WO2013045504A1 - Perfluorinated nanoemulsions, method for preparing same, and use thereof as a contrast agent - Google Patents

Perfluorinated nanoemulsions, method for preparing same, and use thereof as a contrast agent Download PDF

Info

Publication number
WO2013045504A1
WO2013045504A1 PCT/EP2012/068984 EP2012068984W WO2013045504A1 WO 2013045504 A1 WO2013045504 A1 WO 2013045504A1 EP 2012068984 W EP2012068984 W EP 2012068984W WO 2013045504 A1 WO2013045504 A1 WO 2013045504A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
fluorinated
nanoemulsion
phase
surfactant
Prior art date
Application number
PCT/EP2012/068984
Other languages
French (fr)
Inventor
Caroline ROBIC
Samy CHADEL
Véronique SCHMITT
Fernando Leal Calderon
Marc Port
Olivier Lambert
Original Assignee
Guerbet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guerbet filed Critical Guerbet
Publication of WO2013045504A1 publication Critical patent/WO2013045504A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1806Suspensions, emulsions, colloids, dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1806Suspensions, emulsions, colloids, dispersions
    • A61K49/1809Micelles, e.g. phospholipidic or polymeric micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids

Definitions

  • the present invention relates to new nanoemulsions and methods for the preparation of nanoemulsions, and their use as contrast agents, especially in MRI.
  • lipid nanosystems of the emulsion type Typically the emulsions used are in the form of vesicles prepared using lipid constituents (oil in particular) and surfactants (also called surfactants) serving as interface between the aqueous phase and the lipid core of the nanodroplet.
  • surfactants also called surfactants
  • a particular class of emulsions described in particular in WO 03/062198 or US Pat. No. 6,676,963 is that of fluorinated nanoemulsions comprising, integrated within the lipid vesicles, fluorinated compounds comprising fluorine atoms F19 used for Magnetic Resonance Imaging MRI. .
  • fluorine has particular interest compared to the MRI of the proton to be almost absent in the biological systems in the free state which allows it to be recognized as an excellent quantitative probe in the fluorine form F19 .
  • the heart is formed of a fluorinated oil, and surrounded by a lipid layer formed by a surfactant (lecithin for example).
  • fluorinated emulsions may furthermore comprise a very large number of paramagnetic metal complexes, in particular lanthanides, to associate the MRI of fluorine 19F and proton H.
  • fluorine emulsions for MRI incorporating chelates capable of complexing are known.
  • lanthanides especially gadolinium.
  • the chelates used are in particular derivatives of DTPA, DOTA, D03A, HPD03A and other chelates widely described in the prior art.
  • These hydrophilic chelates are rendered lipophilic by grafting them with a lipophilic zone such as a phospholipid, which makes it possible to integrate them into the lipid membrane that forms the lipid surfactant of the composition.
  • the hydrophilic part (the hydrophilic part which represents the chelate to which a lipophilic group is attached so as to take the lipophilic chelate) is located on the outer surface of the nanodroplets, in contact with the aqueous phase of the nanodroplet solution.
  • targeting molecules or biovectors, for example peptide having an affinity for the receptor
  • WO 03/062198 describes in particular the use of peptidomimetic compounds to target integrins overexpressed in tumor areas.
  • biovectors are rendered lipophilic by combining them with lipophilic chains.
  • fluorinated contrast agents and optionally vectorized described have not yet fully demonstrated their clinical effectiveness, and pose difficulties including stability over time.
  • a shelf life of more than 9 months is difficult to achieve, while the desired stability is at least one year and preferably of the order of 2 to 3 years.
  • a complex technical problem remains the optimization of constituents, including oil and surfactants.
  • These are direct emulsions of oil-in-water (O / W) type, the dispersed phase of which is lipophilic and the continuous hydrophilic phase.
  • the immiscibility of the two phases results in the existence of interface between the water and the oil, which costs energy to the system.
  • This energy is quantified by the interfacial tension ⁇ (energy per unit area).
  • energy per unit area
  • the amphiphilic molecules used as surfactant (or surfactant) can be adsorbed at the interfaces and thus reduce the interfacial tension.
  • the amphiphilic molecules particularly considered here are phospholipids.
  • surfactants can be of different natures: conventional surfactant, polymer, phospholipid, particle ... They induce steric or electrostatic repulsions between the drops.
  • the stabilizers are surfactants and are not anchored irreversibly at the interface.
  • CMC critical micelle concentration
  • amphiphilic molecules self-assemble in the continuous phase and they adopt various forms depending on several factors. There is then a dynamic equilibrium with continuous exchange between the adsorbed molecules at the interface and in excess in the continuous phase.
  • coalescence corresponds to the rupture of the film of surfactants separating two drops in contact, thus causing the fusion of these (See Figure 2).
  • Ostwald ripening dominates for small drops while coalescence is the predominant mechanism for large drops.
  • the objective is to achieve direct nanoemulsions stable over time, whose interfaces are covered by a mixture of natural phospholipids (PL) and modified phospholipids (PLM).
  • PL natural phospholipids
  • PLM modified phospholipids
  • the application provides oil-in-water nanoemulsions comprising an aqueous phase and a fluorinated oil phase.
  • the term “nanoemulsion” means that the droplet size is between 1 and 1000 nm.
  • the size of the droplets is typically 50 to 400 nm, advantageously 100 to 350 nm, in particular 150 to 300 nm, in particular 200 to 250 nm.
  • the droplets are also called “drops” below.
  • the droplets are small enough to allow them to circulate in biological media without degradation of the product.
  • the size of the droplets can be measured by photon correlation spectroscopy (PCS for "photon correlation spectroscopy” in English).
  • the aqueous phase is advantageously water or a pharmaceutically acceptable aqueous solution such as a saline solution or a buffer solution.
  • the aqueous phase may for example be water comprising 1 to 4%, preferably 2 to 3%, more preferably 2.5% by weight of glycerol relative to the weight of the aqueous phase.
  • any suitable fluorinated oil may be used, in particular the fluorinated oils already used in medical imaging.
  • the fluorinated oil is in particular an oil chosen from oils including linear or branched, cyclic or polycyclic, saturated or unsaturated perfluorocarbons, perfluorinated cyclic tertiary amines, perfluoro esters or thioesters, haloperfluorocarbons and analogous or derived analogous compounds.
  • at least 60% of the hydrogen atoms of the corresponding hydrocarbon oil are replaced by a fluorine atom.
  • these fluorinated oils are chains of 2 to 16 atoms, perfluoroalkanes, bis (perfluoroalkyl) alkenes, perfluoroethers, perfluoroamines, perfluoroalkyl bromides, perfluoroalkyl chlorides.
  • the lipid nanodroplet includes perfluorocarbons as described in US Pat. No. 5,958,371, the liquid nanoemulsion containing nanodroplets comprising a perfluorocarbon with a relatively high boiling point (for example between 30 and 150 ° C., preferably between 50 and 150 ° C. ° C) surrounded by a coating composed of a lipid and / or a surfactant.
  • a perfluorocarbon with a relatively high boiling point for example between 30 and 150 ° C., preferably between 50 and 150 ° C. ° C
  • oils for perfluorocarbon nanoemulsions for MRI imaging are recalled in particular in documents US 6,676,963, US 4,927,623, US 5,077,036, US 5,1 14,703, US 5,171,755, US 5,304,325, US 5,350,571, US 5,393,524, US 5,403,575; especially oils: perfluorooctylbromide PFOB, C8F17Br (PFOB or perfluorobron) perfluorooctyléthane (C8F17C2H5 PFOE) Perfluorodecalin FDC, perfluorooctane C8F18, perfluorodichlorooctane bromide, perfluoro-n-octyl, perfluoroheptane, perfluorodecane C10F22, perfluorododecyl bromide C10F22Br PFDB, perfluorocyclohexane, perflufluorofluor
  • oils of formula C n F 2n + 1 X, XC n F 2n X, where n is an integer ranging from 2 to 10, X Br, Cl or I
  • 1-bromo-F-butane (nC 4 F 9 Br), 1-bromo-F-hexane (nC 6 F 3 Br), 1-bromo-F-heptane (nC 7 F 15 Br), 1, 4- dibromo-F-butane and 1,6-dibromo-F-hexane.
  • Fluorinated compounds with chlorinated substituents are also included, for example: perfluorooctyl chloride (nC 8 F 7 Cl), 1,8-dichloro-F-octane (n-C 8 F 6 Cl), 1, 6-dichloro-F hexane (n-CIC 6 F 12 Cl), and 1,4-dichloro-F-butane (n-Cl C 4 F 8 Cl).
  • polycyclic or cyclic compounds such as: d 0 F 18 (F- Decalin or Perfluorodecalin), and mixtures of perfluoroperhydrophenanthrene and perfluoro n-butyldecalin.
  • Perfluorinated amines such as: F-tripropylamine (“FTPA”), F-tributylamine (“FTBA”), F-4-methyloctahydroquinolizine (“FMOQ”), FN-methyl-decahydroisoquinoline (“FMIQ”), are also included.
  • FHQ F-tripropylamine
  • FBA F-tributylamine
  • FMOQ F-4-methyloctahydroquinolizine
  • FMIQ FN-methyl-decahydroisoquinoline
  • FHQ FN-methyldecahydroquinoline
  • FCHP FN-cyclohexylpyrrolidine
  • FC-75 F-2-butyltetrahydrofuran
  • FC-77 F-2-butyltetrahydrofuran
  • the surfactant of the nanoemulsion according to the invention is an anionic surfactant.
  • the invention relates to an oil-in-water nanoemulsion, especially for MRI, comprising:
  • the surfactant being an anionic surfactant.
  • the applicant has indeed found that the use of at least one anionic surfactant (whose hydrophilic part is negatively charged, typically with a carboxylate or sulfonate group) makes it possible to increase the stability of the nanoemulsion.
  • the anionic surfactant is chosen from surfactants known and usable according to the Pharmacopoeia, in particular SDS (sodium dodecyl sulphate).
  • the anionic surfactant is a fatty acid.
  • the pH of the continuous aqueous phase is chosen so that the carboxylic acid function of the fatty acid is in the carboxylate form, taking into account the pKa of the carboxylic acid functions of the fatty acids (generally between 4 and 5).
  • the skilled person is able to adjust the pH of the continuous aqueous phase in this sense.
  • the continuous aqueous phase generally has a pH of about 7.
  • the term "fatty acid” refers to aliphatic carboxylic acids having a carbon chain of at least 6 carbon atoms. Natural fatty acids have a carbon chain of 4 to 28 carbon atoms (usually an even number). It is called “long chain fatty acid” for a length of 14 to 22 carbons and “very long chain", if there are more than 22 carbons. On the contrary, we speak of "short-chain fatty acid” for a length of 6 to 10 carbons, in particular 8 or 10 carbon atoms. The skilled person knows the associated nomenclature and in particular uses:
  • the anionic surfactant may be an unsaturated fatty acid, preferably monounsaturated, especially C16-C24, advantageously C16-C18, more advantageously C18, in particular oleic acid (in the form of carboxylate).
  • the nanoemulsion typically comprises from 0.05 to 5% of anionic surfactant, especially from 0.2 to 3% of anionic surfactant, in particular 0.25, 0.5, 1, 1, 1 or 2% of anionic surfactant (for example: example of oleic acid), relative to the total weight of the fluorinated oil.
  • anionic surfactant for example: example of oleic acid
  • said nanoemulsion further comprises a compatibilizer forming an additional layer interposed between the fluorinated oil phase and the surfactant layer.
  • the compatibilizing agent is a hydrocarbon-based (non-fluorinated) oil comprising at least 70%, advantageously at least 80%, advantageously at least 95% by weight, in particular at least 97%, of saturated fatty acids.
  • the hydrocarbon oil comprises less than 10%, preferably less than 5% of unsaturated fatty acids, in particular less than 5%, and preferably less than 2%, less than 1% unsaturated fatty acids. C14-C18 or C14-C22.
  • oil is MIGLYOL ® .
  • MIGLYOL ® 810 or MIGLYOL ® 812 (caprylic / capric triglyceride), MIGLYOL ® 818 (caprylic / capric / linoleic triglyceride), MIGLYOL ® 612 (glyceryl trihexanoate), others MIGLYOL ® derivatives propylene glycol dicaprylate dicaprate.
  • Miglyol ® 812 has the following composition:
  • Linoleic acid (C18-2):
  • the saturated hydrocarbon oil is a mixture of saturated oils each comprising at least 70%, preferably at least 80, 90, 95% of saturated fatty acids of 6 to 10 carbon atoms.
  • the saturated hydrocarbon oil is a saturated oil comprising at least 70%, preferably at least 80, 90, 95% of saturated fatty acids of 12 to 18 carbon atoms, or comprising a mixture of saturated oils. each comprising at least 70%, preferably at least 80, 90, 95% saturated fatty acids of 12 to 18 carbon atoms.
  • the saturated fatty acids of the saturated oils used by the applicant are used in the form of mono-, di- or triglycerides, preferably triglycerides.
  • the hydrocarbon oil of the applicant's nanoemulsions comprises saturated fatty acids in the following variants:
  • C8 + C10> 70% preferably C8 + C10> 80%, preferably C8 + C10> 95%, and still preferably C8 + C10> 98%
  • the nanoemulsion comprises a surfactant. It is clear to those skilled in the art that it is at least one surfactant (for example a surfactant mixture) forming a surfactant layer between the oily phase and the aqueous phase, and also referred to as "total surfactants". in the application.
  • the nanoemulsion may comprise an anionic surfactant and an amphiphilic lipid, and / or a pegylated lipid as defined hereinafter.
  • the surfactant generally comprises one or more amphiphilic lipids, which comprise a hydrophilic part and a lipophilic part. They are generally chosen from compounds whose lipophilic part comprises a saturated or unsaturated, linear or branched chain having from 8 to 30 carbon atoms.
  • the amphiphilic lipid is a phospholipid, preferably chosen from: phosphatidylcholine dioleoylphosphatidylcholine, dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, phosphatidylethanolamine, sphingomyelin, phosphatidylserine, phosphatidylinositol.
  • Lecithin is a preferred amphiphilic lipid.
  • Lipoid, for example E80 is also a preferred lipid.
  • the amphiphilic lipid may also be chosen also from cholesterols, lysolipids, sphingomyelins, tocopherols, glucolipids, stearylamines, cardiolipins of natural or synthetic origin; molecules composed of a fatty acid coupled to a hydrophilic group by an ether or ester function such as sorbitan esters such as, for example, sorbitan monooleate and monolaurate; polymerized lipids; sugar esters such as mono- and di-laurate, mono- and di-palmitate, sucrose mono- and distearate; said amphiphilic lipids may be used alone or in mixtures.
  • the amphiphilic lipid is a lipoid, in particular lipoid E80.
  • all or part of the amphiphilic lipid may have a reactive function, such as a maleimide, thiol, amine, ester, oxyamine or aldehyde group.
  • a reactive function such as a maleimide, thiol, amine, ester, oxyamine or aldehyde group.
  • pegylated lipids that is to say carriers of polyethylene oxide (PEG) groups, such as polyethylene glycol / phosphatidyl ethanolamine (PEG-PE).
  • PEG polyethylene oxide
  • PEG-PE polyethylene glycol / phosphatidyl ethanolamine
  • polyethylene glycol PEG generally denotes compounds comprising a chain -CH 2 - (CH 2 -O-CH 2 ) k -CH 2 OR 3 in which k varies from 2 to 100 (for example 2, 4, 6, 10, 50), and R 3 is chosen from H, alkyl or - (CO) Alk, the term “alkyl” or “alk” denoting a linear or branched hydrocarbon aliphatic group having about 1 to 6 carbon atoms in the chain.
  • polyethylene glycol as used herein includes aminopolyethylene glycol compounds, such as DSPE-PEG (DSPE: Distearoyl phosphatidyl ethanolamine).
  • PEGs 350, 750, 2000, 3000, 5000, modified by the addition of amphiphilic groups to be inserted into the surfactant layer of the nanodroplet, include:
  • pegylated lipid will be used:
  • the surfactant comprises a mixture of lipoid (amphiphilic lipid) and DSPE-PEG (pegylated lipid), in particular Lipoid E80 and DSPE-PEG 2000.
  • the surfactant layer includes at least one amphiphilic targeting ligand of a physiological zone (also called a biovector), the amphiphilic targeting ligand representing 0.1 to 10 mol% of the total of the surfactant layer, advantageously 0.05 to 5%. %, especially 1 to 2%.
  • a physiological zone also called a biovector
  • the droplets of the nanoemulsions typically each comprise a number of amphiphilic targeting ligands of the order of 100 to 5000, in particular 500 to 2000, which allows the targeting according to the affinity and the multivalence of the targeting ligand to be effective.
  • the oil-in-water nanoemulsion comprises:
  • an aqueous phase preferably representing 29.3 to 80% by weight of the composition, advantageously 55 to 65%, more advantageously 58 to 62%
  • a fluorinated phase comprising at least one fluorinated oil, representing 19.3 to 70% by weight of the composition, advantageously 35 to 45%, more preferably 37 to 42%
  • a compatibilizing agent forming a layer between the fluorinated oil phase and the surfactant layer
  • the total content of surfactant by weight relative to the oil being between 3 and 15%, advantageously between 6 and 12%;
  • the total content of surfactant by weight relative to the composition being between 0.6 and 10%, advantageously between 1 and 3%;
  • the total content of compatibilizing agent being between 0.1% and 5% by weight relative to the aqueous phase.
  • the nanoemulsions of the applicant oil in water, especially for MRI include:
  • a surfactant at the interface between the aqueous phase and the fluorinated oil phase, the fluorinated phase comprising a first fluorinated oil and at least a second fluorinated oil.
  • the applicant has indeed found that a mixture of fluorinated oils increases the stability of the nanoemulsion.
  • the first fluorinated oil represents between 70 and 95% by weight of the fluorinated oil phase and the second fluorinated oil represents 5 to 30% by weight of the fluorinated oil phase.
  • the fluorinated oils are chosen from the fluorinated oils described in the present application.
  • the second fluorinated oil is an oil with a longer molecular chain than the first fluorinated oil (that is to say comprising more carbon atoms, and whose molecular mass is generally higher).
  • the first fluorinated oil is PFOB
  • the second fluorinated oil is an oil with a longer molecular chain, preferably the perfluorohexadecane PFHD or perfluorodecylbromide PFDB.
  • the ratio is 10% by weight in PFHD or PFDB and 90% by weight in PFOB.
  • the invention thus relates, in one embodiment, to an oil-in-water nanoemulsion, in particular for MRI, comprising:
  • said nanoemulsion further comprising a compatibilizing agent forming an additional layer interposed between the fluorinated oil phase and the surfactant layer,
  • the fluorinated phase comprising a first fluorinated oil and at least one second fluorinated oil.
  • the invention relates to an oil-in-water nanoemulsion for MRI comprising:
  • said nanoemulsion further comprising at least one stabilizing agent selected from proteins and polysaccharides, preferably proteins.
  • the applicant has indeed found that the use of at least one protein or polysaccharide makes it possible to increase the stability of the nanoemulsion.
  • the protein is chosen from the proteins known and usable according to the Pharmacopoeia, in particular casein or lactoglobulin and preferentially lactoglobulin.
  • the polysaccharide is preferably starch.
  • the protein or the polysaccharide is used in a proportion of between 0.1 and 5% by weight relative to the aqueous phase.
  • the nanoemulsion comprises a compatibilizing agent as defined above.
  • the oily phase of the nanoemulsion comprises a first fluorinated oil and at least one second fluorinated oil.
  • the nanoemulsion comprises a compatibilizing agent as defined above and the oily phase of the nanoemulsion comprises a first fluorinated oil and at least one second fluorinated oil.
  • the invention relates to a process for preparing oil-in-water emulsions, in particular for MRI, comprising an aqueous phase, a fluorinated oil phase, a surfactant at the interface between the aqueous and lipid phases, the process comprising Steps :
  • the nanoemulsion is centrifuged in order to separate the droplets from the continuous phase. Since the oil is heavier than water, the droplets are the opaque and viscous sub-oil, while the continuous phase containing water and phospholipids form the supernatant. This supernatant is replaced by a continuous phase (water or salt water) without phospholipids.
  • the invention relates to the use of a nanoemulsion as defined above or of a nanoemulsion obtainable by the method as defined above as a contrast agent, in particular for detection.
  • magnetic resonance imaging (MRI) magnetic resonance imaging
  • the invention also relates to a contrast agent comprising a nanoemulsion as defined above or a nanoemulsion obtainable by the process as defined above.
  • Figure 1 Section of a drop of oil stabilized by surfactants
  • Figure 3 Schematic diagram of Ostwald ripening
  • Figure 4 size in nm of the droplets in the poor diet (3% mass.) In pure water as a function of time in days (example II.1)
  • Figure 5 size in nm of the droplets in the rich diet (12% mass.) In pure water as a function of time in days (example II.1)
  • Figure 6 Size in nm of the droplets comprising anionic (diamond), cationic (triangles) and nonionic (square) surfactants of carbon chains C12, in pure water as a function of time in days (Example II.2)
  • anionic diamond
  • cationic triangles
  • nonionic square
  • the products used to formulate nanoemulsions are:
  • PL natural lipoid phospholipid E80
  • PLM pegylated phospholipid DSPE-PEG 2000
  • Anionic surfactant Oleic acid or SDS
  • the phospholipids (PL) and modified phospholipids (PLM) and the anionic surfactant are dissolved with magnetic stirring and heating (45%) in the continuous phase containing pure water or salt water.
  • a so-called coarse nanoemulsion is formed by gradually incorporating the oil into the aqueous phase with vigorous stirring using Ultra-Turrax.
  • This pre-emulsion is then passed to the microfluidizer to reduce the size of the drops.
  • the average droplet size d h as well as an indicator of the droplet size distribution width (PDI) are measured by the dynamic scattering of light.
  • Table 1 Composition of the nanoemulsions of FIGS. 4 and 5 The following nanoemulsions were prepared (the percentages being expressed by weight relative to the CMC (critical micelle concentration):
  • the size of the nanoemulsions was measured by photon correlation spectroscopy (PCS for "photon correlation spectroscopy” in English) using a particle size analyzer Zetasizer NanoS (Malvern company).
  • the particles of the SC nanoemulsion (last row of Table 1) had an average size of 190 nm. At 14 days after their manufacture, this size was 223 nm. At 191 days, it was 175 nm.
  • the phospholipids PL and PLM were replaced by anionic (diamond), cationic (triangles) and nonionic (square) surfactants of carbon chains C12 (FIG. .
  • anionic surfactants are the ones that best stabilize the nanoemulsion.
  • the nonionic and cationic surfactants do not remain at the interface and the nanoemulsion destabilizes very quickly.

Abstract

The present application relates to an oil-in-water emulsion, including: an aqueous phase; a fluorinated oil phase; and a surfactant at the interface between the aqueous phase and the fluorinated oil phase, the surfactant being an anionic surfactant, as well as to a method for preparing same, and to the use thereof as a contrast agent.

Description

NANOEMULSIONS PERFLUORÉES , LEUR PROCEDE DE PREPARATION, ET LEUR UTILISATION COMME AGENT DE CONTRASTE.  PERFLUOROUS NANOEMULSIONS, PROCESS FOR THEIR PREPARATION, AND THEIR USE AS A CONTRAST AGENT.
La présente invention concerne de nouvelles nanoémulsions et de nouveaux procédés de préparation de nanoémulsions, et leur utilisation comme agents de contraste notamment en IRM. Dans le domaine de l'imagerie diagnostique, un grand nombre de recherches ont concerné des nanosystèmes lipidiques de type émulsion. Typiquement les émulsions utilisées sont sous forme de vésicules préparées à l'aide de constituants lipidiques (huile en particulier) et de tensioactifs (également désignés surfactants) servant d'interface entre la phase aqueuse et le noyau lipidique de la nanogouttelette. Les émulsions lipidiques huile dans eau incorporent une phase huileuse lipophile, formant des gouttelettes en solution aqueuse. The present invention relates to new nanoemulsions and methods for the preparation of nanoemulsions, and their use as contrast agents, especially in MRI. In the field of diagnostic imaging, a large number of studies have concerned lipid nanosystems of the emulsion type. Typically the emulsions used are in the form of vesicles prepared using lipid constituents (oil in particular) and surfactants (also called surfactants) serving as interface between the aqueous phase and the lipid core of the nanodroplet. The oil-in-water lipid emulsions incorporate a lipophilic oily phase, forming droplets in aqueous solution.
Une catégorie particulière d'émulsions décrite notamment dans WO 03/062198 ou US 6,676,963 est celle de nanoémulsions fluorées comprenant, intégrés à l'intérieur des vésicules lipidiques, des composés fluorés comportant des atomes de fluor F19 utilisés pour l'Imagerie de Résonance Magnétique IRM. En effet le fluor a notamment l'intérêt par rapport à l'IRM du proton d'être quasiment absent en dans les systèmes biologiques à l'état libre ce qui lui permet d'être reconnu comme une excellente sonde quantitative sous la forme fluor F19. Le cœur est formé d'une huile fluorée, et entouré d'une couche lipidique formée par un tensioactif (lécithine par exemple).  A particular class of emulsions described in particular in WO 03/062198 or US Pat. No. 6,676,963 is that of fluorinated nanoemulsions comprising, integrated within the lipid vesicles, fluorinated compounds comprising fluorine atoms F19 used for Magnetic Resonance Imaging MRI. . Indeed fluorine has particular interest compared to the MRI of the proton to be almost absent in the biological systems in the free state which allows it to be recognized as an excellent quantitative probe in the fluorine form F19 . The heart is formed of a fluorinated oil, and surrounded by a lipid layer formed by a surfactant (lecithin for example).
Ces émulsions fluorées peuvent comprendre en outre un nombre très élevé de complexes de métaux paramagnétiques, en particulier de lanthanides, pour associer l'IRM du fluor 19F et du proton 1 H. On connaît ainsi des émulsions fluorées pour IRM incorporant des chélates capables de complexer des lanthanides en particulier le gadolinium. Les chélates utilisés sont notamment des dérivés du DTPA, DOTA, D03A, HPD03A et autres chélates largement décrits dans l'art antérieur. Ces chélates hydrophiles sont rendus lipophiles en leur greffant une zone lipophile telle qu'un phospholipide, ce qui permet de les intégrer dans la membrane lipidique que forme le tensioactif lipidique de la composition. Plusieurs milliers (5000 à 100 000 environ) de ces complexes sont intégrés dans la membrane lipidique de ces vésicules, ce qui permet d'obtenir une relaxivité (signal IRM) élevée pour une détection de la zone physiologique étudiée et modifier le temps de relaxation du 19F. La partie hydrophile (la partie hydrophile que représente le chélate auquel est attaché un groupe lipophile de manière à prendre le chélate lipophile) est localisée à la surface externe des nanogouttelettes, en contact avec la phase aqueuse de la solution de nanogouttelettes.  These fluorinated emulsions may furthermore comprise a very large number of paramagnetic metal complexes, in particular lanthanides, to associate the MRI of fluorine 19F and proton H. Thus, fluorine emulsions for MRI incorporating chelates capable of complexing are known. lanthanides, especially gadolinium. The chelates used are in particular derivatives of DTPA, DOTA, D03A, HPD03A and other chelates widely described in the prior art. These hydrophilic chelates are rendered lipophilic by grafting them with a lipophilic zone such as a phospholipid, which makes it possible to integrate them into the lipid membrane that forms the lipid surfactant of the composition. Several thousand (about 5000 to 100,000) of these complexes are integrated in the lipid membrane of these vesicles, which allows to obtain a high relaxivity (MRI signal) for a detection of the physiological zone studied and to modify the relaxation time of the 19F. The hydrophilic part (the hydrophilic part which represents the chelate to which a lipophilic group is attached so as to take the lipophilic chelate) is located on the outer surface of the nanodroplets, in contact with the aqueous phase of the nanodroplet solution.
On connaît aussi des émulsions huile dans eau et non fluorées, comprenant des chélates de lanthanides pour l'IRM uniquement du proton. En outre, afin d'obtenir un signal spécifique de zones pathologiques, par exemple associés à une surexpression d'un marqueur de ces zones (récepteurs par exemple), des molécules de ciblage (ou biovecteurs, peptide par exemple ayant une affinité pour le récepteur) ont été greffés sur les nanogouttelettes de ces émulsions fluorées. WO 03/062198 décrit en particulier l'utilisation de composés peptidomimétiques pour cibler des intégrines surexprimées dans des zones tumorales. Pour l'incorporation à la membrane lipidique, les biovecteurs sont rendus lipophiles en les associant à des chaînes lipophiles. Also known are oil-in-water and non-fluorinated emulsions, including lanthanide chelates for MRI only of the proton. In addition, in order to obtain a specific signal of pathological zones, for example associated with overexpression of a marker of these zones (for example receptors), targeting molecules (or biovectors, for example peptide having an affinity for the receptor ) were grafted onto the nanodroplets of these fluorinated emulsions. WO 03/062198 describes in particular the use of peptidomimetic compounds to target integrins overexpressed in tumor areas. For incorporation into the lipid membrane, biovectors are rendered lipophilic by combining them with lipophilic chains.
Toutefois, malgré des avancées prometteuses, les agents de contraste fluorés et le cas échéant vectorisés décrits n'ont pas encore démontré totalement leur efficacité clinique, et posent des difficultés notamment en matière de stabilité dans la durée. En particulier une durée de conservation de plus de 9 mois est difficile à atteindre, alors que la stabilité recherchée est d'au moins un an et de préférence de l'ordre de 2 à 3 ans.  However, despite promising advances, fluorinated contrast agents and optionally vectorized described have not yet fully demonstrated their clinical effectiveness, and pose difficulties including stability over time. In particular a shelf life of more than 9 months is difficult to achieve, while the desired stability is at least one year and preferably of the order of 2 to 3 years.
Un problème technique complexe reste l'optimisation des constituants, notamment l'huile et les surfactants. Il s'agit ici d'émulsions directes de type huile dans eau (H/E), dont la phase dispersée est lipophile et la phase continue hydrophile. La non miscibilité des deux phases a pour conséquence l'existence d'interface entre l'eau et l'huile, ce qui coûte de l'énergie au système. Cette énergie est quantifiée par la tension interfaciale notée γ (énergie par unité de surface). Grâce à leur double affinité, les molécules amphiphiles utilisées comme tensioactif (ou surfactant) peuvent s'adsorber aux interfaces et ainsi diminuer la tension interfaciale. Les molécules amphiphiles particulièrement considérées ici sont des phospholipides.  A complex technical problem remains the optimization of constituents, including oil and surfactants. These are direct emulsions of oil-in-water (O / W) type, the dispersed phase of which is lipophilic and the continuous hydrophilic phase. The immiscibility of the two phases results in the existence of interface between the water and the oil, which costs energy to the system. This energy is quantified by the interfacial tension γ (energy per unit area). Thanks to their double affinity, the amphiphilic molecules used as surfactant (or surfactant) can be adsorbed at the interfaces and thus reduce the interfacial tension. The amphiphilic molecules particularly considered here are phospholipids.
Lorsque de l'énergie mécanique est fournie au système, la quantité d'interface entre les deux fluides non miscibles est augmentée et l'une des deux phases est fragmentée sous forme de gouttelettes. La présence des molécules amphiphiles à l'interface va ralentir le retour à la séparation de phase (voir figure 1 ).  When mechanical energy is supplied to the system, the amount of interface between the two immiscible fluids is increased and one of the two phases is fragmented into droplets. The presence of the amphiphilic molecules at the interface will slow down the return to phase separation (see Figure 1).
Ces agents de surface peuvent être de natures différentes : tensioactif classique, polymère, phospholipide, particule... Ils induisent des répulsions stériques ou électrostatiques entre les gouttes.  These surfactants can be of different natures: conventional surfactant, polymer, phospholipid, particle ... They induce steric or electrostatic repulsions between the drops.
Généralement, les stabilisants sont des tensioactifs et ne sont pas ancrées irréversiblement à l'interface. Au dessus de la concentration micellaire critique (CMC) les molécules amphiphiles s'auto-assemblent dans la phase continue et elles adoptent des formes variées fonction de plusieurs facteurs. Il existe alors un équilibre dynamique avec échange continuel entre les molécules adsorbées à l'interface et en excès dans la phase continue. Il existe deux mécanismes de destruction des émulsions (déstabilisation irréversible) qui font évoluer le système vers la séparation macroscopique des phases. Ces deux instabilités sont la coalescence et le mûrissement d'Ostwald. Generally, the stabilizers are surfactants and are not anchored irreversibly at the interface. Above the critical micelle concentration (CMC) amphiphilic molecules self-assemble in the continuous phase and they adopt various forms depending on several factors. There is then a dynamic equilibrium with continuous exchange between the adsorbed molecules at the interface and in excess in the continuous phase. There are two mechanisms of destruction of emulsions (irreversible destabilization) that make the system evolve towards the macroscopic phase separation. These two instabilities are the coalescence and ripening of Ostwald.
La coalescence correspond à la rupture du film de surfactants séparant deux gouttes en contact, entraînant ainsi la fusion de celles-ci (Voir figure 2).  The coalescence corresponds to the rupture of the film of surfactants separating two drops in contact, thus causing the fusion of these (See Figure 2).
Le mûrissement d'Ostwald est dû au transfert de la phase dispersée à travers la phase continue, des petites gouttes vers les plus grosses sous l'effet de leur différence de pression interne : la pression dans les gouttes est en effet d'autant plus grande que leur rayon est faible (loi de Laplace : PLaplace= 2y/R). Ce transfert a lieu afin d'égaliser les pressions internes (Voir figure 3).  The Ostwald ripening is due to the transfer of the dispersed phase through the continuous phase, from the small drops to the larger ones under the effect of their internal pressure difference: the pressure in the drops is indeed greater. that their radius is weak (Laplace's law: PLaplace = 2y / R). This transfer takes place in order to equalize the internal pressures (See Figure 3).
Le mûrissement d'Ostwald domine pour les gouttes de petite taille tandis que la coalescence est le mécanisme majoritaire pour les gouttes de grande taille. Lors de la déstabilisation de la nanoémulsion, l'augmentation de la taille des gouttes s'accompagne d'une diminution de la quantité d'interface eau-huile S : (S=6V/D), où V est le volume d'huile et D le diamètre des gouttelettes et d'une désorption du stablisant.  Ostwald ripening dominates for small drops while coalescence is the predominant mechanism for large drops. During the destabilization of the nanoemulsion, the increase in the size of the drops is accompanied by a decrease in the amount of water-oil interface S: (S = 6V / D), where V is the volume of oil and D the diameter of the droplets and desorption of the stablizer.
Dans une émulsion, les deux mécanismes de déstabilisation ont lieu, avec mûrissement d'Ostwald puis coalescence au cours du temps.  In an emulsion, the two mechanisms of destabilization take place, with Ostwald maturing and then coalescing over time.
L'objectif est de réaliser des nanoémulsions directes stables dans le temps, dont les interfaces sont recouvertes par un mélange de phospholipides naturels (PL) et de phospholipides modifiés (PLM).  The objective is to achieve direct nanoemulsions stable over time, whose interfaces are covered by a mixture of natural phospholipids (PL) and modified phospholipids (PLM).
Le demandeur a réussi à obtenir des nanoémulsions comprenant des gouttelettes le cas échéant vectorisées :  The applicant has succeeded in obtaining nanoemulsions including droplets where appropriate vectorized:
- suffisamment stables pour être produites et conservées une longue durée (plusieurs mois à plusieurs années), en particulier en limitant les problèmes de coalescence des gouttelettes lipidiques entre elles  - stable enough to be produced and kept for a long time (several months to several years), in particular by limiting the problems of coalescence of the lipid droplets between them
- suffisamment stables in vivo pour ne pas être dégradées  - sufficiently stable in vivo not to be degraded
- adaptées sur le plan de la pharmacocinétique  - adapted to pharmacokinetics
suffisamment efficaces en terme de signal pour l'imagerie clinique (IRM en particulier) chez le patient.  sufficiently effective in terms of signal for clinical imaging (MRI in particular) in the patient.
A cet effet, la demande fournit des nanoémulsions huile dans l'eau comprenant une phase aqueuse et une phase huile fluorée.  For this purpose, the application provides oil-in-water nanoemulsions comprising an aqueous phase and a fluorinated oil phase.
Au sens de la présente demande, par « nanoémulsion », on entend que la taille des gouttelettes est comprise entre 1 et 1000 nm. La taille des gouttelettes est typiquement de 50 à 400 nm, avantageusement 100 à 350 nm, notamment 150 à 300 nm, en particulier 200 à 250 nm. Les gouttelettes sont également appelées « gouttes » ci-après. Les gouttelettes ont une taille suffisamment petite pour leur permettre de circuler dans les milieux biologiques sans dégradation du produit. La taille des gouttelettes peut être mesurée par spectroscopie par corrélation de photons (PCS pour "photon corrélation spectroscopy" en anglais). For the purposes of the present application, the term "nanoemulsion" means that the droplet size is between 1 and 1000 nm. The size of the droplets is typically 50 to 400 nm, advantageously 100 to 350 nm, in particular 150 to 300 nm, in particular 200 to 250 nm. The droplets are also called "drops" below. The droplets are small enough to allow them to circulate in biological media without degradation of the product. The size of the droplets can be measured by photon correlation spectroscopy (PCS for "photon correlation spectroscopy" in English).
Dans les nanoémulsions selon l'invention, la phase aqueuse est avantageusement de l'eau ou une solution aqueuse pharmaceutiquement acceptable telle qu'une solution saline, une solution tampon. La phase aqueuse pourra par exemple être de l'eau comprenant de 1 à 4%, préférentiellement de 2 à 3%, encore plus préférentiellement 2,5% en poids de glycérol par rapport au poids de la phase aqueuse. In the nanoemulsions according to the invention, the aqueous phase is advantageously water or a pharmaceutically acceptable aqueous solution such as a saline solution or a buffer solution. The aqueous phase may for example be water comprising 1 to 4%, preferably 2 to 3%, more preferably 2.5% by weight of glycerol relative to the weight of the aqueous phase.
Dans les nanoémulsions selon l'invention, pour la phase huile fluorée, toute huile fluorée appropriée peut être utilisée, en particulier les huiles fluorées déjà utilisées en imagerie médicale. L'huile fluorée est notamment un huile choisie parmi les huiles incluant des perfluorocarbones linéaires ou ramifiés, ou cycliques ou polycycliques, saturés ou insaturés, des aminés tertiaires cycliques perfluorées, des perfluoro esters ou thioesters, des haloperfluorocarbones et composés connus analogues ou dérivés. Avantageusement au moins 60% des atomes d'hydrogène de l'huile hydrocarbonée correspondante sont remplacés par un atome de fluor. Typiquement ces huiles fluorées sont des chaînes de 2 à 16 atomes, perfluoroalkanes, bis(perfluoroalkyle)alcènes, perfluoréthers, perfluoroamines, perfluoroalkyle bromures, perfluoroalkyle chlorures.  In the nanoemulsions according to the invention, for the fluorinated oil phase, any suitable fluorinated oil may be used, in particular the fluorinated oils already used in medical imaging. The fluorinated oil is in particular an oil chosen from oils including linear or branched, cyclic or polycyclic, saturated or unsaturated perfluorocarbons, perfluorinated cyclic tertiary amines, perfluoro esters or thioesters, haloperfluorocarbons and analogous or derived analogous compounds. Advantageously, at least 60% of the hydrogen atoms of the corresponding hydrocarbon oil are replaced by a fluorine atom. Typically these fluorinated oils are chains of 2 to 16 atoms, perfluoroalkanes, bis (perfluoroalkyl) alkenes, perfluoroethers, perfluoroamines, perfluoroalkyl bromides, perfluoroalkyl chlorides.
Selon des réalisations avantageuses, la nanogouttelette lipidique inclut des perfluorocarbones tels que décrits dans US 5,958,371 , la nanoémulsion liquide contenant des nanogouttelettes comportant un perfluorocarbone à point d'ébullition assez élevé (par exemple entre 30 et 150 °C, de préférence entre 50 et 150°C) entouré d'un revêtement composé d'un lipide et/ou d'un surfactant.  According to advantageous embodiments, the lipid nanodroplet includes perfluorocarbons as described in US Pat. No. 5,958,371, the liquid nanoemulsion containing nanodroplets comprising a perfluorocarbon with a relatively high boiling point (for example between 30 and 150 ° C., preferably between 50 and 150 ° C. ° C) surrounded by a coating composed of a lipid and / or a surfactant.
Les huiles perfluorées pour nanoémulsions de perfluorocarbone pour imagerie IRM sont rappelées notamment dans les documents US 6,676,963, US 4,927,623, US 5,077,036, US 5,1 14,703, US 5,171 ,755, US 5,304,325, US 5,350,571 , US 5,393,524, US 5,403,575 ; notamment les huiles : perfluorooctylbromide PFOB, C8F17Br (PFOB ou perfluorobron), perfluorooctyléthane (C8F17C2H5 PFOE), perfluorodecalin FDC, perfluorooctane C8F18, perfluorodichlorooctane, bromure de perfluoro-n-octyl, perfluoroheptane, perfluorodécane C10F22, perfluorododécyle bromide C10F22Br PFDB, perfluorocyclohexane, perfluoromorpholine, perfluorotripropylamine, perfluorotributylamine, perfluorodiméthylcyclohexane, perfluorotriméthylcyclohexane, ester de perfluorodicyclohexyl, perfluoro-n- butyltétrahydrofurane.  The perfluorinated oils for perfluorocarbon nanoemulsions for MRI imaging are recalled in particular in documents US 6,676,963, US 4,927,623, US 5,077,036, US 5,1 14,703, US 5,171,755, US 5,304,325, US 5,350,571, US 5,393,524, US 5,403,575; especially oils: perfluorooctylbromide PFOB, C8F17Br (PFOB or perfluorobron) perfluorooctyléthane (C8F17C2H5 PFOE) Perfluorodecalin FDC, perfluorooctane C8F18, perfluorodichlorooctane bromide, perfluoro-n-octyl, perfluoroheptane, perfluorodecane C10F22, perfluorododecyl bromide C10F22Br PFDB, perfluorocyclohexane, perfluoromorpholine, perfluorotripropylamine, perfluorotributylamine, perfluorodimethylcyclohexane, perfluorotrimethylcyclohexane, perfluorodicyclohexyl ester, perfluoro-n-butyltetrahydrofuran.
On inclut dans la définition des huiles fluorées les huiles de formule Cn F 2n+i X, XCn F2n X, où n est un nombre entier variant de 2 à 10, X = Br, Cl ou I Included in the definition of fluorinated oils are oils of formula C n F 2n + 1 X, XC n F 2n X, where n is an integer ranging from 2 to 10, X = Br, Cl or I
notamment : 1 bromo-F-butane (n-C4 F9 Br), 1 -bromo-F-hexane (n-C6 F 3 Br), 1 -bromo-F- heptane (n-C7 F15 Br), 1 ,4-dibromo-F-butane et 1 ,6-dibromo-F-hexane. On inclut aussi des composés fluorés avec des substituants chlorés par exemple: perfluorooctyl chloride (n-C8 F 7 Cl), 1 ,8-dichloro-F-octane (n-CI C8 F 6 Cl), 1 ,6-dichloro- F-hexane (n-CIC6 F12 Cl), et 1 ,4-dichloro-F-butane (n-CI C4 F8 Cl). in particular: 1-bromo-F-butane (nC 4 F 9 Br), 1-bromo-F-hexane (nC 6 F 3 Br), 1-bromo-F-heptane (nC 7 F 15 Br), 1, 4- dibromo-F-butane and 1,6-dibromo-F-hexane. Fluorinated compounds with chlorinated substituents are also included, for example: perfluorooctyl chloride (nC 8 F 7 Cl), 1,8-dichloro-F-octane (n-C 8 F 6 Cl), 1, 6-dichloro-F hexane (n-CIC 6 F 12 Cl), and 1,4-dichloro-F-butane (n-Cl C 4 F 8 Cl).
On inclut aussi les huiles fluorées de formule Cn F 2n+1 OCm F 2m+1 , Cn F 2n+i CH=CHCm F 2m+1 , par exemple : C4 F9 CH=CHC4 F9 (F-44E), i-C3 F9 CH=CHC6 F13 (F- i36E), C6 F13 CH=CHC6 F13 (F-66E)) où n et m sont identiques ou différentes, et sont des entiers compris entre 2 et 12. Fluorinated oils of formula C n F 2n + 1 OC m F 2m + 1 , C n F 2n + i CH = CHC m F 2m + 1 are also included , for example: C 4 F 9 CH = CHC 4 F 9 (F -44E), iC 3 F 9 CH = CHC 6 F 13 (F-36E), C 6 F 13 CH = CHC 6 F 13 (F-66E)) where n and m are identical or different, and are integers between 2 and 12.
On inclut aussi des composés polycycliques ou cycliques tels que : d0 F18 (F- decalin ou perfluorodecalin), et des mélanges de perfluoroperhydrophenanthrene et de perfluoro n-butyldecalin. Also includes polycyclic or cyclic compounds such as: d 0 F 18 (F- Decalin or Perfluorodecalin), and mixtures of perfluoroperhydrophenanthrene and perfluoro n-butyldecalin.
On inclut aussi des aminés perfluorées, telles que : F-tripropylamine ("FTPA"), F- tributylamine ("FTBA"), F-4-methyloctahydroquinolizine ("FMOQ"), F-N-methyl- decahydroisoquinoline ("FMIQ"), F-N-methyldecahydroquinoline ("FHQ"), F-N- cyclohexylpyrrolidine ("FCHP"), F-2- butyltetrahydrofuran ("FC-75" or "FC-77").  Perfluorinated amines, such as: F-tripropylamine ("FTPA"), F-tributylamine ("FTBA"), F-4-methyloctahydroquinolizine ("FMOQ"), FN-methyl-decahydroisoquinoline ("FMIQ"), are also included. FN-methyldecahydroquinoline ("FHQ"), FN-cyclohexylpyrrolidine ("FCHP"), F-2-butyltetrahydrofuran ("FC-75" or "FC-77").
Le tensioactif de la nanoémulsion selon l'invention est un agent tensioactif anionique. Ainsi, l'invention concerne une nanoémulsion huile dans eau, notamment pour IRM, comprenant : The surfactant of the nanoemulsion according to the invention is an anionic surfactant. Thus, the invention relates to an oil-in-water nanoemulsion, especially for MRI, comprising:
- une phase aqueuse  an aqueous phase
- une phase huile fluorée a fluorinated oil phase
- un tensioactif à l'interface entre la phase aqueuse et la phase huile fluorée,  a surfactant at the interface between the aqueous phase and the fluorinated oil phase,
le tensioactif étant un agent tensioactif anionique.  the surfactant being an anionic surfactant.
Le demandeur a en effet constaté que l'utilisation d'au moins un agent tensioactif anionique (dont la partie hydrophile est chargée négativement, typiquement par un groupe carboxylate ou sulfonate) permet d'augmenter la stabilité de la nanoémulsion. The applicant has indeed found that the use of at least one anionic surfactant (whose hydrophilic part is negatively charged, typically with a carboxylate or sulfonate group) makes it possible to increase the stability of the nanoemulsion.
Le tensioactif anionique est choisi parmi les tensioactifs connus et utilisables selon la Pharmacopée, notamment le SDS (dodécyle sulfate de sodium). Dans un mode de réalisation, le tensioactif anionique est un acide gras.  The anionic surfactant is chosen from surfactants known and usable according to the Pharmacopoeia, in particular SDS (sodium dodecyl sulphate). In one embodiment, the anionic surfactant is a fatty acid.
Le pH de la phase aqueuse continue est choisi de manière que la fonction acide carboxylique de l'acide gras soit sous forme de carboxylate, en tenant compte des pKa des fonctions acide carboxylique des acides gras (généralement entre 4 et 5). L'homme du métier est à même d'ajuster le pH de la phase aqueuse continue en ce sens. La phase aqueuse continue a généralement un pH de l'ordre de 7. On entend par le terme « acide gras » désigner des acides carboxyliques aliphatiques présentant une chaîne carbonée d'au moins 6 atomes de carbone. Les acides gras naturels possèdent une chaîne carbonée de 4 à 28 atomes de carbone (généralement un nombre pair). On parle d' « acide gras à longue chaîne » pour une longueur de 14 à 22 carbones et « à très longue chaîne », s'il y a plus de 22 carbones. On parle au contraire d' « acide gras à courte chaîne » pour une longueur de 6 à 10 carbones, en particulier 8 ou 10 atomes de carbone. L'homme du métier connaît la nomenclature associée et en particulier utilise : The pH of the continuous aqueous phase is chosen so that the carboxylic acid function of the fatty acid is in the carboxylate form, taking into account the pKa of the carboxylic acid functions of the fatty acids (generally between 4 and 5). The skilled person is able to adjust the pH of the continuous aqueous phase in this sense. The continuous aqueous phase generally has a pH of about 7. The term "fatty acid" refers to aliphatic carboxylic acids having a carbon chain of at least 6 carbon atoms. Natural fatty acids have a carbon chain of 4 to 28 carbon atoms (usually an even number). It is called "long chain fatty acid" for a length of 14 to 22 carbons and "very long chain", if there are more than 22 carbons. On the contrary, we speak of "short-chain fatty acid" for a length of 6 to 10 carbons, in particular 8 or 10 carbon atoms. The skilled person knows the associated nomenclature and in particular uses:
- Cn-Cp pour désigner une fourchette d'acides gras en On à Cp  - Cn-Cp to designate a range of fatty acids in On to Cp
- et Cn+Cp, le total des acides gras en Cn et des acides gras en Cp - and Cn + Cp, the total of Cn fatty acids and Cp fatty acids
Par exemple :  For example :
- les acides gras entre 14 et 18 atomes de carbone s'écrivent acides gras en C14-C18 - the fatty acids between 14 and 18 carbon atoms are written C14-C18 fatty acids
- le total des acides gras en C16 et des acides gras en C18 s'écrit C16 +C18 the total of the C16 fatty acids and of the C18 fatty acids is written as C16 + C18
De préférence, l'agent tensioactif anionique peut être un acide gras insaturé, préférentiellement monoinsaturé, notamment en C16-C24, avantageusement en C16- C18, encore plus avantageusement en C18, en particulier l'acide oléique (sous forme de carboxylate).  Preferably, the anionic surfactant may be an unsaturated fatty acid, preferably monounsaturated, especially C16-C24, advantageously C16-C18, more advantageously C18, in particular oleic acid (in the form of carboxylate).
La nanoémulsion comprend typiquement de 0,05 à 5% de tensioactif anionique, notamment de 0,2 à 3% de tensioactif anionique, en particulier 0,25, 0,5, 1 , 1 ,1 ou 2% de tensioactif anionique (par exemple d'acide oléique), par rapport au poids total de l'huile fluorée. The nanoemulsion typically comprises from 0.05 to 5% of anionic surfactant, especially from 0.2 to 3% of anionic surfactant, in particular 0.25, 0.5, 1, 1, 1 or 2% of anionic surfactant (for example: example of oleic acid), relative to the total weight of the fluorinated oil.
Dans un mode de réalisation, la dite nanoémulsion comprend en outre un agent compatibilisant formant une couche supplémentaire s'intercalant entre la phase huile fluorée et la couche de tensioactif. In one embodiment, said nanoemulsion further comprises a compatibilizer forming an additional layer interposed between the fluorinated oil phase and the surfactant layer.
Selon des réalisations préférées, l'agent compatibilisant est une huile hydrocarbonée (non fluorée) comprenant au moins 70%, avantageusement au moins 80%, de façon avantageuse au moins 95% en poids, notamment au moins 97 %, d'acides gras saturés en C6-C18, avantageusement en C6-C14, plus avantageusement en C6-C10.  According to preferred embodiments, the compatibilizing agent is a hydrocarbon-based (non-fluorinated) oil comprising at least 70%, advantageously at least 80%, advantageously at least 95% by weight, in particular at least 97%, of saturated fatty acids. C6-C18, advantageously C6-C14, more preferably C6-C10.
Très avantageusement, l'huile hydrocarbonée comprend moins de 10%, de préférence moins de 5% d'acides gras insaturés, en particulier moins de 5%, et de préférence moins de 2%, moins de 1 % d'acides gras insaturés en C14-C18 ou en C14- C22. Very advantageously, the hydrocarbon oil comprises less than 10%, preferably less than 5% of unsaturated fatty acids, in particular less than 5%, and preferably less than 2%, less than 1% unsaturated fatty acids. C14-C18 or C14-C22.
Par exemple l'huile est le MIGLYOL®,
Figure imgf000008_0001
For example the oil is MIGLYOL ® ,
Figure imgf000008_0001
(R = C8 + C10) >95% (R = C 8 + C 10 )> 95%
P03040  P03040
ou l'un des ses dérivés connus, par exemple le MIGLYOL® 810 ou MIGLYOL® 812 (caprylic/capric triglycéride), MIGLYOL® 818 (caprylic/capric/linoleic triglycéride), le MIGLYOL® 612 (glyceryl trihexanoate), d'autres dérivés MIGLYOL® propylène glycol dicaprylate dicaprate. or one of its known derivatives, for example MIGLYOL ® 810 or MIGLYOL ® 812 (caprylic / capric triglyceride), MIGLYOL ® 818 (caprylic / capric / linoleic triglyceride), MIGLYOL ® 612 (glyceryl trihexanoate), others MIGLYOL ® derivatives propylene glycol dicaprylate dicaprate.
Par exemple le Miglyol® 812 a la composition suivante : For example Miglyol ® 812 has the following composition:
Acide Caproïque (C6-o) : max 2 % Caproic acid (C 6 -o): max 2%
Acide Caprylïque (C8-o) : 50 à 65 % Caprylic acid (C 8 -o): 50 to 65%
Acide Caprique (C1 0-o) : 30 à 45 % Caprique acid (C 1 0 -o): 30 to 45%
Acide Laurique (C12-0) : max 2 %  Lauric acid (C12-0): max 2%
Acide Miristique (C -o) : max 1 %  Miretic acid (C-0): max 1%
Acide Linoleique (C18-2) :  Linoleic acid (C18-2):
Selon des variantes, l'huile hydrocarbonée saturée est un mélange d'huiles saturées comprenant chacune au moins 70%, de préférence au moins 80, 90, 95% d'acides gras saturés de 6 à 10 atomes de carbone.  According to variants, the saturated hydrocarbon oil is a mixture of saturated oils each comprising at least 70%, preferably at least 80, 90, 95% of saturated fatty acids of 6 to 10 carbon atoms.
Selon des réalisations, l'huile hydrocarbonée saturée est une huile saturée comprenant au moins 70%, de préférence au moins 80, 90, 95% d'acides gras saturés de 12 à 18 atomes de carbone, ou comprenant un mélange d'huiles saturées comprenant chacune au moins 70%, de préférence au moins 80, 90, 95% d'acides gras saturés de 12 à 18 atomes de carbone.  According to embodiments, the saturated hydrocarbon oil is a saturated oil comprising at least 70%, preferably at least 80, 90, 95% of saturated fatty acids of 12 to 18 carbon atoms, or comprising a mixture of saturated oils. each comprising at least 70%, preferably at least 80, 90, 95% saturated fatty acids of 12 to 18 carbon atoms.
De préférence, les acides gras saturés des huiles saturées utilisées par le demandeur sont utilisés sous forme de mono, di ou triglycérides, de préférence triglycérides.  Preferably, the saturated fatty acids of the saturated oils used by the applicant are used in the form of mono-, di- or triglycerides, preferably triglycerides.
De manière préférée, l'huile hydrocarbonée des nanoémulsions du demandeur comprend des acides gras saturés dans les variantes suivantes :  Preferably, the hydrocarbon oil of the applicant's nanoemulsions comprises saturated fatty acids in the following variants:
- C6-C18 > 70%, de préférence C6-C18 > 80% de préférence C6-C18 >95%, et encore de préférence C6-C18 > 98%  C6-C18> 70%, preferably C6-C18> 80%, preferably C6-C18> 95%, and more preferably C6-C18> 98%
- C6-C14 > 70%, de préférence C6-C14 > 80% de préférence C6-C14 >95%, et encore de préférence C6-C14 > 98%  C6-C14> 70%, preferably C6-C14> 80%, preferably C6-C14> 95%, and more preferably C6-C14> 98%
- C8+C10 > 70%, de préférence C8+C10 > 80% de préférence C8+C10 >95%, et encore de préférence C8+C10 > 98% C8 + C10> 70%, preferably C8 + C10> 80%, preferably C8 + C10> 95%, and still preferably C8 + C10> 98%
- C8 compris entre 40 et 70% de préférence 50 à 65% et/ou C10 compris entre 20 et 50% de préférence 30 à 45%, le total C8+C10 étant supérieur à 80%. Par souci de simplification, il est indiqué que la nanoémulsion comprend un tensioactif. Il est clair pour l'homme du métier qu'il s'agit d'au moins un tensioactif (par exemple un mélange de tensioactifs) formant une couche de tensioactif entre la phase huileuse et la phase aqueuse, et désigné également « tensioactifs totaux » dans la demande. Par exemple, la nanoémulsion peut comprendre un tensioactif anionique et un lipide amphiphile, et/ou un lipide pégylé tels que définis ci-après. - C8 between 40 and 70%, preferably 50 to 65% and / or C10 between 20 and 50%, preferably 30 to 45%, the total C8 + C10 being greater than 80%. For simplicity, it is stated that the nanoemulsion comprises a surfactant. It is clear to those skilled in the art that it is at least one surfactant (for example a surfactant mixture) forming a surfactant layer between the oily phase and the aqueous phase, and also referred to as "total surfactants". in the application. For example, the nanoemulsion may comprise an anionic surfactant and an amphiphilic lipid, and / or a pegylated lipid as defined hereinafter.
Le tensioactif comprend généralement un ou plusieurs lipides amphiphiles, qui comportent une partie hydrophile et une partie lipophile. Ils sont généralement choisis parmi les composés dont la partie lipophile comprend une chaîne saturée ou insaturée, linéaire ou ramifiée, ayant de 8 à 30 atomes de carbone. The surfactant generally comprises one or more amphiphilic lipids, which comprise a hydrophilic part and a lipophilic part. They are generally chosen from compounds whose lipophilic part comprises a saturated or unsaturated, linear or branched chain having from 8 to 30 carbon atoms.
Avantageusement le lipide amphiphile est un phospholipide, de préférence choisi parmi : phosphatidylcholine dioléoylphosphatidylcholine, dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine, distéaroylphosphatidylcholine, phosphatidyléthanolamine, sphingomyéline, phosphatidylsérine, phosphatidylinositol. La lécithine est un lipide amphiphile préféré. Le Lipoïde, par exemple E80 est aussi un lipide préféré. Le lipide amphiphile peut aussi être choisi aussi parmi les cholestérols, les lysolipides, les sphingomyélines, les tocophérols, les glucolipides, stéarylamines, les cardiolipines d'origine naturelle ou synthétique ; les molécules composées d'un acide gras couplé à un groupement hydrophile par une fonction éther ou ester tels que les esters de sorbitan comme par exemple les monooléate et monolaurate de sorbitan ; les lipides polymérisés ; les esters de sucre tels que les mono-et di-laurate, mono- et di- palmitate, mono- et distéarate de saccharose; lesdits lipides amphiphiles pouvant être utilisés seuls ou en mélanges.  Advantageously, the amphiphilic lipid is a phospholipid, preferably chosen from: phosphatidylcholine dioleoylphosphatidylcholine, dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, phosphatidylethanolamine, sphingomyelin, phosphatidylserine, phosphatidylinositol. Lecithin is a preferred amphiphilic lipid. Lipoid, for example E80 is also a preferred lipid. The amphiphilic lipid may also be chosen also from cholesterols, lysolipids, sphingomyelins, tocopherols, glucolipids, stearylamines, cardiolipins of natural or synthetic origin; molecules composed of a fatty acid coupled to a hydrophilic group by an ether or ester function such as sorbitan esters such as, for example, sorbitan monooleate and monolaurate; polymerized lipids; sugar esters such as mono- and di-laurate, mono- and di-palmitate, sucrose mono- and distearate; said amphiphilic lipids may be used alone or in mixtures.
Avantageusement le lipide amphiphile est un lipoïde, notamment le lipoide E80. Selon un mode de réalisation particulier, tout ou partie du lipide amphiphile peut posséder une fonction réactive, telle qu'un groupe maléimide, thiol, aminé, ester, oxyamine ou aldéhyde. La présence de fonctions réactives permet le greffage de composés fonctionnels au niveau de l'interface entre les nanogouttelettes et la phase aqueuse continue.  Advantageously, the amphiphilic lipid is a lipoid, in particular lipoid E80. According to a particular embodiment, all or part of the amphiphilic lipid may have a reactive function, such as a maleimide, thiol, amine, ester, oxyamine or aldehyde group. The presence of reactive functions allows the grafting of functional compounds at the interface between the nanodroplets and the continuous aqueous phase.
On pourra utiliser pour la couche de tensioactif, en plus du lipide amphiphile, de manière non obligatoire, et en particulier afin d'agir sur le caractère furtif du produit dans l'organisme, des lipides pégylés c'est- à-dire porteurs de groupes oxyde de polyéthylène (PEG), tels que le polyéthylèneglycol/phosphatidyl-éthanolamine (PEG-PE). Par « polyéthylèneglycol » PEG, au sens de la présente demande, on désigne de façon générale, des composés comprenant une chaîne -CH2-(CH2-0-CH2)k-CH2OR3 dans laquelle k varie de 2 à 100 (par exemple 2, 4, 6, 10, 50), et R3 est choisi parmi H, alkyle ou -(CO)Alk, le terme "alkyle" ou "alk" désignant un groupe aliphatique hydrocarboné, linéaire ou ramifié, ayant environ de 1 à 6 atomes de carbone dans la chaîne. Le terme « polyéthylèneglycol » tel qu'employé ici englobe notamment les composés aminopolyéthylèneglycols, tels que des DSPE-PEG (DSPE : Distéaroyle phosphatidyle éthanolamine). On citera notamment les PEG 350, 750, 2000, 3000, 5000, modifiés par ajout de groupements amphiphiles pour s'insérer au sein de la couche de tensioactif de la nanogouttelette, notamment : It will be possible to use the surfactant layer, in addition to the amphiphilic lipid, in a non-mandatory manner, and in particular to act on the stealthiness of the product in the body, pegylated lipids that is to say carriers of polyethylene oxide (PEG) groups, such as polyethylene glycol / phosphatidyl ethanolamine (PEG-PE). For the purposes of the present application, the term "polyethylene glycol" PEG generally denotes compounds comprising a chain -CH 2 - (CH 2 -O-CH 2 ) k -CH 2 OR 3 in which k varies from 2 to 100 (for example 2, 4, 6, 10, 50), and R 3 is chosen from H, alkyl or - (CO) Alk, the term "alkyl" or "alk" denoting a linear or branched hydrocarbon aliphatic group having about 1 to 6 carbon atoms in the chain. The term "polyethylene glycol" as used herein includes aminopolyethylene glycol compounds, such as DSPE-PEG (DSPE: Distearoyl phosphatidyl ethanolamine). PEGs 350, 750, 2000, 3000, 5000, modified by the addition of amphiphilic groups to be inserted into the surfactant layer of the nanodroplet, include:
-1 ,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine-N-[Methoxy(Polyethylene glycol)- 350]  -1,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine-N- [Methoxy (Polyethylene glycol) - 350]
-1 ,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine-N-[Methoxy(Polyethylene glycol)- 550], -1,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine-N- [Methoxy (Polyethylene glycol) -550],
- 1 ,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine-N-[Methoxy(Polyethylene glycol)- 750]  - 1, 2-Distearoyl-sn-Glycero-3-Phosphoethanolamine-N- [Methoxy (Polyethylene glycol) - 750]
On utilisera notamment le lipide pégylé :  In particular, the pegylated lipid will be used:
Figure imgf000010_0001
Figure imgf000010_0001
Dans un mode de réalisation préféré, le tensioactif comprend un mélange de lipoïde (lipide amphiphile) et de DSPE-PEG (lipide pégylé), en particulier de Lipoïd E80 et de DSPE-PEG 2000.  In a preferred embodiment, the surfactant comprises a mixture of lipoid (amphiphilic lipid) and DSPE-PEG (pegylated lipid), in particular Lipoid E80 and DSPE-PEG 2000.
Avantageusement la couche de tensioactif inclut au moins un ligand de ciblage amphiphile d'une zone physiologique (également appelé biovecteur), le ligand de ciblage amphiphile représentant 0,1 à 10% en mole du total de la couche de tensioactif, avantageusement 0.05 à 5%, notamment 1 à 2 %. Advantageously, the surfactant layer includes at least one amphiphilic targeting ligand of a physiological zone (also called a biovector), the amphiphilic targeting ligand representing 0.1 to 10 mol% of the total of the surfactant layer, advantageously 0.05 to 5%. %, especially 1 to 2%.
Les gouttelettes des nanoémulsions comprennent typiquement chacune un nombre de ligands de ciblage amphiphile de l'ordre de 100 à 5000, notamment 500 à 2000, ce qui permet le ciblage efficace selon l'affinité et la multivalence du ligand de ciblage. Selon des réalisations très avantageuses, la nanoémulsion huile dans eau comprend : The droplets of the nanoemulsions typically each comprise a number of amphiphilic targeting ligands of the order of 100 to 5000, in particular 500 to 2000, which allows the targeting according to the affinity and the multivalence of the targeting ligand to be effective. According to very advantageous embodiments, the oil-in-water nanoemulsion comprises:
- une phase aqueuse, représentant de préférence 29.3 à 80 % en poids de la composition, avantageusement 55 à 65%, plus avantageusement de 58 à 62%, - une phase fluorée comprenant au moins une huile fluorée, représentant 19.3 à 70% en poids de la composition, avantageusement 35 à 45%, plus avantageusement 37 à 42%,  an aqueous phase, preferably representing 29.3 to 80% by weight of the composition, advantageously 55 to 65%, more advantageously 58 to 62%, a fluorinated phase comprising at least one fluorinated oil, representing 19.3 to 70% by weight of the composition, advantageously 35 to 45%, more preferably 37 to 42%,
- un tensioactif (formant la couche de tensioactif) à l'interface entre les phases aqueuse et fluorée,  a surfactant (forming the surfactant layer) at the interface between the aqueous and fluorinated phases,
- un agent compatibilisant formant une couche entre la phase huile fluorée et la couche de tensioactif, a compatibilizing agent forming a layer between the fluorinated oil phase and the surfactant layer,
- la teneur totale en tensioactif en poids par rapport à l'huile étant comprise entre 3 et 15%, avantageusement entre 6 et 12 % ;  the total content of surfactant by weight relative to the oil being between 3 and 15%, advantageously between 6 and 12%;
- la teneur totale en tensioactif en poids par rapport à la composition étant comprise entre 0.6 et 10 %, avantageusement entre 1 et 3 % ;  the total content of surfactant by weight relative to the composition being between 0.6 and 10%, advantageously between 1 and 3%;
- la teneur totale en agent compatibilisant étant comprise entre 0.1 % et 5% massique par rapport à la phase aqueuse.  the total content of compatibilizing agent being between 0.1% and 5% by weight relative to the aqueous phase.
De manière particulièrement avantageuse, les nanoémulsions du demandeur huile dans eau, notamment pour IRM, comprennent : Particularly advantageously, the nanoemulsions of the applicant oil in water, especially for MRI, include:
- une phase aqueuse  an aqueous phase
- une phase huile fluorée  a fluorinated oil phase
- un tensioactif à l'interface entre la phase aqueuse et la phase huile fluorée, la phase fluorée comprenant une première huile fluorée et au moins une deuxième huile fluorée.  a surfactant at the interface between the aqueous phase and the fluorinated oil phase, the fluorinated phase comprising a first fluorinated oil and at least a second fluorinated oil.
Le demandeur a en effet constaté qu'un mélange d'huiles fluorées permet d'augmenter la stabilité de la nanoémulsion. Avantageusement la première huile fluorée représente entre 70 et 95% massique de la phase huile fluorée et la deuxième huile fluorée représente 5 à 30% massique de la phase huile fluorée.  The applicant has indeed found that a mixture of fluorinated oils increases the stability of the nanoemulsion. Advantageously, the first fluorinated oil represents between 70 and 95% by weight of the fluorinated oil phase and the second fluorinated oil represents 5 to 30% by weight of the fluorinated oil phase.
Avantageusement les huiles fluorées sont choisies parmi les huiles fluorées décrites dans la présente demande.  Advantageously, the fluorinated oils are chosen from the fluorinated oils described in the present application.
De préférence, la deuxième huile fluorée est une huile de plus longue chaîne moléculaire que la première huile fluorée (c'est-à-dire comprenant plus d'atomes de carbone, et dont la masse moléculaire est généralement plus élevée).  Preferably, the second fluorinated oil is an oil with a longer molecular chain than the first fluorinated oil (that is to say comprising more carbon atoms, and whose molecular mass is generally higher).
Très avantageusement, la première huile fluorée est le PFOB, la deuxième huile fluorée est une huile de plus longue chaîne moléculaire, de préférence le perfluorohexadécane PFHD ou le perfluorodécylbromide PFDB. Par exemple le ratio est 10% massique en PFHD ou PFDB et de 90% massique en PFOB. Very advantageously, the first fluorinated oil is PFOB, the second fluorinated oil is an oil with a longer molecular chain, preferably the perfluorohexadecane PFHD or perfluorodecylbromide PFDB. For example, the ratio is 10% by weight in PFHD or PFDB and 90% by weight in PFOB.
Ce mode de réalisation est avantageux notamment dans le cas des nanoémulsions décrites dans la demande qui comprennent un agent compatibilisant formant couche entre la phase huile fluorée et la couche de tensioactif. L'invention concerne ainsi selon une réalisation une nanoémulsion huile dans eau, notamment pour IRM, comprenant :  This embodiment is particularly advantageous in the case of the nanoemulsions described in the application which comprise a compatibilizing agent forming a layer between the fluorinated oil phase and the surfactant layer. The invention thus relates, in one embodiment, to an oil-in-water nanoemulsion, in particular for MRI, comprising:
- une phase aqueuse  an aqueous phase
- une phase huile fluorée  a fluorinated oil phase
- un tensioactif à l'interface entre la phase aqueuse et la phase huile fluorée, le tensioactif formant une couche de tensioactif entre la phase aqueuse et la phase huile fluorée, a surfactant at the interface between the aqueous phase and the fluorinated oil phase, the surfactant forming a surfactant layer between the aqueous phase and the fluorinated oil phase,
- la dite nanoémulsion comprenant en outre un agent compatibilisant formant une couche supplémentaire s'intercalant entre la phase huile fluorée et la couche de tensioactif,  said nanoemulsion further comprising a compatibilizing agent forming an additional layer interposed between the fluorinated oil phase and the surfactant layer,
la phase fluorée comprenant une première huile fluorée et au moins une deuxième huile fluorée. the fluorinated phase comprising a first fluorinated oil and at least one second fluorinated oil.
Selon un autre aspect, l'invention concerne une nanoémulsion huile dans eau pour IRM comprenant : In another aspect, the invention relates to an oil-in-water nanoemulsion for MRI comprising:
- une phase aqueuse  an aqueous phase
- une phase huile fluorée  a fluorinated oil phase
- un tensioactif à l'interface entre la phase aqueuse et la phase huile fluorée,  a surfactant at the interface between the aqueous phase and the fluorinated oil phase,
la dite nanoémulsion comprenant en outre au moins agent stabilisant choisi parmi les protéines et les polysaccharides, de préférence les protéines.  said nanoemulsion further comprising at least one stabilizing agent selected from proteins and polysaccharides, preferably proteins.
Le demandeur a en effet constaté que l'utilisation d'au moins une protéine ou d'un polysaccharide permet d'augmenter la stabilité de la nanoémulsion. La protéine est choisie parmi les protéines connues et utilisables selon la Pharmacopée, notamment la caséine ou la lactoglobuline et préférentiellement la lactoglobuline. Le polysaccharide est de préférence l'amidon. De préférence la protéine ou le polysaccharide est utilisée en proportion compris entre 0.1 à 5% massique par rapport à la phase aqueuse.  The applicant has indeed found that the use of at least one protein or polysaccharide makes it possible to increase the stability of the nanoemulsion. The protein is chosen from the proteins known and usable according to the Pharmacopoeia, in particular casein or lactoglobulin and preferentially lactoglobulin. The polysaccharide is preferably starch. Preferably, the protein or the polysaccharide is used in a proportion of between 0.1 and 5% by weight relative to the aqueous phase.
Dans un mode de réalisation, la nanoémulsion comprend un agent compatibilisant tel que défini ci-dessus.  In one embodiment, the nanoemulsion comprises a compatibilizing agent as defined above.
Dans un mode de réalisation, la phase huileuse de la nanoémulsion comprend une première huile fluorée et au moins une deuxième huile fluorée. Dans un mode de réalisation, la nanoémulsion comprend un agent compatibilisant tel que défini ci-dessus et la phase huileuse de la nanoémulsion comprend une première huile fluorée et au moins une deuxième huile fluorée. Selon un autre aspect, l'invention concerne un procédé de préparation d'émulsions huile dans eau, notamment pour IRM, comprenant une phase aqueuse, une phase huile fluorée, un tensioactif à l'interface entre les phases aqueuse et lipidique, le procédé comprenant les étapes : In one embodiment, the oily phase of the nanoemulsion comprises a first fluorinated oil and at least one second fluorinated oil. In one embodiment, the nanoemulsion comprises a compatibilizing agent as defined above and the oily phase of the nanoemulsion comprises a first fluorinated oil and at least one second fluorinated oil. According to another aspect, the invention relates to a process for preparing oil-in-water emulsions, in particular for MRI, comprising an aqueous phase, a fluorinated oil phase, a surfactant at the interface between the aqueous and lipid phases, the process comprising Steps :
a) mélange des constituants de la phase aqueuse, de la phase fluorée, et du tensioactif, de manière à obtenir une nanoémulsion a) mixing the constituents of the aqueous phase, the fluorinated phase, and the surfactant, so as to obtain a nanoemulsion
b) au moins une étape de lavage de la nanoémulsion préparée en a). b) at least one washing step of the nanoemulsion prepared in a).
Dans des réalisations, lors de l'étape de lavage, la nanoémulsion est centrifugée afin de séparer les gouttelettes de la phase continue. L'huile étant plus lourde que l'eau, les gouttes constituent le sous-nageant opaque et visqueux, tandis que la phase continue contenant l'eau et les phospholipides forment le surnageant. Ce surnageant est remplacé par une phase continue (eau ou eau salée) sans phospholipides.  In embodiments, during the washing step, the nanoemulsion is centrifuged in order to separate the droplets from the continuous phase. Since the oil is heavier than water, the droplets are the opaque and viscous sub-oil, while the continuous phase containing water and phospholipids form the supernatant. This supernatant is replaced by a continuous phase (water or salt water) without phospholipids.
Selon un autre aspect, l'invention concerne l'utilisation d'une nanoémulsion telle que définie ci-dessus ou d'une nanoémulsion susceptible d'être obtenue par le procédé tel que défini ci-dessus comme agent de contraste, notamment pour une détection par imagerie par résonance magnétique (IRM). According to another aspect, the invention relates to the use of a nanoemulsion as defined above or of a nanoemulsion obtainable by the method as defined above as a contrast agent, in particular for detection. magnetic resonance imaging (MRI).
L'invention concerne également un agent de contraste comprenant une nanoémulsion telle que définie ci-dessus ou une nanoémulsion susceptible d'être obtenue par le procédé tel que défini ci-dessus.  The invention also relates to a contrast agent comprising a nanoemulsion as defined above or a nanoemulsion obtainable by the process as defined above.
Les figures annexées représentent respectivement : The appended figures represent respectively:
Figure 1 : Coupe d'une goutte d'huile stabilisée par des tensioactifs  Figure 1: Section of a drop of oil stabilized by surfactants
Figure 2 : schéma représentant le mécanisme de la coalescence  Figure 2: diagram representing the mechanism of coalescence
Figure 3 : schéma représentant le mûrissement d'Ostwald  Figure 3: Schematic diagram of Ostwald ripening
Figure 4: taille en nm des gouttelettes dans le régime pauvre (3% mass.) dans l'eau pure en fonction du temps en jours (exemple II. 1 )  Figure 4: size in nm of the droplets in the poor diet (3% mass.) In pure water as a function of time in days (example II.1)
Figure 5 : taille en nm des gouttelettes dans le régime riche (12% mass.) dans l'eau pure en fonction du temps en jours (exemple II. 1 )  Figure 5: size in nm of the droplets in the rich diet (12% mass.) In pure water as a function of time in days (example II.1)
Figure 6: taille en nm des gouttelettes comprenant du des tensioactifs anioniques (losange), cationiques (triangles) et non-ionique (carrés) de chaînes carbonés C12, dans l'eau pure en fonction du temps en jours (exemple II. 2) Les exemples qui suivent illustrent les modes de réalisation de l'invention. Figure 6: Size in nm of the droplets comprising anionic (diamond), cationic (triangles) and nonionic (square) surfactants of carbon chains C12, in pure water as a function of time in days (Example II.2) The following examples illustrate the embodiments of the invention.
PARTIE I : Fabrication et méthode de caractérisation des nanoémulsions 1. Composés utilisés PART I: Manufacture and method of characterization of nanoemulsions 1. Compounds used
Les produits utilisés pour formuler les nanoémulsions sont les suivants :  The products used to formulate nanoemulsions are:
- Phases dispersées : (Huiles fluorées) : perfluorooctylbromide (PFOB).  - Dissimilated phases: (Fluorinated oils): perfluorooctylbromide (PFOB).
- Phases continues : Eau distillée ou eau salée (NaCI=0,154M) ou eau additionnée de 2,5% en poids de glycérol (pH 7).  - Continuous phases: Distilled water or salt water (NaCl = 0.154M) or water containing 2.5% by weight of glycerol (pH 7).
- Stabilisants : Le Phospholipide naturel Lipoid E80 (PL) issu du jaune d'œuf, composé majoritairement de Phosphatidylcholine ainsi que le phospholipide modifié pégylé DSPE- PEG 2000 (PLM). Cette modification du phospholipide apporte de la furtivité à la nanoémulsion, pour que la nanoémulsion ne soit pas immédiatement évacuée par le système imunitaire. - Stabilizers: The natural lipoid phospholipid E80 (PL) from egg yolk, composed mainly of phosphatidylcholine and the modified pegylated phospholipid DSPE-PEG 2000 (PLM). This modification of the phospholipid brings stealth to the nanoemulsion, so that the nanoemulsion is not immediately evacuated by the immune system.
- Tensioactif anionique : Acide oléïque ou SDS - Anionic surfactant: Oleic acid or SDS
2. Fabrication et caractérisation des nanoémulsions 2. Manufacture and characterization of nanoemulsions
Les phospholipides (PL) et phospholipides modifiés (PLM) et le tensioactif anionique sont dissous sous agitation magnétique et chauffage (45^) dans la phase continue contenant l'eau pure ou l'eau salée. Dans un premier temps, une nanoémulsion dite grossière est formée en incorporant progressivement l'huile dans la phase aqueuse sous forte agitation à l'aide de l'Ultra-Turrax. Cette pré-émulsion est ensuite passée au microfluidiseur afin de diminuer la taille des gouttes. La taille moyenne des gouttes dh ainsi qu'un indicateur de la largeur de distribution des tailles de goutte (PDI) sont mesurés par la diffusion dynamique de la lumière. The phospholipids (PL) and modified phospholipids (PLM) and the anionic surfactant are dissolved with magnetic stirring and heating (45%) in the continuous phase containing pure water or salt water. In a first step, a so-called coarse nanoemulsion is formed by gradually incorporating the oil into the aqueous phase with vigorous stirring using Ultra-Turrax. This pre-emulsion is then passed to the microfluidizer to reduce the size of the drops. The average droplet size d h as well as an indicator of the droplet size distribution width (PDI) are measured by the dynamic scattering of light.
Les nanoémulsions suivantes ont été préparées The following nanoemulsions have been prepared
Références Huile Phase Tensioactif Agent Ratio du fluorée aqueuse anionique compatibilisant mélange (PFOB)* (eau pure (acide (Mygliol) ** molaire de sauf pour oléique) ** Lipide la dernière amphiphile nanoémuls (Lipoide E80) ion SC* et de Lipide References Oil Tensioactive Phase Agent Ratio of Anionic Fluoride Anionic Compatibilizer Mixture (PFOB) * (Pure Water (Mygliol) ** Molar of Except for Oleic) ** Lipid The Last Amphiphile Nanoemuls (Lipoide E80) SC * and Lipid
PEGylé (DSPE-PEG) PEGylé (DSPE-PEG)
97:3 95:597: 3 95: 5
SC166-F1 20% Jusque 80% 0,425% 3% SC166-F1 20% Up to 80% 0.425% 3%
(comp.)  (Comp.)
SC161-F1 20% Jusque 80% 0,25% - 3% - SC161-F1 20% Up to 80% 0.25% - 3% -
SC67-F1 20% Jusque 80% 3% SC67-F1 20% Up to 80% 3%
(comp.)  (Comp.)
SC167-F1 20% Jusque 80% 0,85% 3%  SC167-F1 20% Up to 80% 0.85% 3%
(comp.)  (Comp.)
SC162-F1 20% Jusque 80% 0,5% - 3% - SC162-F1 20% Up to 80% 0.5% - 3% -
SC164-F1 20% Jusque 80% 1 % - 12% -SC164-F1 20% Up to 80% 1% - 12% -
SC165-F1 20% Jusque 80% 2% - 12% -SC165-F1 20% up to 80% 2% - 12% -
SC31-F2 20% Jusque 80% 12% SC31-F2 20% to 80% 12%
(comp.)  (Comp.)
se 20% Eau 1 ,1 % 3% additionnée  se 20% Water 1, 1% 3% added
de 2,5% en  2.5% in
poids de  weight of
glycérol  glycerol
* % massique par rapport au poids de la composition * % by mass with respect to the weight of the composition
** % massique par rapport au poids de l'huile fluorée (PFOB en l'occurrence) Tableau 1 : composition des nanoémulsions des figures 4 et 5 Les nanoémulsions suivantes ont été préparées (les pourcentages étant exprimés en poids par rapport à la CMC (concentration micellaire critique): ** % by mass with respect to the weight of the fluorinated oil (PFOB in this case) Table 1: Composition of the nanoemulsions of FIGS. 4 and 5 The following nanoemulsions were prepared (the percentages being expressed by weight relative to the CMC (critical micelle concentration):
Figure imgf000016_0001
Tableau 2 : composition des nanoémulsions de la figure 6
Figure imgf000016_0001
Table 2: Composition of the nanoemulsions of Figure 6
« Comp. » Signifie que l'exemple est comparatif "Comp. »Means that the example is comparative
La taille des nanoémulsions a été mesurée par spectroscopie par corrélation de photons (PCS pour "photon corrélation spectroscopy" en anglais) à l'aide d'un analyseur granulométrique Zetasizer NanoS (société Malvern). The size of the nanoemulsions was measured by photon correlation spectroscopy (PCS for "photon correlation spectroscopy" in English) using a particle size analyzer Zetasizer NanoS (Malvern company).
Les particules de la nanoémulsion SC (dernière ligne du tableau 1 ) avaient une taille moyenne de 190 nm. A 1 14 jours après leur fabrication, cette taille était de 223 nm. A 191 jours, elle était de 175 nm. Ces résultats démontrent donc qu'une nanoémulsion selon l'invention est bien stable dans le temps.  The particles of the SC nanoemulsion (last row of Table 1) had an average size of 190 nm. At 14 days after their manufacture, this size was 223 nm. At 191 days, it was 175 nm. These results therefore demonstrate that a nanoemulsion according to the invention is stable over time.
PARTIE II : Amélioration de la stabilité des nanoémulsions PART II: Improving the stability of nanoemulsions
11.1 ) Ajout d'un compatibilisant 11.1) Addition of a compatibilizer
Lors de cet étude, l'amélioration de la compatibilité entre le système PL et PLM et l'interface dispersée fluorée a été recherchée. D'après les figures 4 et 5, on remarque que l'ajout d'un compatibilisant en particulier le Miglyol, améliore la stabilité de la nanoémulsion, lorsqu'on compare avec le système de référence (SC67-F1 ou SC31 -F2). II .2) Charge de l'interface : utilisation de tensioactifs During this study, the improvement of the compatibility between the PL and PLM system and the fluorinated dispersed interface was sought. From FIGS. 4 and 5, it can be seen that the addition of a compatibilizer, in particular Miglyol, improves the stability of the nanoemulsion when compared with the reference system (SC67-F1 or SC31-F2). II .2) Interface load: use of surfactants
Afin d'orienter les études vers le type de stabilisant le plus approprié, les phospholipides PL et PLM ont été remplacés par des tensioactifs anioniques (losange), cationiques (triangles) et non-ionique (carrés) de chaînes carbonés C12 (figure 6). Les résultats montrent que les tensioactifs anioniques sont ceux qui stabilisent le mieux la nanoémulsion. Les tensioactifs non-ioniques et cationiques ne restent pas à l'interface et la nanoémulsion se déstabilise très vite. In order to orient the studies towards the most appropriate type of stabilizer, the phospholipids PL and PLM were replaced by anionic (diamond), cationic (triangles) and nonionic (square) surfactants of carbon chains C12 (FIG. . The results show that the anionic surfactants are the ones that best stabilize the nanoemulsion. The nonionic and cationic surfactants do not remain at the interface and the nanoemulsion destabilizes very quickly.

Claims

REVENDICATIONS
1 . Nanoémulsion huile dans eau comprenant : 1. Nanoemulsion oil in water comprising:
- une phase aqueuse,  an aqueous phase,
- une phase huile fluorée, a fluorinated oil phase,
- un tensioactif à l'interface entre la phase aqueuse et la phase huile fluorée, le tensioactif étant un agent tensioactif anionique.  a surfactant at the interface between the aqueous phase and the fluorinated oil phase, the surfactant being an anionic surfactant.
2. Nanoémulsion selon la revendication 1 , dans laquelle le tensioactif anionique comprend un groupe carboxylate ou sulfonate. The nanoemulsion of claim 1, wherein the anionic surfactant comprises a carboxylate or sulfonate group.
3. Nanoémulsion selon la revendication 1 ou 2, dans laquelle le tensioactif anionique est un acide gras. 3. Nanoemulsion according to claim 1 or 2, wherein the anionic surfactant is a fatty acid.
4. Nanoémulsion selon l'une quelconque des revendications 1 à 3, dans laquelle le tensioactif anionique est un acide gras insaturé, préférentiellement monoinsaturé, notamment en C16-C24, avantageusement en C16-C18, encore plus avantageusement en C18. 4. Nanoemulsion according to any one of claims 1 to 3, wherein the anionic surfactant is an unsaturated fatty acid, preferably monounsaturated, especially C16-C24, advantageously C16-C18, more preferably C18.
5. Nanoémulsion selon l'une quelconque des revendications 1 à 4, dans laquelle le tensioactif anionique est l'acide oléique. A nanoemulsion according to any one of claims 1 to 4, wherein the anionic surfactant is oleic acid.
6. Nanoémulsion selon l'une quelconque des revendications 1 à 5, comprenant un lipide amphiphile, notamment un phospholipide, tel que le lipoide E80. 6. Nanoemulsion according to any one of claims 1 to 5, comprising an amphiphilic lipid, in particular a phospholipid, such as lipoid E80.
7. Nanoémulsion selon l'une quelconque des revendications 1 à 6, comprenant un lipide pégylé, notamment un lipide aminopolyéthylèneglycol, tel que de la distéaroyle phosphatidyle éthanolamine. 7. Nanoemulsion according to any one of claims 1 to 6, comprising a pegylated lipid, especially an aminopolyethylene glycol lipid, such as distearoyl phosphatidyl ethanolamine.
8. Nanoémulsion selon l'une quelconque des revendications 1 à 7, comprenant un agent compatibilisant formant une couche supplémentaire s'intercalant entre la phase huile fluorée et la couche de tensioactif, l'agent compatibilisant étant une huile hydrocarbonée non fluorée comprenant au moins 70%, avantageusement au moins 80%, de façon avantageuse au moins 95% en poids, notamment au moins 97 %, d'acides gras saturés en C6-C18. 8. Nanoemulsion according to any one of claims 1 to 7, comprising a compatibilizer forming an additional layer interposed between the fluorinated oil phase and the surfactant layer, the compatibilizing agent being a non-fluorinated hydrocarbon oil comprising at least 70 %, advantageously at least 80%, advantageously at least 95% by weight, especially at least 97%, of saturated C6-C18 fatty acids.
9. Nanoémulsion selon la revendication 8, caractérisée en ce que l'agent compatibilisant est une huile hydrocarbonée non fluorée comprenant au moins 70% d'acides gras saturés en C6-C14, plus avantageusement en C6-C10. 9. Nanoemulsion according to claim 8, characterized in that the compatibilizing agent is a non-fluorinated hydrocarbon oil comprising at least 70% saturated fatty acids C6-C14, more preferably C6-C10.
10. Nanoémulsion selon la revendication 8, caractérisée en ce que l'huile hydrocarbonée saturée est une huile saturée comprenant au moins 70%, de préférence au moins 80, 90, 95% d'acides gras saturés de 12 à 18 atomes de carbone, ou comprenant un mélange d'huiles saturées comprenant chacune au moins 70%, de préférence au moins 80, 90, 95% d'acides gras saturés de 12 à 18 atomes de carbone. 10. Nanoemulsion according to claim 8, characterized in that the saturated hydrocarbon oil is a saturated oil comprising at least 70%, preferably at least 80, 90, 95% of saturated fatty acids of 12 to 18 carbon atoms, or comprising a mixture of saturated oils each comprising at least 70%, preferably at least 80, 90, 95% saturated fatty acids of 12 to 18 carbon atoms.
1 1 . Nanoémulsion selon l'une quelconque des revendications 1 à 10, caractérisée en ce que l'huile fluorée est une huile choisie parmi les huiles incluant des perfluorocarbones linéaires ou ramifiés, ou cycliques ou polycycliques, saturés ou insaturés, des aminés tertiaires cycliques perfluorées, des perfluoro esters ou thioesters, des haloperfluorocarbones ; avantageusement perfluorooctylbromide PFOB, C8Fi7Br (PFOB ou perfluorobron), perfluorooctyléthane (C8F17C2H5 PFOE), perfluorodecalin FDC, perfluorooctane C8Fi8, perfluorodichlorooctane, bromure de perfluoro-n-octyl, perfluoroheptane, perfluorodécane Ci0F22, perfluorododécyle bromide Ci0F22Br PFDB, perfluorocyclohexane, perfluoromorpholine, perfluorotripropylamine, perfluorotributylamine, perfluorodiméthylcyclohexane, perfluorotriméthylcyclohexane, ester de perfluorodicyclohexyl, perfluoro-n- butyltétrahydrofurane. 1 1. Nanoemulsion according to any one of Claims 1 to 10, characterized in that the fluorinated oil is an oil chosen from oils including linear or branched perfluorocarbons, or cyclic or polycyclic saturated or unsaturated perfluorocarbons, cyclic perfluorinated tertiary amines, perfluoro esters or thioesters, haloperfluorocarbons; advantageously perfluorooctylbromide PFOB, C 8 F 7 Br (PFOB or perfluorobron), perfluorooctylethane (C 8 F 17 C 2 H 5 PFOE), perfluorodecalin FDC, perfluorooctane C 8 Fi 8 , perfluorodichlorooctane, perfluoro-n-octyl bromide, perfluoroheptane, perfluorodecane Ci 0 F 22 , perfluorododecyl bromide Ci 0 F 22 Br PFDB, perfluorocyclohexane, perfluoromorpholine, perfluorotripropylamine, perfluorotributylamine, perfluorodimethylcyclohexane, perfluorotrimethylcyclohexane, perfluorodicyclohexyl ester, perfluoro-n-butyltetrahydrofuran.
12. Nanoémulsion selon l'une quelconque des revendications 1 à 1 1 , caractérisée en ce que la phase fluorée comprend une première huile fluorée et au moins une deuxième huile fluorée ; avantageusement la première huile fluorée représente entre 70 et 95% massique de la phase huile fluorée et la deuxième huile fluorée représente 5 à 30% massique de la phase huile fluorée. 12. Nanoemulsion according to any one of claims 1 to 1 1, characterized in that the fluorinated phase comprises a first fluorinated oil and at least a second fluorinated oil; advantageously, the first fluorinated oil represents between 70 and 95% by weight of the fluorinated oil phase and the second fluorinated oil represents 5 to 30% by weight of the fluorinated oil phase.
13. Nanoémulsion selon la revendication 12, caractérisée en ce que la première huile fluorée est le PFOB, la deuxième huile fluorée est une huile de plus longue chaîne moléculaire, de préférence le perfluorohexadécane PFHD ou le perfluorodécylbromide PFDB. 13. Nanoemulsion according to claim 12, characterized in that the first fluorinated oil is PFOB, the second fluorinated oil is an oil of longer molecular chain, preferably perfluorohexadecane PFHD or perfluorodécylbromide PFDB.
14. Procédé de préparation de nanoémulsions huile dans eau selon l'une quelconque des revendications 1 à 13 comprenant une phase aqueuse, une phase huile fluorée, un tensioactif à l'interface entre les phases aqueuse et lipidique, le procédé comprenant les étapes : a) mélange des constituants de la phase aqueuse, de la phase fluorée, et du tensioactif, de manière à obtenir une nanoémulsion 14. Process for the preparation of oil-in-water nanoemulsions according to any one of claims 1 to 13, comprising an aqueous phase, a fluorinated oil phase, a surfactant at the interface between the aqueous and lipid phases, the process comprising the steps of: a) mixing the constituents of the aqueous phase, the fluorinated phase, and the surfactant, so as to obtain a nanoemulsion
b) au moins une étape de lavage de la nanoémulsion préparée en a). b) at least one washing step of the nanoemulsion prepared in a).
15. Agent de contraste comprenant une nanoémulsion selon l'une quelconque des revendications 1 à 13 ou une nanoémulsion susceptible d'être obtenue par le procédé selon la revendication 14. 15. Contrast agent comprising a nanoemulsion according to any one of claims 1 to 13 or a nanoemulsion obtainable by the process according to claim 14.
PCT/EP2012/068984 2011-09-26 2012-09-26 Perfluorinated nanoemulsions, method for preparing same, and use thereof as a contrast agent WO2013045504A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1158565A FR2980365B1 (en) 2011-09-26 2011-09-26 NANOEMULSIONS, PROCESS FOR THEIR PREPARATION, AND THEIR USE AS A CONTRAST AGENT.
FR1158565 2011-09-26

Publications (1)

Publication Number Publication Date
WO2013045504A1 true WO2013045504A1 (en) 2013-04-04

Family

ID=46934583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/068984 WO2013045504A1 (en) 2011-09-26 2012-09-26 Perfluorinated nanoemulsions, method for preparing same, and use thereof as a contrast agent

Country Status (2)

Country Link
FR (1) FR2980365B1 (en)
WO (1) WO2013045504A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020007822A1 (en) 2018-07-02 2020-01-09 Conservatoire National Des Arts Et Metiers (Cnam) Bismuth metallic (0) nanoparticles, process of manufacturing and uses thereof
CN114369647A (en) * 2021-12-31 2022-04-19 深圳麦科田生物医疗技术股份有限公司 Water-in-oil droplet for micro-droplet digital PCR and application thereof
US11406722B2 (en) 2017-03-16 2022-08-09 The Board Of Regents Of The University Of Texas System Nanodroplets with improved properties

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927623A (en) 1986-01-14 1990-05-22 Alliance Pharmaceutical Corp. Dissolution of gas in a fluorocarbon liquid
US5077036A (en) 1986-01-14 1991-12-31 Alliance Pharmaceutical Corp. Biocompatible stable fluorocarbon emulsions for contrast enhancement and oxygen transport comprising 40-125% wt./volume fluorocarbon combined with a phospholipid
US5114703A (en) 1989-05-30 1992-05-19 Alliance Pharmaceutical Corp. Percutaneous lymphography using particulate fluorocarbon emulsions
US5171755A (en) 1988-04-29 1992-12-15 Hemagen/Pfc Emulsions of highly fluorinated organic compounds
WO1993011868A1 (en) * 1991-12-12 1993-06-24 Hemagen/Pfc Highly fluorinated, chloro-substituted organic compound-containing emulsions and methods of making and using them
US5304325A (en) 1991-11-13 1994-04-19 Hemagen/Pfc Emulsions containing alkyl- or alkylglycerophosphoryl choline surfactants and methods of use
US5393524A (en) 1991-09-17 1995-02-28 Sonus Pharmaceuticals Inc. Methods for selecting and using gases as ultrasound contrast media
WO1997021425A1 (en) * 1995-12-14 1997-06-19 Alliance Pharmaceutical Corp. Hydrocarbon oil/fluorochemical preparations and method of use
US5958371A (en) 1995-06-08 1999-09-28 Barnes-Jewish Hospital Site specific binding system, nuclear imaging compositions and methods
WO2003062198A1 (en) 2002-01-24 2003-07-31 Barnes Jewish Hospital Integrin targeted imaging agents
US6676963B1 (en) 2000-10-27 2004-01-13 Barnes-Jewish Hospital Ligand-targeted emulsions carrying bioactive agents
WO2006100305A2 (en) * 2005-03-24 2006-09-28 Guerbet Metal chelates of polyaminocarboxylic macrocyclic derivatives and use thereof in diagnostic imaging
WO2007100715A2 (en) * 2006-02-24 2007-09-07 Washington University Cell labeling with perfluorocarbon nanoparticles for magnetic resonance imaging and spectroscopy
WO2007112100A2 (en) * 2006-03-24 2007-10-04 The University Of Utah Research Foundation Highly fluorinated oils and surfactants and methods of making and using same
WO2009154425A2 (en) * 2008-06-21 2009-12-23 Korea Research Institute Of Bioscience And Biotechnology Multimodal imaging method using nano-emulsion comprising optical nano-particles and perfluorocarbons

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077036A (en) 1986-01-14 1991-12-31 Alliance Pharmaceutical Corp. Biocompatible stable fluorocarbon emulsions for contrast enhancement and oxygen transport comprising 40-125% wt./volume fluorocarbon combined with a phospholipid
US4927623A (en) 1986-01-14 1990-05-22 Alliance Pharmaceutical Corp. Dissolution of gas in a fluorocarbon liquid
US5171755A (en) 1988-04-29 1992-12-15 Hemagen/Pfc Emulsions of highly fluorinated organic compounds
US5350571A (en) 1988-04-29 1994-09-27 Hemagen/Pfc Emulsions of highly fluorinated organic compounds
US5114703A (en) 1989-05-30 1992-05-19 Alliance Pharmaceutical Corp. Percutaneous lymphography using particulate fluorocarbon emulsions
US5393524A (en) 1991-09-17 1995-02-28 Sonus Pharmaceuticals Inc. Methods for selecting and using gases as ultrasound contrast media
US5304325A (en) 1991-11-13 1994-04-19 Hemagen/Pfc Emulsions containing alkyl- or alkylglycerophosphoryl choline surfactants and methods of use
US5403575A (en) 1991-12-12 1995-04-04 Hemagen/Pfc Highly fluorinated, chloro-substituted organic compound-containing emulsions and methods of using them
WO1993011868A1 (en) * 1991-12-12 1993-06-24 Hemagen/Pfc Highly fluorinated, chloro-substituted organic compound-containing emulsions and methods of making and using them
US5958371A (en) 1995-06-08 1999-09-28 Barnes-Jewish Hospital Site specific binding system, nuclear imaging compositions and methods
WO1997021425A1 (en) * 1995-12-14 1997-06-19 Alliance Pharmaceutical Corp. Hydrocarbon oil/fluorochemical preparations and method of use
US6676963B1 (en) 2000-10-27 2004-01-13 Barnes-Jewish Hospital Ligand-targeted emulsions carrying bioactive agents
WO2003062198A1 (en) 2002-01-24 2003-07-31 Barnes Jewish Hospital Integrin targeted imaging agents
WO2006100305A2 (en) * 2005-03-24 2006-09-28 Guerbet Metal chelates of polyaminocarboxylic macrocyclic derivatives and use thereof in diagnostic imaging
WO2007100715A2 (en) * 2006-02-24 2007-09-07 Washington University Cell labeling with perfluorocarbon nanoparticles for magnetic resonance imaging and spectroscopy
WO2007112100A2 (en) * 2006-03-24 2007-10-04 The University Of Utah Research Foundation Highly fluorinated oils and surfactants and methods of making and using same
WO2009154425A2 (en) * 2008-06-21 2009-12-23 Korea Research Institute Of Bioscience And Biotechnology Multimodal imaging method using nano-emulsion comprising optical nano-particles and perfluorocarbons

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Fatty acids composiiton of virgin coconut oil", XP002671755, Retrieved from the Internet <URL:http://www.thevirgincoconutoil.com/articleitem.php?articleid=163> [retrieved on 20120316] *
BOZAN B ET AL: "Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils", BIORESOURCE TECHNOLOGY, ELSEVIER BV, GB, vol. 99, no. 14, 1 September 2008 (2008-09-01), pages 6354 - 6359, XP022679206, ISSN: 0960-8524, [retrieved on 20080115], DOI: 10.1016/J.BIORTECH.2007.12.009 *
FANG ET AL: "A study of the formulation design of acoustically active lipospheres as carriers for drug delivery", EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, vol. 67, no. 1, 30 June 2007 (2007-06-30), ELSEVIER SCIENCE PUBLISHERS B.V., AMSTERDAM, NL, pages 67 - 75, XP022136340, ISSN: 0939-6411, DOI: 10.1016/J.EJPB.2007.01.008 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11406722B2 (en) 2017-03-16 2022-08-09 The Board Of Regents Of The University Of Texas System Nanodroplets with improved properties
WO2020007822A1 (en) 2018-07-02 2020-01-09 Conservatoire National Des Arts Et Metiers (Cnam) Bismuth metallic (0) nanoparticles, process of manufacturing and uses thereof
CN114369647A (en) * 2021-12-31 2022-04-19 深圳麦科田生物医疗技术股份有限公司 Water-in-oil droplet for micro-droplet digital PCR and application thereof

Also Published As

Publication number Publication date
FR2980365A1 (en) 2013-03-29
FR2980365B1 (en) 2016-02-12

Similar Documents

Publication Publication Date Title
Klang et al. Design and evaluation of submicron emulsions as colloidal drug carriers for intravenous administration
Hippalgaonkar et al. Injectable lipid emulsions—advancements, opportunities and challenges
CA2294337C (en) Preparation of pharmaceutical compositions
EP2129455B1 (en) Method for preparing nano-emulsions
Park et al. Phospholipid-based microemulsions of flurbiprofen by the spontaneous emulsification process
US7060285B2 (en) Dispersions for the formulation of slightly or poorly soluble agents
Badran FORMULATION AND IN VITRO EVALUATION OF FLUFENAMIC ACID LOADED DEFORMABLE LIPOSOMES FOR IMPROVED SKIN DELIVERY.
Gao et al. Rapid and efficient crossing blood-brain barrier: hydrophobic drug delivery system based on propionylated amylose helix nanoclusters
JP2012207042A (en) Method and composition to solubilize biologically active compound with low water solubility
JPH11509545A (en) Lipid vehicle drug delivery compositions containing vitamin E
CA2690471A1 (en) Nanocapsules with liquid lipidic core loaded with water-soluble or water-dispersible ingredient(s)
WO2013045504A1 (en) Perfluorinated nanoemulsions, method for preparing same, and use thereof as a contrast agent
Barres et al. Multicompartment theranostic nanoemulsions stabilized by a triphilic semifluorinated block copolymer
KR20140142511A (en) Encapsulated composition of lamella type of non-water liquid crystalline phase having skin analogue membrane and cosmetic composition using the same
EP4065174B1 (en) Biocompatible oily ferrofluid and preparation process
FR2553661A1 (en) New pharmaceutically acceptable microemulsions
KR101213107B1 (en) Oral pharmaceuticla composition containging lutein using self-micro emulsion system
Atanase Nanoemulsions for drug delivery
KR102565469B1 (en) Vitamin C Encapsulated Liposome and Preparation Thereof
KR102291017B1 (en) Lipid nanoparticle complex containing extract of licorice and process for preparing the same
RAHMAN et al. CASE STUDY 2 FISH OIL‐BASED NANOSIZED EMULSIONS
Davis Phospholipid Stabilised Emulsions for Parenteral Nutrition and Drug Delivery
PL240301B1 (en) Nanostructured lipid carriers stabilized with phosphatidylcholine and method of their preparation
PL240300B1 (en) Solid lipid nanoparticles stablized with phosphatidylcholine and method of their preparation
PL240303B1 (en) Nanostructured lipid carriers stabilized with phosphatidylcholine and method of their preparation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12766081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12766081

Country of ref document: EP

Kind code of ref document: A1