WO2013115559A1 - Method for preparing albumin nanoparticles containing poorly water soluble drug therein - Google Patents

Method for preparing albumin nanoparticles containing poorly water soluble drug therein Download PDF

Info

Publication number
WO2013115559A1
WO2013115559A1 PCT/KR2013/000752 KR2013000752W WO2013115559A1 WO 2013115559 A1 WO2013115559 A1 WO 2013115559A1 KR 2013000752 W KR2013000752 W KR 2013000752W WO 2013115559 A1 WO2013115559 A1 WO 2013115559A1
Authority
WO
WIPO (PCT)
Prior art keywords
albumin
nanoparticles
peptidyl polymer
poorly water
soluble drug
Prior art date
Application number
PCT/KR2013/000752
Other languages
French (fr)
Korean (ko)
Inventor
정지훈
김명구
이민상
장연림
Original Assignee
성균관대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교 산학협력단 filed Critical 성균관대학교 산학협력단
Publication of WO2013115559A1 publication Critical patent/WO2013115559A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/38Albumins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1635Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1658Proteins, e.g. albumin, gelatin

Definitions

  • the present invention relates to a method for producing polyethylene glycol and albumin aggregate nanoparticles containing a poorly water-soluble drug therein that can mediate in vivo delivery through solubilization and stabilization in aqueous solution.
  • paclitaxel a plant-derived anticancer agent
  • solubilizers or organic solvents including various surfactants that can cause irritation or toxicity when administered in vivo to increase the solubility of the drug.
  • emulsifiers for example, paclitaxel, a plant-derived anticancer agent, is a highly hydrophobic, poorly water-soluble drug that is made into an injection by solubilizing in a co-solvent of Cremophor EL and ethanol.
  • Cremophore can cause severe hypersensitivity reactions, including allergic reactions, which requires preparation before treatment through administration of steroids, H2-antagonists, and antihistamines, and 3 to 24 hours of administration time to avoid severe acute allergic reactions. This is necessary. Therefore, patient discomfort due to a long infusion time, patient monitoring during the administration time, preparation and injection process requires a lot of additional costs for hospitalization.
  • a method of using a polymer micelle or microsphere as a carrier of a poorly water-soluble anticancer agent and a method of combining an anticancer agent with a hydrophilic polymer have been studied.
  • the amphiphilic copolymer having hydrophilicity and hydrophobic blocks in one chain is mainly used to form colloidal particles having a core-shell structure which is thermodynamically stable in aqueous solution.
  • Techniques have been developed to encapsulate and deliver poorly water-soluble drugs in a hydrophobic core inside micelles or autoaggregates.
  • albumin has a well-established separation technology and accounts for about 70% of plasma proteins in the blood, which is more economical than other proteins in terms of isolation and use, is easy to acquire, and is highly biocompatible. It is a carrier that is readily available in vivo and can provide a variety of dosage forms, including injections.
  • a method for preparing albumin microspheres by chemical crosslinking using glutaraldehyde as an emulsifying and crosslinking agent US Pat. No. 4,671,954
  • a heat-modifying method for producing microspheres by heating an emulsion mixture at 100 ° C to 150 ° C (Leucuta et al. , International Journal of Pharmaceutics 41: 213-217 (1988)).
  • microspheres are suitable for inclusion of water-soluble materials due to technical limitations in forming water-modified or cross-linked particles in the aqueous phase of water-in-oil emulsions, but not suitable as a carrier for poorly water-soluble materials.
  • a copolymer of polylactide and the like is dissolved in a poorly water-soluble drug and an organic phase and introduced into an aqueous phase to emulsify with a water-in-oil emulsion, whereby nanoparticles are prepared, and a preparation method using albumin as a surfactant for surface stabilization is presented in the literature. (Bazile et al., Biomaterials, 13: 1093 (1992)).
  • Vivorex (VivoRX, USA) developed nanoparticle capsol ® containing a poorly water-soluble drug without the use of cremophors or surfactants using high pressure, high shear forces under certain oil / water emulsion conditions (US patent). 5,439,686, Korean Patent 10-0923172).
  • the present inventors have high solubility in organic solvents without using a surfactant or using chemical bonding method and high pressure and high shear force in an emulsion phase when using a combination of a non-peptidyl polymer and albumin. It was confirmed that coalescing could be formed.
  • the organic solvent is removed, and then, a hydrophilic solvent is added, and the nanoparticles containing poorly water-soluble drugs by self-assembly by simple nanoparticle manufacturing methods such as solvent diffusion and film formation. It was confirmed that the particles can be formed, the nanoparticles containing the poorly water-soluble drug prepared by the above method compared with the albumin nanoparticles containing the known anticancer agent, the anticancer agent is well delivered to confirm that the anticancer effect is excellent The present invention has been completed.
  • the present invention solves the problem of using a surfactant or a high pressure, high shear force in the chemical bonding method and emulsion as a method for producing nanoparticles for in vivo delivery of conventional poorly water-soluble drugs or inorganic nanoparticles for bioimaging. It is to.
  • the present invention provides a method for preparing a non-peptidyl polymer and albumin aggregate and dissolving it in an organic solvent in a fixed molar ratio with a poorly water-soluble drug to remove the organic solvent and to form nanoparticles by self-assembly in a hydrophilic solvent. It is to.
  • non-peptidyl polymer and albumin aggregate nanoparticles prepared by the present invention can mediate in vivo delivery through solubilization and stabilization in aqueous solution, they can be used as carriers of poorly water-soluble drugs or inorganic nanoparticles for bioimaging.
  • the present invention is to provide an association nanoparticle of the non-peptidyl polymer and albumin prepared by the above production method.
  • the present invention is a first step of forming an association of the non-peptidyl polymer and albumin by mixing the non-peptidyl polymer with albumin;
  • the present invention provides a method for producing a conjugated nanoparticles of albumin and a non-peptidyl polymer containing a poorly water-soluble drug or inorganic nanoparticles for bioimaging.
  • Step 1 is a step of mixing the non-peptidyl polymer with albumin to form a combination of the non-peptidyl polymer and albumin, the non-peptidyl polymer can react with the amine group of the albumin to mix the non-peptidyl polymer with albumin It may be substituted with a substituent.
  • the reactor capable of reacting with the amine of albumin is composed of N-hydroxysuccinimide, succinimidyl succinate, succinimide propionate, succinimidyl butanoate, benzotriazole carbonate, aldehyde and catechol It may be selected from the group, but is not limited thereto.
  • the non-peptidyl polymer is polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylene, polyoxazoline, polyurethane, polyphosphazene, polysaccharide, dextran, polyvinyl alcohol, poly Vinyl pyrrolidone, polyvinyl ethyl ether, polyacryl amide, polyacrylate, polycyanoacrylate, lipid polymers, chitin, hyaluronic acid, heparin and combinations thereof.
  • polyethylene glycol it is preferable to use polyethylene glycol, and derivatives of such polyethylene glycol can be used.
  • the derivatives of polyethylene glycol are straight or branched and the branched may have two or more multiple groups.
  • Albumin used in the present invention is preferably human albumin (human albumin, HSA). However, the present invention is not limited thereto.
  • the mole ratio of the non-peptidyl polymer and albumin is preferably 5: 1 to 50: 1.
  • the molecular weight of the non-peptidyl polymer is preferably selected from the range of 750 Da to 300,000 Da.
  • the non-peptidyl polymer may react with an amine group located in the hydrophilic domain of the albumin protein to form a covalent bond.
  • non-peptidyl polymers are hydrophilic polymers, they can exhibit very high solubility not only in aqueous solvents but also in various kinds of organic solvents.
  • the non-peptidyl polymer prepared by step 1 and the albumin association are non-peptidyl polymers bound to the hydrophilic domain of albumin protein, so the hydrophilic region of albumin protein is reduced and the hydrophobic region remains. Compared with the case where only the polymer is used, the solubility in the organic solvent can be further increased by forming the association.
  • Step 2 is a step of preparing a mixture by dissolving a poorly water-soluble drug or inorganic nanoparticles for bioimaging, and the association of the non-peptidyl polymer and albumin on an organic solvent.
  • Albumin molecules act as carriers of hydrophobic substances such as cholesterol and lipid molecules in vivo due to amphipathic chains, and may play an important role in binding to hydrophobic drugs administered in the blood. This property is due to the hydrophobic domain formed inside the albumin molecule.
  • non-peptidyl polymer chains of associations of non-peptidyl polymers with albumin may also be exposed in the organic solvent to help stabilize albumin proteins in organic solvents.
  • phase separation does not occur in the state where the poorly water-soluble drug is dissolved in the association of the non-peptidyl polymer and albumin and the organic solvent, and it is possible to form a film in which the association and the drug are uniformly present when the solvent is removed. .
  • the organic solvent used in the present invention is ethanol, methanol, isopropyl alcohol, butanol, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF), acetonitrile, dichloromethane, ethyl acetate, hexane, Diethyl ether, benzene, chloroform, acetone and combinations thereof may be used.
  • a water-soluble solvent may be mixed with the organic solvent. However, it is not limited thereto.
  • organic solvent which does not form an emulsion by mixing with an aqueous phase.
  • organic solvent which does not form an emulsion by mixing with an aqueous phase.
  • examples include, but are not limited to, ethyl alcohol, methyl alcohol, isopropyl alcohol, butyl alcohol, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF) or acetonitrile.
  • the molar ratio of the poorly water-soluble drug or the inorganic nanoparticles for bioimaging, the association of the non-peptidyl polymer and albumin is 1: 5 to 1:50.
  • the optimal molar ratio can be set differently depending on the water soluble drug used or the application (eg the long-circulation formulation of SPION).
  • Step 2 takes advantage of the fact that the poorly water-soluble drug can be stabilized in a state in which the non-peptidyl polymer and the association of albumin and the organic solvent are dissolved together without introducing an additional hydrophobic group such as hydrophobic alkyl (acyl group) or bile acid.
  • an additional hydrophobic group such as hydrophobic alkyl (acyl group) or bile acid.
  • albumin may not only serve as a skeleton for introducing hydrophilic groups and hydrophobic groups, but may dissolve poorly water-soluble drugs using hydrophobic domains in the non-peptidyl polymer and albumin itself without introducing additional hydrophobic groups.
  • the poorly water-soluble drug may be an anticancer agent, an antibiotic, an antifungal agent, an anti-inflammatory agent, an immunosuppressive agent or a nutrient
  • the inorganic nanoparticles for biological imaging may be a diagnostic agent or a contrast agent.
  • paclitaxel As anticancer agent, paclitaxel, docetaxel or ortataxel can be used as taxane or its derivative (s).
  • an anticancer agent adriamycin, colchicine, cyclophosphamide, actinomycin, bleomycin, duanorubicin, epirubicin, mitomycin, methotrexate, mitoxantrone, fluorouracil, carboplatin, carmustine (BCNU) ), Methyl CCNU, cisplatin, etoposide, interferon, camptothecin and derivatives thereof, penesterin, tofetecan, vinblastine, vincristine, tamoxifen, piposulfan, irinotecan, gemcitabine, herceptin, vinorelbine, Capecitabine, Alumta, Avastin, Velcade, Tarceva, Neurastar, Lapatinib and Sorafenib can be used.
  • the anticancer agent which can be used is more preferably paclitaxel or camptothecin. However, the present invention is not limited thereto.
  • Antibiotics include neomycin, amikacin, aztreonam, chloramphenicol, palmitic acid chloramphenicol, chloramphenicol sodium succinate, ciprofloxacin, clindamycin, metronidazole, gentamicin, lincomycin, tobramycin, vancomycin, polymyxin B, colistin Metate sodium and colistin can be used.
  • the present invention is not limited thereto.
  • Antifungal agents may include griseofulvin, keloconazole, amphotericin B, nystatin or candicidine. However, the present invention is not limited thereto.
  • nonsteroidal anti-inflammatory agents such as indomethacin, naproxen, ibuprofen, ramipenazone, pyroxicam and steroidal anti-inflammatory agents such as cortisone, dexamethasone, fluazacort, hydrocortisone, prednisolone, prednisone, etc. can be used. Can be. However, the present invention is not limited thereto.
  • cyclosporin As immunosuppressive agents, cyclosporin, azathioprine, myzoribin or tacrolimus can be used. However, the present invention is not limited thereto.
  • fat-soluble vitamins such as vitamins A, D, E, and K can be used.
  • the present invention is not limited thereto.
  • Diagnostic or contrast agents include MR magnetic contrast agents such as iron oxide nanoparticles, fluorocarbons, fat-soluble paramagnetic compounds, and the like; Ultrasound contrast agent; Radiographic agents such as iodo-octane, halocarbon, graphene and the like; And other diagnostics that cannot be delivered without physical or physicochemical modifications of substantially water insoluble properties.
  • the diagnostic or contrast agent that can be used is more preferably iron oxide nanoparticles. However, the present invention is not limited thereto.
  • DMSO dimethyl sulfoxide
  • the organic solvent can be dissolved in both the association of polyethylene glycol and albumin and the poorly water-soluble drug or bioimaging inorganic nanoparticles in the organic solvent.
  • Step 3 is a step of preparing nanoparticles by self-assembly by removing the organic solvent and adding a hydrophilic solvent. Removing the organic solvent and obtaining a mixture in which poorly water-soluble drugs or inorganic nanoparticles for biological imaging are uniformly mixed with a non-peptide polymer and an association of albumin, and having hydrophobicity by self-assembly by adding a hydrophilic solvent to the mixture. The portion of the protein is located inside the particle and the hydrophilic part is located toward the aqueous solution, the poorly soluble drugs or inorganic nanoparticles for bioimaging are collected in the hydrophobic portion and formed into particles having a nano size.
  • step 3 results in the interaction between the poorly water-soluble drug and the hydrophobic domains of albumin, thereby placing the poorly water-soluble drug or inorganic nanoparticles for bioimaging, and the hydrophilic and flexible non-peptidyl polymer chain
  • the hydrophilic solvent when added, it is confirmed that the poorly water-soluble drug is located in the hydrophobic portion inside the particle.
  • the solution containing the nanoparticles of step 3 has the advantage that it has a very stable colloidal properties.
  • the hydrophilic solvent is water, distilled water, sterile water, phosphate buffered saline (PBS), methanol, purified water, ethanol, 1-propanol, 2-propanol, 1-pentanol, 2-butoxyethanol, ethylene glycol, Acetone, 2-butanone, 4-methyl-2-propanone and combinations thereof.
  • PBS phosphate buffered saline
  • methanol purified water, ethanol, 1-propanol, 2-propanol, 1-pentanol, 2-butoxyethanol, ethylene glycol, Acetone, 2-butanone, 4-methyl-2-propanone and combinations thereof.
  • PBS phosphate buffered saline
  • the method of preparing nanoparticles by self-assembly by adding a hydrophilic solvent is preferably a solvent diffusion method or a film formation method, but is not limited thereto.
  • the size of the aggregate nanoparticles prepared in the present invention is preferably 200nm to 500nm. In the case of 200 nm or less, the amount of poorly soluble drugs or inorganic nanoparticles for bioimaging is collected, and in the case of 500 nm or more, the size of the nanoparticles is large, so that the biotransmission ability is poor.
  • association nanoparticles of the non-peptidyl polymer and albumin prepared by the preparation method of the present invention are used as a carrier and thus can safely deliver the drug in vivo.
  • the present invention provides a non-peptidyl polymer and albumin aggregate nanoparticles, characterized in that it comprises a poorly water-soluble drug or inorganic nanoparticles for biological imaging prepared by the method of the present invention.
  • the non-peptide polymer, albumin association and poorly water-soluble drug can be simultaneously dissolved in the organic solvent, the two components are well mixed without additional chemical or physical action. Therefore, the organic solvent is removed and the hydrophilic solvent is removed.
  • To add the nanoparticles can be formed by a solvent diffusion method using a reaction permeable membrane which is a common method for forming nanoparticles or film formation by solvent evaporation.
  • the present invention has a high stability of the nanoparticles prepared compared to the conventional method for producing nanoparticles, the manufacturing step is simple bar non-peptidyl including the anticancer agent prepared by the manufacturing method of the present invention has the effect of reducing the cost and cost
  • the combination of the polymer and albumin has an effect that the anticancer agent is well delivered compared to the albumin nanoparticles known in the art, so that the anticancer effect is excellent.
  • IC 50 35.3 nM
  • anti-cancer activity was measured in the animal model of SK-BR-3 administration, which is a breast cancer cell line of polyethylene glycol and albumin association nanoparticle composition containing paclitaxel prepared by the method according to the present invention, which contains paclitaxel.
  • Albumin nanoparticles were found to show a similar effect to cancer growth (Abraxane ® ) to a superior degree.
  • non-peptidyl polymer and albumin association nanoparticles it is possible to simultaneously dissolve the non-peptidyl polymer, albumin association and poorly water-soluble drug using only one organic solvent. Even if the phosphorus is not applied, the two components are well mixed.
  • the polyethylene glycol and albumin aggregate nanoparticle manufacturing method according to the present invention does not include a surfactant and a solubilizer, and the polyethylene glycol and albumin association having a hydrophobic form while the organic solvent is removed during the preparation of the nanoparticles. Since nanoparticles are formed by self-assembly in which a poorly water-soluble drug is enclosed therein, there is an advantage in that the patient's compliance can be increased without causing hypersensitivity or toxic reactions due to the formulation of poorly water-soluble drugs. In addition, it can be applied to stabilization of inorganic nanoparticles for imaging / diagnosis as well as various poorly water-soluble drugs.
  • association of the non-peptidyl polymer and albumin comprising an anticancer agent prepared by the production method of the present invention has an effect that the anticancer agent is well delivered compared to the albumin nanoparticles known in the prior art has excellent anticancer effect.
  • Figure 1 shows electrophoresis for confirming the formation of polyethylene glycol and albumin association.
  • Figure 2 shows that polyethylene glycol and albumin association dissolve on dimethyl sulfoxide (DMSO).
  • TEM transmission electron microscope
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • Figure 6 shows the positional characterization of poorly water-soluble drugs in nanoparticles using Nile red.
  • Figure 7 shows the release pattern of paclitaxel from polyethylene glycol and albumin association nanoparticles containing paclitaxel prepared by the film forming method (phosphate buffered saline, PBS with 0.1% sodium salicylate).
  • a polyethylene glycol and albumin association nano-containing hydrophobic fluorescent probes prepared by the film forming method including DiD (red fluorescence, Invitrogen, Carlsbad, CA) and DiI (green fluorescence, Invitrogen, Carlsbad, CA) as model drugs
  • DiD red fluorescence, Invitrogen, Carlsbad, CA
  • DiI green fluorescence, Invitrogen, Carlsbad, CA
  • Figure 9 shows the anticancer activity of breast cancer cell lines (SK-BR-3, MDAMB-453, MCF-7) of polyethylene glycol and albumin aggregate nanoparticles containing paclitaxel prepared by the film forming method.
  • Abraxane ® a commercially available albumin / paclitaxel formulation, was used as a control.
  • FIG. 10 is a graph showing the antitumor and anticancer effects of solid tumor growth in animal tumor models (nude mice nu / nu, SK-BR-3 xenograft) of polyethylene glycol and albumin aggregate nanoparticles containing paclitaxel prepared by the film forming method. Results of observation of prolonged survival. Abraxane ® , a commercially available albumin / paclitaxel formulation, was used as a control.
  • 11 is an animal tumor model of polyethylene glycol and albumin aggregate nanoparticles containing DiD (Invitrogen, Carlsbad, CA), a hydrophobic fluorescent probe prepared by a film forming method, as a model drug (nude mice nu / nu, SK-BR) -3 xenograft) shows the results of the accumulation in solid tumors over time due to the effects of passive tumor targeting.
  • DiD Invitrogen, Carlsbad, CA
  • a hydrophobic fluorescent probe prepared by a film forming method, as a model drug (nude mice nu / nu, SK-BR) -3 xenograft) shows the results of the accumulation in solid tumors over time due to the effects of passive tumor targeting.
  • Fig. 13 shows the stability of polyethyleneglycol and albumin aggregate nanoparticles containing SPION prepared by the film forming method (phosphate saline (PBS, pH 7.4), 0.02% sodium azide as a preservative, 37 ° C).
  • FIG. 14 shows the relaxation (487.5 ⁇ 13.1 mM -1 s -1 ) of polyethylene glycol and albumin aggregate nanoparticles including SPION prepared by the film forming method. It showed better laxity than Feridex ® ( ⁇ 230 mM -1 s -1 ), a commercial iron oxide nanoparticle for MR imaging.
  • Activated polyethyleneglycol (NHS-PEG, Mw 5,000, SunBio, Seoul, Korea) activated with N-hydroxysuccimide (NHS) for human albumin 1:10, 1:20, 1:30, 1
  • the solution was dissolved in PBS at a reaction ratio of: 40, 1:50 (PEG-NHS / albumin) and mixed, followed by stirring for 12 hours.
  • the reaction product was placed in a semipermeable membrane (Spectra / Por, MWCO 10,000), dialyzed in deionized water to remove unreacted PEG, and lyophilized to obtain a uniform white cake.
  • Laemni buffer Laemni sample buffer, 63 mM Tris-HCl, 10% Glycerol, 2% SDS, 0.0025% Bromophenol blue, pH 6.8 to tri-glysine discontinuous acrylamide. Association formation was confirmed by gel electrophoresis (FIG. 1).
  • paclitaxel and 10 mg of albumin-PEG conjugate (1:10 association) were dissolved in dimethylsulfoxide (DMSO) to give a clear solution.
  • DMSO dimethylsulfoxide
  • the mixture was placed in a semipermeable membrane (Spectra / Por, MWCO 10,000) and dialyzed in deionized water to remove the organic solvent through diffusion.
  • the dispersion was filtered through a 0.45 ⁇ m cellulose filter and lyophilized for 48 hours without the addition of the lyophilizer to obtain a uniform white cake, which could be reconstituted into a dispersion by addition of sterile water or PBS.
  • the resulting paclitaxel / albumin-PEG aggregate dispersion was transparent, and transmission electron microscopy (TEM) observation showed that the particles were spherical nanoparticles having a size of 50 to 200 nm (FIGS. 2 and 3).
  • paclitaxel and 10 mg of albumin-PEG conjugate (1:10 association) were dissolved in 50% THF aqueous solution to obtain a clear solution.
  • the mixture was transferred to a rotary evaporator and the solvent was evaporated at reduced pressure at 100 ° C. to form a thin film on the wall of a round-bottom flask.
  • Distilled water was added to the obtained film and dissolved in a magnetic stirrer or an ultrasonic bath to produce a nanoparticle dispersion, which was then filtered through a 0.45 ⁇ m cellulose filter and lyophilized for 48 hours without the addition of a lyophilizer to obtain a uniform white cake. .
  • the obtained cake was reconstituted in a high concentration dispersion by the addition of sterile water or PBS (Fig. 4).
  • camptothecin was dissolved in chloroform / methanol (4: 1), and 10 mg of albumin-PEG (80% methanol) conjugate (1:10 association) was dissolved in 80% aqueous methanol solution. After mixing, a clear mixture solution was obtained. The mixture was transferred to a rotary evaporator and the solvent was evaporated at reduced pressure at 100 ° C. to form a thin film on the wall of a round-bottom flask.
  • Distilled water was added to the obtained film and dissolved in a magnetic stirrer or an ultrasonic bath to produce a nanoparticle dispersion, which was then filtered through a 0.45 ⁇ m cellulose filter and lyophilized for 48 hours without adding a lyophilizer to obtain a uniform white cake. It could be reconstituted into a dispersion by the addition of sterile water or PBS.
  • the obtained Kemptothecin / albumin-PEG aggregate dispersion was transparent, and transmission electron microscope (TEM) observations showed that the particles were spherical nanoparticles having a size of 50 to 200 nm (FIG. 5).
  • Nile red a poorly water-soluble fluorescent substance, causes red-shift of the maximum emission wavelength due to a certain excitation wave depending on the degree of hydrophobicity of the surrounding environment. It can be predicted. Therefore, in order to confirm the location of albumin-PEG aggregate nanoparticles and the properties of their microenvironment, poorly soluble drugs such as paclitaxel and camptothecin are nanoparticles containing nile red, a poorly water-soluble fluorescent substance, using the film forming method described above. Was prepared.
  • the obtained nanoparticles were observed in scanning mode at the emission wavelength at 530 nm (excitation wavelength), and the maximum emission wavelength was shifted from 655 nm to 635 nm. This suggests that the albumin-PEG aggregate nanoparticles carry the poorly water-soluble drug through self-assembly, which is a hydrophobic domain in the protein (FIG. 6).
  • lyophilized nanoparticles were dissolved in DMSO and quantified using HPLC, and when 5% were formulated for target loading, more than 99% of the drugs were nano It was found that the particles were entrapped in the particles.
  • nanoparticles were dialyzed in phosphate-buffered saline (PBS) containing 0.1% sodium salicylate (MWCO 10,000), sampled over time and the amount of paclitaxel released through HPLC analysis. Was quantified (FIG. 7). At this time, 0.1% sodium salicylate was used to increase the solubility of aqueous solution of paclitaxel, a hydrophobic drug.
  • PBS phosphate-buffered saline
  • paclitaxel drug was slowly released from albumin-PEG assembly nanoparticles for a predetermined time.
  • Nanoparticles were prepared by the film forming method as described in Example 3.
  • SK-BR-3 cells which are breast cancer cells, were cultured in a glass-bottomed dish, treated with nanoparticles carrying fluorescent probes, and immobilized with 10% formaldehyde after 6 hours, and observed using a confocal microscope.
  • SK-BR-3, MDA-MB453, and MCF-7 were treated, and cell activity was measured by MTT assay.
  • SK-BR-3 and MCF-7 cell lines showed similar cancer cell growth inhibitory effect to Abraxane (Abraxane ® ), and especially in MDA-MB453 cell line, paclitaxel / albumin-PEG conjugate nanoparticles prepared according to the present invention were control groups. It showed a significantly lower IC 50 value than paclitaxel dissolved in either Abraxane (Abraxane ® ) or DMSO (FIG. 9).
  • SK-BR-3 a breast cancer cell line
  • Animal tumor models were prepared by transdermal injection (100 ⁇ l) into immunodeficient mice (nude mouse, nu / nu).
  • albumin nanoparticles containing the same amount of paclitaxel and the control group were diluted in PBS, and then intravenously injected into the mouse tail according to a prescribed dosing schedule, and the solid cancer volume was measured.
  • the formula for calculating the volume of solid rock is as follows.
  • tumor volume (mm 3 ) [length ⁇ (width) 2 ] / 2
  • Albumin-PEG aggregate nanoparticles containing paclitaxel decreased the volume of solid tumor (tumor) similar to that of Abraxane (Abraxane ® ), and it was observed that it showed an excellent cancer growth inhibitory effect (FIG. 10).
  • the resultant was filtered through a 0.45 ⁇ m cellulose filter and lyophilized for 48 hours without adding a lyophilizer to obtain a uniform brown cake. It could be reconstituted into a dispersion by addition of sterile water or PBS.
  • the obtained SPION / albumin-PEG aggregate dispersion was transparent, and the transmission electron microscope (TEM) observation confirmed that 7 nm SPION particles were enclosed in spherical nanoparticles having a size of about 200 nm (FIG. 12).

Abstract

The present invention relates to a method for preparing non-peptidic polymer and albumin assembly nanoparticles containing a poorly water soluble drug therein and capable of mediating in vivo delivery through solubilization and stabilization in an aqueous solution. Particularly, a non-peptidic polymer and albumin assembly and a poorly water soluble drug can be simultaneously dissolved even if using only an organic solvent, and thus the two components are mixed well even if a separate chemical or physical action is not applied. In addition, a method for preparing polyethylene glycol and albumin assembly nanoparticles according to the present invention does not contain a surfactant and a solubilizing agent, and thus does not cause a hypersensitive reaction or a toxic reaction due to the formulation of a poorly water soluble drug and can increase the compliance of a patient. Further, the present invention can also be useful for the stabilization and the like of inorganic nanoparticles for image/diagnosis and of various poorly water soluble drugs.

Description

수난용성 약물을 내부에 포함하는 알부민 나노입자 제조방법Method for producing albumin nanoparticles containing a poorly water-soluble drug therein
본 발명은 수용액상에서의 가용화 및 안정화를 통해 생체 내 전달을 매개할 수 있는 수난용성 약물을 내부에 포함하는 폴리에틸렌글리콜과 알부민 회합체 나노입자 제조방법에 관한 것이다.The present invention relates to a method for producing polyethylene glycol and albumin aggregate nanoparticles containing a poorly water-soluble drug therein that can mediate in vivo delivery through solubilization and stabilization in aqueous solution.
질환의 치료를 위해 사용되는 약리학적 활성물질에 있어 많은 수가 수난용이며, 약물의 수용해도를 높이기 위해 생체 내 투여시 자극성 또는 독성을 유발할 수 있는 다양한 계면활성제를 포함한 가용화제 또는 유기용매와 제제화 되거나 유화안정화제와 함께 제형화 된다. 예를 들어 식물유래 항암제인 파클리탁셀은 소수성이 매우 높은 수난용성 약물로서 크레모포어(Cremophor EL)와 에탄올의 공용매에 가용화 시킴으로써 주사제형으로 만들어진다. 그러나 크레모포어는 알러지반응을 포함하는 심각한 과민반응을 일으킬 수 있어 스테로이드, H2-길항제, 항히스타민의 투여를 통한 치료 전 준비과정이 필요하며, 심각한 급성 알러지 반응을 피하기 위해 3시간 내지 24시간 이상의 투여시간이 필요하다. 따라서 긴 주입시간에 의한 환자의 불편함과 함께 투여시간 동안의 환자 모니터링, 준비과정 및 주사과정은 입원에 많은 추가 비용이 필요하게 된다.Many of the pharmacologically active substances used for the treatment of diseases are poorly water-soluble and are formulated with solubilizers or organic solvents, including various surfactants that can cause irritation or toxicity when administered in vivo to increase the solubility of the drug. Formulated with emulsifiers. For example, paclitaxel, a plant-derived anticancer agent, is a highly hydrophobic, poorly water-soluble drug that is made into an injection by solubilizing in a co-solvent of Cremophor EL and ethanol. However, cremophore can cause severe hypersensitivity reactions, including allergic reactions, which requires preparation before treatment through administration of steroids, H2-antagonists, and antihistamines, and 3 to 24 hours of administration time to avoid severe acute allergic reactions. This is necessary. Therefore, patient discomfort due to a long infusion time, patient monitoring during the administration time, preparation and injection process requires a lot of additional costs for hospitalization.
이러한 심각한 부작용을 줄이기 위해 고분자 미셀 혹은 미세구를 수난용성 항암제의 전달체로 이용하는 방법과 항암제를 친수성 고분자에 결합시킴으로써 사용하는 방법 등이 연구되었다. 이중 미셀 혹은 미세구를 전달체로 이용하는 경우는 주로 친수성과 소수성 블록을 하나의 사슬에 지니고 있는 양친성 공중합체가 수용액상에서 열역학적으로 안정한 core-shell 구조를 지니는 콜로이드입자를 형성할 수 있는 성질을 이용하여 미셀 또는 자가응집체 내부의 소수성 core에 수난용성 약물을 봉입하여 전달할 수 있는 기술들이 개발되었다.In order to reduce such serious side effects, a method of using a polymer micelle or microsphere as a carrier of a poorly water-soluble anticancer agent and a method of combining an anticancer agent with a hydrophilic polymer have been studied. In the case of using double micelles or microspheres as carriers, the amphiphilic copolymer having hydrophilicity and hydrophobic blocks in one chain is mainly used to form colloidal particles having a core-shell structure which is thermodynamically stable in aqueous solution. Techniques have been developed to encapsulate and deliver poorly water-soluble drugs in a hydrophobic core inside micelles or autoaggregates.
생체내 물질인 단백질을 이용한 미소구는 약물 또는 진단제의 전달체로서의 용도가 보고되었다. 다양한 생체 단백질 중 알부민은 그 분리 기술이 잘 확립되어있으며, 혈액 내 혈장 단백질 중 약 70 %를 차지하여 분리 및 사용에 있어 여타 단백질에 비해 경제성이 높으며 취득이 용이할 뿐 아니라 높은 생체적합성으로 인해 투여 즉시 생체 내에서 이용할 수 있는 전달체이며 주사제를 비롯한 다양한 투여 제형을 제공할 수 있다. 그 예로 유화 및 가교제인 글루타르알데히드를 이용한 화학적 가교결합에 의한 알부민 미소구의 제조법(미국특허 4,671,954)과 유화 혼합물을 100℃ 내지 150℃에서 가열하여 미소구를 생성하는 열변성 제조법(Leucuta et al., International Journal of Pharmaceutics 41:213-217 (1988))등이 제안되었다.Microspheres using proteins in vivo have been reported to be used as carriers for drugs or diagnostic agents. Among various biological proteins, albumin has a well-established separation technology and accounts for about 70% of plasma proteins in the blood, which is more economical than other proteins in terms of isolation and use, is easy to acquire, and is highly biocompatible. It is a carrier that is readily available in vivo and can provide a variety of dosage forms, including injections. For example, a method for preparing albumin microspheres by chemical crosslinking using glutaraldehyde as an emulsifying and crosslinking agent (US Pat. No. 4,671,954) and a heat-modifying method for producing microspheres by heating an emulsion mixture at 100 ° C to 150 ° C (Leucuta et al. , International Journal of Pharmaceutics 41: 213-217 (1988)).
그러나 이러한 미소구 제조방법은 유중수 에멀전의 수성상에서 열변성 또는 가교결합을 형성하여 입자를 형성해야하는 기술적 한계로 인해 수용성 물질의 포접에는 적합하나 수난용성 물질의 담체로서는 적합하지 않은 한계가 있다.However, such a method for producing microspheres is suitable for inclusion of water-soluble materials due to technical limitations in forming water-modified or cross-linked particles in the aqueous phase of water-in-oil emulsions, but not suitable as a carrier for poorly water-soluble materials.
또한 폴리락타이드 등의 공중합체를 수난용성 약물과 유기상에 용해시키고 수상에 도입시켜 유중수 에멀전으로 유화시킴으로써 나노입자를 만들고, 이때 알부민을 표면 안정화를 위한 계면활성제로 사용하는 제조법이 문헌에 제시되어있다 (Bazile et al., Biomaterials, 13:1093 (1992)).In addition, a copolymer of polylactide and the like is dissolved in a poorly water-soluble drug and an organic phase and introduced into an aqueous phase to emulsify with a water-in-oil emulsion, whereby nanoparticles are prepared, and a preparation method using albumin as a surfactant for surface stabilization is presented in the literature. (Bazile et al., Biomaterials, 13: 1093 (1992)).
아브락시스 바이오사이언스(Abraxis, 미국)는 수난용성 항암제인 파클리탁셀을 알부민에 화학적으로 접합시켜 기존 탁솔®의 문제점인 크레모포어를 사용하지 않는 대안적인 단백질 안정화 나노제형 아브락산®을 개발하였다.Havre developed a lock System Biosciences (Abraxis, USA) is not chemically bonded to the poorly water-soluble anticancer agent is paclitaxel to albumin using the problem of existing crushers all pores of Taxol ® alternative protein nano-formulation stability Havre Leshan ®.
또한, 비보렉스(VivoRX, 미국)는 특정 유/수 에멀전 조건에서 고압, 고전단력을 이용하여 크레모포어 또는 계면활성제를 사용하지 않고도 수난용성 약물을 포접한 나노입자 캅솔®을 개발하였다(미국특허 5,439,686, 대한민국특허 10-0923172).In addition, Vivorex (VivoRX, USA) developed nanoparticle capsol ® containing a poorly water-soluble drug without the use of cremophors or surfactants using high pressure, high shear forces under certain oil / water emulsion conditions (US patent). 5,439,686, Korean Patent 10-0923172).
다만, 상기의 아브락산® 및 캅솔®의 제조방법은 수난용성 약물의 화학적 결합방식과 에멀전상에서의 고압, 고전단력을 이용하여야 하는바, 제조시에 화학적 결합을 일으키도록 반응기를 조절하여야 하는 문제점과 고압, 고전단력을 이용하여 나노입자를 제조하는 바, 약물의 안정도가 낮아지며 시간 및 비용이 증가하는 문제점이 있었다. However, the above-described method for preparing ABRAXANE ® and CAPSOL ® requires the use of chemical bonding of poorly water-soluble drugs and high pressure and high shear forces in the emulsion phase. When the nanoparticles are manufactured using high pressure and high shear force, there is a problem that the stability of the drug is lowered and the time and cost increase.
또한, 중국 특허출원 공개번호 101543630에 의하면 소수성 블록과 친수성 블록을 동시에 특정 공중합체 또는 단백질에 도입하여 양친매성을 부여하는 기술이 알려져 있으나, 이에 따르면 첨가하는 재료가 늘어나서 반응이 복잡해지는 문제점이 있었다. 따라서, 추가 소수성기의 도입 없이 수난용성 약물을 안정화시키는 기술이 필요한 실정이었다. In addition, according to Chinese Patent Application Publication No. 101543630, a technique of imparting amphiphilicity by introducing a hydrophobic block and a hydrophilic block into a specific copolymer or protein at the same time has been known. Therefore, there is a need for a technique for stabilizing poorly water-soluble drugs without the introduction of additional hydrophobic groups.
이에, 본 발명자들은 비펩타이드성 중합체와 알부민의 회합체를 사용할 경우 계면활성제를 사용하거나, 화학적 결합방식과 에멀전상에서의 고압, 고전단력을 이용하지 않고도 유기용매에서도 용해도가 높으며 특히 수난용성 약물과 회합체를 형성할 수 있다는 것을 확인하였다. Therefore, the present inventors have high solubility in organic solvents without using a surfactant or using chemical bonding method and high pressure and high shear force in an emulsion phase when using a combination of a non-peptidyl polymer and albumin. It was confirmed that coalescing could be formed.
또한, 비펩타이드성 중합체와 알부민의 회합체를 제조한 후 유기용매를 제거한 후 친수성 용매를 첨가하여 용매확산법 및 필름형성법등의 간단한 나노입자 제조방법에 의해서 자기조립에 의한 수난용성 약물을 포함하는 나노입자를 형성할 수 있음을 확인하였으며, 상기 방법으로 제조된 수난용성 약물을 포함하는 나노입자는 기존에 공지된 항암제를 포함하는 알부민 나노입자에 비해 항암제가 잘 전달되어 항암효과가 우수하다는 것을 확인하여 본 발명을 완성하였다.In addition, after preparing the association of non-peptidyl polymer and albumin, the organic solvent is removed, and then, a hydrophilic solvent is added, and the nanoparticles containing poorly water-soluble drugs by self-assembly by simple nanoparticle manufacturing methods such as solvent diffusion and film formation. It was confirmed that the particles can be formed, the nanoparticles containing the poorly water-soluble drug prepared by the above method compared with the albumin nanoparticles containing the known anticancer agent, the anticancer agent is well delivered to confirm that the anticancer effect is excellent The present invention has been completed.
본 발명은 기존의 수난용성 약물 또는 생체영상용 무기나노입자의 생체 내 전달을 위한 나노입자의 제조방법으로서 계면활성제를 사용하거나 또는 화학적 결합방식과 에멀전상에서의 고압, 고전단력을 이용하던 문제점을 해소하기 위한 것이다. The present invention solves the problem of using a surfactant or a high pressure, high shear force in the chemical bonding method and emulsion as a method for producing nanoparticles for in vivo delivery of conventional poorly water-soluble drugs or inorganic nanoparticles for bioimaging. It is to.
본 발명은 비펩타이드성 중합체와 알부민의 회합체를 제조하고 이를 유기용매에 수난용성 약물과 일정한 몰비로 용해시킨 후 유기용매를 제거하고 친수성용매에서 자기조립에 의한 나노입자를 형성하는 제조방법을 제공하기 위한 것이다. The present invention provides a method for preparing a non-peptidyl polymer and albumin aggregate and dissolving it in an organic solvent in a fixed molar ratio with a poorly water-soluble drug to remove the organic solvent and to form nanoparticles by self-assembly in a hydrophilic solvent. It is to.
또한 본 발명에 의해서 제조된 비펩타이드성 중합체와 알부민 회합체 나노입자는 수용액상에서의 가용화 및 안정화를 통해 생체 내 전달을 매개할 수 있으므로 수난용성 약물 또는 생체영상용 무기나노입자의 담체로 사용될 수 있는바 본 발명은 상기 제조 방법에 의해서 제조된 비펩타이드성 중합체와 알부민의 회합체 나노입자를 제공하기 위한 것이다.In addition, since the non-peptidyl polymer and albumin aggregate nanoparticles prepared by the present invention can mediate in vivo delivery through solubilization and stabilization in aqueous solution, they can be used as carriers of poorly water-soluble drugs or inorganic nanoparticles for bioimaging. The present invention is to provide an association nanoparticle of the non-peptidyl polymer and albumin prepared by the above production method.
상기 과제를 해결하기 위하여, 본 발명은 비펩타이드성 중합체를 알부민과 혼합하여 비펩타이드성 중합체와 알부민의 회합체를 형성하는 제1단계;In order to solve the above problems, the present invention is a first step of forming an association of the non-peptidyl polymer and albumin by mixing the non-peptidyl polymer with albumin;
유기용매 상에, 수난용성 약물 또는 생체영상용 무기나노입자, 및 상기 비펩타이드성 중합체와 알부민의 회합체를 용해하여 혼합물을 제조하는 제2단계; 및Preparing a mixture by dissolving a poorly water-soluble drug or inorganic nanoparticles for bioimaging, and an association of the non-peptidyl polymer and albumin on an organic solvent; And
상기 혼합물의 유기용매를 제거하고 친수성 용매을 첨가하여 자기조립에 의해서 나노입자로 제조하는 제3단계를 포함하는, Removing the organic solvent from the mixture and adding a hydrophilic solvent to prepare nanoparticles by self-assembly,
수난용성 약물 또는 생체영상용 무기나노입자를 내부에 포함하는 비펩타이드성 중합체와 알부민의 회합체 나노입자를 제조하는 방법을 제공한다.The present invention provides a method for producing a conjugated nanoparticles of albumin and a non-peptidyl polymer containing a poorly water-soluble drug or inorganic nanoparticles for bioimaging.
상기 단계 1은 비펩타이드성 중합체를 알부민과 혼합하여 비펩타이드성 중합체와 알부민의 회합체를 형성하는 단계로서, 비펩타이드성 중합체를 알부민과 혼합하기 위해서 비펩타이성 중합체가 알부민의 아민기와 반응할 수 있는 치환기로 치환되어 있을 수 있다. 이때, 알부민의 아민과 반응할 수 있는 반응기는 N-히드록시숙신이미드, 숙신 이미딜 숙시네이트, 숙신 이미딜 프로피오네이트, 숙신이미딜 부타노에이트, 벤조트리아졸 카보네이트, 알데히드 및 카테콜로 이루어진 군으로부터 선택될 수 있으나 이에 한정되진 않는다. Step 1 is a step of mixing the non-peptidyl polymer with albumin to form a combination of the non-peptidyl polymer and albumin, the non-peptidyl polymer can react with the amine group of the albumin to mix the non-peptidyl polymer with albumin It may be substituted with a substituent. At this time, the reactor capable of reacting with the amine of albumin is composed of N-hydroxysuccinimide, succinimidyl succinate, succinimide propionate, succinimidyl butanoate, benzotriazole carbonate, aldehyde and catechol It may be selected from the group, but is not limited thereto.
본 발명에서 비펩타이드성 중합체는 폴리에틸렌 글리콜, 폴리프로필렌 글리콜, 에틸렌 글리콜-프로필렌 글리콜 공중합체, 폴리옥시에틸렌, 폴리옥사졸린, 폴리우레탄, 폴리포스파젠, 폴리사카리드, 덱스트란, 폴리 비닐 알코올, 폴리비닐 피롤리돈, 폴리비닐 에틸 에테르, 폴리아크릴 아미드, 폴리아크릴레이트, 폴리시아노아크릴레이트, 지질 중합체, 키틴류, 히아루론산, 헤파린 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있다. 본 발명에서는 폴리에틸렌 글리콜을 사용하는 것이 바람직하고, 이러한 폴리에틸렌 글리콜의 유도체를 사용할 수 있다. 폴리에틸렌 글리콜의 유도체는 직선형 또는 가지형이며 가지형은 둘 이상의 다중기를 갖을 수 있다. In the present invention, the non-peptidyl polymer is polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylene, polyoxazoline, polyurethane, polyphosphazene, polysaccharide, dextran, polyvinyl alcohol, poly Vinyl pyrrolidone, polyvinyl ethyl ether, polyacryl amide, polyacrylate, polycyanoacrylate, lipid polymers, chitin, hyaluronic acid, heparin and combinations thereof. In the present invention, it is preferable to use polyethylene glycol, and derivatives of such polyethylene glycol can be used. The derivatives of polyethylene glycol are straight or branched and the branched may have two or more multiple groups.
본 발명에서 사용되는 알부민은 인간유래 혈청알부민(human albumin, HSA)인 것이 바람직하다. 다만, 이에 제한되지 않는다. Albumin used in the present invention is preferably human albumin (human albumin, HSA). However, the present invention is not limited thereto.
본 발명에서 상기 비펩타이드성 중합체와 알부민의 몰비는 5:1 내지 50:1인 것이 바람직하다. In the present invention, the mole ratio of the non-peptidyl polymer and albumin is preferably 5: 1 to 50: 1.
본 발명에서 비펩타이드성 중합체의 분자량은 750Da 내지 300,000Da의 범위에서 선택되는 것이 바람직하다.In the present invention, the molecular weight of the non-peptidyl polymer is preferably selected from the range of 750 Da to 300,000 Da.
상기 단계 1에서 비펩타이드성 중합체는 알부민 단백질의 친수성 도메인에 위치한 아민기와 반응하여 공유결합을 형성할 수 있다. 비펩타이드성 중합체는 친수성 고분자임에도 불구하고 수용매 뿐만 아니라 다양한 종류의 유기용매에서도 매우 높은 용해도를 나타낼 수 있다. 더 나아가서 단계 1에 의해서 제조된 비펩타이드성 중합체와 알부민의 회합체는 알부민 단백질의 친수성 도메인에 비펩타이드성 중합체가 결합되어 있으므로 알부민 단백질의 친수성 영역은 줄어들고 소수성 영역이 남아 있게 되는바, 비펩타이드성 중합체만을 사용하는 경우와 비교하여 회합체를 형성함으로서 유기용매에 대한 용해도를 더욱 높일 수 있다. In step 1, the non-peptidyl polymer may react with an amine group located in the hydrophilic domain of the albumin protein to form a covalent bond. Although non-peptidyl polymers are hydrophilic polymers, they can exhibit very high solubility not only in aqueous solvents but also in various kinds of organic solvents. Furthermore, the non-peptidyl polymer prepared by step 1 and the albumin association are non-peptidyl polymers bound to the hydrophilic domain of albumin protein, so the hydrophilic region of albumin protein is reduced and the hydrophobic region remains. Compared with the case where only the polymer is used, the solubility in the organic solvent can be further increased by forming the association.
상기 단계 2는 유기용매 상에, 수난용성 약물 또는 생체영상용 무기나노입자, 및 상기 비펩타이드성 중합체와 알부민의 회합체를 용해하여 혼합물을 제조하는 단계이다. Step 2 is a step of preparing a mixture by dissolving a poorly water-soluble drug or inorganic nanoparticles for bioimaging, and the association of the non-peptidyl polymer and albumin on an organic solvent.
알부민 분자는 사슬의 양친성으로 인해 생체 내에서 콜레스테롤, 지질분자 등 소수성물질의 전달체로서 역할을 하며, 혈액 내 투여된 소수성 약물과의 결합에 있어 중요한 역할을 할 수 있다. 이러한 특성은 알부민 분자 내부에 형성된 소수성 도메인에 기인한다. Albumin molecules act as carriers of hydrophobic substances such as cholesterol and lipid molecules in vivo due to amphipathic chains, and may play an important role in binding to hydrophobic drugs administered in the blood. This property is due to the hydrophobic domain formed inside the albumin molecule.
유기용매 상에서 비펩타이드성 중합체와 알부민의 회합체는 펩티드 사슬의 재구성(chain rearrangement)을 통해 알부민 소수성 도메인이 밖으로 드러나 유기용매 상에 노출되게 된다. The association of the non-peptidyl polymer and albumin on the organic solvent exposes the albumin hydrophobic domain to the organic solvent through chain rearrangement of the peptide chain.
또한, 비펩타이드성 중합체와 알부민의 회합체의 비펩타이드성 중합체 사슬 도 유기용매 상에 노출되어 존재함으로써 알부민 단백질이 유기 용매상에서 안정화되도록 도울 수 있다. In addition, non-peptidyl polymer chains of associations of non-peptidyl polymers with albumin may also be exposed in the organic solvent to help stabilize albumin proteins in organic solvents.
따라서 수난용성 약물이 비펩타이드성 중합체와 알부민의 회합체와 유기용매에 함께 용해된 상태에서 상분리가 일어나지 않으며, 용매의 제거 시 회합체와 약물이 균일하게 존재하는 필름의 형성이 가능하도록 할 수 있다.Therefore, phase separation does not occur in the state where the poorly water-soluble drug is dissolved in the association of the non-peptidyl polymer and albumin and the organic solvent, and it is possible to form a film in which the association and the drug are uniformly present when the solvent is removed. .
본 발명에서 사용하는 유기용매는 에탄올, 메탄올, 이소프로필알콜, 부탄올, 디메틸설폭사이드(DMSO), 디메틸포름아미드(DMF), 테트라하이드로퓨란(THF), 아세토니트릴, 디클로로메탄, 에틸아세테이트, 헥산, 디에틸에테르, 벤젠, 클로로포름, 아세톤 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다. 또한 상기 유기용매에 수용매를 혼합하여 사용할 수 있다. 다만, 이에 제한되는 것은 아니다. The organic solvent used in the present invention is ethanol, methanol, isopropyl alcohol, butanol, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF), acetonitrile, dichloromethane, ethyl acetate, hexane, Diethyl ether, benzene, chloroform, acetone and combinations thereof may be used. In addition, a water-soluble solvent may be mixed with the organic solvent. However, it is not limited thereto.
상기 유기용매는 수상과 섞여 에멀전을 형성하지 않는 것을 사용하는 것이 바람직하다. 그 예로는 에틸알콜, 메틸알콜, 이소프로필알콜, 부틸알콜, 디메틸설폭사이드(DMSO), 디메틸포름아미드(DMF), 테트라하이드로퓨란(THF) 또는 아세토니트릴이 있을 수 있으나, 이에 제한되지 않는다. It is preferable to use the organic solvent which does not form an emulsion by mixing with an aqueous phase. Examples include, but are not limited to, ethyl alcohol, methyl alcohol, isopropyl alcohol, butyl alcohol, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF) or acetonitrile.
본 발명에서 수난용성 약물 또는 생체영상용 무기나노입자와, 비펩타이드성 중합체와 알부민의 회합체의 몰비는 1:5 에서 1:50 인 것이 바람직하다. 최적의 몰비는 사용되는 수용성 약물 또는 용도(예를들어 SPION의 long-circulation제형)에 따라 다르게 설정될 수 있다. In the present invention, the molar ratio of the poorly water-soluble drug or the inorganic nanoparticles for bioimaging, the association of the non-peptidyl polymer and albumin is 1: 5 to 1:50. The optimal molar ratio can be set differently depending on the water soluble drug used or the application (eg the long-circulation formulation of SPION).
단계 2에서는 소수성 알킬(아실기) 또는 담즙산 등의 추가적인 소수성기를 도입하지 않고도 수난용성 약물이 비펩타이드성 중합체와 알부민의 회합체와 유기용매에 함께 용해된 상태로 안정화될 수 있다는 점을 이용한 것이다. Step 2 takes advantage of the fact that the poorly water-soluble drug can be stabilized in a state in which the non-peptidyl polymer and the association of albumin and the organic solvent are dissolved together without introducing an additional hydrophobic group such as hydrophobic alkyl (acyl group) or bile acid.
따라서 본 발명에서는 단순히 알부민이 친수성기 및 소수성기를 도입하기 위한 뼈대 역할 만을 하는 것이 아니라, 추가 소수성기의 도입 없이 비펩타이드성 중합체와 알부민 자체에 있는 소수성 도메인을 이용하여 수난용성 약물을 용해할 수 있다.Therefore, in the present invention, albumin may not only serve as a skeleton for introducing hydrophilic groups and hydrophobic groups, but may dissolve poorly water-soluble drugs using hydrophobic domains in the non-peptidyl polymer and albumin itself without introducing additional hydrophobic groups.
본 발명에서 상기 수난용성 약물은 항암제, 항생제, 항진균제, 항염증제, 면역억제제 또는 영양제일 수 있고, 생체영상용 무기나노입자는 진단제 또는 조영제일 수 있다. In the present invention, the poorly water-soluble drug may be an anticancer agent, an antibiotic, an antifungal agent, an anti-inflammatory agent, an immunosuppressive agent or a nutrient, and the inorganic nanoparticles for biological imaging may be a diagnostic agent or a contrast agent.
항암제로는 탁산 또는 그의 유도체로서 파클리탁셀, 도세탁셀 또는 오르타탁셀을 사용할 수 있다. As anticancer agent, paclitaxel, docetaxel or ortataxel can be used as taxane or its derivative (s).
또한 항암제로서 아드리아마이신, 콜히친, 시클로포스파미드, 악티노마이신, 블레오마이신, 두아노루비신, 에피루비신, 미토마이신, 메토트렉세이트, 미톡산트론, 플루오로우라실, 카르보플라틴, 카르무스틴(BCNU), 메틸 CCNU, 시스플라틴, 에토포시드, 인터페론, 캄프토테신 및 그의 유도체, 페네스테린, 토페테칸, 빈블라스틴, 빈크리스틴, 타목시펜, 피포술판, 이리노테칸, 겜시타빈, 헤르셉틴, 비노렐빈, 카페시타빈, 알림타, 아바스틴, 벨케이드, 타르세바, 뉴라스타, 라파티닙 및 소라페닙을 사용할 수 있다. 사용할 수 있는 항암제로는 파클리탁셀 또는 캄프토테신인 것이 보다 더 바람직하다. 다만, 이에 제한되지 않는다. In addition, as an anticancer agent, adriamycin, colchicine, cyclophosphamide, actinomycin, bleomycin, duanorubicin, epirubicin, mitomycin, methotrexate, mitoxantrone, fluorouracil, carboplatin, carmustine (BCNU) ), Methyl CCNU, cisplatin, etoposide, interferon, camptothecin and derivatives thereof, penesterin, tofetecan, vinblastine, vincristine, tamoxifen, piposulfan, irinotecan, gemcitabine, herceptin, vinorelbine, Capecitabine, Alumta, Avastin, Velcade, Tarceva, Neurastar, Lapatinib and Sorafenib can be used. The anticancer agent which can be used is more preferably paclitaxel or camptothecin. However, the present invention is not limited thereto.
항생제로는 네오마이신, 아미카신, 아즈트레오남, 클로람페니콜, 팔미트산클로람페니콜, 클로람페니콜 나트륨 숙시네이트, 시프로플록사신, 클린다마이신, 메트로니다졸, 젠타미신, 린코마이신, 토브라마이신, 반코마이신, 폴리믹신 B, 콜리스티메테이트 나트륨 및 콜리스틴을 사용할 수 있다. 다만, 이에 제한되지 않는다. Antibiotics include neomycin, amikacin, aztreonam, chloramphenicol, palmitic acid chloramphenicol, chloramphenicol sodium succinate, ciprofloxacin, clindamycin, metronidazole, gentamicin, lincomycin, tobramycin, vancomycin, polymyxin B, colistin Metate sodium and colistin can be used. However, the present invention is not limited thereto.
항진균제로는 그리세오풀빈, 켈로코나졸, 암포테리신 B, 니스타틴 또는 칸디시딘을 사용할 수 있다. 다만, 이에 제한되지 않는다. Antifungal agents may include griseofulvin, keloconazole, amphotericin B, nystatin or candicidine. However, the present invention is not limited thereto.
항염증제로는 비스테로이드성 항염증제 예를들어 인도메타신, 나프록센, 이부프로펜, 라미페나존, 피록시캄 등과 스테로이드성 항염증제 예를들어 코르티손, 덱사메타손, 플루아자코르트, 히드로코르티손, 프레드니솔론, 프레드니손 등을 사용할 수 있다. 다만, 이에 제한되지 않는다. As anti-inflammatory agents, nonsteroidal anti-inflammatory agents such as indomethacin, naproxen, ibuprofen, ramipenazone, pyroxicam and steroidal anti-inflammatory agents such as cortisone, dexamethasone, fluazacort, hydrocortisone, prednisolone, prednisone, etc. can be used. Can be. However, the present invention is not limited thereto.
면역억제제로는 시클로스포린, 아자티오프린, 미조리빈 또는 타크롤리무스를 사용할 수 있다. 다만, 이에 제한되지 않는다. As immunosuppressive agents, cyclosporin, azathioprine, myzoribin or tacrolimus can be used. However, the present invention is not limited thereto.
영양제로는 지용성 비타민 예를들어 비타민 A, D, E, K 등을 사용할 수 있다. 다만, 이에 제한되지 않는다.As a nutrient, fat-soluble vitamins such as vitamins A, D, E, and K can be used. However, the present invention is not limited thereto.
진단제 또는 조영제로는 MR 자기 조영제 예를들어 산화철 나노입자, 플루오로카본, 지용성 상자성 화합물 등; 초음파 조영제; 방사선 조영제 예를들어 요오도-옥탄, 할로카본, 그라핀 등; 및 실질적으로 수불용성인 특성의 물리 또는 물리화학적 개질 없이 전달할 수 없는 다른 진단제도 사용할 수 있다. 사용할 수 있는 진단제 또는 조영제로는 산화철 나노입자인 것이 보다 더 바람직하다. 다만, 이에 제한되지 않는다. Diagnostic or contrast agents include MR magnetic contrast agents such as iron oxide nanoparticles, fluorocarbons, fat-soluble paramagnetic compounds, and the like; Ultrasound contrast agent; Radiographic agents such as iodo-octane, halocarbon, graphene and the like; And other diagnostics that cannot be delivered without physical or physicochemical modifications of substantially water insoluble properties. The diagnostic or contrast agent that can be used is more preferably iron oxide nanoparticles. However, the present invention is not limited thereto.
본원발명의 일 실시예에 의하면 디메틸설폭사이드(DMSO)를 사용하여 상기 단계 2에서 제조된 폴리에틸렌글리콜과 알부민의 회합체를 용해할 수 있다. 또한 수난용성 약물 또는 생체영상용 무기나노입자의 경우에는 유기용매에는 가용성인바, 폴리에틸렌글리콜과 알부민의 회합체와 수난용성 약물 또는 생체영상용 무기나노입자를 모두 유기용매에 용해시킬 수 있다. According to one embodiment of the present invention it is possible to dissolve the association of polyethylene glycol and albumin prepared in step 2 using dimethyl sulfoxide (DMSO). In addition, in the case of poorly water-soluble drugs or inorganic nanoparticles for bioimaging, the organic solvent can be dissolved in both the association of polyethylene glycol and albumin and the poorly water-soluble drug or bioimaging inorganic nanoparticles in the organic solvent.
상기 단계 3은 유기용매를 제거하고 친수성 용매를 첨가하여 자기조립에 의해서 나노입자로 제조하는 단계이다. 유기용매를 제거하고 수난용성 약물 또는 생체영상용 무기나노입자가 비펩타이드성 중합체와 알부민의 회합체와 균일하게 섞여있는 혼합물을 얻는 단계이며 혼합물에 친수성 용매를 첨가함으로서 자기조립 반응에 의해서 소수성을 가지는 단백질의 부분은 입자의 내부에 위치하게 되고 친수성을 가지는 부분은 수용액 쪽으로 위치하게 되면서 소수성 부위에 수난용성 약물 또는 생체영상용 무기나노입자가 포집되게 되고 나노크기를 갖는 입자로 형성된다. Step 3 is a step of preparing nanoparticles by self-assembly by removing the organic solvent and adding a hydrophilic solvent. Removing the organic solvent and obtaining a mixture in which poorly water-soluble drugs or inorganic nanoparticles for biological imaging are uniformly mixed with a non-peptide polymer and an association of albumin, and having hydrophobicity by self-assembly by adding a hydrophilic solvent to the mixture. The portion of the protein is located inside the particle and the hydrophilic part is located toward the aqueous solution, the poorly soluble drugs or inorganic nanoparticles for bioimaging are collected in the hydrophobic portion and formed into particles having a nano size.
단계 3에서 친수성 용매를 첨가하면 수난용성 약물과 알부민의 소수성 도메인들 간의 상호작용으로 나노 입자의 내부에 수난용성 약물 또는 생체영상용 무기나노입자가 위치하게 되고, 친수성이며 유연한 비펩타이드성 중합체 사슬은 단백질의 친수성 도메인과 함께 입자의 최외곽에 위치를 하여 core-shell 구조를 형성함으로써 입자 표면을 안정화시키는 동시에 다른 입자와의 상호작용에 의한 집합(aggregation)을 최소화한다. The addition of the hydrophilic solvent in step 3 results in the interaction between the poorly water-soluble drug and the hydrophobic domains of albumin, thereby placing the poorly water-soluble drug or inorganic nanoparticles for bioimaging, and the hydrophilic and flexible non-peptidyl polymer chain The outermost part of the particle, together with the hydrophilic domain of the protein, forms a core-shell structure, which stabilizes the particle surface and minimizes aggregation by interaction with other particles.
본 발명의 일실시예에 의하면 친수성 용매를 첨가한 경우 수난용성약물이 입자내부 소수성 부위에 위치함을 확인할 수 있다. According to one embodiment of the present invention, when the hydrophilic solvent is added, it is confirmed that the poorly water-soluble drug is located in the hydrophobic portion inside the particle.
또한, 단계 3의 나노 입자를 포함하는 용액은 매우 안정한 콜로이드 특성을 갖는다는 장점이 있다. In addition, the solution containing the nanoparticles of step 3 has the advantage that it has a very stable colloidal properties.
본 발명에서 친수성 용매는 물, 증류수, 멸균수, 인산완충식염수(PBS), 메탄올, 정제수, 에탄올, 1-프로판올, 2-프로판올, 1-펜탄올, 2-부톡시에탄올, 에틸렌 글라이콜, 아세톤, 2-부타논, 4-메틸-2-프로파논 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있다. 다만 이에 제한되는 것은 아니다. In the present invention, the hydrophilic solvent is water, distilled water, sterile water, phosphate buffered saline (PBS), methanol, purified water, ethanol, 1-propanol, 2-propanol, 1-pentanol, 2-butoxyethanol, ethylene glycol, Acetone, 2-butanone, 4-methyl-2-propanone and combinations thereof. However, it is not limited thereto.
본 발명에서 친수성 용매를 첨가하여 자기조립에 의해서 나노입자로 제조하는 방법은 용매확산법 또는 필름형성법인 것이 바람직하나 이에 제한되지는 않고 일반적으로 알려져 있는 나노입자 제조방법을 사용하여 제조할 수 있다. In the present invention, the method of preparing nanoparticles by self-assembly by adding a hydrophilic solvent is preferably a solvent diffusion method or a film formation method, but is not limited thereto.
본 발명에서 제조되는 회합체 나노입자의 크기는 200nm 내지 500nm인 것이 바람직하다. 200nm 이하인 경우에는 수난용성 약물 또는 생체영상용 무기나노입자가 포집되는 양이 적으며 500nm 이상인 경우에는 나노입자의 크기가 커서 생체전달력이 떨어지는 문제가 있다. The size of the aggregate nanoparticles prepared in the present invention is preferably 200nm to 500nm. In the case of 200 nm or less, the amount of poorly soluble drugs or inorganic nanoparticles for bioimaging is collected, and in the case of 500 nm or more, the size of the nanoparticles is large, so that the biotransmission ability is poor.
본 발명의 제조방법에 의해서 제조된 비펩타이드성 중합체와 알부민의 회합체 나노입자는 담체로서 사용되며 따라서 약물을 안전하게 생체내부에 전달할 수 있다. The association nanoparticles of the non-peptidyl polymer and albumin prepared by the preparation method of the present invention are used as a carrier and thus can safely deliver the drug in vivo.
또한, 본 발명은 본 발명의 제조방법에 의해서 제조된 수난용성 약물 또는 생체영상용 무기나노입자를 내부에 포함하는 것을 특징으로 하는 비펩타이드성 중합체와 알부민의 회합체 나노입자를 제공한다. In another aspect, the present invention provides a non-peptidyl polymer and albumin aggregate nanoparticles, characterized in that it comprises a poorly water-soluble drug or inorganic nanoparticles for biological imaging prepared by the method of the present invention.
본원발명은 유기용매에 비펩타이드성 중합체와 알부민 회합체 및 수난용성 약물의 동시 용해가 가능하므로 별도의 화학적 또는 물리적인 작용을 가하지 않더라도 두 성분의 혼합이 잘 이루어지는바, 유기용매를 제거하고 친수성용매를 첨가하여 일반적인 나노입자 형성 방법인 반응투과막을 이용한 용매확산법 또는 용매증발에 의한 필름생성법에 의하여 나노입자를 형성할 수 있다. In the present invention, since the non-peptide polymer, albumin association and poorly water-soluble drug can be simultaneously dissolved in the organic solvent, the two components are well mixed without additional chemical or physical action. Therefore, the organic solvent is removed and the hydrophilic solvent is removed. To add the nanoparticles can be formed by a solvent diffusion method using a reaction permeable membrane which is a common method for forming nanoparticles or film formation by solvent evaporation.
반면, 기존의 나노입자 제조시에는 유중수 에멀전의 수성상에서 열변성 또는 가교결합을 형성하여 알부민 유도체와 수난용성 약물이 혼합되도록 하였는바, 제조된 나노입자의 안정성이 떨어지고 제조 시간이 길고 비용이 증가하는 등의 문제가 있었다. On the other hand, in the preparation of conventional nanoparticles, the heat-denatured or cross-linked forms in the aqueous phase of the water-in-oil emulsion, so that the albumin derivative and the poorly water-soluble drug are mixed. There was a problem.
본 발명은 기존의 나노입자 제조방법에 비하여 제조된 나노입자의 안정성이 높고, 제조단계가 간단한바 제조시간이 줄고 비용이 줄어드는 효과가 있으며 본 발명의 제조방법으로 제조된 항암제를 포함하는 비펩타이드성 중합체와 알부민의 회합체는 기존에 공지된 알부민 나노입자에 비해 항암제가 잘 전달되어 항암효과가 우수하다는 효과가 있다. The present invention has a high stability of the nanoparticles prepared compared to the conventional method for producing nanoparticles, the manufacturing step is simple bar non-peptidyl including the anticancer agent prepared by the manufacturing method of the present invention has the effect of reducing the cost and cost The combination of the polymer and albumin has an effect that the anticancer agent is well delivered compared to the albumin nanoparticles known in the art, so that the anticancer effect is excellent.
즉, 본 발명에 따른 제조방법에 의해서 제조된 파클리탁셀을 내부에 포함하는 폴리에틸렌글리콜과 알부민 회합체 나노입자 조성물은 기존의 알부민과 파클리탁셀을 화학적 가교결합에 의해서 제조한 아브락산(IC50 = 35.3 nM)과 유방암 세포주(MDA-MB453)에서의 세포활성을 비교하였을 때, 더 낮은 IC50 값(5.7 nM)을 가지므로 더 높은 항암활성을 나타낸다는 것을 확인할 수 있었다.That is, the polyethylene glycol and albumin aggregate nanoparticle composition including paclitaxel prepared by the preparation method according to the present invention is abraxane (IC 50 = 35.3 nM) prepared by chemical crosslinking of albumin and paclitaxel. When compared with the cell activity in the breast cancer cell line (MDA-MB453), it was confirmed that the higher anti-cancer activity because it has a lower IC 50 value (5.7 nM).
또한, 본 발명에 따른 제조방법에 의해서 제조된 파클리탁셀을 내부에 포함하는 폴리에틸렌글리콜과 알부민 회합체 나노입자 조성물의 유방암 세포주인 SK-BR-3 투여 동물모델에서 항암활성을 측정한 결과 파클리탁셀을 함유한 알부민 나노입자는 아브락산(Abraxane®)과 비슷한 정도의 우수한 암 성장억제 효과를 나타낸다는 것을 확인할 수 있었다.In addition, anti-cancer activity was measured in the animal model of SK-BR-3 administration, which is a breast cancer cell line of polyethylene glycol and albumin association nanoparticle composition containing paclitaxel prepared by the method according to the present invention, which contains paclitaxel. Albumin nanoparticles were found to show a similar effect to cancer growth (Abraxane ® ) to a superior degree.
기존의 나노입자 제조시에는 유중수 에멀전의 수성상에서 열변성 또는 가교결합을 형성하여 알부민 유도체와 수난용성 약물이 혼합되도록 하였는바, 제조된 나노입자의 안정성이 떨어지고 제조 시간이 길고 비용이 증가하는 등의 기술적 한계가 있었다.In the production of conventional nanoparticles, an albumin derivative and a poorly water-soluble drug were mixed by forming a thermodenatured or crosslinked compound in an aqueous phase of a water-in-oil emulsion, resulting in inferior stability of the prepared nanoparticles, long manufacturing time, and increased cost. There was a technical limitation.
본 발명에 따른 비펩타이드성 중합체와 알부민 회합체 나노입자 제조방법은, 바람직하게는 유기용매 하나만을 사용하여 비펩타이드성 중합체와 알부민 회합체 및 수난용성 약물의 동시 용해가 가능하므로 별도의 화학적 또는 물리적인 작용을 가하지 않더라도 두 성분의 혼합이 잘 이루어지게 된다.In the method for preparing non-peptidyl polymer and albumin association nanoparticles according to the present invention, it is possible to simultaneously dissolve the non-peptidyl polymer, albumin association and poorly water-soluble drug using only one organic solvent. Even if the phosphorus is not applied, the two components are well mixed.
따라서 유기용매를 제거한 후 친수성 용매를 첨가하여 일반적인 나노입자 형성 방법인 반응투과막을 이용한 용매확산법 또는 용매증발에 의한 필름생성법에 의하여 수난용성 약물을 내부에 포함하는 나노입자를 형성할 수 있어서 제조된 나노입자의 안정성이 증가하고 제조방법이 간단하며 비용이 감소되는 이점이 있다.Therefore, after removing the organic solvent, by adding a hydrophilic solvent, it is possible to form nanoparticles containing a poorly water-soluble drug therein by a solvent diffusion method using a reaction permeable membrane which is a general nanoparticle formation method or a film formation method by solvent evaporation. The stability of the particles is increased, the manufacturing method is simple and the cost is reduced.
또한, 본 발명에 따른 폴리에틸렌글리콜과 알부민 회합체 나노입자 제조방법은, 계면활성제, 가용화제를 포함하지 않으며, 나노입자의 제조시 유기용매가 제거되면서 소수성의 형태를 띠는 폴리에틸렌글리콜과 알부민 회합체 내부에 수난용성 약물이 포접되는 자기조립현상에 의해서 나노입자가 형성됨으로서 수난용성 약물의 제제화에 의한 과민반응 또는 독성반응을 일으키지 않는 동시에 환자의 순응도를 높일 수 있는 장점이 있다. 또한 다양한 수난용성 약물 뿐아니라, 영상/진단용 무기나노입자의 안정화 등에도 적용될 수 있다. In addition, the polyethylene glycol and albumin aggregate nanoparticle manufacturing method according to the present invention does not include a surfactant and a solubilizer, and the polyethylene glycol and albumin association having a hydrophobic form while the organic solvent is removed during the preparation of the nanoparticles. Since nanoparticles are formed by self-assembly in which a poorly water-soluble drug is enclosed therein, there is an advantage in that the patient's compliance can be increased without causing hypersensitivity or toxic reactions due to the formulation of poorly water-soluble drugs. In addition, it can be applied to stabilization of inorganic nanoparticles for imaging / diagnosis as well as various poorly water-soluble drugs.
또한, 본 발명의 제조방법으로 제조된 항암제를 포함하는 비펩타이드성 중합체와 알부민의 회합체는 기존에 공지된 알부민 나노입자에 비해 항암제가 잘 전달되어 항암효과가 우수하다는 효과가 있다.In addition, the association of the non-peptidyl polymer and albumin comprising an anticancer agent prepared by the production method of the present invention has an effect that the anticancer agent is well delivered compared to the albumin nanoparticles known in the prior art has excellent anticancer effect.
도 1은, 폴리에틸렌글리콜과 알부민 회합체의 형성을 확인하기 위한 전기영동을 나타낸 것이다.Figure 1 shows electrophoresis for confirming the formation of polyethylene glycol and albumin association.
도 2는, 폴리에틸렌글리콜과 알부민 회합체가 디메틸설폭사이드(DMSO)상에서의 용해되는 것을 나타낸 것이다. Figure 2 shows that polyethylene glycol and albumin association dissolve on dimethyl sulfoxide (DMSO).
도 3은, 용매확산법에 의해 제조된 파클리탁셀을 포함하는 폴리에틸렌글리콜과 알부민 회합체 나노입자의 투과전자현미경(TEM)이미지(bar = 200 nm)를 나타낸 것이다.Figure 3 shows a transmission electron microscope (TEM) image (bar = 200 nm) of polyethylene glycol and albumin aggregate nanoparticles containing paclitaxel prepared by the solvent diffusion method.
도 4는, 필름형성법에 의해 제조된 파클리탁셀을 포함하는 폴리에틸렌글리콜과 알부민 회합체 나노입자의 투과전자현미경(TEM, 위)이미지(bar = 200 nm)와 주사전자현미경(SEM, 아래)이미지(bar = 100 nm)를 나타낸 것이며 (inset image). 왼쪽 그래프는 알부민 회합체 나노입자 크기분포를 광산란법을 이용하여 측정한 결과를 나타낸 것이다. 4 is a transmission electron microscope (TEM) image (bar = 200 nm) and scanning electron microscope (SEM) image (bar) of polyethylene glycol and albumin aggregate nanoparticles including paclitaxel prepared by the film forming method = 100 nm) (inset image). The graph on the left shows the results obtained by measuring the size distribution of albumin aggregate nanoparticles using the light scattering method.
도 5는, 필름형성법에 의해 제조된 켐프토테신을 포함하는 폴리에틸렌글리콜과 알부민 회합체 나노입자의 투과전자현미경(TEM)이미지(bar = 100 nm)를 나타낸 것이다.5 shows a transmission electron microscope (TEM) image (TEM) of polyethylene glycol and albumin aggregate nanoparticles containing Kemptothecin prepared by a film forming method (bar = 100 nm).
도 6은, Nile red를 이용한 나노입자 내 수난용성 약물의 위치 특성화를 나타낸 것이다. Figure 6 shows the positional characterization of poorly water-soluble drugs in nanoparticles using Nile red.
도 7은, 필름형성법에 의해 제조된 파클리탁셀을 포함하는 폴리에틸렌글리콜과 알부민 회합체 나노입자로부터 파클리탁셀의 방출 양상을 나타낸 것이다 (phosphate buffered saline, PBS with 0.1 % sodium salicylate). Figure 7 shows the release pattern of paclitaxel from polyethylene glycol and albumin association nanoparticles containing paclitaxel prepared by the film forming method (phosphate buffered saline, PBS with 0.1% sodium salicylate).
도 8은, 필름형성법에 의해 제조된 소수성 형광프로브인 DiD(적색형광, Invitrogen, Carlsbad, CA)와 DiI(초록색형광, Invitrogen, Carlsbad, CA)을 모델약물로 포함하는 폴리에틸렌글리콜과 알부민 회합체 나노입자의 유방암 세포주인 MCF-7으로의 전달을 공초점 현미경으로 관찰한 것을 나타낸 것이다.8 is a polyethylene glycol and albumin association nano-containing hydrophobic fluorescent probes prepared by the film forming method including DiD (red fluorescence, Invitrogen, Carlsbad, CA) and DiI (green fluorescence, Invitrogen, Carlsbad, CA) as model drugs The observation of the particle delivery to the breast cancer cell line MCF-7 was shown by confocal microscopy.
도 9는, 필름형성법에 의해 제조된 파클리탁셀을 포함하는 폴리에틸렌글리콜과 알부민 회합체 나노입자의 유방암 세포주 (SK-BR-3, MDAMB-453, MCF-7)에서의 항암활성을 나타낸 것이다. 시판되는 알부민/파클리탁셀 제제인 아브락산(Abraxane®)을 대조군으로 사용하였다. Figure 9 shows the anticancer activity of breast cancer cell lines (SK-BR-3, MDAMB-453, MCF-7) of polyethylene glycol and albumin aggregate nanoparticles containing paclitaxel prepared by the film forming method. Abraxane ® , a commercially available albumin / paclitaxel formulation, was used as a control.
도 10은, 필름형성법에 의해 제조된 파클리탁셀을 포함하는 폴리에틸렌글리콜과 알부민 회합체 나노입자의 동물종양모델(nude mice nu/nu, SK-BR-3 xenograft)에서의 고형암 성장저해 효과와 항암효과에 의한 생존기간 연장을 관찰한 결과를 나타낸 것이다. 시판되는 알부민/파클리탁셀 제제인 아브락산(Abraxane®)을 대조군으로 사용하였다.FIG. 10 is a graph showing the antitumor and anticancer effects of solid tumor growth in animal tumor models (nude mice nu / nu, SK-BR-3 xenograft) of polyethylene glycol and albumin aggregate nanoparticles containing paclitaxel prepared by the film forming method. Results of observation of prolonged survival. Abraxane ® , a commercially available albumin / paclitaxel formulation, was used as a control.
도 11은, 필름형성법에 의해 제조된 소수성 형광프로브인 DiD(Invitrogen, Carlsbad, CA)를 모델약물로 포함하는 폴리에틸렌글리콜과 알부민 회합체 나노입자의 동물종양모델(nude mice nu/nu, SK-BR-3 xenograft)에서의 수동적 표적화(passive tumor targeting) 효과에 의한 시간에 따른 고형암 내 축적을 관찰한 결과를 나타낸 것이다. 11 is an animal tumor model of polyethylene glycol and albumin aggregate nanoparticles containing DiD (Invitrogen, Carlsbad, CA), a hydrophobic fluorescent probe prepared by a film forming method, as a model drug (nude mice nu / nu, SK-BR) -3 xenograft) shows the results of the accumulation in solid tumors over time due to the effects of passive tumor targeting.
도 12는, 필름형성법에 의해 제조한 SPION을 포함하는 폴리에틸렌글리콜과 알부민 회합체 나노입자의 투과전자현미경(TEM) 이미지(bar = 100 nm)를 나타낸 것이다. 12 shows a transmission electron microscope (TEM) image (bar = 100 nm) of polyethylene glycol and albumin aggregate nanoparticles containing SPION prepared by the film forming method.
도 13은, 필름형성법에 의해 제조한 SPION을 포함하는 폴리에틸렌글리콜과 알부민 회합체 나노입자의 안정성을 나타낸 것이다 (인산염 식염수 (PBS, pH 7.4), 방부제로서 0.02% 아지화 나트륨, 37 ℃).Fig. 13 shows the stability of polyethyleneglycol and albumin aggregate nanoparticles containing SPION prepared by the film forming method (phosphate saline (PBS, pH 7.4), 0.02% sodium azide as a preservative, 37 ° C).
도 14는, 필름형성법에 의해 제조한 SPION을 포함하는 폴리에틸렌글리콜과 알부민 회합체 나노입자의 이완성(relaxivity, 487.5 ± 13.1 mM-1s-1)을 나타낸 것이다. 시판되는 MR영상화용 산화철나노입자인 Feridex® (~230 mM-1s-1) 보다 우수한 이완성을 나타내었다. FIG. 14 shows the relaxation (487.5 ± 13.1 mM -1 s -1 ) of polyethylene glycol and albumin aggregate nanoparticles including SPION prepared by the film forming method. It showed better laxity than Feridex ® (~ 230 mM -1 s -1 ), a commercial iron oxide nanoparticle for MR imaging.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 더욱 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의하여 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the examples.
실시예 1: 알부민-PEG 회합체의 제조Example 1 Preparation of Albumin-PEG Association
알부민-PEG 회합체의 제조를 위해 N-hydroxysuccimide(NHS)로 활성화된 polyethyleneglycol (NHS-PEG, Mw 5,000, SunBio, Seoul, Korea)을 인간알부민과 1:10, 1:20, 1:30, 1:40, 1:50 (PEG-NHS/알부민)의 반응비로 PBS에 각각 용해시키고 섞은 후 12시간 동안 교반하여 반응시켰다. 반응 결과물을 반투막(Spectra/Por, MWCO 10,000)에 넣고 정제수(deionized water)에서 투석하여 반응하지 않은 PEG를 제거한 후, 동결건조하여 균일한 백색의 케이크를 얻었다.Activated polyethyleneglycol (NHS-PEG, Mw 5,000, SunBio, Seoul, Korea) activated with N-hydroxysuccimide (NHS) for human albumin 1:10, 1:20, 1:30, 1 The solution was dissolved in PBS at a reaction ratio of: 40, 1:50 (PEG-NHS / albumin) and mixed, followed by stirring for 12 hours. The reaction product was placed in a semipermeable membrane (Spectra / Por, MWCO 10,000), dialyzed in deionized water to remove unreacted PEG, and lyophilized to obtain a uniform white cake.
얻어진 분말을 PBS에 녹여 Laemni 완충용액 (Laemni sample buffer, 63 mM Tris-HCl, 10% Glycerol, 2 % SDS, 0.0025 % Bromophenol blue, pH 6.8)에 희석하여 트리-글라이신(Tris-Glysine) 불연속 아크릴아미드겔 전기영동으로 회합체 형성을 확인하였다(도 1). The obtained powder was dissolved in PBS and diluted in Laemni buffer (Laemni sample buffer, 63 mM Tris-HCl, 10% Glycerol, 2% SDS, 0.0025% Bromophenol blue, pH 6.8) to tri-glysine discontinuous acrylamide. Association formation was confirmed by gel electrophoresis (FIG. 1).
실시예 2: 용매확산법에 의한 파클리탁셀 나노입자 제조Example 2 Preparation of Paclitaxel Nanoparticles by Solvent Diffusion
파클리탁셀 0.5 mg과 알부민-PEG 접합체(1:10 회합체) 10 mg을 디메틸설폭사이드(DMSO)에 용해시켜 투명한 용액을 얻었다. 혼합물을 반투막(Spectra/Por, MWCO 10,000)에 넣고 정제수(deionized water)에서 투석하여, 유기용매를 확산을 통해 제거하였다. 0.5 mg of paclitaxel and 10 mg of albumin-PEG conjugate (1:10 association) were dissolved in dimethylsulfoxide (DMSO) to give a clear solution. The mixture was placed in a semipermeable membrane (Spectra / Por, MWCO 10,000) and dialyzed in deionized water to remove the organic solvent through diffusion.
분산액은 0.45 ㎛ 셀룰로스 필터로 여과하여 동결건조제를 첨가하지 않은 상태로 48시간 동안 동결건조하여 균일한 백색의 케이크를 얻었으며, 이를 멸균수 또는 PBS를 첨가하여 분산액으로 재조성할 수 있었다. 얻어진 파클리탁셀/알부민-PEG 회합체 분산액은 투명하였으며, 투과전자현미경(TEM) 관찰결과 입자 50 내지 200 nm의 크기를 지니는 구형 나노입자임을 관찰할 수 있었다(도 2 및 도 3).The dispersion was filtered through a 0.45 μm cellulose filter and lyophilized for 48 hours without the addition of the lyophilizer to obtain a uniform white cake, which could be reconstituted into a dispersion by addition of sterile water or PBS. The resulting paclitaxel / albumin-PEG aggregate dispersion was transparent, and transmission electron microscopy (TEM) observation showed that the particles were spherical nanoparticles having a size of 50 to 200 nm (FIGS. 2 and 3).
실시예 3: 필름형성법에 의한 파클리탁셀 나노입자 제조Example 3: Paclitaxel Nanoparticles Preparation by Film Forming Method
파클리탁셀 0.5 mg과 알부민-PEG 접합체(1:10 회합체) 10 mg을 50% THF 수용액에 용해시켜 투명한 용액을 얻었다. 혼합물을 회전증발기에 옮기고 감압상태, 100 ℃에서 용매를 증발시켜 둥근플라스크(round-bottom flask) 벽에 얇은 필름을 형성시켰다. 얻어진 필름에 증류수를 넣고 자석교반기 또는 초음파 수조에서 용해시켜 나노입자 분산액을 생성하고, 이를 0.45 ㎛ 셀룰로스 필터로 여과하여 동결건조제를 첨가하지 않은 상태로 48시간 동안 동결건조하여 균일한 백색의 케이크를 얻었다. 얻어진 케이크는 멸균수 또는 PBS를 첨가하여 고농도의 분산액으로 재조성 할 수 있었다(도 4).0.5 mg of paclitaxel and 10 mg of albumin-PEG conjugate (1:10 association) were dissolved in 50% THF aqueous solution to obtain a clear solution. The mixture was transferred to a rotary evaporator and the solvent was evaporated at reduced pressure at 100 ° C. to form a thin film on the wall of a round-bottom flask. Distilled water was added to the obtained film and dissolved in a magnetic stirrer or an ultrasonic bath to produce a nanoparticle dispersion, which was then filtered through a 0.45 μm cellulose filter and lyophilized for 48 hours without the addition of a lyophilizer to obtain a uniform white cake. . The obtained cake was reconstituted in a high concentration dispersion by the addition of sterile water or PBS (Fig. 4).
실시예 4: 필름형성법에 의한 켐프토테신 나노입자 제조Example 4 Preparation of Kemptothecin Nanoparticles by Film Forming Method
상기 실시예에서의 방법과 마찬가지로 켐프토테신 0.5 mg을 chloroform/methanol (4:1)에 녹이고 알부민-PEG (80% methanol) 접합체(1:10 회합체) 10 mg을 80% methanol 수용액에 각각 용해시킨 후 섞어 투명한 혼합물 용액을 얻었다. 혼합물을 회전증발기에 옮기고 감압상태, 100 ℃에서 용매를 증발시켜 둥근플라스크(round-bottom flask) 벽에 얇은 필름을 형성시켰다. 얻어진 필름에 증류수를 넣고 자석교반기 또는 초음파 수조에서 용해시켜 나노입자 분산액을 생성하고, 이를 0.45 ㎛ 셀룰로스 필터로 여과하여 동결건조제를 첨가하지 않은 상태로 48시간 동안 동결건조하여 균일한 백색의 케이크를 얻었을 수 있었으며, 이를 멸균수 또는 PBS를 첨가하여 분산액으로 재조성 할 수 있었다. 얻어진 켐프토테신/알부민-PEG 회합체 분산액은 투명하였으며, 투과전자현미경(TEM) 관찰결과 입자 50 내지 200 nm의 크기를 지니는 구형 나노입자임을 관찰할 수 있었다(도 5). In the same manner as in the above example, 0.5 mg of camptothecin was dissolved in chloroform / methanol (4: 1), and 10 mg of albumin-PEG (80% methanol) conjugate (1:10 association) was dissolved in 80% aqueous methanol solution. After mixing, a clear mixture solution was obtained. The mixture was transferred to a rotary evaporator and the solvent was evaporated at reduced pressure at 100 ° C. to form a thin film on the wall of a round-bottom flask. Distilled water was added to the obtained film and dissolved in a magnetic stirrer or an ultrasonic bath to produce a nanoparticle dispersion, which was then filtered through a 0.45 µm cellulose filter and lyophilized for 48 hours without adding a lyophilizer to obtain a uniform white cake. It could be reconstituted into a dispersion by the addition of sterile water or PBS. The obtained Kemptothecin / albumin-PEG aggregate dispersion was transparent, and transmission electron microscope (TEM) observations showed that the particles were spherical nanoparticles having a size of 50 to 200 nm (FIG. 5).
실시예 5: 수난용성 약물의 알부민-PEG 회합체 나노입자 내 위치 확인Example 5 Identification of Albumin-PEG Association Nanoparticles of Water-Soluble Drugs
수난용성 형광물질인 nile red는 주위환경의 소수성 정도에 따라 일정 흡광파장(excitation wave)에 의한 최대 발광파장(emission maxima)의 red-shift가 일어나며, 이를 통해 nile red가 위치한 마이크로환경의 소수성 정도를 예측할 수 있다. 따라서 파클리탁셀이나 켐프토테신 등의 수난용성 약물들이 알부민-PEG 회합체 나노입자 내 위치와 그 마이크로환경의 성질을 확인하기 위해 상기의 필름형성법을 이용하여 수난용성 형광물질인 nile red를 포접한 나노입자를 제조하였다. Nile red, a poorly water-soluble fluorescent substance, causes red-shift of the maximum emission wavelength due to a certain excitation wave depending on the degree of hydrophobicity of the surrounding environment. It can be predicted. Therefore, in order to confirm the location of albumin-PEG aggregate nanoparticles and the properties of their microenvironment, poorly soluble drugs such as paclitaxel and camptothecin are nanoparticles containing nile red, a poorly water-soluble fluorescent substance, using the film forming method described above. Was prepared.
얻어진 나노입자를 530 nm (excitation wavelength)에서 emission wavelength의 변화를 스캐닝 모드로 관찰하였으며, 최대 emission 파장이 655 nm에서 635 nm로 옮겨갔음을 관찰할 수 있었다. 이로 미루어보아 알부민-PEG 회합체 나노입자가 자기조립을 통해 수난용성 약물을 담지한 곳은 단백질 내 소수성 도메인이라는 것을 추측할 수 있었다(도 6). The obtained nanoparticles were observed in scanning mode at the emission wavelength at 530 nm (excitation wavelength), and the maximum emission wavelength was shifted from 655 nm to 635 nm. This suggests that the albumin-PEG aggregate nanoparticles carry the poorly water-soluble drug through self-assembly, which is a hydrophobic domain in the protein (FIG. 6).
실시예 6: 포접된 파클리탁셀의 정량과 수용액상에서의 약물 방출 경향Example 6: Quantification of Inclusion Paclitaxel and Trend of Drug Release in Aqueous Solution
알부민-PEG 회합체 나노입자 내에 포접된 파클리탁셀의 양을 측정하기 위해, 동결건조한 나노입자를 DMSO에 용해하여 HPLC법을 이용하여 정량하였으며, 5%를 목표 loading으로 제제화 하였을 때 99% 이상의 약물이 나노입자 내에 포접되어 있음을 알 수 있었다.To measure the amount of paclitaxel encapsulated in albumin-PEG aggregate nanoparticles, lyophilized nanoparticles were dissolved in DMSO and quantified using HPLC, and when 5% were formulated for target loading, more than 99% of the drugs were nano It was found that the particles were entrapped in the particles.
나노입자로부터의 약물 방출 경향 관찰을 위해 나노입자를 0.1% sodium salicylate가 포함된 phosphate-buffered saline(PBS)에서 투석하고(MWCO 10,000) 정해진 시간에 따라 샘플링을 하고 HPLC 분석을 통해 방출된 파클리탁셀의 양을 정량하였다(도 7). 이때 0.1 % sodium salicylate는 소수성 약물인 파클리탁셀의 수용액상 용해도를 높이기 위해 사용하였다. To observe the trend of drug release from nanoparticles, nanoparticles were dialyzed in phosphate-buffered saline (PBS) containing 0.1% sodium salicylate (MWCO 10,000), sampled over time and the amount of paclitaxel released through HPLC analysis. Was quantified (FIG. 7). At this time, 0.1% sodium salicylate was used to increase the solubility of aqueous solution of paclitaxel, a hydrophobic drug.
도 7에 나타낸 바와 같이 알부민-PEG 회합체 나노입자로부터 파클리탁셀 약물이 일정시간 동안 서방출되었다. As shown in FIG. 7, paclitaxel drug was slowly released from albumin-PEG assembly nanoparticles for a predetermined time.
실시예 7: 알부민-PEG 회합체 나노입자의 세포 내 전달효율 측정 Example 7: Measurement of intracellular delivery efficiency of albumin-PEG aggregate nanoparticles
알부민-PEG 회합체 나노입자의 세포 내 전달효율 측정을 위해 수난용성 모델 약물로서 소수성 형광프로브인 DiD(적색형광, Invitrogen, Carlsbad, CA)와 DiI(초록색형광, Invitrogen, Carlsbad, CA)을 사용하여 실시예 3에 기재한 바와 같이 필름형성법에 의해 나노입자를 제조하였다. 유방암 세포인 SK-BR-3 세포를 glass-bottomed dish에서 배양한 후 형광프로브를 담지한 나노입자를 처리하고, 6 시간 후 10% 포름알데하이드(formaldehyde)로 고정화하여 공초점현미경을 이용하여 관찰한 결과 형광나노입자의 세포 내 전달이 효율적으로 일어났음을 확인하였으며, 적색과 녹색 형광 이미지의 중첩 시 황색(적색+녹색) 형광을 나타내는 것으로 보아 적색형광과 녹색형광이 분리되어 존재하지 않고 같은 입자 내에 존재함을 확인할 수 있었다. 이는 나노입자가 세포 내 전달 후에도 안정한 형태로 존재하여 실시예 6에서와 같이 약물을 일정시간 동안 서방출할 수 있음을 알 수 있었다 (도 8). Hydrophobic fluorescent probes, DiD (red fluorescence, Invitrogen, Carlsbad, CA) and DiI (green fluorescence, Invitrogen, Carlsbad, CA), were used as poorly water-soluble model drugs for measuring intracellular delivery efficiency of albumin-PEG aggregate nanoparticles. Nanoparticles were prepared by the film forming method as described in Example 3. SK-BR-3 cells, which are breast cancer cells, were cultured in a glass-bottomed dish, treated with nanoparticles carrying fluorescent probes, and immobilized with 10% formaldehyde after 6 hours, and observed using a confocal microscope. As a result, it was confirmed that intracellular delivery of fluorescence nanoparticles occurred efficiently, and yellow (red + green) fluorescence appeared when red and green fluorescence images were superimposed so that red fluorescence and green fluorescence were not present in the same particle. It could be confirmed that it exists. It was found that the nanoparticles exist in a stable form even after intracellular delivery, and thus can release the drug for a predetermined time as in Example 6 (FIG. 8).
실시예 8: 유방암 세포주에서의 항암 활성 측정Example 8 Determination of Anticancer Activity in Breast Cancer Cell Lines
파클리탁셀을 함유한 알부민-PEG 회합체 나노입자의 항암활성의 측정을 위해 유방암 세포주인 SK-BR-3, MDA-MB453, MCF-7에 처리하고 MTT assay를 통해 세포활성을 측정하였다. SK-BR-3와 MCF-7 세포주에서는 아브락산(Abraxane®)과 비슷한 암세포 성장 저해효과를 나타내었으며, 특히 MDA-MB453 세포주에서는 본 발명에 의해 제조된 파클리탁셀/알부민-PEG 회합체 나노입자가 대조군으로 사용한 아브락산(Abraxane®) 또는 DMSO에 용해시킨 파클리탁셀 보다 유의하게 낮은 IC50 값을 나타내었다(도 9). 폴리에틸렌글리콜과 알부민 회합체 나노입자 조성물은 기존의 알부민과 파클리탁셀을 화학적 가교결합에 의해서 제조한 아브락산(IC50 = 35.3 nM)과 유방암 세포주(MDA-MB453)에서의 세포활성을 비교하였을 때, 더 낮은 IC50 값(5.7 nM)을 가지므로 더 높은 항암활성을 나타낸다는 것을 확인할 수 있었다.In order to measure anticancer activity of albumin-PEG aggregate nanoparticles containing paclitaxel, breast cancer cell lines SK-BR-3, MDA-MB453, and MCF-7 were treated, and cell activity was measured by MTT assay. SK-BR-3 and MCF-7 cell lines showed similar cancer cell growth inhibitory effect to Abraxane (Abraxane ® ), and especially in MDA-MB453 cell line, paclitaxel / albumin-PEG conjugate nanoparticles prepared according to the present invention were control groups. It showed a significantly lower IC 50 value than paclitaxel dissolved in either Abraxane (Abraxane ® ) or DMSO (FIG. 9). Polyethyleneglycol and albumin aggregate nanoparticle compositions were compared with the cell activity of ABRAXANE (IC 50 = 35.3 nM) and breast cancer cell line (MDA-MB453) prepared by chemical crosslinking of albumin and paclitaxel. As it has a low IC 50 value (5.7 nM), it was confirmed that the higher anticancer activity.
실시예 9: 인간 유방암 동물모델에서의 항암활성 측정 Example 9: Determination of Anticancer Activity in Human Breast Cancer Animal Model
동물모델에서 파클리탁셀을 함유한 알부민-PEG 회합체 나노입자의 항암활성의 측정을 위해 유방암 세포주인 SK-BR-3을 배양 후 효소처리하여 분리하고 원심분리를 통해 농축하여(1.5x107cells/ml), 면역결핍마우스(nude mouse, nu/nu)에 경피주사(100㎕)하여 동물종양모델을 제작하였다. 약물투여를 위해 동일한 양의 파클리탁셀을 함유한 알부민 나노입자 및 대조군을 PBS에 희석한 후 정해진 투여 스케줄에 따라 마우스 꼬리에 정맥주사하고, 고형암 부피를 측정하였다. 고형암의 부피를 계산하기 위한 계산식은 다음과 같다. In order to measure the anticancer activity of albumin-PEG conjugate nanoparticles containing paclitaxel in animal models, SK-BR-3, a breast cancer cell line, was cultured and isolated by enzymatic treatment and concentrated by centrifugation (1.5x10 7 cells / ml). ), Animal tumor models were prepared by transdermal injection (100 μl) into immunodeficient mice (nude mouse, nu / nu). For drug administration, albumin nanoparticles containing the same amount of paclitaxel and the control group were diluted in PBS, and then intravenously injected into the mouse tail according to a prescribed dosing schedule, and the solid cancer volume was measured. The formula for calculating the volume of solid rock is as follows.
tumor volume (mm3) = [length × (width)2]/2 tumor volume (mm 3 ) = [length × (width) 2 ] / 2
파클리탁셀을 함유한 알부민-PEG 회합체 나노입자는 아브락산(Abraxane®)과 비슷한 정도의 고형암(tumor)의 부피가 감소하였으며, 우수한 암 성장억제 효과를 나타냄을 관찰할 수 있었다 (도 10).Albumin-PEG aggregate nanoparticles containing paclitaxel decreased the volume of solid tumor (tumor) similar to that of Abraxane (Abraxane ® ), and it was observed that it showed an excellent cancer growth inhibitory effect (FIG. 10).
실시예 10: 인간 유방암 동물모델에서의 알부민-PEG 회합체 나노입자의 고형암 표적화 관찰 Example 10 Observation of Solid Cancer Targeting of Albumin-PEG Association Nanoparticles in Human Breast Cancer Animal Models
알부민-PEG 회합체 나노입자의 정맥주사 후 수동적 표적화 (passive tumor targeting) 효과에 의한 시간에 따른 고형암 내 축적을 소수성 형광프로브를 모델약물로 실시간 생체 내 이미징 기술을 통해 관찰하였다. 필름형성법에 의해 제조된 소수성 형광프로브인 DiD(Invitrogen, Carlsbad, CA)를 수난용성 모델약물로 포함하는 알부민-PEG 회합체 나노입자를 실시예 9에서 제시한 동물종양모델에 정맥 주사한 후, in vivo 형광 이미징 장비를 이용하여 나노입자의 종양 내 분포를 시각화 하였다. 그 결과 나노입자가 96 시간 까지도 종양 내에 축적됨을 관찰할 수 있었다 (도 11). 이러한 결과로 보아 알부민 나노입자는 혈중에서 안정하게 상당시간 동안 순환할 수 있음을 알 수 있었다. The accumulation of albumin-PEG aggregate nanoparticles in solid tumors over time by passive tumor targeting effect after intravenous injection was observed using a hydrophobic fluorescent probe as a model drug in real time in vivo imaging technology. After injection of albumin-PEG conjugate nanoparticles containing DiD (Invitrogen, Carlsbad, CA), a hydrophobic fluorescent probe prepared by the film forming method, as a poorly water-soluble model drug, into the animal tumor model shown in Example 9, in In vivo fluorescent imaging equipment was used to visualize the intratumoral distribution of nanoparticles. As a result, it was observed that the nanoparticles accumulated in the tumor even up to 96 hours (FIG. 11). These results show that albumin nanoparticles can circulate stably in the blood for a considerable time.
실시예 11: 필름형성법에 의한 산화철나노입자 봉입 나노입자 제조Example 11 Preparation of Nanoparticles Encapsulated Nanoparticles by Film Forming Method
상기 실시예를 기반으로 하여 산화철나노입자(SPION, 7 nm) 0.5 mg을 70 % THF 수용액에 분산시키고 알부민-PEG 접합체(1:10 회합체) 10 mg을 70 % THF 수용액에 따로 용해시킨 후 혼합하였다. 혼합물을 회전증발기에 옮기고 감압상태, 100 ℃에서 용매를 증발시켜 둥근플라스크(round-bottom flask) 벽에 얇은 필름을 형성시켰다. 얻어진 필름에 증류수를 넣고 자석교반기 또는 초음파 수조에서 용해시켜 나노입자 분산액을 생성하고, 0.45 ㎛ 셀룰로스 필터로 여과하여 동결건조제를 첨가하지 않은 상태로 48시간 동안 동결건조하여 균일한 갈색의 케이크를 얻었으며 이를 멸균수 또는 PBS를 첨가하여 분산액으로 재조성할 수 있었다. 얻어진 SPION/알부민-PEG 회합체 분산액은 투명하였으며, 투과전자현미경(TEM) 관찰결과 입자 약 200 nm의 크기를 지니는 구형 나노입자 내에 7 nm의 SPION 입자가 포접되어 있음을 확인하였다(도 12). Based on the above example, 0.5 mg of iron nanoparticles (SPION, 7 nm) were dispersed in 70% THF aqueous solution, and 10 mg of albumin-PEG conjugate (1:10 association) was dissolved in 70% THF aqueous solution and mixed. It was. The mixture was transferred to a rotary evaporator and the solvent was evaporated at reduced pressure at 100 ° C. to form a thin film on the wall of a round-bottom flask. Distilled water was added to the obtained film and dissolved in a magnetic stirrer or an ultrasonic bath to produce a nanoparticle dispersion. The resultant was filtered through a 0.45 μm cellulose filter and lyophilized for 48 hours without adding a lyophilizer to obtain a uniform brown cake. It could be reconstituted into a dispersion by addition of sterile water or PBS. The obtained SPION / albumin-PEG aggregate dispersion was transparent, and the transmission electron microscope (TEM) observation confirmed that 7 nm SPION particles were enclosed in spherical nanoparticles having a size of about 200 nm (FIG. 12).

Claims (15)

  1. 비펩타이드성 중합체를 알부민과 혼합하여 비펩타이드성 중합체와 알부민의 회합체를 형성하는 제1단계;Mixing the non-peptidyl polymer with albumin to form an association of the non-peptidyl polymer with albumin;
    유기용매 상에, 수난용성 약물 또는 생체영상용 무기나노입자, 및 상기 비펩타이드성 중합체와 알부민의 회합체를 용해하여 혼합물을 제조하는 제2단계; 및Preparing a mixture by dissolving a poorly water-soluble drug or inorganic nanoparticles for bioimaging, and an association of the non-peptidyl polymer and albumin on an organic solvent; And
    상기 혼합물의 유기용매를 제거하고 친수성 용매를 첨가하여 자기조립에 의해서 나노입자로 제조하는 제3단계를 포함하는, Removing the organic solvent from the mixture and adding a hydrophilic solvent to prepare nanoparticles by self-assembly,
    수난용성 약물 또는 생체영상용 무기나노입자를 내부에 포함하는 비펩타이드성 중합체와 알부민의 회합체 나노입자를 제조하는 방법.Method for producing a conjugated nanoparticles of albumin and non-peptidyl polymer containing a poorly water-soluble drug or inorganic nanoparticles for bioimaging.
  2. 제1항에 있어서, 상기 비펩타이드성 중합체는 폴리에틸렌 글리콜, 폴리프로필렌 글리콜, 에틸렌 글리콜-프로필렌 글리콜 공중합체, 폴리옥시에틸렌, 폴리옥사졸린, 폴리우레탄, 폴리포스파젠, 폴리사카리드, 덱스트란, 폴리 비닐 알코올, 폴리비닐 피롤리돈, 폴리비닐 에틸 에테르, 폴리아크릴 아미드, 폴리아크릴레이트, 폴리시아노아크릴레이트, 지질 중합체, 키틴류, 히아루론산, 헤파린 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 비펩타이드성 중합체와 알부민의 회합체 나노입자를 제조하는 방법. The method of claim 1, wherein the non-peptidyl polymer is polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylene, polyoxazoline, polyurethane, polyphosphazene, polysaccharide, dextran, poly Vinyl alcohol, polyvinyl pyrrolidone, polyvinyl ethyl ether, polyacrylamide, polyacrylate, polycyanoacrylate, lipid polymer, chitin, hyaluronic acid, heparin and combinations thereof A method of making association nanoparticles of a non-peptidyl polymer with albumin.
  3. 제1항에 있어서, 상기 비펩타이드성 중합체는 알부민의 아민과 반응할 수 있는 반응기로 치환되어 있는 것을 특징으로 하는 비펩타이드성 중합체와 알부민의 회합체 나노입자를 제조하는 방법.The method of claim 1, wherein the non-peptidyl polymer is substituted with a reactor capable of reacting with an amine of albumin.
  4. 제3항에 있어서, 상기 알부민의 아민과 반응할 수 있는 반응기는 N-히드록시숙신이미드, 숙신 이미딜 숙시네이트, 숙신 이미딜 프로피오네이트, 숙신이미딜 부타노에이트, 벤조트리아졸 카보네이트, 알데히드 및 카테콜로 이루어진 군으로부터 선택되는 것을 특징으로 하는 비펩타이드성 중합체와 알부민의 회합체 나노입자를 제조하는 방법. The method of claim 3, wherein the reactor capable of reacting with an amine of albumin is N-hydroxysuccinimide, succinimidyl succinate, succinimidyl propionate, succinimidyl butanoate, benzotriazole carbonate, A method for producing a non-peptidyl polymer and albumin aggregate nanoparticles, characterized in that it is selected from the group consisting of aldehydes and catechols.
  5. 제1항에 있어서, 상기 유기용매는 에탄올, 메탄올, 이소프로필알콜, 부탄올, 디메틸설폭사이드(DMSO), 디메틸포름아미드(DMF), 테트라하이드로퓨란(THF), 아세토니트릴, 디클로로메탄, 에틸아세테이트, 헥산, 디에틸에테르, 벤젠, 클로로포름, 아세톤 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 비펩타이드성 중합체와 알부민의 회합체 나노입자를 제조하는 방법. The method of claim 1, wherein the organic solvent is ethanol, methanol, isopropyl alcohol, butanol, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF), acetonitrile, dichloromethane, ethyl acetate, A method for producing association nanoparticles of albumin with a non-peptidyl polymer, characterized in that it is selected from the group consisting of hexane, diethyl ether, benzene, chloroform, acetone and combinations thereof.
  6. 제1항에 있어서, 상기 유기용매에 수용매를 혼합하여 공용매를 사용하며 공용매가 에멀전을 형성하지 않는 것을 특징으로 하는 비펩타이드성 중합체와 알부민의 회합체 나노입자를 제조하는 방법. The method of claim 1, wherein a co-solvent is used by mixing a solvent with the organic solvent, and the co-solvent does not form an emulsion.
  7. 제1항에 있어서, 상기 비펩타이드성 중합체와 알부민의 몰비는 5:1 내지 50:1인 것을 특징으로 하는 비펩타이드성 중합체와 알부민의 회합체 나노입자를 제조하는 방법. The method of claim 1, wherein the mole ratio of the non-peptidyl polymer and albumin is 5: 1 to 50: 1.
  8. 제1항에 있어서, 상기 수난용성 약물 또는 생체영상용 무기나노입자와 상기 비펩타이드성 중합체와 알부민의 회합체의 몰비는 5:1 내지 50:1인 것을 특징으로 하는 비펩타이드성 중합체와 알부민의 회합체 나노입자를 제조하는 방법. According to claim 1, wherein the molar ratio of the poorly water-soluble drug or bioimaging inorganic nanoparticles and the association of the non-peptidyl polymer and albumin is 5: 1 to 50: 1 of the non-peptidyl polymer and albumin A method of making association nanoparticles.
  9. 제1항에 있어서, 친수성 용매는 물, 증류수, 멸균수, 인산완충식염수(PBS), 메탄올, 정제수, 에탄올, 1-프로판올, 2-프로판올, 1-펜탄올, 2-부톡시에탄올, 에틸렌 글라이콜, 아세톤, 2-부타논, 4-메틸-2-프로파논 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 비펩타이드성 중합체와 알부민의 회합체 나노입자를 제조하는 방법.The method of claim 1, wherein the hydrophilic solvent is water, distilled water, sterile water, phosphate buffered saline (PBS), methanol, purified water, ethanol, 1-propanol, 2-propanol, 1-pentanol, 2-butoxyethanol, ethylene writing A method for producing a conjugated nanoparticle of a non-peptidyl polymer and albumin, characterized in that it is selected from the group consisting of lycol, acetone, 2-butanone, 4-methyl-2-propanone and combinations thereof.
  10. 제1항에 있어서, 상기 친수성 용매를 첨가하여 자기조립에 의해서 나노입자로 제조하는 방법은 용매확산법 또는 필름형성법인 것을 특징으로 하는 비펩타이드성 중합체와 알부민의 회합체 나노입자를 제조하는 방법.The method of claim 1, wherein the method of preparing nanoparticles by self-assembly by adding a hydrophilic solvent is a solvent diffusion method or a film forming method.
  11. 제1항에 있어서, 상기 수난용성 약물은 항암제, 항생제, 항진균제, 항염증제, 면역억제제 또는 영양제인 것을 특징으로 하는 비펩타이드성 중합체와 알부민의 회합체 나노입자를 제조하는 방법.The method of claim 1, wherein the poorly water-soluble drug is an anticancer agent, an antibiotic, an antifungal agent, an anti-inflammatory agent, an immunosuppressive agent, or a nutrient.
  12. 제11항에 있어서, 상기 항암제는 파클리탁셀 또는 캄프토테신인 것을 특징으로 하는 비펩타이드성 중합체와 알부민의 회합체 나노입자를 제조하는 방법.The method of claim 11, wherein the anticancer agent is paclitaxel or camptothecin.
  13. 제1항에 있어서, 상기 생체영상용 무기나노입자는 진단제 또는 조영제인 것을 특징으로 하는 비펩타이드성 중합체와 알부민의 회합체 나노입자를 제조하는 방법.The method of claim 1, wherein the inorganic nanoparticles for biological imaging are diagnostic agents or contrast agents.
  14. 제1항에 있어서, 상기 제조되는 회합체 나노입자의 크기는 200 내지 500nm인 것을 특징으로 하는 회합체 나노입자 제조방법. The method of claim 1, wherein the size of the prepared aggregate nanoparticles is 200 to 500nm, characterized in that the assembly nanoparticles manufacturing method.
  15. 제1항 내지 14항 중 어느 한 항에 기재된 방법에 의해서 제조된 수난용성 약물 또는 생체영상용 무기나노입자를 내부에 포함하는 비펩타이드성 중합체와 알부민의 회합체 나노입자.A non-peptidyl polymer and albumin associated nanoparticles containing a poorly water-soluble drug or inorganic nanoparticles for bioimaging prepared by the method according to any one of claims 1 to 14.
PCT/KR2013/000752 2012-01-30 2013-01-30 Method for preparing albumin nanoparticles containing poorly water soluble drug therein WO2013115559A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120009253 2012-01-30
KR10-2012-0009253 2012-01-30

Publications (1)

Publication Number Publication Date
WO2013115559A1 true WO2013115559A1 (en) 2013-08-08

Family

ID=48905532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000752 WO2013115559A1 (en) 2012-01-30 2013-01-30 Method for preparing albumin nanoparticles containing poorly water soluble drug therein

Country Status (2)

Country Link
KR (1) KR101455921B1 (en)
WO (1) WO2013115559A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142759A (en) * 2018-08-31 2019-01-04 江苏力博医药生物技术股份有限公司 A kind of preparation method of high quality blood type test card micro-column gel
CN113425700A (en) * 2021-06-28 2021-09-24 中山大学 Construction and application of nano-drug delivery system based on protein self-assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113577075A (en) * 2021-08-20 2021-11-02 滕兆刚 Nano medicine and its preparing method and use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439686A (en) * 1993-02-22 1995-08-08 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
US20070082838A1 (en) * 2005-08-31 2007-04-12 Abraxis Bioscience, Inc. Compositions and methods for preparation of poorly water soluble drugs with increased stability
KR100851933B1 (en) * 2005-12-02 2008-08-12 연세대학교 산학협력단 Magnetic Resonance Imaging Contrast Agents containing Water-Soluble Nanoparticles of Manganese Oxide or Manganese Metal Oxide
KR100923172B1 (en) * 1997-06-27 2009-10-22 아브락시스 바이오사이언스, 엘엘씨 Novel Formulations of Pharmacological Agents
US20100297243A1 (en) * 2009-04-15 2010-11-25 Desai Neil P Prion free nanoparticle compositions and methods of making thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2008002360A (en) * 2005-08-18 2008-04-29 Globoasia Llc Pharmaceutical-grade ferric organic compounds, uses thereof and methods of making same.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439686A (en) * 1993-02-22 1995-08-08 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
KR100923172B1 (en) * 1997-06-27 2009-10-22 아브락시스 바이오사이언스, 엘엘씨 Novel Formulations of Pharmacological Agents
US20070082838A1 (en) * 2005-08-31 2007-04-12 Abraxis Bioscience, Inc. Compositions and methods for preparation of poorly water soluble drugs with increased stability
KR100851933B1 (en) * 2005-12-02 2008-08-12 연세대학교 산학협력단 Magnetic Resonance Imaging Contrast Agents containing Water-Soluble Nanoparticles of Manganese Oxide or Manganese Metal Oxide
US20100297243A1 (en) * 2009-04-15 2010-11-25 Desai Neil P Prion free nanoparticle compositions and methods of making thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142759A (en) * 2018-08-31 2019-01-04 江苏力博医药生物技术股份有限公司 A kind of preparation method of high quality blood type test card micro-column gel
CN109142759B (en) * 2018-08-31 2021-08-06 江苏力博医药生物技术股份有限公司 Preparation method of high-quality microcolumn gel for blood type detection card
CN113425700A (en) * 2021-06-28 2021-09-24 中山大学 Construction and application of nano-drug delivery system based on protein self-assembly

Also Published As

Publication number Publication date
KR101455921B1 (en) 2014-11-12
KR20130088081A (en) 2013-08-07

Similar Documents

Publication Publication Date Title
Çirpanli et al. Comparative evaluation of polymeric and amphiphilic cyclodextrin nanoparticles for effective camptothecin delivery
WO2011142515A1 (en) Asymmetric liposomes for the highly efficient encapsulation of nucleic acids and hydrophilic anionic compounds, and method for preparing same
WO2018186725A1 (en) Pharmaceutical composition for cancer treatment
US20130274226A1 (en) Silica nanoparticle agent conjugates
WO2011062420A2 (en) Nanoparticles for tumor-targeting and processes for the preparation thereof
Wang et al. Tracking translocation of self-discriminating curcumin hybrid nanocrystals following intravenous delivery
KR101064901B1 (en) Micellar Preparation Containing Sparingly Water-soluble Anticancer Agent And Novel Block Copolymer
WO2009102121A2 (en) Solid lipid nanoparticles for drug delivery, a production method therefor, and an injectable preparation comprising the nanoparticles
WO2023287111A1 (en) Micelle complex and drug carrier comprising same
WO2013115559A1 (en) Method for preparing albumin nanoparticles containing poorly water soluble drug therein
Li et al. Oral insulin delivery by epithelium microenvironment-adaptive nanoparticles
Xia et al. Enhanced transport of nanocage stabilized pure nanodrug across intestinal epithelial barrier mimicking Listeria monocytogenes
JP2012526049A (en) Polymer micelles containing SN-38 for tumor therapy
WO2017200218A1 (en) Self-assembled nanocomposite based on supramolecular interaction, comprising albumin, method for producing same and use thereof
WO2018230788A1 (en) Oral drug delivery composition containing oxaliplatin and method for preparing same
WO2021141319A2 (en) Nanoparticles for drug delivery surface-modified with peptide for targeting brain cancer cells, method for preparing same, and use thereof
CN101357939B (en) Protein conjugate and pharmaceutical compositions thereof
WO2014030975A1 (en) Method for manufacturing carbon nanotube-based anti-cancer agent suppressing cancer cell resistance
WO2018092984A1 (en) Nanocarrier for selective fluorescence labeling of cancer cell and preparation method therefor
CN105288631A (en) Novel anticancer drug nano-preparation and preparation method thereof
Yusuf et al. Formulation design and cell cytotoxicity of curcumin-loaded liposomal solid gels for anti-Hepatitis C virus
US8524783B2 (en) Polymer micelles containing anthracylines for the treatment of cancer
CN106794150B (en) High drug load poly (alkyl 2-cyanoacrylate) nanocapsules
WO2023054849A1 (en) Pharmaceutical composition for treating inflammatory diseases
WO2022196865A1 (en) Lipophilic statin composition with improved solubility and permeability and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743317

Country of ref document: EP

Kind code of ref document: A1