones 1 a 14, y donde dicho procedimiento comprende además: previamente a la electrodeposición, recubrir la capa de carbón microporosa con una capa microporosa que comprende una mezcla de negro de carbono y un ionómero, y someter el sustrato a un proceso de activación adecuado para dotar a la cara recubierta de conductividad iónica e hidrófila, donde dicho proceso de activación se realiza por vía química, electroquímica o una combinación de ambas; 15. A process for the preparation of an electrode, wherein said procedure comprises the deposition of a catalyst on a substrate by means of the electrodeposition technique, where the substrate is a hydrophobic substrate comprising a layer of microporous carbon, characterized in that the electrodeposition is performed in an electrochemical cell as defined in any one of claims 1 to 14, and wherein said method further comprises: prior to electrodeposition, coating the microporous carbon layer with a microporous layer comprising a mixture of carbon black and an ionomer, and subjecting the substrate to a suitable activation process to provide the coated face with ionic and hydrophilic conductivity, where said activation process is carried out by chemical, electrochemical or a combination of both;
y/o  I
posteriormente a la electrodeposición, someter el electrodo obtenido a un tratamiento seleccionado entre un tratamiento térmico, un tratamiento electroquímico y una combinación de los mismos, donde el tratamiento electroquímico comprende someter el electrodo a un ciclado electroquímico en ácido sulfúrico a velocidades de barrido y límites de barrido controlados hasta obtener una respuesta estable de la intensidad entre dos barridos consecutivos y el  after electrodeposition, subject the electrode obtained to a treatment selected from a heat treatment, an electrochemical treatment and a combination thereof, where the electrochemical treatment comprises subjecting the electrode to an electrochemical cycling in sulfuric acid at scanning rates and limits of controlled sweeping until a stable response of the intensity between two consecutive sweeps and the
HOJA DE REEMPLAZO (Regla 26) tratamiento térmico comprende someter el electrodo a una etapa de calentamiento a una temperatura comprendida entre 100°C y 150°C en atmósfera húmeda. REPLACEMENT SHEET (Rule 26) Heat treatment comprises subjecting the electrode to a heating stage at a temperature between 100 ° C and 150 ° C in a humid atmosphere.
16. Procedimiento según reivindicación 15, donde la electrodeposición se realiza en condiciones potencio státicas o galvanostáticas. 16. The method according to claim 15, wherein the electrodeposition is carried out under potentiostatic or galvanostatic conditions.
17. Procedimiento según cualquiera de las reivindicaciones 15 a 16, donde la activación química comprende poner en contacto la cara del sustrato sobre la que se efectúa la electrodeposición con una disolución de ácido nítrico concentrado durante un tiempo que oscila entre 1 y 10 segundos, y posterior lavado con agua. 17. Method according to any of claims 15 to 16, wherein the chemical activation comprises contacting the face of the substrate on which the electrodeposition is carried out with a concentrated nitric acid solution for a time ranging from 1 to 10 seconds, and subsequent washing with water.
18. Procedimiento según cualquiera de las reivindicaciones 15 a 16, donde la activación electroquímica comprende someter al sustrato a un ciclado de potencial electroquímico. 18. A method according to any of claims 15 to 16, wherein electrochemical activation comprises subjecting the substrate to a cycle of electrochemical potential.
19. Un banco de ensayos que comprende: 19. A test bench comprising:
- una celda electroquímica como se define en cualquiera de las reivindicaciones 1 a 13 en donde el sustrato se sustituye por un electrodo, un electrolito inerte, y  - an electrochemical cell as defined in any one of claims 1 to 13 wherein the substrate is replaced by an electrode, an inert electrolyte, and
- una fuente de electricidad o potenciostato/galvanostato capaz de controlar y registrar el potencial electroquímico del electrodo y la intensidad de corriente en la celda.  - a source of electricity or potentiostat / galvanostat capable of controlling and recording the electrochemical potential of the electrode and the current intensity in the cell.
20. Banco de ensayos según reivindicación 19, donde el electrolito inerte es una solución de ácido sulfúrico o de ácido perclórico. 20. Test bench according to claim 19, wherein the inert electrolyte is a solution of sulfuric acid or perchloric acid.
21. Un procedimiento para la selección de un electrodo apto para su utilización en una pila de combustible, donde dicho procedimiento comprende: 21. A procedure for the selection of an electrode suitable for use in a fuel cell, wherein said procedure comprises:
- depositar el electrodo en un banco de ensayos como se define en cualquiera de las reivindicaciones 19 a 20, en el lugar destinado a alojar el sustrato; - depositing the electrode in a test bench as defined in any one of claims 19 to 20, in the place intended to house the substrate;
- llenar con un electrolito inerte la cámara adaptada para albergar el electrolito; - fill the chamber adapted to house the electrolyte with an inert electrolyte;
- suministrar oxígeno o aire a la parte exterior del electrodo a través del conducto de entrada de gases de la segunda cámara; - supplying oxygen or air to the outside of the electrode through the gas inlet duct of the second chamber;
HOJA DE REEMPLAZO (Regla 26) - aplicar un potencial electroquímico adecuado entre el electrodo y un electrodo de referencia; y REPLACEMENT SHEET (Rule 26) - apply a suitable electrochemical potential between the electrode and a reference electrode; Y
- verificar si se produce corriente eléctrica debida a la reducción de oxígeno, donde la producción de dicha corriente es el indicativo de que el electrodo es apto para su utilización en una pila de combustible. - verify if electric current is produced due to oxygen reduction, where the production of said current is indicative that the electrode is suitable for use in a fuel cell.
HOJA DE REEMPLAZO (Regla 26) REPLACEMENT SHEET (Rule 26)
PCT/ES2013/070393 2012-06-19 2013-06-18 Method for producing electrodes for polymer fuel cells WO2013190158A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201230959 2012-06-19
ES201230959A ES2396664B1 (en) 2012-06-19 2012-06-19 Method for preparing electrodes for polymeric fuel cells

Publications (1)

Publication Number Publication Date
WO2013190158A1 true WO2013190158A1 (en) 2013-12-27

Family

ID=47664678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070393 WO2013190158A1 (en) 2012-06-19 2013-06-18 Method for producing electrodes for polymer fuel cells

Country Status (2)

Country Link
ES (1) ES2396664B1 (en)
WO (1) WO2013190158A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017095930A1 (en) 2015-12-02 2017-06-08 Ashwin-Ushas Corporation, Inc. An electrochemical deposition apparatus and methods of using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080504A (en) * 1998-11-02 2000-06-27 Faraday Technology, Inc. Electrodeposition of catalytic metals using pulsed electric fields
US20020034676A1 (en) * 2000-06-23 2002-03-21 Dong-Il Kim Method of fabricating catalyzed porous carbon electrode for fuel cell
US20060040157A1 (en) * 2004-07-28 2006-02-23 University Of South Carolina Development of a novel method for preparation of PEMFC electrodes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080504A (en) * 1998-11-02 2000-06-27 Faraday Technology, Inc. Electrodeposition of catalytic metals using pulsed electric fields
US20020034676A1 (en) * 2000-06-23 2002-03-21 Dong-Il Kim Method of fabricating catalyzed porous carbon electrode for fuel cell
US20060040157A1 (en) * 2004-07-28 2006-02-23 University Of South Carolina Development of a novel method for preparation of PEMFC electrodes

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A.J. MARTIN ET AL.: "Single Cell Study of electrodeposited Cathodic electrodes based on Pt-W03 for polymer Electrolyte fuel Cell", JOURNAL OF POWER SOURCES, vol. 196, September 2010 (2010-09-01), pages 4187 - 4192 *
SEUNGHEE WOO ET AL.: "Preparation of cost-effective Pt/Co electrodes by pulseelectrodeposition for PEMFC electrocatalysts", ELECTROCHIMICA ACTA, vol. 56, pages 3036 - 3041 *
SUBASRI M. ET AL.: "Novel PEMFC Cathodes prepared by Pulse Deposition", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 154, January 2007 (2007-01-01), pages B1063 - B1073 *
Z.D. WEI ET AL.: "Electrochemically synthesized Cu/Pt core-shell catalysts on a porous carbon electrodefor polymer electrolyte membrane fuel cells", JOURNAL OF POWER SOURCES, vol. 180, January 2008 (2008-01-01), pages 84 - 91 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017095930A1 (en) 2015-12-02 2017-06-08 Ashwin-Ushas Corporation, Inc. An electrochemical deposition apparatus and methods of using the same
CN108779573A (en) * 2015-12-02 2018-11-09 阿什温-乌沙司公司 Electrochemical deposition equipment and the method for using the equipment
EP3368707A4 (en) * 2015-12-02 2019-07-24 Ashwin-Ushas Corporation, Inc. An electrochemical deposition apparatus and methods of using the same

Also Published As

Publication number Publication date
ES2396664B1 (en) 2013-11-04
ES2396664A1 (en) 2013-02-25

Similar Documents

Publication Publication Date Title
Sun et al. An efficient barrier toward vanadium crossover in redox flow batteries: The bilayer [Nafion/(WO3) x] hybrid inorganic-organic membrane
Park et al. Commercial anion exchange membrane water electrolyzer stack through non-precious metal electrocatalysts
Broka et al. Modelling the PEM fuel cell cathode
Grigoriev et al. Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers
US20050181252A1 (en) Polymer electrolyte membrane for electrochemical and other applications
Mayerhöfer et al. On the effect of anion exchange ionomer binders in bipolar electrode membrane interface water electrolysis
Kongkanand et al. (Plenary) Electrochemical diagnostics and modeling in developing the PEMFC cathode
US11268200B2 (en) Bipolar membranes
EP3333953A1 (en) Electrochemical hydrogen pump
Hassan et al. KOH vs deionized water operation in anion exchange membrane electrolyzers
Cui et al. A high-voltage and stable zinc-air battery enabled by dual-hydrophobic-induced proton shuttle shielding
Wang et al. Deciphering the exceptional performance of NiFe hydroxide for the oxygen evolution reaction in an anion exchange membrane electrolyzer
KR20160047045A (en) Catalytic materials and electrodes for oxygen evolution, and systems for electrochemical reaction
US20160172700A1 (en) High temperature membrane electrode assembly with high power density and corresponding method of making
CN116133746A (en) Electrode catalyst for water electrolysis cell, water electrolysis cell and water electrolysis device
Ge et al. High-performance bipolar membrane for electrochemical water electrolysis
Park et al. Anion-exchange-membrane-based electrochemical synthesis of ammonia as a carrier of hydrogen energy
Wrubel et al. Anion Exchange Membrane Fuel Cell Performance in the Presence of Carbon Dioxide: An Investigation into the Self-Purging Mechanism
Manolova et al. Development and testing of an anion exchange membrane electrolyser
Sabarirajan et al. Atomic layer deposition of Pt nanoelectrode array for polymer electrolyte fuel cells
US20100092826A1 (en) Fuel cell and fuel cell system
ES2396664B1 (en) Method for preparing electrodes for polymeric fuel cells
Kim et al. High performance acid–base junction flow batteries using an asymmetric bipolar membrane with an ion-channel aligned anion exchange layer
Stilli et al. Aquivion®-based anionic membranes for water electrolysis
Balamurugan et al. Hydrothermally Grown Dual‐Phase Heterogeneous Electrocatalysts for Highly Efficient Rechargeable Metal‐Air Batteries with Long‐Term Stability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807135

Country of ref document: EP

Kind code of ref document: A1