WO2013160250A1 - Led-based light source - Google Patents

Led-based light source Download PDF

Info

Publication number
WO2013160250A1
WO2013160250A1 PCT/EP2013/058296 EP2013058296W WO2013160250A1 WO 2013160250 A1 WO2013160250 A1 WO 2013160250A1 EP 2013058296 W EP2013058296 W EP 2013058296W WO 2013160250 A1 WO2013160250 A1 WO 2013160250A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
light source
chip
based light
white
Prior art date
Application number
PCT/EP2013/058296
Other languages
German (de)
French (fr)
Inventor
Jörg FRISCHEISEN
Stefan Lange
Frank Jermann
Vera STÖPPELKAMP
Original Assignee
Osram Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Gmbh filed Critical Osram Gmbh
Publication of WO2013160250A1 publication Critical patent/WO2013160250A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/08Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/10Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/10Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings
    • F21V3/12Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings the coatings comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Definitions

  • the invention is based on an LED-based light source according to the preamble of claim 1.
  • this is a so-called LED light engine, luminaire or LED.
  • US 2010/025700 and 2007/274093 discloses an LED-based light source for backlighting, which produces in a complex manner by means of two LED groups warm white light colors in the range 2500 to 4500 K.
  • JP2009026672 uses two white LEDs with different color temperature.
  • a formerlygünsti ⁇ ge solution for high-quality LED-based light source be ⁇ riding determine.
  • the novel solution relates to LED-based Lichtquel ⁇ len, especially LED-based lamps or lights or modules or so-called.
  • Light Engines which are based on the partial conversion of light from LEDs through a phosphor layer, so that overall a certain, eg warm white, color impression is created.
  • the conversion can be done close to the chip in a first embodiment.
  • all established conversion techniques are suitable, for example, volume casting, ceramic converter, electrophoretic deposition (EPD), sedimentation, or use by screen printing, knife coating or by spraying produced luminescent plates and a matrix material (CLC / layer transfer).
  • LED chip remote phosphor concept can (s) and phosphor be ge ⁇ spatially separated, so the so-called.
  • the phosphor can be embedded in a matrix, for example plastic, polymer, glass, silicone or the like, which is attached, for example, as a kind of dome or plate over the LED or the LEDs.
  • the basic conversion concepts of a near-chip attachment of the phosphor or remote phosphor concept have various advantages and disadvantages.
  • the Remote Phosphor concept often has efficiency benefits because the LED chips are not directly heated by a near-line phosphor, which keeps the chips cooler and more efficient.
  • an efficiency advantage may be present if the Area within the remote phosphor element has a higher reflectivity than the chip.
  • a serious disadvantage of the remote phosphor concept is the lack of cooling ability of the phosphor with the help of the chip. As a result, depending on the power of the LED-based
  • the light source places special demands on the matrix material of the Remote Phosphor element, since the conversion of light in the Remote Phosphor element produces more or less waste heat. Furthermore, the remote phosphor concept has a significantly higher phosphor demand. From an aesthetic point of view, a remote phosphor element is often a disadvantage. For example, its yellow or orange color leads to an undesirable color impression of the LED-based light source. This is often reduced by an additional scattering element. However, to increase efficiency is graced redu ⁇ .
  • the solution according to the invention provides for a combination of on-chip conversion and remote phosphor, ie it is based on a partial-remote phosphor concept.
  • the light from the blue LEDs is partially converted close to the chip, so that the target color location is not hit by the near-chip conversion alone.
  • the second step of the conversion takes place via one (or more) remote phosphor element (s), which may contain one or more phosphors and additional spreaders.
  • the red portion of the spectrum can be generated either partially close to the chip or partly via the remote phosphor element.
  • the Partial Remote Phosphor concept can also be combined with the Brilliant Mix concept or with the Hybrid Remote concept.
  • LEDs or LEDs with a color locus in the range between the color location of a blue LED and a cold white color locus there is sometimes a larger offer and the price may be lower than for corresponding blue LEDs (without chipna ⁇ he conversion).
  • Partial Remote Phosphor (and also Remote Phosphor itself) is ideal for a platform strategy (ie as many components of the lamp as possible should be the same for many lamp types).
  • the LEDs or LED light engines / chips on
  • the total phosphor demand in the Remote Phosphor element may also be lower. On the one hand, this can lower the cost of the phosphor, and on the other hand, it can be aesthetically pleasing because the remote phosphor element gives a less colorful (for example yellow or orange) impression.
  • LED-based light source with at least one chip or LED and a phosphor, which is connected upstream of the chip or the LED, wherein the phosphor is disposed in the immediate vicinity of the chip ⁇ in thermal contact, so that a LUKOLED system is present, characterized in that at least one further phosphor spaced upstream of the chip without thermal coupling to the LUKOLED system, wherein the LUKOLED knows a certain color tempera ture ⁇ radiates and wherein the light source white of a different color temperature or radiates with other CRI ,
  • LED-based light source according to proposal 1, characterized marked ⁇ records that the LUKOLED ready-made goods.
  • LED-based light source according to proposal 1, characterized marked ⁇ characterized in that the thermal bridge is additionally equipped with a means for heat spreading.
  • LED module according to proposal 3 characterized in that the means for heat spreading is a vapor-containing cavity, in particular a cavity in a metal tube.
  • the heat exchanger is a body made of open-pored Graphitschaum having at least one side surface.
  • LED module characterized in that the body is a cuboid with side surfaces, in particular with narrow sides and broad sides.
  • LED module according to proposal 5 characterized in that at least one side surface are in thermal contact with the thermal bridge ⁇ .
  • LED module according to proposal 1 characterized in that the LED module is a light engine.
  • LED module according to proposal 8 characterized in that the body has two opposing second side ⁇ surfaces with slots, wherein the slots on the two second side surfaces are offset from each other.
  • Fig. 1 is a schematic diagram of an LED-based light source
  • FIG 16 shows the basic principle of the invention
  • FIGS. 17 to 26 each show in pairs the emission spectrum of a white LED and the color locus of the light engine without and with a remote phosphor element for four different exemplary embodiments. 0
  • FIG. 1 shows an LED-based light source 1 with an LED module, in particular a light engine, the concrete structure of which does not play a role for the invention. It uses the partial remote phosphor concept.
  • a chip 2 is seated on a substrate 3, wherein is is introduced ⁇ directly on the chip a layer of phosphor. 4
  • a layer of phosphor 4
  • near-chip partial conversion takes place.
  • the phosphor is, for example, emitting green or yellow. It converts some of the blue radiation of the chip.
  • the partially converted light (black arrow) of the chip reaches the dome 5, at which a remote phosphor element 6 is underge ⁇ introduced .
  • the dome itself or a separate remote phosphor element 6 attached thereto may contain an additional scattering agent such as TiO 2.
  • a portion of the teilkonvert striving light is converted by the remote phosphor element 6, so that the entire radiation (white arrow) results in, for example, white or causes a specially ⁇ len color impression.
  • Figure 2 shows a prior art for an LED-based light source 1 with chip-near conversion.
  • white light is generated close to the chip by the fact that a chip 2 is seated on a substrate 3, to which one or more phosphors 4 are connected in front of the surface directly or by means of an attached matrix.
  • the chip is emitting blue and part of the light is emitted through a yellow or through two phosphors that emit green and red, shifted to longer wavelengths.
  • Figure 3 shows a similar concept of an LED-based light source ⁇ 1, wherein the chip 2 is seated with the near-surface light-emitting material in layer 4 in a housing 7 and wherein the housing includes a diffusion plate 8 is connected upstream as a cover plate.
  • Figure 4 shows a pure on the remote phosphor concept ba ⁇ sierende LED 10 with dome 11. In this case, all the phosphors of the chip, which emits blue, spatially spaced. They sit in particular on the dome 11 as the inner layer 12, together with another layer 13, the scattering means ent ⁇ holds.
  • the so-called BY concept ie the partial conversion of the blue primary radiation of the chip into yellow (blue-yellow).
  • FIG. 5 shows the same principle, wherein the layers of the phosphors 12 and scattering means 13 on a cover plate 8, which is spaced from the chip 2, are mounted or incorporated.
  • FIG. 6 shows an LED-based light source 1 which uses the so-called Brilliant Mix concept. While sitting on a sub ⁇ strate both a blue-emitting LED 2a 2b and a red-emitting LED. Only the light of the blue LED is partially converted directly near the chip through a phosphor layer 4.
  • Useful is a yellow conversion to green conversion.
  • the mixture of the radiation of both LEDs gives again white light (white arrow).
  • FIG. 7 shows schematically an LED-based light source 1, which uses the so-called Brilliant Mix concept, with remote phosphor solution.
  • a common dome 11 bulges over a blue and a red emitting LED 2a and 2b.
  • the dome 11 sitting phosphors 15 and scattering means 16th (shown schematically), the blue light partially kon ⁇ vertieren, but the red light, except for the scattering, can pass unhindered.
  • FIG. 8 schematically shows the magenta concept.
  • a pair of blue-emitting LEDs 2a, 2c are used, which need not necessarily have the same peak wavelength.
  • the radiation of the first LED 2a is passed freely to a dome 11, which is mounted at a distance.
  • the radiation of the second LED 2 c is converted close to the chip by a suitable layer 4 long-wave, in particular to red or magenta.
  • a luminescent ⁇ fabric 15 is attached, possibly also scattering means 16, where ⁇ in the phosphor, the blue light partially converted into yellow or green light. Overall, white light is generated here as well.
  • FIG. 9 shows an exemplary embodiment of an LED-based light source 1 according to the invention, which uses the partial remote phosphor concept.
  • a LUKOLED in which the chip 2 of a near-chip conversion is subjected to know already. This is done by means of a near-chip layer 4 of luminescent ⁇ material or phosphors.
  • This LUKOLED emits in particular ⁇ cold white or it is an LED, which was intended for backlighting and therefore was inexpensive.
  • the housing 7 is provided with a cover disk 8, on or in which further phosphors 15 and possibly scattering means 16 are brought under ⁇ . These other phosphors are used to change the light color of the primary white.
  • the light color warm white or neutral white or daylight-like white up to skywhite is produced secondarily.
  • One concept of the invention is therefore the modification of the color temperature, in particular specifically towards lower color temperatures, with a delta of at least 100 K, preferably 200 K up to 1500 K.
  • the color temperature can be temperature from neutral white or cool white (here 4000 to 4800 K) to warm white (typically 2600 to 3200 K).
  • Typical representatives of primary white are LEDs for backlighting units (BLU) with a light color from daylight white to skywhite or even higher.
  • Figure 10 shows the partial remote phosphor concept applied to an LED based light source 1 using the Brilliant Mix concept.
  • a first LED or a chip 2a is used, whose primary radiation is blue and whose radiation is partially converted by a phosphor 4 arranged close to the chip.
  • the phosphor emits yellow or green.
  • the LED 2a is overall again, for example, cold white emitting or originally intended for use in backlighting units.
  • a second LED 2b is arranged on the same substrate 3, which emits red. The light of both
  • LEDs impinge on a dome 5 bulging over both LEDs.
  • further phosphors 15 and possibly scattering means 16 are accommodated, which mix the light from both LEDs or convert it to a white, which differs from the original one first LED is different.
  • FIG. 11 shows the partial remote phosphor concept applied to an LED-based light source 1 in a similar From ⁇ operation example, however, the dome is replaced by a front ⁇ disc. 8
  • the two chips 2a and 2b sit in a housing 7, the cover 8 is the windscreen.
  • Figure 12 and 13 show in an analogous manner two LEDs 1, each as a co-variant ( Figure 12) and front window variant is used in de ⁇ NEN the partial remote phosphorus-concept on the hybrid or magenta concept ( FIG. 13).
  • the first chip on the substrate is a cool-white emitting or neutral-white emitting LED 2a intended for backlighting units.
  • Your blue-emitting chip is for the production of the first white light color, for example, cold white, chipnah a phosphor 4a for a partial conversion from yellow to green upstream, as known.
  • the second chip 2b is likewise emitting blue, wherein the chip is preceded by a suitable red emitting phosphor 4b for conversion from magenta to red.
  • a dome 5 or disk 8 which overhangs the two chips, is spaced again upstream.
  • a ceramic plate is used as a disc 8 or part of the disc 8.
  • This remote phosphor element has at least one phosphor 15 and possibly scattering agent 16. This allows white light of any requirement to be realized.
  • Figure 14 shows a retrofit LED lamp 18 employing the partial remote phosphor concept. It has a So ⁇ ckel 19, a housing 21 containing electronics, and a dome 17 on the housing. In this case, the primary radiation and near-chip partial conversion is generated in the LEDs 20 mounted on the housing. The partial downstream conversion and scattering is generated in the area of the dome 17.
  • FIG. 15 shows a similar concept for an LED module 25.
  • the primary radiation and partial conversion close to the chip are generated in the case of the LEDs 20.
  • the partial downstream convergence ⁇ sion is generated in the area of the dome 17th Finally, the scattering in the area of the outer dome-shaped cover 48.
  • Figure 16 shows the basic principle of the present invention. Shown is the CIE diagram, wherein the first color locus (1) represents the color locus of the LED with chip-near conversion, for example according to FIG. 1 or FIG.
  • the partially Konversi ⁇ one according remote phosphor concept then shifts the color coordinates for a second color location (2). For example, this second color locus (2) lies exactly on the Planck curve P.
  • color locus 1 can be achieved by various combinations of LED (s) with one or more phosphors and optionally additional scatterers.
  • the wavelength of the LED (s) plays a major role. It is advantageous as Peak wavelength of the LED 420 nm to 480 nm, in particular 430 to 460 nm used.
  • the remote phosphor element may be one or more light emitting materials, and optionally additional ⁇ spreader included to pass from locus to locus 1 2 mediated using the rate ⁇ cheap LED, the color locus.
  • phosphors which are suitable for use in the remote phosphorus element, in particular garnets, orthosilicates, chlorosilicates, nitridosilicates and derivatives thereof are proposed, in particular:
  • Figure 16 refers to a light engine that makes the right ⁇ geous the following concept to Use.
  • white LEDs such as cool white emitting LEDs.
  • a remote phosphor element such an LED can be used as a light source of a light engine, wherein the color location changing phosphor is housed in the remote phosphor element. In this way, it is possible to Use of considerably more expensive blue LEDs as a light source for the light engine can be dispensed with.
  • two concrete embodiments will be explained in more detail.
  • the primary light source has a single phosphor upstream of the chip.
  • the ⁇ se LED is originally intended for display backlighting.
  • the original first and only chip-near phosphor is a conventional YAG: Ce with Al / Ga content (YaGaG: Ce), specifically, it is in particular
  • the primary light source is a blue LED with Peakwellenlän- ge 444 nm, the light from the YAG: Ce yellow Conver ⁇ advantage in part, so that overall, a white color impression is corresponds.
  • the remote phosphor element is a mixture of two phosphors, a simplified YAG: Ce and a CaAlSiN. Specifically, the phosphors (YO .96 CeO .04) 3A15012 and CaO .996EuO .004AlSiN3 are used together in the remote phosphor element.
  • FIG. 17 shows the emission of the light engine without a remote phosphor element (curve 1) and with a remote phosphor element (curve 2).
  • FIG. 18 shows the color locus of a light engine without a remote phosphor element (circle) and with a remote phosphor element (triangle).
  • the color temperature here is new 2700 K and the color rendering index CRI is 80.
  • the visual efficiency is 300 lm / W_vis.
  • the light engine is based on a BLU LED with a high color temperature as the primary white.
  • FIG. 19 shows the emission of a light engine with / without a remote phosphor element in a second exemplary embodiment.
  • the primary light source is the same as in the first exemplary embodiment.
  • the remote phosphor element is selected on ⁇ ders.
  • a remote phosphor element a mixture of two phosphors is used, one of them same YAG: Ce as it is also used close to the chip as well as a nitridosilicate.
  • the phosphors a mixture of two phosphors is used, one of them same YAG: Ce as it is also used close to the chip as well as a nitridosilicate. Specifically, the phosphors
  • FIG. 19 shows the emission of the light engine without a remote phosphor element (curve 1) and with a remote phosphor element (curve 2).
  • the color temperature here is 3000 K and the color rendering index CRI is 72.
  • the visual efficiency is 338 lm / W_vis. With color temperature here possibly the closest color temperature is meant.
  • FIGS. 21 and 22 show a further embodiment with the same original light engine.
  • the same phosphor is used in the remote phosphor element as in the primary light source, ie
  • the 22 shows the color locus of a light engine without a remote phosphor element (circle) and with a remote phosphor element (triangle).
  • the color temperature here is new 6500 K and the color rendering index CRI is 73.
  • the visual efficiency is 306 lm / W_vis.
  • the primary light source has two phosphors connected upstream of the chip.
  • This LED was originally intended for display backlighting.
  • the originally sprünön first and second chip near phosphors are a üb ⁇ Licher LuAG: Ce with Al content, specifically, it is in particular ⁇ sondere to (LuO .99CeO .01) 3A15012.
  • the second phosphor is a common calsine, in particular CaO .996EuO .004AlSiN3.
  • the primary light source is a blue LED with Peakwellenlän- ge 442 nm, the light from the LuAG: Ce and the calsin is partially converted to green and red, so that overall a white ⁇ SSER color impression.
  • the remote phosphor element used is a mixture of two phosphors, a YAG: Ce and a CaAlSiN. Specifically, the phosphors (YO .96CeO .04) 3A13.75Gal .25012 and CaO .996EuO .004AlSiN3 be ge ⁇ jointly used in the remote phosphor element.
  • FIG. 23 shows the emission of the light engine without a remote phosphor element (curve 1) and with a remote phosphor element
  • FIG. 24 shows the color locus of a light engine without a remote phosphor element (circle) and with a remote phosphor element (triangle).
  • the color temperature here is now 2700 K and the color rendering index CRI is 91.
  • the visual effect is 275 lm / W_vis.
  • Color loci for BLU LEDs are inside a rectangle in the CIE xy diagram with the following vertex coordinates, respectively
  • FIG. 25 shows the emission of a light engine without a remote phosphor element (curve 1) and with a remote phosphor element (curve 2).
  • FIG. 26 shows the color locus of this light engine without a remote phosphor element (circle) and with a remote phosphor element (triangle).
  • This is an execution ⁇ example based on the Brilliant Mix concept, ie to ⁇ sharmaji red LED.
  • the same BLU LED was used as in the previous embodiments.
  • the original the color locus is 0.26 / 0.22 as x / y coordinates in the CIE color chart.
  • the color temperature here is new 2700 K and the color rendering index CRI is 91.
  • the visual efficiency is 354 lm / W_vis.
  • the primary light source is a blue LED with a peak wavelength of 444 nm, whose light is primarily converted by YaGaG: Ce, so that first of all a first white color impression is produced.
  • the same phosphor is used as the remote phosphor element. Specifically, the phosphor is

Abstract

An LED-based light source (1) has, as the primary light source, at least one LED which emits white light by chip-adjacent conversion by means of at least one phosphor (4), wherein the radiation of the LED is further modified by at least one further phosphor (15) of a spacing means.

Description

Beschreibung description
LED-basierte Lichtquelle LED based light source
Technisches Gebiet Die Erfindung geht aus von einer LED-basierten Lichtquelle gemäß dem Oberbegriff des Anspruchs 1. Es handelt sich dabei insbesondere um eine sog. LED light engine, Leuchte oder LED. TECHNICAL FIELD The invention is based on an LED-based light source according to the preamble of claim 1. In particular, this is a so-called LED light engine, luminaire or LED.
Stand der Technik State of the art
Die US 2009/058256, US 2007/215890 und US 2010/019261 offen¬ baren eine LED-basierte Lichtquelle, die Leuchtstoffe direkt auf dem Chip oder davon beabstandet verwendet. The US 2009/058256, US 2007/215890 and US 2010/019261 open ¬ cash an LED-based light source, the phosphors directly on the chip or spaced therefrom used.
Die US 2010/025700 und die 2007/274093 offenbart eine LED- basierte Lichtquelle für Hinterleuchtung, die auf aufwendige Weise mittels zweier LED-Gruppen warm-weiße Lichtfarben im Bereich 2500 bis 4500 K erzeugt. Die JP2009026672 verwendet zwei weiße LEDs mit unterschiedlicher Farbtemperatur.  US 2010/025700 and 2007/274093 discloses an LED-based light source for backlighting, which produces in a complex manner by means of two LED groups warm white light colors in the range 2500 to 4500 K. JP2009026672 uses two white LEDs with different color temperature.
Darstellung der Erfindung Presentation of the invention
Es ist Aufgabe der vorliegenden Erfindung, eine kostengünsti¬ ge Lösung für eine hochwertige LED-basierte Lichtquelle be¬ reitzustellen. The object of the present invention, a kostengünsti ¬ ge solution for high-quality LED-based light source be ¬ riding determine.
Diese Aufgabe wird durch die kennzeichnenden Merkmale des An- spruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen fin¬ den sich in den abhängigen Ansprüchen. This object is achieved by the characterizing features of claim 1. Particularly advantageous embodiments fin ¬ the in the dependent claims.
Die neuartige Lösung bezieht sich auf LED-basierte Lichtquel¬ len, vor allem LED-basierte Lampen oder Leuchten oder Module oder sog. Light Engines, die auf der teilweisen Konversion von Licht von LEDs durch eine LeuchtstoffSchicht basieren, so dass insgesamt ein bestimmter, z.B. warmweißer, Farbeindruck entsteht . The novel solution relates to LED-based Lichtquel ¬ len, especially LED-based lamps or lights or modules or so-called. Light Engines, which are based on the partial conversion of light from LEDs through a phosphor layer, so that overall a certain, eg warm white, color impression is created.
Beim Stand der Technik gilt bisher folgendes:  In the prior art, the following applies:
Die Konversion kann dabei in einer ersten Ausführungsform chipnah erfolgen. Für die Applikation der Leuchtstoffe kommen alle etablierten Konversionstechniken in Frage, beispielsweise Volumenverguss , Keramikkonverter, elektrophoretische Ab- scheidung (EPD) , Sedimentation, oder Verwendung mittels Siebdruck, Rakeln oder durch Sprayen hergestellter Plättchen aus Leuchtstoff und einem Matrixmaterial (CLC/Layer Transfer) . Alternativ können LED-Chip (s) und Leuchtstoff räumlich ge¬ trennt sein, also das sog. Remote-Phosphor-Konzept benutzen. Dabei kann der Leuchtstoff in einer Matrix, beispielsweise Kunststoff, Polymer, Glas, Silikon o.ä eingebettet sein, die z.B. als eine Art Kuppel oder Platte über der LED bzw. den LEDs angebracht ist. The conversion can be done close to the chip in a first embodiment. For the application of the phosphors, all established conversion techniques are suitable, for example, volume casting, ceramic converter, electrophoretic deposition (EPD), sedimentation, or use by screen printing, knife coating or by spraying produced luminescent plates and a matrix material (CLC / layer transfer). Alternatively, LED chip remote phosphor concept can (s) and phosphor be ge ¬ spatially separated, so the so-called. Use. In this case, the phosphor can be embedded in a matrix, for example plastic, polymer, glass, silicone or the like, which is attached, for example, as a kind of dome or plate over the LED or the LEDs.
Als Variante der beiden grundlegenden Konversionskonzepte ist es bekannt, blaue LEDs und rote LEDs zu kombinieren, sog. Brilliant-Mix-Lösung, wobei das Licht der blauen LEDs entwe- der chipnah oder über ein Remote Phosphor Element konvertiert wird. Außerdem ist ein sog. Hybrid-Remote-Konzept bekannt, das auch unter dem Namen Magenta-Konzept bekannt ist. Es han¬ delt sich um ein Remote Phosphor Konzept, bei dem ein Teil des Lichts der blauen LEDs über einen chipnahen roten Leucht- Stoff in rotes Licht konvertiert wird. As a variant of the two basic conversion concepts, it is known to combine blue LEDs and red LEDs, so-called Brilliant Mix solution, whereby the light from the blue LEDs is converted either close to the chip or via a remote phosphor element. In addition, a so-called. Hybrid remote concept is known, which is also known under the name of Magenta concept. It han ¬ delt is a remote phosphor concept, in which a part of the light of blue LEDs on a chip near red light-emitting material is converted into red light.
Die grundlegenden Konversionskonzepte einer chipnahen Anbringung des Leuchtstoffs bzw. Remote Phosphor Konzept besitzen verschiedene Vor- und Nachteile. Das Remote Phosphor-Konzept hat häufig Vorteile hinsichtlich der Effizienz, da die LED- Chips nicht direkt durch einen chipnahen Leuchtstoff erwärmt werden, wodurch die Chips kühler und effizienter bleiben. Daneben kann ein Effizienzvorteil vorhanden sein, wenn der Bereich innerhalb des Remote Phosphor Elements eine höhere Reflektivität als der Chip besitzt. The basic conversion concepts of a near-chip attachment of the phosphor or remote phosphor concept have various advantages and disadvantages. The Remote Phosphor concept often has efficiency benefits because the LED chips are not directly heated by a near-line phosphor, which keeps the chips cooler and more efficient. In addition, an efficiency advantage may be present if the Area within the remote phosphor element has a higher reflectivity than the chip.
Ein gravierender Nachteil des Remote-Phosphor-Konzepts ist die fehlende Kühlmöglichkeit des Leuchtstoffes mit Hilfe des Chips. Dadurch werden je nach Leistung der LED-basierten A serious disadvantage of the remote phosphor concept is the lack of cooling ability of the phosphor with the help of the chip. As a result, depending on the power of the LED-based
Lichtquelle besondere Anforderungen an das Matrixmaterial des Remote Phosphor Elements gestellt, da bei der Konversion von Licht im Remote-Phosphor-Element mehr oder weniger Abwärme entsteht. Des weiteren hat das Remote-Phosphor-Konzept einen deutlich höheren Leuchtstoffbedarf . Aus ästhetischer Sicht stellt ein Remote-Phosphor-Element häufig einen Nachteil dar. Beispielsweise führt seine gelbe oder orange Farbe zu einem unerwünschten farblichen Eindruck der LED-basierten Lichtquelle. Dieser wird oft durch ein zusätzliches Streuelement reduziert. Allerdings wird damit auch die Effizienz redu¬ ziert . The light source places special demands on the matrix material of the Remote Phosphor element, since the conversion of light in the Remote Phosphor element produces more or less waste heat. Furthermore, the remote phosphor concept has a significantly higher phosphor demand. From an aesthetic point of view, a remote phosphor element is often a disadvantage. For example, its yellow or orange color leads to an undesirable color impression of the LED-based light source. This is often reduced by an additional scattering element. However, to increase efficiency is graced redu ¬.
Normalerweise werden für das Remote-Phosphor-Konzept blaue LEDs ohne chipnahe Konversion verwendet. Diese sind prinzi¬ piell kostengünstiger als entsprechende weiße LEDs mit chip- naher Konversion. Dennoch werden derzeit blaue LEDs zum Teil teurer angeboten, weil weiße LEDs und insbesondere LEDs für Hinterleuchtung (Backlighting Unit) in deutlich größerer Menge produziert und angeboten werden. Daher hat die Remote- Phosphor-Technologie zusätzlich zu den höheren Leuchtstoff- kosten teilweise den Nachteil, dass es weniger Angebot für die benötigten blauen LEDs gibt und diese noch dazu teurer sind als weiße LEDs. Außerdem sind für die Brilliant-Mix- Lösung zusätzlich rote LEDs erforderlich Normally blue LEDs without chip-on-conversion are used for the remote phosphor concept. These are prinzi ¬ piell cheaper than corresponding white LEDs with chip-near conversion. Nevertheless, blue LEDs are currently more expensive because white LEDs and especially backlighting LEDs are produced and offered in significantly greater quantities. Therefore, in addition to the higher phosphor costs, the remote phosphor technology sometimes has the disadvantage that there is less supply for the required blue LEDs and they are even more expensive than white LEDs. In addition, the Brilliant Mix solution requires additional red LEDs
Die erfindungsgemäße Lösung sieht eine Kombination von chip- naher Konversion und Remote Phosphor vor, sie beruht also auf einem Partial-Remote-Phosphor-Konzept . Dabei wird das Licht der blauen LEDs teilweise chipnah konvertiert, so dass der Zielfarbort noch nicht allein durch die chipnahe Konversion getroffen wird. Der zweite Schritt der Konversion erfolgt über ein (oder mehrere) Remote Phosphor Element (e) , die einen oder mehrere Leuchtstoffe und zusätzliche Streuer enthalten können. Der rote Anteil des Spektrums kann dabei entweder zum Teil chipnah oder zum Teil über das Remote Phosphor Element erzeugt werden. Daneben kann das Partial Remote Phosphor Konzept auch mit dem Brilliant-Mix-Konzept oder mit dem Hybrid- Remote-Konzept kombiniert werden. The solution according to the invention provides for a combination of on-chip conversion and remote phosphor, ie it is based on a partial-remote phosphor concept. The light from the blue LEDs is partially converted close to the chip, so that the target color location is not hit by the near-chip conversion alone. The second step of the conversion takes place via one (or more) remote phosphor element (s), which may contain one or more phosphors and additional spreaders. The red portion of the spectrum can be generated either partially close to the chip or partly via the remote phosphor element. In addition, the Partial Remote Phosphor concept can also be combined with the Brilliant Mix concept or with the Hybrid Remote concept.
Durch Verwendung des Partial-Remote-Phosphor-Konzepts , also der Kombination von teilweiser chipnaher Konversion und Remo- te Phosphor-Konzept, ergeben sich mehrere Vorteile gegenüber der Lösung, entweder die Konversion nur chipnah oder nur über Remote Phosphor durchzuführen:  By using the partial remote phosphor concept, ie the combination of partial chip-near conversion and the remote phosphor concept, there are several advantages over the solution, either conversion only close to the chip or only via remote phosphor:
Es können LEDs verwendet werden, bei denen ein Teil des blau¬ en Lichts bereits chipnah konvertiert wird, z.B. LEDs mit kaltweißem Farbort oder LEDs für Backlight Units (Farbort z.B. x=0.274 und y=0.255 oder z.B. x = 0.265 und y =0.227) oder LEDs mit einem Farbort im Bereich zwischen dem Farbort einer blauen LED und einem kaltweißen Farbort. Für diese LEDs gibt es teilweise ein größeres Angebot und der Preis kann niedriger sein als für entsprechende blaue LEDs (ohne chipna¬ he Konversion) . It can be used in which a part of the blue ¬ en light is already converted chipnah such as LEDs with cold white color point or LEDs for backlight units (color locus eg x = 0.274 and y = 0.255, or for example, x = 0.265 and y = 0.227) LEDs or LEDs with a color locus in the range between the color location of a blue LED and a cold white color locus. For these LEDs, there is sometimes a larger offer and the price may be lower than for corresponding blue LEDs (without chipna ¬ he conversion).
Es können viele verschiedene Lampentypen nur durch die Anpas¬ sung des Remote Phosphor Elements realisiert werden. Durch Verwendung geeigneter Leuchtstoffe im Remote Phosphor Element kann man insgesamt einen breiten Bereich von Farborten abdecken (zwischen dem Farbort der LED und dem Farbort von einem Leuchtstoff bzw. den Farborten von mehreren Leuchtstoffen). Dadurch können z.B. ein sehr breiter Farbraum (z.B. warmweiß 2000 K bis kaltweiß 8000 K) , verschiedene CRI-Varianten (z.B. CRI 70 bis 100) oder unterschiedliche Lumen-Pakete abgedeckt werden. Im Gegensatz dazu benötigt man bei einer reinen klassischen chipnahen Konversion für jeden Lampentyp jeweils passende LEDs . Partial Remote Phosphor (und auch Remote Phosphor an sich) ist hervorragend geeignet für eine Plattform-Strategie (d.h. es sollen möglichst viele Komponenten der Lampe bei vielen Lampentypen gleich sein) . Hier könnten neben Heatsink, Trei- ber usw. auch die LEDs (bzw. LED Light Engines / Chips onIt can be implemented many different types of lamps only by the ANPAS ¬ solution of remote phosphor element. By using suitable phosphors in the Remote Phosphor element, one can cover a broad range of color locations altogether (between the color location of the LED and the color location of one phosphor or the color locations of several phosphors). As a result, for example, a very wide color space (eg warm white 2000 K to cool white 8000 K), different CRI variants (eg CRI 70 to 100) or different lumen packages can be covered. In contrast, with a pure classic near-chip conversion, suitable LEDs are required for each lamp type. Partial Remote Phosphor (and also Remote Phosphor itself) is ideal for a platform strategy (ie as many components of the lamp as possible should be the same for many lamp types). In addition to heat sink, driver, etc., the LEDs (or LED light engines / chips on
Board) für mehrere Lampentypen verwendet werden, wodurch man größere Stückzahlen einkaufen und die Kosten reduzieren kann. Verglichen mit einer kompletten Remote Phosphor Lösung (ohne teilweise chipnahe Konversion) wird beim Partial Remote Phos- phor Konzept weniger Hitze im Remote Phosphor Element er¬ zeugt, da ein Teil des Lichts bereits chipnah konvertiert wurde. Dadurch kann man auch bei höherem Lichtstrom des Bauteils noch relativ temperaturempfindliche Matrixmaterialien (z.B. Kunststoff/Polymer) für das Remote Phosphor Element verwenden. Board) can be used for multiple lamp types, which allows you to buy larger quantities and reduce costs. Compared with a complete remote phosphor solution (without partial chip close conversion) less heat in the remote phosphor element is he testifies ¬ because some of the light has already been converted chipnah the Partial remote phosphor concept. As a result, it is also possible to use relatively temperature-sensitive matrix materials (eg plastic / polymer) for the remote phosphor element even with a higher luminous flux of the component.
Gegenüber der kompletten Remote Phosphor Lösung kann außerdem der gesamte Bedarf an Leuchtstoff im Remote Phosphor Element niedriger sein. Das kann zum einen die Leuchtstoff-Kosten senken, zum anderen kann sich ein ästhetischer Vorteil erge- ben, da das Remote Phosphor Element einen weniger farbigen (z.B. gelb oder orange) Eindruck erweckt.  Compared to the complete Remote Phosphor solution, the total phosphor demand in the Remote Phosphor element may also be lower. On the one hand, this can lower the cost of the phosphor, and on the other hand, it can be aesthetically pleasing because the remote phosphor element gives a less colorful (for example yellow or orange) impression.
Gegenüber einer reinen klassischen chipnahen Konversion kann man mit dem Partial Remote Konzept eine höhere Effizienz er¬ zielen, da die LED Chips durch die nur teilweise chipnahe Konversion weniger stark erwärmt werden. Außerdem kann man den Bereich unter dem Remote Phosphor Element mit einer höheren Reflektivität gestalten im Vergleich zu der Reflektivität der Chips . Compared to a pure classic near-chip conversion can be with the Partial Remote concept, a higher efficiency he ¬ aim, since the LED chips are heated less by the partial chip near conversion less. In addition, one can make the area under the remote phosphor element with a higher reflectivity compared to the reflectivity of the chips.
Wesentliche Merkmale der Erfindung in Form einer numerierten Aufzählung sind:  Essential features of the invention in the form of a numbered list are:
1. LED-basierte Lichtquelle mit mindestens einem Chip oder LED und einem Leuchtstoff, der dem Chip oder der LED vorgeschaltet ist, wobei der Leuchtstoff in unmittelbarer Nä¬ he des Chip in thermischem Kontakt angeordnet ist, so dass ein LUKOLED-System vorliegt, dadurch gekennzeichnet, dass mindestens ein weiterer Leuchtstoff beabstandet vom Chip ohne thermische Kopplung dem LUKOLED-System vorgeschaltet ist, wobei die LUKOLED weiß einer bestimmten Farbtempera¬ tur abstrahlt und wobei die Lichtquelle weiß einer anderen Farbtemperatur oder mit anderem CRI abstrahlt. 1. LED-based light source with at least one chip or LED and a phosphor, which is connected upstream of the chip or the LED, wherein the phosphor is disposed in the immediate vicinity of the chip ¬ in thermal contact, so that a LUKOLED system is present, characterized in that at least one further phosphor spaced upstream of the chip without thermal coupling to the LUKOLED system, wherein the LUKOLED knows a certain color tempera ture ¬ radiates and wherein the light source white of a different color temperature or radiates with other CRI ,
LED-basierte Lichtquelle nach Vorschlag 1, dadurch gekenn¬ zeichnet, dass die LUKOLED Konfektionsware ist. LED-based light source according to proposal 1, characterized marked ¬ records that the LUKOLED ready-made goods.
LED-basierte Lichtquelle nach Vorschlag 1, dadurch gekenn¬ zeichnet, dass die Wärmebrücke zusätzlich mit einem Mittel zur Wärmespreizung ausgestattet ist. LED-based light source according to proposal 1, characterized marked ¬ characterized in that the thermal bridge is additionally equipped with a means for heat spreading.
LED-Modul nach Vorschlag 3, dadurch gekennzeichnet, dass das Mittel zur Wärmespreizung eine Dampf enthaltender Hohlraum ist, insbesondere ein Hohlraum in einem Metallrohr . LED module according to proposal 3, characterized in that the means for heat spreading is a vapor-containing cavity, in particular a cavity in a metal tube.
LED-Modul nach Vorschlag 1, dadurch gekennzeichnet, dass der Wärmetauscher ein Körper aus offenporigem Graphitschaum ist, der mindestens eine Seitenfläche aufweist. LED module according to proposal 1, characterized in that the heat exchanger is a body made of open-pored Graphitschaum having at least one side surface.
LED-Modul nach Vorschlag 5, dadurch gekennzeichnet, dass der Körper ein Quader mit Seitenflächen ist, insbesondere mit Schmalseiten und Breitseiten. LED module according to proposal 5, characterized in that the body is a cuboid with side surfaces, in particular with narrow sides and broad sides.
LED-Modul nach Vorschlag 5, dadurch gekennzeichnet, dass mindestens eine Seitenfläche mit der Wärmebrücke in ther¬ mischem Kontakt stehen. LED-Modul nach Vorschlag 5, dadurch gekennzeichnet, dass der Körper mindestens eine zweite Seitenfläche besitzt, wobei mindestens eine zweite Seitenfläche mit Schlitzen versehen ist. LED module according to proposal 5, characterized in that at least one side surface are in thermal contact with the thermal bridge ¬ . LED module according to proposal 5, characterized in that the body has at least one second side surface, wherein at least one second side surface is provided with slots.
9. LED-Modul nach Vorschlag 1, dadurch gekennzeichnet, dass das LED-Modul eine light engine ist. 10. LED-Modul nach Vorschlag 8, dadurch gekennzeichnet, dass der Körper zwei einander gegenüberliegende zweite Seiten¬ flächen mit Schlitzen aufweist, wobei die Schlitze auf den beiden zweiten Seitenflächen gegeneinander versetzt sind. 9. LED module according to proposal 1, characterized in that the LED module is a light engine. 10. LED module according to proposal 8, characterized in that the body has two opposing second side ¬ surfaces with slots, wherein the slots on the two second side surfaces are offset from each other.
Figuren characters
Im folgenden soll die Erfindung anhand mehrerer Ausführungs- beispiele näher erläutert werden. Es zeigen: In the following, the invention will be explained in more detail with reference to several exemplary embodiments. Show it:
Fig. 1 eine Prinzipdarstellung einer LED-basierten Lichtquelle; Fig. 1 is a schematic diagram of an LED-based light source;
Figur 2-7 LED-basierte Lichtquellen gemäß dem Stand der Figure 2-7 LED-based light sources according to the prior art
Technik; Figur 8-13 LED-basierte Lichtquellen gemäß der Erfindung;  Technology; Figure 8-13 LED-based light sources according to the invention;
Figur 14-15 LED-Lampen bzw. LED-Module gemäß der Erfindung; Figure 14-15 LED lamps or LED modules according to the invention;
Figur 16 zeigt das Grundprinzip der Erfindung; Figure 16 shows the basic principle of the invention;
Figur 17 bis 26 zeigt jeweils paarweise das Emissions- spektrum einer weißen LED und den Farbort der light engine ohne und mit einem Remote-Phosphor-Element für vier verschiedene Ausführungsbeispiele. 0 FIGS. 17 to 26 each show in pairs the emission spectrum of a white LED and the color locus of the light engine without and with a remote phosphor element for four different exemplary embodiments. 0
o  O
Beschreibung der Figuren Description of the figures
Figur 1 zeigt eine LED-basierte Lichtquelle 1 mit einem LED- Modul, insbesondere eine light engine, deren konkreter Aufbau für die Erfindung keine Rolle spielt. Sie verwendet das Par- tial-Remote-phosphor-Konzept . FIG. 1 shows an LED-based light source 1 with an LED module, in particular a light engine, the concrete structure of which does not play a role for the invention. It uses the partial remote phosphor concept.
Dabei sitzt beispielsweise ein Chip 2 auf einem Substrat 3, wobei direkt auf dem Chip eine Schicht Leuchtstoff 4 ange¬ bracht ist. Somit findet chipnahe Teil-Konversion statt. Der Leuchtstoff ist beispielsweise grün oder gelb emittierend. Er konvertiert einen gewissen Teil der blauen Strahlung des Chip. Here, for example, a chip 2 is seated on a substrate 3, wherein is is introduced ¬ directly on the chip a layer of phosphor. 4 Thus, near-chip partial conversion takes place. The phosphor is, for example, emitting green or yellow. It converts some of the blue radiation of the chip.
Über dem Chip spannt sich eine beabstandete Kuppel 5. Das teilkonvertierte Licht (schwarzer Pfeil) des Chips gelangt zur Kuppel 5, an der ein Remote-Phosphor-Element 6 unterge¬ bracht ist. Dies geschieht beispielsweise dadurch, dass die Kuppel mit Leuchtstoff beschichtet ist oder im Material der Kuppel Leuchtstoff dispergiert ist oder indem ein Plättchen mit Leuchtstoff in die Kuppel eingelassen ist. Außer dem Leuchtstoff kann die Kuppel selbst oder ein separates Remote- Phosphor-Element 6, das daran befestigt ist, ein zusätzliches Streumittel wie Ti02 enthalten. About the chip spans a spaced dome 5. The partially converted light (black arrow) of the chip reaches the dome 5, at which a remote phosphor element 6 is unterge ¬ introduced . This happens, for example, in that the dome is coated with phosphor or in the material of the dome is phosphor dispersed or by a plate with phosphor is embedded in the dome. In addition to the phosphor, the dome itself or a separate remote phosphor element 6 attached thereto may contain an additional scattering agent such as TiO 2.
Ein Teil des teilkonvertierten Lichts wird durch das Remote- Phosphor-Element 6 konvertiert, so dass die gesamte Strahlung (weißer Pfeil) beispielsweise weiß ergibt oder einen speziel¬ len Farbeindruck hervorruft. A portion of the teilkonvertierten light is converted by the remote phosphor element 6, so that the entire radiation (white arrow) results in, for example, white or causes a specially ¬ len color impression.
Figur 2 zeigt einen Stand der Technik für eine LED-basierte Lichtquelle 1 mit chipnaher Konversion. Dabei wird weißes Licht chipnah dadurch erzeugt, dass auf einem Substrat 3 ein Chip 2 sitzt, dem oberflächennah direkt oder mittels aufgesetzter Matrix ein oder mehrere Leuchtstoffe 4 vorgeschaltet sind. Typisch ist der Chip blau emittierend und ein Teil des Lichts wird durch einen gelb emittierenden oder auch durch zwei Leuchtstoffe, die grün und rot emittieren, längerwellig verschoben . Figure 2 shows a prior art for an LED-based light source 1 with chip-near conversion. In this case, white light is generated close to the chip by the fact that a chip 2 is seated on a substrate 3, to which one or more phosphors 4 are connected in front of the surface directly or by means of an attached matrix. Typically, the chip is emitting blue and part of the light is emitted through a yellow or through two phosphors that emit green and red, shifted to longer wavelengths.
Figur 3 zeigt ein ähnliches Konzept einer LED-basierte Licht¬ quelle 1, wobei der Chip 2 mit den oberflächennahen Leucht- Stoffen in Schicht 4 in einem Gehäuse 7 sitzt und wobei dem Gehäuse eine Streuscheibe 8 als Deckplatte vorgeschaltet ist. Figur 4 zeigt eine rein auf dem Remote-Phosphor-Konzept ba¬ sierende LED 10 mit Kuppel 11. Dabei sind alle Leuchtstoffe von dem Chip, der blau emittiert, räumlich beabstandet. Sie sitzen insbesondere auf der Kuppel 11 als Innenschicht 12, zusammen mit einer weiteren Schicht 13, die Streumittel ent¬ hält. Auch hier ist die einfachste Lösung das sog. BY- Konzept, also die teilweise Wandlung der blauen Primärstrahlung des Chips in gelb (Blue-Yellow) . Eine bessere Farbwie- dergabe wird mittels zweier Leuchtstoffe erzielt, die vor der Kuppel 11 angeordnet sind und die blaue Primärstrahlung kon¬ vertieren, wobei sie grün bzw. rot emittieren (RGB-Konzept ) . Figur 5 zeigt das gleiche Prinzip, wobei die Schichten der Leuchtstoffe 12 und Streumittel 13 auf einer Deckplatte 8, die vom Chip 2 beabstandet ist, angebracht oder eingebracht sind . Figure 3 shows a similar concept of an LED-based light source ¬ 1, wherein the chip 2 is seated with the near-surface light-emitting material in layer 4 in a housing 7 and wherein the housing includes a diffusion plate 8 is connected upstream as a cover plate. Figure 4 shows a pure on the remote phosphor concept ba ¬ sierende LED 10 with dome 11. In this case, all the phosphors of the chip, which emits blue, spatially spaced. They sit in particular on the dome 11 as the inner layer 12, together with another layer 13, the scattering means ent ¬ holds. Here, too, the simplest solution is the so-called BY concept, ie the partial conversion of the blue primary radiation of the chip into yellow (blue-yellow). A better color rendition is achieved by means of two phosphors, which are disposed in front of the dome 11 and the blue primary radiation kon ¬ vertieren, wherein they emit green or red (RGB approach). Figure 5 shows the same principle, wherein the layers of the phosphors 12 and scattering means 13 on a cover plate 8, which is spaced from the chip 2, are mounted or incorporated.
Figur 6 zeigt eine LED-basierte Lichtquelle 1, die das sog. Brilliant-Mix-Konzept verwendet. Dabei sitzen auf einem Sub¬ strat sowohl eine blau emittierende LED 2a als auch eine rot emittierende LED 2b. Nur das Licht der blauen LED wird direkt chipnah durch eine LeuchtstoffSchicht 4 teilkonvertiert. FIG. 6 shows an LED-based light source 1 which uses the so-called Brilliant Mix concept. While sitting on a sub ¬ strate both a blue-emitting LED 2a 2b and a red-emitting LED. Only the light of the blue LED is partially converted directly near the chip through a phosphor layer 4.
Sinnvoll ist dabei eine Gelb-Konversion bis Grün-Konversion. Die Mischung der Strahlung beider LEDs ergibt wieder weißes Licht (weißer Pfeil) . Useful is a yellow conversion to green conversion. The mixture of the radiation of both LEDs gives again white light (white arrow).
Figur 7 zeigt schematisch eine LED-basierte Lichtquelle 1, die das sog. Brilliant-Mix-Konzept verwendet, mit Remote- Phosphor-Lösung. Dabei wölbt sich eine gemeinsame Kuppel 11 über eine blau und eine rot emittierende LED 2a und 2b. In der Kuppel 11 sitzen Leuchtstoffe 15 und Streumittel 16 (schematisch dargestellt) , die das blaue Licht teilweise kon¬ vertieren, aber das rote Licht, abgesehen von der Streuung, ungehindert passieren lassen. Figure 7 shows schematically an LED-based light source 1, which uses the so-called Brilliant Mix concept, with remote phosphor solution. In this case, a common dome 11 bulges over a blue and a red emitting LED 2a and 2b. In the dome 11 sitting phosphors 15 and scattering means 16th (shown schematically), the blue light partially kon ¬ vertieren, but the red light, except for the scattering, can pass unhindered.
Figur 8 zeigt schematisch das Magenta-Konzept . Dabei wird ein Paar von blau emittierenden LEDs 2a, 2c verwendet, die nicht notwendig die gleiche Peakwellenlänge aufweisen müssen. Die Strahlung der ersten LED 2a wird ungehindert zu einer Kuppel 11 geschickt, die beabstandet angebracht ist. Die Strahlung der zweiten LED 2c wird chipnah durch eine geeignete Schicht 4 langwellig konvertiert, insbesondere zu rot bzw. magenta. In der Kuppel 11 oder an der Kuppel ist wieder ein Leucht¬ stoff 15 angebracht, ggf. zusätzlich auch Streumittel 16, wo¬ bei der Leuchtstoff das blaue Licht teilweise in gelbes bzw. grünes Licht konvertiert. Insgesamt wird auch hier weißes Licht erzeugt. FIG. 8 schematically shows the magenta concept. In this case, a pair of blue-emitting LEDs 2a, 2c are used, which need not necessarily have the same peak wavelength. The radiation of the first LED 2a is passed freely to a dome 11, which is mounted at a distance. The radiation of the second LED 2 c is converted close to the chip by a suitable layer 4 long-wave, in particular to red or magenta. In the dome 11 or at the dome is again a luminescent ¬ fabric 15 is attached, possibly also scattering means 16, where ¬ in the phosphor, the blue light partially converted into yellow or green light. Overall, white light is generated here as well.
Figur 9 zeigt ein Ausführungsbeispiel einer LED-basierten Lichtquelle 1 gemäß der Erfindung, die das Partial-Remote- phosphor-Konzept verwendet. Dabei sitzt in der Ausnehmung ei¬ nes Gehäuses 7 eine LUKOLED, also eine LED, bei der der Chip 2 bereits einer chipnahen Konversion zu weiß unterzogen wird. Dies geschieht mittels einer chipnahen Schicht 4 aus Leucht¬ stoff oder Leuchtstoffen. Dabei emittiert diese LUKOLED ins¬ besondere kaltweiß oder es handelt sich um eine LED, die für backlighting gedacht war und daher preisgünstig war. Das Ge- häuse 7 ist mit einer Abdeckscheibe 8 versehen, an der oder in der weitere Leuchtstoffe 15 und ggf. Streumittel 16 unter¬ gebracht sind. Diese weiteren Leuchtstoffe dienen dazu, die Lichtfarbe des primären weiß zu verändern. Beispielsweise wird dabei sekundär die Lichtfarbe warmweiß oder neutralweiß oder tageslichtähnliches weiß bis hin zu skywhite erzeugt. Ein Konzept der Erfindung ist also die Modifizierung der Farbtemperatur, insbesondere gezielt zu niedrigeren Farbtemperaturen hin, mit einem Delta von mindestens 100 K, bevorzugt 200 K bis hinzu 1500 K. Konkret lässt sich die Farbtem- peratur von neutralweiß oder kaltweiß (hier 4000 bis 4800 K) hin zu warmweiß (typisch 2600 bis 3200 K) verschieben. Typische Vertreter für primäres weiß sind LEDs für backlighting units (BLU) mit einer Lichtfarbe von tageslichtweiß bis hin zu skywhite oder sogar noch höher. FIG. 9 shows an exemplary embodiment of an LED-based light source 1 according to the invention, which uses the partial remote phosphor concept. In this case, in the recess ei ¬ nes housing 7 sits a LUKOLED, so an LED, in which the chip 2 of a near-chip conversion is subjected to know already. This is done by means of a near-chip layer 4 of luminescent ¬ material or phosphors. This LUKOLED emits in particular ¬ cold white or it is an LED, which was intended for backlighting and therefore was inexpensive. The housing 7 is provided with a cover disk 8, on or in which further phosphors 15 and possibly scattering means 16 are brought under ¬ . These other phosphors are used to change the light color of the primary white. For example, the light color warm white or neutral white or daylight-like white up to skywhite is produced secondarily. One concept of the invention is therefore the modification of the color temperature, in particular specifically towards lower color temperatures, with a delta of at least 100 K, preferably 200 K up to 1500 K. Specifically, the color temperature can be temperature from neutral white or cool white (here 4000 to 4800 K) to warm white (typically 2600 to 3200 K). Typical representatives of primary white are LEDs for backlighting units (BLU) with a light color from daylight white to skywhite or even higher.
Figur 10 zeigt das Partial-Remote-phosphor-Konzept angewendet auf eine LED-basierte Lichtquelle 1 unter Verwendung des Brilliant-Mix-Konzepts . Dabei wird eine erste LED bzw. ein Chip 2a verwendet, dessen primäre Strahlung blau ist und de- ren Strahlung von einem chipnah angebrachten Leuchtstoff 4 teilkonvertiert ist. Der Leuchtstoff emittiert gelb oder grün. Die LED 2a ist insgesamt wieder beispielsweise kaltweiß emittierend oder ursprünglich zur Verwendung bei backlighting units gedacht. Daneben ist eine zweite LED 2b auf demselben Substrat 3 angeordnet, die rot emittiert. Das Licht beider Figure 10 shows the partial remote phosphor concept applied to an LED based light source 1 using the Brilliant Mix concept. In this case, a first LED or a chip 2a is used, whose primary radiation is blue and whose radiation is partially converted by a phosphor 4 arranged close to the chip. The phosphor emits yellow or green. The LED 2a is overall again, for example, cold white emitting or originally intended for use in backlighting units. In addition, a second LED 2b is arranged on the same substrate 3, which emits red. The light of both
LEDs trifft auf eine sich über beide LEDs wölbende Kuppel 5. In der Kuppel oder an der Kuppel sind weitere Leuchtstoffe 15 und ggf. Streumittel 16 untergebracht, die das Licht beider LEDs mischen bzw. zu einem weiß konvertieren, das sich von dem ursprünglichen weiß der ersten LED unterscheidet. LEDs impinge on a dome 5 bulging over both LEDs. In the dome or dome, further phosphors 15 and possibly scattering means 16 are accommodated, which mix the light from both LEDs or convert it to a white, which differs from the original one first LED is different.
Figur 11 zeigt das Partial-Remote-phosphor-Konzept angewendet auf eine LED-basierte Lichtquelle 1 in einem ähnlichen Aus¬ führungsbeispiel, jedoch ist die Kuppel durch eine Front¬ scheibe 8 ersetzt. Die beiden Chips 2a und 2b sitzen in einem Gehäuse 7, dessen Deckel 8 die Frontscheibe ist. 11 shows the partial remote phosphor concept applied to an LED-based light source 1 in a similar From ¬ operation example, however, the dome is replaced by a front ¬ disc. 8 The two chips 2a and 2b sit in a housing 7, the cover 8 is the windscreen.
Figur 12 und 13 zeigen in analoger Weise zwei LEDs 1, bei de¬ nen das Partial-Remote-phosphor-Konzept auf das Hybrid- bzw. Magenta-Konzept angewendet ist, jeweils als Kuppel-Variante (Figur 12) und Frontscheiben-Variante (Figur 13) . Der erste Chip auf dem Substrat ist eine kaltweiß emittierende oder neutralweiß emittierende, für backlighting units gedachte LED 2a. Ihrem blau emittierenden Chip ist für die Erzeugung der ersten weißen Lichtfarbe, beispielsweise kaltweiß, chipnah ein Leuchtstoff 4a für eine Teilkonversion in gelb bis grün vorgeschaltet, wie an sich bekannt. Der zweite Chip 2b ist ebenfalls blau emittierend, wobei dem Chip ein geeigneter rot emittierender Leuchtstoff 4b zur Konversion in Magenta bis rot vorgeschaltet ist. Davor ist wieder beabstandet eine bei- de Chips überwölbende Kuppel 5 oder Scheibe 8 vorgeschaltet. Insbesondere wird ein Keramikplättchen als Scheibe 8 oder Teil der Scheibe 8 verwendet. Dieses Remote-Phosphor-Element weist mindestens einen Leuchtstoff 15 und ggf. Streumittel 16 auf. Damit lässt sich weißes Licht beliebiger Anforderung re- alisieren. Figure 12 and 13 show in an analogous manner two LEDs 1, each as a co-variant (Figure 12) and front window variant is used in de ¬ NEN the partial remote phosphorus-concept on the hybrid or magenta concept ( FIG. 13). The first chip on the substrate is a cool-white emitting or neutral-white emitting LED 2a intended for backlighting units. Your blue-emitting chip is for the production of the first white light color, for example, cold white, chipnah a phosphor 4a for a partial conversion from yellow to green upstream, as known. The second chip 2b is likewise emitting blue, wherein the chip is preceded by a suitable red emitting phosphor 4b for conversion from magenta to red. In front of this, a dome 5 or disk 8, which overhangs the two chips, is spaced again upstream. In particular, a ceramic plate is used as a disc 8 or part of the disc 8. This remote phosphor element has at least one phosphor 15 and possibly scattering agent 16. This allows white light of any requirement to be realized.
Figur 14 zeigt eine LED-Lampe 18 in Retrofit-Konzept , die das Partial-Remote-phosphor-Konzept anwendet. Sie hat einen So¬ ckel 19, ein Gehäuse 21, das Elektronik enthält, und eine Kuppel 17 auf dem Gehäuse. Dabei wird die Primärstrahlung und chipnahe Teilkonversion bei den auf dem Gehäuse angebrachten LEDs 20 erzeugt. Die partielle nachgeordnete Konversion und Streuung wird im Bereich der Kuppel 17 erzeugt. Figure 14 shows a retrofit LED lamp 18 employing the partial remote phosphor concept. It has a So ¬ ckel 19, a housing 21 containing electronics, and a dome 17 on the housing. In this case, the primary radiation and near-chip partial conversion is generated in the LEDs 20 mounted on the housing. The partial downstream conversion and scattering is generated in the area of the dome 17.
Figur 15 zeigt ein ähnliches Konzept für ein LED-Modul 25. Dabei wird die Primärstrahlung und chipnahe Teilkonversion bei den LEDs 20 erzeugt. Die partielle nachgeordnete Konver¬ sion wird im Bereich der Kuppel 17 erzeugt. Die Streuung schließlich im Bereich der äußeren kuppeiförmigen Abdeckung 48. FIG. 15 shows a similar concept for an LED module 25. The primary radiation and partial conversion close to the chip are generated in the case of the LEDs 20. The partial downstream convergence ¬ sion is generated in the area of the dome 17th Finally, the scattering in the area of the outer dome-shaped cover 48.
Figur 16 zeigt das Grundprinzip der vorliegenden Erfindung. Dargestellt ist das CIE-Diagramm, wobei der erste Farbort (1) den Farbort der LED mit chipnaher Konversion beispielsweise gemäß Figur 1 oder Figur 9 darstellt. Die teilweise Konversi¬ on gemäß Remote-Phosphor-Konzept verschiebt den Farbort dann zum zweiten Farbort (2) . Dieser zweite Farbort (2) liegt bei- spielsweise genau auf der Planck-Kurve P. Figure 16 shows the basic principle of the present invention. Shown is the CIE diagram, wherein the first color locus (1) represents the color locus of the LED with chip-near conversion, for example according to FIG. 1 or FIG. The partially Konversi ¬ one according remote phosphor concept then shifts the color coordinates for a second color location (2). For example, this second color locus (2) lies exactly on the Planck curve P.
Konkret gilt: Farbort 1 kann durch verschiedene Kombinationen von LED(s) mit einem oder mehreren Leuchtstoffen und optional zusätzlichen Streuern erreicht werden. Dabei spielt u. a. die Wellenlänge der LED(s) eine große Rolle. Vorteilhaft wird als Peakwellenlänge der LED 420 nm bis 480 nm, insbesondere 430 bis 460 nm, verwendet. Specifically, color locus 1 can be achieved by various combinations of LED (s) with one or more phosphors and optionally additional scatterers. Among other things, the wavelength of the LED (s) plays a major role. It is advantageous as Peak wavelength of the LED 420 nm to 480 nm, in particular 430 to 460 nm used.
Das Remote Phosphor Element kann einen oder mehrere Leucht¬ stoffe und optional zusätzliche Streuer enthalten, um von Farbort 1 zu Farbort 2 zu gelangen, unter Nutzung der preis¬ günstigen LED, die Farbort 1 vermittelt. The remote phosphor element may be one or more light emitting materials, and optionally additional ¬ spreader included to pass from locus to locus 1 2 mediated using the rate ¬ cheap LED, the color locus. 1
Als Leuchtstoffe, die zur Anwendung im Remote-Phosphor- Element geeignet sind, werden insbesondere Granate, Orthosi- likate, Chlorosilikate, Nitridosilikate und deren Derivate vorgeschlagen wie insbesondere:  As phosphors which are suitable for use in the remote phosphorus element, in particular garnets, orthosilicates, chlorosilicates, nitridosilicates and derivatives thereof are proposed, in particular:
(Ca, Sr) 8Mg (Si04) 4C12 :Eu2+ (Ca, Sr) 8Mg (SiO 4) 4C 12: Eu 2+
(Sr,Ba, Lu) 2Si (0,N) 4 :Eu2+ (Sr, Ba, Lu) 2Si (0, N) 4: Eu2 +
( Sr, Ba, Ln) 2Si (0, ) 4 : Eu2+ mit Ln ausgewählt aus den Lanthanoi- den mit der Möglichkeit, für Ln auch mehr als ein Lanthanoid zu verwenden  (Sr, Ba, Ln) 2Si (0,) 4: Eu2 + with Ln selected from the Lanthanoids with the possibility of using more than one lanthanoid for Ln
(Sr, Ba) Si2N202 :Eu2+  (Sr, Ba) Si2N202: Eu2 +
(Y, Gd, b, Lu) 3 (AI, Ga) 5012 :Ce3+  (Y, Gd, b, Lu) 3 (Al, Ga) 5012: Ce3 +
(Ca, Sr,Ba) 2Si04 :Eu2+  (Ca, Sr, Ba) 2Si04: Eu2 +
(Sr,Ba, Ca) 2Si5N8 :Eu2+  (Sr, Ba, Ca) 2Si5N8: Eu2 +
(Sr, Ca) AlSiN3 :Eu2+ (Sr, Ca) AlSiN3: Eu2 +
(Sr, Ca) S :Eu2+  (Sr, Ca) S: Eu2 +
(Sr,Ba, Ca) 2 (Si, AI) 5 (N, 0) 8 :Eu2+  (Sr, Ba, Ca) 2 (Si, Al) 5 (N, 0) 8: Eu2 +
(Sr,Ba, Ca) 2Si5N8 :Eu2+ (Sr, Ba, Ca) 2Si5N8: Eu2 +
(Sr, Ba, Ca) 3Si05 :Eu2+(Sr, Ba, Ca) 3Si05: Eu2 +
-SiA10N:Eu2+  -SiA10N: Eu 2+
Ca (5-δ) AI (4-2δ) Si (8+2δ) 180:Eu2+  Ca (5-δ) Al (4-2δ) Si (8 + 2δ) 180: Eu2 +
Figur 16 bezieht sich auf eine light engine, die sich vor¬ teilhaft das folgende Konzept zu Nutze macht. Auf dem Markt gibt es häufig große und billige Mengen an bestimmten Chargen von weißen LED, beispielsweise kaltweiß emittierende LED. Mit einem Remote-Phosphor-Element kann eine derartige LED als Lichtquelle einer light engine verwendet werden, wobei der den Farbort verändernde Leuchtstoff im Remote-Phosphor- Element untergebracht ist. Auf diese Weise kann auf die Ver- wendung von erheblich teureren blauen LEDs als Lichtquelle für die light engine verzichtet werden. Im folgenden werden zwei konkrete Ausführungsbeispiele näher erläutert. Figure 16 refers to a light engine that makes the right ¬ geous the following concept to Use. On the market, there are often large and cheap quantities of certain batches of white LEDs, such as cool white emitting LEDs. With a remote phosphor element, such an LED can be used as a light source of a light engine, wherein the color location changing phosphor is housed in the remote phosphor element. In this way, it is possible to Use of considerably more expensive blue LEDs as a light source for the light engine can be dispensed with. In the following two concrete embodiments will be explained in more detail.
Im ersten Ausführungsbeispiel hat die primäre Lichtquelle chipnah einen einzigen Leuchtstoff vorgeschaltet. Der ur¬ sprüngliche (primäre) Farbort der LED ist x=0.26/y=0.22. Die¬ se LED ist ursprünglich für die Display-Hinterleuchtung gedacht. Dabei ist der ursprüngliche erste und einzige chipnahe Leuchtstoff ein üblicher YAG : Ce mit Al/Ga-Anteil (YaGaG:Ce), konkret handelt es sich insbesondere um In the first exemplary embodiment, the primary light source has a single phosphor upstream of the chip. Ur ¬ nal (primary) color locus of the LED, x = 0.26 / y = 12:22. The ¬ se LED is originally intended for display backlighting. Here, the original first and only chip-near phosphor is a conventional YAG: Ce with Al / Ga content (YaGaG: Ce), specifically, it is in particular
(Y0.96CeO .04) 3A13.75Gal .25012. (Y0.96CeO .04) 3A13.75Gal .25012.
Die primäre Lichtquelle ist eine blaue LED mit Peakwellenlän- ge 444 nm, deren Licht vom YAG:Ce teilweise in gelb konver¬ tiert wird, so dass insgesamt ein weißer Farbeindruck ent- steht. Als Remote-Phosphor-Element wird eine Mischung aus zwei Leuchtstoffen verwendet, und zwar ein vereinfachter YAG:Ce sowie ein CaAlSiN. Konkret werden die Leuchtstoffe (YO .96CeO .04) 3A15012 und CaO .996EuO .004AlSiN3 gemeinsam im Remote-Phosphor-Element verwendet . The primary light source is a blue LED with Peakwellenlän- ge 444 nm, the light from the YAG: Ce yellow Conver ¬ advantage in part, so that overall, a white color impression is corresponds. The remote phosphor element is a mixture of two phosphors, a simplified YAG: Ce and a CaAlSiN. Specifically, the phosphors (YO .96 CeO .04) 3A15012 and CaO .996EuO .004AlSiN3 are used together in the remote phosphor element.
Figur 17 zeigt die Emission der light engine ohne Remote- Phosphor-Element (Kurve 1) und mit Remote-Phosphor-Element (Kurve 2) . Figur 18 zeigt den Farbort einer light engine ohne Remote-Phosphor-Element (Kreis) und mit Remote-Phosphor- Element (Dreieck). Der neue Farbort ist x=0.46/y=0.41. Die Farbtemperatur ist hier neu 2700 K und der Farbwiedergabeindex CRI ist 80. Der visuelle Nutzeffekt ist 300 lm/W_vis. Konkret basiert dabei die light engine auf einer BLU-LED mit hoher Farbtemperatur als primäres weiß. FIG. 17 shows the emission of the light engine without a remote phosphor element (curve 1) and with a remote phosphor element (curve 2). FIG. 18 shows the color locus of a light engine without a remote phosphor element (circle) and with a remote phosphor element (triangle). The new color location is x = 0.46 / y = 0.41. The color temperature here is new 2700 K and the color rendering index CRI is 80. The visual efficiency is 300 lm / W_vis. Specifically, the light engine is based on a BLU LED with a high color temperature as the primary white.
Figur 19 zeigt die Emission einer light engine mit/ohne Remo- te-Phosphor-Element in einem zweiten Ausführungsbeispiel. Da¬ bei ist die primäre Lichtquelle gleich wie beim ersten Aus¬ führungsbeispiel. Jedoch ist das Remote-Phosphor-Element an¬ ders gewählt. Als Remote-Phosphor-Element wird eine Mischung aus zwei Leuchtstoffen verwendet, und zwar zum einen der gleiche YAG:Ce wie er auch chipnah verwendet wird sowie ein Nitridosilikat . Konkret werden die Leuchtstoffe FIG. 19 shows the emission of a light engine with / without a remote phosphor element in a second exemplary embodiment. At ¬ the primary light source is the same as in the first exemplary embodiment. However, the remote phosphor element is selected on ¬ ders. As a remote phosphor element, a mixture of two phosphors is used, one of them same YAG: Ce as it is also used close to the chip as well as a nitridosilicate. Specifically, the phosphors
(YO .96CeO .04) 3A13.75Gal .25012 und (SrO .48BaO .48EuO .04) 2Si5N8 gemeinsam im Remote-Phosphor-Element verwendet. (YO .96CeO .04) 3A13.75Gal .25012 and (SrO .48BaO .48EuO .04) 2Si5N8 used together in the remote phosphor element.
Figur 19 zeigt die Emission der light engine ohne Remote- Phosphor-Element (Kurve 1) und mit Remote-Phosphor-Element (Kurve 2) . Figur 20 zeigt den Farbort einer light engine ohne Remote-Phosphor-Element (Kreis) und mit Remote-Phosphor- Element (Dreieck). Der neue Farbort ist x=0.44/y=0.40. Die Farbtemperatur ist hier neu 3000 K und der Farbwiedergabeindex CRI ist 72. Der visuelle Nutzeffekt ist 338 lm/W_vis. Mit Farbtemperatur ist hier ggf. die ähnlichste Farbtemperatur gemeint . FIG. 19 shows the emission of the light engine without a remote phosphor element (curve 1) and with a remote phosphor element (curve 2). FIG. 20 shows the color location of a light engine without a remote phosphor element (circle) and with a remote phosphor element (triangle). The new color location is x = 0.44 / y = 0.40. The color temperature here is 3000 K and the color rendering index CRI is 72. The visual efficiency is 338 lm / W_vis. With color temperature here possibly the closest color temperature is meant.
Figur 21 und 22 zeigt ein weiteres Ausführungsbeispiel mit der gleichen ursprünglichen light engine. Hier ist im Remote- Phosphor-Element wieder der gleiche Leuchtstoff wie in der primären Lichtquelle verwendet, also  FIGS. 21 and 22 show a further embodiment with the same original light engine. Here again the same phosphor is used in the remote phosphor element as in the primary light source, ie
(Y0.96CeO .04) 3A13.75Gal .25012. Überraschenderweise führt auch diese Anordnung bereits zu einem gänzlich anderen Farbort, siehe Figur 22. Die Emission ist in Figur 21 gezeigt. Figur (Y0.96CeO .04) 3A13.75Gal .25012. Surprisingly, this arrangement also already leads to a completely different color locus, see FIG. 22. The emission is shown in FIG. figure
22 zeigt den Farbort einer light engine ohne Remote-Phosphor- Element (Kreis) und mit Remote-Phosphor-Element (Dreieck) . Der neue Farbort ist x=0.314/y=0.321. Die Farbtemperatur ist hier neu 6500 K und der Farbwiedergabeindex CRI ist 73. Der visuelle Nutzeffekt ist 306 lm/W_vis. 22 shows the color locus of a light engine without a remote phosphor element (circle) and with a remote phosphor element (triangle). The new color location is x = 0.314 / y = 0.321. The color temperature here is new 6500 K and the color rendering index CRI is 73. The visual efficiency is 306 lm / W_vis.
Im vierten Ausführungsbeispiel hat die primäre Lichtquelle chipnah zwei Leuchtstoffe vorgeschaltet. Der ursprüngliche Farbort der LED ist x=0.27/y=0.23. Diese LED ist ursprünglich für die Display-Hinterleuchtung gedacht. Dabei sind die ur- sprünglichen ersten und zweiten chipnahe Leuchtstoffe ein üb¬ licher LuAG:Ce mit AI-Anteil, konkret handelt es sich insbe¬ sondere um (LuO .99CeO .01) 3A15012. Der zweite Leuchtstoff ist ein übliches Calsin, dabei handelt es sich insbesondere um CaO .996EuO .004AlSiN3. Die primäre Lichtquelle ist eine blaue LED mit Peakwellenlän- ge 442 nm, deren Licht vom LuAG:Ce und dem Calsin teilweise in grün und rot konvertiert wird, so dass insgesamt ein wei¬ ßer Farbeindruck entsteht. Als Remote-Phosphor-Element wird eine Mischung aus zwei Leuchtstoffen verwendet, und zwar ein YAG:Ce sowie ein CaAlSiN. Konkret werden die Leuchtstoffe (YO .96CeO .04) 3A13.75Gal .25012 und CaO .996EuO .004AlSiN3 ge¬ meinsam im Remote-Phosphor-Element verwendet. In the fourth exemplary embodiment, the primary light source has two phosphors connected upstream of the chip. The original color location of the LED is x = 0.27 / y = 0.23. This LED was originally intended for display backlighting. The originally sprünglichen first and second chip near phosphors are a üb ¬ Licher LuAG: Ce with Al content, specifically, it is in particular ¬ sondere to (LuO .99CeO .01) 3A15012. The second phosphor is a common calsine, in particular CaO .996EuO .004AlSiN3. The primary light source is a blue LED with Peakwellenlän- ge 442 nm, the light from the LuAG: Ce and the calsin is partially converted to green and red, so that overall a white ¬ SSER color impression. The remote phosphor element used is a mixture of two phosphors, a YAG: Ce and a CaAlSiN. Specifically, the phosphors (YO .96CeO .04) 3A13.75Gal .25012 and CaO .996EuO .004AlSiN3 be ge ¬ jointly used in the remote phosphor element.
Figur 23 zeigt die Emission der light engine ohne Remote- Phosphor-Element (Kurve 1) und mit Remote-Phosphor-ElementFIG. 23 shows the emission of the light engine without a remote phosphor element (curve 1) and with a remote phosphor element
(Kurve 2) . Figur 24 zeigt den Farbort einer light engine ohne Remote-Phosphor-Element (Kreis) und mit Remote-Phosphor- Element (Dreieck). Der neue Farbort ist x=0.46/y=0.41. Die Farbtemperatur ist hier neu 2700 K und der Farbwiedergabein- dex CRI ist 91. Der visuelle Nutzeffekt ist 275 lm/W_vis. Farborte für BLU-LEDs liegen innerhalb eines Rechtecks im CIE-xy-Diagramm mit folgenden Eckpunkt-Koordinaten, jeweils(Curve 2). FIG. 24 shows the color locus of a light engine without a remote phosphor element (circle) and with a remote phosphor element (triangle). The new color location is x = 0.46 / y = 0.41. The color temperature here is now 2700 K and the color rendering index CRI is 91. The visual effect is 275 lm / W_vis. Color loci for BLU LEDs are inside a rectangle in the CIE xy diagram with the following vertex coordinates, respectively
(x / y) : (x / y):
(0,20 / 0,16) (0.20 / 0.16)
(0, 26 / 0, 16) (0, 26/0, 16)
(0, 32 / 0, 29) (0, 32/0, 29)
(0, 27 / 0, 33) (0, 27/0, 33)
Konkrete Farborte für BLU-LEDs liegen beispielsweise im Be¬ reich x= 0,26 bis 0,27 und y= 0,21 bis 0,22. Sie werden be- vorzugt in Bereiche für x und y größer 0,40 verschoben. Concrete color locations for BLU-LEDs for example, lie in the rich Be ¬ x = from 0.26 to 0.27 and y = 0.21 to 0.22. They are preferably shifted into ranges for x and y greater than 0.40.
Figur 25 zeigt die Emission einer light engine ohne Remote- Phosphor-Element (Kurve 1) und mit Remote-Phosphor-Element (Kurve 2) . Figur 26 zeigt den Farbort dieser light engine oh¬ ne Remote-Phosphor-Element (Kreis) und mit Remote-Phosphor- Element (Dreieck) . Es handelt sich dabei um ein Ausführungs¬ beispiel auf Basis des Brillant-Mix-Konzepts , d.h. mit zu¬ sätzlicher roter LED. Hier wurde die gleiche BLU-LED verwendet wie in den vorherigen Ausführungsbeispielen. Der ur- sprüngliche Farbort ist 0,26/0,22 als x/y-Koordinaten im CIE Farbdiagramm. FIG. 25 shows the emission of a light engine without a remote phosphor element (curve 1) and with a remote phosphor element (curve 2). FIG. 26 shows the color locus of this light engine without a remote phosphor element (circle) and with a remote phosphor element (triangle). This is an execution ¬ example based on the Brilliant Mix concept, ie to ¬ sätzlicher red LED. Here, the same BLU LED was used as in the previous embodiments. The original the color locus is 0.26 / 0.22 as x / y coordinates in the CIE color chart.
Der neue Farbort ist x=0.46/y=0.41. Die Farbtemperatur ist hier neu 2700 K und der Farbwiedergabeindex CRI ist 91. Der visuelle Nutzeffekt ist 354 lm/W_vis.  The new color location is x = 0.46 / y = 0.41. The color temperature here is new 2700 K and the color rendering index CRI is 91. The visual efficiency is 354 lm / W_vis.
Die primäre Lichtquelle ist eine blaue LED mit Peakwellenlän- ge 444 nm, deren Licht von YaGaG:Ce primär konvertiert wird, so dass zunächst ein erster weißer Farbeindruck entsteht. Als Remote-Phosphor-Element wird der gleiche Leuchtstoff verwen- det. Konkret wird der Leuchtstoff  The primary light source is a blue LED with a peak wavelength of 444 nm, whose light is primarily converted by YaGaG: Ce, so that first of all a first white color impression is produced. The same phosphor is used as the remote phosphor element. Specifically, the phosphor is
(Y0.96CeO .04) 3A13.75Gal .25012 verwendet. Hinzu kommt eine rote InGaAlP-LED, wobei insgesamt ein weißer Farbeindruck mit niedrigerer Farbtemperatur entsteht.  (Y0.96CeO .04) 3A13.75Gal .25012 used. In addition, there is a red InGaAlP LED, which results in a white color impression with a lower color temperature.

Claims

Ansprüche claims
1. LED-basierte Lichtquelle mit mindestens einem Chip oder LED und mindestens einem Leuchtstoff, der dem Chip oder der LED vorgeschaltet ist, wobei der Leuchtstoff in unmit¬ telbarer Nähe des Chip in thermischem Kontakt angeordnet ist, so dass ein LUKOLED-System vorliegt, dadurch gekennzeichnet, dass mindestens ein weiterer Leuchtstoff beabstandet vom Chip ohne thermische Kopplung dem LUKOLED- System vorgeschaltet ist, wobei die LUKOLED weiß einer be¬ stimmten Farbtemperatur abstrahlt und wobei die Lichtquel¬ le weiß einer anderen Farbtemperatur oder mit anderem CRI abstrahlt, wobei der mindestens eine weitere Leuchtstoff einem Beabstandungsmittel zugeordnet ist. 1. LED-based light source with at least one chip or LED and at least one phosphor, which is connected upstream of the chip or the LED, wherein the phosphor is arranged in immedi ¬ direct vicinity of the chip in thermal contact, so that there is a LUKOLED system, characterized in that at least one further phosphor spaced upstream of the chip without thermal coupling to the LUKOLED system, wherein the LUKOLED knows a certain color temperature ¬ radiates and wherein the Lichtquel ¬ le white another color temperature or radiates with other CRI, said at least another phosphor is associated with a spacing means.
2. LED-basierte Lichtquelle nach Anspruch 1, dadurch gekennzeichnet, dass die LUKOLED Konfektionsware ist. 2. LED-based light source according to claim 1, characterized in that the LUKOLED ready-made goods.
3. LED-basierte Lichtquelle nach Anspruch 1, dadurch gekennzeichnet, dass mehrere unterschiedliche LEDs nebeneinander verwendet werden. 3. LED-based light source according to claim 1, characterized in that a plurality of different LEDs are used side by side.
4. LED-basierte Lichtquelle nach Anspruch 3, dadurch gekennzeichnet, dass mindestens eine LED chipnah weiß konver¬ tiert, während mindestens eine weitere LED farbig emit¬ tiert . 4. LED-based light source according to claim 3, characterized in that at least one LED near the chip white konver ¬ benefits, while at least one further LED emit ¬ colored.
5. LED-basierte Lichtquelle nach Anspruch 1, dadurch gekenn- zeichnet, dass das Beabstandungsmittel mittels einer Deck¬ platte oder einer Kuppel realisiert ist. 5. LED-based light source according to claim 1, characterized in that the spacing means is realized by means of a cover ¬ plate or a dome.
6. LED-basierte Lichtquelle nach Anspruch 1, dadurch gekennzeichnet, dass das Beabstandungsmittel mindestens einen Leuchtstoff als Schicht oder als Dispersion enthält. 6. LED-based light source according to claim 1, characterized in that the spacing means contains at least one phosphor as a layer or as a dispersion.
7. LED-basierte Lichtquelle nach Anspruch 1, dadurch gekennzeichnet, dass das Beabstandungsmittel mindestens ein Streumittel als Schicht oder als Dispersion enthält. 7. LED-based light source according to claim 1, characterized in that the spacing means contains at least one scattering agent as a layer or as a dispersion.
8. LED-basierte Lichtquelle nach Anspruch 1, dadurch gekennzeichnet, dass als Leuchtstoffe des Beabstandungsmittels Granate, Orthosilikate, Chlorosilikate, Nitridosilikate und deren Derivate eingesetzt sind. 8. LED-based light source according to claim 1, characterized in that are used as phosphors of the spacing means garnets, orthosilicates, chlorosilicates, nitridosilicates and derivatives thereof.
9. LED-basierte Lichtquelle nach Anspruch 1, dadurch gekennzeichnet, dass die LED-basierte Lichtquelle eine light en- gine ist. 9. LED-based light source according to claim 1, characterized in that the LED-based light source is a light engine.
10. LED-basierte Lichtquelle nach Anspruch 1, dadurch ge¬ kennzeichnet, dass als primäre Lichtquelle eine kaltweiß emittierende oder für backlighting units gedachte LED mit einer Farbtemperatur zwischen 2600 und 4800 K verwendet ist, deren Strahlung mittels des Beabstandungsmittels mo¬ difiziert wird, insbesondere hin zu warmweiß, neutral¬ weiß, tageslichtähnlichem Weiß oder skywhite, besonders bevorzugt hin zu einer niedrigeren Farbtemperatur, die insbesondere um mindestens 200 K niedriger ist. 10. LED-based light source according to claim 1, characterized ge ¬ indicates that is used as primary light source a cold white emitting or imagined for backlighting units LED with a color temperature between 2600 and 4800 K, whose radiation is modi ¬ by means of the spacing means, in particular toward warm white, neutral white ¬, similar to daylight white or SKYWHITE, more preferably down to a lower color temperature, which is in particular lower by at least 200 K.
PCT/EP2013/058296 2012-04-26 2013-04-22 Led-based light source WO2013160250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012206966.6 2012-04-26
DE102012206966A DE102012206966A1 (en) 2012-04-26 2012-04-26 LED based light source

Publications (1)

Publication Number Publication Date
WO2013160250A1 true WO2013160250A1 (en) 2013-10-31

Family

ID=48190943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/058296 WO2013160250A1 (en) 2012-04-26 2013-04-22 Led-based light source

Country Status (2)

Country Link
DE (1) DE102012206966A1 (en)
WO (1) WO2013160250A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105295903A (en) * 2015-11-03 2016-02-03 江苏罗化新材料有限公司 Preparation method of nitride red fluorescent powder for high-foregrounding white light and backlight source LED (light emitting diode)
DE102014117423A1 (en) * 2014-11-27 2016-06-02 Seaborough IP IV BV Light emitting remote phosphor device
US10276762B2 (en) 2014-09-08 2019-04-30 Osram Opto Semiconductors Gmbh Optoelectronic component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014207664A1 (en) * 2014-04-23 2015-10-29 Osram Gmbh Lighting device with light generating device and phosphor body
DE102014112973A1 (en) 2014-09-09 2016-03-10 Osram Opto Semiconductors Gmbh Optoelectronic component

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070170447A1 (en) * 2006-01-20 2007-07-26 Led Lighting Fixtures, Inc. Shifting spectral content in solid state light emitters by spatially separating lumiphor films
US20070215890A1 (en) 2006-03-17 2007-09-20 Philips Lumileds Lighting Company, Llc White LED for backlight with phosphor plates
US20070274093A1 (en) 2006-05-25 2007-11-29 Honeywell International, Inc. LED backlight system for LCD displays
JP2009026672A (en) 2007-07-23 2009-02-05 Zen:Kk Led light source
US20090058256A1 (en) 2007-08-31 2009-03-05 Iwao Mitsuishi Light-emitting device
US20100019261A1 (en) 2008-01-15 2010-01-28 Goeken Group Corp. Silicon nanoparticle white light emitting diode device
US20100025700A1 (en) 2008-07-29 2010-02-04 Seoul Semiconductor Co., Ltd. Warm white light emitting apparatus and back light module comprising the same
WO2010106504A1 (en) * 2009-03-19 2010-09-23 Koninklijke Philips Electronics N.V. Illumination device with remote luminescent material
US20110273079A1 (en) * 2006-01-20 2011-11-10 Paul Pickard Lighting Devices Having Remote Lumiphors that are Excited by Lumiphor-Converted Semiconductor Excitation Sources
WO2013030727A1 (en) * 2011-08-31 2013-03-07 Koninklijke Philips Electronics N.V. A color temperature tunable lighting device and a luminaire

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070170447A1 (en) * 2006-01-20 2007-07-26 Led Lighting Fixtures, Inc. Shifting spectral content in solid state light emitters by spatially separating lumiphor films
US20110273079A1 (en) * 2006-01-20 2011-11-10 Paul Pickard Lighting Devices Having Remote Lumiphors that are Excited by Lumiphor-Converted Semiconductor Excitation Sources
US20070215890A1 (en) 2006-03-17 2007-09-20 Philips Lumileds Lighting Company, Llc White LED for backlight with phosphor plates
US20070274093A1 (en) 2006-05-25 2007-11-29 Honeywell International, Inc. LED backlight system for LCD displays
JP2009026672A (en) 2007-07-23 2009-02-05 Zen:Kk Led light source
US20090058256A1 (en) 2007-08-31 2009-03-05 Iwao Mitsuishi Light-emitting device
US20100019261A1 (en) 2008-01-15 2010-01-28 Goeken Group Corp. Silicon nanoparticle white light emitting diode device
US20100025700A1 (en) 2008-07-29 2010-02-04 Seoul Semiconductor Co., Ltd. Warm white light emitting apparatus and back light module comprising the same
WO2010106504A1 (en) * 2009-03-19 2010-09-23 Koninklijke Philips Electronics N.V. Illumination device with remote luminescent material
WO2013030727A1 (en) * 2011-08-31 2013-03-07 Koninklijke Philips Electronics N.V. A color temperature tunable lighting device and a luminaire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10276762B2 (en) 2014-09-08 2019-04-30 Osram Opto Semiconductors Gmbh Optoelectronic component
DE102014117423A1 (en) * 2014-11-27 2016-06-02 Seaborough IP IV BV Light emitting remote phosphor device
CN105295903A (en) * 2015-11-03 2016-02-03 江苏罗化新材料有限公司 Preparation method of nitride red fluorescent powder for high-foregrounding white light and backlight source LED (light emitting diode)

Also Published As

Publication number Publication date
DE102012206966A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
DE10233050B4 (en) LED-based light source for generating light using the color mixing principle
DE112015002289B4 (en) Solid state lighting devices having a color point mismatched to a blackbody locus
EP3132180B1 (en) Led module for emitting white light
DE112015002683T5 (en) Lighting equipment with variable gamut
DE202014011392U1 (en) LED housing; Vehicle lamp as well as backlight with this
WO2013160250A1 (en) Led-based light source
DE102012200711A1 (en) LED dimmer module
DE102014112394B4 (en) LED light for background light
DE202008018060U1 (en) White light emitting device and white light source module using this device
WO2016180930A1 (en) Radiation-emitting optoelectronic component
DE112015001928T5 (en) Solid state illumination with improved luminosity and high Cri value
DE102016111082A1 (en) Illumination light source, lighting device, exterior lighting device and vehicle headlight
DE102012219873A1 (en) Lighting system with color locus stabilization
DE102013211525A1 (en) LED module with LED chips
EP2845233B1 (en) Led module
WO2013131904A1 (en) Wavelength conversion element, light-emitting semiconductor component and display device with said wavelength conversion element, and method for producing a wavelength conversion element
DE102012202927A1 (en) LIGHT SOURCE WITH LED CHIP AND FLUORESCENT LAYER
DE102010061801A1 (en) LED module with common color conversion module for at least two LED chips
DE102008022834A1 (en) Illumination device for use on wall and table, has LEDs emitting light with intensities during operation and with warm-white light impressions, and light emitting component with optical element jointly downstream to LEDs
DE102011013504A1 (en) Light emitting device
DE102012205461A1 (en) Light emitting diode useful in light-emitting device, comprises a through-light element, whose transmission factor is temperature dependent for light emitted from the light emitting diode
WO2012052063A1 (en) Led light source and associated structural unit
EP3289618B1 (en) Led module for emitting white light
WO2013045188A1 (en) Led light system with various luminescent materials
DE102013217055B4 (en) White light LED module for object lighting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13719067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13719067

Country of ref document: EP

Kind code of ref document: A1