WO2013175686A1 - 撮像処理装置および内視鏡 - Google Patents

撮像処理装置および内視鏡 Download PDF

Info

Publication number
WO2013175686A1
WO2013175686A1 PCT/JP2013/001675 JP2013001675W WO2013175686A1 WO 2013175686 A1 WO2013175686 A1 WO 2013175686A1 JP 2013001675 W JP2013001675 W JP 2013001675W WO 2013175686 A1 WO2013175686 A1 WO 2013175686A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
image
imaging
light
degree
Prior art date
Application number
PCT/JP2013/001675
Other languages
English (en)
French (fr)
Inventor
克洋 金森
年伸 松野
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013548518A priority Critical patent/JP5603508B2/ja
Publication of WO2013175686A1 publication Critical patent/WO2013175686A1/ja
Priority to US14/099,165 priority patent/US9392231B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/051Details of CCD assembly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0204Compact construction
    • G01J1/0209Monolithic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0411Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using focussing or collimating elements, i.e. lenses or mirrors; Aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Definitions

  • the present application relates to an imaging processing apparatus that can obtain surface unevenness information of a substance that is difficult to observe with luminance information, such as a translucent object, and an endoscope that can be used for organ surface observation.
  • Imaging with an endoscope is performed by illuminating a wall surface of a living organ organ covered with a mucous membrane.
  • organs and organs using an endoscope it is required to confirm the texture of fine irregularities on the surface simultaneously with the change in the color of the surface of the subject.
  • an endoscope as will be described later, it is difficult to capture a fine concavo-convex structure on the surface of a subject with a shadow of luminance. For this reason, a blue pigment liquid such as an indigo carmine solution is distributed on the mucous membrane as a subject, and the state in which the blue pigment liquid is accumulated in the groove on the mucosal surface is observed with luminance.
  • Patent Documents 1 to 4 In response to this problem, there has been a proposal for a polarization endoscope using polarization illumination and polarization imaging (Patent Documents 1 to 4).
  • a non-patent document 1 discloses a polarization imaging device using an aluminum wire grid polarizer.
  • Embodiments of the present disclosure provide an imaging processing device, an endoscope, an image processing method, and a program that can detect and display fine unevenness on the surface of a subject.
  • An imaging processing apparatus of the present disclosure includes an imaging unit that includes an imaging element that emits illumination light and acquires a polarized image in a state where a subject is illuminated with the illumination light, and an image processing unit. Form a substantially coaxial relationship, and the image processing unit calculates a degree of polarization for each pixel based on a luminance image generation unit that generates a luminance image based on the output of the image sensor and the output of the image sensor.
  • the polarization image generation unit that generates the polarization degree image and the concave portion of the uneven portion on the surface of the subject emphasize the polarization degree of the polarization degree image and correct at least one of hue, saturation, and brightness.
  • An image processing device of the present disclosure is an image processing device used as an image processing unit in the above-described imaging processing device, and includes a luminance image generation unit that generates a luminance image based on an output of the imaging device, Based on the output, the degree of polarization is calculated for each pixel, a polarization image generation unit that generates a polarization degree image, and the degree of polarization of the polarization degree image is enhanced by a concave portion of the uneven portion on the surface of the subject, and hue, A polarization image processing unit that corrects at least one of saturation and brightness and generates a processed polarization image, and an image composition unit that combines the processed polarization image and the luminance image.
  • An endoscope according to the present disclosure is an endoscope used in any of the imaging processing apparatuses described above, and includes an imaging element that emits illumination light and acquires a polarization image in a state where a subject is illuminated with the illumination light.
  • the illumination optical axis and the photographing optical axis are arranged so as to form a substantially coaxial relationship.
  • image processing is performed based on polarization image data acquired by an imaging device in a state where a subject is illuminated with illumination light so that the illumination optical axis and the imaging optical axis form a substantially coaxial relationship.
  • a method of generating a luminance image based on an output of the image sensor, and calculating a degree of polarization for each pixel based on the output of the image sensor and generating a polarization image A step of generating a processed polarization image by emphasizing the degree of polarization of the polarization degree image at the concave portion of the uneven portion on the surface of the subject and correcting at least one of hue, saturation, and brightness, and And combining the processed polarization image and the luminance image.
  • the image processing program performs image processing based on polarization image data acquired by an imaging device in a state in which a subject is illuminated with illumination light so that the illumination optical axis and the imaging optical axis form a substantially coaxial relationship. And a step of generating a luminance image based on the output of the image sensor, calculating a degree of polarization for each pixel based on the output of the image sensor, and generating a degree of polarization image
  • the polarization image generation unit and the concave portion of the uneven portion on the surface of the subject enhance the polarization degree of the polarization degree image, and correct at least one of hue, saturation, and brightness to generate a processed polarization image. Causing the computer to execute a step and a step of synthesizing the processed polarization image and the luminance image.
  • the figure which shows typically the luminance distribution by the specular reflection of the semi-transparent uneven part The figure which shows typically the luminance distribution by the internal diffuse reflection of the semi-transparent uneven part
  • the figure which shows the polarized light by the twice reflection in the semi-transparent uneven part The figure which shows the concave part inclination angle dependence of the polarization degree by the twice reflection in a semi-transparent uneven part Diagram showing polarization caused by internally diffused light at a semi-transparent uneven part Diagram showing the observation angle dependence of the degree of polarization due to internally diffused light at a semi-transparent uneven part (A), (B), (C), and (D) is a figure for demonstrating the emphasis processing method of the polarization degree of a semi-transparent unevenness
  • the figure which shows 1st Embodiment of this indication The figure which shows the planar structure of the wire grid polarizer of the monochrome broadband polarization image sensor in 1st Embodiment.
  • permeability and extinction ratio of a wire grid polarizer (P 200nm).
  • (A), (B), (C), (D), and (E) are diagrams showing examples of a plane polarization mosaic structure of a monochrome broadband polarization imaging device in the first embodiment.
  • (A), (B), and (C) are diagrams for explaining image processing in the first embodiment.
  • FIG. 1 A) to (F) are diagrams showing experimental results of embossing detection emphasis using a translucent lenticular plate as a simulated subject of a living mucous membrane.
  • the figure which shows 2nd Embodiment of this indication are figures which show the color polarization composite mosaic structure of the color polarization image pick-up element in connection with 2nd Embodiment.
  • (A) And (B) is a figure which shows the artifact by polarization processing.
  • FIG. 4 is a diagram illustrating a fourth embodiment of the present disclosure.
  • FIGS. 5A to 5H are diagrams illustrating an example of a method for manufacturing a wire grid polarizer of a monochrome broadband polarization imaging device.
  • FIGS. 7A to 7H are diagrams showing another example of a method for producing a wire grid polarizer of a monochrome broadband polarization imaging device.
  • FIGS. 8A to 8I are diagrams showing another example of a method for manufacturing a wire grid polarizer of a monochrome broadband polarization imaging device.
  • FIGS. 5A to 5H are diagrams illustrating an example of a method for manufacturing a wire grid polarizer of a monochrome broadband polarization imaging device.
  • FIGS. 7A to 7H are diagrams showing another example of a method for producing a wire grid polarizer of a monochrome broadband polarization imaging device.
  • FIGS. 8A to 8I are diagrams showing another example of a method for manufacturing a wire grid polarizer of a monochrome broadband polarization imaging device.
  • imaging processing device image processing device, image processing method, and image processing program can be provided.
  • An imaging unit including an imaging device that emits illumination light and acquires a polarization image in a state where the subject is illuminated with the illumination light and an image processing unit, and the illumination optical axis and the imaging optical axis form a substantially coaxial relationship
  • the image processing unit generates a luminance image based on the output of the image sensor, calculates a degree of polarization for each pixel based on the output of the image sensor, and generates a degree of polarization image.
  • the polarization image generation unit and the concave portion of the uneven portion on the surface of the subject enhance the polarization degree of the polarization degree image, and correct at least one of hue, saturation, and brightness to generate a processed polarization image.
  • An imaging processing apparatus comprising: a polarization image processing unit; and an image synthesis unit that synthesizes the processed polarization image and the luminance image.
  • (Item 2) The imaging processing apparatus according to item 1, wherein the imaging unit sequentially emits non-polarized light of different colors as the illumination light, and the imaging element includes a polarizer array and a photoelectric conversion element array.
  • Imaging processing apparatus (Item 3) The imaging processing apparatus according to item 1, wherein the imaging unit emits non-polarized white light as the illumination light, and the imaging element includes a polarizer array, a color mosaic filter array, and a photoelectric conversion element array. .
  • the imaging unit emits, as the illumination light, sequentially polarized light having different polarization plane directions in at least three directions, and the imaging element includes a color mosaic filter array and a photoelectric conversion element array.
  • the imaging processing apparatus described.
  • the polarization image processing unit generates the processed polarization degree image in which the luminance of the concave portion of the uneven portion on the surface of the subject of the polarization degree image is lower than that of the polarization degree image. Imaging processing device.
  • the polarization image processing unit sets the saturation of the color to the enhanced polarization degree, sets the hue and brightness of the color to specific values, and sets the combination of the hue, saturation, and brightness from the HSV space to the RGB space.
  • Item 2 The imaging processing device according to Item 1, wherein
  • the polarization degree image generation unit is configured to determine the maximum position of the polarization intensity caused by the double reflection at the uneven portion on the surface of the subject and the intensity of the polarization caused by the internal diffused light of the subject on the surface of the subject.
  • the polarizer array has a polarization mosaic structure in which polarizer units in which four polarizers having different polarization transmission axis directions are arranged in two rows and two columns are arranged in rows and columns. Or the imaging processing apparatus of 3.
  • the polarization degree image generation unit determines the degree of polarization based on a square value of a difference between pixel values corresponding to two polarizers located on a diagonal line of 2 rows and 2 columns in each polarizer unit.
  • the imaging processing apparatus according to 1.
  • the imaging unit emits red, green, and blue non-polarized light in a time-sharing manner, and the imaging device is a monochrome broadband polarization imaging device that can acquire a polarization image in the entire visible light wavelength range.
  • the imaging processing apparatus according to 1.
  • (Item 12) Item 5.
  • the pixels corresponding to one color filter of the color mosaic filter array have a sub-pixel structure, and the plurality of polarizing filters having different polarization transmission axes corresponding to the sub-pixel structure correspond to the items 15 to 17
  • the imaging processing device according to any one of the above.
  • each polarizer of the polarizer array is a wire grid polarizer having a plurality of metal wires whose side surfaces are in contact with air.
  • (Item 20) 20 The imaging processing apparatus according to any one of items 1 to 19, wherein the imaging unit is an endoscope.
  • Item 21 The imaging processing device according to Item 20, wherein the imaging unit is housed in a capsule-shaped container.
  • (Item 23) 23 An image processing device used as an image processing unit in the imaging processing device according to any one of items 1 to 22, wherein a luminance image generation unit generates a luminance image based on an output of the imaging device, and the imaging device Based on the output, the degree of polarization is calculated for each pixel, a polarization image generation unit that generates a polarization degree image, and the degree of polarization of the polarization degree image is enhanced by a concave portion of the uneven portion on the surface of the subject, and hue,
  • An image processing apparatus comprising: a polarization image processing unit that corrects at least one of saturation and lightness to generate a processed polarization image; and an image composition unit that combines the processed polarization image and the luminance image.
  • a step of generating a luminance image based on the output of the image sensor, a polarization image generator for calculating a degree of polarization for each pixel based on the output of the image sensor, and generating a polarization image, and a surface of the subject A step of emphasizing the degree of polarization of the polarization degree image at a concave portion of the uneven portion and correcting at least one of hue, saturation, and brightness, and generating a processed polarization image, and the processed polarization image and the luminance Combining the image with the image processing method.
  • An image processing program for performing image processing based on polarized image data acquired by an imaging device in a state in which a subject is illuminated with illumination light so that the illumination optical axis and the imaging optical axis form a substantially coaxial relationship.
  • An image processing program for causing a computer to execute a step of synthesizing the luminance image.
  • the imaging processing apparatus can detect, for example, a transparent or translucent uneven structure on the surface of an organ.
  • 1A and 1B schematically show a cross-section of a concavo-convex structure formed on the surface of an organ of the stomach or intestine.
  • a structure having a large number of grooves present on the surface of the stomach or intestine is generally considered to be constituted by a repeating arrangement of structures having an upwardly convex semi-cylindrical shape.
  • ⁇ ⁇ Observation with an endoscope is performed with coaxial illumination. That is, the illumination light is irradiated from a light source located substantially in front of the subject, and photographing is performed from substantially directly in front.
  • the traveling axis (illumination optical axis) of the light emitted from the light source and the camera optical axis (imaging optical axis) form a substantially coaxial relationship (the angle formed by the optical axis is 15 ° or less).
  • the reflected light that can be observed in normal color luminance photography is roughly divided into two types. One is specular reflection light that reflects light on the surface as shown in FIG. 1A. As shown in FIG. 1B, the other is internal diffused light that penetrates into the medium, reflects off the lower layer, returns, and is re-emitted from the surface.
  • the specular reflection light Since the specular reflection light is generated only when the direction of the irradiated light and the photographing optical axis are close to the specular reflection condition, it is generated only very locally in the photographing scene of the endoscope.
  • the color of the specular reflected light is the color of illumination, ie white, and the luminance is very strong.
  • the specular reflection light is generally strong and bright at the concave and convex portions, and weak and dark at the concave portions due to the above-described regular reflection conditions.
  • the internal diffused light is observed over the entire scene.
  • the color of the internal diffused light is the color of the medium itself, and the luminance is not so strong. Internally reflected light tends to shine on the entire medium, dark at the thick convex portion of the medium, and bright at the thin concave portion of the medium.
  • the uneven brightness image on the organ surface is opposite between the specular reflection light and the internal diffusion light.
  • the above two kinds of reflected light are superimposed while changing the light quantity. For this reason, in the region where the difference in luminance between the two is almost antagonized, there is almost no difference in brightness between the uneven portions. For this reason, the luminance image is ineffective for detecting irregularities. Even if there is a brightness difference between light and dark, based on that information, for example, if processing is performed to detect a pixel having a lower brightness than the surrounding pixels as a recess, the region where the specular reflection light is relatively strong and the internal diffuse reflection light Deviations in the positional relationship of the unevenness with the relatively strong region.
  • polarized light tilt reflected polarized light
  • polarized light internal polarized light
  • the intensity of polarized light is expressed as the degree of polarization.
  • the degree of polarization is determined by the refractive index, incident angle, and outgoing angle of the medium. The light reflected once on the surface is hardly polarized.
  • FIG. 2A shows a state where reflection occurs twice in the concave portion in the concave-convex structure.
  • the angle formed by the slope and the normal near the bottom of a convex concave part shaped like a groove on the surface of the living body is not constant but has a certain distribution. However, for simplicity, the maximum angle at the bottom is approximately 45 degrees here.
  • incident light is reflected twice on the slope and reaches the photographing viewpoint. When light is reflected twice between air and the surface medium, it exhibits very strong polarization.
  • FIG. 2B is a graph showing the relationship between the inclination angle of the slope and the degree of polarization of light observed by the double reflection of the coaxial illumination. It can be seen that the degree of polarization of the twice reflected light becomes extremely large when the inclination angle of the concave slope is 45 degrees, but the degree of polarization sharply decreases when the inclination angle deviates from 45 degrees. For this reason, if there is unevenness on the entire surface, the polarization of the twice reflected light is very strong and easy to detect, but the reflected light is generated only in a part of the local area that satisfies a certain angular relationship, and the slopes The phenomenon itself does not occur when the opening angle is small.
  • detecting the concaves and convexes on the surface using twice reflected polarized light is effective in the inspection of industrial products that are artifacts, but it is an endoscope that observes a living body whose shape is not constant from an arbitrary position. In the mirror observation, the information that can be used is very limited.
  • FIG. 3A shows how internal diffuse reflection occurs in a medium having surface irregularities.
  • the incident light enters the translucent medium, it reaches the lower mucosal interface while receiving various scattering in the medium, is reflected from the lower mucosal interface, and is emitted again from the surface.
  • the internal diffused light does not have a specific polarization if the refractive index in the medium is uniform.
  • the emission angle which is the inclination between the boundary surface normal and the line of sight
  • FIG. 3B is a graph showing the relationship between the degree of polarization (DOP) of the internally diffused light and the exit angle (observation angle ⁇ ). As shown in FIG.
  • DOP degree of polarization
  • the degree of polarization of the internally reflected light observed with the coaxial illumination increases as it approaches the shielding edge. Therefore, the polarization degree becomes small when the maximum inclination angle is 45 degrees as in this model.
  • detection of such weak polarized light can be sufficiently realized by using a polarization image sensor with good performance.
  • the polarization between the reflection by twice reflection and the polarization by internal diffuse reflection is locally limited, global, or whether the degree of polarization is large or weak. There is also a difference whether the plane of vibration of polarized light is parallel or perpendicular to the direction of unevenness.
  • the polarization detection performance of the imaging system is important.
  • An extinction ratio is used as a performance evaluation index of the polarization image sensor.
  • a translucent lenticular plate which will be described later, as a substitute for the real digestive mucous membrane
  • the imaging system of a combination of a polarizing plate and a color camera with an extinction ratio of about 166: 1 can sufficiently observe the unevenness.
  • the polarization image sensor used in the embodiment of the present disclosure has an extinction ratio of 100: 1 or more in a wavelength band using polarization imaging.
  • FIG. 4A shows the two types of polarized light detected by the unevenness.
  • the polarization degree of these two kinds of polarized light is maximized at the concave portion and minimized at the convex portion.
  • FIG. 4B shows the polarization degree image is bright at the concave portion where the value of the polarization degree is large, and the polarization degree image at the convex portion. Becomes darker.
  • the polarization degree image is processed.
  • FIG. 4C after performing the process of inverting the lightness of the polarization degree image, weighted addition is performed on the polarization degree image and the luminance image.
  • the hue of the polarization degree image is set to blue, the brightness is increased, and the saturation is modulated by the brightness. As a result, it is possible to generate an image similar to a state in which blue liquid is accumulated in the recess.
  • reflected light having a strong degree of polarization due to reflection twice (specular reflection) on a transparent or translucent object surface and internal diffused light inside the transparent or translucent object are reflected on the surface.
  • the characteristic is that the light, which is a combination of two kinds of reflected light, which is non-local but weakly polarized when it is emitted from, is maximized at the concave and convex portions. For this reason, it is not necessary to directly use the luminance, and the unevenness on the surface of the subject can be detected even in an area where there is almost no change in lightness or darkness and the relationship between lightness and unevenness differs depending on the reflection state.
  • the polarization degree image is processed with at least one attribute of the hue, luminance, and brightness of the color signal, and the processed polarization degree image and the luminance image are combined, an image that highlights the unevenness of the subject surface is displayed. Is obtained. In this way, even with an image having a weak degree of polarization, the detected unevenness can be presented on the image in a manner that is easy to understand for humans and superimposed on the luminance.
  • the concave / convex concave portions are blue and the convex portions are white so that the concave / convex concave portions are dark and the convex portions are brightly displayed in a mode similar to that of a blue pigment liquid such as indigo carmine.
  • a mode for displaying brightness is provided.
  • the illumination light is non-polarized light having R, G, and B colors, and the subject is irradiated with light having different colors in a time division manner.
  • the imaging device is provided with a polarizer array, but is not provided with a color mosaic filter.
  • Second embodiment The illumination light is non-polarized white light.
  • the imaging element is provided with a polarizer array and a color mosaic filter.
  • Third embodiment The illumination light is polarized light of white light, and irradiates the subject with polarized light having different directions of polarization in a time-sharing manner.
  • polarized illumination is formed at the distal end portion of the endoscope
  • the light source is not provided at the distal end portion of the endoscope.
  • the image sensor is provided with a color mosaic filter, but is not provided with a polarizer array.
  • the illumination light is polarized light of white light, and irradiates the subject with polarized light having different directions of polarization in a time-sharing manner.
  • a light source is provided at the distal end of the endoscope.
  • the image sensor is provided with a color mosaic filter, but is not provided with a polarizer array.
  • FIG. 5 schematically illustrates the overall configuration of the imaging processing apparatus according to the first embodiment of the present disclosure.
  • the imaging processing apparatus includes an endoscope 101, a control device 102, and a display unit 114.
  • the endoscope 101 has a distal end portion 106 having a monochrome broadband polarization imaging device 115 and an insertion portion 103 having a light guide 105 and a video signal line 108 inside.
  • the insertion portion 103 of the endoscope 101 has a structure that is long to the left and right and can be bent flexibly as shown.
  • the ride guide 105 can transmit light even in a bent state.
  • the control device 102 includes a light source unit 104 and an image processor 110.
  • a lamp 108 made of a xenon light source, a halogen light source, an LED light source or the like is provided in the light source unit 104.
  • White unpolarized light emitted from the lamp 108 passes through a color wheel 116 having a rotating RGB filter.
  • R red, G green, and B blue surface sequential light is formed and guided to the distal end portion 106 via the light guide 105.
  • the uneven translucent object 111 is irradiated with the non-polarized illumination light 117 in which the colors of R, G, and B are sequentially switched.
  • the reflected light 113 from the subject 111 passes through the photographing lens 109 and forms an image on the monochrome broadband polarization image sensor 115.
  • the synchronizer 112 sends an imaging start signal to the monochrome broadband polarization image sensor 115 in synchronization with the rotation of the color wheel 116 to acquire an image by reflected light.
  • the video signal obtained by imaging reaches the image processor 110 via the video signal line 108.
  • the above processing is performed by a surface sequential method in which the colors of R, G, and B are switched to perform color imaging and polarization imaging.
  • FIG. 6 is a diagram illustrating a configuration example of the imaging surface of the monochrome broadband polarization imaging device 115. As shown in FIG. 6, pixels are regularly arranged in rows and columns on the imaging surface.
  • the image sensor 115 in the present embodiment is a monochrome image sensor, but is configured to have sensitivity in each wavelength band of RGB.
  • the polarizer also has sufficient performance in the visible light band so that polarization imaging is possible in this wide wavelength band.
  • the extinction ratio of the polarizer can be 100: 1 or more in the wavelength band of 400 nm to 800 nm.
  • the metal wire grid polarizer array 200 is employed instead of using a polarizer that exhibits polarization characteristics only in a narrow band of a specific wavelength.
  • metal wire grid polarizer array 200 A part of a specific arrangement example of the metal wire grid polarizer array 200 is shown enlarged in FIG.
  • metal wire grid polarizer arrays 200a, 200b, 200c, and 200d with the polarization transmission axis rotated by 45 ° are arranged in a 2 ⁇ 2 pixel block.
  • a block made up of the metal wire grid polarizer arrays 200a, 200b, 200c, and 200d of 2 rows and 2 columns forms one unit of the periodic structure.
  • metal wire grid polarizer a grid of wires in which metal wires are arranged in parallel in a certain direction
  • metal wire grid polarizer the entire structure in which a plurality of metal wire grid polarizers are arranged in a plane
  • metal wire grid polarizer array As a “metal wire grid polarizer array”.
  • the metal wire grid polarizer array 200 can be arranged at an arbitrary level between the uppermost surface and the lower layer of the image sensor.
  • the duty ratio between the width L and the spacing S of each of the plurality of metal wires constituting the wire grid polarizer arrays 200a, 200b, 200c, and 200d is a trade-off between the transmittance and the extinction ratio.
  • the number of metal wires is 17, and in the case of 45 ° and 135 °, the number is 23 (both are odd numbers).
  • the center of each pixel is always covered with one of the wire grid polarizer arrays 200a, 200b, 200c, and 200d.
  • the wires positioned on both sides thereof are arranged symmetrically with respect to the central wire.
  • FIG. 7 and 8 show other arrangement examples of a pair of polarizer arrays 200a, 200b, 200c, and 200d in the wire grid polarizer array 200, respectively.
  • 2 ⁇ 2 4 wire grid polarizer arrays 200a, 200b, 200c, and 200d form one unit of a periodic structure, and four wire grid polarizer arrays 200a, 200b, 200c, and 200d are included.
  • the direction of the metal wire is rotated by 45 °.
  • each wire grid polarizer array 200a, 200b, 200c, 200d is constant regardless of the direction of the metal wires.
  • the metal wire grid polarizer arrays 200a, 200b, 200c, and 200d can be made of Al (aluminum) used in general wire grid polarizers, but may be made of other metals.
  • the dimensions of the metal wires constituting the wire grid polarizer arrays 200a, 200b, 200c, and 200d are in the sub-wavelength region for operation with visible light.
  • the width of the metal wires and the interval between the metal wires when the metal wire grid polarizer array 200 is viewed from the front will be referred to as “line width” and “space width”, respectively.
  • the thickness of the metal wire when the metal wire grid polarizer array 200 is viewed from the side surface is referred to as “height”.
  • the line width, space width, and height can be set to about 100, 100, and 100 nm or less, respectively.
  • Table 1 shows the difference in performance depending on the dimensions of the aluminum wire grid polarizer.
  • 11 and 12 show that both the TM transmittance and the extinction ratio are reduced near the wavelength of 400 nm. This decrease is relatively minor when P is sufficiently small. When light is incident perpendicularly to the wire grid polarizer, such a decrease is not observed.
  • FIG. 13 is a graph showing the wavelength dependence of the extinction ratio when the refractive index n of the background medium is 1.46 (SiO 2 or the like) and 1.0 (air).
  • Al in the air indicates an example in which the wire is surrounded by air
  • Al in the medium indicates an example in which the wire is surrounded by the background medium.
  • the difference in extinction ratio is about one digit.
  • a wire grid polarizer can achieve a higher extinction ratio when placed in air than when buried in a medium having a high refractive index. This is because the wavelength of light is 1 / n in the medium, and the metal structure installed in the medium appears to be relatively large compared to the wavelength, which makes it impossible to satisfy the conditions as a sub-wavelength device. Is done.
  • PD photodiode
  • FIG. 14 is a diagram showing a cross-sectional structure of a portion corresponding to one pixel of the monochrome broadband polarization image sensor 115 in the present embodiment.
  • the type of the image sensor is not limited, and may be a CMOS type, a CCD type, or the like.
  • Incident light reaches the imaging surface from an objective lens (not shown) installed above the imaging device in FIG.
  • a microlens 210 is installed on the top surface.
  • the role of the microlens 210 is to efficiently collect light onto the PD 220.
  • the optical path of obliquely incident light is turned to an angle close to vertical, and wide-angle shooting is particularly used like an endoscope. It is effective in the case where At the same time, since light can be incident on the wire grid polarizer array 200 from almost right above, it has an effect of preventing the decrease in TM transmittance and extinction ratio.
  • the wire grid polarizer array 200 has a hollow structure including gaps between metal wires. Since each metal wire is in contact with air having a refractive index of approximately 1 filling the gap, a high extinction ratio can be realized.
  • the wire grid polarizer array 200 Since the more the wire grid polarizer array 200 is located above, the easier it is to create a hollow structure, it is placed below the microlens 210. Below the wire grid polarizer array 200 are a planarization layer 230 a and a wiring layer 250. Since no wiring is provided in the light transmission portion, the incident light reaches the PD 220 in the lower layer without being blocked by the wiring. In general, in an image sensor, it is important to shorten the distance from the microlens to the PD. The same applies to the polarization imaging device. When the distance from the microlens 210 to the PD 220 is long, crosstalk between pixels occurs, and the polarization characteristics, particularly the extinction ratio, are lowered. In the present embodiment, the distance (depth D) from the wire grid polarizer array 200 to the PD 220 that causes crosstalk between pixels in polarized light is set to about 2 to 3 ⁇ m.
  • the transmittance of the electromagnetic wave (TM wave) in which the electric field oscillates in the direction perpendicular to the direction in which the metal wire extends is high, but the electric field in the direction parallel to the direction in which the metal wire extends.
  • the transmittance of vibrating electromagnetic waves (TE waves) is low. For this reason, the TE wave is reflected by the wire grid polarizer array 200, and the reflected light becomes stray light, causing performance degradation. In order to avoid this, it is effective to stack the wire grid polarizer array 200 in a plurality of layers and absorb the reflected light in the stacked structure.
  • FIG. 15 is a diagram showing another example of the cross-sectional structure of the imaging surface of the monochrome broadband polarization imaging device 115.
  • the image sensor 115 in this example is a so-called backside illumination type. From the upper layer, the order of the microlens 210, the wire grid polarizer array 200, and the PD (220) is the same. However, since the wiring layer 250 does not exist on the PD 220, a further reduction in height is realized and the sensitivity of the image sensor 115 Further, the wire grid polarizer-PD distance D can be made extremely short, and Fig. 16 is a diagram showing another cross-sectional structure of the imaging surface of the monochrome broadband polarization imaging device 115.
  • the element 115 has a configuration in the order of a wire grid polarizer array 200, a microlens 210, and a PD 220 from the upper layer on the light incident side, and this configuration allows oblique incidence to the image sensor 115 using a telecentric optical system or the like.
  • a wire-grid polarizer array that assumes a polarization imaging device when used in such a state. 00 has the advantage that it is not necessary to make a hollow structure by arranging the uppermost layer.
  • FIG. 17 is a plane showing some examples of polarization mosaic arrangements of polarizers specified at four different angles of 0 °, 45 °, 90 °, and 135 ° on the imaging surface of the monochrome broadband polarization imaging device 115.
  • the four angles of the polarizer are defined by the wire orientations (azimuth angles) of the wire grid polarizer as shown by the coordinates in FIG.
  • the plane can be filled by arranging each unit vertically and horizontally. According to such a polarization mosaic arrangement, there are always four types of wire grid polarizers with different wire orientations in the 2 ⁇ 2 polarizers in contact.
  • the extinction ratio performance of the polarization image sensor 115 is improved.
  • Polarization calibration processing for enhancing the performance of the polarization imaging device 115 to the maximum may be performed.
  • This polarization calibration process can be performed as follows.
  • a polarization imaging device image data of a polarization pixel structure level obtained by photographing a standard subject whose degree of polarization is close to 0, such as a complete diffuser, is stored.
  • the pixel value IO observed at the pixel structure level is divided into the following equation 1 using the pixel value IW previously observed with the complete diffusion plate.
  • This processing may be performed in real time at the time of observation in the polarization mosaic processing unit 300 of FIG. 5 described below, or may be processed by an electronic circuit inside the image sensor 115 itself. As a result, variations in brightness, polarization characteristics, offset, and the like of each polarization pixel of the polarization imaging element 115 are corrected, and the weak polarization degree can be accurately observed.
  • the signal is weak with respect to variations in the polarization characteristics of the image sensor 115 and offset values.
  • K represents a constant
  • the observed luminances at 0, 45 °, 90 °, and 135 ° are the observed luminances of IO 0 , IO 1 , IO 2 , IO 3 , the complete diffuser plate observed in advance, and the like.
  • IW 0 , IW 1 , IW 2 , and IW 3 are used.
  • the video signal imaged by the monochrome broadband polarization image sensor 115 is then input to the polarization mosaic processing unit 300 of FIG.
  • the polarization mosaic processing unit 300 the readout of the image from the image sensor 115 and the image obtained in the frame order are arranged into an RGB color image and stored in a buffer for subsequent image processing.
  • the polarization mosaic processing unit 300 is based on the various mosaic arrangements described with reference to FIG. 17, and the four types of polarization pixel values I 0 , I 1 , I 2 , I 3 at any location in the image plane. Is output.
  • FIG. 18A shows a virtual center pixel position 1801 of a polarization mosaic of 2 ⁇ 2 units.
  • the luminance values observed by the four differently oriented polarizers are I 0 , I 1 , I 2 , and I 3, and these values are processed as if they were acquired at the central pixel position 1801. .
  • the luminance image generation unit 312 in FIG. 5 averages the four polarization pixel values I 0 , I 1 , I 2 , and I 3 subjected to the calibration process after observation. In this way, the color luminance value with the polarization component canceled is acquired.
  • the color luminance value includes luminance Y determined for each color as a color component.
  • the luminance Y represents one of color components such as R, G, and B. Assuming that the observed luminances at 0, ° 45 °, 90 °, and 135 ° are I 0 , I 1 , I 2 , and I 3 , the non-polarized luminance Y AVE that is an average value is calculated by the following Equation 2.
  • Luminance image in this specification indicates a color image in which an R component, a G component, and a B component are combined. Therefore, a luminance image is obtained by adding the luminance calculated by Equation 2 for the three color components R, G, and B for the three color components.
  • the variation of the four pixel values is fitted to a cosine function.
  • the polarization transmission axis is orthogonal to the wire of the wire grid polarizer.
  • the azimuth angle of the polarization transmission axis [psi I, 4 pieces of pixel values of the luminance variation Y ([psi I) has an average luminance Y ⁇ I _ AVE, phase Pusaio, the amplitude A I as a variable, in Equation 3 below Expressed.
  • Equation 3 An example of the cosine function represented by Equation 3 is shown in FIG.
  • FIG. 18B is a diagram illustrating the calculation executed by the polarization degree image generation unit 314.
  • the polarization degree image generation unit 314 calculates two diagonal difference values (I 0 -I 2 ) and (I 1 -I 3 ) as shown in FIG. When these diagonal difference values are used, the amplitude A I is obtained by the following equation (4).
  • the degree of polarization DOP (Degree of Polarization) can be obtained by the following formula 6.
  • DOP one value is given to the center pixel position 1801 shown in FIG.
  • a DOP is obtained at each of a large number of central pixel positions 1801 in the imaging plane.
  • An image obtained by allocating this DOP as a digital value to each pixel to form an image is a polarization degree image.
  • the calculation of the degree of polarization is basically based on the diagonal difference value in units of 2 ⁇ 2 pixels shown in FIG. Since this calculation is a difference calculation with adjacent pixels, it is vulnerable to noise. As a result, artifacts such as moire often occur on the polarization degree image.
  • the maximum frequency of the image (the maximum value of the spatial frequency) may be lowered before the calculation of the degree of polarization.
  • low-pass filter processing may be performed on an image of all resolutions captured by the broadband polarization image sensor 115.
  • the low-pass filter processing can be performed not by optical but by image processing.
  • the maximum resolution may not be used, and the entire image size may be 1 ⁇ 2 ⁇ 1 ⁇ 2 using 2 ⁇ 2 unit pixels as virtual one pixel units.
  • FIG. 19A is a block diagram illustrating a configuration example for performing real-time processing of calculations in the luminance image generation unit 312 and the polarization degree image generation unit 314.
  • the four types of pixel values I 0 , I 1 , I 2 , and I 3 input from the polarization mosaic processing unit 300 to the luminance image generation unit 312 are first added and averaged by the luminance image generation unit 312.
  • the luminance image generation unit outputs Y AVE obtained by the averaging.
  • the pixel values (I 0 , I 2 ) and (I 1 , I 3 ) at the two diagonal positions are input to the polarization degree image generation unit.
  • the amplitude A I is calculated by the calculation circuit. This calculation is performed according to Equation 4.
  • the processing of the block diagram described here can be performed by dedicated hardware or high-speed software in the image processor 110 in the present embodiment.
  • the polarization imaging device 115 may include a calculation circuit indicated by this block.
  • a normal color image (luminance image) and a polarization degree image can be simultaneously or selectively output from the polarization imaging device.
  • a control signal can be input to the polarization imaging device 115 via the control signal line, and a normal color image can be output in a certain mode, and a polarization degree image can be output in another mode.
  • FIG. 19B is a diagram for explaining processing in the polarization degree image processing unit.
  • Luminance mode In the luminance mode, a normal color luminance image is displayed with darker concave portions and brighter convex portions. An image (emphasized image) in which the concave portion is dark and the convex portion is bright may be displayed superimposed on the color luminance image (reference image), or the emphasized image and the reference image may be individually switched and displayed. An image in which the concave portion is dark and the convex portion is bright is created from the polarization degree image.
  • the enhanced image can be obtained.
  • This process may be performed according to Equation 7 below.
  • the Enhancement function is a function that emphasizes the input linearly or nonlinearly.
  • DOP1 obtained as a result of this processing is a color image having R, G, and B components, but can be said to be a gray image because the sizes of the R, G, and B components are equal.
  • FIG. 19C shows an example of the above enhancement function.
  • the degree of polarization DOP expressed by the 8-bit signal is emphasized by the same degree of polarization DOP1 of the 8-bit signal.
  • linear gain increase is performed, but the shape of the Enhancement function is arbitrary.
  • the gain of the enhancement function can be set to about 50 times, for example.
  • the concave portion is dark blue as if the indigo carmine solution is accumulated, and the convex portion is displayed as a color image.
  • This processing is realized by processing with HSV color processing after enhancing the degree of polarization.
  • This processing may be performed according to the following equation 8, for example.
  • the HSV2RGB () function is a function for converting from the HSV color space composed of hue H, saturation S, and lightness V to the RGB color space.
  • the hue is fixed to a blue hue Blue_Hue, and the lightness is fixed to a maximum value of 1.
  • the saturation is determined so as to darken the blue color of the portion where the DOP is high.
  • the resulting DOP2 is a color image.
  • the luminance image Y AVE and the polarization degree image DOP1 or DOP2 processed as described above are weighted and combined for each color component. If the weighting factor is W, it can be expressed as shown in Equation 9 below.
  • W 1
  • a result obtained by imaging a subject using the imaging processing apparatus of the present embodiment and performing image processing will be described.
  • a commercially available 50 mm ⁇ 50 mm ⁇ 2 mm square acrylic translucent lenticular plate was used instead of an actual organ.
  • the color is yellow and not transparent, but light diffuses inside.
  • the grooves on the surface have a pitch of 0.7 mm and a convex radius of 0.5 mm.
  • FIG. 20A is a schematic cross-sectional view showing an enlarged part of a subject.
  • the maximum normal angle of the concave portion on the surface of the subject is 45.57 ° as follows, which is approximately 45 °.
  • FIG. 20C is a diagram showing a luminance image of the surface of the lenticular plate obtained by photographing.
  • FIG. 20B is a diagram in which a black solid line schematically showing the direction and length of the concave and convex grooves is added to the image of FIG. The groove is formed in the entire subject.
  • the photographing is performed with the optical axis of the photographing inclined obliquely with respect to the lenticular plate.
  • the bright band area near the center of the area (B-1) in FIG. 20B is an area where the ring illumination used for photographing is regularly reflected. In the region (B-1), light and dark are observed along the concave and convex grooves on the surface.
  • the region (B-2) in FIG. 20B is an internal diffuse reflection region.
  • the region (B-2) almost no surface brightness is observed as a property of the translucent object. That is, in the region (B-2), the unevenness cannot be detected by the luminance.
  • 20 (D) and 20 (E) respectively show an enhanced image Enhancement (DOP) of the polarization degree image and an inverted image DOP1 of the polarization degree.
  • DOP enhanced image Enhancement
  • a color camera and a glass rotating polarizing plate were used for photographing, and the measured extinction ratio was about 166: 1.
  • the degree of polarization is buried in noise, and even if enhanced, the image quality deteriorates.
  • the extinction ratio of the polarizing plate is set to 100: 1 or more, an image with less noise can be obtained.
  • FIG. 20F is a diagram illustrating an example of a composite image. Comparing the image of FIG. 20C and the image of FIG. 20F, it can be seen that the concave and convex grooves due to internal diffuse reflection in the region (B-2) that was not visible in the luminance image are emphasized and visualized. . It can also be seen that consistency and continuity are realized between the image of the concavo-convex groove due to internal diffuse reflection in the region (B-2) and the image of the concavo-convex groove due to specular reflection in the region (B-1). .
  • the image processing described above can also be executed by a known computer that stores an image processing program.
  • Such an image processing program includes a step of generating a luminance image based on the output of the image sensor, a step of calculating a degree of polarization for each pixel based on the output of the image sensor, generating a degree of polarization image, A step of emphasizing the degree of polarization of the polarization degree image at a concave portion of the uneven portion on the surface and correcting at least one of hue, saturation, and brightness, and generating a processed polarization image; a processed polarization image and a luminance image; And synthesizing the computer.
  • This program can be stored in a computer-readable non-transitory recording medium included in the control unit 110 of the imaging processing apparatus.
  • FIG. 21 is a diagram schematically illustrating an overall configuration of an imaging processing apparatus according to Embodiment 2 of the present disclosure.
  • the present embodiment is different from the first embodiment in that the present embodiment irradiates white light and performs color imaging with a single-plate color polarization image sensor 119.
  • white non-polarized light from the light source unit 104 passes through the light guide 105 and is irradiated to the subject as white non-polarized illumination light 117.
  • the reflected light from the subject is observed by the color polarization image sensor 119. Since the subsequent processing is the same as that of the first embodiment, the description thereof is omitted, and here, the configuration of the color polarization imaging device 119 will be described in detail.
  • FIG. 22 is a diagram showing a planar structure of the color polarization image sensor 119 in the present embodiment.
  • a color mosaic filter is arranged, unlike the monochrome single-plate image sensor.
  • three types of color filters of R, G, and B are arranged in a Bayer mosaic pattern, but color filters may be arranged in other mosaic patterns.
  • the color filter has a sub-pixel structure. This sub-pixel structure includes four types of polarization mosaics. When the sub-pixel is used as a reference, the resolution of the image sensor is reduced to 1 ⁇ 2 ⁇ 1 ⁇ 2 of the original resolution. However, since polarization information can be acquired within one pixel corresponding to each color filter, artifacts generated as a result of polarization processing can be reduced.
  • FIG. 23 is a diagram showing experimental results showing the generation of artifacts due to polarization treatment. Illuminate and photograph the lenticular plate using ring illumination with a monochrome polarization camera (PI-100 manufactured by Photonic Lattice Co., Ltd.) having a periodic polarization mosaic with the basic period of fine 2 ⁇ 2 pixels as in this embodiment. Polarization degree images were obtained.
  • FIG. 23A shows a luminance image obtained from the average of four surrounding pixels
  • FIG. 23B shows a polarization degree image.
  • the captured image is a 1120 ⁇ 868 pixel lenticular plate.
  • moiré fringes not found in the luminance image of FIG.
  • the range for calculating the diagonal difference may be localized as small as possible on the image.
  • the spatial frequency of the enhanced image can be increased, and the occurrence of artifacts can be reduced.
  • a configuration in which one polarization pixel is arranged only in one color filter constituting the color mosaic filter is often seen in the conventional technology. However, in that case, since the spatial frequency of the diagonal pixel moves in a lower direction, the possibility of interference with the spatial frequency of the imaging scene increases.
  • FIG. 24 is a diagram illustrating a cross-sectional structure of the color polarization imaging device 119 of the present disclosure.
  • a difference from the monochrome broadband polarization image pickup device 115 shown in FIG. 14 is that a color filter 270 is installed between the wire grid polarizer array 200 and the PD (photodiode) 220.
  • the color filter 270 may be an organic material or a photonic crystal.
  • the distance D between the wire grid polarizer and PD becomes longer as the color filter 270 enters, it is typically 4 to 6 ⁇ m.
  • the wire grid polarizer array 200 since the microlens is positioned on the uppermost layer, there is an advantage that light can be incident on the wire grid polarizer array 200 perpendicularly. Since the wire grid polarizer array 200 is disposed on the incident side of the color filter 270, the wire grid polarizer array 200 needs to have a characteristic of operating in a wide band. However, since the wire grid polarizer is installed immediately below the microlens, it is easy to create a hollow structure in which the air layer is brought into contact with the wire grid polarizer array 200.
  • FIG. 25 is a diagram showing another cross-sectional structure (from the top layer, the microlens 210, the color filter 270, and the wire grid polarizer array 200) of the color polarization imaging device 119 in the present embodiment. Since the microlens 210 is located in the uppermost layer, there is an advantage that light can be incident on the wire grid polarizer array 200 vertically. Further, in this embodiment, since the wire grid polarizer array 200 is disposed on the lower layer side than the color filter 270, the wire grid polarizer array 200 may be of a narrow band. Further, there is an advantage that the distance D between the wire grid polarizer and the PD can be shortened by a distance that the color filter 270 and the microlens 210 do not enter.
  • FIG. 26 is a diagram showing another cross-sectional structure (color filter 270, microlens 210, wire grid polarizer array 200 from the top layer) of the color polarization image sensor 119 in the present embodiment. Since the wire grid polarizer array 200 is transmitted later, the wire grid polarizer array 200 can be provided with a narrow band having wavelength dependency such as RGB, and the degree of freedom of design is increased. Further, since the microlens is positioned above the wire grid polarizer, there is an advantage that light can be incident on the wire grid polarizer perpendicularly. Further, the distance D between the wire grid polarizer and the PD has an advantage that it can be shortened by a distance that the color filter array and the micro lens do not enter.
  • FIG. 27 is a diagram showing another cross-sectional structure (from the top layer, the color filter 270, the wire grid polarizer array 200, and the microlens 210) of the color polarization image sensor 119 in the present embodiment. Since the light passes through the color filter 270 and then through the wire grid polarizer array 200, the wire grid polarizer array 200 can be provided with a narrow band having wavelength dependency such as RGB, and the degree of freedom in design. Increase. Further, since the wire grid polarizer array 200 is installed directly under the color filter 270, there is an advantage that a hollow structure can be easily formed. Further, there is an advantage that the distance D between the wire grid polarizer and the PD can be shortened by a distance that does not include the color filter array.
  • FIG. 28 is a diagram showing another cross-sectional structure (from the top layer, the wire grid polarizer array 200, the microlens 210, and the color filter 270) of the color polarization image sensor 119 in the present embodiment. Since the wire grid polarizer array 200 is disposed on the incident side of the color filter 270, the wire grid polarizer array 200 needs to have a characteristic of operating in a wide band, but the wire grid polarizer array 200 is located in the uppermost layer. It has the advantage of not having to make a hollow structure.
  • FIG. 29 is a diagram showing another cross-sectional structure (from the top layer, the wire grid polarizer array 200, the color filter 270, and the microlens 210) of the color polarization imaging device 119 in the present embodiment. Since the wire grid polarizer array 200 is disposed on the incident side of the color filter 270, the wire grid polarizer array 200 needs to have a characteristic of operating in a wide band, but the wire grid polarizer array 200 is located in the uppermost layer. It has the advantage of not having to make a hollow structure.
  • any configuration can be applied to the back-illuminated image sensor shown in FIG. 15, and sensitivity can be improved by reducing the height of the image sensor. Since this is a known technique, it will be omitted.
  • FIG. 30 is a diagram schematically illustrating an overall configuration of an imaging processing apparatus according to Embodiment 3 of the present disclosure.
  • This embodiment is different from the first and second embodiments in that, in the present embodiment, the subject is irradiated with polarized light as illumination light, so that it is not necessary to use a polarization imaging device.
  • the subject is irradiated with white light of polarization rotation illumination, and color imaging is performed with a single-plate color imaging device. Imaging is repeated one by one for each of four types of illumination with different angles of polarization planes of polarized illumination. Then, for each pixel, the luminance variation is observed and pseudo polarization imaging is performed.
  • the white non-polarized light from the four types of lamps 118 installed in the light source unit 104 is selectively and sequentially input to the four types of light guides 105 by the light source control circuit 120.
  • a polarizing plate 121 having a different polarization transmission axis direction is disposed at the tip of each light guide 105.
  • the direction of the polarization transmission axis of the polarizing plate 121 has rotation angles of 0 °, 45 °, 90 °, and 135 ° as viewed from the imaging plane coordinate system. For this reason, by performing the above-described sequential input, a polarized illumination whose polarization plane changes at four different angles is realized. By sequentially switching the input at a high speed, the polarization plane of the illumination light can be smoothly switched between four different angles.
  • the synchronizer 112 sends an imaging timing signal to the color imaging device 129 in synchronization with a signal to the light source control circuit 120 to perform continuous imaging.
  • a polarization maintaining type optical fiber for illumination can be realized by bundling single mode fibers for optical communication. When such a polarization maintaining optical fiber for illumination is used, it is not necessary to attach the polarizing plate to the tip. In that case, it is only necessary to generate illumination whose polarization is rotated by the light source unit 104 and propagate the light guide 105.
  • Rotational polarization illumination can also be realized by installing a polarization plane control element composed of liquid crystal or the like at the tip of the light guide and driving the voltage to control the polarization plane.
  • a polarization plane control element composed of liquid crystal or the like at the tip of the light guide and driving the voltage to control the polarization plane.
  • the birefringent physical property of the liquid crystal and the optical element such as the ⁇ / 4 plate to be used have wavelength dependency, it is difficult to perform the polarization operation in the entire wavelength range of white light.
  • FIG. 31 (A) is a schematic diagram showing the state of reflection when polarized light illumination is incident on a convex semi-transparent slope from directly above.
  • the incident illumination light sequentially enters the slope from above while rotating the polarization plane.
  • the reflected light due to the specular reflection does not return to the imaging objective lens side but moves outside, and thus does not contribute to the imaging luminance.
  • the light that has been depolarized through the internal scattering and absorption processes is emitted from the slope again and partly returns to the objective lens side. For this reason, it contributes to imaging brightness.
  • the light is polarized when it exits from the slope of the subject, but the luminance imaging device cannot observe the polarization. For this reason, only a variation in luminance caused by rotation of the polarization plane of the illumination light is observed.
  • FIG. 32 is a graph based on the Fresnel theory showing the relationship between the entrance of light and the polarization.
  • FIG. 32 shows that at the boundary surface from the air having a refractive index of 1 to a medium having a refractive index of greater than 1, the P wave always enters with an advantage regardless of the incident angle.
  • the intensity of the light emitted from the surface (boundary) of the subject into the air again is the highest at the rotation angle at which the incident light hits the P-polarized light in the polarization rotation illumination.
  • the luminance is minimized at the rotation angle corresponding to the S-polarized light.
  • the luminance fluctuation of light emitted from a subject also depends on the intensity of incident light.
  • the internally diffused light is emitted regardless of the intensity of the incident light. For this reason, there is no correlation between the brightness of the internal diffused light and the intensity of the polarization rotation illumination.
  • FIG. 33 is a diagram showing the distal end portion 106 of the endoscope and the exit portion of the polarization rotation illumination.
  • the ring-shaped illumination device surrounds the central objective lens 109.
  • a plurality of polarizing plates 121 having polarization transmission axes oriented in the directions of 0 °, 45 °, 90 °, and 135 ° are arranged on the front surface of the ring illumination device.
  • the illumination unit of the ring illumination device is divided into 16 parts, and a polarizing plate 121 having a different direction of the light polarization transmission axis is provided for each of the four divided regions.
  • Polarization rotation illumination is realized by sequentially lighting the illumination portions corresponding to the polarizing plate 121 in the four-divided region.
  • the fine polarizing plate 121 arranged in front of the ring-shaped illumination device can be made by forming a wire grid polarizer or a polymer film polarizer on a glass substrate.
  • Prototype polarizer arrays using polymer films are Xiaojin Zhao, Farid Boussaid, Amin bermak and Vladimir G.Chigrinov, "Thin Photo-patterned Mictopolaizer Array for CMOS Images Sensors", IEEE Photonics Technology Letters. 12, June 15, 2009.
  • the luminance fluctuation processing unit 400 obtains the relationship between the angle of the polarization plane of illumination and the luminance value of each pixel, and generates a “luminance modulation degree image”.
  • the “luminance modulation degree image” is an image defined by the ratio between the amplitude of the fluctuation of the luminance value accompanying the change of the polarization plane and the average luminance value for each pixel. If the luminance modulation degree in a certain pixel P (x, y) is 0.3, a value of 0.3 is set for this pixel P (x, y).
  • One “luminance modulation degree image” is configured by setting such a luminance modulation degree value in each pixel.
  • the first image is captured with the polarization plane being 0 °
  • the second image is captured with the polarization plane being 45 °
  • the third image is captured with the polarization plane being 90 °
  • the polarization plane is 135 °.
  • a fourth image is captured in the state. Since it has been found that the luminance variation when the polarized illumination is rotated becomes a cosine function with a period of 180 °, the luminance variation processing unit 400 optimally fits this to the cosine function.
  • the luminance variation is expressed as follows, where the angle of the polarization plane of illumination is ⁇ I.
  • the luminance modulation degree image can be generated by performing the same procedure as the processing method already described for each corresponding pixel of the four captured images.
  • the luminance modulation degree image is generated by a luminance modulation degree image generation unit 414 shown in FIG.
  • the luminance modulation degree image processing unit 416 may perform the same processing as the polarization degree image processing unit 316 on the luminance modulation degree image.
  • the processing of the image composition unit 420 is also the same. Note that the luminance image generation unit 412 generates a luminance image by adding or averaging the luminance values obtained from each pixel.
  • FIG. 34 is a diagram schematically illustrating an overall configuration of an imaging processing apparatus according to Embodiment 4 of the present disclosure.
  • This embodiment is different from the third embodiment in this embodiment in order to realize polarization rotation illumination, without using a fiber light source or a light guide, an LED or organic light installed at the distal end of the endoscope. This is a point using a surface light source such as EL.
  • a total of 16 illumination light irradiation ports having different polarization planes are provided at the endoscope tip.
  • the light emission position of the illumination is different every four times. For this reason, in a subject with many specular reflections, the light source at the four light emission positions is reflected directly on the subject. Therefore, luminance fluctuations caused by the difference in the light source position occur on the entire surface of the subject, and artifacts that do not occur originally can occur.
  • the illumination units that are sequentially turned on are sufficiently small and the quantity is increased. By doing so, the spatial fluctuation of the luminance distribution due to the movement of the position of the light source to be turned on is suppressed to within one pixel on the imaging side.
  • FIG. 35 is a diagram showing the distal end portion 106 of the endoscope and the exit portion of the polarization rotation illumination.
  • FIG. 35 only four polarizers are enlarged and displayed for convenience, but actually, a plurality of units each composed of four polarizers are arranged in rows and columns in an area around the objective lens 109. Are arranged in a shape. In this configuration, a region surrounding the central objective lens 109 functions as a light source for surface illumination.
  • a polarizer having a polarization transmission axis oriented in the directions of 0 °, 45 °, 90 °, and 135 ° is disposed in a square having a size of pitch P ⁇ P.
  • FIG. 36 is a diagram showing an overall configuration of this surface illumination.
  • a data driver for sequentially controlling lighting on the X-axis and Y-axis of the surface illumination is prepared, and pixels addressed on the X-axis and the Y-axis are turned on simultaneously. For example, here, when even-numbered pixels (X2m and Y2m) on both the X-axis and the Y-axis are turned on at the same time, it becomes illumination light having a polarization plane of 0 °. Then, illumination light having polarization planes of 0 °, 45 °, 90 °, and 135 ° can be obtained by combining even and odd numbers of data drivers for the X axis and the Y axis.
  • FIG. 37 is a diagram for explaining the effect of sufficiently reducing the illumination pixel pitch of this surface illumination.
  • the subject surface is a smooth mirror surface like a mucous membrane.
  • the closest distance is approximately 3 mm.
  • the one-side viewing angle is 70 °, the imaging range is as follows.
  • the actual captured size is 2L when considered as a virtual position on the back side of the subject. Therefore, if this size corresponds to one pixel of the captured image, the following relationship is obtained.
  • the illumination pixel pitch P is 32.8 ⁇ m or less, the variation of the light source position is not recognized on the image, and the problem of the artifact in the third embodiment is solved.
  • the capsule endoscope having substantially the same configuration can be configured for the imaging unit by downsizing the insertion unit 103 and the light source unit 104 and separating them from the control unit.
  • the capsule endoscope is swallowed into the body and images the entire digestive tract.
  • all the imaging is underwater imaging.
  • this embodiment is also effective for underwater photography, so that the unevenness of the translucent mucosa can be detected and enhanced even in a capsule endoscope in which the indigo carmine solution cannot be distributed.
  • the metal material constituting the wire grid polarizer is not limited to Al, but may be a metal such as Au, Ag, Cu, or Ti.
  • a PD (photodiode) 501 is formed on a substrate 500 made of Si, and a wiring layer 503 having a multilayer structure is formed thereon with an interlayer film 502 interposed therebetween.
  • the wiring layer 503 is covered with a light transmissive planarization layer 504.
  • the planarization layer 504 can be formed of an inorganic insulating film such as SiO 2 , SiN, or SiON, or a resin (polymer) -based material.
  • a resist pattern 505 having an opening in a region where a wire portion of the wire grid polarizer is formed is formed on the planarizing layer 504 by photolithography.
  • a metal layer 506 made of Al, which is a constituent material of the wire grid polarizer, is deposited on the entire surface by a method such as vacuum deposition or sputtering using the resist pattern 505 as a mask. Instead of vacuum deposition or sputtering, Al may be embedded in the opening of the resist pattern 515 by applying a solution containing nanoparticles to the entire surface. In order to facilitate lift-off, the metal layer 506 is desirably sufficiently thinner than the resist pattern 515.
  • a wire grid polarizer having a desired size and shape can be formed by giving a reverse-tapered shape to the single-layer resist pattern 515 or by giving an overhang shape to the resist pattern 515 having a multilayer resist structure. .
  • the resist pattern 505 is removed to complete the wire grid polarizer structure (lift-off method).
  • the sacrificial layer 507 is embedded in the gap between the metal layers constituting the wire grid polarizer.
  • an upper planarization layer 508 made of an inorganic film or an organic film is formed thereon.
  • a lens film material made of an inorganic film or an organic film is deposited on the upper planarizing layer 508, and a resist pattern of a microlens is formed by lithography.
  • a convex microlens structure is formed by etching using the resist pattern as a mask and further etching back.
  • step of FIG. 38 (H) selective removal of the sacrificial layer buried in the gap of the wire grid polarizer by etching from one end of the sacrificial layer exposed on the surface outside the microlens region and the side surface of the wire grid polarizer is performed. As a result, the monochrome polarization image sensor structure shown in FIG. 14 is formed.
  • a PD (photodiode) 601 is formed on a substrate 600 made of Si, and a wiring layer 603 is formed thereon via an interlayer film 602.
  • the wiring layer 603 is covered with a light transmissive planarization layer 604.
  • a metal layer 606 made of Al is formed over the planarization layer 604.
  • a resist pattern 605 in the shape of a wire grid polarizer is formed by photolithography.
  • an Al wire grid polarizer array is formed by performing dry etching using the resist pattern 605 as a mask.
  • the steps from FIG. 39E to FIG. 39H are the same as the steps in FIG.
  • a PD (photodiode) 701 is formed on a substrate 700 made of Si, and a wiring layer 703 is formed thereon via an interlayer film 702.
  • the wiring layer 703 is covered with a light transmissive planarization layer 704.
  • a thin metal layer 706 is formed over the planarization layer 704.
  • a resist pattern 705 in the shape of a wire grid polarizer is formed by photolithography.
  • a plated metal layer is selectively formed in the opening of the resist pattern by immersing in the electroless plating solution using the resist pattern 705 as a mask.
  • the underlying metal layer 706 is removed to the planarization layer 704 by dry etching using the plating metal layer formed in the wire grid polarizer pattern as a mask. To form a metal wire grid polarizer structure.
  • 40F to 40I are the same as the steps of FIGS. 38 and 39, and thus the description thereof is omitted.
  • the plating method has been described with electroless plating, it can also be formed using electrolytic plating.
  • the wire grid polarizer pattern made of the resist in FIGS. 38, 39, and 40 can be formed using nanoimprint.
  • Embodiments of the present disclosure include medical endoscopes for gastrointestinal internal medicine, cameras for medical use such as dermatology, dentistry, ophthalmology, and surgery, industrial endoscopes, fingerprint imaging devices, and surface inspection devices in factories, etc.
  • the present invention is widely applicable to the field of image processing that requires observation, inspection, and recognition of surface irregularities of a subject.
  • image processing that requires observation, inspection, and recognition of surface irregularities of a subject.
  • brightness and darkness are not observed in luminance observation due to internal diffuse reflected light, but even in this case, the unevenness on the surface can be detected correctly.
  • Monochrome broadband polarization imaging device and color polarization imaging device with wire grid polarizers that operate in the visible wavelength range and have a high extinction ratio can be applied to digital cameras, video cameras, surveillance cameras, etc. It can be widely used for improvement and photography through glass.

Abstract

 本開示の実施形態において、撮像処理装置は、照明光で被写体(111)を照明した状態で偏光画像を取得する撮像素子(115)を含む撮像部と画像処理部(画像プロセッサ110)とを備える。照明光の光軸と撮像素子(115)の光軸とは略同軸の関係を形成する。画像処理部は、撮像素子(115)の出力に基づいて輝度画像を生成する輝度画像生成部312と、撮像素子(115)の出力に基づいて画素ごとに偏光度を算出し、偏光度画像を生成する偏光画像生成部(314)と、被写体(111)の表面における凹凸部の凹部で偏光度画像の偏光度を強調し、かつ、色相、彩度、および明度の少なくとも1つを補正して加工偏光画像を生成する偏光画像加工部(316)と、加工偏光画像と輝度画像とを合成する画像合成部(320)とを備える。

Description

撮像処理装置および内視鏡
 本願は、半透明物体など輝度情報では観察が困難な物質の表面凹凸情報を得ることができる撮像処理装置、および臓器表面観察に使用され得る内視鏡に関する。
 内視鏡による撮像は、粘膜で覆われた、生体の臓器器官の壁表面に対して照明を照射して行われる。内視鏡を用いた臓器器官の観察では、被写体の表面の色の変化と同時に、表面の微細な凹凸のテクスチャを確認することが求められる。しかし、内視鏡による観察では、後述するように、被写体の表面の微細な凹凸構造を輝度の陰影でとらえることは難しい。このため、インジゴカルミン溶液などの青色色素液体を被写体である粘膜上に撒布して、青色色素液体が粘膜表面の溝にたまった状態を輝度で観察している。
 しかし、この処理では、粘膜上に液体を吹き付けるために出血したり、粘膜の色が変わってしまうなど問題も多かった。また、体内で水中撮影を行ういわゆるカプセル内視鏡においては、粘膜上への液体の撒布自体がそもそも不可能である。
 この課題に対して、偏光照明と偏光撮像を用いた偏光内視鏡の提案があった(特許文献1~特許文献4)。
 なお、アルミニウム製ワイヤグリッド偏光子を用いた偏光撮像素子が非特許文献1に開示されている。
特開2009-246770号公報 特開2010-104421号公報 特開2012-24140号公報 特開2010-82271号公報
Viktor Gruev, Rob Perkins, and Timothy York ,"CCD polarization imaging sensor with aluminum nanowire optical filters", 30 August 2010 / Vol. 18, No. 18 / OPTICS EXPRESS PP.19087-19094
 従来技術では、透明または半透明の粘膜に存在する微細な凹凸部の形状を検出して表示することが難しい。
 本開示の実施形態は、被写体表面の微細凹凸を検出して表示することができる撮像処理装置、内視鏡、画像処理方法、およびプログラムを提供する。
 本開示の撮像処理装置は、照明光を発し、前記照明光で被写体を照明した状態で偏光画像を取得する撮像素子を含む撮像部と、画像処理部とを備え、照明光軸と撮影光軸とが略同軸の関係を形成し、前記画像処理部は、前記撮像素子の出力に基づいて輝度画像を生成する輝度画像生成部と、前記撮像素子の出力に基づいて画素ごとに偏光度を算出し、偏光度画像を生成する偏光画像生成部と、前記被写体の表面における凹凸部の凹部で前記偏光度画像の偏光度を強調し、かつ、色相、彩度、および明度の少なくとも1つを補正して加工偏光画像を生成する偏光画像加工部と、前記加工偏光画像と前記輝度画像とを合成する画像合成部とを備える。
 本開示の画像処理装置は、上記の撮像処理装置における画像処理部として用いられる画像処理装置であって、前記撮像素子の出力に基づいて輝度画像を生成する輝度画像生成部と、前記撮像素子の出力に基づいて画素ごとに偏光度を算出し、偏光度画像を生成する偏光画像生成部と、前記被写体の表面における凹凸部の凹部で前記偏光度画像の偏光度を強調し、かつ、色相、彩度、および明度の少なくとも1つを補正して加工偏光画像を生成する偏光画像加工部と、前記加工偏光画像と前記輝度画像とを合成する画像合成部とを備える。
 本開示の内視鏡は、上記のいずれかの撮像処理装置に用いられる内視鏡であって、照明光を発し、前記照明光で被写体を照明した状態で偏光画像を取得する撮像素子を含み、照明光軸と撮影光軸とが略同軸の関係を形成するように配置されている。
 本開示の画像処理方法は、照明光軸と撮影光軸とが略同軸の関係を形成するようにして照明光によって被写体を照明した状態において撮像素子が取得した偏光画像のデータに基づいて画像処理を行う画像処理方法であって、前記撮像素子の出力に基づいて輝度画像を生成する工程と、前記撮像素子の出力に基づいて画素ごとに偏光度を算出し、偏光度画像を生成する偏光画像生成部と、前記被写体の表面における凹凸部の凹部で前記偏光度画像の偏光度を強調し、かつ、色相、彩度、および明度の少なくとも1つを補正して加工偏光画像を生成する工程と、前記加工偏光画像と前記輝度画像とを合成する工程とを含む。
 本開示の画像処理プログラムは、照明光軸と撮影光軸とが略同軸の関係を形成するようにして照明光によって被写体を照明した状態において撮像素子が取得した偏光画像のデータに基づいて画像処理を行うための画像処理プログラムであって、前記撮像素子の出力に基づいて輝度画像を生成する工程と、前記撮像素子の出力に基づいて画素ごとに偏光度を算出し、偏光度画像を生成する偏光画像生成部と、前記被写体の表面における凹凸部の凹部で前記偏光度画像の偏光度を強調し、かつ、色相、彩度、および明度の少なくとも1つを補正して加工偏光画像を生成する工程と、前記加工偏光画像と前記輝度画像とを合成する工程とをコンピュータに実行させる。
 本開示の実施形態によれば、被写体が透明あるいは半透明であっても、被写体の表面における凹凸部の凹部が視認しやすい画像が得られる。
半透明凹凸部の鏡面反射による輝度分布を模式的に示す図 半透明凹凸部の内部拡散反射による輝度分布を模式的に示す図 半透明凹凸部での2回反射による偏光を示す図 半透明凹凸部での2回反射による偏光度の凹部傾斜角依存性を示す図 半透明凹凸部での内部拡散光による偏光を示す図 半透明凹凸部での内部拡散光による偏光度の観測角依存性を示す図 (A)、(B)、(C)、および(D)は、半透明凹凸の偏光度の強調加工方法を説明するための図 本開示の第1の実施形態を示す図 第1の実施形態におけるモノクロ広帯域偏光撮像素子のワイヤグリッド偏光子の平面構造を示す図 第1の実施形態におけるモノクロ広帯域偏光撮像素子のフレーム付ワイヤグリッド偏光子の平面構造を示す図 第1の実施形態におけるモノクロ広帯域偏光撮像素子の円形ワイヤグリッド偏光子の平面構造を示す図 ワイヤグリッド偏光子(P=120nm)のTM透過率と消光比の波長依存性(シミュレーション結果)を示す図 ワイヤグリッド偏光子(P=160nm)のTM透過率と消光比の波長依存性(シミュレーション結果)を示す図 ワイヤグリッド偏光子(P=200nm)のTM透過率と消光比の波長依存性(シミュレーション結果)を示す図 ワイヤグリッド偏光子(P=200nm)で光の入射角=30°の場合のTM透過率と消光比の波長依存性(シミュレーション結果)を示す図 ワイヤグリッド偏光子(P=200nm)で背景媒質(n=1.46)がある場合と無い場合とにおけるTM透過率と消光比の波長依存性(シミュレーション結果)を示す図 第1の実施形態におけるモノクロ広帯域偏光撮像素子のワイヤグリッド偏光子の断面構造(マイクロレンズが最上層)を示す図 第1の実施形態におけるモノクロ広帯域偏光撮像素子のワイヤグリッド偏光子の断面構造(マイクロレンズが最上層)を裏面照射型の撮像素子に適用した図 第1の実施形態におけるモノクロ広帯域偏光撮像素子のワイヤグリッド偏光子の断面構造(ワイヤグリッド偏光子が最上層)を示す図 (A)、(B)、(C)、(D)、および(E)は、第1の実施形態におけるモノクロ広帯域偏光撮像素子の平面偏光モザイク構造の例を示す図 (A)、(B)、および(C)は、第1の実施形態における画像処理を説明する図 第1の実施形態における輝度画像生成部と偏光度画像生成部の計算処理を説明するための図 第1の実施形態における偏光度画像加工部の画像処理を説明する図 第1の実施形態における偏光度画像加工部による強調処理で使用されるEnhance関数の例を説明する図 (A)~(F)は、生体粘膜の模擬被写体として半透明レンチキュラー板を用いた凹凸検出強調の実験結果を示す図 本開示の第2の実施形態を示す図 (A)、(B)、および(C)は、第2の実施形態に関わるカラー偏光撮像素子のカラー偏光複合モザイク構造を示す図 (A)および(B)は、偏光処理によるアーティファクトを示す図 第2の実施形態に関わるカラー偏光撮像素子の断面構造の一例を示す図 第2の実施形態に関わるカラー偏光撮像素子の断面構造の他の例を示す図 第2の実施形態に関わるカラー偏光撮像素子の断面構造の他の例を示す図 第2の実施形態に関わるカラー偏光撮像素子の断面構造の他の例を示す図 第2の実施形態に関わるカラー偏光撮像素子の断面構造の他の例を示す図 第2の実施形態に関わるカラー偏光撮像素子の断面構造の他の例を示す図 本開示の第3の実施形態を示す図 (A)、(B)、および(C)は、第3の実施形態に関わる偏光回転照明で内部拡散反射光の変動を検出する原理を示す図 フレネル理論に基づくP波とS波が媒質への侵入する光量と入射角との関係を示す図 本開示の第3の実施形態に関わる内視鏡先端部の偏光回転照明の偏光板配置を示す図 本開示の第4の実施形態を示す図 第4の実施形態に関わる内視鏡先端部の偏光回転照明を示す図 第4の実施形態に関わる面発光偏光回転照明を示す図 第4の実施形態に関わる面発光偏光回転照明の画素サイズの条件を示す図 (A)~(H)は、モノクロ広帯域偏光撮像素子のワイヤグリッド偏光子を作製する方法の一例を示す図 (A)~(H)は、モノクロ広帯域偏光撮像素子のワイヤグリッド偏光子を作製する方法の他の例を示す図 (A)~(I)は、モノクロ広帯域偏光撮像素子のワイヤグリッド偏光子を作製する方法の他の例を示す図
 本開示によれば、以下の撮像処理装置、画像処理装置、画像処理方法、画像処理ブログラムが提供され得る。
(項目1)
 照明光を発し、前記照明光で被写体を照明した状態で偏光画像を取得する撮像素子を含む撮像部と、画像処理部とを備え、照明光軸と撮影光軸とが略同軸の関係を形成し、前記画像処理部は、前記撮像素子の出力に基づいて輝度画像を生成する輝度画像生成部と、前記撮像素子の出力に基づいて画素ごとに偏光度を算出し、偏光度画像を生成する偏光画像生成部と、前記被写体の表面における凹凸部の凹部で前記偏光度画像の偏光度を強調し、かつ、色相、彩度、および明度の少なくとも1つを補正して加工偏光画像を生成する偏光画像加工部と、前記加工偏光画像と前記輝度画像とを合成する画像合成部とを備える撮像処理装置。
(項目2)
 前記撮像部は、前記照明光として、順次、異なる色の非偏光の光を発し、前記撮像素子は、偏光子アレイと、光電変換素子アレイとを有する、項目1に記載の撮像処理装置。
(項目3)
 前記撮像部は、前記照明光として、非偏光の白色光を発し、前記撮像素子は、偏光子アレイと、カラーモザイクフィルタアレイと、光電変換素子アレイとを有する、項目1に記載の撮像処理装置。
(項目4)
 前記撮像部は、前記照明光として、順次、少なくとも3つの方向に偏光面の向きが異なる偏光光を発し、前記撮像素子は、カラーモザイクフィルタアレイと、光電変換素子アレイとを有する、項目1に記載の撮像処理装置。
(項目5)
 前記偏光画像加工部は、前記偏光度画像に比べて、前記偏光度画像の前記被写体の表面における前記凹凸部の凹部の輝度を低下させた前記加工偏光度画像を生成する、項目1に記載の撮像処理装置。
(項目6)
 前記偏光画像加工部は、色の彩度を前記強調した偏光度に設定し、かつ、色の色相および明度を特定値に設定し、前記色相、彩度、明度の組をHSV空間からRGB空間に変換する、項目1に記載の撮像処理装置。
(項目7)
 前記偏光画像加工部は、前記凹凸部の凹部を青暗く表示するように前記加工偏光度画像を生成する、項目6に記載の撮像処理装置。
(項目8)
 前記偏光度画像生成部は、前記被写体の表面における前記凹凸部での2回反射に起因する偏光、および前記被写体の内部拡散光に起因する偏光の強度の極大位置を、前記被写体の表面における前記凹凸部の凹部として検出する、項目1に記載の撮像処理装置。
(項目9)
 前記偏光子アレイは、偏光透過軸の方位が異なる4個の偏光子が2行2列に配列された偏光子単位が行および列状に配列された偏光モザイク構造を有している、項目2または3に記載の撮像処理装置。
(項目10)
 前記偏光度画像生成部は、各偏光子単位における2行2列の対角線上に位置する2個の偏光子に対応する画素値の差分の2乗数値に基づいて偏光度を決定する、項目9に記載の撮像処理装置。
(項目11)
 前記撮像部は、レッド、グリーン、ブルーの各々の非偏光光を時分割で出射し、前記撮像素子は、可視光波長の全域において、偏光画像を取得できるモノクロ広帯域偏光撮像素子である、項目2に記載の撮像処理装置。
(項目12)
 前記撮像素子はカラー偏光撮像素子である、項目3または4に記載の撮像処理装置。
(項目13)
 前記偏光子アレイは、偏光透過軸の方向が異なる金属ワイヤグリッド偏光子の配列である、項目2または3に記載の撮像処理装置。
(項目14)
 前記撮像素子は、前記偏光子アレイよりも前記被写体に近い位置または前記被写体から遠い位置に設けられたマイクロレンズを備えている、項目2または3に記載の撮像処理装置。
(項目15)
 前記撮像素子は、マイクロレンズアレイを備え、光の入射側から順に、前記マイクロレンズアレイ、前記偏光子アレイ、前記カラーモザイクフィルタアレイが配置されている、項目3に記載の撮像処理装置。
(項目16)
 前記撮像素子は、マイクロレンズアレイを備え、光の入射側から順に前記カラーモザイクフィルタアレイ、前記マイクロレンズアレイ、前記偏光子アレイが配置されている、項目3に記載の撮像処理装置。
(項目17)
 前記撮像素子は、マイクロレンズアレイを備え、光の入射側から順に前記カラーモザイクフィルタアレイ、前記偏光子アレイ、前記マイクロレンズアレイが配置されている、項目3に記載の撮像処理装置。
(項目18)
 前記カラーモザイクフィルタアレイの1色のカラーフィルタに相当する画素が、サブ画素構造を有しており、前記サブ画素構造に偏光透過軸の向きが異なる複数の偏光フィルタが対応する項目15から17のいずれかに記載の撮像処理装置。
(項目19)
 前記偏光子アレイの各偏光子は、側面が空気と接している複数の金属ワイヤを有するワイヤグリッド偏光子である、項目2または3に記載の撮像処理装置。
(項目20)
 前記撮像部は内視鏡である、項目1から19のいずれかに記載の撮像処理装置。
(項目21)
 前記撮像部はカプセル形状を有する容器におさめられている、項目20に記載の撮像処理装置。
(項目22)
 前記撮像部は前記照明光を発する光源を内蔵する、項目1から21のいずれかに記載の撮像処理装置。
(項目23)
 項目1から22のいずれかに記載の撮像処理装置における画像処理部として用いられる画像処理装置であって、前記撮像素子の出力に基づいて輝度画像を生成する輝度画像生成部と、前記撮像素子の出力に基づいて画素ごとに偏光度を算出し、偏光度画像を生成する偏光画像生成部と、前記被写体の表面における凹凸部の凹部で前記偏光度画像の偏光度を強調し、かつ、色相、彩度、および明度の少なくとも1つを補正して加工偏光画像を生成する偏光画像加工部と、前記加工偏光画像と前記輝度画像とを合成する画像合成部と、を備える画像処理装置。
(項目24)
 項目1から22のいずれかに記載の撮像処理装置に用いられる内視鏡であって、照明光を発し、前記照明光で被写体を照明した状態で偏光画像を取得する撮像素子を含み、照明光軸と撮影光軸とが略同軸の関係を形成するように配置されている、内視鏡。
(項目25)
 照明光軸と撮影光軸とが略同軸の関係を形成するようにして照明光によって被写体を照明した状態において撮像素子が取得した偏光画像のデータに基づいて画像処理を行う画像処理方法であって、前記撮像素子の出力に基づいて輝度画像を生成する工程と、前記撮像素子の出力に基づいて画素ごとに偏光度を算出し、偏光度画像を生成する偏光画像生成部と、前記被写体の表面における凹凸部の凹部で前記偏光度画像の偏光度を強調し、かつ、色相、彩度、および明度の少なくとも1つを補正して加工偏光画像を生成する工程と、前記加工偏光画像と前記輝度画像とを合成する工程と、を含む、画像処理方法。
(項目26)
 照明光軸と撮影光軸とが略同軸の関係を形成するようにして照明光によって被写体を照明した状態において撮像素子が取得した偏光画像のデータに基づいて画像処理を行うための画像処理プログラムであって、前記撮像素子の出力に基づいて輝度画像を生成する工程と、前記撮像素子の出力に基づいて画素ごとに偏光度を算出し、偏光度画像を生成する偏光画像生成部と、前記被写体の表面における凹凸部の凹部で前記偏光度画像の偏光度を強調し、かつ、色相、彩度、および明度の少なくとも1つを補正して加工偏光画像を生成する工程と、前記加工偏光画像と前記輝度画像とを合成する工程と、をコンピュータに実行させる、画像処理プログラム。
 従来の輝度カラー画像処理によれば、透明または半透明の凹凸構造を検出することが困難であった。本開示の実施形態による撮像処理装置は、例えば臓器表面の透明または半透明の凹凸構造を検出することができる。
 図1Aおよび図1Bを参照しながら、透明または半透明の凹凸構造の検出がなぜ輝度画像処理では困難であるかについて、理由を説明する。図1Aおよび図1Bは、胃や腸の臓器表面に形成された凹凸構造の断面を簡略的に示している。胃や腸の表面に存在する多数の溝を有する構造は、一般的には、上に凸のカマボコ状(semi-cylindrical)の形状を有する構造物の繰り返し配列によって構成されていると考えられる。
 内視鏡による観察は同軸照明で行われる。すなわち、被写体に対して略真正面に位置する光源から照明光を照射し、略真正面から撮影が行われる。言い換えると、同軸照明では、光源から発せられた光の進行軸(照明光軸)とカメラ光軸(撮影光軸)とが略同軸(光軸がなす角度が15°以下)の関係を形成する。同軸照明の場合において、通常のカラー輝度撮影にて観察できる反射光は大きく2種に分けられる。1つは、図1Aに示すように、表面にて光が反射する鏡面反射光である。もう1つは、図1Bに示すように、媒質内部に浸透し、より下層で反射して戻って表面から再出射される内部拡散光である。
 鏡面反射光は、照射される光の方向と撮影光軸とが正反射の条件に近い場合に限って発生するため、内視鏡の撮影シーンではごく局所的にしか発生しない。鏡面反射光の色は照明の色すなわち白色であり、輝度は非常に強い。鏡面反射光は、前記の正反射条件から一般に凹凸の凸部にて強く明るく、凹部では弱く暗い。
 一方、内部拡散光は、撮影シーンの全域に渡って観測される。内部拡散光の色は媒質の色自身であり輝度はそれほど強くならない。内部反射光では、媒質全体が光り、媒質の厚い凸部において暗く、媒質の薄い凹部において明るくなる傾向がある。
 以上のことから明らかなように、臓器表面における凹凸の輝度画像は、鏡面反射光と内部拡散光とで反対になる。
 撮影シーンの中では、上記の2種の反射光がその光量を変えながら重ねあわされる。このため、両者の輝度の差がほぼ拮抗する領域では、凹凸部で輝度の明暗差がほとんど無くなる。そのため、凹凸の検出にとって輝度画像が無力となる。もし明暗の輝度差があったとしても、その情報に基づいて、たとえば周囲の画素よりも輝度の低い画素を凹部として検出する処理をすると、鏡面反射光が相対的に強い領域と内部拡散反射光が相対的に強い領域との間で凹凸の位置関係にズレを生じてしまう。
 次に、凹凸の偏光観察を行う場合を説明する。内視鏡による同軸照明による撮影において、偏光情報にて観察できる反射光には大きく2種ある。1つは凹凸の凹部の斜面にて光が2回反射することによって生じる偏光(2回反射偏光)である。もう1つは媒質内部に浸透し、より下層で反射して戻って表面から再出射される過程で生じる偏光(内部拡散偏光)である。
 偏光の強度は偏光度にて表現される。フレネル理論では、偏光度は媒質の屈折率、入射角、出射角によって決定される。表面での1回反射光はほとんど偏光しない。
 図2Aは、凹凸構造における凹部で2回反射が生じる様子を示している。生体表面の溝をモデル化した凸のカマボコ形状の凹部の底部付近の斜面と法線とのなす角度は一定ではなくある分布を有している。しかし、簡単のため、ここでは底部の最大の角度を略45度としている。このとき、入射光は斜面で2回反射して撮影視点に到達する。光が空気と表面媒質との間で2回反射する際に非常に強い偏光を呈する。
 図2Bは、斜面の傾斜角度と同軸照明の2回反射で観察される光の偏光度との関係を示すグラフである。凹部斜面の傾斜角度が45度のときに2回反射光の偏光度がきわめて大きくなるが、傾斜角度が45°から外れると、偏光度は急激に低くなることがわかる。このため、表面一面に凹凸が存在した場合、2回反射光の偏光はきわめて強く検出は容易だが、一定の角度関係を満たす一部の局所領域でしか2回反射光が発生しない上、斜面どうしの開き角度が小さい場合などには現象自体が発生しない。よって、2回反射偏光を利用して表面凹凸の凹部を検出することは、人工物である工業製品の検査などにおいては有効であるが、形状が一定しない生体を任意の位置から観察する内視鏡の観察においては、使える情報としては非常に限定的なものとなってしまう。
 図3Aは、表面凹凸を有する媒質で内部拡散反射が生じる様子を示している。入射光は、半透明媒質内部に進入すると媒質内にてさまざまな散乱を受けながら、より下層の粘膜境界面に到達し、そこから反射されて表面から再度放出される。内部拡散光は、媒質内の屈折率が一様であれば、特定の偏光を有しない。しかし、境界面法線と視線との傾きである出射角が大きい場合には、同軸照明で観察される内部反射光の偏光度か大きくなる。図3Bは、この内部拡散光の偏光度(DOP)と出射角(観測角θ)との関係を示すグラフである。同軸照明で観察される内部反射光の偏光度は、図3Bに示すように、遮蔽エッジに近いほど大きくなる。そのため、このモデルのように最大傾斜角度が45度では偏光度は小さくなる。しかし、このように弱い偏光の検出は、性能のよい偏光イメージセンサを用いれば、充分に実現可能である。
 2回反射による偏光と内部拡散反射による偏光との間には、上記のとおり、局所的限定的なものか、大域的なものであるか、また偏光度が大きいか微弱か、という性質のほか、凹凸の向きに対して偏光の振動面が平行になるか垂直になるかという違いも存在する。
 したがって、2回反射光の強度が強い場合、それに直交する内部拡散反射が消されてしまい観測ができなくなる。本発明者の実験では、被写体となる半透明物体が比較的暗い物質(光の拡散反射率が低い黒や茶色の被写体)の場合には、表面での2回反射が強くなるため、それに直交する内部拡散反射の偏光の観測が困難になる。しかし、この場合は、上記のように、表面には凹凸に伴う明暗の輝度が観測されるため、偏光観測に頼る必要はない。一方で、消化器の粘膜のような明るい半透明物質(光の拡散反射率の高い白と、黄色、ピンク色の被写体)の場合には、内部拡散反射光が多いために輝度の明暗が見えにくくなると同時に、内部拡散による偏光観察が主成分となってくる補完的関係となる。
 なお、上記内部拡散光の偏光を観察する場合には、撮像系の偏光検出性能が重要になる。偏光イメージセンサの性能評価指標として、消光比(ExtinctionRatio)が使われる。本物の消化器粘膜の代用として後述する半透明レンチキュラー板を使った本発明者の実験では、消光比が6:1程度の偏光イメージングカメラを用いた場合には、凹凸の観測が困難であった。しかし、消光比166:1程度の偏光板とカラーカメラの組み合わせの撮像系では、凹凸の観察が十分に可能であった。本開示の実施形態に使用する偏光イメージセンサは、偏光撮像を利用する波長帯において、100:1以上の消光比を有している。
 次に図4を参照して、実際に検出された凹溝を医師にわかりやすく提示する方法の例を説明する。図4(A)は、凹凸にて検出される前記2種類の偏光光を示している。この2種の偏光光の偏光度は、いずれも、凹部において極大化し、凸部では極小化する。このため、この2種類の偏光光から偏光度画像を生成すると、図4(B)に示すように、偏光度の値が大きい箇所である凹部において偏光度画像が明るく、凸部において偏光度画像が暗くなる。しかし、現在、内視鏡観察において医師が表面凹凸に青色色素撒布を実際に実施した際には、凹部に青い液体がたまって暗くなり凸部では青色液体ははじかれて明るくなっている。このため、この偏光度画像を輝度画像にそのまま重畳しても医師にはわかりづらいものとなる。
 そこで、実施形態では、偏光度画像に加工を実施する。図4(C)に示すように、偏光度画像の明度を反転する処理をしてから、その偏光度画像と輝度画像とで重み付け加算を実施する。これによって、内視鏡のカラー画像で凹凸が見えない表面に凹部が「暗」、凸部が「明」という輝度の明暗を重ねて表示できることになる。より色素撒布画像に近づける処理をするには、図4(D)に示すように、偏光度画像の色相を青色に設定して明度を高くし彩度を明度で変調する処理を行えばよい。これによって、ちょうど凹部に青色液体が溜まる状態に類似した画像を生成することも可能となる。
 本開示の実施形態では、透明あるいは半透明の被写体表面において2回反射(鏡面反射)による局所的ではあるが強い偏光度を有する反射光と、透明あるいは半透明の被写体内部の内部拡散光が表面から射出される際の非局所的であるが弱い偏光度を有する反射光の、2種類の反射光を合成した光がちょうど凹凸の凹部において極大になるという性質が利用される。このため、輝度を直接利用する必要がなくなり、明暗変化がほとんど無い領域でも、また反射状態によって明暗と凹凸の関係が異なる場合でも被写体表面の凹凸を検出することができる。
 さらに偏光度画像に対して、その色信号の色相、輝度、明度の少なくとも1属性に加工を施し、加工された偏光度画像と輝度画像とを合成すれば、被写体表面の凹凸を強調表示する画像が得られる。こうすれば、弱い偏光度の画像でも、検出した凹凸を人間に対して判りやすい形で画像上に輝度と重ね合わせて提示することができる。具体的には凹凸の凹部を暗、凸部を明に輝度表示するモードとインジゴカルミンなどの青色色素液体を撒布したのと類似の状態にするように凹凸の凹部を青色、凸部を白色に輝度表示するモードを備える。
 以下、本開示の実施形態をより詳細に説明する。後述する4つの実施形態の概略は、以下のように整理され得る。本開示は、これらの実施形態に限定されない。
 第1の実施形態:
 照明光はR、G、Bの色を有する非偏光の光であり、時分割で色の異なる光で被写体が照射される。撮像素子には偏光子アレイが設けられているが、カラーモザイクフィルタは設けられていない。
 第2の実施形態:
 照明光は非偏光の白色光である。撮像素子には偏光子アレイおよびカラーモザイクフィルタが設けられている。
 第3の実施形態:
 照明光は白色光の偏光光であり、偏光面の向きが異なる偏光光を時分割で被写体に照射する。内視鏡の先端部で偏光照明が形成されるが、光源は、内視鏡の先端部には設けられていない。撮像素子にはカラーモザイクフィルタが設けられているが、偏光子アレイは設けられていない。
 第4の実施形態:
 照明光は白色光の偏光光であり、偏光面の向きが異なる偏光光を時分割で被写体に照射する。内視鏡の先端部に光源が設けられている。撮像素子にはカラーモザイクフィルタが設けられているが、偏光子アレイは設けられていない。
(第1の実施形態)
 図5は、本開示の実施形態1における撮像処理装置の全体構成を模式的に示す。本撮像処理装置は、内視鏡101と、制御装置102と、表示部114とを備える。内視鏡101は、モノクロ広帯域偏光撮像素子115を有する先端部106、および、ライトガイド105と映像信号線108とを内部に有する挿入部103を有している。内視鏡101の挿入部103は、図示されているように左右に長く、フレキシブルに曲がり得る構造を有している。ライドガイド105は曲がった状態でも光を伝達することができる。
 制御装置102は、光源部104と画像プロセッサ110とを備える。光源部104内には、キセノン光源、ハロゲン光源、あるいはLED光源などによるランプ108が備えられている。ランプ108から発した白色非偏光の光は、回転するRGBフィルタを有するカラーホイール116を通過する。その結果、Rレッド、Gグリーン、Bブルーの面順次光が形成され、ライトガイド105を経由して先端部106に導かれる。こうして、被写体にR、G、Bの色が順次切り替わる非偏光の照明光117で凹凸のある半透明被写体111を照射する。被写体111からの反射光113は、撮影レンズ109を通ってモノクロ広帯域偏光撮像素子115上に結像する。
 同期装置112は、カラーホイール116の回転と同期しながら、モノクロ広帯域偏光撮像素子115に撮影開始信号を送って反射光による映像を取得する。撮像によって得られた映像信号は、映像信号線108を経由して画像プロセッサ110に到達する。
 以上の処理をR、G、Bの色が切り替わる面順次方式で実施してカラー撮像と偏光撮像を実施する。
 次に、モノクロ広帯域偏光撮像素子115の構成と、画像プロセッサ110による特徴的な画像処理によって図4で説明した処理がいかに実現されるかを説明する。
 図6は、モノクロ広帯域偏光撮像素子115の撮像面の構成例を示す図である。図6に示すように撮像面には、画素が行および列状に規則的に配列されている。
 本実施形態では、照明光の色がR、G、Bの間で順番に変化するために、撮像面上にはカラーモザイクフィルタは設置されない。このため、本実施形態における撮像素子115はモノクロ撮像素子であるが、RGBの各波長帯域において感度を有するよう構成されている。また、偏光撮像がこの広い波長帯で可能なように偏光子も可視光帯域で十分な性能を有する。例えば波長400nm~800nmの帯域において、偏光子の消光比が100:1以上であり得る。本実施形態では、特定波長の狭い帯域のみで偏光特性を呈する偏光子を使用する代わりに、金属ワイヤグリッド偏光子アレイ200を採用している。
 金属ワイヤグリッド偏光子アレイ200の具体的配置例の一部が図6に拡大して示されている。この例では、2×2の画素ブロックに偏光透過軸を45°ずつ回転させた金属ワイヤグリッド偏光子アレイ200a、200b、200c、200dが配列されている。この2行2列の金属ワイヤグリッド偏光子アレイ200a、200b、200c、200dからなるブロックが周期構造の1つの単位を形成している。本明細書では、一定の方向に金属ワイヤが平行に並んだワイヤのグリッドを1個の「金属ワイヤグリッド偏光子」と称し、複数の金属ワイヤグリッド偏光子が面内に配列された構造を全体として「金属ワイヤグリッド偏光子アレイ」と称する。
 後述するように、この金属ワイヤグリッド偏光子アレイ200は、撮像素子の最上面から下層までの間の任意のレベルに配置され得る。撮像面に垂直な方向から見たとき、画素の各々に割り当てられる個々の金属ワイヤグリッド偏光子アレイ200a、200b、200c、200dは、画素の外縁よりも若干の余裕度Δだけ内側に後退して領域内に配置されている。1画素が一辺の長さD=3~4μmの正方形であるとすると、余裕度Δは、例えば0.2μm=200nm以上に設定され得る。ワイヤグリッド偏光子アレイ200a、200b、200c、200dを構成する複数の金属ワイヤの各々の幅Lと間隔Sのデユーティ比は、透過率と消光比のトレードオフになる。本実施形態では、後述するようにL=S=0.1μm=100nmに設定している。Δ=0.2μm=200nmの場合、各ワイヤグリッド偏光子アレイ200a、200b、200c、200dを構成する金属ワイヤの本数は、金属ワイヤの方向によって異なり、金属ワイヤの方向が0°と90°の場合には、金属ワイヤの本数は17本であり、45°と135°の場合には23本(いずれも奇数)である。このため、撮像面に垂直な方向から見たとき、各画素の中心はかならずワイヤグリッド偏光子アレイ200a、200b、200c、200dのいずれかによって覆われている。また、ワイヤグリッド偏光子アレイ200a、200b、200c、200dの各々において、中心のワイヤを基準にすると、その両側に位置するワイヤは、中心のワイヤに対して線対称に配列されている。
 図7および図8は、それぞれ、ワイヤグリッド偏光子アレイ200における一組の偏光子アレイ200a、200b、200c、200dの別の配置例を示している。いずれの例でも、2×2=4個のワイヤグリッド偏光子アレイ200a、200b、200c、200dが周期構造の1単位を形成し、4個のワイヤグリッド偏光子アレイ200a、200b、200c、200dの金属ワイヤの方向が45°ずつ回転した関係を有している。
 図7の例では、各ワイヤグリッド偏光子アレイ200a、200b、200c、200dの周囲に金属のフレームを設けることにより、ワイヤグリッド偏光子を構成する個々のワイヤが高い場合の倒れを防止することができる。
 図8の例では、各ワイヤグリッド偏光子アレイ200a、200b、200c、200dを構成する金属ワイヤの本数が金属ワイヤの方向によらず一定である。
 金属ワイヤグリッド偏光子アレイ200a、200b、200c、200dは、一般的なワイヤグリッド偏光子で使われているAl(アルミニウム)から形成され得るが、他の金属から形成されていてもよい。ワイヤグリッド偏光子アレイ200a、200b、200c、200dを構成する金属ワイヤの寸法は、可視光での動作を行うためサブ波長領域にある。金属ワイヤグリッド偏光子アレイ200を正面から見たときの金属ワイヤの幅、および、金属ワイヤの間隔を、それぞれ、「ライン幅」および「スペース幅」と呼ぶことにする。また、金属ワイヤグリッド偏光子アレイ200を側面から見たときの金属ワイヤの厚さを、「高さ」と呼ぶことにする。ライン幅、スペース幅、および高さは、それぞれ、100、100、および100nm程度以下に設定され得る。
 表1に、アルミニウム製ワイヤグリッド偏光子の寸法による性能の違いを示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す数値は、本発明者のシミュレーション実験から得られた。ワイヤグリッド偏光子のライン幅Lとスペース幅Sを同じ幅とした場合、ピッチP=(L+S)および高さHを表1に示す値に設定すると、100:1以上の消光比が得られることがわかる。
 図9から図11は、P=120、160、200nmとした場合のワイヤグリッド偏光子のTM透過率(TM Transmittance)および消光比(ExtinctionRatio)の波長依存性を示すシミュレーション結果である。ピッチP=120nmのとき、最も性能が高くなるが、P=200nmでもH=110nm以上とすることによって消光比100:1をほぼ全可視光範囲で得られることが判明した。
 次に、ワイヤグリッド偏光子の斜入射特性につき説明する。
 図12は、P=200nmのワイヤグリッド偏光子に30°の入射角で平行光が入射した場合のシミュレーション結果を示している。図11と図12との比較により、波長400nm付近でTM透過率、消光比とも低下が見られる。この低下はPが十分小さい場合には比較的軽微である。ワイヤグリッド偏光子に垂直に光を入射させると、このような低下は見られない。
 次に、ワイヤグリッド偏光子の背景媒質の影響につき説明する。
 図13は、背景媒質の屈折率nを1.46(SiO2など)とした場合と1.0(空気)にした場合における消光比の波長依存性を示すグラフである。図13のグラフは、上からP=120、180、200nmにおけるシミュレーション結果を示している。図13における「Al in the air」はワイヤが空気に囲まれている例を示し、「Al in the medium」はワイヤが背景媒質によって囲まれている例を意味する。ここで注目されるのが消光比の違いが1桁程度もあることある。ワイヤグリッド偏光子は屈折率が高い媒質中に埋められるよりも、空気中に置かれた方が高い消光比を実現できる。これは媒質中では光の波長が1/nになるため、媒質中に設置された金属構造が波長に比較して相対的に大きく見えるため、サブ波長素子としての条件を満足できなくなるためと想像される。
 非特許文献1によると、P=140nm、H=70nmで消光比はG、Rの各波長でそれぞれ44:1、Rで30:1であった。この数値はワイヤグリッド偏光子単独のシミュレーション結果から見ると1桁以上低下している。したがって、ワイヤグリッド偏光子を撮像素子に実際に装着すると、その性能が劣化することが予想される。性能劣化を引きおこす主要な原因は、画素間クロストークである。そこで本実施形態においては、まずワイヤグリッド偏光子の基本性能を向上させるとともにワイヤグリッド偏光子から撮像素子のフォトダイオード(PD)までの距離は2~3μm程度にする。
 図14は、本実施形態におけるモノクロ広帯域偏光撮像素子115の1画素に相当する部分の断面構造を示す図である。撮像素子は、種類が限定されず、CMOS型、CCD型などであり得る。
 入射光は、図14における撮像素子の上方に設置される対物レンズ(図示せず)から撮像面に到達する。最上面にはマイクロレンズ210が設置される。このマイクロレンズ210の役割は光の効率的なPD220への集光であるが、同時に斜め入射光の光路をまげて垂直に近い角度にするもので、特に内視鏡のように広角撮影が多用されるケースでは有効である。同時にワイヤグリッド偏光子アレイ200に対してほぼ直上から光を入射させることができるため、TM透過率と消光比の低下を防ぐ効果を有する。
 マイクロレンズの下には平坦化層があり、その下層にワイヤグリッド偏光子アレイ200が設置されて45°ずつ回転した特定の方向の偏光だけが透過し、それ以外の光は反射または吸収される。ここで、ワイヤグリッド偏光子アレイ200は、図14に示すように、金属ワイヤの隙間からなる中空構造を有している。各金属ワイヤは、隙間を充填する屈折率がほぼ1の空気と接しているため、高い消光比が実現され得る。
 ワイヤグリッド偏光子アレイ200が上方に位置するほど、中空構造を作りやすいため、マイクロレンズ210の次の下層に設置される。ワイヤグリッド偏光子アレイ200の下層には、平坦化層230aと配線層250がある。光の透過部分には配線が設けられていないため、入射光は配線に遮光されることなく、その下層にあるPD220に到達する。一般に撮像素子では、マイクロレンズからPDまでの距離を短くする低背化が重要である。偏光撮像素子の場合も同様であり、マイクロレンズ210からPD220までの距離が長い場合、画素間クロストークが発生して偏光特性、特に消光比を低下させてしまう。本実施形態においては、偏光における画素間クロストークの原因となるワイヤグリッド偏光子アレイ200からPD220までの距離(深さD)を2~3μm程度に設定している。
 ワイヤグリッド偏光子アレイ200では、金属ワイヤが延びる方向に対して垂直な方向に電場が振動する電磁波(TM波)の透過率は高いが、金属ワイヤが延びる方向に対して平行な方向に電場の振動する電磁波(TE波)の透過率は低い。このため、TE波はワイヤグリッド偏光子アレイ200で反射され、反射光が迷光となり、性能劣化の原因となる。これを回避するためには、ワイヤグリッド偏光子アレイ200を複数の層に積層し、反射光を積層された構造中で吸収するように構成することが有効である。
 図15は、おなじくモノクロ広帯域偏光撮像素子115の撮像面の断面構造の他の例を示す図である。この例における撮像素子115は、いわゆる裏面照射型である。上層からマイクロレンズ210・ワイヤグリッド偏光子アレイ200・PD(220という順番は同じであるが、配線層250がPD220の上に存在しないため一層の低背化が実現され、撮像素子115の感度が向上する利点がある。さらにワイヤグリッド偏光子-PD間距離Dもきわめて短くできる。図16は、おなじくモノクロ広帯域偏光撮像素子115の撮像面の別の断面構造を示す図である。この例における撮像素子115は、光の入射側の上層から、ワイヤグリッド偏光子アレイ200、マイクロレンズ210、PD220という順番の構成をとる。この構成は、テレセントリック光学系などを用いて撮像素子115には斜め入射がないような状態で使う場合の偏光撮像素子を想定したものである。ワイヤグリッド偏光子アレイ200を最上層に配置することで中空型の構造を作る必要がなくなる利点がある。
 図17は、モノクロ広帯域偏光撮像素子115の撮像面において、0°、45°、90°、135°という異なる4つの角度で特定される偏光子の偏光モザイク配列のの幾つかの例を示す平面図である。図17(A)および(B)は、それぞれ、偏光モザイク配列の周期構造を規定する単位が2×2=4個の偏光子から構成される例を示している。一方、図17(C)および(D)は、それぞれ、偏光モザイク配列の周期構造を規定する単位が2×4=8個の偏光子から構成される例を示している。偏光子の4つの角度は、図17(E)の座標に示すように、ワイヤグリッド偏光子のワイヤの向き(方位角)で定義される。
 これらの偏光モザイク配列では、それぞれの単位を上下左右に並べて平面が埋め尽くされ得る。このような偏光モザイク配列によれば、接接する2×2個の偏光子の中に必ずワイヤの向きが異なる4種類のワイヤグリッド偏光子が存在する。
 なお、臓器からの反射光の偏光度は、極めて微弱なため、本実施形態では、偏光撮像素子115の消光比性能を向上させている。偏光撮像素子115の性能を最大限まで高めるための偏光キャリブレーション処理を実施してもよい。
 この偏光キャリブレーション処理は、以下のようにして行われ得る。
 偏光撮像素子を用いて、完全拡散板などの偏光度が0に近い標準被写体を撮影した偏光画素構造レベルの画像データを蓄積しておく。実際の観察時点では、画素構造レベルで観測された画素値IOを、事前に完全拡散板で観測された画素値IWを使って以下の式1で示される除算を実施する。この処理は、以下に説明する図5の偏光モザイク処理部300において観測時にリアルタイムに実施されてもよいし、撮像素子115自身内部の電子回路で処理されてもよい。これによって偏光撮像素子115の各偏光画素の有する輝度や偏光特性のばらつきやオフセット等が補正され、微弱な偏光度を正確に観測することができる効果を有する。観測される偏光度DOPが0.05程度の場合には、撮像素子115の偏光特性のばらつきやオフセット値に対して信号が微弱となる。しかし、この偏光キャリブレーション処理によって鮮明な表面凹凸画像を得ることが可能になる。
Figure JPOXMLDOC01-appb-M000001

ここで、Kは定数を示し、0、°45°、90°、135°における観測輝度をそれぞれIO0、IO1、IO2、IO3、事前に観測された完全拡散板などの観測輝度をIW0、IW1、IW2、IW3としている。
 上述のモノクロ広帯域偏光撮像素子115で撮影された映像信号は、次に図5の偏光モザイク処理部300に入力される。偏光モザイク処理部300では、撮像素子115からの画像の読み出しと面順次に取得された画像を、後段の画像処理のため、RGBカラー画像に整えてバッファに蓄積する。また、偏光モザイク処理部300は、図17を参照して説明した各種のモザイク配列に基づいて、画像平面内のどの場所においても4種類の偏光画素値I0、I1、I2、I3を出力する。
 図18を参照して、この偏光モザイク処理部300、輝度画像生成部312、偏光度画像生成部314の処理を説明する。図18(A)に、2×2単位の偏光モザイクの仮想的な中心画素位置1801を示す。4種の異なる向きの偏光子で観測された輝度値をI0、I1、I2、I3とし、これらの値は上記の中心画素位置1801にて取得されたものとみなして処理をする。
 図5の輝度画像生成部312は、観測後、上記のキャリブレーション処理された4個の偏光画素値I0、I1、I2、I3を平均する。こうして、偏光成分がキャンセルされたカラー輝度値を取得する。カラー輝度値は、色毎に決定された輝度Yをカラー成分として含む。以下の説明では、輝度YはR、G、Bなどのカラー成分の1つを表す。0、°45°、90°、135°における観測輝度をそれぞれI0、I1、I2、I3とすると、平均値である非偏光輝度YAVEは、以下の式2によって算出される。
Figure JPOXMLDOC01-appb-M000002
 本明細書における「輝度画像」とは、R成分、G成分、B成分が合成されたカラー画像を示すものとする。従って、R、G、Bの3つのカラー成分について式2によって算出された輝度を、3つのカラー成分について合算することにより、輝度画像が得られる。
 図5の偏光度画像生成部では、4個の画素値の変動を余弦関数にフィッティングする。偏光透過軸は、ワイヤグリッド偏光子のワイヤに対して直交している。この偏光透過軸の方位角をΨIとすると、4個の画素値の輝度変動Y(ΨI)は、平均輝度YΨI_AVE、位相Ψo、振幅AIを変数として、以下の式3で表現される。この式3で表される余弦関数の例が図18(C)に示される。
Figure JPOXMLDOC01-appb-M000003
 図18(B)は、偏光度画像生成部314で実行される演算を説明する図である。偏光度画像生成部314では、図18(B)に示されるように、2つの対角差分値(I0-I2)および(I1-I3)が計算される。これらの対角差分値を用いると、振幅AIは以下の式4で得られる。
Figure JPOXMLDOC01-appb-M000004
 以下の式5を用いると、偏光度DOP(Degree of Polarization)は、以下の式6で求められる。
Figure JPOXMLDOC01-appb-M000005

Figure JPOXMLDOC01-appb-M000006
 DOPは、図18(A)に示される中心画素位置1801に1つの値が与えられる。撮像面内における多数の中心画素位置1801の各々でDOPが求められる。このDOPをデジタル値として各画素に割り当てて画像としたものが偏光度画像である。DOPの値を8ビットで表現する場合、偏光度=0(最低)ときの画素値が0、偏光度=1(最高)のときの画素値が255をとるモノクロ画像によって偏光度画像が表現される。
 偏光度の計算は、図18(B)で示す2×2画素単位での対角差分値が基本的になる。この演算は、隣接画素との差分演算であるため、ノイズに弱い。その結果、偏光度画像上にモアレなどのアーティファクトが発生することがよくある。これを防ぐために、偏光度計算をする前段階で画像の最高周波数(空間周波数の最高値)を下げてもよい。具体的には、広帯域偏光撮像素子115で撮像された全解像度の画像に対してローパスフィルタ処理を実施してもよい。ローパスフィルタ処理は、光学的にではなく画像処理によって行うことができる。あるいは、最大解像度を使用せず、2×2単位画素を仮想的な1画素の単位として全体の画像サイズを1/2×1/2にしてもよい。
 図19Aは、輝度画像生成部312と偏光度画像生成部314における計算をリアルタイム処理するための構成例を示すブロック図である。偏光モザイク処理部300から輝度画像生成部312に入力された4種の画素値I0、I1、I2、I3は、まず輝度画像生成部312で加算平均される。輝度画像生成部は、加算平均によって得たYAVEを出力する。また2種の対角位置の画素値(I0、I2)および(I1、I3)は、偏光度画像生成部に入力される。偏光度画像生成部314では、前述した2つの対角差分値(I0-I2)および(I1-I3)に基づいて、計算回路によって振幅AIが算出される。この計算は、式4に従って実行される。
 最後にYABEとAIとから、(式5)(式6)を計算する処理を経て、偏光度DOPが算出される。
 なお、ここで述べたブロック図の処理は、本実施形態における画像プロセッサ110内で専用ハードウエアまたは高速ソフトウエアにて実施され得る。しかし、偏光撮像素子115が、このブロックで示した計算回路を含んでいてもよい。そのような計算回路を偏光撮像素子115が備える場合、その偏光撮像素子から通常のカラー画像(輝度画像)と偏光度画像とを、同時または選択的に出力させることもできる。制御信号線を介して偏光撮像素子115に制御信号を入力し、あるモードでは通常のカラー画像を出力させ、他のモードでは偏光度画像を出力させることができる。
 図19Bは偏光度画像加工部での処理を説明する図である。
 図4を参照して説明したように、本実施形態では、生成された偏光度画像を人間にとって見易い画像として医師に提示するための特殊な加工を施す。従来、偏光度画像処理の結果は擬似カラー表示されることが多かった。たとえば、(式3)で示される余弦関数にフィッティングして得られるΨ0とDOPを、擬似色信号の色相と彩度に割り当てることが知られている。しかし、この表示は、偏光情報のビジュアライゼーション手法に過ぎない。一方、本実施形態では、表面凹凸の強調による人間に見易い画像への加工を2つの手法で実現する。
(1)輝度モード
 輝度モードでは、通常のカラー輝度画像に対して、凹部を暗く、凸部を明るく強調して表示する。凹部が暗く、凸部か明るい画像(強調画像)をカラー輝度画像(基準画像)と重畳して表示しても良いし、強調画像と基準画像とを個別に切り替えて表示してもよい。凹部が暗く、凸部か明るい画像は、偏光度画像から作成される。
 偏光度を強調した後に反転する処理を偏光度画像に対して行えば、強調画像を得ることができる。この処理は、以下の式7に従って実行され得る。
Figure JPOXMLDOC01-appb-M000007

ここでEnhance関数は入力を線形、非線形に強調する関数である。この処理の結果得られるDOP1は、R、G、B成分を有するカラー画像であるが、R、G、B成分の大きさが等しいため、グレイ画像と言える。
 図19Cは、上記のEnhance関数の例を示している。8bit信号で表現された偏光度DOPがおなじく8bit信号の偏光度DOP1に強調される。図19Cの例では、直線的なゲインアップが行われるが、Enhance関数の形は任意である。半透明被写体の表面凹凸を観測するため、内部拡散光の微弱な偏光を偏光度画像として見える状態にまで強調する。Enhance関数のゲインは、例えば50倍程度に設定され得る。
(2)青色色素モード
 青色色素モードでは、凹部をインジゴカルミン液が溜まった状態のように青暗く、凸部をカラー画像のままに表示する。この処理は偏光度を強調した後にHSVカラー処理をして加工することによって実現される。この処理は、例えば、以下の式8に従って行われ得る。
Figure JPOXMLDOC01-appb-M000008

ここで、HSV2RGB()関数は、色相H、彩度S、明度VからなるHSV色空間からRGB色空間に変換する関数である。本実施形態では、色相を青色の色相Blue_Hue、明度を最大値1と固定する。そして、DOPが高い箇所の青色を濃くするように彩度を決定する。結果として得られるDOP2は、カラー画像である。
 画像合成部320では、輝度画像YAVEと、上記のように加工された偏光度画像DOP1またはDOP2とをカラー成分ごとに重みつき加算して合成する。重み係数をWとすると、以下の式9に示すように表現できる。
Figure JPOXMLDOC01-appb-M000009
 式9におけるWを可変にすることにより、異なる種類の画像を得ることができる。例えばW=1の場合には、通常カラー画像が得られ、W=0の場合には、加工された偏光度画像が得られる。Wを自在に変更することにより、カラー輝度画像と加工された偏光度画像とを任意に比率で合成し、医師が見やすい画像を得ることができる。半透明粘膜から透けて見えている下層の毛細血管パターンなどを観察しつつ、最表面の凹凸も同時に観察する場合、従来のインジゴカルミン液撒布を行うと、表面の凹凸が明瞭化して背景の毛細血管などは隠蔽されてしまいがちであった。しかし、本開示の実施形態によると、表面の凹凸の観察と背景の毛細血管の観察とを両立させることができる。
 次に、本実施形態の撮像処理装置を用いて被写体を撮像し、画像処理を行った結果を説明する。被写体として、実際の臓器ではなく、市販の50mm×50mm×2mmの正方形アクリル製の半透明レンチキュラー板を用いていた。色はイエローで透明性はないが、光が内部で拡散する。表面の溝は、ピッチ0.7mm、凸部半径が0.5mmである。
 図20(A)は、被写体の一部を拡大して示す模式断面図である。被写体の表面における凹部の最大法線の角度は以下のように45.57°となり、ほぼ45°である。
Figure JPOXMLDOC01-appb-M000010
 図20(C)は、撮影によって得たレンチキュラー板の表面の輝度画像を示す図である。図20(B)は、凹凸溝の向きと長さを模式的に示す黒色の実線を図20(C)の画像に付加したものを示す図である。溝は被写体全体に形成されている。ここでは、撮影の光軸をレンチキュラー板に対して斜めに傾けて撮影している。
 図20(B)における領域(B-1)の中心付近の明るい帯の領域は、撮影に使ったリング照明が正反射している領域である。領域(B-1)では、表面に凹凸溝に沿って明暗が観測されている。
 一方で、図20(B)における領域(B-2)は、内部拡散反射の領域である。領域(B-2)では、半透明物体の性質として表面の明暗はほとんど観察されない。すなわち領域(B-2)では、輝度によって凹凸を検出することができない。
 図20(D)および図20(E)は、偏光度画像の強調画像Enhance(DOP)、および偏光度の反転画像DOP1をそれぞれ示している。撮影に用いたのはカラーカメラとガラス製回転偏光板であり、実測消光比は166:1程度であった。実験によれば、この偏光撮影において消光比が6:1程度の市販偏光カメラを使用した場合、偏光度がノイズに埋もれてしまい、強調しても画像品質が劣化する結果となった。偏光板の消光比を100:1以上に設定すると、ノイズの少ない像を得ることができる。
 図20(F)は、合成画像の一例を示す図である。図20(C)の画像と図20(F)の画像とを比較すると、輝度画像では見えなかった領域(B-2)の内部拡散反射による凹凸溝が強調されて可視化できていることがわかる。また、領域(B-2)の内部拡散反射による凹凸溝の像と領域(B-1)の鏡面反射による凹凸溝の像との間で、整合性、連続性が実現されていることがわかる。
 上述した画像処理は、画像処理プログラムを格納した公知のコンピュータによっても実行され得る。そのような画像処理プログラムは、撮像素子の出力に基づいて輝度画像を生成する工程と、撮像素子の出力に基づいて画素ごとに偏光度を算出し、偏光度画像を生成する工程と、被写体の表面における凹凸部の凹部で偏光度画像の偏光度を強調し、かつ、色相、彩度、および明度の少なくとも1つを補正して加工偏光画像を生成する工程と、加工偏光画像と輝度画像とを合成する工程とをコンピュータに実行させるように構成され得る。このプログラムは、撮像処理装置の制御部110が備える、コンピュータ読み取り可能な非一過性(non-transotory)の記録媒体に格納され得る。
 なお、上記の画像処理プログラムと同様のプログラムは、以下に説明する他の実施形態における画像処理についても作成され得る。
(第2の実施形態)
 図21は、本開示の実施形態2における撮像処理装置の全体構成を模式的に示す図である。本実施形態が第1の実施形態と異なるのは、本実施形態では、ホワイト光を照射して単板カラー偏光撮像素子119にてカラー撮像を行う点にある。
 本実施形態においては、光源部104からの白色の非偏光光が、ライトガイド105を透過して白色非偏光の照明光117として被写体に照射される。被写体からの反射光は、カラー偏光撮像素子119によって観測される。それ以降の処理については、実施形態1と同様であるから説明を省略し、ここでは、カラー偏光撮像素子119の構成について詳しく説明する。
 図22は、本実施形態におけるカラー偏光撮像素子119の平面構造を示す図である。図22(A)および図22(B)に示されるように、本実施形態のカラー偏光撮像素子119では、モノクロ単板撮像素子と異なり、カラーモザイクフィルタが配列されている。ここでは、ベイヤーモザイクのパターンでR、G、Bの3種類のカラーフィルタが配列されているが、他のモザイクパターンでカラーフィルタが配列されていても良い。図22(C)に示すように、カラーフィルタはサブ画素構造を有している。このサブ画素構造に4種類の偏光モザイクが包含される。サブ画素を基準にすると、イメージセンサの解像度は本来の解像度の1/2×1/2となって低下する。しかし、各カラーフィルタに対応する1画素内で偏光情報を取得できるため、偏光処理の結果発生するアーティファクトを低減させることができる。
 図23は、偏光処理によるアーティファクト発生を示す実験結果を示す図である。本実施形態と同様な微細な2×2画素を基本周期とする周期型偏光モザイクを有するモノクロ偏光カメラ(フォトニックラティス社製PI-100)でリング照明を用いてレンチキュラー板を照明、撮影して偏光度画像を求めた。図23(A)が周囲4画素の平均から求めた輝度画像、図23(B)が偏光度画像を示す。いずれも1120×868画素のレンチキュラー板の撮像画像を示す。ここで、図23(B)の偏光度画像の領域において、図23(A)の輝度画像には無いモアレ縞が発生しているのがわかる(枠線内の拡大図を参照)。この原因は、この領域がリング照明の正反射領域のため、レンチキュラー板の輝度で明暗のあるパターンが観測され、その周波数が2×2偏光モザイクの周波数帯内に入ってしまうためである。輝度画像を生成する処理では、偏光モザイク画素の周囲画素を平均化するため、アーティファクトは低減する。しかし、偏光度画像を生成する処理では、図22(C)で示したように隣接画像との対角差分値を計算するため輝度差を増幅してアーティファクトが増加する。
 これを防止するには、対角差分を計算する範囲を画像上でなるべく小領域に局在化させればよい。複数の偏光画素を1つのカラーフィルタ内のサブ画素に対応させると、増強される画像の空間周波数を高めることができ、アーティフェクトの発生を低減できる。カラーモザイクフィルタを構成する1色のカラーフィルタのみに1つの偏光画素を配置する構成が従来の技術でよく見られる。しかし、その場合、上記の対角画素の空間周波数がより低い方向に移動するため撮像シーンの空間周波数と干渉する可能性が高くなり好ましくない。
 図24は、本開示のカラー偏光撮像素子119の断面構造を示す図である。図14で示したモノクロ広帯域偏光画像撮像素子115と異なるのはカラーフィルタ270がワイヤグリッド偏光子アレイ200からPD(フォトダイオード)220までの間に設置されることである。このカラーフィルタ270は有機物を用いるものでもフォトニック結晶などを用いるものでもよい。光の入射側からPD220までの光の進行方向からみた場合、マイクロレンズ220、ワイヤグリッド偏光子アレイ200、カラーフィルタ270の配置の取りえる順序は計6通りあり、各々でその利点が異なる。ワイヤグリッド偏光子-PD間距離Dはカラーフィルタ270が入る分長くなるために典型的には4~6μmとなる。
 図24の構成では、マイクロレンズが最上層に位置するため、ワイヤグリッド偏光子アレイ200に垂直に光を入射させうる利点がある。カラーフィルタ270入射側にワイヤグリッド偏光子アレイ200が配置されているため、ワイヤグリッド偏光子アレイ200は広帯域で動作する特性が必要である。しかし、マイクロレンズの直下にワイヤグリッド偏光子を設置するため、ワイヤグリッド偏光子アレイ200に空気層を接触させる中空構造を作りやすい。
 図25は、本実施形態におけるカラー偏光撮像素子119の別の断面構造(最上層からマイクロレンズ210・カラーフィルタ270・ワイヤグリッド偏光子アレイ200)を示す図である。マイクロレンズ210が最上層に位置するために、ワイヤグリッド偏光子アレイ200に垂直に光を入入射させうる利点がある。また、この形態ではカラーフィルタ270より下層側にワイヤグリッド偏光子アレイ200が配置されているため、ワイヤグリッド偏光子アレイ200は狭帯域のものでも構わない。またワイヤグリッド偏光子-PD間距離のDはカラーフィルタ270とマイクロレンズ210が入らない分短距離にできる利点がある。
 図26は、本実施形態におけるカラー偏光撮像素子119の別の断面構造(最上層からカラーフィルタ270・マイクロレンズ210・ワイヤグリッド偏光子アレイ200)を示す図である光はカラーフィルタ270を透過した後にワイヤグリッド偏光子アレイ200を透過するため、ワイヤグリッド偏光子アレイ200はRGBなどの波長依存性を有する狭帯のものを設置することもでき、設計の自由度が増す。またマイクロレンズがワイヤグリッド偏光子よりも上層に位置するため、ワイヤグリッド偏光子に垂直に光を入射させうる利点がある。またワイヤグリッド偏光子-PD間距離Dはカラーフィルタアレイとマイクロレンズが入らない分短距離にできる利点がある。
 図27は、本実施形態におけるカラー偏光撮像素子119の別の断面構造(最上層からカラーフィルタ270・ワイヤグリッド偏光子アレイ200・マイクロレンズ210)を示す図である。光はカラーフィルタ270を透過した後にワイヤグリッド偏光子アレイ200を透過するため、ワイヤグリッド偏光子アレイ200はRGBなどの波長依存性を有する狭帯のものを設置することもでき、設計の自由度が増す。また、ワイヤグリッド偏光子アレイ200がカラーフィルタ270の直下に設置されるため中空構造を作りやすい利点がある。またワイヤグリッド偏光子-PD間距離のDはカラーフィルタアレイが入らない分短距離にできる利点がある。
 図28は、本実施形態におけるカラー偏光撮像素子119の別の断面構造(最上層からワイヤグリッド偏光子アレイ200・マイクロレンズ210・カラーフィルタ270)を示す図である。カラーフィルタ270入射側にワイヤグリッド偏光子アレイ200が配置されているため、ワイヤグリッド偏光子アレイ200は広帯域で動作する特性が必要であるが、ワイヤグリッド偏光子アレイ200が最上層に位置するため、中空構造を作る必要がない利点を有する。
 図29は、本実施形態におけるカラー偏光撮像素子119の別の断面構造(最上層からワイヤグリッド偏光子アレイ200・カラーフィルタ270・マイクロレンズ210)を示す図である。カラーフィルタ270入射側にワイヤグリッド偏光子アレイ200が配置されているため、ワイヤグリッド偏光子アレイ200は広帯域で動作する特性が必要であるが、ワイヤグリッド偏光子アレイ200が最上層に位置するため、中空構造を作る必要がない利点を有する。
 なお、カラーモザイク構造と一緒に多用される構成要素である水晶LPF(ローパスフィルタ)は複屈折現象を使うために偏光を乱す可能性があるため基本的に使うことは望ましくない。しかしながら、ベイヤーカラーモザイクフィルタを用いたカラー画質向上のために必要な場合には、ワイヤグリッド偏光子アレイアレイ200よりも下層(後段)の位置に使用することは構わない。
 なお、いずれの構成においても図15で示した裏面照射型の撮像素子へ適用することは可能であり、撮像素子の低背化によって感度向上が実現する。これは公知の技術であるため省略する。
 なお、第1の実施形態、第2の実施形態ともに通常の内視鏡の構成を描いているが、これをそのまま図示していないカプセル内視鏡へ適用することも可能である。カプセル内視鏡の場合、体内の水中撮影が基本となるため、従来のインジゴカルミン溶液撒布が原理的に使えない。そのため表面の半透明粘膜凹凸を観測するための方法が無く、本実施形態が有効になる。
(第3の実施形態)
 図30は、本開示の実施形態3における撮像処理装置の全体構成を模式的に示す図である。
 本実施形態が第1、第2の実施形態と異なるのは、本実施形態では、照明光として偏光光を被写体に照射するため、偏光撮像素子を使う必要がない点にある。本実施形態では、偏光回転照明のホワイト光を被写体に照射して単板カラー撮像素子にてカラー撮像を行なう。偏光照明の偏光面の角度が異なる4種の照明ごとに1枚ずつ撮像を繰り返す。そうして、画素ごとに、その輝度変動を観測して擬似的に偏光撮像をする。
 光源部104に設置された4種のランプ118からの白色の非偏光光は、4種類のライトガイド105へ光源制御回路120によって選択的に順次入力される。各ライトガイド105の先端部には、偏光透過軸の方向が異なる偏光板121が配置されている。偏光板121の偏光透過軸の方向は撮像面座標系から見て0°、45°、90°、135°の回転角を有している。このため、前述の順次入力を実施することにより、偏光面が4つの異なる角度に変化する偏光照明が実現される。順次入力を高速で切り替えることにより、照明光の偏光面を異なる4つの角度の間でスムーズに切り替えることが可能になる。
 同期装置112は、光源制御回路120への信号と同期してカラー撮像素子129に撮像タイミング信号を送り、連続撮像を実施する。なお、通常利用されるマルチモード型の照明用光ファイバーでは偏光を維持したままの光伝達が困難である。このため、本実施形態では、ライトガイド105内には非偏光光を伝播させ、その先端部で偏光に変換する。光通信用のシングルモードファイバをバンドルすることによって偏光維持型の照明用光ファイバーを実現できる。このような偏光維持型の照明用光ファイバーを用いると、偏光板は先端に付ける必要がなくなる。その場合は、光源部104で偏光回転する照明を生成してライトガイド105内を伝播させればよい。
 また、回転偏光照明は、液晶などで構成される偏光面制御素子を、ライトガイド先端に設置してそれに電圧を駆動して偏光面を制御することによっても実現できる。その場合、液晶の複屈折の物性や使用するλ/4板などの光学素子に波長依存性があるため、白色光の全波長域で偏光動作させるのが困難になる。
 図31を参照しながら、偏光回転照明によって半透明の被写体における内部拡散偏光を観測する原理について説明する。
 図1から図4を参照して説明したように、本開示の各実施形態では、局所的にしか発生しない2回反射による偏光だけではなく、微弱ながら大域的に発生する内部拡散反射による偏光を観測する。以下、偏光回転照明を利用して内部拡散反射の偏光を観測できる原理を説明する。
 図31(A)は凸型の半透明斜面に偏光回転照明が直上から入射する場合の反射の様子を示す模式図である。入射照明光は、図に示すように、順次、偏光面を回転しながら上から斜面に入射する。鏡面反射による反射光は、撮像対物レンズ側には戻らず外に外れていくため、撮像輝度には寄与しない。一方、内部散乱および吸収過程を経て非偏光化した光は、再び斜面から出射して一部が対物レンズ側に戻る。このため、撮像輝度に寄与する。被写体の斜面から出射する際に光は偏光するが、輝度撮像素子は偏光を観測できない。このため、照明光の偏光面の回転によって生じる輝度の変動のみが観測される。
 次に、図31(B)および(C)を参照しながら、輝度変動生じる理由を説明する。
 図31(B)および(C)に示す構造物の斜面に照明光が入射するとき、照明光がP偏光(紙面平面内に電場振動面がある偏光)の場合には、比較的多くの光が被写体内部に侵入するが、照明光がS偏光(紙面平面に垂直に電場振動面がある偏光)の場合には、少量の光しか進入できない。図32は、この光の進入と偏光との関係を示すフレネル理論に基づくグラフである。図32は、屈折率が1の空気中から屈折率が1より大きい媒質への境界面では、入射角度によらず常にP波が優位となって進入することを示している。このため、偏光回転照明を入射すると、媒質内部へ侵入する光量が変動する。その結果、図31(C)に示すように、被写体の表面(境界)から再度空気中へ出射していく光の強さも、偏光回転照明では、入射光がP偏光に当たる回転角で輝度が最大になり、S偏光に当たる回転角で輝度が最小になる。一般には、被写体から出射する光の輝度変動は、入射光の強度にも依存する。しかし、内部に構造を有する媒質内を長距離伝播する場合、内部拡散光は、入射光の強度とは無関係に出射する。このため、内部拡散光の輝度と偏光回転照明の強度との相関はなくなる。
 図33は、内視鏡の先端部106と偏光回転照明の射出部分を示す図である。この構成では、中心部の対物レンズ109をリング状照明装置が取り囲んでいる。そして、リング状照明装置の前面に0°、45°、90°、135°の方向を向いた偏光透過軸を有する複数の偏光板121が配列されている。具体的には、リング照明装置の照明部は16分割されており、その4分割領域ごとに光偏光透過軸の方向が異なる偏光板121が設けられている。4分割領域の偏光板121に対応する照明部分が順次点灯することによって偏光回転照明を実現している。
 リング状照明装置の手前に配列される微細な偏光板121は、ワイヤグリッド偏光子やポリマーフィルム製の偏光子をガラス基板上に構成して作ることができる。ポリマーフィルムを用いて試作された偏光子アレイがXiaojin Zhao, Farid Boussaid, Amin bermak and Vladimir G.Chigrinov,"Thin Photo-patterned Mictopolaizer Array for CMOS Images Sensors",IEEE Photonics Technology Letters,Vol.21,No.12,June 15,2009.に開示されている。
 輝度変動処理部400は、照明の偏光面の角度と各画素の輝度値との関係を求め、「輝度変調度画像」を生成する。本明細書において「輝度変調度画像」とは、各画素について偏光面の変化にともなう輝度値の変動の振幅と輝度平均値との比率によって定義される画像である。ある画素P(x、y)における輝度変調度が0.3であるならば、この画素P(x、y)に対して0.3の値が設定される。1つの「輝度変調度画像」は、このような輝度変調度の値を各画素に設定することによって構成される。
 偏光面が0°状態で第1の画像を撮像し、偏光面が45°状態で第2の画像を撮像し、偏光面が90°状態で第3の画像を撮像し、偏光面が135°状態で第4の画像を撮像する。偏光照明を回転した場合の輝度変動は周期180°の余弦関数になることが判明しているので、輝度変動処理部400は、これを余弦関数に最適フィッティングする。輝度変動は照明の偏光面の角度をΨIとして以下のように表現される。
Figure JPOXMLDOC01-appb-M000011
 この処理は、第1、第2の実施形態における偏光画像撮像素子の4方向の偏光子を用いて得られる輝度値からの最適フィッティングと数学的には等価な処理である。このため、既に説明した処理方法と同一手順を、撮像された4枚の画像の対応する画素ごとに実施することにより、輝度変調度画像を生成できる。この輝度変調度画像の生成は、図30に示す輝度変調度画像生成部414で行われる。輝度変調度画像加工部416は、偏光度画像加工部316とまったく同一の処理を輝度変調度画像に対して実施すればよい。画像合成部420の処理も同一である。なお、輝度画像生成部412は、各画素で得られる輝度値を加算または平均化することによって輝度画像を生成する。
(第4の実施形態)
 図34は、本開示の実施形態4における撮像処理装置の全体構成を模式的に示す図である。
 本実施形態が第3の実施形態と異なるのは、本実施形態では、偏光回転照明を実現するために、ファイバー光源やライトガイドを使用せず、内視鏡の先端部に設置したLEDや有機ELなどの面光源を用いる点である。
 第3の実施形態においては、図33に示すように、内視鏡先端には偏光面の異なる照明光の照射口が合計16分割設置されている。偏光回転のため一度にそのうちの4個ずつが選択されて点灯して撮像をする場合、正確には4回ごとに照明の発光位置が異なる。このため鏡面反射が多い被写体では、4回の発光位置の光源が被写体上にそのまま写りこんでしまう。そのため、光源位置の違いに起因する輝度変動が被写体全面に発生し、本来は発生しないアーティファクトを生じさせ得る。これを回避するために、第4の実施形態では、順次点灯する照明単位を十分小さく、数量を多くする。こうすることにより、点灯する光源の位置の移動による輝度分布の空間的な変動が撮像側で1画素以内に抑えられる。
 図35は、内視鏡の先端部106と偏光回転照明の射出部分を示す図である。図35では、便宜上、4つの偏光子のみが拡大して表示されているが、実際には、各々が4つの偏光子によって構成される複数の単位が対物レンズ109の周りの領域に行および列状に配列されている。この構成では、中心部の対物レンズ109を取り囲む領域が面照明の光源として機能する。図35の例では、ピッチP×Pの寸法の正方形内に0°、45°、90°、135°の方向を向いた偏光透過軸を有する偏光子が配置されている。
 図36は、この面照明の全体構成を示す図である。面照明のX軸とY軸の各軸に順次点灯を制御するためのデータドライバが用意されており、X軸とY軸でアドレスされる画素が一斉に点灯する。たとえば、ここではX軸とY軸の両方が偶数の画素(X2mとY2m)が一斉に点灯すると、それは偏光面が0°の照明光となる。そしてX軸とY軸のデータドライバの偶数、奇数の組みあわせによって、0°、45°、90°、135°の偏光面を有する照明光が得られることになる。
 図37は、この面照明の照明画素ピッチを十分小さくする効果について説明するための図である。今、被写体表面が粘膜のように滑らかな鏡面だと想定する。そこに内視鏡を近接して撮影する場合、最接近する距離はおおよそ3mmである。その場合、片側視野角を70°とすると、撮像範囲は以下のようになる。
Figure JPOXMLDOC01-appb-M000012
 これを1000×1000画素の撮像素子にて撮像する場合、1画素(解像度限界)の被写体上の実サイズLは、以下のように表される。
Figure JPOXMLDOC01-appb-M000013
 実際に撮像される大きさは、被写体の奥側の仮想的な位置と考えると2Lとなる。そこで、この大きさが撮像画像の1画素に対応すると考えると、以下の関係が得られる。
Figure JPOXMLDOC01-appb-M000014
 したがって、照明画素ピッチPが32.8μm以下であれば、光源位置の変動が画像上でわからなくなり第3の実施形態におけるアーティファクトの課題が解決される。
 実施形態1から4の内視鏡について、挿入部103および光源部104を小型化して制御部から切り離すことにより、撮像部についてはほぼ同じ構成のカプセル内視鏡を構成できる。カプセル内視鏡は、体内に飲み込まれて消化管全体を撮影するが、体内には水が満たされているため撮影はすべて水中撮影となる。発明者らの実験によると、本実施形態は水中撮影でも有効であるため、インジゴカルミン液が撒布不可能なカプセル内視鏡においても半透明粘膜の凹凸を検出し強調することができる。
(広帯域モノクロ撮像素子の製造方法)
 以下、広帯域モノクロ偏光撮像素子の製造方法を説明する。
 図38を参照して、メタルワイヤグリッド構造をAl(アルミニウム)層を蒸着または金属ナノ粒子を含む溶液、ペースト剤を用いた埋め込みを行い、リフトオフ法により形成する方法を説明する。ワイヤグリッド偏光子を構成する金属材料としてはAlに限らず、Au、Ag、Cu、Tiなどの金属であっても良い。
 図38(A)に示される構造では、Siからなる基板500に、PD(フォトダイオード)501が形成され、その上に層間膜502を介して多層構造からなる配線層503が形成されている。配線層503は、光透過性の平坦化層504によって覆われている。平坦化層504は、SiO2、SiN、SiONなどの無機絶縁膜、または樹脂(ポリマー)系の材料から形成され得る。
 図38(B)の工程では、ワイヤグリッド偏光子のワイヤ部分が形成される領域が開口されたレジストパターン505をフォトリソグラフィによって平坦化層504上に形成する。
 図38(C)の工程では、レジストパターン505をマスクとして真空蒸着法またはスパッタ等の方法により、ワイヤグリッド偏光子の構成材料であるAlからなるメタル層506を全面に堆積する。真空蒸着法またはスパッタの代わりに、ナノ粒子を含む溶液を全面に塗布することにより、レジストパターン515の開口部分にAlを埋め込んでも良い。リフトオフを容易にするため、メタル層506はレジストパターン515より、十分、薄いことが望ましい。単層のレジストパターン515に逆テーパー形状を持たせるか、もしくは多層レジスト構造のレジストパターン515にオーバーハング形状を付与することによって、所望の寸法および形状を有するワイヤグリッド偏光子を形成することができる。図38(D)の工程では、レジストパターン505を除去することによってワイヤグリッド偏光子構造が完成する(リフトオフ法)。
 図38(E)の工程では、ワイヤグリッド偏光子上にマイクロレンズ509の形成を行うため、まずワイヤグリッド偏光子を構成するメタル層の間隙に犠牲層507の埋め込みを行う。図38(F)の工程では、その上に無機膜または有機膜からなる上部平坦化層508が形成される。図38(G)の工程では、上部平坦化層508上に無機膜または有機膜からなるレンズ膜材料を堆積し、リソグラフィーによりマイクロレンズのレジストパターンを形成する。次に前記レジストパターンをマスクにエッチング、さらにエッチバックすることにより凸状のマイクロレンズ構造が形成される。
 図38(H)の工程では、前記のマイクロレンズ領域外の表面及びワイヤグリッド偏光子の側面に露出させた犠牲層の一端からエッチングによりワイヤグリッド偏光子の間隙に埋めた犠牲層の選択的除去を行うことにより、図14で示したモノクロ偏光撮像素子構造が形成される。
 図39を参照して、ワイヤグリッド偏光子をAlからなるメタル層605のドライエッチングにより形成する方法を説明する。
 図39(A)に示される構造では、Siからなる基板600に、PD(フォトダイオード)601が形成され、その上に層間膜602を介して配線層603が形成されている。配線層603は、光透過性の平坦化層604によって覆われている。図39(B)の工程では、平坦化層604上にAlからなるメタル層606が形成される。図39(C)の工程では、フォトリソグラフィによりワイヤグリッド偏光子の形状のレジストパターン605が形成する。
 図39(D)の工程では、レジスストパターン605をマスクとしてドライエッチングを行うことでAlワイヤグリッド偏光子アレイが形成される。図39(E)から図39(H)の工程は、図38の工程と同様であるため説明を省略する。
 図40を参照して、ワイヤグリッド偏光子をめっき法により形成する方法を説明する。
 図40(A)に示される構造は、Siからなる基板700に、PD(フォトダイオード)701が形成され、その上に層間膜702を介して配線層703が形成されている。配線層703は、光透過性の平坦化層704によって覆われている。
 図40(B)の工程では、平坦化層704上に薄層のメタル層706が形成される。図40(C)の工程では、フォトリソグラフィによりワイヤグリッド偏光子の形状のレジストパターン705が形成される。図40(D)の工程では、レジスストパターン705をマスクとして無電解メッキ液に浸漬することにより、レジストパターンの開口部に選択的にめっき金属層が形成される。図40(E)の工程では、レジスストパターン705を除去した後に、ワイヤグリッド偏光子パターンに形成されためっき金属層をマスクに下地のメタル層706をドライエッチングにより平坦化層704まで除去することにより、金属ワイヤグリッド偏光子構造を形成する。
 図40(F)から図40(I)の工程は、図38、39の工程と同様であるため説明を省略する。めっきの工法については無電解めっきで説明したが、電解めっき法を用いて形成することも可能である。前記の図38、39、40におけるレジストからなるワイヤグリッド偏光子パターンについてはナノインプリントを用いて形成することも可能である。
 本明細書で説明した他の撮像素子についてもこれら3種の製造方法で実現できる。必要に応じてカラーフィルタが形成される。
 本開示の実施形態は、消化器内科向け医療用内視鏡、皮膚科、歯科、眼科、外科などのメディカル用途のカメラ、工業用内視鏡、指紋撮像装置、さらに工場などにおける表面検査装置など被写体の表面凹凸の観察、検査、認識を必要とする画像処理分野に広く適用可能である。特に、なめらかな透明物体、半透明物体などの表面に存在する凹凸の場合には内部拡散反射光のために輝度観測では明暗が観測されない状態になるが、その場合でも表面の凹凸を正しく検出でき、さらに凹凸の凹部を暗、凸部を明に輝度表示するモードなど人間に判別しやすい形での強調表示をすることができる。このため、輝度観察では困難な凹凸の検査に最適である。
 可視光波長域で動作し、高い消光比を有するワイヤグリッド偏光子を有するモノクロ広帯域偏光撮像素子およびカラー偏光撮像素子は、デジタルカメラやビデオカメラ、監視カメラなどに適用でき、水面や空撮影におけるコントラスト向上やガラス越しの撮影等に広く利用可能である。
101  内視鏡
102  制御装置
103  挿入部
104  光源部
105  ライトガイド
106  先端部
107  照明レンズ
108  映像信号線
109  対物レンズ
110  画像プロセッサ
111  半透明被写体(凹凸あり)
112  同期装置
113  反射光
114  表示部
115  モノクロ広帯域偏光撮像素子
116  カラーホイール
117  非偏光の照明光
118  ランプ
119  単板カラー偏光撮像素子
129  単板カラー撮像素子
270  カラーフィルタ
300  偏光モザイク処理部
312  輝度画像生成部
314  偏光度画像生成部
316  偏光度画像加工部
320  画像合成部
400  輝度変動処理部
412  輝度画像生成部
414  輝度変調度画像生成部
416  輝度変調度画像加工部
420  画像合成部
500  基板
501  PD
502  層間膜
503  配線層
504  平坦化層
505  レジスト
506  メタル層
507  犠牲層
508  上部平坦化層
509  マイクロレンズ
600  基板
601  PD
602  層間膜
603  配線層
604  平坦化層
605  レジスト
606  メタル層
607  犠牲層
608  上部平坦化層
609  マイクロレンズ
700  基板
701  PD
702  層間膜
703  配線層
704  平坦化層
705  レジスト
706  メタル層
707  犠牲層
708  上部平坦化層
709  マイクロレンズ

Claims (26)

  1.  照明光を発し、前記照明光で被写体を照明した状態で偏光画像を取得する撮像素子を含む撮像部と、
     画像処理部と、
    を備え、
     照明光軸と撮影光軸とが略同軸の関係を形成し、
     前記画像処理部は、
     前記撮像素子の出力に基づいて輝度画像を生成する輝度画像生成部と、
     前記撮像素子の出力に基づいて画素ごとに偏光度を算出し、偏光度画像を生成する偏光画像生成部と、
     前記被写体の表面における凹凸部の凹部で前記偏光度画像の偏光度を強調し、かつ、色相、彩度、および明度の少なくとも1つを補正して加工偏光画像を生成する偏光画像加工部と、
     前記加工偏光画像と前記輝度画像とを合成する画像合成部と、
    を備える撮像処理装置。
  2.  前記撮像部は、前記照明光として、順次、異なる色の非偏光の光を発し、
     前記撮像素子は、偏光子アレイと、光電変換素子アレイとを有する、請求項1に記載の撮像処理装置。
  3.  前記撮像部は、前記照明光として、非偏光の白色光を発し、
     前記撮像素子は、偏光子アレイと、カラーモザイクフィルタアレイと、光電変換素子アレイとを有する、請求項1に記載の撮像処理装置。
  4.  前記撮像部は、前記照明光として、順次、少なくとも3つの方向に偏光面の向きが異なる偏光光を発し、
     前記撮像素子は、カラーモザイクフィルタアレイと、光電変換素子アレイとを有する、請求項1に記載の撮像処理装置。
  5.  前記偏光画像加工部は、前記偏光度画像に比べて、前記偏光度画像の前記被写体の表面における前記凹凸部の凹部の輝度を低下させた前記加工偏光度画像を生成する、請求項1記載の撮像処理装置。
  6.  前記偏光画像加工部は、色の彩度を前記強調した偏光度に設定し、かつ、色の色相および明度を特定値に設定し、前記色相、彩度、明度の組をHSV空間からRGB空間に変換する、請求項1に記載の撮像処理装置。
  7.  前記偏光画像加工部は、前記凹凸部の凹部を青暗く表示するように前記加工偏光度画像を生成する、請求項6に記載の撮像処理装置。
  8.  前記偏光度画像生成部は、前記被写体の表面における前記凹凸部での2回反射に起因する偏光、および前記被写体の内部拡散光に起因する偏光の強度の極大位置を、前記被写体の表面における前記凹凸部の凹部として検出する、請求項1に記載の撮像処理装置。
  9.  前記偏光子アレイは、偏光透過軸の方位が異なる4個の偏光子が2行2列に配列された偏光子単位が行および列状に配列された偏光モザイク構造を有している、請求項2または3に記載の撮像処理装置。
  10.  前記偏光度画像生成部は、各偏光子単位における2行2列の対角線上に位置する2個の偏光子に対応する画素値の差分の2乗数値に基づいて偏光度を決定する、請求項9に記載の撮像処理装置。
  11.  前記撮像部は、レッド、グリーン、ブルーの各々の非偏光光を時分割で出射し、
     前記撮像素子は、可視光波長の全域において、偏光画像を取得できるモノクロ広帯域偏光撮像素子である、請求項2に記載の撮像処理装置。
  12.  前記撮像素子はカラー偏光撮像素子である、請求項3または4に記載の撮像処理装置。
  13.  前記偏光子アレイは、偏光透過軸の方向が異なる金属ワイヤグリッド偏光子の配列である、請求項2または3に記載の撮像処理装置。
  14.  前記撮像素子は、前記偏光子アレイよりも前記被写体に近い位置または前記被写体から遠い位置に設けられたマイクロレンズを備えている、請求項2または3に記載の撮像処理装置。
  15.  前記撮像素子は、マイクロレンズアレイを備え、
     光の入射側から順に、前記マイクロレンズアレイ、前記偏光子アレイ、前記カラーモザイクフィルタアレイが配置されている、請求項3に記載の撮像処理装置。
  16.  前記撮像素子は、マイクロレンズアレイを備え、
     光の入射側から順に前記カラーモザイクフィルタアレイ、前記マイクロレンズアレイ、前記偏光子アレイが配置されている、請求項3に記載の撮像処理装置。
  17.  前記撮像素子は、マイクロレンズアレイを備え、
     光の入射側から順に前記カラーモザイクフィルタアレイ、前記偏光子アレイ、前記マイクロレンズアレイが配置されている、請求項3に記載の撮像処理装置。
  18.  前記カラーモザイクフィルタアレイの1色のカラーフィルタに相当する画素が、サブ画素構造を有しており、前記サブ画素構造に偏光透過軸の向きが異なる複数の偏光フィルタが対応する請求項15から17のいずれかに記載の撮像処理装置。
  19.  前記偏光子アレイの各偏光子は、側面が空気と接している複数の金属ワイヤを有するワイヤグリッド偏光子である、請求項2または3に記載の撮像処理装置。
  20.  前記撮像部は内視鏡である、請求項1から19のいずれかに記載の撮像処理装置。
  21.  前記撮像部はカプセル形状を有する容器におさめられている、請求項20に記載の撮像処理装置。
  22.  前記撮像部は前記照明光を発する光源を内蔵する、請求項1から21のいずれかに記載の撮像処理装置。
  23.  請求項1から22のいずれかに記載の撮像処理装置における画像処理部として用いられる画像処理装置であって、
     前記撮像素子の出力に基づいて輝度画像を生成する輝度画像生成部と、
     前記撮像素子の出力に基づいて画素ごとに偏光度を算出し、偏光度画像を生成する偏光画像生成部と、
     前記被写体の表面における凹凸部の凹部で前記偏光度画像の偏光度を強調し、かつ、色相、彩度、および明度の少なくとも1つを補正して加工偏光画像を生成する偏光画像加工部と、
     前記加工偏光画像と前記輝度画像とを合成する画像合成部と、
    を備える画像処理装置。
  24.  請求項1から22のいずれかに記載の撮像処理装置に用いられる内視鏡であって、
     照明光を発し、前記照明光で被写体を照明した状態で偏光画像を取得する撮像素子を含み、
     照明光軸と撮影光軸とが略同軸の関係を形成するように配置されている、内視鏡。
  25.  照明光軸と撮影光軸とが略同軸の関係を形成するようにして照明光によって被写体を照明した状態において撮像素子が取得した偏光画像のデータに基づいて画像処理を行う画像処理方法であって、
     前記撮像素子の出力に基づいて輝度画像を生成する工程と、
     前記撮像素子の出力に基づいて画素ごとに偏光度を算出し、偏光度画像を生成する偏光画像生成部と、
     前記被写体の表面における凹凸部の凹部で前記偏光度画像の偏光度を強調し、かつ、色相、彩度、および明度の少なくとも1つを補正して加工偏光画像を生成する工程と、
     前記加工偏光画像と前記輝度画像とを合成する工程と、
    を含む、画像処理方法。
  26.  照明光軸と撮影光軸とが略同軸の関係を形成するようにして照明光によって被写体を照明した状態において撮像素子が取得した偏光画像のデータに基づいて画像処理を行うための画像処理プログラムであって、
     前記撮像素子の出力に基づいて輝度画像を生成する工程と、
     前記撮像素子の出力に基づいて画素ごとに偏光度を算出し、偏光度画像を生成する偏光画像生成部と、
     前記被写体の表面における凹凸部の凹部で前記偏光度画像の偏光度を強調し、かつ、色相、彩度、および明度の少なくとも1つを補正して加工偏光画像を生成する工程と、
     前記加工偏光画像と前記輝度画像とを合成する工程と、
    をコンピュータに実行させる、画像処理プログラム。
PCT/JP2013/001675 2012-05-22 2013-03-13 撮像処理装置および内視鏡 WO2013175686A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013548518A JP5603508B2 (ja) 2012-05-22 2013-03-13 撮像処理装置および内視鏡
US14/099,165 US9392231B2 (en) 2012-05-22 2013-12-06 Imaging device and endoscope for detecting and displaying the shape of the micro-geometric texture of a transparent structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-116796 2012-05-22
JP2012116796 2012-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/099,165 Continuation US9392231B2 (en) 2012-05-22 2013-12-06 Imaging device and endoscope for detecting and displaying the shape of the micro-geometric texture of a transparent structure

Publications (1)

Publication Number Publication Date
WO2013175686A1 true WO2013175686A1 (ja) 2013-11-28

Family

ID=49623402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001675 WO2013175686A1 (ja) 2012-05-22 2013-03-13 撮像処理装置および内視鏡

Country Status (3)

Country Link
US (1) US9392231B2 (ja)
JP (1) JP5603508B2 (ja)
WO (1) WO2013175686A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185479A1 (en) * 2013-05-15 2014-11-20 Ricoh Company, Limited Image processing system
JP2017228910A (ja) * 2016-06-22 2017-12-28 キヤノン株式会社 画像処理装置、撮像装置、画像処理プログラムおよび画像処理方法
WO2018012096A1 (ja) * 2016-07-12 2018-01-18 ソニー株式会社 内視鏡装置及び内視鏡装置の画像合成方法
WO2019087527A1 (ja) * 2017-10-30 2019-05-09 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
CN111052140A (zh) * 2019-10-18 2020-04-21 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
WO2020105201A1 (ja) * 2018-11-22 2020-05-28 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
US11062170B2 (en) 2017-02-15 2021-07-13 Sony Corporation Information processing apparatus, information processing method, and imaging apparatus
WO2021210300A1 (ja) * 2020-04-15 2021-10-21 ソニーグループ株式会社 情報処理装置と情報処理方法およびプログラム
WO2022201933A1 (ja) * 2021-03-25 2022-09-29 ソニーグループ株式会社 生体内観察システム、観察システム、生体内観察方法及び生体内観察装置
WO2023032318A1 (ja) * 2021-08-30 2023-03-09 オムロン株式会社 撮像システムおよびその制御方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114888A1 (ja) 2012-02-02 2013-08-08 パナソニック株式会社 撮像装置
JP6045417B2 (ja) * 2012-12-20 2016-12-14 オリンパス株式会社 画像処理装置、電子機器、内視鏡装置、プログラム及び画像処理装置の作動方法
JP6485078B2 (ja) * 2014-02-18 2019-03-20 パナソニックIpマネジメント株式会社 画像処理方法および画像処理装置
JP6377171B2 (ja) * 2014-10-30 2018-08-22 オリンパス株式会社 画像処理装置、内視鏡装置及び画像処理方法
US20160231176A1 (en) * 2015-02-05 2016-08-11 Polarization Solutions, Llc Light irradiation device having polarization measuring mechanism
TWI583194B (zh) * 2016-06-02 2017-05-11 宏碁股份有限公司 偏光鏡輔助控制方法及裝置
WO2018225367A1 (ja) * 2017-06-09 2018-12-13 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置
WO2018229834A1 (ja) 2017-06-12 2018-12-20 オリンパス株式会社 内視鏡システム
WO2018229833A1 (ja) 2017-06-12 2018-12-20 オリンパス株式会社 内視鏡システム
WO2018229831A1 (ja) * 2017-06-12 2018-12-20 オリンパス株式会社 内視鏡システム
WO2018229832A1 (ja) 2017-06-12 2018-12-20 オリンパス株式会社 内視鏡システム
JP6821028B2 (ja) * 2017-08-04 2021-01-27 株式会社ソニー・インタラクティブエンタテインメント 撮像装置および画像データ読み出し方法
WO2019116646A1 (ja) * 2017-12-14 2019-06-20 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
WO2019207886A1 (ja) * 2018-04-26 2019-10-31 ソニー株式会社 情報処理装置と情報処理方法およびプログラム
CN112236067A (zh) 2018-06-05 2021-01-15 奥林巴斯株式会社 内窥镜系统
JP7093409B2 (ja) 2018-06-05 2022-06-29 オリンパス株式会社 内視鏡システム
DE102018120128B3 (de) * 2018-08-17 2019-12-19 Motherson Innovations Company Limited Bilderfassungseinrichtung für Fahrerassistenzsystem, Fahrerassistenzsystem sowie Verfahren zum Betreiben einer Bilderfassungseinrichtung
CN109348093A (zh) * 2018-09-26 2019-02-15 维沃移动通信有限公司 一种图像采集装置、方法及终端设备
US20220196472A1 (en) * 2019-03-15 2022-06-23 ams Sensors Germany GmbH Method and apparatus for determining or classifying the surface colour of at least partly translucent materials
JP7334458B2 (ja) * 2019-04-24 2023-08-29 富士フイルムビジネスイノベーション株式会社 画像処理装置及び画像処理プログラム
KR102130960B1 (ko) * 2019-05-07 2020-07-08 (주) 솔 가상의 그리드 선을 이용한 미세 입자 계수용 이미지 센서 패키지, 미세 입자 계수 시스템 및 방법
JP7293020B2 (ja) * 2019-07-19 2023-06-19 キヤノン株式会社 撮像素子、およびこれを備える撮像装置
WO2021016839A1 (zh) * 2019-07-30 2021-02-04 深圳市汇顶科技股份有限公司 图像传感器及其制造方法、芯片及手持装置
TW202131671A (zh) * 2019-10-07 2021-08-16 日商索尼半導體解決方案公司 電子機器
KR20210055821A (ko) 2019-11-07 2021-05-18 삼성전자주식회사 깊이의 측정 범위에 기초하여 동작하는 센서 및 이를 포함하는 센싱 시스템
US20220233062A1 (en) * 2021-01-26 2022-07-28 Arthrex, Inc. Endoscope thermal reflector
CN113491497B (zh) * 2021-07-27 2022-08-12 重庆西山科技股份有限公司 偏振光内窥镜装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246770A (ja) * 2008-03-31 2009-10-22 Fujifilm Corp 撮像装置、撮像方法、およびプログラム
JP4762369B2 (ja) * 2009-12-08 2011-08-31 パナソニック株式会社 画像処理装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057952A (en) * 1999-01-14 2000-05-02 Olympus Optical Co., Ltd. Light scanning device and confocal optical device using the same
US6563105B2 (en) * 1999-06-08 2003-05-13 University Of Washington Image acquisition with depth enhancement
JP3869698B2 (ja) 2001-10-23 2007-01-17 ペンタックス株式会社 電子内視鏡装置
JP4331501B2 (ja) * 2002-06-14 2009-09-16 オリンパス株式会社 小型光学ユニット
US7448995B2 (en) * 2003-06-23 2008-11-11 Microvision, Inc. Scanning endoscope
DE102005063524B4 (de) * 2005-07-08 2011-01-27 Grau, Günter, Dr. Vorrichtung zur Messung und Erzeugung der Polarisation von Licht
DE102006011707B4 (de) * 2006-03-14 2010-11-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Erzeugen einer strukturfreien fiberskopischen Aufnahme
US8310529B2 (en) * 2006-05-15 2012-11-13 Olympus Medical Systems Corp. System and method for automatic processing of endoscopic images
JP4235252B2 (ja) 2007-05-31 2009-03-11 パナソニック株式会社 画像処理装置
JP4435867B2 (ja) * 2008-06-02 2010-03-24 パナソニック株式会社 法線情報を生成する画像処理装置、方法、コンピュータプログラム、および、視点変換画像生成装置
JP2010082271A (ja) 2008-09-30 2010-04-15 Fujifilm Corp 凹凸検出装置、プログラム、及び方法
JP2010082040A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 内視鏡システム
JP2010104421A (ja) 2008-10-28 2010-05-13 Fujifilm Corp 撮像システムおよび撮像方法
WO2010058759A1 (ja) * 2008-11-20 2010-05-27 旭硝子株式会社 透明体検査装置
JP5428509B2 (ja) 2009-05-11 2014-02-26 ソニー株式会社 2次元固体撮像装置、及び、2次元固体撮像装置における偏光光データ処理方法
JP2012009539A (ja) 2010-06-23 2012-01-12 Sony Corp 固体撮像装置、電子機器、固体撮像装置の製造方法
JP2012024140A (ja) 2010-07-20 2012-02-09 Fujifilm Corp 偏光画像計測表示システム
US8672838B2 (en) * 2011-08-12 2014-03-18 Intuitive Surgical Operations, Inc. Image capture unit in a surgical instrument
WO2013027459A1 (ja) * 2011-08-24 2013-02-28 オリンパスメディカルシステムズ株式会社 撮像装置及び撮像装置システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246770A (ja) * 2008-03-31 2009-10-22 Fujifilm Corp 撮像装置、撮像方法、およびプログラム
JP4762369B2 (ja) * 2009-12-08 2011-08-31 パナソニック株式会社 画像処理装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109625A (ja) * 2013-05-15 2015-06-11 株式会社リコー 画像処理システム
US9674459B2 (en) 2013-05-15 2017-06-06 Ricoh Company, Limited Image processing system
WO2014185479A1 (en) * 2013-05-15 2014-11-20 Ricoh Company, Limited Image processing system
US10984566B2 (en) 2016-06-22 2021-04-20 Canon Kabushiki Kaisha Image processing apparatus that calculates using luminance values of one or more input images produced by photoelectric conversion of multiple polarized lights, image-capturing apparatus and image processing method
JP2017228910A (ja) * 2016-06-22 2017-12-28 キヤノン株式会社 画像処理装置、撮像装置、画像処理プログラムおよび画像処理方法
WO2018012096A1 (ja) * 2016-07-12 2018-01-18 ソニー株式会社 内視鏡装置及び内視鏡装置の画像合成方法
US11062170B2 (en) 2017-02-15 2021-07-13 Sony Corporation Information processing apparatus, information processing method, and imaging apparatus
WO2019087527A1 (ja) * 2017-10-30 2019-05-09 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
JPWO2019087527A1 (ja) * 2017-10-30 2020-11-26 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
US11089246B2 (en) 2017-10-30 2021-08-10 Sony Semiconductor Solutions Corporation Solid-state imaging device and electronic apparatus
JP7261168B2 (ja) 2017-10-30 2023-04-19 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
JP2020088565A (ja) * 2018-11-22 2020-06-04 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2020105201A1 (ja) * 2018-11-22 2020-05-28 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
US11457201B2 (en) 2018-11-22 2022-09-27 Sony Semiconductor Solutions Corporation Imaging device and electronic apparatus
JP7325949B2 (ja) 2018-11-22 2023-08-15 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
CN111052140A (zh) * 2019-10-18 2020-04-21 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN111052140B (zh) * 2019-10-18 2023-08-18 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
WO2021210300A1 (ja) * 2020-04-15 2021-10-21 ソニーグループ株式会社 情報処理装置と情報処理方法およびプログラム
WO2022201933A1 (ja) * 2021-03-25 2022-09-29 ソニーグループ株式会社 生体内観察システム、観察システム、生体内観察方法及び生体内観察装置
WO2023032318A1 (ja) * 2021-08-30 2023-03-09 オムロン株式会社 撮像システムおよびその制御方法

Also Published As

Publication number Publication date
JPWO2013175686A1 (ja) 2016-01-12
JP5603508B2 (ja) 2014-10-08
US9392231B2 (en) 2016-07-12
US20140092227A1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
JP5603508B2 (ja) 撮像処理装置および内視鏡
JP5857227B2 (ja) 画像処理装置および内視鏡
JP5799264B2 (ja) 画像処理装置および内視鏡
US9293491B2 (en) Polarization image sensor and endoscope
JP6260006B2 (ja) 撮像装置、並びにそれを用いた撮像システム、電子ミラーシステムおよび測距装置
JP6939000B2 (ja) 撮像装置及び撮像方法
JP4762369B2 (ja) 画像処理装置
US9645074B2 (en) Image processing apparatus
JP2017148657A (ja) 外科手術器具の画像取込み装置
JP6156787B2 (ja) 撮影観察装置
US20110292258A1 (en) Two sensor imaging systems
US20120257030A1 (en) Endoscope apparatus and image acquisition method of the endoscope apparatus
JP5740559B2 (ja) 画像処理装置および内視鏡
JP5053468B2 (ja) 立体画像撮影装置および内視鏡
JP2016063928A (ja) 偏光撮像装置、偏光画像処理装置、およびカラー偏光複合モザイクフィルタ
JP2006297093A (ja) Cfaを含むインビボ撮像装置、インビボ撮像装置および外部受信ユニットを含むシステム、ならびにcfaを含む撮像装置
JPWO2012073413A1 (ja) 立体画像撮影装置および内視鏡
Kagawa et al. Deep-focus compound-eye camera with polarization filters for 3D endoscopes

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013548518

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794424

Country of ref document: EP

Kind code of ref document: A1