WO2013113730A1 - Method for producing thin plates from materials with low ductility by means of temperature-induced mechanical tension using prefabricated polymer films - Google Patents

Method for producing thin plates from materials with low ductility by means of temperature-induced mechanical tension using prefabricated polymer films Download PDF

Info

Publication number
WO2013113730A1
WO2013113730A1 PCT/EP2013/051746 EP2013051746W WO2013113730A1 WO 2013113730 A1 WO2013113730 A1 WO 2013113730A1 EP 2013051746 W EP2013051746 W EP 2013051746W WO 2013113730 A1 WO2013113730 A1 WO 2013113730A1
Authority
WO
WIPO (PCT)
Prior art keywords
starting material
film
prefabricated
layer
composite structure
Prior art date
Application number
PCT/EP2013/051746
Other languages
German (de)
French (fr)
Inventor
Lukas Lichtensteiger
Felix Budde
Original Assignee
Siltectra Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siltectra Gmbh filed Critical Siltectra Gmbh
Publication of WO2013113730A1 publication Critical patent/WO2013113730A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support

Definitions

  • wafers In many technical fields (e.g., microelectronics or photovoltaic technology), materials such as e.g. Silicon, germanium or sapphire are often used in the form of thin discs and plates (so-called wafers). By default, such wafers are currently produced by sawing from an ingot, resulting in relatively large material losses (“kerf-loss"). Because the used
  • kerf-free wafering Particularly attractive for such a wafer production without kerf-loss (kerf-free wafering") appear methods that do without conventional sawing and, for example. by using temperature-induced voltages can directly split thin wafers from a thicker workpiece. This includes in particular
  • This polymer layer is applied according to the current state of the art in liquid form in a casting process on the workpiece to be machined and then cured there. In this case, as much mass is applied during application that the surface tension keeps the polymer film on the workpiece.
  • This method leads to an insufficient definable edge termination of workpiece and polymer layer.
  • no exactly perpendicular to the surface of the workpiece edge can be achieved.
  • it may happen at the edge of the polymer layer that, on the one hand, the layer becomes locally too thin and that, due to the surface geometry, the force input occurs relatively undefined when generating temperature-induced stresses. Both problems lead to uncontrollable rough surfaces in the edge region of the produced wafer.
  • relatively much time and always exactly horizontal orientation of the surface to be machined of the workpiece is required to uniform distribution of the polymer by bleeding
  • the thickness of the polymer film is limited, because from a certain layer thickness, the surface tension is no longer sufficient to keep the film on the workpiece and therefore the polymer runs beyond the edge of the workpiece.
  • the present invention - the application of prefabricated polymer films - addresses all of these problems and limitations.
  • the workpiece used here is preferably a thicker wafer, from which one or more thinner wafers are then split off using the method described.
  • polymer films Prefabricated (i.e., not directly solidified on the workpiece) polymer films can thus be fabricated (e.g., by means of cutting, stamping, gluing in formwork) to provide a much more definable edge termination of workpiece and material
  • Polymer films can be prefabricated, qualified and produced separately from the workpiece, so that the production and qualification of the polymer layer can be done independently of the wafer production. In other words, the properties of the polymer layer can thus be defined and controlled independently of other process steps.
  • the separate production of film and wafer has the advantage that the parameters for curing the polymer layer, such as e.g. Hardening temperature and time, are very freely selectable.
  • the two layers are cured independently, which is not possible in the previous method.
  • curing directly on the workpiece with the previous method at curing temperatures above room temperature automatically leads to a bias of the film
  • the thickness of the polymer layer can also be chosen as desired and precisely adjusted (we usually use thicknesses between about 0.1 and 10mm, preferably between 0.4 and 1mm, using thicker polymer layers to make thicker wafers).
  • structured films can be used, where, for example, the film thickness is selectively varied depending on the position * so that film layers with defined thickness profiles are possible.
  • a polydiorganosiloxane can be used, e.g.
  • Polydimethylsiloxanes The following is described as a polymer film, a film of PDMS and as a workpiece a thick wafer of silicon; however, other suitable polymers and workpieces (e.g., other materials such as germanium, sapphire, etc.) may be used.
  • PDMS Sylgard 184 from Dow Corning. This is a two-component mixture that is thermally cured (for example, we use mixing ratios between hardener: base material of 1:10 to 1: 3). For curing we use - depending on the hardening time - temperatures of
  • PDMS Sylgard 184 before hardening is a viscous liquid, e.g. by casting on a smooth surface (such as mirrors) is applied and cured there to form a film. The film is then peeled from this surface (e.g., mechanically), optionally further processed, and then applied to the workpiece.
  • the finished film can be inspected prior to application to the workpiece and its quality checked (e.g., by conventional mechanical, optical or electrical measurement techniques, etc.).
  • quality checked e.g., by conventional mechanical, optical or electrical measurement techniques, etc.
  • many other processes are conventional in the industry (e.g., extrusion production) which are also applicable to the present invention.
  • the finished film is then applied to the surface of the workpiece (e.g., thick wafer).
  • Good adhesion of the film to the workpiece is important: the bond between the workpiece and the film must have sufficient shear forces for splitting and large temperature fluctuations for the thermal
  • a thin PDMS film is recommended as an adhesive (eg also using Sylgard 184). This is applied, for example with a syringe in the middle of the surface to be bonded to the workpiece (a few milliliters for a 5-inch wafer). Thereafter, the film is placed and pressed with a roller or roller under slight pressure on the workpiece. By moving the roller back and forth, the adhesive film spreads under the film, air bubbles are removed. The curing of the adhesive can take place at room temperature. To avoid tensile stresses after the split (see photo), a cladding hardening temperature of less than 60 ° C is recommended.
  • a lower viscosity of the adhesive is advantageous, for example, simply by a larger proportion of hardener substance (eg 1: 3 HärterrBasismaterial) can be achieved.
  • the curing times vary as in the film production depending on the hardening temperature (see above).
  • the film may also be adhered to the workpiece by other conventional methods, e.g. using a vacuum laminator.
  • the film may also be bonded directly (without adhesive) to the surface of the workpiece, e.g. by means of "plasma activated bonding" (for example activation of the PDMS foil in nitrogen plasma, pressing the foil onto the workpiece, if necessary “annealing") or e.g. by laminating (melting) a thermoplastic film (e.g., genomeer from Wacker Silicones).
  • the film After the film is adhered and the adhesive cured, as is conventional in the references described in the art, e.g. thermally induced stress, a thin wafer detached from the workpiece, the film still adheres to one side of the wafer.
  • the film can then be removed from the produced wafer e.g. be replaced with mechanical or chemical methods, as shown in the references mentioned.
  • the workpiece can be coated with a thin sacrificial layer before the film is glued on.
  • the film is then not glued directly to the surface of the workpiece, but on the sacrificial layer.
  • the sacrificial layer located between the workpiece surface and the foil can be used, for example. be chemically dissolved, whereby the film separates from the wafer produced.
  • a sacrificial layer is a material that can transmit large forces over the entire temperature range of about -200 ° C to room temperature and thereby both on the
  • Such sacrificial layers can be made by sol-gel processes, as currently used in the industry e.g. for coating of glass (antireflective, etc) are used (suitable are in particular aluminum, titanium or zirconium-based sols). Even when using the previous method with infusion of the polymer and curing directly on the workpiece or when using "plasma activated bonding" can
  • sacrificial layer i.e. to use an adhesive to adhere the film which can easily be redissolved (e.g., chemically, or by reflow, etc.).
  • an adhesive e.g., chemically, or by reflow, etc.
  • the film After the film is detached from the produced wafer, it can - if desired - cleaned and then applied to a new workpiece. This makes it possible to use the same film several times for the production of wafers. This can significantly reduce the material consumption and the costs of the overall process. For a reuse of the film, it is particularly advantageous to use a re-dissolvable adhesive as described above, since in this case after the dissolution of the adhesive layer to the film no adhesive residues remain.
  • a preferred realization of the present invention is to adhere films to both opposite sides of a thick wafer according to one of the methods described herein. This allows the thick wafer to be split into two thin wafers. This situation is illustrated in Fig. 1 where the numbers in the circles indicate: (1) polymeric film, (2) adhesive, (3) sacrificial layer, (4) workpiece-thick wafer, (5) produced thin wafer.

Abstract

The invention describes a method for producing thin solid body layers or solid body plates (5), in particular for use as wafers, comprising the following steps: provision of an starting material (4) made of a material with low ductility which has at least one exposed surface, provision of at least one prefabricated application layer (1) that has freely selectable material properties, application of the prefabricated application layer (1) to the exposed surface of the original material (4) to form a composite structure, application of an internal or external voltage field to the composite structure such that the original material (4) is cleaved along an internal plane to form at least two thin solid body layers (5) or solid body plates.

Description

Beschreibung  description
Titel  title
Verfahren zur Herstellung von dünnen Platten aus Werkstoffen geringer Duktilität mittels temperaturinduzierter mechanischer Spannung unter Verwendung von vorgefertigten Polymer-Folien  Process for the preparation of thin sheets of low ductility materials by means of temperature-induced mechanical stress using prefabricated polymer films
Technisches Gebiet Technical area
Produktionstechnik, Materialwissenschaft, Halbleitertechnik  Production technology, materials science, semiconductor technology
Stand der Technik State of the art
In vielen technischen Bereichen (z.B. Mikroelektronik- oder Photovoltaiktechnologie) werden Materialien wie z.B. Silizium, Germanium oder Saphir häufig in der Form dünner Scheiben und Platten (so genannte Wafer) gebraucht. Standardmässig werden solche Wafer derzeit durch Sägen aus einem Ingot hergestellt, wobei relativ grosse Materialverluste ("kerf-loss") entstehen. Da das verwendete  In many technical fields (e.g., microelectronics or photovoltaic technology), materials such as e.g. Silicon, germanium or sapphire are often used in the form of thin discs and plates (so-called wafers). By default, such wafers are currently produced by sawing from an ingot, resulting in relatively large material losses ("kerf-loss"). Because the used
Ausgangsmaterial oft sehr teuer ist, gibt es starke Bestrebungen, solche Wafers mit weniger Materialaufwand und damit effizienter und kostengünstiger herzustellen.Starting material is often very expensive, there are strong efforts to produce such wafers with less material and thus more efficient and cheaper.
Beispielsweise gehen mit den derzeit üblichen Verfahren allein bei der Herstellung von Siliziumwafer für Solarzellen fast 50% des eingesetzten Materials als "kerf-loss" verloren. Weltweit gesehen entspricht dies einem jährlichen Verlust von über 2 Milliarden Euro. Da die Kosten des Wafers den grössten Anteil an den Kosten der fertigen Solarzelle ausmachen (über 40%), könnten durch entsprechende For example, in the production of silicon wafers for solar cells, almost 50% of the material used is lost as a "kerf loss" with the currently customary processes. Worldwide, this represents an annual loss of over 2 billion euros. Since the cost of the wafer account for the largest share of the cost of the finished solar cell (over 40%), could by appropriate
Verbesserungen der Waferherstellung die Kosten von Solarzellen signifikant reduziert werden. Improvements to wafer fabrication significantly reduce the cost of solar cells.
Besonders attraktiv für eine solche Waferherstellung ohne kerf-loss ("kerf-free wafering") erscheinen Verfahren, die auf das herkömmliche Sägen verzichten und z.B. durch Einsatz von temperaturinduzierten Spannungen direkt dünne Wafer von einem dickeren Werkstück abspalten können. Dazu gehören insbesondere  Particularly attractive for such a wafer production without kerf-loss ("kerf-free wafering") appear methods that do without conventional sawing and, for example. by using temperature-induced voltages can directly split thin wafers from a thicker workpiece. This includes in particular
Verfahren, wie sie z.B. in PCT/US2008/012140 und PCT/EP2009/067539 Processes as e.g. in PCT / US2008 / 012140 and PCT / EP2009 / 067539
beschrieben sind, wo zum Erzeugen dieser Spannungen eine auf das Werkstück aufgetragene Polymerschicht verwendet wird. where a polymer layer applied to the workpiece is used to generate these stresses.
Diese Polymerschicht wird nach aktuellem Stand der Technik in flüssiger Form in einem Gießverfahren auf das zu bearbeitende Werkstück aufgetragen und dann dort ausgehärtet. Dabei wird beim Auftragen genau so viel Masse aufgebracht, dass die Oberflächenspannung den Polymer-Film auf dem Werkstück hält. Diese Methode führt zu einem nicht genügend definierbaren Randabschluss von Werkstück und Polymerschicht. Insbesondere kann am Rand der Polymerschicht keine exakt senkrecht zur Oberfläche des Werkstücks stehende Kante erzielt werden. Dadurch kann es am Rand der Polymerschicht dazu kommen, dass einerseits die Schicht lokal zu dünn wird und dass durch die Oberflächengeometrie der Krafteintrag beim Erzeugen von temperaturinduzierten Spannungen relativ Undefiniert geschieht. Beide Probleme führen zu unkontrollierbar rauen Oberflächen im Randbereich der produzierten Wafer. Ausserdem wird beim bisherigen Giessverfahren relativ viel Zeit sowie eine stets exakt horizontale Ausrichtung der zu bearbeitenden Oberfläche des Werkstücks benötigt, um die gleichmässige Verteilung des Polymers durch Zerlaufen This polymer layer is applied according to the current state of the art in liquid form in a casting process on the workpiece to be machined and then cured there. In this case, as much mass is applied during application that the surface tension keeps the polymer film on the workpiece. This method leads to an insufficient definable edge termination of workpiece and polymer layer. In particular, at the edge of the polymer layer no exactly perpendicular to the surface of the workpiece edge can be achieved. As a result, it may happen at the edge of the polymer layer that, on the one hand, the layer becomes locally too thin and that, due to the surface geometry, the force input occurs relatively undefined when generating temperature-induced stresses. Both problems lead to uncontrollable rough surfaces in the edge region of the produced wafer. In addition, in the previous casting process relatively much time and always exactly horizontal orientation of the surface to be machined of the workpiece is required to uniform distribution of the polymer by bleeding
sicherzustellen. Zudem müssen ev. im flüssigen Polymer vorhandene Luftblasen einzeln beseitigt werden, was relativ zeitaufwendig ist. sure. In addition, any existing air bubbles in the liquid polymer must be eliminated individually, which is relatively time consuming.
Schliesslich ist beim bisherigen Verfahren die Dicke des Polymerfilms begrenzt, weil ab einer bestimmten Schichtdicke die Oberflächenspannung nicht mehr ausreicht, um den Film auf dem Werkstück zu halten und deshalb das Polymer über den Rand des Werkstücks hinausläuft. Mit der vorliegenden Erfindung - dem Aufbringen von vorfabrizierten Polymerfolien - werden alle diese Probleme und Einschränkungen behoben. Als Werkstück wird dabei vorzugsweise ein dickerer Wafer verwendet, von welchem dann unter Verwendung des beschriebenen Verfahrens ein oder mehrere, dünnere Wafer abgespaltet werden. Finally, in the previous method, the thickness of the polymer film is limited, because from a certain layer thickness, the surface tension is no longer sufficient to keep the film on the workpiece and therefore the polymer runs beyond the edge of the workpiece. The present invention - the application of prefabricated polymer films - addresses all of these problems and limitations. The workpiece used here is preferably a thicker wafer, from which one or more thinner wafers are then split off using the method described.
Es ist somit Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung von Festkörperschichten bzw. Festkörperplatten, insbesondere von Wafern, zu vereinfachen und insbesondere im Hinblick auf die Herstellungskosten zu It is therefore an object of the present invention to simplify a method for producing solid-state layers or solid-state plates, in particular wafers, and in particular with regard to the production costs
verbessern. Diese Aufgabe wird durch die Merkmale von Anspruch 1 gelöst. Weitere vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche. improve. This object is solved by the features of claim 1. Further advantageous embodiments of the invention are the subject of the dependent claims.
Darstellung der Erfindung Presentation of the invention
Vorgefertigte (d.h., nicht direkt auf dem Werkstück verfestigte) Polymerfolien können so gefertigt werden (z.B. mittels Zuschneiden, Stanzen, Glessen in Schalungen), dass ein viel genauer definierbarer Randabschluss von Werkstück und  Prefabricated (i.e., not directly solidified on the workpiece) polymer films can thus be fabricated (e.g., by means of cutting, stamping, gluing in formwork) to provide a much more definable edge termination of workpiece and material
Polymerschicht erreicht wird. Polymer layer is achieved.
Polymerfolien lassen sich vorfertigen, qualifizieren und getrennt vom Werkstück herstellen, so dass die Fertigung und Qualifikation der Polymerschicht unabhängig von der Waferfertigung geschehen kann. Mit anderen Worten: die Eigenschaften der Polymerschicht können somit unabhängig von anderen Prozessschritten definiert und kontrolliert werden.  Polymer films can be prefabricated, qualified and produced separately from the workpiece, so that the production and qualification of the polymer layer can be done independently of the wafer production. In other words, the properties of the polymer layer can thus be defined and controlled independently of other process steps.
Die getrennte Fertigung von Folie und Wafer hat beispielsweise den Vorteil, dass die Parameter zum Härten der Polymerschicht, wie z.B. Härtetemperatur und -zeit, sehr frei wählbar sind. So können z.B. bei der Verwendung von zwei Polymerschichten auf demselben Werkstück die beiden Schichten unabhängig voneinander gehärtet werden, was bei der bisherigen Methode nicht möglich ist. Ausserdem führt das Härten direkt auf dem Werkstück mit der bisherigen Methode bei Härtetemperaturen über Raumtemperatur automatisch zu einer Vorspannung des Films bei The separate production of film and wafer, for example, has the advantage that the parameters for curing the polymer layer, such as e.g. Hardening temperature and time, are very freely selectable. Thus, e.g. when using two polymer layers on the same workpiece, the two layers are cured independently, which is not possible in the previous method. In addition, curing directly on the workpiece with the previous method at curing temperatures above room temperature automatically leads to a bias of the film
Raumtemperatur. Diese Vorspannung kann nach dem Abspalten zu starkem Room temperature. This bias can be too strong after cleavage
Durchbiegen und Zerbrechen der produzierten Wafer führen. Die Verwendung einer vorgefertigten Folie macht es möglich, die Aushärtetemperatur der Folie frei zu wählen ohne Auswirkungen auf eine eventuelle Vorspannung. Deflection and breakage of the produced wafers result. The use of a prefabricated film makes it possible to freely choose the curing temperature of the film without affecting any bias.
Zudem kann mit Hilfe der Erfindung auch die Stärke der Polymerschicht beliebig gewählt und genau eingestellt werden (wir verwenden üblicherweise Dicken zwischen ca. 0.1 und 10mm, vorzugsweise zwischen 0.4 und 1mm, wobei zur Herstellung dickerer Wafer dickere Polymerschichten verwendet werden). Speziell können beispielsweise auch strukturierte Folien verwendet werden, wo z.B. die Foliendicke je nach Position gezielt variiert wird* so dass Folienschichten mit definierten Dickenprofilen möglich sind. In addition, with the aid of the invention, the thickness of the polymer layer can also be chosen as desired and precisely adjusted (we usually use thicknesses between about 0.1 and 10mm, preferably between 0.4 and 1mm, using thicker polymer layers to make thicker wafers). Specifically, for example, structured films can be used, where, for example, the film thickness is selectively varied depending on the position * so that film layers with defined thickness profiles are possible.
Als Polymer kann z.B. ein Polydiorganolsiloxan verwendet werden, z.B. As a polymer, e.g. a polydiorganosiloxane can be used, e.g.
Polydimethylsiloxane (PDMS). Im folgenden wird als Polymerfolie eine Folie aus PDMS und als Werkstück ein dicker Wafer aus Silizium beschrieben; es können aber auch andere geeignete Polymere und Werkstücke (z.B. aus anderen Materialien wie Germanium, Saphir, etc) verwendet werden. Polydimethylsiloxanes (PDMS). The following is described as a polymer film, a film of PDMS and as a workpiece a thick wafer of silicon; however, other suitable polymers and workpieces (e.g., other materials such as germanium, sapphire, etc.) may be used.
Zur Herstellung der Polymerfolien verwenden wir PDMS Sylgard 184 von Dow Corning. Dies ist ein zweikomponentiges Gemisch, das thermisch ausgehärtet wird (wir verwenden dazu z.B. Mischverhältnisse zwischen Härter:Basismaterial von 1 :10 bis 1 :3). Zum Härten verwenden wir - je nach Härtezeit - Temperaturen von To make the polymer films we use PDMS Sylgard 184 from Dow Corning. This is a two-component mixture that is thermally cured (for example, we use mixing ratios between hardener: base material of 1:10 to 1: 3). For curing we use - depending on the hardening time - temperatures of
Raumtemperatur bis ca. 200°C, vorzugsweise von ca. 60°C bis 150°C. Wir verwenden üblicherweise Härtezeiten zwischen ca. 1-20 Minuten (bei hohen Room temperature to about 200 ° C, preferably from about 60 ° C to 150 ° C. We usually use hardening times between approx. 1-20 minutes (at high
Temperaturen) und 1 -2 Tage (bei Raumtemperatur). Bei PDMS Sylgard 184 handelt es sich vor dem Härten um eine viskose Flüssigkeit, die z.B. mittels Giessverfahren auf eine glatte Oberfläche (z.B. Spiegel) aufgebracht wird und dort zu einer Folie aushärtet. Die Folie wird von dieser Oberfläche dann abgezogen (z.B. mechanisch), gegebenenfalls weiterverarbeitet, und danach auf das Werkstück aufgebracht. Temperatures) and 1 -2 days (at room temperature). PDMS Sylgard 184 before hardening is a viscous liquid, e.g. by casting on a smooth surface (such as mirrors) is applied and cured there to form a film. The film is then peeled from this surface (e.g., mechanically), optionally further processed, and then applied to the workpiece.
Ausserdem kann die fertige Folie bereits vor dem Aufbringen auf das Werkstück untersucht und ihre Qualität überprüft werden (z.B. mit üblichen mechanischen, optischen oder elektrischen Messverfahren, etc). Neben dem hier beschriebenen Verfahren zur Folienherstellung sind viele andere Verfahren in der Industrie üblich (z.B. Herstellung durch Extrusion), welche ebenfalls für die vorliegende Erfindung anwendbar sind. In addition, the finished film can be inspected prior to application to the workpiece and its quality checked (e.g., by conventional mechanical, optical or electrical measurement techniques, etc.). In addition to the film-making process described herein, many other processes are conventional in the industry (e.g., extrusion production) which are also applicable to the present invention.
Die fertige Folie wird danach auf die Oberfläche des Werkstücks (z.B. dicker Wafer) aufgebracht. Dabei ist eine gute Haftung der Folie auf dem Werkstück wichtig: die Verbindung zwischen Werkstück und Folie muss genügend grosse Scherkräfte für das Abspalten sowie grosse Temperaturschwankungen für das thermische The finished film is then applied to the surface of the workpiece (e.g., thick wafer). Good adhesion of the film to the workpiece is important: the bond between the workpiece and the film must have sufficient shear forces for splitting and large temperature fluctuations for the thermal
Induzieren der nötigen Spannungen aushalten können. Induce the necessary voltages can withstand.
Für das Aufkleben der Folie bietet sich ein dünner PDMS-Film als Kleber an (z.B. ebenfalls unter Verwendung von Sylgard 184). Dieser wird z.B. mit einer Spritze in der Mitte der zu beklebenden Oberfläche auf dem Werkstück aufgetragen (einige Milliliter für einen 5-inch Wafer). Danach wird die Folie aufgelegt und mit einer Rolle oder Walze unter leichtem Druck auf das Werkstück gepresst. Durch Hin- und Herbewegen der Rolle verteilt sich der Kleberfilm unter der Folie, Luftblasen werden entfernt. Die Aushärtung des Klebers kann bei Raumtemperatur erfolgen. Für die Vermeidung von Zugspannungen nach dem Split (siehe Foto) empfiehlt sich eine Klerberhärtetemperatur von unter 60°C. Für ein einfacheres Verteilen des Kleberfilms mit der Rolle ist eine geringere Viskosität des Klebers vorteilhaft, was z.B. einfach durch einen grösseren Anteil an Härtersubstanz (z.B. 1 :3 HärterrBasismaterial) erreicht werden kann. Die Härtezeiten variieren wie bei der Folienherstellung abhängig von der Härtetemperatur (siehe oben). For gluing the film, a thin PDMS film is recommended as an adhesive (eg also using Sylgard 184). This is applied, for example with a syringe in the middle of the surface to be bonded to the workpiece (a few milliliters for a 5-inch wafer). Thereafter, the film is placed and pressed with a roller or roller under slight pressure on the workpiece. By moving the roller back and forth, the adhesive film spreads under the film, air bubbles are removed. The curing of the adhesive can take place at room temperature. To avoid tensile stresses after the split (see photo), a cladding hardening temperature of less than 60 ° C is recommended. For a simpler distribution of the adhesive film with the roller, a lower viscosity of the adhesive is advantageous, for example, simply by a larger proportion of hardener substance (eg 1: 3 HärterrBasismaterial) can be achieved. The curing times vary as in the film production depending on the hardening temperature (see above).
Alternativ zur beschriebenen Methode kann die Folie auch mit anderen üblichen Verfahren auf das Werkstück aufgeklebt werden, z.B. unter Verwendung eines Vakuum-Laminators. Schliesslich kann die Folie auch direkt (ohne Kleber) mit der Oberfläche des Werkstücks verbunden werden, z.B. mittels "Plasma activated bonding" (z.B. Aktivierung der PDMS-Folie in Stickstoffplasma, Aufpressen der Folie auf Werkstück, ggf. "Annealing") oder z.B. durch Auflaminieren (Aufschmelzen) einer thermoplastischen Folie (z.B. Geniomer von Wacker Silicones). As an alternative to the method described, the film may also be adhered to the workpiece by other conventional methods, e.g. using a vacuum laminator. Finally, the film may also be bonded directly (without adhesive) to the surface of the workpiece, e.g. by means of "plasma activated bonding" (for example activation of the PDMS foil in nitrogen plasma, pressing the foil onto the workpiece, if necessary "annealing") or e.g. by laminating (melting) a thermoplastic film (e.g., genomeer from Wacker Silicones).
Nachdem die Folie aufgeklebt und der Kleber ausgehärtet ist, wird wie in den im Stand der Technik beschriebenen Referenzen üblich z.B. durch thermisch induzierte Spannungen ein dünner Wafer vom Werkstück abgelöst, wobei die Folie noch auf einer Seite des Wafers anhaftet. Die Folie kann dann vom hergestellten Wafer z.B. mit mechanischen oder chemischen Methoden abgelöst werden, wie in den erwähnten Referenzen dargestellt. After the film is adhered and the adhesive cured, as is conventional in the references described in the art, e.g. thermally induced stress, a thin wafer detached from the workpiece, the film still adheres to one side of the wafer. The film can then be removed from the produced wafer e.g. be replaced with mechanical or chemical methods, as shown in the references mentioned.
Um das Ablösen der Folie nach dem Abspalten des Wafers zu erleichtern, kann das Werkstück vor dem Aufkleben der Folie mit einer dünnen Opferschicht beschichtet werden. Die Folie wird dann nicht direkt auf die Oberfläche des Werkstücks, sondern auf die Opferschicht aufgeklebt. Nach dem Abspalten des Wafers kann die zwischen Werkstückoberfläche und Folie befindliche Opferschicht z.B. chemisch aufgelöst werden, wodurch sich die Folie vom hergestellten Wafer ablöst. Als Opferschicht eignet sich ein Material, welches im ganzen Temperaturbereich von ca. -200°C bis Raumtemperatur grosse Kräfte übertragen kann und dabei sowohl auf dem In order to facilitate the detachment of the film after the wafer has been split off, the workpiece can be coated with a thin sacrificial layer before the film is glued on. The film is then not glued directly to the surface of the workpiece, but on the sacrificial layer. After the wafer has been split off, the sacrificial layer located between the workpiece surface and the foil can be used, for example. be chemically dissolved, whereby the film separates from the wafer produced. As a sacrificial layer is a material that can transmit large forces over the entire temperature range of about -200 ° C to room temperature and thereby both on the
Werkstück wie auch auf der Folie gut haftet, und welches ausserdem einfach (z.B. chemisch) aufgelöst werden kann. Beispielsweise können solche Opferschichten durch Sol-Gel-Prozesse hergestellt werden, wie sie in der Industrie derzeit z.B. zur Beschichtung von Glasen (Antireflex, etc) eingesetzt werden (geeignet sind insbesondere Aluminium-, Titan- oder Zirkon-basierte Sole). Auch bei Verwendung der bisherigen Methode mit Aufgiessen des Polymers und Aushärten direkt auf dem Werkstück oder bei Verwendung von "Plasma activated bonding" kann die Workpiece as well as on the film adheres well, and which also can be easily (for example, chemically) dissolved. For example, such sacrificial layers can be made by sol-gel processes, as currently used in the industry e.g. for coating of glass (antireflective, etc) are used (suitable are in particular aluminum, titanium or zirconium-based sols). Even when using the previous method with infusion of the polymer and curing directly on the workpiece or when using "plasma activated bonding" can
Verwendung einer solchen Opferschicht zwischen Polymer und Werkstück das Ablösen des Polymerfilms vom abgespalteten Wafer deutlich verbessern. Using such a sacrificial layer between the polymer and the workpiece significantly improve the detachment of the polymer film from the cleaved wafer.
Ausserdem ist es möglich, die Funktionen von Opferschicht und Kleber zu kombinieren, d.h., zum Aufkleben der Folie einen Kleber zu verwenden, der einfach wieder aufgelöst werden kann (z.B. chemisch, oder durch Aufschmelzen, etc). Z.B. kann als Kleber auch ein Sol-Gel (siehe oben) verwendet werden. In addition, it is possible to combine the functions of sacrificial layer and adhesive, i.e. to use an adhesive to adhere the film which can easily be redissolved (e.g., chemically, or by reflow, etc.). For example, can be used as an adhesive, a sol-gel (see above).
Nachdem die Folie vom hergestellten Wafer abgelöst ist, kann sie - falls gewünscht - gereinigt und danach auf ein neues Werkstück aufgebracht werden. Dadurch ist es möglich, dieselbe Folie mehrfach zur Herstellung von Wafer zu verwenden. Dies kann den Materialverbrauch und die Kosten des Gesamtprozesses signifikant reduzieren. Für eine Wiederverwendung der Folie ist es insbesondere vorteilhaft, wie oben beschrieben einen wieder auflösbaren Kleber zu verwenden, da in diesem Fall nach dem Auflösen der Kleberschicht an der Folie keine Kleberrückstände mehr verbleiben. After the film is detached from the produced wafer, it can - if desired - cleaned and then applied to a new workpiece. This makes it possible to use the same film several times for the production of wafers. This can significantly reduce the material consumption and the costs of the overall process. For a reuse of the film, it is particularly advantageous to use a re-dissolvable adhesive as described above, since in this case after the dissolution of the adhesive layer to the film no adhesive residues remain.
Eine präferierte Realisierung der vorliegenden Erfindung besteht darin, Folien nach einem der hier beschriebenen Verfahren auf beide gegenüberliegende Seiten eines dicken Wafers aufzukleben. Dadurch kann der dicke Wafer in zwei dünne Wafer aufgespalten werden. Diese Situation ist in Abb. 1 dargestellt, wobei die Zahlen in den Kreisen folgendes bezeichnen: (1) Polymerfolie, (2) Kleber, (3) Opferschicht, (4) Werkstück - dicker Wafer, (5) produzierter dünner Wafer. A preferred realization of the present invention is to adhere films to both opposite sides of a thick wafer according to one of the methods described herein. This allows the thick wafer to be split into two thin wafers. This situation is illustrated in Fig. 1 where the numbers in the circles indicate: (1) polymeric film, (2) adhesive, (3) sacrificial layer, (4) workpiece-thick wafer, (5) produced thin wafer.

Claims

Ansprüche: Claims:
1. Verfahren zur Herstellung von dünnen Festkörperschichten oder Festkörperplatten (5), insbesondere zur Verwendung als Wafer, mit den folgenden Schritten: 1. A process for the production of thin solid layers or solid plates (5), in particular for use as wafers, comprising the following steps:
(Bereitstellen eines Ausgangsmaterials (4) aus einem Werkstoff mit geringer Duktilität, welches zumindest eine exponierte Oberfläche aufweist, (Providing a starting material (4) made of a material with low ductility, which has at least one exposed surface,
Bereitstellen mindestens einer vorgefertigten Aufbringungsschicht (1 ), welche frei wählbare Materialeigenschaften aufweist, Providing at least one prefabricated application layer (1) having freely selectable material properties,
Anbringung der vorgefertigten Aufbringungsschicht (1) an der exponierten Oberfläche des Ausgangsmaterials (4) unter Bildung einer Kompositstruktur, Attaching the prefabricated application layer (1) to the exposed surface of the starting material (4) to form a composite structure,
Beaufschlagung der Kompositstruktur mit einem inneren und/oder äußeren Spannungsfeld in der Art, dass das Ausgangsmaterial (4) entlang einer inneren Ebene unter Bildung von zumindest zwei dünnen Festkörperschichten (5) oder Festkörperplatten, gespalten wird. Loading the composite structure with an inner and / or outer stress field such that the starting material (4) is split along an inner plane to form at least two thin solid layers (5) or solid plates.
2. Verfahren nach Anspruch 1 , 2. The method according to claim 1,
wobei die Aufbringungsschicht als Folie (1 ), insbesondere als eine definiert vorgefertigte Polymerfolie ausgebildet ist. wherein the application layer is formed as a film (1), in particular as a defined prefabricated polymer film.
3. Verfahren nach Ansprüchen 1 und/oder 2, 3. Process according to claims 1 and / or 2,
wobei die Beaufschlagung der Kompositstruktur mit dem Spannungsfeld mittels einem insbesondere temperaturinduzierten und/oder temperaturgradienteninduzierten mechanischen Spannungsfeld erfolgt, welches die Kompositstruktur entlang einer inneren Ebene des Ausgangsmaterials (4) spaltet. wherein the stressing of the composite structure with the stress field by means of a particular temperature-induced and / or temperature gradient-induced mechanical stress field, which splits the composite structure along an inner plane of the starting material (4).
4. Verfahren nach mindestens einem der Ansprüche 1 -3, 4. The method according to at least one of claims 1 -3,
wobei die Aufbringungsschichten (1), insbesondere die Polymerfolien bzgl. ihrer physikalischen Eigenschaften definiert vorgefertigt werden und/oder gehärtet und/oder getempert werden, insbesondere bezgl. verschiedener Schichtdicken insbesondere im Bereich von 0,1 - 10 mm, insbesondere von 0,4 - 1 mm, verschiedener insbesondere temperaturabhängiger elastischer Konstanten und/oder Ausdehnungskoeffizienten. wherein the application layers (1), in particular the polymer films, are defined in terms of their physical properties and / or cured and / or tempered, in particular with respect to different layer thicknesses, in particular in the range of 0.1-10 mm, in particular 0.4. 1 mm, various particular temperature-dependent elastic constants and / or expansion coefficients.
5. Verfahren nach mindestens einem der Ansprüche 1 -4, 5. The method according to at least one of claims 1 -4,
wobei die Aufbringungsschichten (1 ), insbesondere die Polymerfolien (1 ) derart in Relation zur Form des zu spaltenden Ausgangsmaterials (4) zugeschnitten werden, dass dadurch ein exakt definierter Randabschluss der Kompositstruktur gewährleistet ist. wherein the application layers (1), in particular the polymer films (1) are cut in such a way in relation to the shape of the starting material (4) to be split, thereby ensuring a precisely defined edge termination of the composite structure.
6. Methode nach mindestens einem der Ansprüche 1-5, 6. Method according to at least one of claims 1-5,
wobei zwei oder mehrere Aufbringungsschichten (1 ) an der Oberfläche oder an zwei gegenüberliegenden Oberflächen des Ausgangsmaterials, insbesondere Polymerfolien, unabhängig voneinander und unabhängig von dem zu spaltenden Ausgangsmaterial (4) hergestellt werden, insbesondere bei voneinander unabhängigen Temperaturen ausgehärtet werden. wherein two or more application layers (1) are produced on the surface or on two opposite surfaces of the starting material, in particular polymer films, independently of one another and independently of the starting material (4) to be cleaved, in particular at mutually independent temperatures.
7. Verfahren nach mindestens einem der Ansprüche 1 -6, 7. The method according to at least one of claims 1 -6,
wobei die Aufbringungsschichten, insbesondere die Polymerfolien (1) eine vorgefertigte Strukturierung aufweisen, insbesondere lateral varierende Dickenprofile und/oder lokal variierende elastische Konstanten und/oder lokal variierende thermische Ausdehnungskoeffizienten. wherein the application layers, in particular the polymer films (1) have a prefabricated structuring, in particular laterally varying thickness profiles and / or locally varying elastic constants and / or locally varying thermal expansion coefficients.
8. Verfahren nach mindestens einem der Ansprüche 1-7, 8. The method according to at least one of claims 1-7,
wobei in which
das Polymer ein Polydiorganosiloxan ist, insbesondere Polydimethylsüoxane (PDMS). the polymer is a polydiorganosiloxane, in particular polydimethylsoxane (PDMS).
9. Verfahren nach mindestens einem der Ansprüche 1-8, 9. The method according to at least one of claims 1-8,
wobei das zu spaltende Ausgangsmaterial (4) insbesondere Silizium und/oder Germanium/und/oder Saphir und/oder Diamant und/oder Glas und/oder Siliziumnitrid ist. wherein the starting material (4) to be cleaved is in particular silicon and / or germanium / and / or sapphire and / or diamond and / or glass and / or silicon nitride.
10. Verfahren nach mindestens einem der Ansprüche 1-9, 10. The method according to at least one of claims 1-9,
wobei die Aufbringungsschicht oder Polymerfolie aus einem viskos-flüssigen Zweikomponenten material hergestellt wird, insbesondere PDMS, welche insbesondere durch ein Gießverfahren auf einer planen Oberfläche und anschließendem Aushärten hergestellt wird. wherein the application layer or polymer film is made of a viscous liquid two-component material, in particular PDMS, which is produced in particular by a casting process on a planar surface and subsequent curing.
11. Verfahren nach mindestens einem der Ansprüche 1-10, 11. The method according to at least one of claims 1-10,
wobei die vorgefertigte Aufbringungsschicht, insbesondere die vorgefertigte Polymerfolie fest auf dem zu spaltenden Ausgangsmaterial (4) fixiert wird mittels eines Klebstoffes, insbesondere durch Ausrollen unter Zuhilfenahme einer Andruckrolle oder Walze. wherein the prefabricated application layer, in particular the prefabricated polymer film, is firmly fixed on the starting material (4) to be split by means of an adhesive, in particular by rolling out with the aid of a pressure roller or roller.
12. Verfahren nach mindestens einem der Ansprüche 1-11 , 12. The method according to at least one of claims 1-11,
wobei eine Klebstoffschicht (2) zwischen Ausgangsmaterial (4) und Aufbringungsschicht (1) vorgesehen ist, wobei die Klebstoffschicht insbesondere als PDMS-Film vorgesehen ist. wherein an adhesive layer (2) between the starting material (4) and the application layer (1) is provided, wherein the adhesive layer is provided in particular as a PDMS film.
13. Verfahren nach mindestens einem der Ansprüche 1-1 , 13. The method according to at least one of claims 1-1,
wobei mindestens eine Opferschicht (3) in die Kompositstruktur zwischen den vorgefertigten Aufbringungsschichten, insbesondere den Polymerfolien (1) und dem zu spaltenden Ausgangsmaterial (4) eingebracht wird, wobei die Opferschicht nach dem Spaltvorgang chemisch und/oder Lösungsmittel-technisch und/oder thermisch entfernt und/oder aufgelöst wird. wherein at least one sacrificial layer (3) is introduced into the composite structure between the prefabricated application layers, in particular the polymer films (1) and the starting material (4) to be cleaved, the sacrificial layer being removed chemically and / or solvent-technically and / or thermally after the cleavage process and / or dissolved.
14. Verfahren nach mindestens einem der Ansprüche 1-13, 14. The method according to at least one of claims 1-13,
wobei die Opferschicht (3) mittels eines Sol-Gel Prozesses hergelellt wird, wobei die Opferschicht insbesondere aus auf AI und/oder Ti und/oder Zr basierenden Sols gebildet wird. wherein the sacrificial layer (3) is knurled by means of a sol-gel process, wherein the sacrificial layer is formed in particular from sols based on Al and / or Ti and / or Zr.
15. Verfahren nach mindestens einem der Ansprüche 13-14, 15. The method according to at least one of claims 13-14,
wobei die Funktionalität des Klebstoffes durch die Opferschicht (3) selbst bereitgestellt wird. wherein the functionality of the adhesive is provided by the sacrificial layer (3) itself.
16. Verfahren nach mindestens einem der Ansprüche 1-15, 16. The method according to at least one of claims 1-15,
wobei der Klebstoff- (2) und/oder die Opferschicht (3) entfernbar wird, um die Aufbringungsschicht (1) oder Polymerfolie (1) von der nach dem Spaltvorgang in zwei Teile geteilten Kompositstruktur wieder derart abzulösen, dass die Aufbringungsschicht und/oder Polymerfolie (1 ) wiederverwendbar ist. wherein the adhesive (2) and / or the sacrificial layer (3) becomes removable in order to detach the application layer (1) or polymer film (1) from the composite structure split into two parts after the cleavage process in such a way that the application layer and / or polymer film (1) is reusable.
PCT/EP2013/051746 2012-01-30 2013-01-30 Method for producing thin plates from materials with low ductility by means of temperature-induced mechanical tension using prefabricated polymer films WO2013113730A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201210001620 DE102012001620A1 (en) 2012-01-30 2012-01-30 Process for the preparation of thin sheets of low ductility materials by means of temperature-induced mechanical stress using prefabricated polymer films
DE102012001620.4 2012-01-30

Publications (1)

Publication Number Publication Date
WO2013113730A1 true WO2013113730A1 (en) 2013-08-08

Family

ID=47628165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/051746 WO2013113730A1 (en) 2012-01-30 2013-01-30 Method for producing thin plates from materials with low ductility by means of temperature-induced mechanical tension using prefabricated polymer films

Country Status (2)

Country Link
DE (1) DE102012001620A1 (en)
WO (1) WO2013113730A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015082582A1 (en) * 2013-12-04 2015-06-11 Siltectra Gmbh Method for producing large-area solid-body layers
DE102014014422A1 (en) 2014-09-29 2016-03-31 Siltectra Gmbh Combined wafer production process with a hole-containing receiving layer
DE102014014420A1 (en) 2014-09-29 2016-04-14 Siltectra Gmbh Combined wafer production process with a multi-component receiving layer
KR20170067819A (en) * 2014-10-06 2017-06-16 실텍트라 게엠베하 Splitting method and use of a material in a splitting method
CN109155248A (en) * 2016-03-24 2019-01-04 西尔特克特拉有限责任公司 For the polymer hybrid material used in splitting method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013113030A1 (en) 2013-03-28 2014-10-02 Freiberger Compound Materials Gmbh Method for edge rounding of semiconductor wafers
DE102013112245A1 (en) 2013-11-07 2015-05-07 Siltectra Gmbh Method for fixing solid plates
DE102016014821A1 (en) 2016-12-12 2018-06-14 Siltectra Gmbh Method of thinning component-coated solid layers
EP4166270A1 (en) 2016-03-22 2023-04-19 Siltectra GmbH Method of separating a layer from a solid by laser radiation
DE102016105616A1 (en) 2016-03-24 2017-09-28 Siltectra Gmbh Polymer hybrid material, its use in a splitting process, and method of making the polymer hybrid material
EP3551373A1 (en) 2016-12-12 2019-10-16 Siltectra GmbH Method for thinning solid body layers provided with components
DE102017010284A1 (en) 2017-11-07 2019-05-09 Siltectra Gmbh Method of thinning component-coated solid layers
CN110691671B (en) 2017-04-20 2023-10-10 西尔特克特拉有限责任公司 Method for producing wafers with defined oriented modification lines
DE102018001605A1 (en) 2018-03-01 2019-09-05 Siltectra Gmbh Method for compensating deformations of a laser beam treated and / or coated solid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0858110A1 (en) * 1996-08-27 1998-08-12 Seiko Epson Corporation Separating method, method for transferring thin film device, thin film device, thin film integrated circuit device, and liquid crystal display device manufactured by using the transferring method
EP2073260A2 (en) * 2007-12-17 2009-06-24 Commissariat A L'energie Atomique Thin film transfer method
EP2157602A1 (en) * 2008-08-20 2010-02-24 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. A method of manufacturing a plurality of fabrication wafers
FR2961515A1 (en) * 2010-06-22 2011-12-23 Commissariat Energie Atomique METHOD FOR PRODUCING A MONOCRYSTALLINE SILICON THIN LAYER ON A POLYMER LAYER

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5117692B2 (en) 2006-07-14 2013-01-16 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
CN102325717B (en) 2008-12-23 2015-11-25 西尔特克特拉有限责任公司 Produce the method that is thin, free-standing layers of solid with patterned surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0858110A1 (en) * 1996-08-27 1998-08-12 Seiko Epson Corporation Separating method, method for transferring thin film device, thin film device, thin film integrated circuit device, and liquid crystal display device manufactured by using the transferring method
EP2073260A2 (en) * 2007-12-17 2009-06-24 Commissariat A L'energie Atomique Thin film transfer method
EP2157602A1 (en) * 2008-08-20 2010-02-24 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. A method of manufacturing a plurality of fabrication wafers
FR2961515A1 (en) * 2010-06-22 2011-12-23 Commissariat Energie Atomique METHOD FOR PRODUCING A MONOCRYSTALLINE SILICON THIN LAYER ON A POLYMER LAYER

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN WAYNE ET AL: "Double-flip transfer of indium phosphide layers via adhesive wafer bonding and ion-cutting process", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, vol. 90, no. 5, 2 February 2007 (2007-02-02), pages 52114 - 052114, XP012095828, ISSN: 0003-6951, DOI: 10.1063/1.2450665 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015082582A1 (en) * 2013-12-04 2015-06-11 Siltectra Gmbh Method for producing large-area solid-body layers
US10029277B2 (en) 2013-12-04 2018-07-24 Siltectra, GmbH Method of producing large-scale layers of solid material
DE102014014422A1 (en) 2014-09-29 2016-03-31 Siltectra Gmbh Combined wafer production process with a hole-containing receiving layer
DE102014014420A1 (en) 2014-09-29 2016-04-14 Siltectra Gmbh Combined wafer production process with a multi-component receiving layer
US10707068B2 (en) 2014-09-29 2020-07-07 Siltectra Gmbh Combined wafer production method with a multi-component receiving layer
US10960574B2 (en) 2014-09-29 2021-03-30 Siltectra Gmbh Combined wafer production method with a receiving layer having holes
KR20170067819A (en) * 2014-10-06 2017-06-16 실텍트라 게엠베하 Splitting method and use of a material in a splitting method
KR102554020B1 (en) * 2014-10-06 2023-07-11 실텍트라 게엠베하 Splitting method and use of a material in a splitting method
CN109155248A (en) * 2016-03-24 2019-01-04 西尔特克特拉有限责任公司 For the polymer hybrid material used in splitting method
CN109155248B (en) * 2016-03-24 2023-09-15 西尔特克特拉有限责任公司 Polymeric hybrid materials for use in splitting methods

Also Published As

Publication number Publication date
DE102012001620A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
WO2013113730A1 (en) Method for producing thin plates from materials with low ductility by means of temperature-induced mechanical tension using prefabricated polymer films
EP1994554B1 (en) Method for processing, in particular, thin rear sides of a wafer, wafer-carrier arrangement and method for producing said type of wafer-carrier arrangement
EP2785521B1 (en) Method for producing structured optical components
EP2382656B1 (en) Method for separating a layer system comprising a wafer
EP2992547A1 (en) Method and device for producing wafers using a pre-defined fracture trigger point
US10444138B2 (en) Optical cell constructed by anodically bonding a thin metal layer between two optically clear glass windows
EP3271435B1 (en) Composite pillar structures
DE112014000462B4 (en) Manufacture of a microfluidic chip package or assembly with separable chips
DE10353530A1 (en) Processing, especially thinning, wafers with components on one side involves applying coating system to wafer front with separating coating so coating system supports or carries wafer during thinning
WO2018000350A1 (en) Method for fracturing fixable film
EP2992548B1 (en) Method for producing a wafer with a support unit
DE102012213649B4 (en) Mechanical detachment of thin films
EP2870620B1 (en) Wafer and method for producing wafers having surface structures
EP2800125B1 (en) Method for producing wafers with predetermined stress distribution
EP2843712B1 (en) Device and method for the manufacture of a wafer having selective positioning in the carrier system
DE102011077933B4 (en) Method for bonding two substrates
EP3201941B1 (en) Combined wafer production method with a receiving layer having holes
EP3201944B1 (en) Combined wafer production method with a multi-component receiving layer
DE102006048800B4 (en) Hard carrier multilayer system for supporting thin wafers in semiconductor fabrication
DE10156406A1 (en) Process for the production of deformation sensors with a strain gauge as well as for the production of strain gauges and deformation sensors and strain gauges
Gossner et al. Wafer-level manufacturing technology of glass microlenses
DE102010013549A1 (en) Method for separating wafer of base material body, involves sticking pliable support material on plane surface of base material body, and removing support material with layer of base material, which forms wafer of body
DE102016112977A1 (en) A method of processing a semiconductor wafer or multiple semiconductor wafers and protective cover for covering the semiconductor wafer
Boutry et al. Quantitative analysis of biodegradable polymers (PLLA & PCL) thermal bonding
DE102013017272A1 (en) Device and method for producing layer arrangements by means of a fluidic flow barrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13701782

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13701782

Country of ref document: EP

Kind code of ref document: A1